
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Astrophysics and Cosmology

Final Dissertation

A machine learning approach to parameter

inference in gravitational-wave signal analysis

Thesis supervisor: Candidate:

Prof. Giacomo Ciani Matteo Scialpi

Thesis co-supervisors:

Prof. Edoardo Milotti

Prof. Agata Trovato

Academic Year 2022/2023

Abstract

Gravitational Wave (GW) physics is now in its golden age thanks to modern interfer-
ometers. The fourth observing run is now ongoing with two of the four second-generation
detectors, collecting GW signals coming from Compact Binary Coalescences (CBCs).
These systems are formed by black holes and/or neutron stars which lose energy and an-
gular momentum in favour of GW emission, spiraling toward each other until they merge.
The characteristic waveform has a chirping behaviour, with a frequency increasing with
time. These GW signals are gold mines of physical information on the emitting system.

The data analysis of these signals has two main aspects: detection and parameter
estimation. For what concerns detection, two approaches are used right now: matched fil-
tering, which compares numerical waveform with raw interferometers’ output to highlight
the signal, and the study of bursts, which highlights the coherence of arbitrary signals in
different detectors. Both these techniques need to be fast enough to allow for electromag-
netic follow-up with a relatively short delay. The offline parameter inference process is
based on Bayesian techniques and is rather lengthy (individual processing Markov Chain
Monte Carlo runs can take a month or more).

My thesis has the goal of introducing a fast parameter estimation for unmodeled
(burst) methods which produce only phenomenological, de-noised waveforms with, at
best, a rough estimate of only a few parameters. The implementation of an approach for
fast parameter inference in this unmodeled analysis, taking as input the reconstructed
waveform, could be extremely useful for multimessenger observations.

In this context, Keith et al. (2021a) proposed to use Physics Informed Neural Networks
(PINNs; Raissi et al. (2019)) in GW data analysis. These PINNs are a machine learning
approach which includes physical prior information in the algorithm itself. Taking a clean
chirping waveform as input, the algorithm of Keith et al. (2021a) demonstrated a success-
ful application of this concept and was able to reconstruct the compact object’s orbits
before coalescence with great detail, starting only from a parameterized Post-Newtonian
model. The PINN environment could become a key tool to infer parameters from GW
signals with a simple physical ansatz.

As part of my thesis work, I reviewed in detail GW physics and the PINN environment
and I updated the algorithm described in Keith et al. (2021a). Their ground-breaking
work introduces PINNs for the first time in the analysis of GW signals, however it does so
without considering some important details. In particular, I noted that the algorithm of
Keith et al. (2021a) spans a very constrained parameter space. In this thesis I introduce
some of the missing details and I recode the algorithm from scratch. My implementation
includes the learning of the phenomenological differential equation that describes the
frequency evolution over time of the chirping GW, within a different, but more physical,
parameter space. As a test, starting from a waveform as training data, and from the
Newtonian approximation of the GW chirp, I infer the chirp mass, the GW phase and
the frequency exponent in the differential equation. The resulting algorithm is robust
and uses realistic physical conditions. This is a necessary first step to realize parameter
inference with PINNs on real gravitational wave data.

iii

Contents

Abstract iii

Introduction vii

1 Gravitational waves 1
1.1 Einstein equations and their full resolution 1

1.1.1 Post-Newtonian approximation . 2
1.1.2 Numerical relativity . 3

1.2 Gravitational waves . 3
1.2.1 Linearized general relativity . 3
1.2.2 Generation . 4

1.3 Compact binary coalescences . 6
1.3.1 Gravitational wave emission from a binary system 7
1.3.2 Chirping waveform . 9
1.3.3 Merger and ringdown . 11

1.4 Detectors . 12
1.4.1 Antenna pattern . 13
1.4.2 Interferometers’ noise budget . 14

1.5 Data analysis . 15
1.5.1 Recap on signal analysis . 16
1.5.2 Raw interferometer’s data . 17
1.5.3 Detection . 18
1.5.4 Parameter inference . 22

2 Machine learning 25
2.1 Basic concepts . 25

2.1.1 Learning process . 25
2.1.2 Linear regression . 26
2.1.3 Optimization methods . 27

2.2 Neural networks . 30
2.2.1 Neuron . 30
2.2.2 Multi-layer network . 31
2.2.3 Recurrent neural networks . 32
2.2.4 Training neural networks . 33

2.3 Physics-informed neural networks . 34
2.3.1 Universal differential equations . 35
2.3.2 Solving partial differential equations 35
2.3.3 Data-driven discovery of partial differential equations 36
2.3.4 SciML environment . 37
2.3.5 Hybrid physics-informed neural networks 39

2.4 GW data analysis with NNs . 39

v

Contents Contents

2.4.1 Data quality . 40
2.4.2 GW signal’s modelling . 40
2.4.3 Sensitivity improvements . 41
2.4.4 Parameter inference . 41

3 Learning BBH’s dynamics from GW data 43
3.1 BBH modelling . 44

3.1.1 Effective one body problem . 44
3.1.2 Universal differential equations for binary black holes’ dynamics . . 45
3.1.3 Training the algorithm: gravitational wave implementation 46

3.2 Algorithm implementation . 47
3.3 Results . 49
3.4 Noise implementation . 50

3.4.1 Gaussian noise . 50
3.4.2 Glitches . 51

3.5 Discussion . 53

4 Learning the evolution of GW frequency 55
4.1 GW frequency evolution . 56
4.2 Runge-Kutta at 4th order . 57
4.3 SciML implementation . 58

4.3.1 Algorithm implementation . 59
4.3.2 Results . 61
4.3.3 Discussion . 61

4.4 PyTorch implementation . 62
4.4.1 Hybrid physics-informed neural networks to solve differential equa-

tions . 62
4.4.2 Algorithm implementation . 63
4.4.3 Results . 66
4.4.4 Discussion . 66

5 Conclusions 69

A Extended results 71

Bibliography 87

Acknowledgments 93

vi

Introduction

On September 14th, 2015 the first Gravitational Wave (GW) signal was detected by
ground-based interferometer detectors (Abbott et al., 2016b). This detection is an im-
portant milestone in modern experimental and theoretical physics. GWs were predicted
by the theory of General Relativity (GR) already in 1916 (Einstein, 1916) as waves prop-
agating in space-time. After some initial skepticism the search for GWs continued for
decades and spanned one generation of resonant bar gravitational antennas and two gen-
erations of interferometric detectors. From a physical point of view, their existence is
a great achievement of GR. After the first experimental observation, they have become
a new powerful tool to understand the Universe. Indeed, GWs are a true goldmine of
information on the emitting systems.

Gravitational-wave signals are produced by changes in mass-energy distribution at
the quadrupole (or higher multipole) level. The most likely events that can produce GWs
are the coalescences of compact objects like Black Holes (BHs) or Neutron Stars (NSs)
which are extremely dense objects with a mass similar or larger then the solar mass (1
M⊙ ≈ 1.989·1030 kg), enclosed within a radius of the order of tens of km. These fascinating
objects are studied by scientists because they are perfect environments to study physics
at its extremes and as probes of stellar or cosmic evolution. In particular, they can also
be found in a binary system, orbiting each other. These orbital configurations are strong
GWs emitters and the outgoing flux of GWs causes a loss of energy from the system,
leading to an inspiral phase which continues until a plunge phase when the gravitational
potential becomes too strong, leading to the final merger of the objects into a single
one. This system evolution produces a characteristic chirping gravitational-wave signal,
as shown in Fig. 1. This is the only type of gravitational–wave signal detected to date.

The detection of gravitational waves is no easy task. The main issue is that the
strain caused by incoming GWs is usually of the order of 10−21 or smaller. This means
signals are buried in noise and can only be extracted using the coherence or coincidence
among detectors (burst or unmodeled pipelines) and/or prior physical information, like the
signal shape from a specific source type (matched–filter pipelines). Over the years, several
dedicated pipelines have been developed to detect GW signals in the raw interferometer
output.

Burst pipelines aim to detect signals using as little physical information as possible,
thanks to the coherence or coincidence properties in different detectors, with the goal of
detecting generic signals – including Compact Binary Coalescences (CBC). However, un-
like the matched–filter pipelines the unmodeled searches cannot return model parameters,
and only estimate frequency bandwidth, duration and sky location. With the addition
of weak assumptions it is possible to recover additional information, like the chirp mass
in CBCs. However most model parameters like the individual component masses, remain
hidden in the phenomenological burst waveforms.

In this thesis, I test a novel approach to parameter estimation of gravitational–wave
signals that could be applied to gravitational waveforms obtained with burst pipelines,

vii

Chapter 0. Introduction

Figure 1: Newtonian model of the chirping waveform emitted by a system of two merging equal
masses m = 30 M⊙. Both polarizations are shown.

the Physics Informed Neural Networks (PINNs; Raissi et al. (2019)), first introduced in
this field by Keith et al. (2021a). PINNs are a Machine Learning (ML) algorithm capable
of estimating parameters or discovering additional terms in ordinary or partial differential
equations, starting from experimental data. They are based on the Universal Differential
Equation (UDE) formalism (Rackauckas et al., 2021), where the differential equation is
partially or fully approximated thanks to NNs. Taking a time–series as training dataset,
Keith et al. (2021a) were able to learn equations of motions of a simple CBC. The authors
demonstrated that, thanks to PINNs, one can infer source parameters from gravitational-
wave data.

While the approach is surely promising it turns out to be inadequate when applied to
real data. While testing the code provided by the authors in a public repository (Keith
et al., 2021b), I noticed the following limitations:

• there is no provision for different polarization states and the antenna patterns of
the detectors;

• the coding environment, using SciML in Julia, is too constraining;
• many constants and assumptions are hard-coded in the program making any mod-
ification extremely awkward.

For these reasons, I recoded the algorithm in Python using the PyTorch environment,
carefully keeping track of the important parameters in the code, so that the final pro-
gram would be flexible and adaptable to important changes. In particular, I generated
waveforms in the simple Newtonian approximation with no spin and I worked with the
phenomenological dependence of the gravitational–wave signal on time, inferring the chirp
mass M , the GW phase ϕ and the frequency exponent α (which by default is 11/3 in the
Newtonian approximation). This is a necessary first step to realize parameter inference
with PINNs on real GW data.

The thesis is organized as follows. In Chapter 1 I review the GW physics, explaining
both the theoretical background and the experimental efforts to detect signals and infer
parameters. In Chapter 2 I revise ML techniques, focusing on PINNs and on the SciML

environment. In Chapter 3 I report in detail the Keith et al. (2021a) algorithm, in order
to introduce my work, which is presented in Chapter 4. Finally, in Chapter 5 I discuss
the results my work and I present possible further improvements and applications of it.

viii

Chapter 1

Gravitational waves

The field of Gravitational Waves (GWs) is rapidly emerging. Predicted by Einstein’s
General Relativity (GR; Einstein (1916)), in September 14th, 2015, the first GW signal
from a Compact Binary Coalescence (CBC) was detected by the second generation of GW
detectors: laser interferometers (Abbott et al., 2016b). This detection is a milestone of
modern physics and more and more physicists are spending their interest in this field.

The first chapter will be a review of GW physics, including basic theoretical concepts
about GW production and emission, and a description of modern detectors and data anal-
ysis techniques. It will be based mostly on Maggiore (2007) and Foster and Nightingale
(2010).

1.1 Einstein equations and their full resolution

Gravity has challenged physicists around the world since its first formal description
by Newton (1687). He opened up a whole new field of science by having a brilliant insight
into a fundamental force: every massive body exerts this force on another for the simple
reason that it has a mass. In his reasoning, the gravitational attraction between two
masses m1 and m2 is a central conservative force:

F = −G
m1m2

r2
r , (1.1)

where G = 6.67 · 10−11 N m2 kg−2 is the universal gravitational constant and r is the
separation vector between the two objects, with modulus r. Thanks to this, and to
Newton’s differential calculus, Kepler’s laws of dynamics (Kepler, 1609) were developed
in their final rigorous form. In particular, given the fact that two objects orbit each
other in elliptical orbits, the third law will be useful for the foreseeable future. If a is the
semimajor axis, m is the mass of the reference object and ωo is the angular velocity of
the orbit, we can state that

a3 = mGω2
o . (1.2)

Gravity was thought to propagate instantaneously, with the basic concept of an absolute
characterization of the time for different observers. We have to wait for Einstein’s General
Relativity (GR; Einstein (1916)) for the theory of gravity currently adopted.

Einstein’s theory of General Relativity (Einstein, 1916) is based on the equivalence
principle, which states that a reference frame in free fall is equivalent to a local inertial
reference frame. Indeed, the fundamental key to the behavior of gravity is given by
Einstein’s field equations:

Gµν := Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.3)

1

1.1. Einstein equations and their full resolution Chapter 1. Gravitational waves

Here Gµν is the Einstein tensor, Rµν the Ricci tensor, R the Ricci scalar, gµν the metric
tensor and Tµν the stress-energy tensor. The values of the constants are determined by
mathematical consistency1 and weak field limit. This equation specifies a key physical
effect: every possible form of energy causes a warp in space-time. Indeed, the terms in
Gµν are related to geometry and Tµν contains the energy components. Since the mass
itself is a kind of energy, any object causes a curvature by simply being massive. Gravity
is no longer a simple force, but a consequence of this space-time deformation.

Einstein’s equations (1.3) are non-linear differential equations in gµν . Indeed, Rµν and
R are different contractions of the same Riemann tensor Rσ

µρν , given by

Rσ
µρν = ∂ρΓ

σ
µν − ∂νΓ

σ
ρµ + Γσ

ρλΓ
λ
µν − Γσ

νλΓ
λ
ρµ , (1.4)

where Γσ
µν are the Christoffel symbols, dependent on gµν first parial derivatives. Rµν and

R are defined as

Rµν := Rσ
µσν , (1.5)

R := gµνRµν . (1.6)

The terms of the Einstein tensor Gµν depend on the second derivatives of gµν . Moreover,
Gµν and Tµν are symmetric tensors, so these equations have 10 degrees of freedom (dofs).
We are dealing with nonlinear partial differential equations with 10 dofs.

We can tell from this last statement alone that the solving process is quite difficult.
Solving Einstein’s equations in their general form is an open task. Some approximate
solutions are present in environments with specific symmetries, but current research fo-
cuses on two main approaches: the Post-Newtonian (PN) approximation and Numerical
Relativity (NR).

1.1.1 Post-Newtonian approximation

The PN approximation is the simplest environment we can operate with. It was devel-
oped in the early years just after Einstein’s GR thanks to Lorentz and Droste (1937) and
it is based on Newtonian relativity, as suggested by the name. The idea is to approximate
GR by adding relativistic corrections to the Newtonian laws of motion in the assumption
of slowly moving and weakly stressed objects. This is possible thanks to the introduction
of the following parameter:

ϵ := max

{

∣

∣

∣

∣

T 0i

T 00

∣

∣

∣

∣

,

∣

∣

∣

∣

T ij

T 00

∣

∣

∣

∣

1/2

,

∣

∣

∣

∣

U

c2

∣

∣

∣

∣

1/2
}

, (1.7)

depending on different components of the stress-energy tensor T µν and the gravitational
potential energy U of the source. It can be seen that ϵ is of the order

ϵ ∼ v

c
, (1.8)

where v is the velocity of the considered objects. For v ≪ c, we get ϵ ≪ 1. The
parameter ϵ is the index that will lead to different correction orders. More precisely, the
PN approximation is an expansion in terms of v2/c2 and therefore the n-th order of PN
corrections will be denoted as n

2
PN. We will see that the GWs appear in their simple form

with a 2PN quadrupole correction.
This approximation fails when objects and their gravitational interactions become

extremely relativistic, since it overlooks a significant amount of physics that must be
considered in highly relativistic environments.

1Bianchi’s identities ∇µG
µν = 0 must hold, where ∇µ is the covariant derivative with respect to xµ.

2

Chapter 1. Gravitational waves 1.2. Gravitational waves

1.1.2 Numerical relativity

NR aims to solve Einstein’s equations (1.3) in their complete form. Once the solution
is found, it is then applied to real physical situations. The idea is to solve those differential
equations using purely numerical techniques. This is an ingenious idea of recent physics,
especially thanks to widely available remote supercomputers. Its results could be applied
to any possible field of astrophysics due to their generality and they are the most accurate
ones available in the literature.

However, the most problematic issue with this approach is the computational cost.
A single simplified simulation could take more than a month to run completely and very
little time evolution could be simulated. This has narrowed the scope of applicability of
this technique. For example, when dealing with coalescences of compact binaries, NR can
only simulate the last few orbits.

1.2 Gravitational waves

1.2.1 Linearized general relativity

Gravitational Waves (GW) are linear solutions of Einstein equations. This can be
easily demonstrated if we estimate the behaviour of the metric tensor away from the
sources. In this case it is possible to use the perturbative approach that is based on the
weak field assumption, and Einstein’s equations can be linearized. In other words we
write the metric tensor gµν as

gµν = ηµν + hµν , |hµν | ≪ 1 . (1.9)

The physical situation speaks for itself: we are in an almost flat space-time. A fundamental
note should be made on the degrees of freedom (dof). By choosing this reference system we
are already constraining the coordinates. Thus, we are still only allowed to do coordinate
transformations not violating the equation (1.9). These are global Lorentz transformations
of the type

xµ −→ x′µ = xµ + ξµ(x) , (1.10)

where ∂µξ
µ(x) must be as small as hµν . Taking the linear order of each term in (1.3), we

have

1

2

[

∂µ∂νh+□hµν − ∂ρ∂νh
ρ
µ − ∂µ∂ρh

ρ
ν − ηµν(□h− ∂ρ∂σh

σρ)
]

= −8πG

c4
Tµν , (1.11)

where h = hρ
ρ is the trace of hµν and □ = ∂µ∂µ is the D’Alembertian operator.

Moving to the Lorenz gauge
□ξµ = ∂ρh

µρ
(1.12)

in order to have
∂ρh

′µρ
= 0 , (1.13)

we get the linearized version of Einstein’s field equations:

□hµν = −16πG

c4
Tµν , (1.14)

where hµν is the trace revese of hµν . Expanding the D’Alembertian operator, we get

(

1

c2
∂2

(∂x0)2
−∇2

)

hµν = −16πG

c4
Tµν . (1.15)

3

1.2. Gravitational waves Chapter 1. Gravitational waves

Figure 1.1: Configurations for a ring of particles with a GW propagating orthogonally to the
plane with only h+ polarization as a function of ωot. The underlined circle is the rest position
of the particles, without the GW passage (Milotti, 2022b).

This is a wave equation. In linearized general relativity, with Lorenz gauge, the little
curvature perturbation hµν has the characteristic behaviour of a wave propagating at the
speed of light c.

Let us focus now on a local vacuum (Tµν = 0). We can thus look for a plane wave
solution of the type

hµν = Aµνe
ikλx

λ

, (1.16)

where Aµν is the amplitude tensor and kλ is the 4-wave vector k = (ωo/c,k). Thanks to the
Lorenz gauge (1.13), we find the wave to be transverse, which means that the amplitude
is non-zero only orthogonally to the direction of propagation. For what concerns the
dofs, we started with the 10 dofs of Einstein’s equations and set 4 constraints to switch
to the Lorentz gauge. We are now free to constrain another four dofs by moving to the
Transverse-Traceless (TT) gauge:

h
0i

TT = 0 , (1.17)

hTT = 0 . (1.18)

Now we have only two degrees of freedom left. These become explicit if we consider a
plane wave propagating along x3:

hTT
µν =

0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

µν

eiωo(t−z/c) . (1.19)

They corresponds to the two polarizations h+ and h×.
Consider a ring of particles in the xy plane separated by ξ(t) = (x0+δx(t), y0+δy(t), 0)

and a GW propagating along x3, as (1.19). One can demonstrate that a GW passing by
acts on their proper distances as

h+: δx(t) =
1

2
h+x0 cos(ωot) , δy(t) = −1

2
h+y0 cos(ωot) ,

h×: δx(t) =
1

2
h×x0 cos(ωot) , δy(t) =

1

2
h×y0 cos(ωot) .

(1.20)

For what concerns h+, we can see the physical effect on the ring of particles in Fig. 1.1.

1.2.2 Generation

So far we have talked about GWs as already present in space-time. What can we
say on their production? To answer this question, we need to solve the linear form of

4

Chapter 1. Gravitational waves 1.2. Gravitational waves

Figure 1.2: Geometric sketch for the GW emission (Maggiore, 2007).

Einstein’s equations (1.14) in the presence of some form of energy. Setting Tµν ̸= 0 is
necessary to have a perturbation of the space-time curvature2. This means that we want
to solve

□hµν = −16πG

c4
Tµν . (1.21)

In this case, we are in the linear order of expansion, considering (1.9) for gµν and assuming
a weak field regime. We can also assume a non-relativistic velocity v ≪ c for the source.
For a self-gravitating system, the virial theorem states that the kinetic energy of the
system must be equal to half of its gravitational potential energy

Ekin = −1

2
U =⇒ 1

2
µv2 =

1

2

GµM

R
, (1.22)

where U is the gravitational potential energy of the source, µ = m1m2/(m1 +m2) is the
reduced mass, M = m1 + m2 is the sum of the two masses and R is the object radius.
Isolating v2 and dividing everything by c2, we get

v2

c2
=

GM

c2R
=

RS

2R
, (1.23)

where RS is the Schwarzschild radius, defined as

RS =
2GM

c2
. (1.24)

It is the event horizon radius for a non-rotating BH. We see that v2/c2 is an indicator
of the relativistic level of the self-gravitating system. The closer the ratio is to 1/2, the
more the object is similar to a BH. The closer the ratio is to 0, the more the object
is non-relativistic. We can choose to deal with an infinitesimal v2/c2 and use it as an
expansion parameter, exactly as the PN approximation does. An accurate calculation for
this resolution is beyond the scope of this thesis and can be found in Maggiore (2007). In
this section I will present only the fundamental results.

Consider the sketch in Fig. 1.2, where we can see the extended source of dimension d,
at a distance x = rn̂ from the observer. Every point of the source can be mapped thanks
to the y coordinate. The TT gauge solution is

hTT
ij (t,x) =

4G

c4r
Λkl

ij

∫

d3y Tkl

(

t− r

c
+

y · n̂
c

,y

)

, (1.25)

2In the far field limit that we considered before, Tµν = 0 locally, but at the source Tµν must be
non-zero.

5

1.3. Compact binary coalescences Chapter 1. Gravitational waves

where Λkl
ij is the projector from a general tensor to its TT gauge form, defined as

ATT
ij = Λkl

ijAkl :=

(

P i
kP

j
l − 1

2
P ijPkl

)

Akl , (1.26)

with
Pij(n̂) = δij − ninj . (1.27)

Note that Tkl in (1.25) is calculated at the time of emission. t is the time of the detection,
while the (r + y · n̂)/c correction is the so-called retarded time. Following Fig. 1.2, the
idea is that the GW detected at instant t is the superimposition of several waves produced
by δ-like sources at different times. These δ-like sources are precisely the different points
of the extended source, which are y · n̂ more or less distant from the observer. The time
lag due to this difference in path can be seen as the following parameter

ξ :=
y · n̂
c

∼ d

c
≪ d

v
. (1.28)

Thanks to this term, we can expand Tkl. Taking only the leading order, we can get

hTT
ij (t) ≈ 2G

c4r
Λkl

ijM̈kl =
2G

c4r
Λkl

ij Q̈kl

(

t− r

c

)

, (1.29)

where M ij is the second moment for T 00(t, x) and Qkl is the quadrupole moment of mass
(ρ is the mass density, defined as

M ij : =
1

c2

∫

d3xT 00(t, x)xixj , (1.30)

Qkl : =

(

Mkl − 1

3
δklM i

i

)

=

∫

d3x ρ(t, x)

(

xixj − 1

3
r2δij

)

. (1.31)

Every moving object with a non-zero second derivative for the quadrupole moment of
mass emits GWs. Note that we are not projecting the waves in the TT gauge, but are
dealing directly with the projection of the moment of mass. This is because what matters
in GW emission is the transverse motion of it (we are projecting in the plane orthogonal
to the line of sight). In particular, for a wave propagating along x3, we have

hTT
ij ≈ G

c4r

M̈11 − M̈22 2M̈12 0

2M̈21 −(M̈11 − M̈22) 0
0 0 0

 , (1.32)

where M11, M22 and M12 are easy to calculate for this configuration.

1.3 Compact binary coalescences

As we concluded in Sec. 1.2.2, thanks to (1.29), the GWs are emitted by the second
derivative of a mass quadrupole. Many systems in the Universe are possible candidates as
GW emitters. Compact binary stars are the most likely ones. These binary systems consist
of Black Holes (BH) and/or Neutron Stars (NS). Both are extremely heavy objects: they
have a radius equal (BH) or similar (NS) to their Schwarzschild radius. They originate
from the SuperNova (SN) death of a massive star (a star with mass m > 8 M⊙). Once the
original star begins to synthesize the Fe-group elements in its core, the energy production
from nuclear fusion is suppressed. This event triggers the entire structure to collapse

6

Chapter 1. Gravitational waves 1.3. Compact binary coalescences

because no source of energy can counterbalance the gravitational central pull. Anyway,
the core of the star can stop this collapse, restoring the necessary pressure gradient. This
can be done thanks to its neutrons. This fundamental particles can become a degenerate
gas with a sufficiently high pressure. For this case, the pressure depends only on the
mass, not on the temperature of the star. This means that the core as a degenerate gas
of neutrons becomes incompressible. The envelope material of the progenitor star falls
on the core and bounces back. A series of chain reactions gives rise to the SN explosion
leading to the birth of a NS. If neutron degeneracy is instead not enough to stop the
nucleus collapse, a BH is formed. In nature we can only find rotating Kerr BHs because
of the native angular momentum of the stars.

BHs may have other origins besides stellar ones. In particular, they can often be
found in the center of bigger galaxies as SuperMassive Black Holes (SMBHs). This kind
of objects are BHs with a mass of the order of 109 M⊙. Their initial formation is still
under debate. Banik et al. (2018) proposed the possibility for SMBH to be originated
from stellar BHs coming from stars born so early in the history of the Universe to have
only Hydrogen and Helium as constituents (population III). On the other hand, Shinohara
et al. (2023) studied primordial BHs (BHs originated just after the inflation due to mass
perturbations) as seeds for SMBHs. Astrophysicists anyway agrees on the fact that these
stellar or inflationary seeds have largely grown thanks to both a huge accretion from the
surrounding material and mergers with other BHs. In this thesis I will refer to compact
stellar objects, unless otherwise specified.

Most of the known stars are present in a binary system, where the two masses orbit
each other. If both stars form a compact remnant, they are likely to form a compact
binary. Furthermore, the gravitational encounter between two compact objects can bound
in a binary system two objects previously separated. The evolution of these compact
binary systems has challenged physicists for more than half a millennium. Although the
solution for Newtonian relativity is known (Kepler’s three laws), the GR solution is quite
difficult to achieve. Using PN approximation and NR, as we saw in Sec. 1.1, physicists
have tried to solve Einstein’s equations for this configuration with different approaches.
With both these techniques we conclude that compact binaries are the best setup to
produce GW. We will see that, due to this emission, the fate of compact binaries is to
merge into a larger object.

1.3.1 Gravitational wave emission from a binary system

We consider the situation in Fig. 1.3: two objects with equal mass m orbiting around
their common Center of Mass (CM) with distance r from it and angular velocity ωo. We
set the origin of the coordinates at the CM. Thus, the positions of the masses are given
by

xi = ±(r cosωot, r sinωot, 0) . (1.33)

Using (1.30), we find

M ij = 2mr2

cos2 ωot cosωot sinωot 0
cosωot sinωot sin2 ωot 0

0 0 0

ret

, (1.34)

7

1.3. Compact binary coalescences Chapter 1. Gravitational waves

Figure 1.3: Sketch of the two-body problem (Milotti, 2022a).

where the subscript “ret” indicates quantities calculated at the retarded time. Following
(1.29), one can find

hij(ct, r) = −4GMr2

c4D

d2

dt2

cos2 ωot cosωot sinωot 0
cosωot sinωot sin2 ωot 0

0 0 0

ret

=
8GMr2ω2

o

c4D

cos (2ωot+ ϕ) sin (2ωot+ ϕ) 0
sin (2ωot+ ϕ) − cos (2ωot+ ϕ) 0

0 0 0

, (1.35)

where the additional phase ϕ takes into account the retarded time and D is the luminosity
distance of the observer from the source. Introducing different masses and radii for the
two objects and using the Kepler third law (1.2) we can write

hij(ct, r) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

ω2/3
o

cos (2ωot+ ϕ) sin (2ωot+ ϕ) 0
sin (2ωot+ ϕ) − cos (2ωot+ ϕ) 0

0 0 0

 ,

(1.36)
where M is the chirp mass, a parameter dependent on the two masses, defined as

M =
(m1m2)

3/5

(m1 +m2)1/5
. (1.37)

Note the fundamental fact that the GW pulsation is twice the orbital frequency of the
binary, as there is no difference on the two objects when considering the projected mass
quadrupole. This equation represents the GW emission from a compact binary system
considering Newtonian dynamics only.

One can demonstrate that GW emission subtracts energy from the emitting system
at the rate

PGW =
32G7/3

5c5
M

10/3ω10/3
o , (1.38)

where M is in units of M⊙. On the other hand, the time derivative of the total energy of
the binary system is

dEtot

dt
= −1

3
G2/3

M
5/3ω−1/3

o

dωo

dt
. (1.39)

8

Chapter 1. Gravitational waves 1.3. Compact binary coalescences

Assuming no other loss of energy, the radiated power is opposite to the energy loss of the
binary and so

PGW = −dEtot

dt
=⇒ 32G7/3

5c5
M

10/3ω10/3
o =

1

3
G2/3

M
5/3ω−1/3

o

dωo

dt
, (1.40)

which becomes
dωo

dt
=

96

5

(

GM⊙

c5

)5/3(
M

M⊙

)5/3

ω11/3
o . (1.41)

The derivative of the orbital frequency is positive, so the GW emission causes the increas-
ing of the orbital frequency.

Now we can express Kepler’s third law (1.2) as

ω2
o =

GM

R3
, (1.42)

where M = m1 + m2 and R = r1 + r2. Taking the time derivative and arranging the
terms, one has

dR

dt
= −2

3

R4

GM
ωo

dωo

dt
= −2

3

R5/2

(GM)1/2
dωo

dt
. (1.43)

Using Eq. (1.41), we find the evolution for the radial distance:

dR

dt
= −64

5

G7/6

c5
M 5/3

M1/2
R5/2ω11/3

o . (1.44)

Since ωo continues to increase thanks to Eq. (1.41) and the first derivative of orbital
separation is negative, we can infer that the orbit is shrinking. The GW emission causes
a loss of energy, which in turns causes the orbit to shrink, following Eq. (1.44). This
shrinkage increases the orbital velocity which consequently boosts the GW production.
A runaway loop is started and it continues until the two objects merge into a larger one.

Considering two BHs, we can have an estimate of the maximum orbital angular ve-
locity. Let me impose the orbital distance equal to the sum of the Schwarzschild radii:

r1 + r2 =
2G

c2
(m1 +m2) . (1.45)

At this separation we have a maximum for the emitted power (1.38) and so the maximum
value for the angular velocity is given by

ωc =
1

2
√
2

(

GM⊙

c3

)−1(
M

M⊙

)−1

, (1.46)

where M = m1 +m2 .

1.3.2 Chirping waveform

This orbital evolution has a characteristic imprint on the shape of the emitted GW,
so also on the waveform of the GW signal. Considering that the orbital frequency is twice
the GW f frequency, as we saw in Eq. (1.36), we can write

f =
ωo

π
, (1.47)

9

1.3. Compact binary coalescences Chapter 1. Gravitational waves

(a) (b)

Figure 1.4: (a) Amplitude and (b) frequency evolution for a system of two merging BHs of equal
mass m = 30 M⊙, with original phase φ = 1. The amplitude is normalized to the maximum
value. The origin of the time axis is fixed at the coalescence time.

where ωo is the orbital velocity. From this, we can modify Eq.(1.41) and express the
frequency evolution of the GW as

df

dt
=

96

5
π8/3

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

f 11/3 . (1.48)

By integrating this last expression, we have the GW frequency as a function of time t

f(t) =

[

f−8/3
c − 256

5
π8/3

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(t− tc)

]−3/8

, (1.49)

where tc is the coalescence time and t ≤ tc. fc is the maximum frequency of GW,
corresponding to the merger at t = tc. Therefore, from Eq.s (1.46) and (1.47) we can
deduce that the maximum frequency is given by

fc =
1

2π
√
2

(

GM⊙

c3

)−1(
M

M⊙

)−1

. (1.50)

The frequency f of the GW and its time derivative df/dt can be measured in a precise
instant of time. Thanks to (1.49) and to these f and df/dt measurements, one can
calculate the chirp mass M . Furthermore, we can measure the maximum frequency fc,
too. From Eq. (1.50) the total mass M is deduced and we can infer the two masses m1

and m2 of the objects thanks to the two combinations (M and M).
Finally, the GW amplitude (1.36) could be expressed in terms of frequency as

hij(ct, r) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3

cos (2πft+ ϕ) sin (2πft+ ϕ) 0
sin (2πft+ ϕ) − cos (2πft+ ϕ) 0

0 0 0

 .

(1.51)
In particular, using the TT gauge as defined in (1.19), we can deduce the following
expressions for the several components:

h+ =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3 cos (2πft+ ϕ) , (1.52)

h× =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3 sin (2πft+ ϕ) . (1.53)

10

Chapter 1. Gravitational waves 1.3. Compact binary coalescences

Figure 1.5: Compact binary sketch representing different phases of coalescence and the corre-
sponding imprint on the waveform (Schutz, 2004).

In panel (a) of Fig 1.4 we can see the characteristic chirping waveform produced by a
Compact Binary Coalescence (CBC). In this figure I am considering two non-rotating BHs
with equal masses m = 30 M⊙. The time left to the merge, situated at t = 0, is shown
on the abscissa, while the amplitudes h+ and h× are shown on the ordinate, calculated
respectively by (1.52) and (1.53) with initial phase ϕ = 1. In panel (b) the evolution of
the frequency over time is plotted. As we can see, we have an increasing frequency over
time up to the merger phase. This causes an increase in amplitude thanks to the term
f 2/3 in (1.51), too.

In conclusion, a typical GW signal waveform is a chirping waveform, as seen in panel
(a) of Fig 1.4. This is due to the merger of a compact binary system whose objects
spiral towards their fusion. The energy loss due to the GW emission reduces the orbital
separation between the objects. This increases the orbital frequency of the motion, causing
the frequency trend over time that we can see in panel (b) of Fig 1.4. When the two objects
start getting too close, they merge into a single object, which slows its movement in the
ring-down phase. As we will discuss in Sec. 1.5, understanding the physics behind this
waveform will be extremely useful for both detection and parameter inference. On the
other hand, the detection and characterization of these transient events is indeed a key
for testing theoretical models.

1.3.3 Merger and ringdown

In the real world, things are not that simple. As discussed in Section 1.1, Einstein’s
equations are not easy to solve and our approach has overlooked many physical phenom-
ena. The NR and PN approximation lead to the scenario that we can see in Fig. 1.5. The
inspiral phase is the perfect field of study for the PN approximation, with a relatively
weak field and slow movements. However, when the BHs are approaching their ISCO,
NR must be considered because objects become extremely relativistic. This merger phase
can only be studied thanks to supercomputer simulations, taking into account the full
numerical solutions of Einstein’s equations. In this phase, GWs with maximum power are
emitted. After the merger, a single massive object is formed. Any possible deviation of
this final object from a spherical configuration causes the emission of GWs with decreasing

11

1.4. Detectors Chapter 1. Gravitational waves

(a) (b)

Figure 1.6: (a) Virgo interferometer in Cascina, Italy (Wikipedia, 2023). (b) Optical configura-
tion of a laser interferometer (the Virgo scientific collaboration, 2016).

frequency and amplitude (ring-down phase). In fact, for a single non-spherical object, the
loss of energy due to the emission of GW results in a slowdown of the rotational motion
and in an alignment of the axis of rotation with the main axis of inertia.

1.4 Detectors

The exciting work of detecting GWs started in the late ’60s with the idea of the
first generation of detectors. Many steps have been taken since then, leading to the first
detection of a GW from a CBC on September 14, 2015 (Abbott et al., 2016b). This was
possible by the second generation of detectors, operating right now. In this section I will
briefly revise modern detectors, highlighting the hardware structure and the expected and
obtained results. A greater emphasis will be given to ground-based interferometers, a key
topic for the work of this thesis.

At the beginning of our century, the idea of the need for a wider frequency window
of sensitivity was gaining ground. This led to the second generation of detectors, right
now operating, based on laser interferometry. The basic optical setup is the same of the
Michelson interferometer and it is outlined in panel (b) of Fig. 1.6. The laser coming
from the left side in the figure is separated into two different beams by a special mirror
called a Beam Splitter (BS). The beams return to the BS thanks to two far mirrors, and
recombine in one resulting beam sent to a photodetector. The distances between the
mirrors and the BS define the so-called arms of the interferometer and are set in such
a way that, if nothing is detected, destructive interference is seen at the photodetector.
When a GW passes by, the far mirrors act as test masses and follow a motion like the
one in Fig. 1.1. As one arm increases in length, the other decreases (and vice versa).
This produces a phase shift between the two incoming beams so that their interference
is not always destructive and some amount of ligth is detected by the photodetector .
From the photodetector measurement, the differential arm length can be inferred and it
is converted to a digital output.

The relative deformation (the strain) caused by the incoming GW is of the order

h =
∆L

L
≈ 10−21 . (1.54)

where L is the arm length and ∆L is the displacement of the arms due to the GW. The
value of L for an interferometer built on the Earth surface can be of a few kms, so the

12

Chapter 1. Gravitational waves 1.4. Detectors

displacement to be measured is of the order of

hL = ∆L ≈ 10−18m. (1.55)

Currently, four interferometers are operational in the fourth observational run: the two
Laser Interferometer Gravitational-wave Observatories (LIGO) in Livingston, USA, and in
Handford, USA, the European Gravitational Observatory VIRGO (EGO-VIRGO, panel
(b) in Fig 1.6) in Cascina, Italy, and the KAmioka GRAvitational wave detector (KAGRA)
in the Kamioka mine, Japan3. For more recent reviews, the interested reader could refer
to Cahillane and Mansell (2022), Nguyen (2021) and Abe et al. (2022), respectively. The
first GW signal from a CBC was detected on September 14, 2015 (Abbott et al., 2016b).
In total about90 CBC GW signals have been detected during three different observing
runs (O1, O2 and O3), up to the Corona virus pandemic in 2020. The joint collaboration
published three catalogs with every detected event: GWTC-1 on O1 and O2 data (Abbott
et al., 2019), GWTC-2 on O3a data (the first part of O3) (Abbott et al., 2021a) and
GWTC-3 on O3b data (Abbott et al., 2021b). All these catalogs have detailed analysis
of the event’s signal and source. At the time of each publication also the raw GW strain
data are made public. A quick catalog of new candidate events for the current O4 run is
available as the GraceDB database (the LIGO-Virgo-Kagra scientific collaboration, 2015).

Ground-based interferometers are in their golden age. Now that the CBC statistic
is rapidly growing its sample, the search for new sources of GW is challenging physicists
worldwide. New transients (supernova explosions) or continuous sources (single neutron
stars, GW background) have already dedicated researches. For these reasons, the third
generation of detectors is now taking its first steps. The main effort for a ground-based
instrument is Einstein Telescope (ET), a triangular-shaped interferometer that will be
placed underground for seismic noise reduction. Its location is currently under discussion
between the Sos Enattos mine in Sardinia, Italy, and the Meuse-Rhine Euroregion be-
tween Belgium, the Netherlands and Germany. ET scientific objectives are described in
Branchesi et al. (2023).

1.4.1 Antenna pattern

This subsection aims to answer the following related questions: What does an interfer-
ometer measure about the GW? Why is more than one interferometer needed? Observing
the panel (b) of Fig 1.7, we can define the detector frame with the two arms of the inter-
ferometer parallel to the x and y axes. Another frame may be defined at the source of
GWs, with z′ the direction to the origin of the detector frame. The detector tensor for
this system is

Dij =
1

2
(x̂ix̂j − ŷiŷj) (1.56)

and therefore the detector output is given by

h(t) =
1

2

(

ḧxx − ḧyy

)

, (1.57)

where hxx and hyy are GW components in the detector frame. They depend on the usual
h+ and h× polarizations defined in the source frame. Considering the two angles θ and ϕ
in the drawing, we can apply a rotation on the two polarizations, to obtain

hxx = h+

(

cos2 θ cos2 ϕ− sin2 ϕ
)

+ 2h× cos θ sinϕ cosϕ , (1.58)

hyy = h+

(

cos2 θ cos2 ϕ− cos2 ϕ
)

− 2h× cos θ sinϕ cosϕ . (1.59)

3Only the two LIGO interferometers are operational when this thesis was published. Virgo and Kagra
will join the observing run in the coming months.

13

1.4. Detectors Chapter 1. Gravitational waves

Figure 1.7: Antenna pattern configuration. (Maggiore, 2007)

Thus, the output of a single interferometer could be expressed as

h(t) = F+(θ, ϕ)h+ + F×(θ, ϕ)h× , (1.60)

where

F+(θ, ϕ) =
1

2

(

1 + cos2 θ
)

cos 2ϕ , F×(θ, ϕ) = cos θ sin 2ϕ . (1.61)

In (1.60), we can measure h(t) and reconstruct θ and ϕ thanks to statistical analysis.
However, with a single interferometer we still have a single equation with two unknowns
(h+ and h×). We have to work with at least one other interferometer, to have another
equation like (1.60), with different h(t), θ and ϕ and resolve the polarizations.

1.4.2 Interferometers’ noise budget

Interferometers have outputs dominated by noise, given by unwanted stochastic or
deterministic signal. In Fig. 1.8 we can see the noise level measured by LIGO-Handford
(LIGO-H). On the abscissa we have the considered frequency, while on the ordinate we
have the amplitude spectral density of the interferometer output, which will be defined
in sec. 1.5.1. Characterizing the various components of this noise budget is not simple:
years of commissioning and upgrading phases are required to reduce it.

Let me follow the order of the plot legend.
• Measured O3 noise. This is the measured noise from the third observation run, the
actual sensitivity to GWs. Notice the wide frequency band between 10− 104 Hz.

• Advanced LIGO design sensitivity. The sensitivity that during the O3 commission
phase LIGO-H engineers wanted to reach.

• Total controls noise. It is related to the read-out noise on the photodetector.
• Quantum shot noise and quantum radiation pressure noise. These sources of noise
are due to quantum fluctuations in the output vacuum. Shot noise arises from
the Poisson fluctuations in the arrival time of the photons on the photodetector,
which alter the detected power. The photons impinging on the mirrors cause also a
displacement of the mirrors not distinguishable from the one due to the effect on a
GW. This is the so-called radiation pressure noise.

14

Chapter 1. Gravitational waves 1.5. Data analysis

Figure 1.8: LIGO-Handford noise budget. (Cahillane and Mansell, 2022)

• Seismic noise. I introduce seismic noise first because thermal noise is related to it.
It represents ground vibrations, which could be huge (as in the case of earthquakes),
but more often they do not have a characteristic behavior due to random human
activity. Inside the interferometer, each mirror is suspended thanks to a series of
pendulums that attenuate the vibrations of the ground, in order to reduce seismic
oscillations as much as possible.

• Thermal noise. Thermal noise is due to the thermal fluctuations of the different con-
stituent materials of the interferometer, for example of suspension fibers mentioned
before or of the fine coatings that cover several mirrors for better reflection.

• Newtonian noise. This type of noise is due to local events on the ground which can
cause a false GW signal. For example landslides on a nearby mountain, tidal effects
on a nearby sea, and a simple change in the position of a group of people cause
a change in the gravitational background. Several accelerometers are distributed
throughout the building to record these effects and remove this noise in a post-
processing step. This kind of impurity is what currently motivates the concept of
constructing underground or space interferometers.

The discussed noise budget show how the noise integrated in a certain time window evolves
in frequency. However, GW data contains also non-Gaussian transient noise artifacts,
called glitches, that can mask or mimic true astrophysical signals (Abbott et al., 2016a).

1.5 Data analysis

In this section, I will introduce the main problem this thesis wants to address. After
a brief summary on basic signal analysis (Sec. 1.5.1), we will see in Sec. 1.5.2 an example
of raw interferometric data. Next, in Sec. 1.5.3 I will present several techniques used for
the rapid online detection of new signals from raw ground-based interferometer data. In
particular, I will focus on the analysis of burst transients, which is of interest for my
thesis. Finally, in Sec. 1.5.4 I will present, for completeness, how Bayesian analysis can
lead to accurate, but slow, offline parameter inference.

15

1.5. Data analysis Chapter 1. Gravitational waves

1.5.1 Recap on signal analysis

The output o(t) of a generic physical instrument can be expressed as

o(t) = s(t) + n(t) , (1.62)

where s(t) is the deterministic signal we want to measure and n(t) is any unwanted output
other than the signal: the noise of the experiment. Often n(t) is reserved for random
processes. For this reason we introduce the concept of a random variable: a number x
associated with a possible experimental outcome. The intervals of this outcome have a
probability associated:

P(x0 ≤ x ≤ x1) =

∫ x1

x0

dx f(x) , (1.63)

where f(x) is the probability density. The fundamental statistical quantities for a random
variable x are the mean value, the mean value of a function of x itself and the variance,
respectively defined as

⟨x⟩ : =
∫ +∞

−∞

dx x f(x) , (1.64)

⟨g(x)⟩ : =
∫ +∞

−∞

dx g(x) f(x) , (1.65)

σ2 : = ⟨x2⟩ − ⟨x⟩2 . (1.66)

A random process in an experiment produces a signal, which is a time series of the random
variable x(t). Since a different value for x is found for each repetition of the experiment,
we need to analyze the statistical properties to characterize the process. Some of them
are

• ergodicity, which means that the statistical properties of time and ensemble coin-
cide (the experiment could be repeated at a different time and the new result is
uncorrelated to the previous one as it comes from a completely new experimental
environment);

• stationarity, which means that the statistical properties are independent of time;
• Gaussianity, which means that x(t) is normally distributed for a fixed time t (if
the process is Gaussian, it is completely characterized by its mean value and its
variance.).

In our case the signal will be the deterministic incoming gravitational wave signal, while
we will consider as noise anything that could contaminate this signal (even deterministic
events such as glitches).

Fourier transform As we will see in Sec. 1.5.2, the typical GW signal exits the inter-
ferometer buried in a much higher noise. Since it has a characteristic oscillatory behavior,
we will certainly be interested in working on the frequency domain. Any signal can be
represented as the superposition of several sinusoidal components with a characteristic
frequency. These components appears in a series each with a different coefficient. We
can use the Fourier transform to go from the time domain to the frequency domain.
Considering a generic s(t) signal, if it is true that

∫ +∞

−∞

dt |s(t)|2 < ∞ , (1.67)

we can define the Fourier transform s̃(ωo) of the signal s(t) as

s̃(ω) =

∫ +∞

−∞

dt s(t) eiωt , (1.68)

16

Chapter 1. Gravitational waves 1.5. Data analysis

Figure 1.9: Fourier transform action on the convolution of two sinusoidal functions (Chaudhary,
2020)

while the inverse Fourier transform is defined as

s(t) =
1

2π

∫ +∞

−∞

dω s̃(ω) e−iωt . (1.69)

This frequency decomposition is based on the linearity of the Fourier transform, which in
turn is given by the superposition principle of different frequency components. If we take
the Fourier transform of a sinusoidal function, we will have a single frequency component
with a δ-like coefficient, as we can see in Fig 1.9.

Power spectral density Speaking about deterministic signal, the Fourier transform is
the optimal tool to analyze the system. Anyway, this technique makes little sense when we
are dealing with a stochastic signal, because the results will be stochastic, too. However,
for a random process the statistical properties are well defined. Thus, we can transfer
these quantities into the frequency domain. For this purpose we can define the Power
Spectral Density (PSD) of the signal as the Fourier transform of the auto-correlation
function R(τ)

Sx(ω) =

∫ +∞

−∞

dτ R(τ) eiωτ , (1.70)

with

R(t, t′) = ⟨x(t) x(t′)⟩ = R(τ := t− t′) , (1.71)

where the last equivalence is valid for stationary processes. Usually the PSD is replaced
by the Amplitude Spectral Density S

1/2
x (ASD), defined as the square root of the PSD.

1.5.2 Raw interferometer’s data

As previously mentioned, the detected events have been published in three different
catalogues: GWTC-1 with data from O1 and O2 (Abbott et al., 2019), GWTC-2 with
data from O3a (Abbott et al., 2021a) and GWTC-3 with data from O3b (Abbott et al.,
2021b). All the GW strain data are publicly available on the Gravitational Wave Open
Science Center (GWOSC, the LIGO-Virgo-Kagra scientific collaboration (2019)). In panel
(a) of Fig 1.10 we can see a typical raw output of the interferometer: a time series of strain
data of the order ∼ 10−18. The sample rate is 16kHz, but it can easily be reduced to 4kHz.

17

1.5. Data analysis Chapter 1. Gravitational waves

(a)

(b)

Figure 1.10: (a) Time series and (b) spectrogram around the GW170817 event. The coalescence
time is at t ∼ 33s in panel (a) and at t = 0s in panel (b).

Zooming in a bit, we could be able to see that the signal is dominated by low frequency
components. This time series is taken from LIGO-Handford detector and shows the event
GW170817 merging at t ∼ 33 s: as we can see, no signal can be easily detected by eye
from the time series. We will focus on how to highlight the signal in Sec. 1.5.3, but we can
anticipate that the easiest way is pass to the frequency domain. For example, we can apply
the q-transform (Chatterji et al., 2004) to the time series. This technique is a discrete
version of the Fourier transform superimposing on the detector output a small window
function whose length depends on the frequency. The window shifts in time to have a
temporal resolution. By doing so, we find the spectrogram in panel (b) of Fig 1.10. We
can see in the x axis the time to coalescence and in the y axis the frequency component.
The intensity of the color indicates the normalized power for each frequency at any given
time. We can see the chirping waveform by eye, with the frequency increasing over time.

1.5.3 Detection

During these years several pipelines have been developed to detect the signals. The
main differences between them concern the kinds of signal to detect. The different tech-
niques can be seen in tab. 1.1, based on the presence or absence of prior physical infor-
mation and on the signal length. In general, the term CBC search is referred to pipelines
based on matched filtering. Burst searches, instead, look for an excess of energy co-
herent in different detectors. This would allow to detect possible new sources such as

18

Chapter 1. Gravitational waves 1.5. Data analysis

Transient Continuos

Modeled CBC searches Continuous searches
Unmodeled Burst searches Stochastic GWB search

Table 1.1: Detection techniques for GWs signals.

gravitational waves from SNs or other unknown sources. The continuous waves research
technique is developed to detect binary systems far from coalescence or single NSs rota-
tion, while the research of a stochastic GW background aims to detect this fundamental
phenomenon that will have enormous astrophysical and cosmological applications. In this
thesis I will focus on a specific pipeline called coherent Wave Burst (cWB), which is part
of the Burst searches category. In this section, I will briefly describe each technique.

Matched filtering The basic idea of the matched filtering technique is to cross-correlate
a numerically generated (or approximated) template waveform with the raw output of the
interferometer (see Vio and Andreani (2021) for a review of matched filters). Suppose we
have an output signal of the form

s(t) = h(t) + n(t). (1.72)

The ideal template waveform matches exactly the GW signal h(t). So, multiplying every-
thing by the optimal template h(t) and integrating over the time interval t ∈ [0, T], we
get

1

T

∫ T

c

dt s(t)h(t) =
1

T

∫ T

c

dt h2(t) +
1

T

∫ T

c

dt n(t)h(t) . (1.73)

Since n(t) and h(t) are not correlated, the dominant term is the first, positive definite.
Therefore,

1

T

∫ T

c

dt s(t)h(t)
T→0−−−→ ⟨h2(t)⟩ . (1.74)

More formally, we are looking for a Kernel function K(t) which outputs “high” when
h(t) is present and “low” when it is absent. One can demonstrate that the signal-to-noise
ratio (SNR) in the frequency domain is given by

S

N
=

∫ +∞

−∞
df K̃∗(f) h̃(f)

[∫ +∞

−∞
df |K̃(f)|2 Sn(f)/2

]1/2
, (1.75)

where h̃(f) and K̃(f) are the Fourier transform respectively of f(t) and K(t). Notice that
the SNR depends both on the noise PSD Sn(f) and on the Kernel K̃(f). To maximize
the SNR, we need

K̃(f) = const
h(f)

Sn(f)
(1.76)

and therefore
S

N
= 2

(∫ ∞

c

df
|h(f)|2
Sn(f)

)1/2

. (1.77)

The noise PSD Sn(f) determines the maximum SNR that we can get considering the
incoming GW signal h(t) and the noise n(t). The actual measured SNR depends instead
on the chosen template function K(t).

In practice, we do not know the shape of h(t), nor its arrival time. What we can do is
to build a series of chirping template waveforms spanning the plausible parameter space

19

1.5. Data analysis Chapter 1. Gravitational waves

Figure 1.11: cWB reconstruction of the waveform of GW150914 as a colored time-frequency
map. (Salemi et al., 2021)

and cross-correlate them with the output data. The one with the highest correlation value
is the best estimate. Coincidence studies between different interferometers are essential to
confirm the detection and avoid false signals, taking into account both the time of flight
of the GW between different detectors and the antenna pattern of each interferometer.

The matched filtering technique is the most developed and currently the most effi-
cient tool for detecting CBCs. It is able to detect the GW passing by and makes a rough
estimate of the source parameters, thanks to the set of template waveforms built for refer-
ence purposes. This procedure must be accomplished with a short computational time in
order to notify dedicated telescopes for the detection of a possible electromagnetic coun-
terpart. However, a strong theoretical background is required to perform these detection
and inference tasks. In these techniques theory is fundamental to produce or approximate
chirping waveforms to be used as templates.

cWB As we said, matched filtering is a brilliant tool for target modeled CBCs, but it
requires a huge amount of prior physical informations to create simulated or approximated
template waveforms to compare with the raw data. In contrast to this approach, the
coherent Wave Burst (cWB; Salemi et al. (2021)) pipeline is devoted to the search for
unmodeled transient signals. cWB was designed to detect a broad class of GW signals,
not just CBCs. It reconstructs their waveforms with minimal assumptions on the source
theoretical model. The idea of this pipeline has been developed since the early years of
laser interferometers and was designed to detect first events. Indeed, this ingenious code
led to the first detection ever of a GW signal on September 14, 2015 (Abbott et al., 2016b).
It was later acknowledged in the official description of the 2017 Nobel Prize awarded to
R. Weiss, B. C. Barish and K. S. Thorne (the Nobel Committee for Physics, 2018). CBCs
are still searched by cWB, but the latter was also used to search for SN GW signal in
the entire available data set. No SN signal has been detected so far, but this pipeline will
surely be the key tool to detect unknown burst sources.

Taking advantage of the presence of more than one detector since the beginning of
observations, cWB searches for coherent signals in the outputs of several interferometers.

20

Chapter 1. Gravitational waves 1.5. Data analysis

The first filter is a regression algorithm removing persistent lines and noise artifacts in
the single detector output. Data is then converted into the time-frequency domain thanks
to the Wilson-Daubechies-Meyer (WDM) wavelet transform (Necula et al., 2012). This
transform relies on a Fourier transform with a window function translating in time, to
account for both the frequency and time resolution. Data is after whitened, i.e. normalized
by the PSD, to highlight the signal on the now flattened noise. Those pixels whose energy
is greater than a given threshold are kept and then compared with selected pixels in other
detectors. Together they are combined in a constrained likelihood (a statistical tool that I
will describe in Sec. 1.5.4) which takes into account the different antenna patterns and the
time delays between interferometer couples. A candidate event is identified maximizing
this likelihood, if the maximum is above a certain threshold. After finding the candidate,
cWB repeats the search thousands of times on the shifted data to create background noise.
By placing specific waveforms in the background, it estimates statistical fluctuations for
the reconstruction process. In this phase it determines phenomenological parameters such
as the chirp mass M . An output example can be seen in Fig 1.11 as a reconstruction of the
waveform in the time-frequency map, where the colored pixels are those with maximum
likelihood values above the threshold. In particular, this plot derives from the analysis of
the first event GW150914.

The goal of detecting signals with minimal physical preliminary information is a
double-edged sword. Thanks to the cWB pipeline we can search for new transient signals
without having a precise kind of source as a target. Anyway, not knowing which object
is emitting the detected gravitational wave translates into the impossibility of making
parameter inference on the source. This issue can be neglected if one wants to exploit
cWB to detect new signals kinds. Anyway, for what concerns CBCs, this pipeline is now
lacking a parameter inference on the source. Now that matched filtering techniques detect
most of the CBC signals, for which cWB was originally thought, this lack starts to be
really a defect. As we will see in Sec. 1.5.4, this is the problem that the work that begins
with my thesis wants to solve. We will see how to handle a fast parameter inference with
as less prior physical information as possible.

Continuous waves search The search for modeled continuous waves is mainly based
on monochromatic signals. This is the case for compact binaries far from the coalescence,
which still evolves with a low frequency derivative, or for spinning asymmetric neutron
stars. The idea of these searches is to be carried out on the entire time series at once.
As a first approximation, the sensitivity around a certain frequency f is S

1/2
n /T 1/2, where

T is the time interval of the measurement. The SNR instead increases as T 1/2. Thanks
to the likelihood that takes into account antenna patterns, considering in this way in the
search the different directions of the incoming GW, we can “point” the interferometers in
a certain direction and look for the emission from known sources. Currently, no detection
was found and only upper limits on the detectable strain have been set (Abbott et al.,
2022).

Stochastic gravitational wave background search Like the continuous wave search,
the search for a gravitational wave background relies only on analyzing the entire time
series at once. In this case we are not looking for a modelled signal, but we want to
universally correlate the same apparent noise source. The idea of the investigation is
simply to subtract the noise from the interferometers and look at what is left. In practice,
characterizing the whole noise is quite difficult. A triangular-insensitive GW configuration
(as the one for LISA; Amaro-Seoane et al. (2017)) could definitely be a key ingredient
to this step. The gravitational wave background will be a fundamental ingredient for

21

1.5. Data analysis Chapter 1. Gravitational waves

testing cosmological and astrophysical models. Also in this case, only the upper limits
to the detectable strain from ground-interferometers studies have been placed (Abbott
et al., 2021c). A 4σ evidence for a gravitational wave background has been found from
the 15-year PTA database (Lynch (2015); Agazie et al. (2023)).

1.5.4 Parameter inference

After the detection, high relevance events are saved in the GraceDB (the LIGO-Virgo-
Kagra scientific collaboration, 2015) database. An offline analysis can now start to infer
the 15 parameters that the GW signal could provide in case of a binary black hole: 2
masses, 6 spin components, the orbit eccentricity, the inclination of the orbit with respect
to the line of sight, the luminosity distance and 2 coordinates for the position of the source
in the sky. For binary neutron stars other parameters are needed. I will briefly introduce
the basic statistics behind these methods and how they are implemented.

Bayesian statistics This brilliant way of doing statistics is founded on the Bayes’
theorem defined by T. Bayes in the XVIII century. Unlike a Frequentist approach, Bayes
statistics introduces a subjectivity into the game through the use of statements coupled
with random variables. The Bayes’ theorem states that: given a dataset d and a hypothesis
H, the probability that the hypothesis H is true is given by the probability of having the data
d given the true hypothesis times the probability that the hypothesis is true, normalized by
the entire probability of having the data. In formulas, the Bayes’ theorem is given by

P(H|d) = P(d|H)P(H)

P(d)
. (1.78)

This becomes clearer if we think of a physical model M as hypothesis, with associated
parameters θ. The probability of having the model M with those parameters θ given the
observed data d is represented by the probability of having d given the true M multiplied
by the probability for the M , normalized by the whole probability of having the data set
d, which results in

P(θ|d) = P(d|θ)P(θ)

P(d)
. (1.79)

P(θ) is the prior information on the model with associated parameters and must be given
by the user himself: here the subjectivity of statistics comes into play (in the literature
there are several prior optimized forms). P(d|θ) is called the likelihood for the parameters.
It represents the plausibility of the data given the true model. It mostly depends on the
kind of problem one wants to solve, but one could make several assumptions to reduce
to simplified forms (for example, considering the logarithm of the probability). P(d) is
called evidence and normalizes the numerator. It is defined through the marginalization
on the parameters, which means

P(d) =

∫

ωo

dθP(d|θ)P(θ) , (1.80)

where ωo represents the entire parameter space. Substituting this into (1.79), we can see
that this marginalization might actually be a normalizing factor. Since there is usually no
calculation available for this, we can estimate the numerator (1.79) and scale it later to
useful values. Last but definitely not least, P(θ|d), opposite to the prior, is the posterior
of the parameters and it is the object to determine. It represents the plausibility of our
model given the data. It depends on the choice done for the prior P(θ), but it can be
shown that the more data we have, the less informative the prior is.

22

Chapter 1. Gravitational waves 1.5. Data analysis

The idea for a parameter inference is to evaluate the target posterior probability distri-
bution P(θ|d) and to sample parameter values from it. The problem is that the posterior
is usually impossible to integrate to get a sample. Numerical sampling techniques, such
as rejection sampling or Markov Chain Monte Carlo (MCMC), come to the rescue.

Gravitational wave parameter inference The GW signals from CBCs are a perfect
environment to apply this kind of statistics. The developed pipelines for parameter es-
timation relies on enormous prior theoretical knowledge to have strong structured priors
on the 15 parameters. Several Python libraries, such as Bilby (Ashton et al., 2019),
have built-in functions to perform this parameter inference. This type analysis must be
done off-line, after the full understanding of the event phenomenology. This is required
because the Bayesian pipelines need an order of six months of work to operate on a single
event. The main reason is due to the MCMC covering a large range of parametric spaces
with great detail. Despite the time length of this work, at the end of the analysis the
fifteen parameters are inferred much more strongly than using matched filtering.

Need for a data-driven parameter inference Most of the currently popular pipelines
are based on numerically generated waveforms, as previously explained. This can be done
only with an extremely solid physical background. Matched filtering, for example, uses
these templates to highlight signal over noise. On the other hand, Bayesian parameter
estimation utilizes these models to infer CBC source parameters from the data captured
by the matched filtering. The former is a fast-running pipeline that detects the signal
and performs rapid parameter estimation to contact dedicated observatories for an elec-
tromagnetic counterpart. The latter is instead a computationally heavy pipeline that
operates offline in the next months after the detection. Both of these pipelines need solid
physical models, developed in the last century, as we saw in Section 1.1.

On the other hand, the purpose of cWB is to detect signals from new sources, avoiding
the need for an extensive theoretical background. Anyway, this algorithm can only lead
to infer phenomenological parameters of the signal. At the moment it is not possible to
make any profound estimation on all the 15 parameters.

This is the problem that this thesis wants to address. In the next chapter I will intro-
duce Physics Informed Neural Networks (PINN) as a Machine Learning (ML) technique
to learn the basic physics behind the input data without the need for a huge physics
background. PINNs are able to reconstruct physical differential equations and estimate
parameters in the meantime. The reconstructed waveform of cWB could be used as input
to the PINNs, which will learn the differential equations behind it, estimating the source
parameters. The key tool of PINNs is to work really well even with a little physical ansatz.

23

Chapter 2

Machine learning

In this chapter I introduce the methodology to solve the problem presented above.
We want to achieve a fast data-driven method for parameter inference. From now on,
we will introduce the strong assumption to have a BBH as source of gravitational waves.
Anyway, we will start considering only Newtonian dynamics, testing and exploiting data-
driven algorithms velocity and accuracy to compensate the missing physics.

I will present Machine Learning (ML) based algorithms as key tools to address this
problem. In particular, I will show how the recently developed Physics Informed Neural
Networks (PINNs) allow to learn partial differential equations (PDEs) from experimental
data. This task would be carried out optimizing the desired parameters.

The aim of this chapter is to be a review on ML and on PINN in particular. It will
be organized as follows. I will introduce basic ML concepts, statistics, and techniques in
sec. 2.1, always with an eye to parameter inference. In sec. 2.2 I will examine the Deep
Learning (DL) techniques of Neural Networks (NNs). In sec. 2.3 I will talk about PINNs
as a physical implementation on the NNs themselves. In sec. 2.4 I will briefly talk about
the ML techniques already implemented in GW data analysis. Sec. 2.1 and sec. 2.2 are
based on ML’s review for physics by Mehta et al. (2019), sec. 2.3 mainly on articles by
Raissi et al. (2019) and Rackauckas et al. (2021) and sec. 2.4 on the ML for GW review
done by Cuoco et al. (2020).

2.1 Basic concepts

Machine Learning (ML) is a field of information technology that has emerged in recent
decades mainly for industrial interests and to tackle scientific problems. The working
principle of ML techniques is to develop self-improving algorithms by learning information
from input data. Based on these latter and their interpretation, ML algorithms are able
to make predictions, make choices and/or determine the model implicit in the data itself
(infer its parameters). Other brilliant applications of ML can be found in information
engineering (image recognition), bioinformatics and genomics. Anyway, its basis is on
statistical studies. We will see in this section the statistical work behind a ML algorithm,
introducing then the ML techniques mainly used in physics.

2.1.1 Learning process

ML is not a single technique, but a set of different techniques that share the same
basic idea to learn information from data and draw conclusions (classify objects, make
predictions, make choices, . . .). To set up a ML problem, the following ingredients must
be set:

25

2.1. Basic concepts Chapter 2. Machine learning

• a dataset D = (x,y), where x = (x1, . . . , xn) is a vector of independent variables,
while y = (y1, . . . , yn) is a vector of dependent variables;

• a model f(x;ξ), which is a function f : x → y with the set of parameters ξ;
• a cost function C (y, f(x;ξ)).

We assumed that the independent variables x and y are constrained by an unknown
model. f is the function approximating this unknown model thanks to the parameters ξ.
How can we optimize the ξ parameters to know if f is a good approximation for the model
behind the data or not? We can minimize the associated cost function C which compares
the actual data y with the predicted data, calculated thanks to the approximation f(x;ξ).
A classical example of C is the squared error, given by

C (y, f(x;ξ)) =
n

∑

i=1

(

yi − f(xi;ξ)
)2

, (2.1)

where n is the total number of variables in x (and in y). By optimizing ξ, we can modify
the approximation f and look for a minimum of C (y, f(x;ξ)).

Now it is essential to specify that, before carrying out any type of evolution or sta-
tistical analysis, the dataset must be randomly divided into two subsets: the training set
ytrain and the test set ytest. The cost function C will be minimized only considering the
training dataset. The idea is to find the values for the components ξ that minimize C ,
i.e.

ξ̂ = argmin
ξ

{

C (ytrain, f(xtrain;ξ))
}

. (2.2)

This search for the minimum is like performing a fit of f on the data ytrain. Once a
value for ξ̂ is fixed, the act of calculating the C value with the test dataset permits us
to validate our f optimization thanks to new data. We can define in this reasoning two
different errors, the so-called loss functions :

Ein = C (ytrain, f(xtrain;ξ)) , Eout = C (ytest, f(xtest;ξ)) , (2.3)

where Ein is called the in-sample error and is calculated with the training dataset only,
while Eout is called the out-of-sample error and is calculated with the test dataset only.
Usually one could think that the minimization of C (ytrain, f(xtrain;ξ)) is sufficient to
have the full model behind every possible x data. Anyway, optimizing on a fraction of the
data could lead to an overfitting of this particular subset. Therefore, a test set is needed
to verify new data, different from the training one.

2.1.2 Linear regression

In this section I will introduce a simple application for ML that will be useful for
understanding the much more complex algorithms of the next chapters: linear regression.

Suppose we have n samples D = {(yi,x(i))}ni=1, where x
(i) is the ith observation vector

of size p, equal to the number of observables. yi is its scalar response. We can insert the
observation samples of x(i) into a n× p matrix X. Let g be the real (unknown) function
that did generate the sample yi as

yi = g(x(i);ξtrue) + ϵi , (2.4)

with ϵi some white random noise. What we want to do is to find a function f which best
fits the data yi, approximating g. In this thesis we are interested in parameter estimation,
in the sense that we want to find the optimal ξ̂ such that f(x; ξ̂) is the best approximation

26

Chapter 2. Machine learning 2.1. Basic concepts

Figure 2.1: Result of the linear regression for a one-dimensional x. The circles are (xi, yi) points
and f is the red line. (Mehta et al., 2019)

that we can get for g. Once that is done, we can use this f to make predictions about
the response y0 given the new test data x0.

To solve this problem, we can minimize the following cost function

C (X,ξ) = ||X · ξ− y||22 , (2.5)

where ||x||p = (|x1|p + · · ·+ |x2|p)1/p. Let f(x(i),ξ) be defined as

f(x(i),ξ) = ξTx(i) . (2.6)

Minimizing this C is equivalent to minimizing the sum of all the residuals of x(i) with
respect to the hyperplane defined by this f , as seen in fig. 2.1 for p = 1. This first
application is the basis of ML reasoning and is used to fit linear problems like the one we
have seen. Usually several smoothing techniques are used to mitigate the high-dimension
limit.

From this simple example, we can understand another fundamental thing about ML
operations. Considering the definitions of Ein and Eout from (2.3), it can be shown that
the difference of their means is given by

|Ein − Eout| = 2σ2 p

n
, (2.7)

where σ2 is the variance of the intrinsic noise ϵi, p is the number of observables in each
sample and n the number of samples. The more data we have, the more we can learn from
them. The more observables we consider, the less we can learn from the same amount of
data.

2.1.3 Optimization methods

One of the main problems in ML is to find a way to minimize the cost function C

with respect to each component of ξ (each parameter of model) at the same time. Usually
C is not as simple as (2.1) and the derivative calculations could be very computationally
expensive. We will see in this section the routes developed to simplify it.

Newton’s method The goal of the presented different methods is always the same: to
find an intelligent way to update the parameters ξ to minimize C . The distance between

27

2.1. Basic concepts Chapter 2. Machine learning

Figure 2.2: Effect of the learning rate η on convergence. (Mehta et al., 2019)

two values of ξ at iterations t and t+1 is called step v, with the same dimension as ξ. In
Newton’s method, which inspires every other method, we choose the v step as expansion
term for C . What we want to minimize is the second-order expansion

C (ξ+ v) ≈ C (ξ) +∇ξC (ξ)v+
1

2
vTH(ξ)v , (2.8)

where H(ξ) is the Hessian matrix of C (note that we changed notation from C (y, f(x;ξ))
to the simplified one C (ξ)). With the optimal value of v (vopt) we step right on the
minimum. So, differentiating the previous formula we have

∇ξC (ξ) +H(ξ)vopt = 0 . (2.9)

Rearranging this expression, we have the desired rule for updating the ξ parameters:

ξt+1 = ξt − vt , with vt = H−1(ξt)∇ξC (ξt) , (2.10)

where t is the iteration index.

Gradient descent A simplified version of this method is given by the simplest and
most used optimization method: the gradient descent. In this case the update rule is
given by

ξt+1 = ξt − vt, with vt = ηt∇ξC (ξt) . (2.11)

The inverse of the Hessian matrix is replaced by the so-called learning rate ηt. We update
ξ thanks to the use of ηt, which drives the step together with the gradient. The sign of
the step is given by the sign of the gradient, while the absolute value is governed by the
learning rate. In the case of (2.11), we have a fixed value, while for Newton’s method
(2.10) it is regulated thanks to the Hessian matrix. Having a fixed value is quite risky for
the reason we see in fig. 2.2, where in Mehta et al. (2019)’s notation E(θ) = C (ξ). If η is
exactly equal to its optimal value ηopt, on the first step we arrive at the minimum, while
if η is too small, the computational cost becomes higher because we need many passes.
Furthermore, if η is too small, we may be constrained to local minima, but if too large,

28

Chapter 2. Machine learning 2.1. Basic concepts

we may skip the real minimum or diverge. It can be shown that ηopt is just the inverse of
the Hessian matrix H−1(ξ) because, as we know from mathematical analysis, it provides
fundamental informations about the curvature of the function. This can drive the step v
much better than a constant value.

ADAM ADAM (Kingma and Ba, 2017) is a rather advanced optimization algorithm
which introduces learning rate adaptivity for several parameters. It is based on the
running averages of the first (mt) and second (st) moment of the gradient and on the bias
corrections to account for the running averages. The update rule is given by

ξt+1 = ξt − ηt
m̂t√
ŝt + ϵ

, (2.12)

with

m̂t =
mt

1− (β1)t
, ŝt =

st
1− (β2)t

, (2.13)

where

mt = β1mt−1 + (1− β1)g
2
t , st = β2st−1 + (1− β2)g

2
t , (2.14)

with

gt = ∇ξC (ξ) . (2.15)

A sort of memory of the past updates of ξ is defined, depending on the two parameters
β1 and β2, to avoid local minima using an inertia factor. ϵ is instead a regularization
parameter with the same intent.

RMSprop RMSprop works mostly with mini-batches, which are subsets of the training
data. The algorithm chooses stochastically which mini-batches to select. Within this new
simpler dataset, a running average of the gradient is used to update parameters (Hinton
et al., 2018). Following the notation used by Graves (2014), the update rule is

ξt+1 = ξt +∆t , (2.16)

whit

∆t = ℶ∆t−1 − ג
ϵt

√

nt − g2t + ℸ
, (2.17)

where

nt = Nnt−1 + (1−N)ϵt , (2.18)

gt = Ngt−1 + (1−N)ϵt (2.19)

and

ϵt =
∂C

∂ξt
. (2.20)

ℶ, ,ג ℸ and N are parameters to be set by hand. Zaman et al. (2021) demonstrated
that RMSprop is the best optimization algorithm when dealing with Recurrent Neural
Networks (see Sec. 2.2.3).

29

2.2. Neural networks Chapter 2. Machine learning

Broyden–Fletcher–Goldfarb–Shanno (BFGS) Since the Hessian matrix is usually
too computationally heavy to calculate, several techniques are used to approximate it. In
this procedure introduced by Fletcher (2000), an approximation for H(ξ) also evolves. In
this case we use the quasi-Newton equation

Btvt = ∇ξC (ξt) , (2.21)

where Bt is the approximation for H(ξ). The update for ξ is given by

ξt+1 = ξt − γtvt, (2.22)

where γt > 0. The direction of vt is found in the computation thanks to a line search
minimizing C (ξt + γtvt) to different directions. Bt must satisfy the secant condition

Bt+1st = at , (2.23)

where
st = ξt+1 − ξt , at = ∇ξC (ξt+1)−∇ξC (ξt) , (2.24)

and is updated thanks to

Bt+1 = Bt+
ata

T
t

aT
t st

− Btsts
T
t B

T
t

sTt Btst
. (2.25)

This useful algorithm will be the optimisation algorithm used in chap. 3.

2.2 Neural networks

A large branch of ML is Deep Learning (DL), consisting of Neural Network (NN)
techniques. These NNs, as the name suggests, are built as a network of neurons commu-
nicating between each other. At the moment of their creation the inspiration was trying
to recreate the human brain thanks to computer science (Minsky, 1975). Anyway, they
gained the attention of the ML community only after decades, thanks to the brilliant
work done by Krizhevsky et al. (2012). They lowered the error rate of an image recog-
nition algorithm by twelve percent. Since then, NNs have emerged as one of the most
powerful and widely used supervised learning techniques. Despite the large applicabil-
ity for industrial purposes (image recognition, decision making, . . .), many branches of
physics are exploiting NNs for their own purposes. Statistical physics is closely related to
their internal structure and many different tasks have been achieved, together with quan-
tum computing. Furthermore, astrophysics and cosmology can both apply convolutional
neural networks (CNNs) to image recognition (Carleo et al., 2019).

In this section we will see the basic concepts of NNs, focusing the discussion on the
algorithms that will be used in the next chapters of this thesis.

2.2.1 Neuron

As anticipated, the building block of NNs are the so-called neurons. They are defined
as functions taking the d input features x = (x1, . . . , xd) and producing a scalar output
y. The formula behind each neuron can be expressed as

y = NN(x;ξ) = σ(w · x+ b) , (2.26)

where we can define σ as the neuron activation function (usually hand-given), w as the
vector of different weights for different inputs, b as the neuron bias and ξ = (b,w). The

30

Chapter 2. Machine learning 2.2. Neural networks

Figure 2.3: Single neuron scheme. In white we can see different values, in light violet parameters
and in green operations. (Tefas and Nousi, 2023)

idea of the calculation can be seen in Fig. 2.3: several inputs xi are combined with weights
wi and then summed together with the bias. This is the linear part of the neuron. Instead,
when the activation function σ is applied, non-linearity is introduced to compute y.

This simple neuron concept is really a key tool, because different weights could be
modified to have different y results. In any case, a single neuron is sufficient to handle a
linear regression, but not to solve complex tasks such as object classification or non-linear
fitting. For this reason we have to introduce networks of neurons.

2.2.2 Multi-layer network

The structure of a NN is shown in Fig. 2.4, where each circle represents a neuron.
Each output y of a single neuron is the input of the next one. A network with as many
layers of neurons as desired can be built following this logic. In the first layer inputs
are hand-given to the network and it is called input layer. Intermediate layers are called
hidden layers and the last layer is the output layer returning the scalar output of the
network. Because of the multilayer structure we usually speak of DL referring to NNs.
Each neuron works as (2.26) and so we have

yi = NNi(xi;ξi) = σi(wiyi−1 + bi) , (2.27)

where i is the index of the neuron. The yi term is the input for the next neuron. For
example, a feed-forward neural network of three layers in total, with one neuron per layer,
input x and scalar output y is given by

y = NN(x;ξ) = w3σ2(w2σ1(w1 · x+ b1) + b2) + b3 , (2.28)

31

2.2. Neural networks Chapter 2. Machine learning

Figure 2.4: Neural network scheme. The circles represent different neurons, while the arrows
represent the output-input connections between each neuron. (Mehta et al., 2019)

where we used σ3 = 1.
The key feature differentiating NNs from other ML techniques in terms of performance

is the use of hidden layers. As the number of both parameters and activation functions
increases, the NN can reconstruct every possible type of function. Hidden layers generate
step functions with arbitrary offsets and heights, which are added together to approximate
each arbitrary function. For this reason, this layering of neurons is extremely useful for
solving complex non-linear tasks, such as image reconstruction thanks to Convolutional
Neural Networks (CNNs), parameter estimation for different features and solving of dif-
ferential equations. Defining the optimal network architecture is really an art left to the
developer, but some Python and Julia packages have been created to easily build such
complex codes: PyTorch (Paszke et al., 2019) , Tensorflow (Abadi et al., 2016) and
SciML (Rackauckas et al., 2021). We will see the latter in detail in sec. 2.3.4.

2.2.3 Recurrent neural networks

Feedforward NNs, as we have seen, have the ability to approximately reproduce
any type of function exploiting the interconnections of neurons between layers adjust-
ing weights. Back-links are usually not implemented and special networks were built to
take advantage of this particular type of connection: the so called Recurrent Neural Net-
works (RNNs). They are thought to learn from sequences. The idea is to have loops
within the network, as we can see on the left of Fig. 2.5. We can understand how the
algorithm works unrolling the loop. Having as input the series of values xt, the neuron
A first accepts the initial condition x0 to return the output h0. Also, the neuron has a
connection with itself: an internal state is updated. When the second input x1 is given,
A gives the different result h1 thanks to the evolution. This allows to have in output the
evolved series ht.

RNNs are imagined to implement memory. The hidden state of A is updated during
the loop: this is like saying that A has memory of past evolution. This memory approach
allows us to train the network unrolling the loop and using the backpropagation algorithm
with a cost function.

RNNs are much more complicated than this and a dedicated section should be written
concerning this argument, but it is out of the purposes of this thesis. Noteworthy to men-
tion that RNNs are certainly suitable for audio identification and for evolving differential
equations in order to find their solution. The interested reader may refer to Lipton et al.
(2015) for a review of RNN.

32

Chapter 2. Machine learning 2.2. Neural networks

Figure 2.5: Unrolled recurrent neural network. (Olah, 2015)

2.2.4 Training neural networks

Like any other ML algorithm, NNs need to be trained. The procedure follows the
same locgic as illustrated in sec. 2.1.2 for linear regression. We define a cost function C

to be minimized with respect to the parameters.
More formally, given n data point (xi, yi), the neural network makes a prediction

ŷi(ξ), where i is the index of the data point and ξ the parameters of the NNs. Using the
mean squared error as in (2.1) as reference for qualifying the NN performance

C (y, f(x;ξ)) =
1

n

n
∑

i=1

(

yi − ŷi(ξ)
)2

, (2.29)

we solve the following expression

ξ̂ = argmin
ξ

{

C (y, f(x;ξ))
}

. (2.30)

In the next chapters we will also use the following expression as a cost function, called
the mean-absolute error:

C (y, f(x;ξ)) =
1

n

n
∑

i=1

∣

∣yi − ŷi(ξ)
∣

∣ . (2.31)

The goal is to find the minimum (2.30). Being the parameter number of NN (the ξ
dimension) usually huge and the gradient computation could be really expensive. Hence,
we have to use a dedicated algorithm for the purpose of deriving the whole network.

The backpropagation algorithm The backpropagation algorithm is a chain rule for
partial differentiation. It was thought to deal with the difficulties arising in deriving NN,
due to the presence of more than one connection per layer. The connection between the
k-th neuron in layer l − 1 and the j-th neuron in layer l is given by

ylj = σ(zlj) , with zlj = σ

(

∑

k

wl
jky

l−1
k + blj

)

. (2.32)

Let me define the error ∆l
j of the jth neuron in the lth layer as the variation of the cost

function with respect to zlj, which means

∆l
j =

∂C

∂zlj
. (2.33)

33

2.3. Physics-informed neural networks Chapter 2. Machine learning

We can use the chain rule in different ways:

∆l
j =

∂C

∂ylj
σ′(zlj) , (2.34)

∆l
j =

∂C

∂blj
, (2.35)

∆l
j =

(

∑

k

∆l+1
k wl+1

kj

)

σ′(zlj) . (2.36)

Finally, differentiating the cost function with respect to the weights, we obtain

∂C

∂wl
j

=
∂C

∂zlj

∂zlj
∂wl

j

= ∆l
jy

l−1
k . (2.37)

Together (2.34), (2.35), (2.36) and (2.37) define the four backpropagation equations. The
algorithm proceeds as follows:

1. Activation at input layer : calculate the activation ylj of all the neurons in the input
layer;

2. Feedforward : starting with the first layer, exploit the feedforward architecture
through (2.32) to compute zl and al for each subsequent layer;

3. Error at top layer : calculate the error of the top layer using (2.34) (this requires to
know the expression for the derivative of both C and σ);

4. Backpropagation of the error : use (2.36) to propagate the error backwards and
calculate ∆l

j for all layers;
5. Calculate gradient : use (2.35) and (2.37) to calculate ∂C /∂blj and ∂C /∂wl

j.
This algorithm allows to compute C derivatives with respect to many parameters in a
shorter time than performing the usual numerical derivation. We will refer to this detailed
description in order to highlight the differences in the implementation of this algorithm
within different environments (sec. 2.3.4).

2.3 Physics-informed neural networks

In Sec. 2.2 I introduced NNs as useful tools for solving physical problems. However,
all of these algorithms have been developed for engineering, bioinformatics, and genomics
purposes. They are simply applied as-is and tuned to handle the desired physical activities.
They are trained on specific datasets and then tested on related others. In this process
the internal structure of the ML and NN algorithms does not change at all. Furthermore,
studying physical (and especially astrophysical) problems means working with a lack of
large amounts of data. ML techniques are instead designed to work with “big data”, being
trained with every possible data available online1. In physics, this large data set cannot
be generated to this level of variety. However, physics has from its side the theoretical
and phenomenological laws in the form of partial differential equations. These can be
used to augment the information carried by a data set, not necessarily that large. This is
the idea behind Raissi et al. (2019)’s pioneering work which introduced Physics Informed
Neural Networks (PINN). They are NNs in which the a priori physical information is not
given as a bias, but it is implemented directly into the algorithm structure. They are a
ML technique born precisely to deal with physical problems.

1Think of image generation algorithms or modern text generating artificial intelligences like Chat-

GPT.

34

Chapter 2. Machine learning 2.3. Physics-informed neural networks

PINNs are capable of approximating and solving any physical law starting from input
data. The only necessary condition is that the physical principle must be expressed as
a partial differential equation. This environment could be useful for the purposes of this
thesis because PINNs can infer parameters of the system behind training data starting
only from a little ansatz.

In Subsec. 2.3.1, I will introduce the basic mathematical structure on which PINNs
are based, while in Subsec. 2.3.2 and in Subsec. 2.3.3 I will follow Raissi et al. (2019)
examples explaining PINNs’ applicability. In Subsec. 2.3.4 I will introduce the interesting
SciML workbench developed by Rackauckas et al. (2021) to handle PINNs. We will see
the implementation of the so-called reverse Automatic Differentiation (AD), a general-
ization of the backpropagation algorithm. Subsec. 2.3.4 will also be where I will compare
the performance of PINNs in the literature versus usual ML techniques. Finally, in Sub-
sec. 2.3.5 I will present an hybrid approach to PINNs that will be useful in my future
work, developed by Nascimento and Viana (2020).

2.3.1 Universal differential equations

PINNs exploit the NNs capability of approximating any possible function. PINNs
are based on the (Rackauckas et al., 2021) formalism of Universal Differential Equations
(UDEs). A UDE is a differential equation defined in whole or in part by a Universal
Approximator (UA), which is a parameterized object capable of representing any possible
function in a parameter space limit. A NN is the perfect tool to be considered as UA.
The most general UDE is a forced stochastic delay Partial Differential Equation (PDE)
defined with the UA embedded. It is given by the expression

O
[

u(t), u(α(t)),W (t), U(u, β(t);ξ)
]

= 0 , (2.38)

where O is a generic nonlinear operator, u(t) is the solution of the differential equation,
α(t) and β(t) are delay functions, W (t) is the Wiener process and U is the UA (the NN)
with the parameters ξ. A stochastic differential equation is a differential equation whose
coefficients are random numbers or random functions of independent variables, while a
stochastic delay differential equation is a differential equation where the increment of the
random process depends on the past values of the process itself. However, this generic
UDE can be specified depending on the problem we want to solve. The simplest form one
can use is

u′ = NN(u, t;ξ) , (2.39)

a one-dimensional UDE defined completely by a neural network. As we will see in the next
sections with some simple examples, this NN can be trained as a data-driven solver of the
UDE (forward training) or to learn the structure of the UDE itself (backward training).
This means that this UDE can be the basis of every possible implementation of physical
laws, requiring these latter only to be expressed as PDEs.

2.3.2 Solving partial differential equations

We will see as PINNs can be established following Raissi et al. (2019) reasoning. Let’s
express (2.38) as

∂u

∂t
+ N [u] = 0 , (2.40)

where x ∈ Ω ⊂ R
d, t ∈ [0, T], N [·] is a nonlinear differential operator and u(t, x) is the

hidden solution of the differential equation. We can therefore define the function f(t, x)

35

2.3. Physics-informed neural networks Chapter 2. Machine learning

as the left side of (2.40):

f :=
∂u

∂t
+ N [u] . (2.41)

Approximating u(t, x) with a deep NN means constructing a PINN on f(t, x). The two
NNs share the same parameters, but with different activation functions due to the presence
of N [·]. These parameters can be learned by minimizing the mean squared error cost
function

C = Cu + Cf , (2.42)

where

Cu =
1

Nu

Nu
∑

i=1

∣

∣u(tiu, x
i
u)− ui

∣

∣

2
, (2.43)

Cf =
1

Nf

Nf
∑

i=1

∣

∣f(tif , x
i
f)
∣

∣

2
. (2.44)

In particular, Cu compares the initial and boundary data, while Cf applies the structure
(2.40). As training data we need both {tiu, xi

u, u
i}Nu

i=1 (the initial and limit data for u(t, x)

) and {tif , xi
f}

Nf

i=1 (the placement points for f(t, x)). Once C has been minimized to (2.42),
we can learn both f(t, x) and u(t, x).

Note that N [·] is known and can contain time and space derivatives for u(t, x).
Their calculation is necessary to compute f(t, x). Using the PDE structure is the key
ingredient to implement the physics on the NN approximating u(t, x). To derive the NNs
with respect to their coordinates, in addition to the parameters, we need a more general
algorithm than the backpropagation one: Automatic Differentiation (AD; we will see it in
Sec. 2.3.4) . This introduces a smoothing mechanism that allows to handle small training
datasets with relatively simple feed-forward neural network architectures.

2.3.3 Data-driven discovery of partial differential equations

The most exciting thing PINNs are able to do is approximate the partial differential
equations underpinning the training data. The idea is to start from (2.40) in the form

∂u

∂t
+ N [u;λ] = 0 , (2.45)

where here N [·] depends also on some unknown parameters λ. Setting again (2.41) as

f :=
∂u

∂t
+ N [u;λ] , (2.46)

we approximate u(t, x) as a deep NN. This hypothesis constructs f as PINN, with the
same parameters as the u NN plus λ set. Again the aim is to minimize the cost function

C =
1

N

N
∑

i=1

∣

∣u(ti, xi)− ui
∣

∣

2
+

1

N

N
∑

i=1

∣

∣f(ti, xi)
∣

∣

2
, (2.47)

where we are using the training data {ti, xi, ui}Ni=1. By minimizing this C , we can learn
both the NNs parameters of u and the λ parameters. The computational approach we
can use to have the data-driven learning of a physical law hidden behind the data is to
set up a number of different ansatz functions in approximating N , this time unknown,
and optimize its respective parameters to have the final form of the equation. We will
exploit this wonderful utility in the work of chap. 3.

36

Chapter 2. Machine learning 2.3. Physics-informed neural networks

2.3.4 SciML environment

PINNs are based on the UDE formalism as already explained. We can choose the
differential operator O however we like, creating a huge variety of differential equations.
How can we handle this large amount of possibilities? Rackauckas et al. (2021) introduced
the SciML ecosystem of macros packages as a set of tools to handle the wide range of
possible UDEs, considering all possible cases of adaptivity, rigidity, stochasticity, delays
and more. It is coded within the Julia programming language and its main packages can
simply be imported from the Pkg terminal. In the next chapters we will mainly use the
DifferentialEquations.jl solvers, theDiffEqSensitivity.jl additional methods and
the DiffEqFlux.jl helper functions. This environment is really a complete programming
tool to handle any kind of possible PINN problem.

Automatic differentiation Training an UDE means minimizing the desired cost func-
tion C with respect to the desired parameters and coordinates. The usual choice for C is
shown in (2.42) and (2.47), with discrete data points as input. Thanks to the chain rule,
the calculation of the derivative of this C is given by the derivative of u and f themselves.
The problem of efficiently training a UDE boils down to computing the gradients of the
solution of the differential equation u with respect to the desired parameters and coordi-
nates. The issue, as I anticipated, lies in how to compute these derivatives. Since we are
dealing with derivatives with respect to the coordinates of the system, in addition to the
parameters of the NNs, we need a generalization of the back-propagation algorithm: the
Automatic Differentiation (AD; Baydin et al. (2018)), also known as the added derivative.

The idea of AD is to perform a non-standard interpretation of a computer program
where this interpretation involves augmenting the standard calculus by computing vari-
ous derivatives. All numerical calculations are just compositions of elementary operations.
Combining the derivative of the constituent operations through the chain rule gives the
derivative of the overall composition. In other words, AD in inverse addition mode prop-
agates derivatives backwards from a given output. This consists in the construction of a
generic function f : R

n → R
m thanks to intermediate variables vi such that vi−n = xi with

i = 1, . . . , n are the input variables, vi with i = 1, . . . , l are the internal working variables
and vl−i = ym−i with i = m−1, . . . , 0 are the output variables. Each intermediate variable
vi can be completed with an adjoint

vi =
∂yj
∂vi

, (2.48)

which represents the sensitivity of an output yj to variations of vi. For the back-propagation
case yj = C . The derivative of the generic function f is determined in two steps: a forward
step where f is computed to populate the intermediate variables vi and then a reverse
step where the derivative is actually calculated.

Let’s take an example by deriving the following f : R
2 → R

y = f(x1, x2) = ln x1 + x1x2 − sin x2 . (2.49)

The forward phase is calculated in the left part of the Tab. 2.1 and follows the calculation
of the graph in Fig. 2.6. The backward calculus is shown on the right side of Tab. 2.1
and corresponds to each operation on the left side. What we want to calculate as a last
result is the influence of the inputs (v0 and v−1) on the output y. Taking for example v0
and looking at Fig. 2.6, we can notice that its influence on y occurs only through v2 and
v3 and therefore

∂y

∂v0
=

∂y

∂v2

∂v2
∂v0

+
∂y

∂v3

∂v3
∂v0

=⇒ v0 = v2
∂v2
∂v0

+ v3
∂v3
∂v0

, (2.50)

37

2.3. Physics-informed neural networks Chapter 2. Machine learning

Figure 2.6: Computational graph of the example f(x1, x2) = lnx1+x1x2−sinx2. (Baydin et al.,
2018)

Forward primal trace Reverse adjoint trace

y

v−1 = x1 = 2

x

x1 = v−1 = 5.5
v0 = x2 = 5 x2 = v0 = 1.716

v1 = ln v−1 = ln 2 v−1 = v−1 + v1
∂v1

∂v
−1

= v−1 +
v1

v
−1

= 5.5

v2 = v−1 · v0 = 2 · 5 v0 = v0 + v2
∂v2

∂v0

= v0 + v2 · v−1 = 1.716

v−1 = v2
∂v2

∂v
−1

= v0 + v2 · v0 = 5

v3 = sin v0 = sin 5 v0 = v3
∂v3

∂v0

= v3 cos v0 = −0.284

v4 = v1 + v2 = 0.693 + 10 v2 = v4
∂v4

∂v2

= v4 = 1

v1 = v4
∂v4

∂v1

= v4 = 1

v5 = v4 − v3 = 10.693 + 0.959 v3 = v5
∂v5

∂v3

= −v5 = −1

v5 = v5
∂v5

∂v4

= v5 = 1

y = v5 = 11.652 v5 = y = 1

Table 2.1: Automatic differentiation calculation for the example f(x1, x2) = lnx1+x1x2−sinx2.
(Baydin et al., 2018)

as we can see on the right-hand side of Tab. 2.1 in the two steps

v0 = v3
∂v3
∂v0

, (2.51)

v0 = v0 + v2
∂v2
∂v0

. (2.52)

This calculation takes advantage on the fact that the derivative’s computation is
significantly less expensive to evaluate than both the normal numerical implementation
and the backpropagation algorithm. In the extreme case of a function f : R

n → R, a
single computation is sufficient to determine the entire gradient ∇f , given by

∇f =

(

∂y

∂x1

, . . . ,
∂y

∂xn

)

, (2.53)

with a significantly reduced computational cost.

SciML performances Thanks to the implemented UDE formalism and the bunch of
packages developed just for this environment, SciML is able to handle every kind of
possible differential equation that can be constructed from (2.38). As we can see in
Tab. 2.2, it can support stiff ordinary differential equations (ODE), differential algebraic
equations (DAE), stochastic differential equations (SDE) and delay differential equations
(DDE). Furthermore, it is compatible with most of the modern high computing hardwares

38

Chapter 2. Machine learning 2.4. GW data analysis with NNs

Feature Stiff DAEs SDEs DDEs Stabilized DtO GPU Dist MT

SciML

torchdiffeq - - - - -
torchsde - - - -
tfdiffeq - - - - - - - -

Table 2.2: Feature comparison between different ML-augmented differential equation libraries.
Columns correspond to a support for stiff ordinary differential equations, differential algebraic
equations, stochastic differential equations, delayed differential equations, stabilized adjoints,
discrete-then-optimize methods, compatibility with graphic processing unit (parallelization), com-
patibility with distributed computing and compatibility with multi-threading. (Rackauckas et al.,
2021)

of ODEs 3 28 768 3072 12288 49152 196608 786432

SciML 1× 1× 1× 1× 1× 1× 1× 1×
torchdiffeq 4900× 1900× 840× 280× 82× 31× 24× 7×

Table 2.3: Relative time to solve ordinary differential equations for ML-augmented differential
equation libraries (smaller is better). (Rackauckas et al., 2021)

available. On the other hand, thanks mainly to AD, SciML has the ability to solve a
large system of stiff ODEs much faster than the usual solvers available in PyTorch and
in TensorFlow, which have approximately the same speed (±2%; Abadi et al. (2016)).

2.3.5 Hybrid physics-informed neural networks

Alongside regular PINNs, Nascimento and Viana (2020) developed a hybrid version of
them. As we saw, Raissi et al. (2019)’s PINNs are used to solve and reconstruct physical
laws thanks to the use of a cost function. No limit on the order of the PDE is anyway set
(it depends on the particular case of study that one wants to handle). If instead one does
not want to learn the structure of the equation, but wants only to solve a reduced-order
known differential equation, it can be done thanks to hybrid PINNs. In particular, the
authors chose to use a RNN implemented directly inside the integration algorithm. Having
a training dataset for the solution (or for a related quantity) can lead to an inference of
the differential equation’s parameters. Nascimento and Viana (2020) applied this idea to
improve the accuracy of cumulative damage models used to predict wind turbine main
bearing fatigue, solving in a fast way a first order differential equation.

This hybrid PINN idea will be the base for the final result of this thesis, and will be
presented more in detail in Sec. 4.4.

2.4 Gravitational-wave data analysis with neural net-

works

As we have seen, GWs were first detected in 2015 (Abbott et al., 2016b). On the
other hand, ML has emerged in the last decade. Thus, their synergy is quite an open
task. Currently many efforts are underway to implement ML and NN in GW data analysis
for different purposes. In this section I will summarize them briefly, in order to introduce
the background behind the next few chapters. For more details, see Cuoco et al. (2020)
and the constantly updated web page Wang (2019).

39

2.4. GW data analysis with NNs Chapter 2. Machine learning

Figure 2.7: Examples of glitches in the time-frequency spectrogram. (Cuoco et al., 2020)

2.4.1 Data quality

As we saw in Sec. 1.5.2, GW signals are buried within the detector noise of the
interferometer. The noise usually is stochastic, but it can also appear as an unwanted
deterministic signal, called a glitch. In Fig. 2.7 we can see several examples of glitch
classes. Since they always have the same characteristic pattern in the time-frequency
spectrogram, Convolutional Neural Networks (CNNs) could be successfully used for glitch
classification and simulation (Razzano and Cuoco, 2018), thanks to their optimal behavior
with image recognition. We will go deeper in the argument in Sec. 3.4.2

ML could also be useful for reconstructing nonlinear noise sources. Even with the
most powerful filtering, a significant amount of noise pollutes the interferometer output.
Using the ability of NNs to reconstruct non-linear functions, they can have as input
environmental and control data streams to reconstruct the transfer function for these
noise sources. Once trained in this way, they can be used to subtract new nonlinear
couplings from the output data (see e.g. Bacon et al. (2023) and reference therein).

2.4.2 GW signal’s modelling

As we saw in Sec. 1.5, GW searches from CBC relying on matched filtering and
Bayesian parameter inferences require accurate waveform models. They are usually
produced through NR simulations or solving the Effective One Body (EOB) problem
(sec. 3.1.1). In particular, these EOB models first find the orbital dynamics by solving a
complex system of ordinary differential equations (known only from the precise configu-
ration) and then obtain the waveform as a second step.

40

Chapter 2. Machine learning 2.4. GW data analysis with NNs

2.4.3 Sensitivity improvements

The searches for the signal are divided into four branches: CBCs, bursts, continuous
waves and gravitational wave background. In each of these researches, ML is increasing
its presence with already tested or developed algorithms. In this paragraph I will talk
briefly about each of them.

As far as CBCs are concerned, decision trees were tested as an alternative detec-
tion method alongside matched filtering, showing good improvements (Kapadia et al.,
2017). Bursts searches are instead focusing their ML efforts on Core Collapse Super-
Novae (CCSN) searches, primarily via CNNs and CCSN simulations for a mock training
signal, so far without success. Concerning continues waves, the difficulty for ther searches
is based on the huge computational cost. Machine learning certainly holds promise in two
ways: a direct replacement of parts of the analysis pipeline (Morawski et al., 2020) and
a comprehensive analysis of strain data (Dreissigacker et al., 2019). Furthermore, for a
non-Gaussian GW background, nested sampling is usually implemented. ML techniques
could certainly improve their speed and accuracy (Wysocki et al., 2019).

2.4.4 Parameter inference

As we saw in Sec. 1.5.4, parameter inference for CBCs relies on long Bayesian tech-
niques that compare an underlined model to the actual signal. The main problem with
these methods is the computational time required (almost six months). Some efforts to
speed up these estimation thanks to ML have been implemented, such as random forest
regressions to approximate the likelihoods. Bayesian neural networks (neural networks
based on probability statements) were also tested. The results are certainly promising.

On the other hand, a quick estimate of the parameters for low latency inference
is needed to decide whether to send an alert for EM counterpart lookup. Some ML
techniques are now implemented on matched filter pipelines, but as already stated, this
technique has strong physical background behind it (Gabbard et al., 2018).

As a concluding remark to this chapter, I resume the basic utilities for understanding
the work of the next few chapters. We want to build an algorithm for fast parameter
inference from simple waveform measurements, with as little physical a priori information
as possible. PINNs are definitely the best tool to handle this, mostly due to their ability
to have data-driven discovery of differential equations from a simple initial ansatz. In
the next chapter I will present the work done by Keith et al. (2021a). They were able
to reconstruct with high precision the dynamics of binary black holes only from (mock)
waveform measurements and an initial Newtonian ansatz.

41

Chapter 3

Learning binary black hole’s
dynamics from gravitational wave
data

The main goal of this thesis is to build a fast algorithm for parameter estimation and
we want it to be as more data-driven as possible. This aspect will be extremely useful es-
pecially for GW burst searches, such as for example the cWB pipeline now operational in
modern interferometric detectors. This environment aims to detect new GW signals bas-
ing its investigation on as little previous physical information as possible (see Sec. 1.5.3).
The starting approach is to switch from the time-domain output of the interferometer to
the time-frequency domain, as we saw in panel (b) of Fig. 1.10. cWB looks for pixels in
this spectrogram with an energy density above a certain threshold. If several groups of
highlighted pixels are coherent between two or more interferometers, a candidate event
is triggered and a waveform reconstruction is performed. Thanks to this highlighting of
only relevant pixels, cWB reconstructs a fairly sharp waveform, with little random noise.
This method should also allow to detect other GW signals different from CBCs, for exam-
ple CCSNs signals. However, regarding CBCs, no parameter estimation is implemented.
Currently only phenomenological parameters can be deduced. In other words, we have a
fantastic detection tool for GW signals, but being as uninformed as possible about pre-
emptive physics permits to easily detect new signals, but without inferring so much about
the source.

From the cWB pipeline we have as output a clear reconstructed waveform. Using
this waveform (its individual data points) as a training dataset for a PINN is the leading
idea of this work. As we saw in Sec. 2.3.3, a PINN is capable of reconstructing the basic
physical differential equations behind a data set, providing to it only a small initial ansatz.
The algorithm is also able to infer parameters of the system. This useful ability of a NN
to approximate every possible function is exactly what we are looking for.

This thesis is inspired by the work done by Keith et al. (2021a). As we will see in this
chapter, they were able to reconstruct the orbital dynamics of spiral Binary Black Holes
(BBHs) by creating a system of four UDEs to be learned from a PINN. Simulated wave-
form measurements were used as a training dataset, minimizing the difference between
the expected and measured waveforms. We will see that they were able to reconstruct
the orbits with a level of NR precision, starting only from a Newtonian ansatz for the
governing equations. The algorithm was implemented using the SciML workbench in the
Julia programming language and is available at Keith et al. (2021b).

This chapter is organized as follows. In Sec. 3.1 I will introduce the physics to be
studied and explain how the PINN algorithm is set up following it. In Sec. 3.2 I will show

43

3.1. BBH modelling Chapter 3. Learning BBH’s dynamics from GW data

their main results, extending them in Sec. 3.4. Studying and reproducing this algorithm
in detail, I came across some hidden parametric constraints that were greatly reducing
the space of the parameters considered: they were working with non-physical values. In
Sec. 3.5 I will report this problem, while in chap. 4, I will describe my work to overcome
it and handle a more phenomenological parameter space.

Through the chapter I will follow Keith et al. (2021a) geometric units where both the
speed of light c and the gravitational constant G are set to unity.

3.1 Binary black hole modelling

Keith et al. (2021a)’s main goal was to reconstruct the orbital dynamics of a coales-
cent BBH system from waveform measurements alone. The idea is to construct a set of
UDEs as a system of PDEs governing the dynamics of the spiral system, with PINNs as
approximators of part of the equations. These UDEs will be trained thanks to a mean
squared error between the measured and the theoretical waveform (calculated using the
UDE system).

In this section I will talk about the configuration of the problem. Briefly, we will see
the basic physical assumptions behind the algorithm in Sec. 3.1.1. In Sec. 3.1.2 I will
illustrate how a UDE system for orbital reconstruction is set up to be trained, while in
Sec. 3.1.3 we will see how GW physics is implemented to train the UDE system.

3.1.1 Effective one body problem

The problem of finding the trajectories r1(t) and r2(t) of two objects of mass m1

and m2 orbiting each other is the well known two-body problem, studied since the birth
of Newtonian physics. Kepler (1609)’s three laws are the well-known solutions to this
problem in the context of Newtonian gravity. With Einstein (1916)’s GR, this problem
has been revisited. As we saw in Sec. 1.1, solving Einstein’s equations (1.3) in their
complete form is an open task. Different ways of proceeding are used: NR techniques,
which use numerical relativistic methods to find a complete resolution for specific cases,
and PN approximations, which add relativistic terms such as v/c orders to the Keplerian
equations.

In Keith et al. (2021a)’s case, they considered slow-moving objects (v ≪ c). In this
case, the PN formalism provides the justification for treating the two-body problem as a
real one-body problem. The “effective” body rotates around the center of mass (CM) of
the system at a distance r and with a mass M , respectively given by

r = r1 − r2 , (3.1)

M = m1 +m2 , (3.2)

where ri and mi are the position and mass of the ith real object. This object is orbiting
around a fixed central object with spherical symmetry. From the definition for the position
of the CM,

rCM =
m1r1 +m2r2

M
, (3.3)

we can reconstruct the two-body motion from the effective one-body using the relations

r1 =
m2

M
r , (3.4)

r2 = −m1

M
r . (3.5)

44

Chapter 3. Learning BBH’s dynamics from GW data 3.1. BBH modelling

3.1.2 Universal differential equations for binary black holes’ dy-
namics

The idea is to build a UDE system of the type

u̇ = f(u,F (u;ξ)) , with u(0) = u0 , (3.6)

where u(t) is the solution vector and u0 the initial conditions. Looking at the generic
definition of UDE (2.38), F (u;ξ)) is the NN, which approximates a part or the whole
function f. Remember that a feed forward NN with 3 layers in total is given by (2.28). The
PN approximation, through the effective one-body problem, allows to develop a physical
framework to build a system like (3.6).

The authors assumed that the trajectory of the real object around the fixed central
one with spherical symmetry lies in the equatorial plane. Taking this plane perpendicular
to a z axis, one can define the orbital phase angle ϕ as the angle between r and a reference
axis x̂. Other parameters of the orbits are the anomaly χ, the semilatus rectus p and the
eccentricity e. In the Newtonian case the last two parameters are constant, while for the
PN approximation they depend on time for a reason that we will see shortly. Using the
following parametrization for the Euclidean norm of r, one gets

r(t) =
M p(t)

1 + e(t) cosχ(t)
. (3.7)

Expressing (3.4) and (3.5) as

r1(t) =
m2

M
r(t)

(

cosϕ(t), sinϕ(t), 0
)

(3.8)

r2(t) = −m1

M
r(t)

(

cosϕ(t), sinϕ(t), 0
)

, (3.9)

and substituting (3.7) into them, one has

r1(t) =
m2 p(t)

1 + e(t) cosχ(t)

(

cosϕ(t), sinϕ(t), 0
)

, (3.10)

r2(t) = − m1 p(t)

1 + e(t) cosχ(t)

(

cosϕ(t), sinϕ(t), 0
)

. (3.11)

In this way Keith et al. (2021a) have a parametrization of the two BH trajectories, whose
evolution is governed by u = (ϕ, χ, p, e). They proposed the following set of UDEs to
describe the dynamics:

ϕ̇ = (1+e cosχ)2

Mp3/2

(

1 + F1(cosχ, p, e)
)

χ̇ = (1+e cosχ)2

Mp3/2

(

1 + F2(cosχ, p, e)
)

ṗ = F3(p, e)

ė = F4(p, e)

with u(0) =

ϕ0

χ0

p0
e0

. (3.12)

Here we see a set of four UDEs of the form (3.6), where Fi are the NNs to train. Note
that these expressions are rotationally invariant because their right-hand side does not
depend on ϕ. Furthermore, we can see that, for F3 = F4 = 0, the orbital energy E and
the orbital angular momentum L are conserved. However, since GW has back-reaction
on the system, we need to consider always Ė, L̇ < 0.

These UDEs are not randomly set, but are thought to recover Newtonian orbits for
Fi = 0. With this structure, Keith et al. (2021a) can learn new interaction terms for

45

3.1. BBH modelling Chapter 3. Learning BBH’s dynamics from GW data

UDEs, working exactly as with the PN approach. The 0th order PN approximation and
quadrupole formula, that I will discuss in Sec. 3.1.3, should neglect a large amount of
the physics that the Fi NNs are arranged to recover. THe authors start from a simple
Newtonian ansatz and ask our PINNs to learn more complex physics from experimental
data.

3.1.3 Training the algorithm: gravitational wave implementa-
tion

These UDEs need to be trained to be useful. As we have seen in Sec. 1.4, the only
measurement we have available is the strain amplitude h(t) of a GW emitted by the
system. We can then set up a cost function C which depends on the difference between
this measured data and the data predicted by the UDE evolution.

More formally, we can take a different representation of the quadrupole mode (1.29) of
a GW. Very far from the source, the gravitational radiation field is an outgoing spherical
wavefront. We can therefore expand the far-field radiation thanks to the spherical tensor
harmonics Ylm with respective harmonic indices (l,m) as

h(t, θ, φ) = h+(t, θ, φ)− ih×(t, θ, φ) =
∞
∑

l=2

l
∑

m=−l

hlm(t)−2Ylm(θ, φ) , (3.13)

where (θ, φ) are the polar and azimuthal angles, h+ and h× are respectevely the real and
imaginary parts of the complex field h, and hlm(t) are harmonic coefficients. We can focus
our interest on the main quadrupole component (2, 2) of the waveform, defined as

h22(t) =
1

r

√

4π

5

(

M̈xx − 2iM̈xy − M̈yy

)

. (3.14)

This definition is similar to the expression (1.32). From the last formula, we can isolate
the polarization h+ as

h+(t) =
r

M
Re{h22(t)} . (3.15)

Using the Mij definition (1.30), in this case we have

Mxx(t) = m1x
2
1(t) +m2x

2
2(t) , (3.16)

Myy(t) = m1y
2
1(t) +m2y

2
2(t) , (3.17)

Mxy(t) = m1x1(t)y1(t) +m2x2(t)y2(t) , (3.18)

where the index refers to the corresponding BH. By substituting (3.16 - 3.18) in (3.14)
and then the latter in (3.15), we can see that the time evolution of h+ depends on the
positions of BHs r1 = (x1, y1, z1) and r2 = (x2, y2, z2) as defined in (3.8) and (3.9). Thus,
h+ depends on time through the evolution of u = (ϕ, χ, p, e) and so on the PINN Fi

within it.
This is the basis for constructing the cost function C . Having our waveform data

measurements as ordered pairs (tk, h+,k), Keith et al. (2021a) defined C as

C (u) = ⟨J(u, ·)⟩ := 1

T

∫ T

0

J(u, t) dt , (3.19)

with
J(u, t) =

∑

k

(h+,k − h+(t))
2 δ(t− tk) , (3.20)

46

Chapter 3. Learning BBH’s dynamics from GW data 3.2. Algorithm implementation

Figure 3.1: Keith et al. (2021a)’s algorithm flowchart.

where tk ∈ [0, T] and ⟨·⟩ represent an average over time. Here h+(t) is the one defined in
(3.15) and can be modified to minimize C varying the parameters of Fi. What we want
to solve is the following optimization problem

ξ̂ = argmin
ξ

{C (u)} . (3.21)

The structure of the algorithm is summarized by the flowchart in Fig. 3.1. We start
with the UDE model (3.12) with random ξ parameters (fluctuating around ξ = 0 with a
Gaussian behaviour with variance 10−5). This beginning seems obvious, but once imple-
mented it results in an actual coding step where we are building the ODE. We solve this
initial system to obtain the solution u = (ϕ, χ, p, e). This step is performed thanks to a
Runge-Kutta method at order 4th, a classic ODE solver that we will describe in Sec. 4.4.
Once we have found this solution u, we can calculate our theoretical h+(t) thanks to
(3.10), (3.11) and (3.14 - 3.18). This h+(t) is then compared with the GW measurements
calculating the in-sampling error Ein = C from (3.19). If this Ein is low enough, we
can stop training and define the current set of ξ as the optimal value ξ̂. If instead the
error is still too big, we have to update ξ to better values to minimize Ein. For this ξ
optimization, Keith et al. (2021a) has chosen to use the BFGS algorithm (see Sec. 2.1.3).
Once the error is low enough, or after a certain number of iterations (of epochs), we can
stop training and find ξ̂ to get the best approximation for the whole UDE system (3.12)
behind the measured data.

3.2 Algorithm implementation

In their algorithm, Keith et al. (2021a) considered numerically generated waveforms
from an eccentric BBH system of equal masses. Noteworthy is the fact that here the
authors optimized also two parameters of the system, alongside the ξ ones. This will
surely be useful for the work of this thesis: here we can learn how to infer the parameters
of the source. The authors have set m1 = m2 = 0.5 (without units of measure), with the

47

3.2. Algorithm implementation Chapter 3. Learning BBH’s dynamics from GW data

possibility of changing the masses in the code, but with the constraint that the sum of
the two must be M = 1. As we will see, this severely limits the parameter space.

The algorithm at which I’m referring can be found as SXS2.jl in Keith et al. (2021b)

Initial conditions The only fixed initial condition is ϕ0 = 0. e0 and χ0 are treated as
parameters to be learned, exactly like ξ. The initial guesses are e0 = 0.085 and χ0 = π.
For what concerns p0, its initial condition is also free to vary, but assuming that r0 is
known, it depends on the values of e0 and χ0 thanks to

p0 =
r0
M

(1 + e0 cosχ0) , (3.22)

derived from Eq. (3.7).

Training dataset The training data set consists of 103 data points (tk, h+,k). The
waveform is collected from an NR database. The simulation was performed using the
Spectral Einstein Code (SpEC) developed by the Simulating eXtreme Spacetimes (SXS)
collaboration (the SXS collaboration, 2000) and made publicly available through the
Gravitational Waveform Database (GWD; Boyle et al. (2019), the SXS collaboration
(2019)). The collected waveform is imported from an input file that contains 20350
points with t ∈ [−107.8, 6951.7]s, separated by ∆t ∼ 0.1s. This is clipped to the range
t ∈ [5263.7, 6769.0]s, where the most recent data occurs just before the merge. The inter-
val is then set as t ∈ [0, T] and the data is resampled to have 103 data points, separated in
time by t = 1.50 s. We can see this collected and resampled data in panel (a) of Fig. 3.2.
The amplitude modulations are due to the fact that with a high eccentricity the objects
are faster when closer and slower when farther.

Neural network architecture Following (3.12), Keith et al. (2021a) have implemented
two NNs: one for F1 and F2 and one for F3 and F4. Each of them has a fully connected
hidden layer with 32 neurons and two outputs. Following (2.28), the authors set each
activation function σj as tanh in the middle layers, while in the input layer they insert 9
different neurons, each with its own activation function.

Regularization strategies To regularize the algorithm, Keith et al. (2021a) changed
the cost function (3.19) to

C (u) = ⟨J(u, ·)⟩+ P1(u) + P1(u) + R(ξ) , (3.23)

where

P1(u) = γ1
〈

(ṗ)2+
〉

+ γ2
〈

(p̈)2+
〉

, (3.24)

P2(u) = γ3
〈

(−e)2+
〉

+ γ4
〈

(e− e0)
2
+1{p>6+2e0}

〉

, (3.25)

R(ξ) = γ5||ξ||2 (3.26)

and
(f(t))+ = max{0, f(t)} , (3.27)

while 1Ω denotes the indicator function on the set Ω ⊂ [0, T]. All these penalty and
regularization terms to help the algorithm to avoid non-physical local minima. In order,
(3.24) establishes a p(t) (and so a r(t)) converging to 0 at an increasing rate over time,
(3.25) encourages the selection of e(t) > 0 and the last term constrains the stability of
the system by imposing p ≥ 6 + 2e, which must be true for constrained orbits. Since the

48

Chapter 3. Learning BBH’s dynamics from GW data 3.3. Results

(a) (b)

(c)

Figure 3.2: SXS2.jl specifics. (a) Starting waveform: “h+ data” is the training dataset. Results
after the training: (b) relative disagreement between the NR waveform and the learned one (Keith
et al., 2021a) and (c) results for orbits and waveform reconstruction. p and e as a function of
time are also plotted.

real minimum of C has all these conditions satisfied, they act as a guardrail throughout
the optimization process.

On the other hand, imposing t = 0 at the beginning of the time series data and
t = T at the end of it, the training is done on a sequence of increasing time intervals
[0, T0] ⊊ [0, T1] ⊊ · · · ⊊ [0, T]. The values of Ti start from the 30% of T and proceed with
10% steps up to 99% and 100%. The optimized parameters ξ which exit as output of the
training on the first interval are provided as an initial guess for parameters of subsequent
interval. The objective is to train the algorithm on a shorter time interval to more easily
reach the real minimum and avoid local minima.

3.3 Results

The final results are shown in panel (c) of Fig. 3.2. In the top plot we can see the
excellent agreement that the learned waveform has with the data. In the lower left panel

49

3.4. Noise implementation Chapter 3. Learning BBH’s dynamics from GW data

(a) (b)

Figure 3.3: (a) Keith et al. (2021a)’s and (b) my plot of the relative disagreement between the
NR waveform and the learned one as a function of the SNR.

we can see the orbit of one of the two objects. Thanks also to the p and e plots at the
bottom right of the panel, we can see that the algorithm reproduces both the spiral and
the plunge phase very well. p decreases faster and faster, while e decreases as predicted
by Peters (1964). In this case, no plunge phase is seen for e. The actual performance of
the algorithm can be seen in panel (b) of the same figure. Here the relative disagreement
between the NR orbit and the learned one

Relative disagreement =
||rNR − rGW ||

||rNR||
(3.28)

is plotted against time. However, this cannot be considered as a relative error because
the two are calculated in two different gauges.

3.4 Noise implementation

3.4.1 Gaussian noise

For the latter example, it was necessary to investigate how well the machine is able to
learn the parameters. Keith et al. (2021a) tested their parameter inference performance by
learning ξ, e0 and χ0 from the same waveform they analyzed in the SXS2.jl algorithm,
but adding several levels of zero-mean Gaussian white noise. Following the formalism
(1.62) we can express the output o(t) of an instrument as

o(t) = s(t) + n(t) , (3.29)

where s(t) is the signal (h+ in our case) and n(t) the noise. The values inferred from
the parameter output are then fed as initial guesses to the same algorithm which fits the
same waveform with the same noise level, but all at once. After performing the second fit,
they plotted the relative disagreement between the NR waveform data and the learned
waveform (|| · ||2 =

√

(·)2)

Relative disagreement =
1

2

||h+,NR − h+,NN ||22
||h+,NR||22

(3.30)

50

Chapter 3. Learning BBH’s dynamics from GW data 3.4. Noise implementation

Figure 3.4: Whistle glitch in time domain.

with respect to the SNR, as can be seen in panel (a) of Fig. 3.3. In this case the SNR is
in power units, defined as

SNR =
P(s(t))

P(n(t))
=

||s(t)||22
N

N

||n(t)||22
=

||s(t)||22
||n(t)||22

, (3.31)

where P(·) is the power of the argument and N is the number of data points. In panel (b)
there is the same plot I reproduced. In the Keith et al. (2021a) algorithm, the performance
is good up to SNR∼32. As the authors said, this is a critical result, because only one GW
event has such a high SNR in the history of observations. My plot represents only a quick
estimate of the relative disagreement and it is based only on one single run per point, not
considering the second run with learned guesses in input. For this reason, no error bars
was set on the points and my results for this plot are less informative than Keith et al.
(2021a) ones.

Before analyzing the main issues of this algorithm, I will introduce a part of my work,
which concerned the reproduction of the same study of this section, but with deterministic
transient noise (glitch).

3.4.2 Glitches

In modern interferometers, not only the Gaussian random noise is present. Unwanted
deterministic features called glitches appear, too. They can be brought about by various
known or unknown factors but mostly appear at a random time and are divided in families
showing similar patterns in the spectrograms as can be seen in Fig. 2.7. Their typical
signature in the spectrograms can be used to classify them, using both visual inspection
and CNNs (Razzano and Cuoco, 2018), thanks mostly to the latters’ excellent performance
with image recognition.

In general glitches cannot be modelled easily but attempts to reproduce them using
analytical formulas exists (Razzano and Cuoco, 2018) and have been used in the past to
train CNNs and test their ability to correctly classify the glitches. In Fig. 3.4 a whistle
glitch is plotted, and it is given by the following formula:

h(t) = h0 sin (ϕSL) e
−(t−t0)2/2τ , (3.32)

51

3.4. Noise implementation Chapter 3. Learning BBH’s dynamics from GW data

(a) (b)

Figure 3.5: (a) SXS2.jl performance with respect to SNR at fixed time positions for the glitch.
(b) SXS2.jl performance with respect to the time position of the glitch at fixed widths Q.

where h0 is a normalization factor, t0 is the center time, τ is the variance and ϕSL is given
by

ϕSL = 2πf0(t− t0)
[

1− 3τ(t− t0)
2
]

. (3.33)

Basically, this is a sin function modulated with a Gaussian centered in t0 and with variance
τ . This τ depends on the characteristic frequency f0 thanks to the quality factor Q

τ =
Q√
2πf0

. (3.34)

In this particular plot I set h0 = 0.5, f0 = 103 Hz, t0 = 6300 s and Q = 3 · 105. These are
unrealistic values for this type of glitch (they usually last ∼ 0.5 s), but this choice was
made to cover one cycle of the considered waveform and due to the very low sample rate.

In this first work, I superimposed a series of nine whistle glitches onto the SXS2.jl
waveform. This set is created with three different values for both t0 and Q. The choice of
t0 was guided by the influence this glitch would have on the waveform signal: t0 = 5400
s for a glitch occurring at the initial spiral phase, t0 = 6300 s to approach the glitch
coalescence and t = 6700 s to place the glitch at a time comparable to the coalescence
one. For each of these t0 sources, I chose three values for Q to extend the glitch over
time: Q ∈ ({0.3, 1.65, 3} ·105). I created set of nine “waveform + glitches” superimposing
each glitch on a SXS2.jl waveform. The set was provided as a training dataset for the
algorithm. Being the waveform reconstruction the goal of the algorithm, glitches are
treated as noise and should not appear in the results.

Exactly like in Sec. 3.4.1, I calculated the relative disagreement between the input
NR waveform and the learned one. In panel (b) of Fig. 3.5, we can see the same type
of plot where the relative disagreement is plotted against the SNR, considering the three
different positions in time. Despite the lower SNR, this graph appears to agree with the
one of Gaussian noise. In panel (c) of the same figure the relative disagreement is plotted
against the temporal position of the glitch, with different values of Q. Form the graph
we can infer that the proximity of the glitch to the coalescence brings more uncertainty.
The loudest glitch case is not relevant because a local minimum was reached in the case
t0 = 5400. I must say that, in this algorithm, the presence of a strong glitch sometimes
leads to the divergence of the system, with orbits no longer bound.

52

Chapter 3. Learning BBH’s dynamics from GW data 3.5. Discussion

3.5 Discussion

The work by Keith et al. (2021a) surely brings a wonderful idea to have a relatively fast
parameter inference from waveform measurements. The algorithm takes the waveform as a
training dataset and, trying to minimize a cost function, learns the physical laws behind
the data thanks to a PINN. In particular, the last example shows how to deduce the
parameters of the emitting system, optimizing them together with the parameter of NN.
The idea is certainly exciting and the algorithm seems stable enough, but hides some
issues.

As we saw in Sec. 1.5.2 and in particular in the spectrogram of Fig. 1.10, a typical
waveform measured by a ground-based interferometer remains in the detector for a few
seconds if the signal comes from a BNS, or even for a few milliseconds if it comes from a
BBH. The waveform considered by Keith et al. (2021a) instead extends over more than
103 s, with a sampling frequency of ∼ 1 Hz 1. Surely this choice was done to avoid a huge
computational time, but this led me to ask how this waveform was generated.

The key ingredient to this issue is that the only parameter governing the two mass
values is the mass ratio q = m1/m2. The two masses are defined as m1 = q/(1 + q)
and m2 = 1/(1 + q). No other information is provided. However, having a mass ratio
close to infinity in the first example and unitary in the last two, the values of the masses
are constrained to vary in the interval mi ∈ [0, 1]. Also, the code returns an error if
M = m1 + m2 ̸= 1. Furthermore, no units of measure for masses have been mentioned
during this discussion. This constraint on the parameter space is very critical because,
even considering two NS, the sum of the two masses should exceed 1 M⊙.

However, as I said, the idea is certainly brilliant and in the next chapter I will start
by implementing the same algorithm on the phenomenological formula (1.48) for the
evolution in frequency of GWs.

1The sampling frequency of interferometers can be set to 4 kHz , but the default is 16 kHz.

53

Chapter 4

Learning the evolution of
gravitational-wave frequency

The idea of my work, as I said in previous chapters, is to face the problem of infer-
ence of parameters about GW sources. In particular, pipelines currently operating on
modern ground-based detectors needs to do this in a fast way, in order to trigger alerts
for electromagnetic counterparts’ searches. Some of them have already implemented a
rough parameter estimation (matched filtering). From the waveform signal of a CBC,
we can infer fifteen parameters of the source, in case of a BBH: the two masses, six spin
components, an angle describing the polarization of the wave, the inclination θ of the
binary with respect to the line of sight, two values for the sky position (right ascension
and declination), the luminosity distance D of the source, the reference time and the
phase of the orbit at reference time. After the detection, all these parameters can be
precisely inferred with offline Bayesian techniques described in Sec. 1.5.4, but with an
extremely long computational time (approximately six months) and a a precise model
of the expected waveform. What lacks between detection and parameter estimation is a
relatively fast parameter inference which can enter in the transient burst searches, using
as less physical prior information as possible. How can we implement a fast parameter
inference on this latter technique?

We can face this problem learning and solving physical laws behind the waveform data
as PDEs, thanks to PINNs. The idea of Keith et al. (2021a) that we want to exploit is to
optimize parameters of a user-defined UDE in order to minimize a PINNs’ cost function,
possibly learning new physics in the meantime. As training data, the reconstructed cWB
waveform can be used. This approach is really promising because we can both infer
parameters of the source and learn unknown terms of physical laws, starting only from a
simple physical ansatz.

Anyway, the work of spanning in a fast way all fifteen parameters is extremely long.
This is why this thesis is only the starting point of it, putting the base for future works.
I will concentrate my study on the phenomenological differential equation (1.48) for the
frequency evolution of a chirping GW signal:

df

dt
=

96

5
π8/3

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

f 11/3 , (4.1)

where M is the chirping mass defined in (1.37). We start from a simple, known differential
equation and infer the chirp mass M , the phase of the signal ϕ, which enters in the
amplitude formula (1.51), and/or the 11/3 exponent for the frequency term. In this way
we can analyse the behavior of the algorithm, handling a small 3D parameter space within
a known formula. The goal is to put the base in order to extend the dimensionality of the

55

4.1. GW frequency evolution Chapter 4. Learning the evolution of GW frequency

space in a future work. In particular, learning the 11/3 exponent is surely a fundamental
first step in order to extend the learning to higher PN orders.

After a short recap on the basic physics in sec. 4.1, in this chapter I will present
my work. I implemented two different algorithms, in order to analyse which approach
performs better. Firstly, I tried with a SciML implementation (sec. 4.3), learning a
user-built UDE. Secondly, I concentrated my study on a PyThorch implementation of
Hybrid PINNs (HPINNs; sec. 4.4). The idea is to test both these ways of proceeding to
understand how to continue in a future work, stating good results if they are present and
discussing issues to overcome if no convergence is reached (sec. 4.4.4).

4.1 Gravitational wave frequency evolution

In sec. 1.3, we derived main phenomenological equations that describes the evolution
of a signal coming from a CBC. I summarize here the main expressions. Because of the
back reaction on the compact binary system, the GW frequency evolution is given by
(4.1). In the notation I am using the GW frequency is given by f = ω/π, where ω is
the orbital angular velocity of the binary and f is twice the orbital frequency. The (4.1)
expression has the known solution (1.49):

f(t) =

[

f−8/3
c − 256

5
π8/3

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(t− tc)

]−3/8

, (4.2)

where tc is the time of coalescence and fc is the maximum frequency (1.50), given by

fc = f(tc) =
1

2π
√
2

(

GM⊙

c3

)−1(
M

M⊙

)−1

, (4.3)

where M = m1+m2 is the sum of the two masses. Furthermore, we were able to describe
the GW amplitude hij as a function of the frequency f as (1.51):

hij(ct, r) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3

cos (2πft+ ϕ) sin (2πft+ ϕ) 0
sin (2πft+ ϕ) − cos (2πft+ ϕ) 0

0 0 0

 ,

(4.4)
where D is the luminosity distance of the system and ϕ is the waveform phase. This latter
depends on the retarded time of production and in particular on the phase of the orbit.
Considering the two GW’s polarizations, one gets

h+ = h11(ct, r) = −h22(ct, r) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3 cos (2πft+ ϕ) , (4.5)

h× = h12(ct, r) = h21(ct, r) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3 sin (2πft+ ϕ) . (4.6)

We have seen in sec. 1.4 that the interferometer’s output is a linear combination of these
h+ and h×, given by

h(t) = F+(θ, ϕ)h+ + F×(θ, ϕ)h× . (4.7)

Simplifying this approach, we can consider the single interferometer output as

h(t) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3
[

cos (2πft+ ϕ) + sin (2πft+ ϕ)
]

. (4.8)

56

Chapter 4. Learning the evolution of GW frequency 4.2. Runge-Kutta at 4th order

Equally we can write

h(t) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3 cos (2πft+ ϕ) , (4.9)

by shifting ϕ by a reasonable amount. With the algorithms discussed in th next sections
we will exploit (4.1) and (4.9) to infer the chirp mass M , the phase ϕ and the 11/3
exponent. This simple approach is the fundamental first step to test algorithms that in
future aims to infer a much larger parameter space.

Noteworthy is that these expressions (4.1) and (4.9) are only the leading Newtonian
terms of a full GR solution. As we have seen in sec. 1.1.1, a PN expansion is possible
with v/c terms. In particular, Blanchet et al. (1996) expanded the f(t) solution (4.2) as

f(t) = − c3

8πGM

[

Θ−3/8 +

(

743

2688
+

11

32
η

)

Θ−5/8 − 3π

10
Θ−3/4+

+

(

1855099

14450688
+

56975

258048
η +

1855

2048
η2
)

Θ1/8

]

,

(4.10)

where here η = m1m2/M
2 and the expansion term is the dimensionless time variable

Θ =
c3η

5GM
(t− tc) . (4.11)

η and M are bound to the chirp mass as M = η3/5M . In (4.10) we can see that the
exponent of Θ changes between terms. Reconstructing the 11/3 exponent in (4.2) is a
first tentative to learn new expansion terms.

4.2 Runge-Kutta at 4th order

Before introducing the two implementations of my algorithm, I anticipate here an
integration technique to solve differential equations. This will be useful in next sections.

The task of numerically solve a differential equation is a problem that arises since
the first differential calculus era (Leibniz (1684); Newton (1745)). Through the centuries
different solutions was developed (see Davis et al. (2014) for a review), but the most
general and accurate one was given by Runge and König (1924). This is an iterative
method where every iteration permits to calculate the subsequent value of the solution
within a time discretization.

Suppose that we want to solve the following first-order differential equation

dy

dt
= f(y, t). (4.12)

To integrate this expression, we can numerically use the following Taylor expansion

yt+h = yt + h
dy

dt
+ O(h2) = yt + hf(yt, t) + O(h2) , (4.13)

where here h is the time increment. Taking only the first order in h we have the well
known Euler method. This means that, if we know the value of y at the time t and we
define the desired time step h, we can calculate the y value at time t+ h. Following this
path for the whole time range, we have a numerical solution for (4.12). As we can see,
the error scales as h2.

57

4.3. SciML implementation Chapter 4. Learning the evolution of GW frequency

If we instead Taylor expand the solution around t+ h/2, we have

yt+h = yt+h/2 +
h

2

(

dy

dt

)

t+h/2

+
h2

8

(

d2y

dt2

)

t+h/2

+ O(h3) , (4.14)

yt = yt+h/2 −
h

2

(

dy

dt

)

t+h/2

+
h2

8

(

d2y

dt2

)

t+h/2

+ O(h3) . (4.15)

Subtracting the first equation from the second one, we find

yt+h = yt + h

[

dy

dt

]

t+h/2

= yt + hf

(

yt+h/2, t+
h

2

)

+ O(h3) . (4.16)

Here the error scales as h3, having cancelled out second-order terms, but we need to
calculate y at t+ h/2. This must be done via the Euler’s method

yt+h/2 = y(t) +
h

2
f(y(t), t). (4.17)

Cancelling out with the same method the h3 and h4 terms, we have the Runge-Kutta
method at 4th order (RK4), which is given by

k1 =
h

2
f(yt, t) , (4.18)

k2 =
h

2

(

yt + k1, t+
h

2

)

, (4.19)

k3 = h

(

yt + k2, t+
h

2

)

, (4.20)

k4 = h(yt + k3, t+ h) , (4.21)

yt+h = yt +
1

6
(2k1 + 4k2 + 2k3 + k4) . (4.22)

Simply knowing the y value at time t and setting the time step h, we can calculate the
value of y at time t+ h with an error which scales as h5.

4.3 SciML implementation

This first algorithm is based on the same concept of Keith et al. (2021a), with the
aim of approximating a PDE with the use of the UDE formalism. In particular, I used
the SciML environment written in Julia programming language. I decided to construct
the following UDE, inspired by (4.1),

df

dt
=

96

5
π8/3

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

F (f,ξ) , (4.23)

where F is a feed-forward PINN defined as in (2.28), with ξ parameters. The goal is to
learn the f 11/3 term thanks to the UA behavior of the NN and to treat the chirp mass
M as a parameter to infer. The training dataset, which will be described later in detail,
is given by 2048 data points {(tk, hk)}nk=1, where tk is the independent time variable, hk

are amplitude strain values for (4.9) and n = 2048.

58

Chapter 4. Learning the evolution of GW frequency 4.3. SciML implementation

Figure 4.1: SciML algorithm’s training loop flowchart.

4.3.1 Algorithm implementation

The basic structure of the algorithm can be seen in Fig. 4.1. Once the UDE model
(4.23) is set, the ξ and M parameters set to guess values and are slightly randomized
thanks to a Gaussian random noise generator with variance σ2 = 10−2. This differential
equation is solved thanks to a RK4 method, producing an f array evolving with time.
Substituting this in (4.9), we can have predicted values for h. To compare this predicted
h(t) with the training data hk, the following cost function was built:

C =
1

n

n
∑

k=1

||hk − h(tk)||2. (4.24)

Notice that the RK4 step can have a precise arbitrary time-step (smaller than tk+1 − tk),
but to have a useful comparison C , h(t) must be sampled precisely at tk. If the calculation
of this cost function results in a sufficiently low value, different guesses for ξ and M are
fixed and a reconstruction for (4.1) via (4.23) is performed. If instead the value for C

is too high, ξ and M are optimized with BFGS algorithm to modify the UDE guess in
(4.23) and to have better values for the predicted h(t). Notice that M enters in both the
UDE (4.23) and (4.9): the optimization algorithm can act both on the approximation of
the PDE and on the amplitude formula. This will effect enormously the results, as we will
see. The training loop continues until convergence (or a maximum number of epochs) is
reached.

Initial conditions The first thing to say is that, differently from Keith et al. (2021a),
I’ve chosen to use the International System’s units of measure, with the Newton’s universal
gravitational constant G = 6.67 · 10−11 N m2 kg−1, the light velocity c = 3 · 108 m s−1

and the solar mass M⊙ = 1.99 · 1030 kg. Furthermore, I took the luminosity distance for
the object as D = 3.09 · 1022 m (= 1 Mpc), a reasonable value considering CBC events
already detected (Abbott et al., 2021b). Because of this, a factor of 1019 is multiplied
with (4.9) to avoid purely numerical errors. This is not fully arbitrary because usually

59

4.3. SciML implementation Chapter 4. Learning the evolution of GW frequency

Figure 4.2: Training dataset for the SciML algorithm.

the whitening phase, to have a noise not dependent from the frequency, passes through
a ratio between the detector’s output and its amplitude spectral density, which is in the
order of ∼ 10−19.

Since the RK4 solver for the f differential equation (4.1) needs the initial condition
for the solution, the initial (exact) value for f is given to the algorithm, calculated thanks
to (4.2), and remains fixed. If in future this algorithm is taken into account this constrain
is one of the first things to remove, learning the initial value for f , too. Here we know
the exact solution, but to make this algorithm more general, one must learn the initial
condition. This will be discussed in the PyTorch algorithm and in sec. 4.4.4.

Training dataset The training dataset, which can be seen in Fig. 4.2 as “h data”, is
generated starting from the set of 2048 time points tk ∈ [tc − 0.5 s, tc] where tc is the
time of coalescence, that I set to 0 s. This number of points is considered because the
actual interferometer sampling rate can be set at 4096 Hz. Thanks to (4.2) and to (4.9),
I did generate the training dataset as {(tk, hk)}nk=1. For this particular case, I considered
a system of equal masses m1 = m2 = m = 30 M⊙, with a target chirp mass MT given by

MT =
m

21/5
≈ 26.11 M⊙ , (4.25)

and ϕ = 0.

Neural network architecture The neural network is defined as a feed-forward NN
with two fully connected hidden layers, each with 32 neurons. All hidden layers’ activation
functions are set as tanh. The first layer is instead constituted by 5 neurons with fα

activation function, with α = 1, . . . , 5. The output layer is finally given by a single
neuron with a linear activation function.

Regularization strategies In this case no regularization term on C was added, but I
took advantage of the already coded Keith et al. (2021a) method of dividing the dataset
in subsequent increasing subsets. Starting the training only on a small subset, we can
avoid local minima. Indeed, since the function to fit is sinusoidal, working with a small
amount of cycles helps one can avoid frequencies that causes a 2π extra phase inside the
training waveform time range.

60

Chapter 4. Learning the evolution of GW frequency 4.3. SciML implementation

(a) (b)

Figure 4.3: SciML algorithm divergence: (a) amplitude and frequency behaviour at the last
useful epoch and (b) chirp mass divergence.

4.3.2 Results

Despite the solid computational background, the results for this SciML algorithm
were pretty bad. As we can see in panel (b) of Fig. 4.3, the chirp mass value (even
with a right initial guess) keeps increasing its difference with the real value, until a local
minimum (the plateau). This is reached with only the 30% of the training data, but
when the 40% is then considered, a divergence to negative values of M is reached and
the algorithm crashes. In panel (a) we can see the situation for the strain amplitude and
for the frequency solution after the last useful epoch: the NN generated waveform is flat,
as well as the frequency solution for the learned UDE.

The main point of this divergence is that the M parameter is present both in the
UDE (4.23) and in the the amplitude formula (4.9). Since ξ parameters are hidden inside
F , they are way stiffer than M . For this reason, the algorithm prefers to reach a flat
amplitude than to learn the real UDE and modify the frequency derivative.

Different attempts were done to solve this issue. A smaller learning rate was tested,
but it gave the same results, only with the need of more epochs because of the smaller
size of the steps. An ADAM optimizer was implemented instead of the default BFGS
because of the different stiffness between parameters, but again no convergence was seen.

4.3.3 Discussion

In a future work, if one wants to proceed with this idea, this issue will be the first
thing to overcome. An important role is played by initial conditions and maybe learning
also the initial state of the frequency (possibly dependent on M itself) could help a lot.
Another useful thing one could try is to add regularization terms to the cost function,
as Keith et al. (2021a) did for their algorithms. Another tentative that one could do is
to create a more complex architecture for the NN to further increase the approximating
capability of this UA. Anyway, despite we will see that a local minima issue emerges
anytime when fitting a sinusoid, the problem behind this algorithm divergence seems to
be more profound. Furthermore, the fact that the algorithm is written using the Julia

programming language and the SciML environment doesn’t help at all. Both of them
are almost new with respect to others, causing a lack of literature and online forums.
For this reason, in the next algorithm I implemented the PINN approach in a PyTorch

environment, following the work done by Nascimento et al. (2020).

61

4.4. PyTorch implementation Chapter 4. Learning the evolution of GW frequency

Figure 4.4: PyTorch algorithm’s training loop flowchart.

As a first conclusion, the approach of this SciML algorithm, once this issue will be
overcome, will be really useful because it permits to both reconstruct differential equations
with new terms and infer its parameters. Bound with data analysis pipelines that consider
as less physical information a priori as possible, this algorithm could provide a tool to
have parameter inference. Unfortunately, right now it dramatically diverges. Anyway,
this will surely be a future exciting challenge to investigate.

4.4 PyTorch implementation

4.4.1 Hybrid physics-informed neural networks to solve differ-
ential equations

In this algorithm I changed a bit the approach to an Hybrid PINN (HPINN) one.
This framework was developed by Nascimento and Viana (2020) and was originally im-
plemented in PyTorch for improving the accuracy of cumulative damage models used to
predict wind turbine main bearing fatigue. The idea of HPINNs is to implement well de-
veloped numerical solvers inside RNNs, physics-informing it. Indeed, if a PDE is known,
no approximation on the equation itself is needed and so one can concentrate in solving
it. This HPINN environment was built for this purpose. The authors used a Recurrent
Neural Network with a Runge-Kutta at 4th order (RK4) method implemented inside the
neuron cell. With this, they solved a partial differential equation of the second order.
Training this RNN means to optimize the NN parameters in order to better fit solution
data to the PDE. Furthermore, Nascimento et al. (2020) have shown that the parameters
that appears in the PDE can be optimized as NN parameters and so a parameter infer-
ence is possible. The authors provided a tutorial that an interesting reader could find
very useful to produce similar algorithms.

62

Chapter 4. Learning the evolution of GW frequency 4.4. PyTorch implementation

Figure 4.5: RK4 cell for the RNN. (Nascimento et al., 2020)

Recurrent Neural Networks As we have seen in sec. 2.2.3, RNN are a way to extend
usual feed-forward neural network in order to handle time evolving inputs. Back-links and
loops are implemented between different layers. As an extreme case, a single neuron can
be used in a loop, as we have seen in the Fig. 2.5, where A is the single cell. More formally,
Nascimento et al. (2020) define a RNN as an algorithm which applies a transformation f
to a state y such that

yt = f(yt−1,xt) , (4.26)

where t ∈ [0, T] is the time discretization, y ∈ R
ny are the states representing the quan-

tities of interest and x ∈ R
ny are input variables. As we can see, the output state yt will

be the input state for the next cell loop.

Hybrid physics-informed neural networks Nascimento et al. (2020) proposed to
implement a RK4 inside a RNN. The structure of the cell can be seen in Fig. 4.5. Con-
sidering for example the first order differential equation

dy

dt
= f(y,ξ), (4.27)

y is the differential equation solution and ξ are input variables (in Fig. 4.5 xt = ξt).
Every cycle the cell accepts as input the y and ξ values at time t and returns the y value
at time t+1. What the algorithm needs to solve (4.27) is the initial condition y0 and the
different values of xt. After that, the loop starts and the differential equation is solved. At
the end of the procedure, the NN produces a set of yt values that represents the solution
of (4.27) as a function of time.

How can we train this RNN? As usual, we need to define a cost function C to minimize.
Having a (tk,yk) training dataset, C will compare the predicted y results with the data
yk. Optimizing the RNN parameters, we can act on the predicted solution y to minimize
C . Noteworthy here is that the only way to optimize different parameters is to make
them part of the differential equation to solve. This will be fundamental for our purposes.

4.4.2 Algorithm implementation

The second algorithm is based on (4.1) and (4.9). We can slightly change the f
derivative (4.1) as

df

dt
=

96

5
π8/3

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

1φfα , (4.28)

63

4.4. PyTorch implementation Chapter 4. Learning the evolution of GW frequency

Figure 4.6: PyTorch algorithm’s training dataset.

where M is the chirp mass, ϕ is the phase of the GW signal1 and α is the f exponent. The
goal of this algorithm is to infer M , ϕ and α parameters thanks to the HPINN environment
described in sec. 4.4.1. In this case, we have a known differential equation that we want
to solve. What we will going to learn are parameter values of the differential equation
itself, no new terms. Anyway, as we have seen in sec. 4.1, the PN approximation adds
new terms with a different exponent for the f time dependence. Anyway, the learning for
the exponent α is the first step to extend the approach to new terms. Indeed, I remember
that the main goal of my thesis is to put the base study for a future much deeper work,
with a bigger parameter space to infer.

The structure of the learning process can be seen in Fig. 4.4. First of all, (4.28)
is defined with random guesses for the parameters. The second passage is to solve the
differential equation thanks to the RNN with the RK4 cell implemented. Here in particular
the initial condition for f is needed to start the integration. This is a problem because the
initial frequency must be obtained knowing the solution (4.2) to the already optimized
differential equation. If we suppose to don’t know the analytical solution, this situation
leads to an information that we can’t give to the algorithm. For this reason, I changed
the direction of the RK4 integration, setting the time increment h < 0 in (4.18 - 4.22).
In my algorithm the integration is done supposing to know the maximum frequency fc
and evolving the RK4 cell backward in time. This is helpful for two reasons. Firstly, the
information on the initial value of f is not analytically calculated, but with real data it
can be measured. Secondly, since the derivative explodes at t = 0−, starting from the end
permits to avoid numerical divergences when integrating. Once the f solution is obtained,
the h(t) GW amplitude is calculated thanks to (4.9):

h(t) =
4c

D

(

GM⊙

c3

)5/3(
M

M⊙

)5/3

(πf)2/3 cos (2πft+ ϕ) , (4.29)

where we see how the ϕ parameter influences the physics. The training dataset will be
again a set of 2048 points (tk, hk), with t ∈ [tc − 0.5s, tc], where tc is the coalescence time.
It can be seen in Fig. 4.6. In particular, the luminosity distance D was set at 1 Mpc
= 3, 086 · 1022 m. To avoid purely numerical error, in the generation of h(t) I multiplied
the (4.29) for a 1019 factor. Thanks to the predicted h(t) and to the hk measurements,

1It is the same φ which appears in (4.9).

64

Chapter 4. Learning the evolution of GW frequency 4.4. PyTorch implementation

M ϕ α

Target value 26.117 M⊙ 1 rad 11/3

Table 4.1: Target values behind the dataset.

we can calculate the loss function as a mean squared error:

C =
1

n

∑

k

(hk − h(tk))
2 , (4.30)

where n is the total number of training data points. If the loss function value is sufficiently
low or the number of iterations is bigger than the desired one, the algorithm stops and
parameters are inferred. On the other hand, if the loss is too high and the number of
iterations is lower than the desired value, parameters are updated thanks to the RMSprop
algorithm dependent on the squared root of the gradient, more useful when RNNs are
trained (the PyTorch collaborators, 2023). For this, I’ve chosen a learning rate ηt = 10−2

for the reasons that I will discuss later. The (4.28) with updated parameters is solved
and another solution to f is found. When the loss value is sufficiently low or the number
of iterations is bigger than the desired one, the algorithm stops and the parameters are
inferred.

Training dataset As we can see in Fig. 4.6, the training dataset is given by 2048 (tk, hk)
data points, spanning 0.5 s before the coalescence of the system. They are generated
starting from tk points sampled at 4096 Hz. Thanks to (4.2) and (4.29), hk values was
found. This mock signal was generated assuming equal masses m1 = m2 = m = 30 M⊙,
and so M = m/21/5 ≈ 26.117 M⊙. Furthermore, the target values for the rest of the
parameters are ϕ = 1 rad and obviously α = 11/3, as we can see in Tab. 4.1.

Initial conditions For what concerns initial conditions, the only needed quantity is the
maximum frequency fc. This is necessary for the inverse RK4, as I previously described.
This is a not trivial information, since fc depends on the sum of the masses thanks to (4.3).
Anyway, this quantity can be easily measured for present CBC signals, which lasts in the
interferometers for fractions of seconds. This will not be the case for signals detected by
LISA, but for the purpose of this thesis, we can stay in a framework where fc is known.

Parameter guesses 124 runs in total were performed considering both different ini-
tial conditions and constrained parameters. For M were chosen the ensemble MG =
{20, 25, 26.11, 30} M⊙, for ϕ I chose to use ϕG = {0.1, 0.9, 1., π} rad, while for α, αG =
{3, 10/3, 11/3, 4} values was used. This work has the goal to understand how the al-
gorithm performs with different conditions, so initially 4 runs for every parameter were
performed with only the corresponding parameter free. For example, considering the M

parameter, 4 runs were performed spanning MG and considering ϕ and α fixed to the tar-
get value. This was done for every subset, for a total of 12 runs with only one parameter
to learn. 16 runs was then processed with two free parameters, spanning their respective
guess space, with the third parameter fixed at target value (for a total of 48 runs with
two three parameters). Finally, 64 runs were done spanning the three ensembles, with all
the parameters free to vary.

65

4.4. PyTorch implementation Chapter 4. Learning the evolution of GW frequency

4.4.3 Results

Results are shown in Tab. A.1 in App. A. For every run, one can see the guess starting
value for parameters, separated by the type and the number of parameters to learn. At
each guess is associated its inferred value after 100 epochs. The final value for the loss
function is also shown. In the last column I noted the right guess as “RG”, the minimum
loss value for the set of runs as “mL” and the divergences as Div.

In Fig. A.1 are shown histograms of the inferred value separated in color by their
initial guess. Also, for the analysis of this results was really useful to produce surface
plots and a 3D plot for the loss value as a function of parameters (Fig. A.2 - Fig. A.5).
For every run, a plot for the loss and for the evolving parameter values along the epochs
were performed. Furthermore, plots showing the initial and the final solution for both the
frequency and the strain components were produced. From Fig. A.6 to Fig. A.9, we can
see the plots produce for the RG runs. Plots from Fig. A.10 to Fig. A.14 shows useful
runs for the properties of the algorithm that we will discuss later.

4.4.4 Discussion

From a first look at Tab. A.1, we can notice that the final values doesn’t deviate so
much from the starting guess. This is definitely more evident in the Fig. A.1. Considering
for example the chirp mass M in panel (a), we can see that the four peaks in the global
distributions are given exactly by the four different guesses. The same is seen for the
phase ϕ and for the exponent α. The reason for this behavior of the algorithm is in the
figures from given from Fig. A.2 to Fig. A.5. These maps represents the loss value as a
function of the different parameters. For producing these plots, I simply selected an array
of 103 values for each parameter and created a color map calculating the loss value for
every point. Taking M as reference, we can see in the top panel of Fig. A.2 that the loss
function is full of local minima. The same is true for α. For what concerns ϕ, as expected,
the loss behavior has a 2π periodicity. In the surface plots, we can see how these minima
depends on couples of parameters. Fig. A.2 and Fig. A.4 are pretty similar, since different
minima for the top panel are in reality long and thin oblique minima, shifted by the sin
behavior for the ϕ loss. Fig. A.3 is much more interesting because we can see a profound
minimum corresponding to the right guesses. This absolute minimum anyway behaves as
a thin hyperbola. Relative minima are hyperbolas as well, highlighting a dependence of
one parameter on the other. In Fig. A.5 is shown the loss value in the three parameters
volume. The absolute minimum is evident as a thin hyperbolic surface, which is wiggled
by the ϕ sinusoidal behavior. This abundance of local minima is what guides the algorithm
behavior, producing the little displacement between guesses and inferred values.

Different approaches are possible in a near future to jump out from a minimum. The
main reason why the algorithm stacks into local minima is the small value for the learning
rate ηt = 10−2. This is imposed because of the sensibility on the exponent α. Anyway,
one can fine-tune the learning rate in order to balance α sensitivity and local minima.
Another way can be a change in the optimization algorithm to a momentum-guided one.
For both M and α, the loss reaches high values at the edges of the considered domain.
Using a momentum-guided algorithm and starting from an high-edge (from high M and
low α), the algorithm can have some inertia to avoid local minima. The last improvement
that I propose is a change in the cost function that we want to minimize (in the loss value
calculation). Instead of a square in (4.30), one can use an higher even power, in order
to increase local minima’s loss values and decrease the absolute minimum’s one. This
absolute minimum will be more marked and a plateau will form at the bottom of the
positive curvature, but the algorithm will be facilitated to enter in it and don’t move.

66

Chapter 4. Learning the evolution of GW frequency 4.4. PyTorch implementation

Single parameter inference Runs from 1 to 12 in Tab. A.1 are performed learning
only one parameter, taking the other two fixed to target values.

If we start with an initial M guess close to the target value MT = 26.117 M⊙ or at
least within the global minimum, we can reach really low values for the loss function (in
the order of ∼ 10−4) in few epochs (see also panel (a) of Fig. A.6). If we instead start
with an M guess too distant, we fall into a local minimum.

For what concerns ϕ, Its learning it’s much more difficult because of the large minimum
that we can see in the right panel of Fig. A.2. Anyway, the gradient at the minimum is
so small that if we start with the right guess, no update is done on the parameter.

The parameter on which the algorithm is most sensible is surely α. Since it is the
exponent of the f term in the differential equation, from it depends the whole behavior
of the frequency solution. We can see this great dependence in Fig. A.10, where with a
difference in α of 0.5 between the first and the last epoch, the frequency solution changes
a lot. This sensitivity on α is also causing a divergence when starting with α = 4. We can
see this in Tab. A.1. This is because, for such values of α, the derivative nearly diverges
to high values, causing f = −∞ (numerically) in the differential equation integration.

Two parameters inference Runs from 13 to 60 in Tab. A.1 are performed learning
two parameters, taking the third one as fixed to target values.

As discussed above, in this case the local minima are much more complicated than
for the single parameter case. This is both better or worse. We have to deal with two
parameters and so the ηt = 10−2 condition must be applied not only to α. In different
runs shown in this thesis, in all of them the ηt parameter has always the same value for
coherence, but one can see that changing the learning rate to ηt = 10−1 inferred values
for M and ϕ are stabilized better and faster. Anyway, learning rate relatively this big is
impossible to handle because of the α sensibility and divergence. On the other hand the
α sensibility can help to jump out of local minima. In Fig. A.11 we can see on the left the
run 1 and on the right the run 30. The starting guess for M is the same, but in the 30th

run α is inferred, too. On the left a local minimum at M = 20.202 M⊙ is easily reached
and the algorithm stacks there. Introducing the α learning, this minimum is avoided.
Looking at the surface in Fig. A.3, we can see that the starting point (M , α) = (20
M⊙, 3.333) is a point in the bottom-left violet plateau. The sensitivity of the algorithm
on α is sufficient to permit to M to jump outside the local minimum. Despite the fact
that M is then blocked in another minimum, this principle can be studied in a near future
to have better performances.

Fig. A.12 shows the run 2 in panel (a) and the run 19 in panel (b). Again the M

guess value is the same, but in the panel (b) also ϕ is learnt. We can clearly see that, as
for the run with the single ϕ guess equal to ϕT = 1, the ϕ value doesn’t change and the
M learning proceeds in the same way.

Three parameters inference Runs from 61 to 124 in Tab. A.1 are performed learning
all three parameters.

In this case the loss variation with respect to the different parameters can be seen in
the plot in Fig. A.5. In this case we have a volume plot because of the three parameter
space. We can see the absolute minimum as the hyperbolic surface. It slightly wiggles
vertically with a 2π phase because of the sin behavior of the loss function with ϕ.

No new behavior of the algorithm was found in this case. Anyway, we can see again
the big dependence of the algorithm on α in Fig. A.13 and the stability of ϕ when the
guess is ϕ = ϕT = 1 in Fig. A.14.

67

Chapter 5

Conclusions

In my thesis work, I tested a PINN-based method on GW waveforms. The method
could be applied to GW waveforms obtained by burst pipelines like cWB.

To do so, I analyzed in detail the algorithm developed by Keith et al. (2021a). To test
its robustness, I introduced different levels of Gaussian noise and whistle glitches. The al-
gorithm is robust in this sense. However, analysing it in detail, I discovered several hidden
constraints which dramatically reduce the parameter space spanned by model parameters.
Moreover, their approach could not be implemented directly on the interferometers’ raw
data.

For this reason, I recoded the algorithm from scratch, changing the coding environ-
ment from Julia with the SciML library to the PyTorch package in Python. In my
newly developed code, the phenomenological Newtonian evolution for GW frequency is
implemented as (4.28). I selected three parameters of interest: the chirp mass M , the
GW signal phase ϕ and the frequency exponent α, for which the target value is 11/3 in
the Newtonian approximation. This is performed thanks to an Hybrid version of PINNs
(HPINNs), as developed by Nascimento et al. (2020). A Recurrent Neural Network (RNN)
with a 4th order Runge-Kutta method is used to solve the differential equation that de-
scribes the frequency evolution with time. The resulting frequency function is necessary
to calculate the predicted solution for the strain amplitude in the Newtonian approxi-
mation. The computed strain is compared with the training waveform dataset and the
cost function is evaluated thanks to (4.30). The inferred model parameters correspond to
those that minimize the cost function, and this is done by training the PINN.

Although this is only an initial test version, the algorithm has performed well in 1-, 2-
and 3-dimensional parameter spaces. M , ϕ and α could be inferred as in Tab. A.1 from
a training dataset of numerically generated data points.

The main issue of this algorithm lies in the modified cost function. Since we are trying
to learn the frequency evolution of an oscillating function, the cost function is character-
ized by many local minima. Each minimum corresponds to a dominant frequency which
closely matches the actual one. The local minima are reached when the amplitude func-
tion is nearly in-phase with the initial and the terminal part of the dataset, although not
with the central part of it. Here, I remark that a full 3D analysis must still be completed
with the aim of detecting near-minima which are actually saddle points. Looking ahead
to a burst implementation, in particular for the cWB pipeline, this study is a step forword
in the path to the introduction of parameter inference of CBC sources, and it is important
to remark that the cWB output representation may also help avoiding local minima. This
could be done by using the time-frequency map in addition to the reconstructed waveform
for the definition of the cost function.

69

Chapter 5. Conclusions

The analysis reported here was performed with a maximum of three parameters only.
Expanding the parameter space can bring new unexpected opportunities and difficulties.
Furthermore, the RMSprop use as optimization algorithm brings a stochasticity inside the
algorithm. This means that a statistical analysis must be performed in order to put error
bars on the inferred parameter values. Finally, I note that yet another difference with
the work of Keith et al. (2021a) is that the latter is written in the SciML environment,
built precisely with the purpose to handle UDE problems and which utilizes Automatic
Differentiation (AD), thanks to which derivatives are calculated in a more accurate and
fast way. To obtain the same level of performance, AD needs to be implemented on
PyTorch as well.

In summary, this work is only the first step of a more extensive effort to implement
a PINN-based parameter inference module following a burst analysis. Many different
aspects of the algorithm can be tuned to approach the accuracy levels of CBC pipelines.

70

Appendix A

Extended results

ID
M [M⊙] φ [rad] α []

Loss Note
Guess Inferred Guess Inferred Guess Inferred

1 20.000 20.202 - - - - 7.663
2 25.000 26.107 - - - - 0.001(608)
3 26.110 26.121 - - - - 0.000(451) RG - mL
4 30.000 30.728 - - - - 11.642

5 - - 0.100 0.010 - - 4.146
6 - - 0.900 0.934 - - 0.030
7 - - 1.000 1.000 - - 0.000(591) RG - mL
8 - - π 3.071 - - 16.233

9 - - - - 3.000 3.504 12.747
10 - - - - 3.333 3.508 12.320
11 - - - - 3.667 3.749 8.840 RG - mL
12 - - - - 4.000 NaN NaN Div

13 20.000 20.468 0.100 0.162 - - 8.375
14 20.000 20.298 0.900 0.689 - - 7.926
15 20.000 20.202 1.000 1.000 - - 7.663
16 20.000 19.515 π 3.102 - - 7.277
17 25.000 26.797 0.100 -0.103 - - 2.245
18 25.000 26.136 0.900 0.960 - - 0.007(323)
19 25.000 26.108 1.000 1.000 - - 0.001(608)
20 25.000 24.504 π 3.170 - - 5.634
21 26.110 26.883 0.100 0.088 - - 1.361
22 26.110 26.179 0.900 0.928 - - 0.012
23 26.110 26.121 1.000 1.000 - - 0.000(451) RG - mL
24 26.110 24.520 π 3.370 - - 6.638
25 30.000 31.385 0.100 -0.081 - - 10.694
26 30.000 30.922 0.900 0.662 - - 11.164
27 30.000 30.728 1.000 1.000 - - 11.642
28 30.000 29.563 π 2.970 - - 14.064

29 20.000 20.474 - - 3.000 3.514 9.650
30 20.000 20.427 - - 3.333 3.855 6.448
31 20.000 20.120 - - 3.667 3.872 6.316 mL
32 20.000 NaN - - 4.000 NaN NaN Div
33 25.000 25.510 - - 3.000 3.606 10.036
34 25.000 25.178 - - 3.333 3.612 9.819
35 25.000 25.051 - - 3.667 3.759 8.334
36 25.000 NaN - - 4.000 NaN NaN Div
37 26.110 26.601 - - 3.000 3.552 12.151
38 26.110 26.353 - - 3.333 3.602 10.623
39 26.110 26.152 - - 3.667 3.739 8.908 RG
40 26.110 NaN - - 4.000 NaN NaN Div

71

Appendix A. Extended results

41 30.000 30.426 - - 3.000 3.456 17.657
42 30.000 30.384 - - 3.333 3.667 11.590
43 30.000 30.024 - - 3.667 3.746 11.163
44 30.000 NaN - - 4.000 NaN NaN Div

45 - - 0.100 -0.274 3.000 3.570 12.619
46 - - 0.100 0.278 3.333 3.507 12.838
47 - - 0.100 -0.106 3.667 3.751 7.914 mL
48 - - 0.100 NaN 4.000 NaN NaN Div
49 - - 0.900 0.896 3.000 3.517 12.441
50 - - 0.900 0.758 3.333 3.597 10.752
51 - - 0.900 0.808 3.667 3.607 10.704
52 - - 0.900 NaN 4.000 NaN NaN Div
53 - - 1.000 1.000 3.000 3.504 12.747
54 - - 1.000 1.000 3.333 3.508 12.320
55 - - 1.000 1.000 3.667 3.749 8.840 RG
56 - - 1.000 NaN 4.000 NaN NaN Div
57 - - π 3.083 3.000 3.533 11.696
58 - - π 3.058 3.333 3.591 10.038
59 - - π 3.137 3.667 3.590 10.141
60 - - π NaN 4.000 NaN NaN Div

61 20.000 20.482 0.100 -0.165 3.000 3.503 9.648
62 20.000 20.281 0.100 -0.092 3.333 3.621 8.816
63 20.000 20.163 0.100 0.130 3.667 3.871 6.037 mL
64 20.000 NaN 0.100 NaN 4.000 NaN NaN Div
65 20.000 20.469 0.900 0.916 3.000 3.512 9.656
66 20.000 20.191 0.900 0.956 3.333 3.594 8.724
67 20.000 20.112 0.900 0.946 3.667 3.863 6.336
68 20.000 NaN 0.900 NaN 4.000 NaN NaN Div
69 20.000 20.474 1.000 1.000 3.000 3.514 9.650
70 20.000 20.427 1.000 1.000 3.333 3.855 6.448
71 20.000 20.120 1.000 1.000 3.667 3.872 6.316
72 20.000 NaN 1.000 NaN 4.000 NaN NaN Div
73 20.000 20.456 π 3.156 3.000 3.493 9.706
74 20.000 20.255 π 3.063 3.333 3.664 7.806
75 20.000 20.171 π 3.112 3.667 3.917 7.077
76 20.000 NaN π NaN 4.000 NaN NaN Div
77 25.000 25.620 0.100 0.162 3.000 3.621 11.439
78 25.000 25.149 0.100 -0.194 3.333 3.528 12.359
79 25.000 25.122 0.100 -0.114 3.667 3.779 7.481
80 25.000 NaN 0.100 NaN 4.000 NaN NaN Div
81 25.000 25.388 0.900 0.733 3.000 3.445 13.419
82 25.000 25.219 0.900 0.682 3.333 3.613 10.294
83 25.000 25.051 0.900 0.967 3.667 3.759 8.319
84 25.000 NaN 0.900 NaN 4.000 NaN NaN Div
85 25.000 25.510 1.000 1.000 3.000 3.606 10.036
86 25.000 25.178 1.000 1.000 3.333 3.612 9.819
87 25.000 25.051 1.000 1.000 3.667 3.759 8.334
88 25.000 NaN 1.000 NaN 4.000 NaN NaN Div
89 25.000 25.523 π 3.268 3.000 3.588 10.052
90 25.000 25.222 π 3.161 3.333 3.744 9.715
91 25.000 24.825 π 3.254 3.667 3.555 10.756
92 25.000 NaN π NaN 4.000 NaN NaN Div
93 26.110 26.562 0.100 -0.107 3.000 3.507 13.954
94 26.110 26.276 0.100 0.285 3.333 3.550 12.387
95 26.110 26.208 0.100 -0.111 3.667 3.749 7.962
96 26.110 NaN 0.100 NaN 4.000 NaN NaN Div
97 26.110 26.687 0.900 0.909 3.000 3.587 11.043
98 26.110 26.483 0.900 0.731 3.333 3.735 8.789
99 26.110 26.167 0.900 0.905 3.667 3.750 8.743

72

Appendix A. Extended results

100 26.110 NaN 0.900 NaN 4.000 NaN NaN Div
101 26.110 26.601 1.000 1.000 3.000 3.552 12.151
102 26.110 26.352 1.000 1.000 3.333 3.602 10.623
103 26.110 26.152 1.000 1.000 3.667 3.734 8.908 RG
104 26.110 NaN 1.000 NaN 4.000 NaN NaN Div
105 26.110 26.592 π 3.169 3.000 3.541 12.210
106 26.110 26.278 π 3.198 3.333 3.577 10.390
107 26.110 25.993 π 3.032 3.667 3.593 9.914
108 26.110 NaN π NaN 4.000 NaN NaN Div
109 30.000 30.496 0.100 0.067 3.000 3.498 16.836
110 30.000 30.180 0.100 0.134 3.333 3.683 10.026
111 30.000 30.076 0.100 0.120 3.667 3.755 10.441
112 30.000 NaN 0.100 NaN 4.000 NaN NaN Div
113 30.000 30.364 0.900 0.943 3.000 3.412 19.406
114 30.000 30.119 0.900 0.999 3.333 3.497 15.813
115 30.000 30.039 0.900 0.938 3.667 3.756 11.067
116 30.000 NaN 0.900 NaN 4.000 NaN NaN Div
117 30.000 30.426 1.000 1.000 3.000 3.456 17.657
118 30.000 30.384 1.000 1.000 3.333 3.667 11.589
119 30.000 30.024 1.000 1.000 3.667 3.746 11.163
120 30.000 NaN 1.000 NaN 4.000 NaN NaN Div
121 30.000 30.435 π 3.392 3.000 3.510 14.600
122 30.000 30.215 π 3.092 3.333 3.730 13.070
123 30.000 30.708 π 3.227 3.667 3.659 14.659
124 30.000 NaN π NaN 4.000 NaN NaN Div

Table A.1: Parameter inference results for all the runs (RG = Right Guess; mL = minimum
Loss; Div = Divergence).

73

Appendix A. Extended results

(a)

(b)

(c)

Figure A.1: Inference dependence on the initial guess.

74

Appendix A. Extended results

Figure A.2: Loss dependence on the chirp mass M , on the phase φ and on both of them. The
two side plot are the loss values taken when the other parameter is fixed at target value, i.e. are
the loss values at the yellow lines.

Figure A.3: Loss dependence on the chirp mass M , on the f exponent α and on both of them.
The two side plot are the loss values taken when the other parameter is fixed at target value, i.e.
are the loss values at the yellow lines.

75

Appendix A. Extended results

Figure A.4: Loss dependence on the f exponent M , on the phase φ and on both of them. The
two side plot are the loss values taken when the other parameter is fixed at target value, i.e. are
the loss values at the yellow lines.

Figure A.5: Loss volume dependent on the chirp mass M , on the phase φ and on the f exponent
α.

76

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.6: RGs. From the top to the bottom of every column: loss with respect to the epoch
number, parameter errors with respect to the epoch number, frequency learning, waveform learn-
ing. (a) and (c): RG run for M (ID 3); (b) and (d): RG run for φ (ID 7).

77

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.7: RGs.From the top to the bottom of every column: loss with respect to the epoch
number, parameter errors with respect to the epoch number, frequency learning, waveform learn-
ing. (a) and (c): RG run for f exponent (ID 11); (b) and (d): RG run for the couple M and
φ (ID 23).

78

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.8: RGs. From the top to the bottom of every column: loss with respect to the epoch
number, parameter errors with respect to the epoch number, frequency learning, waveform learn-
ing. (a) and (c): RG run for the couple M and f exponent (ID 39); (b) and (d): RG run for
the couple φ and f exponent (ID 55).

79

Appendix A. Extended results

(a)

(b)

Figure A.9: RGs. From the top to the bottom: loss with respect to the epoch number, parameter
errors with respect to the epoch number, frequency learning, waveform learning. (a) and (b):
RG run for the tern M , phi and f exponent (ID 103).

80

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.10: α dependence. From the top to the bottom of every column: loss with respect to the
epoch number, parameter errors with respect to the epoch number, frequency learning, waveform
learning. (a) and (c): ID 9; (b) and (d): ID 10.

81

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.11: α helps exit from the minima. From the top to the bottom of every column: loss
with respect to the epoch number, parameter errors with respect to the epoch number, frequency
learning, waveform learning. (a) and (c): ID 1; (b) and (d): ID 30.

82

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.12: φ independence when φ = φT = 1. From the top to the bottom of every column: loss
with respect to the epoch number, parameter errors with respect to the epoch number, frequency
learning, waveform learning. (a) and (c): ID 2; (b) and (d): ID 19.

83

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.13: α dependence. From the top to the bottom of every column: loss with respect to the
epoch number, parameter errors with respect to the epoch number, frequency learning, waveform
learning. (a) and (c): ID 61; (b) and (d): ID 101.

84

Appendix A. Extended results

(a) (b)

(c) (d)

Figure A.14: φ independence when φ = φT = 1. From the top to the bottom of every column: loss
with respect to the epoch number, parameter errors with respect to the epoch number, frequency
learning, waveform learning. (a) and (c): ID 34; (b) and (d): ID 86.

85

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and
Zheng, X. (2016). Tensorflow: A system for large-scale machine learning.

Abbott, B. et al. (2019). GWTC-1: A gravitational-wave transient catalog of compact
binary mergers observed by LIGO and virgo during the first and second observing runs.
Physical Review X, 9(3).

Abbott, B. P. et al. (2016a). Characterization of transient noise in advanced ligo relevant
to gravitational wave signal gw150914. Classical and Quantum Gravity, 33(13):134001.

Abbott, B. P. et al. (2016b). Observation of gravitational waves from a binary black hole
merger. Phys. Rev. Lett., 116:061102.

Abbott, R. et al. (2021a). GWTC-2: Compact binary coalescences observed by LIGO
and virgo during the first half of the third observing run. Physical Review X, 11(2).

Abbott, R. et al. (2021b). Gwtc-3: Compact binary coalescences observed by ligo and
virgo during the second part of the third observing run.

Abbott, R. et al. (2021c). Upper limits on the isotropic gravitational-wave background
from advanced LIGO and advanced virgo’s third observing run. Physical Review D,
104(2).

Abbott, R. et al. (2022). All-sky search for continuous gravitational waves from isolated
neutron stars using advanced LIGO and advanced virgo o3 data. Physical Review D,
106(10).

Abe, H. et al. (2022). The current status and future prospects of kagra, the large-scale
cryogenic gravitational wave telescope built in the kamioka underground. Galaxies,
10(3).

Agazie, G. et al. (2023). The nanograv 15-year data set: Search for anisotropy in the
gravitational-wave background.

Amaro-Seoane, P. et al. (2017). Laser interferometer space antenna.

Ashton, G., Hübner, M., Lasky, P. D., Talbot, C., Ackley, K., Biscoveanu, S., Chu, Q.,
Divakarla, A., Easter, P. J., Goncharov, B., Vivanco, F. H., Harms, J., Lower, M. E.,
Meadors, G. D., Melchor, D., Payne, E., Pitkin, M. D., Powell, J., Sarin, N., Smith,
R. J. E., and Thrane, E. (2019). Bilby: A user-friendly bayesian inference library for
gravitational-wave astronomy. The Astrophysical Journal Supplement Series, 241(2):27.

Bacon, P., Trovato, A., and Bejger, M. (2023). Denoising gravitational-wave signals from
binary black holes with a dilated convolutional autoencoder. Machine Learning: Science
and Technology, 4(3):035024.

87

Bibliography Bibliography

Banik, N., Tan, J. C., and Monaco, P. (2018). The formation of supermassive black holes
from population III.1 seeds. i. cosmic formation histories and clustering properties.
Monthly Notices of the Royal Astronomical Society, 483(3):3592–3606.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic
differentiation in machine learning: a survey. Journal of Machine Learning Research,
18:1–43.

Blanchet, L., Iyer, B. R., Will, C. M., and Wiseman, A. G. (1996). Gravitational wave-
forms from inspiralling compact binaries to second-post-newtonian order. Classical and
Quantum Gravity, 13(4):575–584.

Boyle, M., Hemberger, D., Iozzo, D. A. B., Lovelace, G., Ossokine, S., Pfeiffer, H. P.,
Scheel, M. A., Stein, L. C., Woodford, C. J., Zimmerman, A. B., Afshari, N., Barkett,
K., Blackman, J., Chatziioannou, K., Chu, T., Demos, N., Deppe, N., Field, S. E.,
Fischer, N. L., Foley, E., Fong, H., Garcia, A., Giesler, M., Hebert, F., Hinder, I.,
Katebi, R., Khan, H., Kidder, L. E., Kumar, P., Kuper, K., Lim, H., Okounkova, M.,
Ramirez, T., Rodriguez, S., Rüter, H. R., Schmidt, P., Szilagyi, B., Teukolsky, S. A.,
Varma, V., and Walker, M. (2019). The SXS collaboration catalog of binary black hole
simulations. Classical and Quantum Gravity, 36(19):195006.

Branchesi, M. et al. (2023). Science with the einstein telescope: a comparison of different
designs.

Cahillane, C. and Mansell, G. (2022). Review of the advanced LIGO gravitational wave
observatories leading to observing run four. Galaxies, 10(1):36.

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto,
L., and Zdeborová , L. (2019). Machine learning and the physical sciences. Reviews of
Modern Physics, 91(4).

Chatterji, S., Blackburn, L., Martin, G., and Katsavounidis, E. (2004). Multiresolution
techniques for the detection of gravitational-wave bursts. Classical and Quantum Grav-
ity, 21(20):S1809–S1818.

Chaudhary, K. (2020). Understanding audio data, fourier transform, fft and spectrogram
features for a speech recognition system. .

Cuoco, E., Powell, J., Cavaglià , M., Ackley, K., Bejger, M., Chatterjee, C., Coughlin,
M., Coughlin, S., Easter, P., Essick, R., Gabbard, H., Gebhard, T., Ghosh, S., Haegel,
L., Iess, A., Keitel, D., Márka, Z., Márka, S., Morawski, F., Nguyen, T., Ormiston, R.,
Pürrer, M., Razzano, M., Staats, K., Vajente, G., and Williams, D. (2020). Enhanc-
ing gravitational-wave science with machine learning. Machine Learning: Science and
Technology, 2(1):011002.

Davis, P., Rabinowitz, P., and Rheinbolt, W. (2014). Methods of Numerical Integration.
Computer Science and Applied Mathematics. Elsevier Science.

Dreissigacker, C., Sharma, R., Messenger, C., Zhao, R., and Prix, R. (2019). Deep-learning
continuous gravitational waves. Physical Review D, 100(4).

Einstein, A. (1916). Näherungsweise Integration der Feldgleichungen der Gravitation.
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pages
688–696.

Fletcher, R. (2000). Nonlinear Programming, chapter 12, pages 277–330. John Wiley &
Sons, Ltd.

88

Bibliography Bibliography

Foster, J. and Nightingale, J. (2010). A Short Course in General Relativity. Springer New
York.

Gabbard, H., Williams, M., Hayes, F., and Messenger, C. (2018). Matching matched
filtering with deep networks for gravitational-wave astronomy. Physical Review Letters,
120(14).

Graves, A. (2014). Generating sequences with recurrent neural networks.

Hinton, G., Srivastava, N., and Swersky, K. (2018). Neural networks for machine learning
- lesson 6e.

Kapadia, S., Dent, T., and Canton, T. D. (2017). Classifier for gravitational-wave inspiral
signals in nonideal single-detector data. Physical Review D, 96(10).

Keith, B., Khadse, A., and Field, S. E. (2021a). Learning orbital dynamics of binary
black hole systems from gravitational wave measurements. Phys. Rev. Res., 3:043101.

Keith, B., Khadse, A., and Field, S. E. (2021b). Three examples of learning orbital
dynamics of binary black hole systems from gravitational wave measurements with
Julia. https://doi.org/10.5281/zenodo.4477649.

Kepler, J. (1609). Astronomia nova. .

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and Weinberger,
K., editors, Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc.

Leibniz, G. W. (1684). Nova methodus pro maximis et minimis, itemque tangentibus,
quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi
genus. Acta Eruditorum, pages 467–473.

Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of recurrent neural
networks for sequence learning.

Lorentz, H. A. and Droste, J. (1937). The Motion of a System of Bodies under the
Influence of their Mutual Attraction, According to Einstein’s Theory, pages 330–355.
Springer Netherlands, Dordrecht.

Lynch, R. S. (2015). Pulsar timing arrays. Journal of Physics: Conference Series,
610(1):012017.

Maggiore, M. (2007). Gravitational Waves. Vol. 1: Theory and Experiments. Oxford
University Press.

Mehta, P., Bukov, M., Wang, C.-H., Day, A. G., Richardson, C., Fisher, C. K., and
Schwab, D. J. (2019). A high-bias, low-variance introduction to machine learning for
physicists. Physics Reports, 810:1–124.

Milotti, E. (2022a). https://wwwusers.ts.infn.it/ milotti/didattica/gravitational-
waves/handouts/cbc.pdf.

Milotti, E. (2022b). https://wwwusers.ts.infn.it/ milotti/didattica/gravitational-
waves/handouts/sequence.pdf.

89

Bibliography Bibliography

Minsky, M. (1975). A framework for representing knowledge. In Winston, P., editor, The
Psychology of Computer Vision, pages 211–277. McGraw-Hill, New York.

Morawski, F., Bejger, M., and Ciecielkag, P. (2020). Convolutional neural network clas-
sifier for the output of the time-domain \mathcal{f}-statistic all-sky search for con-
tinuous gravitational waves. Machine Learning: Science and Technology, 1(2):025016.

Nascimento, R. and Viana, F. (2020). Cumulative damage modeling with recurrent neural
networks. AIAA Journal, 58:1–13.

Nascimento, R. G., Fricke, K., and Viana, F. A. (2020). A tutorial on solving ordi-
nary differential equations using python and hybrid physics-informed neural network.
Engineering Applications of Artificial Intelligence, 96:103996.

Necula, V., Klimenko, S., and Mitselmakher, G. (2012). Transient analysis with fast
wilson-daubechies time-frequency transform. Journal of Physics: Conference Series,
363(1):012032.

Newton, I. (1687). Philosophiae naturalis principia mathematica.. Jussu Societatis Regiae
ac Typis Josephi Streater.

Newton, I. (1745). De analysi per aequationes numero terminorum infinitas. .

Nguyen, C. (2021). Status of the advanced virgo gravitational-wave detector.

Olah, C. (2015). https://colah.github.io/posts/2015-08-understanding-lstms/.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library.

Peters, P. C. (1964). Gravitational radiation and the motion of two point masses. Phys.
Rev., 136:B1224–B1232.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D.,
Ramadhan, A., and Edelman, A. (2021). Universal differential equations for scientific
machine learning.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics, 378:686–707.

Razzano, M. and Cuoco, E. (2018). Image-based deep learning for classification of
noise transients in gravitational wave detectors. Classical and Quantum Gravity,
35(9):095016.

Runge, C. and König, H. (1924). Vorlesungen über numerisches Rechnen. Springer.

Salemi, F., Drago, M., Klimenko, S., Lazzaro, C., Milotti, E., Mitselmakher, G., Nec-
ula, V., O’Brian, B., Prodi, G. A., Szczepanczyk, M., Tiwari, S., Tiwari, V., V, G.,
Vedovato, G., and Yakushin, I. (2021). coherent waveburst, a pipeline for unmodeled
gravitational-wave data analysis. SoftwareX, 14:100678.

Schutz, B. (2004). The art and science of black hole mergers. .

Shinohara, T., He, W., Matsuoka, Y., Nagao, T., Suyama, T., and Takahashi, T. (2023).
Supermassive primordial black holes: a view from clustering of quasars at z ∼ 6.

90

Bibliography Bibliography

Tefas, A. and Nousi, P. (2023). Introduction to deep learning. Aristotle University of
Thessaloniki.

the LIGO-Virgo-Kagra scientific collaboration (2015). https://gracedb.ligo.org/.

the LIGO-Virgo-Kagra scientific collaboration (2019). https://gwosc.org/.

the Nobel Committee for Physics (2018). https://www.nobelprize.org/uploads/2018/06/
advanced-physicsprize2017.pdf.

the PyTorch collaborators (2023). https://pytorch.org/docs/stable/generated/torch.optim.
rmsprop.html.

the SXS collaboration (2000). https://www.black-holes.org/code/spec.html.

the SXS collaboration (2019). https://data.black-holes.org/waveforms.

the Virgo scientific collaboration (2016). http://public.virgo-gw.eu/wp-
content/uploads/2014/10/adv virgob.png.

Vio, R. and Andreani, P. (2021). Everything you always wanted to know about matched
filters (but were afraid to ask).

Wang, H. (2019). https://iphysresearch.github.io/survey4gwml/.

Wikipedia (2023). Interferometro virgo — wikipedia, l’enciclopedia libera. [Online;
checked on 7-september-2023].

Wysocki, D., O’Shaughnessy, R., Lange, J., and Fang, Y.-L. L. (2019). Accelerating
parameter inference with graphics processing units. Physical Review D, 99(8).

Zaman, S. M., Hasan, M. M., Sakline, R. I., Das, D., and Alam, M. A. (2021). A
comparative analysis of optimizers in recurrent neural networks for text classification.
In 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering
(CSDE), pages 1–6.

91

Acknowledgments

At the end of this Master degree, I want to thank all the people that supported me
and allowed me to grow as a scientist and as a person.

First of all, I thank my supervisor Prof. Giacomo Ciani, and my co-supervisors in
Trieste University, Prof. Edoardo Milotti and Prof. Agata Trovato. The new experience
in a research group was the engine for my personal and professional growth.

I thank the degree commission for the autumn session in a.y. 2022/23, chaired by
Prof. Sabino Matarrese, and the refree Dr. Tiziano Zingales.

I thank Prof. Paola Marigo and Prof. Roberto Turolla. We worked together to build
this Master degree course. I really did appreciate the effort that both of them put in
listening to students opinions and in make choices for a welcoming and formative place.
Thanks to them, I was able to work as a student representative really as a service to my
colleagues.

I thanks the LIGO-Virgo-Kagra collaboration to host #5 and #6 open data GWOSC
workshops which make me passionate on gravitational wave data analysis and led me to
the other side of the main desk for the first time.

I thank the 4th COST Action G2Net 2023 in Thessaloniki, Greece, to have introduced
me in the machine learning world and in an international way of doing scientific research.

I thank my family, which supported me from the first moment.
Last, but not least, I thank Camilla, always present companion of my days. She

always looked at me in the best way, ready to cheer me up in the heavy moments and to
share the joy of main life changes.

93

	Abstract
	Introduction
	Gravitational waves
	Einstein equations and their full resolution
	Post-Newtonian approximation
	Numerical relativity

	Gravitational waves
	Linearized general relativity
	Generation

	Compact binary coalescences
	Gravitational wave emission from a binary system
	Chirping waveform
	Merger and ringdown

	Detectors
	Antenna pattern
	Interferometers' noise budget

	Data analysis
	Recap on signal analysis
	Raw interferometer's data
	Detection
	Parameter inference

	Machine learning
	Basic concepts
	Learning process
	Linear regression
	Optimization methods

	Neural networks
	Neuron
	Multi-layer network
	Recurrent neural networks
	Training neural networks

	Physics-informed neural networks
	Universal differential equations
	Solving partial differential equations
	Data-driven discovery of partial differential equations
	SciML environment
	Hybrid physics-informed neural networks

	GW data analysis with NNs
	Data quality
	GW signal's modelling
	Sensitivity improvements
	Parameter inference

	Learning BBH's dynamics from GW data
	BBH modelling
	Effective one body problem
	Universal differential equations for binary black holes' dynamics
	Training the algorithm: gravitational wave implementation

	Algorithm implementation
	Results
	Noise implementation
	Gaussian noise
	Glitches

	Discussion

	Learning the evolution of GW frequency
	GW frequency evolution
	Runge-Kutta at 4th order
	SciML implementation
	Algorithm implementation
	Results
	Discussion

	PyTorch implementation
	Hybrid physics-informed neural networks to solve differential equations
	Algorithm implementation
	Results
	Discussion

	Conclusions
	Extended results
	Bibliography
	Acknowledgments

