
Master Thesis in Bioengineering

Spatio-temporal PET imaging reconstruction with
learned diffeomorphism

Master Candidate Supervisor

Marco Pinamonti Prof. Mattia Veronese
Student ID 2037014 University of Padua

Co-supervisor

Prof. Massimiliano Colarieti-Tosti
KTH Royal Institute of Technology

Academic Year
2022/2023





”There is something irreversible about acquiring knowledge;
and the simulation of the search for it differs

in a most profound way from the reality.”

— J. Robert Oppenheimer





Abstract

Positron Emission Tomography (PET) is a medical imaging modality to re-
construct the distribution of metabolic activity that is used to detect cancer
lesions thanks to their peculiar metabolic fingerprints. However, since it re-
quires long acquisition time, it is affected by motion artifacts and this leads
to a difficult detection of small size tumours, that are the most important for
early-stage diagnosis.

The Morphed Maximum Likelihood Activity and Attenuation (M-MLAA)
algorithm has been developed to assess the motion artifact problem by gain-
ing advantage of gated data and SynthMorph image registration network to
reconstruct a motion corrected image.

This project’s goal is to implement the M-MLAA algorithm on clinical
data and to evaluate its performance; unfortunately, this was not achieved
due to problems in the implementation of the Maximum Likelihood Activity
and Attenuation (MLAA) algorithm on Synergistic Image Reconstruction
Framework (SIRF) Python library. The results show that those problems
might be caused by an incorrect definition of the Radon transform in the
library.

Despite that, M-MLAA algorithm shows good performances when tested
on synthetic data, suggesting that it could be a promising motion correction
reconstruction method for PET images, capable of detecting early-stage can-
cer lesions.





Sommario

La Tomografia ad Emissione di Positroni (PET) è una modalità di imaging
medico per ricostruire la distribuzione dell’attività metabolica, che viene
utilizzata per rilevare lesioni tumorali grazie alle loro peculiari impronte
metaboliche. Tuttavia, poiché richiede un lungo tempo di acquisizione, è
soggetta ad artefatti da movimento e ciò porta ad una difficile individuazione
dei tumori di piccole dimensioni, che sono i più importanti per una diagnosi
precoce.

L’algoritmo Morphed Maximum Likelihood Activity and Attenuation
(M-MLAA) è stato sviluppato per affrontare il problema degli artefatti da
movimento sfruttando i dati suddivisi in gate e la rete neurale SynthMorph
per la registrazione di immagini, al fine di ricostruire un’immagine corretta
dagli artefatti di movimento.

L’obiettivo di questo progetto è l’implementazione su dati clinici dell’algo-
ritmo M-MLAA e la valutazione delle sue prestazioni; purtroppo, ciò non
è stato possibile a causa di problemi nell’implementazione dell’algoritmo
Maximum Likelihood Activity and Attenuation (MLAA) sulla libreria Syn-
ergistic Image Reconstruction Framework (SIRF) Python. I risultati mostrano
che tali problemi potrebbero essere causati da una definizione errata della
trasformata di Radon nella libreria.

Nonostante ciò, l’algoritmo M-MLAA mostra buone prestazioni quando
testato su dati sintetici, suggerendo che potrebbe rappresentare un promet-
tente metodo di correzione dagli artefatti di movimento nella ricostruzione
di immagini PET, consentendo di individuare lesioni tumorali in fase pre-
coce.
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1
Introduction

1.1 Background

Positron Emission Tomography (PET) is a medical imaging modality that
reconstructs the 3D distribution of metabolic activity by detecting photons
emitted during the in vivo annihilation of free electrons with positrons from
an injected radioactive tracer. In principle, cancer lesions will be visible in
the reconstructed image with high contrast compared to the surrounding
healthy tissue thanks to their peculiar metabolic fingerprints (e.g. higher
sugar metabolism) and PET is, in fact, one of the most powerful imaging
modality for cancer diagnosis and staging.

1.2 Problem

PET modality requires long acquisition time to collect projection data
with an acceptable noise level and this leads to motion artifacts that strongly
affect contrast-to-noise ratio of lesions.

This is of particular interest when trying to detect tumours that are of
size comparable to the system resolution (∼ 5 mm) and that are continuously
moving because of respiratory motion. In fact, those lesions are the most
important ones to detect for early-stage diagnosis that can lead to a better
prognosis for the patient.
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1.3. PURPOSE

1.3 Purpose

In order to improve the early-stage diagnosis of small lesions it is neces-
sary to account for the motion during the reconstruction of the image and
to correct based on that.

1.4 Methodology

One way of avoiding motion blurring is to divide the projection data
in several subsets (gates) in which the patient (and therefore the activity
distribution) can be considered stationary. Gating can be achieved by means
of an external gate-triggering device or by analysing the data itself [18].

Once gated data is available one can choose to reconstruct each gate
separately or just one of the gates, avoiding in this way motion artifacts. The
drawback with the approach mentioned before is the higher noise level of
the reconstructed images that can, especially for smaller lesions, result in
scarce visibility and consequently uncertain diagnosis.

Recently, a new method has been proposed: by making use of the en-
tire projection data-set, it is possible to simultaneously evaluate the defor-
mations between gates and the activity distribution folded in one chosen
template [10]. This increases PET diagnostic power for small lesions. The
reconstruction of the activity distribution follows the line of the most used
reconstruction algorithm for PET (Maximum Likelihood Expectation Max-
imisation (MLEM) [17]) with a modification accounting for the presence of
different gates, while the morphing of all gates to the chosen template is
performed via VoxelMorph [1, 2], a neural network for image registration.
This algorithm is called M-MLEM.

The MLEM algorithm can be also modified to take into account for the
tissue attenuation but it needs an attenuation image. If this image can be
extracted from a Computed Tomography (CT) scan which is usually acquired
before the PET acquisition, it is not possible to use the same image for all
the different gates since there will be some misalignment in the activity and
attenuation images due to the different time of acquisition. For this reason,
the standard version of M-MLEM is not completely suitable for clinical
application.

2



CHAPTER 1. INTRODUCTION

The attenuation correction can be performed for each individual gate
by making use of the deformation fields estimated by an evolution of Vox-
elMorph called SynthMorph [5], a modality and contrast agnostic neural
network for registration of the CT image to the different gates or by us-
ing a morphed version of algorithms that reconstruct activity distribution
and attenuation from emission data like Maximum Likelihood Activity and
Attenuation (MLAA) [13] and Maximum Likelihood Reconstruction and
Registration (MLRR) [12].

The group of Prof. Massimiliano Colarieti-Tosti has proposed a morphed
version of the MLAA algorithm, called M-MLAA that will be the object of
this report.

The M-MLAA algorithm applies the idea behind the morphed version
of the MLEM algorithm to the MLAA algorithm with the objective of being
capable to perform motion correction PET reconstruction on clinical data by
jointly estimating the activity and attenuation images for each gate and then
using the information from multiple gates to reconstruct a motion corrected
PET image.

1.5 Goal

The goal of this project is to apply the newly developed M-MLAA algo-
rithm to clinical data acquired with the Biograph128 mCT-1104 PET scanner
(Siemens Medical Solutions USA Inc., Hoffman Estate, Illinois, USA, VG60) at
Karolinska University Hospital in Huddinge and compare the reconstructed
images with the ones obtained with state-of-the-art algorithms, with the ob-
jective of evaluating the performance of M-MLAA.

1.6 Outline

The report is divided into the following six chapters:

1. The first chapter is this introduction to the work.

2. The second chapter gathers the theoretical information about PET
imaging data acquisition and image reconstruction, then it presents the
Morphed Maximum Likelihood Expectation Maximisation (M-MLEM)
algorithm already developed for motion correction and it ends with a
description of SynthMorph image registration Neural Network.

3
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3. The Methodology chapter delineates the research methods followed
in this project, starting from the procedure for decompressing the
data acquired from the scanner, it follows with the presentation of
three standard reconstruction techniques and subsequently reports the
proposed reconstruction algorithm Morphed Maximum Likelihood
Activity and Attenuation (M-MLAA).

4. In the fourth chapter the results obtained both on synthetic data -
coming from the XCAT phantom - and on clinical data - coming from
the Siemens Biograph mCT scanner - are displayed; here it’s also shown
an analysis of the SIRF library projectors about the creation of the
attenuation and normalization correction matrices.

5. The Discussion chapter collects the author’s reasoning on the results
obtained in the previous chapter.

6. The final Conclusions chapter sums up the work and propose the
future steps to continue developing this project.

4
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2
Theoretical Background

This chapter presents the theoretical background necessary for a bet-
ter understanding of the project’s context. It encompasses the following
subjects:

1. The first section provides a concise overview of how PET imaging
techniques operate, how the data is acquired and presents some of the
main reconstruction algorithms.

2. The subsequent section is titled “Motion correction image reconstruc-
tion” and offers a detailed description of the M-MLEM algorithm,
developed to perform motion correction during PET image reconstruc-
tion.

3. The third and final section introduces the reader to SynthMorph, a
convolutional neural network used to compute the diffeomorphism
between gates. This step is crucial for deforming all the gates into a
fixed one, a necessary process for motion correction.

5



2.1. PET IMAGING

2.1 PET imaging

Positron Emission Tomography (PET) is a medical imaging technique
based on the detection of the coincidences of two annihilation photons
with an energy of 511 keV, which are produced by a patient injected with a
positron-emitting radiopharmaceutical.

The coincidences are detected using an electronic collimation technique,
which selectively captures photons detected within a specific time window
tailored for each particular scanner.

As shown in Figure 2.1 there are 4 types of coincident events that collec-
tively go under the name of prompts:

True The two photons detected by a detector pair come
from the same annihilation event

Random The two photons detected come from two differ-
ent annihilation events

Scatter One (or both) of the photons changes its direction
due to Compton scattering

Multi-coincidence More than two photons are detected in the same
time window

Typically, multi-coincidence events are discarded due to the challenge of
accurately positioning them.

Figure 2.1: Types of coincident events. The annihilation events are repre-
sented with the yellow bursts, the red arrows describe the trajectories of the
photons and the Line of Response (LOR) is drawn with a green dashed line.

6
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2.1.1 Data acquisition in PET

Starting with the simple case of a single ring of detectors, when a coinci-
dence is detected, it is possible to infer that the annihilation event occurred
along the Line of Response (LOR) that connects the two detectors registering
the coincidence. This line is characterized by two components:

• The angle 𝜙 of orientation of the LOR, ranging from −90° to 90°.

• The distance 𝑟 of the LOR from the center of the field of view.

Each coincidence can be represented as a point in a diagram with distance
𝑟 on the x-axis and angle 𝜙 on the y-axis. Photons emitted from the same
point and detected by different LORs result in a graph with the shape of
half a sine wave rotated by 90°. This type of graph is commonly known as a
“sinogram” and is presented in Figure 2.2.

Figure 2.2: Creation of a sinogram curve. Adapted from Fahey [4]

Due to this specific structure, all parallel LORs have the same orientation
angle, and they will be aligned on the same horizontal row in the sinogram.
Hence, it is referred to as a “projection” [4].

During the acquisition process, each time a new coincidence is detected,
the corresponding LOR is determined. After calculating its distance from
the center of the Field of View (FOV) and its orientation angle, the associated
pixel in the sinogram is incremented by one. At the end of the acquisition,
each pixel will contain the number of events acquired along the correspond-
ing LOR.

7
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Time-of-Flight (TOF) Method

Time-of-Flight PET is an advancement in traditional PET imaging that
takes advantage of the time difference between the arrival of the two 511 keV
annihilation photons at the detectors. This time information is used to
calculate the segment along the LOR where the annihilation event occurred.

Figure 2.3: Time-of-Flight PET, adapted from Vandenberghe et al. [20]

As displayed in Figure 2.3, given two opposite detectors at a distance 𝑥
from the center of the FOV and an event occurring at a distance Δ𝑥 from
the center, the two photons will travel different distances: 𝑥 − Δ𝑥 and 𝑥 +
Δ𝑥. This leads to a time difference Δ𝑡 = 2Δ𝑥

𝑐 [14]. By considering the
Coincidence Resolution Time (CRT) of the scanner, which denotes the ability
of a detector pair to resolve the time difference between the interactions of
two detected photons in coincidence, the information Δ𝑡 can be used to
assign the annihilation event to a specific segment along the LOR instead

8
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of assigning the event to the full LOR [15]. This is valuable for improving
the quality of reconstructed images. However, in practice, the CRT of the
current scanner is not small enough to assign the event to a single image
voxel.

Sinogram Structure

In a 2D PET scanner, the detectors are allowed to be in coincidence only
with the detectors on the opposite side of the same ring, and these events
are defined as direct coincidences. In a 3D PET scanner, coincidences between
detectors belonging to neighboring rings are also permitted, referred to
as cross coincidences. The cross planes are characterized by the difference
between the numbers of the rings of the detectors, and each scanner defines
the maximum value of that difference.

To visualize the structure of the permitted cross-coincidences, a Miche-
logram is drawn (Figure 2.4), a specific diagram showing the detector ring
numbers on the 𝑥 and 𝑦 axes, creating a table with cells that are either empty
or populated with a dot or a circle to indicate whether coincidences across
the corresponding rings are allowed. In this organization, a 2D PET scanner
will only have dots along the main diagonal since only direct coincidences
are allowed.

Figure 2.4: Example of a Michelogram organization.

9
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Additionally, the data from two or more different cells of the Miche-
logram is usually combined to ensure a higher number of counts in the
resulting plane and to reduce noise. The term span describes the extent of
axial data combined, and it is defined as the sum of the number of cells in the
Michelogram combined into an odd-numbered plane added to the number
of cells combined into an even-numbered plane [4]. The obtained planes are
then grouped into segments, which order the data starting from the inner
diagonal of the Michelogram and going towards the outer diagonals.

2.1.2 PET image reconstruction

In absence of noise and any corrections, the process of acquisition of PET
data can be expressed as the following forward problem:

𝑔 = 𝐴 𝑓

In the previous expression 𝑓 represents the activity image that is unknown
and that generates the data with 𝐴 that is the forward operator that models
the Radon transform that mathematically create the sinograms 𝑔 starting
from the image 𝑓 .

The image reconstruction algorithms aim to solve the correspondent
inverse problem: starting from the sinogram data 𝑔 they estimate the original
image 𝑓 [19].

In this section two of the most used reconstruction algorithms are pre-
sented:

• The first is the Maximum Likelihood Expectation Maximisation (MLEM)
algorithm, state-of-the-art in PET imaging to reconstruct the activity
image.

• The second one is called Maximum Likelihood Activity and Attenua-
tion (MLAA) and jointly reconstructs both the activity and attenuation
images.

MLEM - Maximum Likelihood Expectation Maximisation

The MLEM algorithm estimates the emission density activity by max-
imising the likelihood function of the reconstructed image [17].

10
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It starts from an initial estimates of the activity 𝑓 0 and updates the esti-
mate based on this iterative formula that returns the new estimate �̂�

𝑛𝑒𝑤
from

and old estimate �̂�
𝑜𝑙𝑑

:

�̂�
𝑛𝑒𝑤 (𝑏) = �̂�

𝑜𝑙𝑑 (𝑏)
𝐷∑
𝑑=1

𝑔∗ (𝑑) 𝑝 (𝑏, 𝑑)
𝐵∑

𝑏′=1
�̂�
𝑜𝑙𝑑 (𝑏′) 𝑝 (𝑏′ , 𝑑)

(2.1)

where 𝑔∗(𝑑) is the number of emission registered in each detector 𝑑, 𝐷 is the
number of detector units, 𝑝(𝑏, 𝑑) is the probability that detector 𝑑 detects an
emission originated in box 𝑏 and 𝐵 is the number of boxes (pixels).

A more intuitive way to understand this algorithm is by considering the
following statistical model:

𝑔 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐴 𝑓 )

where 𝑓 is the activity image, 𝑔 is the acquired data and 𝐴 is the forward
operator that describes the physics of PET [10].

The MLEM update then becomes:

𝑓 (𝑛+1) =
𝑓 (𝑛)

𝐴∗1𝐴
∗
(

𝑔

𝐴 𝑓 (𝑛)

)
(2.2)

where 𝐴∗ is the backward operator.

The MLEM algorithm observes the following structure, also displayed in
Figure 2.5 and in Algorithm 1:

1. Starts with an initial guess of the reconstructed image, usually initial-
ized to a matrix filled with ones.

2. Forward project the estimated image, computing its projection.

3. Compares the computed projection with the measured ones, obtaining
the discrepancies in Projection Space.

4. Back-project those discrepancies in Image Space.

5. Updates the estimated image and continues from point 2.

11



2.1. PET IMAGING

Figure 2.5: MLEM algorithm scheme, adapted from Ravi et al. [11].

Algorithm 1 MLEM
Require: 𝑛 ≥ 0
𝐴← 𝐴 ⊲ Radon transform
𝐴∗← 𝐴∗ ⊲ adjoint operator of Radon transform
𝑛 ← 𝑀𝐿𝐸𝑀𝑖𝑡𝑒𝑟 ⊲ nb of MLEM iterations
𝑓 (0) ⊲ init of activity image
𝑔 ⊲ projection data
for 𝑖 ← 0, 𝑛 do

𝑓 (𝑛+1) = 𝑓 (𝑛)
𝐴∗1𝐴

∗
(

𝑔
𝐴 𝑓 (𝑛)

)
end for

MLAA - Maximum Likelihood Activity and Attenuation

The MLAA estimation algorithm is an image reconstruction algorithm
that jointly estimates the activity and attenuation correction factors with the
use of Time-of-Flight (TOF) data [13].

Each iteration of the algorithm can be divided in 2 parts:

• an initial MLEM step that explicitly uses the TOF PET data to update
the activity estimate by keeping the attenuation coefficients constant:

∀𝑖 : 𝑎𝑛𝑖 = 𝑒
−∑

𝑗
𝑙𝑖 𝑗𝜇𝑛𝑗

(2.3)

∀𝑗 : 𝜆𝑛+1
𝑗 =

𝜆𝑛𝑗∑
𝑖𝑡
𝑎𝑛𝑖 𝑐𝑖 𝑗𝑡

∑
𝑖𝑡

𝑎𝑛𝑖 𝑐𝑖 𝑗𝑡
𝑦𝑖𝑡∑

𝜖
𝑎𝑛𝑖 𝑐𝑖𝜖𝑡𝜆

𝑛
𝜖 + 𝑠𝑖𝑡 (2.4)

• a subsequent Maximum Likelihood for Transmission Tomography
(MLTR) step to calculate the new attenuation estimate:

∀𝑖 : 𝜓𝑛
𝑖 = 𝑎𝑛𝑖

∑
𝑗𝑡

𝑐𝑖 𝑗𝑡𝜆𝑛+1
𝑗 (2.5)

12
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∀𝑗 : 𝜇𝑛+1
𝑗 = 𝜇𝑛𝑗 +

∑
𝑖
𝑙𝑖 𝑗

𝜓𝑛𝑖
𝜓𝑛𝑖 +𝑠𝑖

(
𝜓𝑛
𝑖 + 𝑠𝑖 − 𝑦𝑖

)
∑
𝑖
𝑙𝑖 𝑗
(𝜓𝑛𝑖 )2
𝜓𝑛𝑖 +𝑠𝑖

∑
𝜖
𝑙𝑖𝜖

(2.6)

With reference to the formulas above: 𝑎𝑛 represents the attenuation
factors computed from the current attenuation map estimate𝜇𝑛 ,𝜆 represents
the activity estimate, 𝑐𝑖 𝑗𝑡 is the sensitivity of the detector, 𝜓𝑛

𝑖 are the expected
TOF-integrated count for LOR 𝑖, 𝑦𝑖 is the measured count and 𝑠𝑖 is the
additive contribution (randoms and scatter coincidences).

The MLAA algorithm observes the following structure (Figure 2.6):

Figure 2.6: MLAA algorithm scheme.

The MLAA formulas can be rewritten with the use of mathematical
operators𝐴 and𝐴∗ that model the forward and back-projection of the Radon
transform; for the particular case of synthetic data that does not model
the sensitivities of the detector and the randoms and scatter coincidences
contributes, the resulting expression are:

• MLEM step:

𝑓 (𝑛+1) = 𝑓 (𝑛)

𝐴∗
𝑒−𝐴(𝜇(𝑛)) 𝑔[

𝑒−𝐴(𝜇(𝑛))𝐴( 𝑓 (𝑛))
] 

𝐴∗
[
1 · 𝑒−𝐴(𝜇(𝑛))

] (2.7)

• MLTR step:

𝜇(𝑛+1)← 𝜇(𝑛) +
𝐴∗

[
𝑒−𝐴(𝜇(𝑛))𝐴 (

𝑓 (𝑛)
) ]

𝐴∗
[
𝑒−𝐴(𝜇(𝑛)) · 𝐴 (1)

] (2.8)
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2.2. Motion Correction IMAGE RECONSTRUCTION

The complete structure of the MLAA algorithm is presented in Algorithm
2.

Algorithm 2 MLAA
Require: 𝑛 ≥ 0
Require: 𝑚 ≥ 0
Require: 𝑝 ≥ 0
𝐴← 𝐴 ⊲ Radon transform
𝐴∗← 𝐴∗ ⊲ adjoint operator of Radon transform
𝑛 ← 𝑀𝐿𝐴𝐴𝑖𝑡𝑒𝑟 ⊲ nb of MLAA iterations
𝑚 ← 𝑀𝐿𝐸𝑀𝑖𝑡𝑒𝑟 ⊲ nb of MLEM sub-iterations
𝑝 ← 𝑀𝐿𝑇𝑅𝑖𝑡𝑒𝑟 ⊲ nb of MLTR sub-iterations
𝑓 (0) ⊲ init of activity image
𝜇(0) ⊲ init of attenuation image
𝑔 ⊲ projection data
for 𝑖 ← 1, 𝑛 do

𝑓 (1)← 𝑓 (𝑖−1)
𝜇(1)← 𝜇(𝑖−1)
for 𝑗 ← 1, 𝑚 do

𝑓 (𝑗+1) ← 𝑓 (𝑗)
𝐴∗

𝑒
−𝐴(𝜇(𝑖)) 𝑔[

𝑒
−𝐴(𝜇(𝑖))𝐴(

𝑓 (𝑗)
)]


𝐴∗

[
1·𝑒−𝐴(𝜇(𝑖))

] ⊲ MLEM step

end for
𝑓 (𝑖)← 𝑓 (𝑗)
for 𝑘 ← 1, 𝑝 do

𝜇(𝑘+1)← 𝜇(𝑘) +
𝐴∗

[
𝑒−𝐴(𝜇(𝑘))𝐴( 𝑓 (𝑘))

]
𝐴∗

[
𝑒−𝐴(𝜇(𝑘))·𝐴(1)

] ⊲ MLTR step

end for
𝜇(𝑖)← 𝜇(𝑘)

end for

2.2 Motion Correction image reconstruction

The algorithms described in the previous section are the state-of-the-art
for PET image reconstruction but they still present one major flaw: since
the data acquisition is not instantaneous and it last several seconds, usually
between 2 to 3 minutes per bed position, the patient cannot be considered
stationary for the whole process. This causes the data to be affected by mo-

14



CHAPTER 2. THEORETICAL BACKGROUND

tion artifacts given the fact that the annihilation events occurring in the same
relative position of the body can be localised in different spatial coordinates
of the PET system.

In particular, during a thoracic PET acquisition, the principal motion
artifact is related to the respiration process: the movement of the lungs
caused by the alternation of inspiration and expiration leads to noticeable
artifacts in the creation of the image that impact its final quality.

In order to account for this problem and correct for those type of arti-
facts some Motion Correction (MC) techniques have been developed for PET
imaging. In the following section is presented the Morphed Maximum Like-
lihood Expectation Maximisation (M-MLEM) algorithm, that evolves the
state-of-the-art Maximum Likelihood Expectation Maximisation (MLEM) in
order to correct for the movement of the patient.

2.2.1 M-MLEM

M-MLEM is a motion correction algorithm that combines the MLEM
algorithm with deep-learning based movement registration [10].

The basic idea behind this method is to divide the acquired data in
different respiratory gates so that each gate contains events coming from
a static position of the patient and then reconstruct the motion-corrected
image by using the gated data and the diffeomorphisms between the gates
calculated with the help of a Convolutional Neural Network (CNN) to merge
together the different gates.

As a way to better understand how this works, let’s start with the def-
inition of the mathematical model behind. Given 𝑁 + 1 different gates,
suppose to have obtained 𝑔𝑖 , 𝑖 = 0, . . . , 𝑁 data from 𝑓𝑖 images with the
statistical model:

𝑔𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐴 𝑓𝑖) 𝑖 = 0, . . . , 𝑁

Two consecutive images 𝑓𝑖−1 and 𝑓𝑖 are related by the statistical model

𝑓𝑖 =𝑊𝜓𝑖 𝑓𝑖−1 + 𝑒𝑖

where 𝑊𝜓𝑖 : 𝑋 ↦→ 𝑋 represents the intensity-preserving action 𝑊𝜓𝑖 𝑓 (𝑥) B
𝑓
(
𝜓−1(𝑥)) of the diffeomorphism 𝜓 : Ω → Ω that binds the two images
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2.2. Motion Correction IMAGE RECONSTRUCTION

together and models the movement and 𝑒𝑖 is a 𝑋-valued random variable
[10].

The algorithm then is divided in two steps:

• the motion estimation: for each new estimate of the images 𝑓 𝑘𝑖 the dif-
feomorphism is calculated by minimizing

𝑁∑
𝑖=1

(
𝑑2

(
𝑓 𝑘𝑖 ,𝑊𝜓𝑖 𝑓

𝑘
𝑖−1

)
+ 𝜆𝑅 (

𝜓𝑖
) )

where 𝑑2 is the 𝐿2-distance on 𝑋 and 𝑅 is a regularisation term with its
regularisation parameter 𝜆. The solution to this registration problem
is found with the use of VoxelMorph [2] Neural Network that returns a
mapping matching the two images it receives as input:

𝛾
(
𝑓𝑖 , 𝑓𝑖−1

)
B exp

(
𝜓𝑖

(
𝑓𝑖 , 𝑓𝑖−1

) )
• the reconstruction: after assuming 𝑓 𝑘𝑖 ≈ 𝑊𝜓𝑘+1

𝑖
𝑓 𝑘𝑖−1 for 𝑖 = 1, . . . , 𝑁 , the

minimisation problem becomes

arg min
𝑓𝑖

𝑁∑
𝑖=0

𝑑𝐾𝐿
(
𝑔𝑖 ∥ 𝐴 𝑓𝑖

)
By focusing on the first gate, number zero, the optimisation is reduced
to the only variable 𝑓0:

arg min
𝑓0

𝑁∑
𝑖=0

𝑑𝐾𝐿
(
𝑔𝑖 ∥ 𝐴𝑖 𝑓0)

where 𝐴𝑖 B 𝐴𝑊𝜙𝑖 with 𝜙𝑖 B 𝜓𝑖 ◦ · · · ◦𝜓1 for 𝑖 = 1, . . . , 𝑁 . Solving this
it is possible to obtain the next estimate of the first gate with MLEM
written for the compound operator 𝐴 = (𝐴0, . . . , 𝐴𝑁 ):

𝑓 (𝑛+1)
0 =

𝑓 (𝑛)0
𝑁∑
𝑖=0
𝐴𝑇𝑖 1

𝑁∑
𝑖=0

𝐴𝑇𝑖

(
𝑔𝑖

𝐴𝑖 𝑓
(𝑛)
0

)
(2.9)

Image registration

The motion estimation problem is solved with use of the Neural Net-
work (NN) VoxelMorph which is capable of performing 3D medical image
registration [1, 2]. For this project, a variation of this NN has been selected,
called SynthMorph [5] that is presented more thoroughly in Section 2.3.

The complete structure of M-MLEM is described in Algorithm 3.
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Algorithm 3 M-MLEM
Require: 𝑛 ≥ 0, 𝑚 ≥ 0, 𝑝 ≥ 0
Require: 𝑁 ≥ 1
𝐴← 𝐴 ⊲ Radon transform
𝐴∗← 𝐴∗ ⊲ adjoint operator of Radon transform
𝑛 ← 𝑀𝐿𝐸𝑀𝑖𝑛𝑖𝑡 ⊲ nb of initial MLEM iterations
𝑚 ← 𝑀𝑀𝐿𝐸𝑀𝑖𝑡𝑒𝑟 ⊲ nb of M-MLEM iterations
𝑝 ← 𝑀𝐿𝐸𝑀𝑖𝑡𝑒𝑟 ⊲ nb of MLEM iterations
𝑁 ← 𝑛𝑏𝑔𝑎𝑡𝑒𝑠 + 1 ⊲ nb total of gates
𝑓 (0)0 , . . . , 𝑓 (0)𝑁 ← 1 . . . 1 ⊲ init of the distribution estimation
𝑔0, . . . , 𝑔𝑁 ⊲ data for every gates
for 𝑖 ← 0, 𝑁 do

for 𝑗 ← 1, 𝑛 do

𝑓 (𝑗+1)
𝑖 ← 𝑓 (𝑗)𝑖

𝐴∗1𝐴
∗
(

𝑔

𝐴 𝑓 (𝑛)𝑖

)
⊲ Initial MLEM reconstruction for each gate

end for
end for
for 𝑘 ← 1, 𝑚 do

for 𝑖 ← 1, 𝑁 do
𝜓𝑖 ← 𝛾

(
𝑓𝑖−1, 𝑓𝑖

)
⊲ Network registration

end for
𝑊0← 𝐼𝑑
for 𝑖 ← 1, 𝑁 do

𝑊𝑖 ←𝑊𝜓𝑖𝑊𝑖−1
𝐴𝑖 ← 𝐴𝑊𝑖

end for
𝐴0← 𝐴
𝑓 (0)0−𝑢𝑝𝑑 ← 𝑓 (𝑘−1)

0
for 𝑗 ← 1, 𝑝 do

𝑓 (𝑗)0−𝑢𝑝𝑑 ←
𝑁∑
𝑖=0
𝐴∗𝑖

 𝑔𝑖

𝐴𝑖 ( 𝑓
(𝑗)
0 )


𝑁∑
𝑖=0
𝐴∗𝑖1

⊲ M-MLEM update to gate 0

end for
𝑓 (𝑘)0 ← 𝑓 (𝑗)0−𝑢𝑝𝑑 ⊲ New estimate of gate 0
for 𝑖 ← 1, 𝑁 do

𝑓 (𝑘)𝑖 ←𝑊𝑖 𝑓
(𝑘)
0 ⊲ New estimates of other gates

end for
end for

Limitations

This algorithm can be applied to synthetic data by creating different gates
with the deformation of the same phantom but it is not so easily transposed
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to clinical data because for the purpose of a good reconstruction of real data
there’s the need of correcting for the attenuation effect with the use of an
attenuation map. Such map is usually fixed for the entire acquisition and so
will be the same for all the different gates and inherently not aligned with
any of them and this will result in a sub-optimal image reconstruction.

The proposed solution to this problem is to estimate the attenuation
image at the same time of the activity with the use of the MLAA algorithm
which will reconstruct a different attenuation map for each gate and that
attenuation image will be already aligned with the activity image of that
gate.

2.3 SynthMorph

SynthMorph is a Neural Network (NN) designed for image registration.
It is trained on synthetic label maps and images to achieve robust general-
ization across various medical imaging contrasts [5].

Although initially developed for accommodating different MRI contrasts,
SynthMorph can also be effectively applied to PET images.

2.3.1 Purpose

Classical registration techniques require optimizing the warping esti-
mate for each new image pair. In contrast, learning-based registration uti-
lizes datasets of images to learn a function that maps an image pair to a
deformation field aligning the images. This leads to sub-second runtimes
on a GPU [5]. However, a limitation of this approach is that it may not gen-
eralize well to different MRI contrasts, resulting in sub-optimal performance
for new image types.

SynthMorph addresses this limitation as it presents itself as a contrast-
agnostic registration technique. It is trained solely on synthetic data com-
posed of label maps. A generative model randomly creates these maps,
which are then synthesized with different contrasts, deformations, and arti-
facts [5].
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Figure 2.7: SynthMorph training scheme, adapted from Hoffmann et al. [5]

2.3.2 Operating principle

As shown in Figure 2.7, the training of the NN starts with a random label
map 𝑠, which serves as the input for a generative model. This model creates
two new label maps, 𝑠 𝑓 for the fixed labels and 𝑠𝑚 for the moving labels, by
deforming 𝑠 with a random smooth diffeomorphic transformation.

Subsequently, the pair of 𝑠 𝑓 and 𝑠𝑚 is used to synthesize gray-scale images
𝑚, 𝑓 with generative models of MR images used for Bayesian segmentation
[5]. The function involved in this process is defined as 𝑔𝐼

(
𝑠𝑚 , 𝑠 𝑓 , �̃�

)
=

{
𝑚, 𝑓

}
,

which calculates two 3D intensity volumes based on the label maps and seed
�̃�.

These intensity volumes are further corrupted with a spatially varying
intensity-bias field. The intermediate steps of the process of creation of the
synthetic data are shown in figure 2.8.

Figure 2.8: SynthMorph training data synthesis, adapted from Hoffmann
et al. [5]

Once the pair
{
𝑚, 𝑓

}
of moving and fixed gray-scale images is obtained,
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it is fed into a CNN that calculates the deformation Φ𝑣 between the images.
This deformation is then used to warp the moving labels 𝑠𝑚 into the space
of the fixed labels 𝑠𝑚 ◦ Φ𝑣 . The loss function used in the training combines
a Dice term 𝐿𝑑𝑖𝑠 that accounts for the differences between the fixed labels
𝑠 𝑓 and the warped 𝑠𝑚 ◦Φ𝑣 , and a regularization term 𝐿𝑟𝑒 𝑔 that prevents the
CNN from producing output deformations with high displacement.

When the SynthMorph network is trained with shape-agnostic images, it
is referred to as the sm-shapesmodel. However, the same network can also
be trained with anatomical labels of the brain, resulting in the sm-brains
model.

2.3.3 Architecture of the Neural Network

The model utilizes a network structure from the VoxelMorph library: a
convolutional U-Net predicts a spatially varying field (SVF) 𝑣𝜃 from the input
𝑚, 𝑓 , where 𝑚 and 𝑓 represent the moving and fixed images, respectively.

Figure 2.9: SynthMorph U-Net architecture, adapted from Hoffmann et al.
[5]

Figure 2.9 illustrates that the encoder consists of 4 blocks, each composed
of a stride-2 convolution and a LeakyReLU layer. These blocks halve the
resolution of the inputs. On the other hand, the decoder has 3 blocks with
a stride-1 convolution, an up-sampling layer, and a skip connection to the
corresponding encoder block. The final SVF 𝑣𝜃 is obtained after 3 further
convolutions at half resolution, whereas the warp 𝜙𝜃 requires an integration
and up-sample step [5].

The convolution kernels have dimensions of 3 × 3 × 3 pixels, and the
default network width is 𝑛 = 256.
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The network is implemented using TensorFlow and Keras, and the train-
ing is performed with an Adam optimizer with a batch size of one registration
pair and an initial learning rate of 10−4. The convergence is assessed via Dice
metric and usually takes 4 × 105 iterations [5].

2.3.4 Performance

As presented in Figure 2.10, when compared to the most commonly
used classical method for registration, the sm-shapes network matches the
performance in all the MRI contrasts compared (T2-T2, T1-PD, T1-T2) except
for T1-T1 registration, where it has slightly lower Dice score and higher
surface distances. On the other hand, the sm-brainsmodel outperforms all
the classical methods in every MRI contrast, in particular it exceeds the state-
of-the-art accuracy of VoxelMorph-Normalized Cross-Correlation network
(vm-ncc) [5].

Figure 2.10: SynthMorph performances as (a) volume overlap 𝐷 using Dice
metric and (b) mean symmetric surface distance 𝑆 between label contours,
adapted from Hoffmann et al. [5]
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2.3.5 Strengths of this NN

SynthMorph addresses the main weak point of VoxelMorph, which is its
inadequate performance with MRI image contrasts different from the ones
it has been trained with. Since SynthMorph is trained on non-MRI images
that have a wide range of different contrasts, this NN can generalize well
and becomes resilient to contrast changes.
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3
Methodology

In this chapter are presented the methodologies employed in this research
to process and reconstruct clinical PET data acquired with the Biograph128
mCT-1104 PET scanner (Siemens Medical Solutions USA Inc., Hoffman Es-
tate, Illinois, USA,VG60) at Karolinska University Hospital in Huddinge.

The chapter begins with an overview of the data processing pipeline,
which involves decompressing the raw data from the scanner and convert-
ing the physiological information related to respiratory motion. A custom
Python script is implemented to automate these tasks and streamline the
data organization. Subsequently, the description delves into the details of
the Siemens mCT sinogram organization, discussing the scanner’s crystal
configuration and the corresponding sinogram structure.

Following this, two primary reconstruction methods are presented: the
“standard” clinical data reconstruction using the proprietary e7-tools soft-
ware or the state-of-the-art reconstruction algorithm MLEM and MLAA,
and the proposed Morphed Maximum Likelihood Activity and Attenua-
tion (M-MLAA) reconstruction algorithm, which is a novel approach devel-
oped within this research.

The image quality evaluation is conducted via visual inspection for clin-
ical data and using also figures of merit for synthetic data, enabling a com-
prehensive assessment of the reconstructed images. Through the imple-
mentation of the M-MLAA algorithm, the aim is provide improved image
quality and enhanced visualization of lesions and other critical anatomical
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features. The results of the evaluation serve to validate the effectiveness of
the proposed methodology in enhancing clinical PET image reconstruction.

The methodology pipeline followed to evaluate the proposed algorithm
on clinical data is presented in Figure 3.1.

Figure 3.1: Methodology pipeline to evaluate the M-MLAA algorithm, the
numbers in red represent the corresponding section in this chapter.

3.1 Clinical data decompression

The “Siemens Biograph 128 mCT” PET scanner stores the acquired pa-
tient data with the following folder structure:

• Patient folder

– CT images folder - which contains 284 Dicom files, one for each
CT axial slice

– PET raw data folder - which contains a variable amount of Dicom
files, one file for the sinogram and another one for the list-mode
of each bed position and an eventual physiological file

3.1.1 Raw data decompression

The PET raw data Dicom files are stored in a compressed format, there-
fore, to obtain usable files, it is necessary to execute the proprietary software
“JSRecon12” that will create a new folder containing the normalization file
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and its header and multiple sub-folders, one for each sinogram and list-
mode files. This sub-folders will contain a data file, its header and some
batch scripts to autonomously perform the reconstruction based on Siemens
proprietary software.

3.1.2 Physio-file conversion

In order to decompress the physiological file that registered the respira-
tion motion via a respiratory belt, another script called “PhysioReader” is
run and it returns a .csv file containing as many rows as many time intervals
recorded and 5 columns labelled as:

Time Representing the correspondent time of the data in the
row

Amplitude Containing the amplitude of the movement registered

Beam on Flag to notice if the PET data acquisition is in progress
or not

Inspiration &
Expiration

Flags to distinguish between the two phases of the res-
piration process

3.1.3 File selection

Once the decompressed files are obtained, their structure has been re-
organised to select only the useful ones and copy them in a new folder to
simplify the next analysis.

To do all the steps defined in the previous paragraphs of this section the
author has implemented a Python script that semi-autonomously runs the
Siemens software and reorders the data.

3.1.4 Siemens mCT sinogram organization

The Siemens Biograph128 mCT-1104 scanner is composed by 32 447 crys-
tals divided in 4 major rings each one containing 48 detector blocks. A
detector block is defined by a square grid of 13 × 13 crystals of dimensions
4 mm × 4 mm × 20 mm.
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3.1. CLINICAL DATA DECOMPRESSION

The total number of single-detector rings of the scanner is 55 because
there are 4 blocks × 13 crystals = 52 “real” detector rings, plus 3 “virtual”
rings that model the physical empty volume between one block and the next
one. Given this fact, the number of direct planes is 55 but the data is stored
with span1 equal to 11 and this means that there are other 54 cross-planes to
add, for a total of 109 planes.

Figure 3.2: Michelogram of the Biograph mCT-1104 scanner, adapted from
Martí-Climent et al. [9]

The acquired sinograms are 621 in total and they are grouped together

1The sum of the number of cells in the Michelogram combined into an odd-numbered
plane added to the number of cells combined into an even-numbered plane [4].
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as shown in Figure 3.2 in 9 segments referred as 0, ±1, ±2, ±3 and ±4 that
respectively contain 109, 97, 75, 53 and 31 sinograms each. The sinograms
themselves are 168 × 400 matrices where the first dimension corresponds to
the number of angular samples and the second one to the number of radial
samples. This results in an angular resolution of 1.071 °/pixel and a radial
resolution equal to 2.005 mm/pixel, the axial resolution of the scanner is
equal to 2.027 mm/pixel and given the 109 planes results in an axial FOV of
220.943 mm [9].

The described structure can be arranged in a three-dimensional matrix
with size 621× 168× 400 but since the data is TOF this matrix is repeated for
each one of the TOF bins, so the final matrix will have size 13×621×168×400.
An example of the different TOF bins of a single transversal plane is shown
in Figure 3.3.

The scanner also registers the delayed coincidences and they are stored
as the “fake” 14th TOF bin, as can be seen in Figure 3.4 that presents an
example of the random coincidences in the same plane as in Figure 3.3.

The data can be summed along the TOF dimension to obtain NON-TOF
data that is later needed for the reconstruction algorithms; an example NON-
TOF sinogram of a single plane is shown in Figure 3.5.

3.2 Standard clinical data reconstruction

The standard method used in clinics to reconstruct PET images from
the data acquired through the Siemens mCT scanner is with its proprietary
software JSRecon and e7-tools that are able to decompress the raw data ob-
tained from the scan, then they create the sinograms and the attenuation
maps and finally apply different types of reconstruction techniques to get a
reconstructed image.

In this section are also presented other two state-of-the-art reconstruc-
tion algorithms used in clinics: the Maximum Likelihood Expectation Max-
imisation (MLEM) and the Maximum Likelihood Activity and Attenua-
tion (MLAA). Those algorithms have been implemented by the author
as Python scripts, following the procedures described in literature.
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Figure 3.3: Example of the TOF sinograms of a single plane.
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Figure 3.4: Example of the random coincidences sinogram of a single plane.

Figure 3.5: Example of a NON-TOF sinogram of a single plane.

3.2.1 e7-tools reconstruction

The proprietary reconstruction starts with the execution of the script
JSRecon12.bat by dragging on it the folder containing the raw data. This
process decompresses the clinical raw data and creates a number of batch
files ready to perform the image reconstruction based on the proprietary
algorithms. The chosen state-of-the-art reconstruction algorithm is the TOF
Ordered Subset Expectation Maximisation (OSEM), a faster implementa-
tion of the MLEM algorithm. Instead of computing the forward and back-
projections on the whole data space, at each sub-iteration those projections
are computed only for a specific subset of views and the subset is changed
for the next iteration; this reduces the computational power needed for each
sub-iteration and provides an order of magnitude acceleration over MLEM
[6].
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By looking at the folder containing the list-mode data of a singular bed
position, the following files are contained (XX stands for the number of bed
position, usually between 00 and 05):

• PET-RAW-DATA-LM-XX.hdr
• PET-RAW-DATA-LM-XX.l
• Run-00-PET-RAW-DATA-LM-XX-Histogramming.bat
• Run-01-PET-RAW-DATA-LM-XX-Makeumap.bat
• Run-04-PET-RAW-DATA-LM-XX-OPTOF.bat

The .hdr file contains the header of the list-mode data and points to the
binary data contained inside the .l file.

Figure 3.6: e7-tools reconstruction scheme.

The 3 .bat files are needed to perform the TOF OSEM reconstruction
following the next steps, also shown in Figure 3.6:

1. Execute Run-00-PET-RAW-DATA-LM-XX-Histogramming.bat that cal-
culates the sinograms starting from the list-mode data and stores
them in the file PET-RAW-DATA-LM-04-sino-0.s and its correspond-
ing header PET-RAW-DATA-LM-04-sino-0.s.hdr

2. Run the script Run-01-PET-RAW-DATA-LM-XX-Makeumap.bat that cre-
ates the attenuation map by converting the CT into attenuation factors
and registering it in the PET image space.
After this the files PET-RAW-DATA-LM-XX-umap_000_000.v,
PET-RAW-DATA-LM-XX-umap_000_000.v.hdr and
PET-RAW-DATA-LM-XX-umap.mhdr will be created, also with the corre-
spondent ones where the bed of the scanner has been removed from
the CT (PET-RAW-DATA-LM-XX-umapBedRemoval_000_000.v,
PET-RAW-DATA-LM-XX-umapBedRemoval_000_000.v.hdr and
PET-RAW-DATA-LM-XX-umapBedRemoval.mhdr)

3. Execute Run-04-PET-RAW-DATA-LM-XX-OPTOF.bat that performs the
OSEM algorithm and saves the reconstructed images in the files
PET-RAW-DATA-LM-XX-OPTOF_000_000.v,
PET-RAW-DATA-LM-XX-OPTOF_000_000.v.hdr and
PET-RAW-DATA-LM-XX-OPTOF.mhdr

The default settings of the reconstruction algorithm are the following:

• number of OSEM iteration = 3 and number of subsets = 21, for a total
number of 63 iterations
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• width of the reconstructed image = 200 pixels

• applied Gaussian filter of resolution 5 mm both in trans-axial and axial
direction

As a way to obtain images comparable with the other ones, the width of
the reconstructed image has been changed to 353 pixels and the Gaussian
filter is removed; also, the scatter correction is not performed.

3.2.2 MLEM reconstruction

The implementation of the reconstruction algorithms has been based on
Python notebooks with the aid of the SIRF2 library developed by the CCP
SyneRBI3 and the ODL4 library created by the Math department of KTH
university in Stockholm, under the supervision of Prof. Ozan Öktem.

The SIRF library is the central point in the development of the recon-
struction algorithm used in this work because it contains the models of the
forward and back-projections of the Radon transform that are defined for
the particular geometry of the Siemens mCT scanner.

On the other hand, the Operator Discretization Library (ODL) Python
package has been used to wrap those forward and back-projector inside
mathematical operators in order to make the implementation of the code
much easier.

The just mentioned Python environments have been necessary to imple-
ment the chosen reconstruction algorithms and obtain images to compare
with e7-tools.

When applying the MLEM reconstruction to clinical data, the formula
2.2 has to be adapted to account for the effect of some physical elements that
affect the acquisition data process, those are normalization and attenuation
factors and random and scatter coincidences.

2Synergistic Image Reconstruction Framework, an open source toolkit for image recon-
struction of PET and MRI (https://github.com/SyneRBI/SIRF)

3Collaborative Computational Project in Synergistic Reconstruction for Biomedical
Imaging (https://www.ccpsynerbi.ac.uk/)

4Operator Discretization Library, a Python library for fast prototyping focusing on
inverse problems (https://github.com/odlgroup/odl)
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3.2. STANDARD CLINICAL DATA RECONSTRUCTION

The corrected data �̂� can be represented with the following model:

�̂� = 𝑈𝑁𝐴 𝑓 + 𝑟 + 𝑠 (3.1)

where:

• 𝑓 is the image and 𝐴 the forward projector modelling the Radon trans-
form

• 𝑈 is the inverse of the attenuation correction factors obtained from
e7-tools and attenuates the projected data based on the CT acquired

• 𝑁 represents the inverse of the normalization factors derived from e7-
tools and simulates the sensitivities of the different LOR based on the
detectors efficiency and geometry

• 𝑟 accounts for the random coincidences that are obtained during the
acquisition

• 𝑠 are the scatter coincidences

Since all the scatter estimation algorithms for TOF PET are protected by
patents, the scatter coincidences are not accounted for in this analysis.

Keeping this in mind, the MLEM update step then becomes:

𝑓 (𝑛+1) =
𝑓 (𝑛)

𝑈𝑁𝐴∗1𝐴
∗
(

𝑔

𝑈𝑁𝐴 𝑓 (𝑛) + 𝑟
)

(3.2)

where 𝐴∗ is the adjoint operator of the Radon transform and 𝐴∗1 repre-
sents the back-projection of a uniform scan.

The complete structure of the MLEM algorithm for clinical data is dis-
played in Algorithm 4.

3.2.3 MLAA reconstruction

Similarly to MLEM, when reconstructing PET clinical data with the
MLAA algorithm, the model has to account for attenuation and sensitiv-
ity factors and also for the random and scatter coincidences.

The MLEM step of the algorithm remains the same as in formula 3.3 but
the matrix 𝑈 is not calculated from the CT, since it is not fixed for all the
iterations, and it is computed as follows:

𝑈𝑛 = 𝑒−𝐴(𝜇𝑛)
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Algorithm 4 MLEM for clinical data
Require: 𝑛 ≥ 0
𝐴← 𝐴 ⊲ Radon transform
𝐴∗← 𝐴∗ ⊲ adjoint operator of Radon transform
𝑛 ← 𝑀𝐿𝐸𝑀𝑖𝑡𝑒𝑟 ⊲ nb of MLEM iterations
𝑓 (0) ⊲ init of activity image
𝑔 ⊲ projection data
𝑈 ⊲ attenuation matrix
𝑁 ⊲ normalization matrix
𝑟 ⊲ randoms data
for 𝑖 ← 0, 𝑛 do

𝑓 (𝑖+1) = 𝑓 (𝑖)
𝑈𝑁𝐴∗1𝐴

∗
(

𝑔
𝑈𝑁𝐴 𝑓 (𝑖)+𝑟

)
end for

So, for each new estimate of the attenuation map, the MLEM update be-
comes:

𝑓 (𝑛+1) =
𝑓 (𝑛)

𝑈𝑛𝑁𝐴∗1𝐴
∗
(

𝑔

𝑈𝑛𝑁𝐴 𝑓 (𝑛) + 𝑟
)

(3.3)

Moreover, the MLTR update accounting for the real world situation is
the following:

• first, the sinogram of the current activity estimate is simulated account-
ing for sensitivity and attenuation

𝜓𝑛 = 𝑈𝑛𝑁𝐴 𝑓 (𝑛+1)

• then, the attenuation map is updated with the formula

𝜇𝑛+1 = 𝜇𝑛 +
𝜓𝑛

𝜓𝑛+𝑟
(
𝜓𝑛 + 𝑟 − 𝑦)
(𝜓𝑛)2
𝜓𝑛+𝑟 𝐴1

(3.4)

The complete structure of the MLAA algorithm for clinical data is dis-
played in Algorithm 5.

3.3 Proposed reconstruction

After having presented the state-of-the-art reconstruction techniques
used in clinical practice for PET imaging, in this section is described the
recently developed Morphed Maximum Likelihood Activity and Attenu-
ation (M-MLAA) algorithm, that is proposed as a solution to correct for
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Algorithm 5 MLAA for clinical data
Require: 𝑛 ≥ 0
Require: 𝑚 ≥ 0
Require: 𝑝 ≥ 0
𝐴← 𝐴 ⊲ Radon transform
𝐴∗← 𝐴∗ ⊲ adjoint operator of Radon transform
𝑛 ← 𝑀𝐿𝐴𝐴𝑖𝑡𝑒𝑟 ⊲ nb of MLAA iterations
𝑚 ← 𝑀𝐿𝐸𝑀𝑖𝑡𝑒𝑟 ⊲ nb of MLEM sub-iterations
𝑝 ← 𝑀𝐿𝑇𝑅𝑖𝑡𝑒𝑟 ⊲ nb of MLTR sub-iterations
𝑓 (0) ⊲ init of activity image
𝜇(0) ⊲ init of attenuation image
𝑔 ⊲ projection data
for 𝑖 ← 1, 𝑛 do

𝑓 (1)← 𝑓 (𝑖−1)
𝜇(1)← 𝜇(𝑖−1)

𝑈 (1) = 𝑒−𝐴(𝜇(1))
for 𝑗 ← 1, 𝑚 do

𝑓 (𝑗+1) = 𝑓 (𝑗)
𝑈 (1)𝑁𝐴∗1𝐴

∗
(

𝑔
𝑈 (1)𝑁𝐴 𝑓 (𝑗)+𝑟

)
⊲ MLEM step

end for
𝑓 (𝑖)← 𝑓 (𝑗)
for 𝑘 ← 1, 𝑝 do

𝑈 𝑘 = 𝑒−𝐴(𝜇𝑘)
𝜓𝑘 = 𝑈 𝑘𝑁𝐴 𝑓 (𝑘+1)

𝜇𝑘+1 = 𝜇𝑘 +
𝜓𝑘

𝜓𝑘+𝑟 (𝜓𝑘+𝑟−𝑦)
(𝜓𝑘)2
𝜓𝑘+𝑟 𝐴1

⊲ MLTR step

end for
𝜇(𝑖)← 𝜇(𝑘)

end for

motion artifacts present during the acquisition of the scan, in particular for
the movement associated to breathing.

Since this process relies on the use of data divided into different respira-
tory gates, the method is divided into two major part:

• The creation of gated TOF sinograms from listmode data.

• The image reconstruction via M-MLAA algorithm.
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3.3.1 Reconstruct sinogram from list-mode

The first step needed to be able to divide the acquired data in different
motion gates is to reconstruct the sinograms from the list-mode files.

The list-mode data is stored with the Siemens PETLINK [8] format that
stores together the events, the time elapsed and other information, each in a
32-bit packet.

After having divided the bytes between the different packets, the ones
of interest are selected; they are the events - that are marked by having the
first bit equal to 0 - and the time markers - which have 10 at the start of
their binary sequence. The events packets contains both the prompts and the
delayed coincidences that can be separated by looking at the second bit, that
is 1 for the prompts and 0 for the delays. The remaining 30 bits stores the 4
sinogram coordinates:

• 𝑇𝑂𝐹𝑏𝑖𝑛 that contains the corresponding TOF bin

• 𝑚𝑖 that is the number of the michelogram

• 𝑡𝑥𝑎𝑛𝑔 the trans-axial angle of orientation of the LOR

• 𝑟𝑜𝑏𝑖𝑛 the radial distance of the LOR from the centre of the FOV

Those coordinates are then coded together with the formula:

𝑒𝑣𝑒𝑛𝑡 = 𝑟𝑜𝑏𝑖𝑛 + 𝑐1 × 𝑡𝑥𝑎𝑛𝑔 + 𝑐1𝑐2 × 𝑚𝑖 + 𝑐1𝑐2𝑐3 × 𝑇𝑂𝐹𝑏𝑖𝑛 (3.5)

where 𝑐1, 𝑐2 and 𝑐3 are the dimension of the sinogram: 𝑐1 is the number of
radial distance bins, 𝑐2 is the number of angular orientation bins and 𝑐3 is
the total number of sinograms.

The coordinate are then recovered by inverting Formula 3.5 (where the
symbol ”//” denotes the integer division) resulting in:

𝑇𝑂𝐹𝑏𝑖𝑛 = 𝑒𝑣𝑒𝑛𝑡//(𝑐1 𝑐2 𝑐3)

𝑚𝑖 = (𝑒𝑣𝑒𝑛𝑡 − 𝑐1 𝑐2 𝑐3 𝑇𝑂𝐹𝑏𝑖𝑛) //(𝑐2 𝑐3)
𝑡𝑥𝑎𝑛𝑔 = (𝑒𝑣𝑒𝑛𝑡 − 𝑐1 𝑐2 𝑐3 𝑇𝑂𝐹𝑏𝑖𝑛 − 𝑐1 𝑐2 𝑚𝑖) //𝑐1

𝑟𝑜𝑏𝑖𝑛 = 𝑒𝑣𝑒𝑛𝑡 − 𝑐1 𝑐2 𝑐3 𝑇𝑂𝐹𝑏𝑖𝑛 − 𝑐1 𝑐2 𝑚𝑖 − 𝑐1 𝑡𝑥𝑎𝑛𝑔
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For each prompt packet those 4 parameters are calculated and the number
of counts of the corresponding cell in the 4D sinogram is incremented by
one.

3.3.2 Gating

The proposed reconstruction algorithm needs the acquisition data to
be divided into different gates, each one corresponding to an almost static
position of the body. In order to obtain those gates there are two main
strategies:

• use the information of the amplitude of the chest movement recorded
with the respiratory belt;

• calculate the Center of Mass (COM) for each group of consecutive
coincidence events.

Physio-file gating

The physiological file contains the data registered with a respiratory
belt that can be summarize as a table that associates an amplitude to each
time instant of the acquisition. That amplitude is related to the respiration
motion and gives a signal with a cyclic pattern between the inspiration and
expiration phases as displayed in Figure 3.7.

Figure 3.7: Example of a Physio-file correspondent to a single bed position.
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The easiest way to use this signal to divide the PET data into different
gates is to designate a set of thresholds to each gate and divide the acquisition
times between those gates, assigning the corresponding coincidences to their
gate. An example of this procedure is shown in Figure 3.8.

Figure 3.8: Example of gating based on amplitude of respiratory signal.

Center of Mass gating

A second way to divide the data between the gates is to calculate the
Center of Mass (COM) of a restricted amount of consequent coincidence
events acquired in a specific time window and group together the events
which COM are close in the spatial volume.

The Center of Mass software had already been developed by Hugo Linder
in his final project “Characterization of Center-of-Mass and Rebinning in
Positron Emission Tomography with Motion” [7].

The idea behind this is to calculate the COM of a group of consequent
events 𝑋 as a weighted average position of that set 𝑋 as shown in Equation
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3.6.

𝐶𝑂𝑀
(
𝑋, 𝑝, 𝑚

)
=

∑
𝑥∈𝑋

𝑚 (𝑥) · 𝑝 (𝑥)∑
𝑥∈𝑋

𝑚 (𝑥) (3.6)

where 𝑚 (𝑥) is the mass of event 𝑥 and 𝑝 (𝑥) its position.
Then, those sets 𝑋 are divided into different gates by grouping together

the sets with the closest COM.

3.3.3 M-MLAA reconstruction

The proposed reconstruction algorithm is called M-MLAA, which stands
for Morphed Maximum Likelihood Activity and Attenuation estimate, that has
been developed inside the research team of Prof. Colarieti-Tosti, in particular
by PhD exchange student Enza Cece from University of Naples Federico II
[3].

This algorithm applies the idea of a morphed version of the MLEM
reconstruction already presented in section 2.2.1 to the MLAA algorithm
with the objective of obtaining a reconstructed PET image without motion
artifacts and without the need of using an attenuation image coming from a
different source.

The algorithm can be summed up in the following steps:

1. An initial number 𝑚 of MLAA iteration is performed on each single
gate, obtaining the initial estimates for the activity and attenuation
images.

2. The initial deformation between the gates𝑊𝑖 are computed using Syn-
thMorph Neural Network.

3. For each of the 𝑛 iterations of M-MLAA:

(a) The new 𝑓 𝑘+1
0 activity estimate for gate 0 is computed by using

its previous estimate 𝑓 𝑘0 and the contribute from the other gates
deformed onto the first one with the M-MLEM formula:

𝑓 𝑘+1
0 ← 𝑓 𝑘0

𝑁∑
𝑗=1
𝐴∗𝑗−1

[
𝑒−𝐴𝑗(𝜇𝐶𝑇−0) 𝑔𝑗

𝑒−𝐴𝑗(𝜇𝐶𝑇−0)𝐴𝑗( 𝑓 𝑘0 )

]
𝑁∑
𝑗=1
𝐴∗𝑗−1

[
1 · 𝑒−𝐴𝑗(𝜇𝐶𝑇−0)] (3.7)
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(b) The𝜇𝑘+1
0 attenuation estimate for gate 0 is updated in a similar way

as for the activity, by using the Morphed Maximum Likelihood
for Transmission Tomography (M-MLTR) formula:

𝜇𝑘+1
0 ← 𝜇𝑘0 +

𝑁∑
𝑗=1
𝐴∗𝑗−1

[
𝑒−𝐴𝑗(𝜇𝑘0)𝐴 𝑗( 𝑓 𝑘0 )

]
𝑁∑
𝑗=1
𝐴∗𝑗−1

[
𝑒−𝐴𝑗(𝜇𝑘0) · 𝐴 𝑗(1)

] (3.8)

4. The algorithm ends when the maximum number of iterations is reached.

The complete structure of the M-MLAA algorithm is displayed in Algo-
rithm 6.

3.3.4 Image quality evaluation

For the purpose of assessing the quality of the reconstructed image the
easiest and only way used in this work for clinical data is via visual inspec-
tion, since the images are somehow complicated to be judged via objective
measurements. Nevertheless, in order to have some data to support the
personal inferences on the quality of the images, the following Figure of
Merit (FOM) have been evaluated for the analysis on synthetic data: Peak
Signal-to-Noise Ratio (PSNR), Recovery Coefficient (RC) and Signal Differ-
ence to Noise Ratio (SDNR).

In the case of the synthetic data, 𝐼1 is defined as the original phantom
and 𝐼2 as the reconstructed image from noisy and attenuated sinogram, then
Ω𝑙 is the ROI around the lesion and Ω𝑏 is the ROI within the background.
Thus, FOMs are defined as follows:

• Peak Signal-to-Noise Ratio (PSNR):

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

(
𝑑2

𝑀𝑆𝐸

)
(3.9)

Here, 𝑑 is the maximum fluctuation in the input image data type and
MSE is the Mean Squared Error, computed as follows:

𝑀𝑆𝐸 =
∑
𝑀,𝑁

[𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]2
𝑀 · 𝑁 (3.10)

where 𝑀 and 𝑁 are the dimensions of the image.
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Algorithm 6 M-MLAA
Require: 𝑛 ≥ 0
Require: 𝑚 ≥ 0
Require: 𝑁 ≥ 1
𝐴← 𝐴 ⊲ Radon transform
𝐴∗← 𝐴∗ ⊲ adjoint operator of Radon transform
𝜃← 𝜃 ⊲ learned parameters of SynthMorph network
𝑚 ← 𝑀𝐿𝐴𝐴𝑖𝑡𝑒𝑟 ⊲ nb of MLAA iterations
𝑝 ← 𝑀 −𝑀𝐿𝐴𝐴𝑖𝑡𝑒𝑟 ⊲ nb of M-MLAA iterations
𝑁 ← 𝑛𝑏𝑔𝑎𝑡𝑒𝑠 + 1 ⊲ nb total of gates
𝑓0, . . . , 𝑓𝑁 ← 1 . . . 1 ⊲ init of the distribution estimation
𝑔0, . . . , 𝑔𝑁 ⊲ data for every gates
𝑊0, . . . ,𝑊𝑁 ← 𝐼𝑑, . . . , 𝐼𝑑 ⊲ init registration fields
for 𝑖 ← 0, 𝑁 do

for 𝑘 ← 1, 𝑛 do

𝑓 𝑘+1
𝑖 ← 𝑓 𝑘𝑖

𝐴∗

𝑒
−𝐴(𝜇𝑘𝑖 ) 𝑔𝑖[

𝑒
−𝐴(𝜇𝑘𝑖 )𝐴( 𝑓 𝑘𝑖 )

]


𝐴∗
[
1·𝑒−𝐴(𝜇𝑘𝑖 )

] ⊲ MLAA iteration: MLEM step

𝜇𝑘+1
𝑖 ← 𝜇𝑘𝑖 +

𝐴∗
[
𝑒−𝐴(𝜇

𝑘
𝑖 )𝐴( 𝑓 𝑘𝑖 )

]
𝐴∗

[
𝑒−𝐴(𝜇

𝑘
𝑖 )·𝐴(1)

] ⊲ MLAA iteration: MLTR step

end for
if 𝑖 > 0 then

𝑊𝑖,𝑖−1← 𝐻( 𝑓𝑖−1, 𝑓𝑖 , 𝜃) ⊲ vector field between two close gates
𝑊𝑖,𝑖−1← 𝐻(𝜇𝑖−1, 𝜇𝑖 , 𝜃) ⊲ vector field between two close gates
𝑊𝑖−1,𝑖 ← −𝑊𝑖 ,𝑖−1 ⊲ approximate estimation of inverse
𝑊𝑖 ←𝑊𝑖,𝑖−1 ◦ . . . ◦𝑊1,0
𝑊−1
𝑖 ←𝑊0,1 ◦ . . . ◦𝑊𝑖−1,𝑖

end if
end for
for 𝑘 ← 1, 𝑚 do

𝑓 𝑘+1
0 ← 𝑓 𝑘0

𝑁∑
𝑗=1
𝐴∗𝑗−1

[
𝑒−𝐴𝑗 (𝜇𝐶𝑇−0) 𝑔𝑗

𝑒
−𝐴𝑗 (𝜇𝐶𝑇−0)𝐴𝑗 ( 𝑓 𝑘0 )

]
𝑁∑
𝑗=1
𝐴∗𝑗−1

[
1·𝑒−𝐴𝑗 (𝜇𝐶𝑇−0)

] ⊲ M-MLAA iteration:

M-MLEM step

𝜇𝑘+1
0 ← 𝜇𝑘0 +

𝑁∑
𝑗=1
𝐴∗𝑗−1

[
𝑒−𝐴𝑗 (𝜇

𝑘
0 )𝐴𝑗( 𝑓 𝑘0 )

]
𝑁∑
𝑗=1
𝐴∗𝑗−1

[
𝑒−𝐴𝑗 (𝜇

𝑘
0 )·𝐴𝑗(1)

] ⊲ M-MLAA iteration: M-MLTR step

end for
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• Recovery Coefficient (RC):

𝑅𝐶 =

∑
Ω𝑙

𝐼2∑
Ω𝑙

𝐼1
(3.11)

and it represents the ratio of observed to true activity in a PET image
[21].

• Signal Difference to Noise Ratio (SDNR):

𝑆𝐷𝑁𝑅 =

1
𝑁𝑝𝑖𝑥𝑒𝑙𝑙

∑
Ω𝑙

𝐼2 − 1
𝑁𝑝𝑖𝑥𝑒𝑙𝑏

∑
Ω𝑏

𝐼1√
𝜎 (𝐼1 (Ω𝑙)) + 𝜎 (𝐼1 (Ω𝑏))

(3.12)

where 𝑁𝑝𝑖𝑥𝑒𝑙𝑙 and 𝑁𝑝𝑖𝑥𝑒𝑙𝑏 are the number of pixels of the Region of
Interest (ROI) selected 𝑙 and the background 𝑏,
Here, the numerator is the difference between the mean of the re-
constructed lesion and the mean of the reconstructed background; the
denominator is computed as the square root of the sum of the standard
deviations 𝜎 of the original lesion and original background.
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4
Results

In this chapter, the results obtained from evaluating various reconstruc-
tion algorithms using synthetic and clinical data are presented.

The chapter begins by discussing the outcomes of simulations conducted
on synthetic data using the XCAT 4D phantom. The following algorithms
for reconstructing the XCAT phantom have been evaluated: Maximum
Likelihood Expectation Maximisation (MLEM), Maximum Likelihood Activ-
ity and Attenuation (MLAA), Morphed Maximum Likelihood Expectation
Maximisation (M-MLEM) and Morphed Maximum Likelihood Activity and
Attenuation (M-MLAA).

Next, the results obtained on clinical data are shown for the MLEM and
MLAA algorithms in comparison to the reconstructed image obtained with
the e7-tools software.

In the last section, the differences between attenuation and normalization
correction factors obtained from e7-tools and the SIRF library are analyzed.
Some visualizations of these differences in various planes are provided to
identify potential discrepancies that may impact the performance of clinical
data reconstruction.
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4.1 Simulations on synthetic data

Before reporting the results obtained on clinical data, here are presented
the simulations run on synthetic data using the XCAT 4D phantom [16].

The algorithms that were evaluated in the reconstruction of the XCAT
phantom were the following:

• MLEM, state-of-the art in clinical data reconstruction, with the use of
a simulated CT scan to correct for the attenuation.

• MLAA, to jointly reconstruct activity and attenuation images.

• M-MLEM, to perform motion correction with the use of gated data
and a deformed attenuation image by applying SynthMorph to the CT
image and the different gate reconstructions.

• M-MLAA, to perform motion correction without the use of the CT
scan.

The reconstructions shown are the ones corresponding to the number of
iteration that gives the maximum PSNR as later shown in Section 4.1.6.

The reconstructed images all are 3D matrices of dimensions 109 × 345 ×
345, where 109 is the number of transversal slices reconstructed and 345×345
is the transversal plane resolution, obtained directly with the SIRF library.

4.1.1 XCAT phantom

The XCAT 4D extended cardiac-torso phantom is a multi-modality imag-
ing phantom developed to produce realistic imaging data when combined
with accurate models of the imaging process [16].

In particular, it can simulate respiratory motion in the form of multiple
gates, in this case it has been decided to divide the respiratory movement
from inspiration to expiration in 4 different gates, numbered from 0 to 3.

The XCAT phantom defines a label map of the anatomy of a simulated
patient and, to obtain the activity and attenuation phantoms, those labels
have been mapped with a Python function onto the corresponding values of
activity and attenuation, respectively shown in the Figures 4.1 and 4.2. The
3D matrices obtained have been resized to fit the dimension expected by the
SIRF library of 109 × 345 × 345 voxels.

44



CHAPTER 4. RESULTS

Figure 4.1: XCAT activity phantom.

Figure 4.2: XCAT attenuation phantom.

4.1.2 MLEM simulation

The MLEM reconstruction of the phantom was performed by merging
the data of the 4 gates obtained by forward projecting the different activity
images of the gates, resulting in the correspondent sinogram and summing
them together, with the objective of mimicking motion during the acquisition
of the data. The attenuation factors come from the simulated CT image
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derived from a single gate of the XCAT phantom, to simulate a difference in
the respiratory gates between the acquisition of the CT and the PET scans.

The activity image shown in Figure 4.3 was reconstructed after 20 itera-
tions of the MLEM algorithm.

Figure 4.3: MLEM image reconstruction of synthetic data from XCAT phan-
tom.

4.1.3 MLAA simulation

The MLAA reconstruction of the activity and attenuation images of the
XCAT phantom uses the same data coming from multiple gates as in the
MLEM simulation.

The ratio between the number of MLTR iteration each MLEM update is
5, as recommended from literature [13].

Figure 4.4 shows the activity reconstruction after 5 iterations of the MLAA
algorithm and Figure 4.5 displays the reconstructed attenuation image ob-
tained after the same number of total MLAA iterations, that corresponds to
25 MLTR updates for the attenuation.

In order to have a comparison with the best case scenario of absent
respiratory movement, the same algorithm has also been applied to data
coming from a single gate, gate number 0.
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Figure 4.4: MLAA total gates activity reconstruction of synthetic data from
XCAT phantom.

Figure 4.5: MLAA total gates attenuation reconstruction of synthetic data
from XCAT phantom.

The number of MLAA iterations for this simulation is also 5 and the
reconstructed images are shown in Figure 4.6 for the activity and Figure 4.7
for the attenuation.
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Figure 4.6: MLAA single gate activity reconstruction of synthetic data from
XCAT phantom.

Figure 4.7: MLAA single gate attenuation reconstruction of synthetic data
from XCAT phantom.

4.1.4 M-MLEM simulation

The M-MLEM algorithm has been applied to the gated data of the XCAT
phantom with the goal of performing motion correction with the use of the
information coming from different gates and with a different attenuation
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map for each gate by deforming the simulated CT onto the gates.

The reconstructed activity displayed in Figure 4.8 is obtained after 9
iterations of the M-MLEM algorithm.

Figure 4.8: M-MLEM image reconstruction of synthetic data from XCAT
phantom.

4.1.5 M-MLAA simulation

As for the M-MLEM case, the M-MLAA algorithm also has the objective
of removing respiratory motion artifacts during the reconstruction of the
images and it also takes advantage of the gated data.

This algorithm returns an estimate both for the activity and the attenu-
ation image, in the particular case of Figure 4.9 and 4.10 the results shown
come after 35 total iterations of the M-MLAA algorithm that corresponds to
35 MLEM and 175 MLTR updates, having used the usual 1:5 ratio between
the two steps.
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Figure 4.9: M-MLAA activity reconstruction of synthetic data from XCAT
phantom.

Figure 4.10: M-MLAA attenuation reconstruction of synthetic data from
XCAT phantom.

4.1.6 Image quality evaluation

A first visual comparison between the XCAT original phantom and the
reconstruction images obtain from different algorithms is displayed in Figure
4.11.

As explained in Section 3.3.4, after visual inspection, the following Figure
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Figure 4.11: Visual comparison between different reconstruction algorithms.

of Merit have been evaluated on the reconstructed images of the XCAT
phantom: Peak Signal-to-Noise Ratio (PSNR), Recovery Coefficient (RC)
and Signal Difference to Noise Ratio (SDNR).

The PSNR is one of the standard method to evaluate the quality of images
and shows in Figure 4.12 that:

• for a very limited amount of iterations run, the MLAA results in the
highest value of this FOM;

• between 6 to 18 iterations, the M-MLEM algorithm obtains the highest
values of PSNR;

• after 19 iterations, the M-MLAA constantly has the highest values of
PSNR;

• the MLEM reconstruction always underperforms in this FOM with
respect to the other reconstruction algorithms;

• the morphed versions of the algorithms (M-MLEM and M-MLAA)
show a trend of higher PSNR values in comparison to their non-
morphed versions (MLEM and MLAA).

Figure 4.13 shows the Recovery Coefficient and the Signal Difference to
Noise Ratio evaluated on 5 different Region of Interest. Looking at the RC
the main trends are the overall highest values for the MLEM algorithm and
an improving trend, following the growth of the number of iteration, for the
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Figure 4.12: Peak Signal-to-Noise Ratio figure of merit between different
type of reconstructions.

M-MLAA algorithm, which RC values are close to the M-MLEM and MLAA
algorithms, between the different ROIs.

Moreover, the SDNR shows an unstable behaviour between the different
ROIs.

(a) (b)

Figure 4.13: Recovery Coefficients (a) and Signal Difference to Noise Ratio
(b) Figure of Merit comparison between different types of reconstruction
algorithm.
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4.2 Clinical data reconstruction

In this section are reported the results obtained from the reconstruction of
clinical data acquired with the Biograph128 mCT-1104 PET scanner (Siemens
Medical Solutions USA Inc., Hoffman Estate, Illinois, USA, VG60).

The reconstruction techniques tested are the ”standard” reconstruction
with e7-tools software, MLEM reconstruction and MLAA reconstruction.
Due to implementation problems it was not possible to test the M-MLEM
and M-MLAA algorithms on clinical data.

4.2.1 e7-tools reconstruction

The state-of-the art clinical reconstruction is achieved with the e7-tools
reconstruction using the software provided by Siemens.

The output obtained from the software is presented in Figure 4.14 and is
reconstructed with the OSEM algorithm on 21 subsets with 3 full iterations.

Figure 4.14: e7-tools standard reconstruction, including scatter correction
and Gaussian filter smoothing.

To obtain images comparable to the ones reconstructed with the use of the
SIRF library, the data has also been reconstructed using the e7-tools software
without the application of a Gaussian filter and without performing the
scatter correction, the results are shown in Figure 4.15.
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Figure 4.15: e7-tools reconstruction without scatter correction and without
Gaussian filter smoothing.

4.2.2 MLEM reconstruction

The clinical reconstruction with the MLEM algorithm was performed
with the use of the inverse attenuation correction and normalization factors
obtained from the e7-tools software to guarantee their correct alignment with
the data.

The reconstruction shown in Figure 4.16 is obtained after 21 iterations.

Figure 4.16: MLEM activity reconstruction without Gaussian filter and with-
out scatter correction.
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4.2.3 MLAA reconstruction

The MLAA reconstruction results are shown in Figures 4.17 and 4.18 after
10 iterations of the algorithm and in Figures 4.19 and 4.20 after 20 iterations.

Figure 4.17: MLAA activity reconstruction after 10 iterations.

Figure 4.18: MLAA attenuation reconstruction after 10 iterations.

4.2.4 M-MLEM and M-MLAA reconstructions

Due to the problems encountered with the MLAA reconstruction that
did not permit to reconstruct the clinical data with the MLAA algorithm,
it was also not possible to obtain a reconstructed image with the use of
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Figure 4.19: MLAA activity reconstruction after 20 iterations.

Figure 4.20: MLAA attenuation reconstruction after 20 iterations.

the M-MLAA algorithm and therefore there are no clinical results on that
method.

On the other hand, regarding the M-MLEM algorithm, the problems
regarding this technique was related to the registration between the CT
attenuation image and the gated activity reconstruction after few iterations,
that was the first step needed for obtain results with this algorithm. The
issue was related to the estimated deformation between the images with
SynthMorph that resulted in a too big distortion between the attenuation
and activity images that was found not to be true and that would lead to
intrinsic problems during the reconstruction process.
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4.3 Analysis of SIRF library’s projectors

With the aim of trying to understand why the clinical MLAA reconstruc-
tion fails, a brief analysis on the differences between the attenuation and
normalization factors obtained from the SIRF library is presented in this
section.

4.3.1 Attenuation correction factors

Figure 4.21 shows a comparison between the matrices containing the
inverse of the attenuation correction factors given from e7-tools and the
ones obtained through the use of the SIRF library.

4.3.2 Normalization factors

At the same way as above, Figure 4.22 shows a comparison between
the matrices containing the inverse of the normalization factors given from
e7-tools and the ones obtained through the use of the SIRF library.

Prior to the analysis, those factors have been normalized to have compa-
rable values.
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Figure 4.21: Differences between the inverse matrix of attenuation correction
factors between e7-tools and SIRF.
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Figure 4.22: Differences between the inverse matrix of normalization factors
between e7-tools and SIRF.
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5
Discussion

5.1 Synthetic data simulations

Figure 4.11 displays the synthetic data reconstructions obtained with
the use of all the algorithms presented; the visual inspection of this figure
suggests that the reconstructed image with the M-MLAA algorithm (Figure
4.9) is the most similar to the original phantom (Figure 4.1). The M-MLEM
reconstruction (Figure 4.8) also shows good reconstruction, with that re-
constructed image being smoother compared to the M-MLAA one, which
instead shows higher contrast. On the other hand, both MLEM and MLAA
images (respectively Figures 4.3 and 4.4), reconstructed from the combined
data of multiple gates, show higher level of noise and blurring that is ex-
pected since the do not correct the motion artifacts and this results in lower
image quality and contrast.

Peak Signal-to-Noise Ratio (Figure 4.12) confirms visual inspection, so
that for a number of iterations that is sufficient to obtain a good reconstruc-
tion (≥ 19) the M-MLAA algorithm has better performances than the other
algorithms. For a limited number of iterations (< 19), even though other
algorithms have higher PSNR values, the reconstructed image will present
lower level of spatial resolution, due to the earliness of the reconstruction.

The Recovery Coefficient and Signal Difference to Noise Ratio indexes
evaluated on different ROIs corresponding to various lesions in the phantom
do not seem to reflect visual inspection and are not coherent for all ROIs as
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shown in Figure 4.13. For this reason, the results from visual inspection and
PSNR are found to be more significant.

The results obtained through simulations on synthetic data therefore
show that M-MLAA improves the quality of the reconstructed image, reach-
ing the goal of motion correction and obtaining better performances than
the state-of-the-art reconstruction algorithms MLEM and MLAA and also
beats the M-MLEM algorithm for motion correction.

5.2 Clinical data reconstruction

The reconstructions obtained through the Siemens proprietary e7-tools
software are at visual inspection better than the ones obtained through
MLEM and MLAA reconstruction with the use of the SIRF library.

In particular, comparing the e7-tools reconstructed image (Figure 4.15,
without scatter correction and without Gaussian filtering) with the MLEM
reconstruction (Figure 4.16), it is noticeable that the second image presents
at visual inspection lower definition overall and especially on the body con-
tours and on the spinal column. A possible explanation to this difference
could be the higher volume of data used in the e7-tools reconstruction since
the SIRF reconstruction could only use 559 out of the 621 sinogram planes
due to memory constraints of the library objects. Another possible cause
that is presented more thoroughly in Section 5.3 could be a non correct def-
inition of the forward projector of the Radon transform modelling the data
acquisition for the scanner used in this project.

Looking at the MLAA reconstructed image displayed in Figures 4.17,
4.18, 4.19 and 4.20, the results are not comparable with the other algorithms
and present in fact lower quality in particular in the contrast between the
lungs regions that are barely visible in the activity reconstruction. The
principal possible cause can be found in the reconstructed attenuation image
that starts to have a coherent shape during the first iterations but that stops
improving after about 10 iterations, in favour of higher attenuation values
put to the limits of the Field of View (FOV) and increasing noise levels. This
does not change even with the application of a mask on the body contour
and could also be explained by a non correct modelling of the forward and
backward operators by SIRF library.
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For the reasons presented above the results obtained on clinical data re-
veal that it was not possible to match the performances obtained through
proprietary software e7-tools reconstruction probably because of an incor-
rect modelling of the Radon transform in SIRF library. This also impeded
the achievement of reconstructed images with the MLAA, M-MLEM and
M-MLAA algorithms, precluding an in-depth performance comparison.

5.3 Critical points for Siemens-mCT scanner in
SIRF library

The observation of the different attenuation correction factors and nor-
malization factors showed in Figures 4.21 and 4.22, between the true ones
obtained from the e7-tools software and the ones created with the SIRF li-
brary, suggests that the library does not model the data acquisition process
of the Siemens mCT Biograph scanner exactly as it is supposed to.

In particular, by looking especially at the sinogram plane 𝑧 in both the
figures it is noticeable a slight horizontal and vertical misalignment between
the matrices from e7-tools and from SIRF, both in the attenuation correction
factors and in the normalization factors. Regarding this last one, the image
of the difference between the two shows a distinguishable pattern generated
by opposing positive and negative values of the difference that suggests a
vertical misalignment between the matrices. A plausible cause of that could
be the incorrect modelling of the Radon transform in the SIRF library for the
type of scanner used to acquire the data.

It is worth noting that the SIRF library does not fully support the Siemens
Biograph mCT scanner and no complete testing on it has been conducted.
Also, TOF data acquisition is not officially supported in the major release of
the library and it is still work in progress. This two factors could also explain
why the Radon transform is not modelled as expected.
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6
Conclusions

This work aimed to test the performances of the M-MLAA algorithm
for PET image reconstruction on clinical data. Unfortunately, this goal was
not achieved because of an unsolved problem in the implementation of the
Maximum Likelihood Activity and Attenuation (MLAA) algorithm with the
Synergistic Image Reconstruction Framework (SIRF) Python library for the
case of real data acquired with Siemens Biograph mCT scanner.

Before the testing on clinical data, four reconstruction algorithms (MLEM,
MLAA, M-MLEM and M-MLAA) have been compared with each other on
the task of reconstructing synthetic data generated with the use of the XCAT
phantom. This analysis showed that visual inspection and Peak Signal-
to-Noise Ratio suggest that both M-MLEM and M-MLAA reconstruction
techniques are capable to perform motion correction on PET data, with
M-MLAA giving higher contrast images and better PSNR values. On the
other hand, the reconstructed images obtained from MLEM and MLAA al-
gorithms had lower quality and contrast and presented evident blur due to
the lack of motion correction.

Moving onto the trials on clinical data, the reconstruction with MLEM
algorithm was possible but it resulted in lower overall image quality when
compared with the image reconstructed via proprietary Siemens e7-tools
software. In addition, the MLAA algorithm implemented with the SIRF
library was not able to converge to a good image reconstruction both for
the activity and attenuation images. This impeded the next analysis on
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the performance of M-MLAA algorithm on clinical data. The implementa-
tion of M-MLEM on real data was also not possible due to problems with
the correct registration between the CT attenuation image and the activity
reconstructions.

Given the fact that both the MLAA and M-MLAA algorithm worked
fine for the reconstruction of synthetic data generated with the forward op-
erators of the SIRF library, the problems encountered during the clinical
reconstruction could suggest that the cause behind the non-convergence of
the MLAA activity and especially attenuation reconstruction is related to an
incorrect definition of the Radon transform for the particular scanner used,
also because it is not officially supported by the library. This is confirmed
by an analysis on the creation of the matrices for the attenuation and nor-
malization corrections with SIRF that leads to different results than the ones
obtained from Siemens proprietary software, where the main dissimilarities
lie in a translation between the two, suggesting once more of an incorrect
modelling of the Radon transform for the Siemens Biograph mCT scanner
in SIRF library.

6.1 Future work

In order to solve the problems affecting the clinical reconstruction with
the SIRF library for data acquired with the Siemens Biograph mCT scanner,
the first step, that is already in progress, is to get in touch with the de-
velopers of the Python library with the aim of defining the correct forward
and backward operators matching the specifications of the above-mentioned
scanner.

If this would not be possible then, in order to test the M-MLAA algorithm,
there would be the need of moving to a different library that implements
the Radon transform for PET imaging, one option could be the CASToR1

platform but it has not yet been evaluated for this purpose.

Furthermore, when a working version of both MLAA and M-MLAA
algorithm is found, in order to get better results, those algorithms could be

1Customizable and Advanced Software for Tomographic Reconstruction, an open-
source multi-platform project for 4D emission (PET and SPECT) and transmission (CT)
tomographic reconstruction, https://castor-project.org/
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improved by making use of all the different bed position acquired during
the scan process, merging them together and use the higher volume of
information to obtain better image resolution and contrast.

6.2 Final words

Even though this work did not manage to successfully test the Morphed
Maximum Likelihood Activity and Attenuation (M-MLAA) algorithm on
clinical data, the M-MLAA algorithm shows promising performances on
synthetic data and it is capable of performing motion correction during
reconstruction, paving the way for improving the quality of PET images and
it is expected to contribute to improve the early-stage diagnosis of cancer
lesions.
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