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Abstract 

 
Alzheimer’s disease (AD) represents the most common neurodegenerative disease. The 

first clinical symptom that usually brings an individual under clinical attention is the 

emergence of episodic memory pitfalls, which however occur when the underlying 

pathology has already reached a certain degree of spreading. In recent years, these neural 

alterations have been observed to largely overlap with known functional networks, 

especially the Default Mode (DMN) and the Frontoparietal (FPN) networks. However, 

much debate exists regarding whether functional alterations can be detected years before 

symptoms offset, i.e. that is in the prodromal disease stage of Mild Cognitive Impairment 

(MCI), and their predictive power of MCI-to-AD progression. In this study, we tried to 

fill this gap by investigating the relationship between topological networks’ alteration and 

the emergence of episodic memory difficulties at 2 years’ follow-up. We did so using a 

recently developed neuroimaging analytic tool, namely graph theory, and a specific 

battery of tests, assessing all stages of memory encoding, retrieval and recall in a sample 

of MCI patients and healthy controls. Our results suggest that increased DMN segregation 

might represent an early biomarker of cognitive worsening in episodic memory encoding. 

In particular, the study emphasizes that functional compensatory mechanisms in 

prefrontal nodes of the DMN might be a more prominent feature of the pathology at its 

prodromal stages, representing an early stressor. These findings might be potentially 

useful in the early detection of patients at higher risk of clinical progression and for whom 

resilience boosting interventions might still be put in place. 
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Introduction 

Alzheimer’s Disease 

Alzheimer’s Disease (AD) is considered to be the most common neurodegenerative 

disease, contributing to 60-70% of dementia cases and therefore representing a recent 

global public health priority (Leng & Edison, 2021). The main features of AD are 

extracellular accumulation of proteins, the so-called amyloid plaques, and neurofibrillary 

tangles, paired helical filaments consisting of hyperphosphorylated tau protein which can 

be found in the cell’s cytoskeleton. Normally, amyloid deposition starts progressing in 

the isocortex and only later it affects subcortical structures. On the other hand, 

neurofibrillary tangles typically first affect poorly myelinated limbic neurons in the 

medial temporal lobe (MTL) (entorhinal cortex and hippocampus), whereas highly 

myelinated neurons in other temporal, parietal and association cortices are only affected 

in later stages of the pathology (Jahn, 2013). Along with neurofibrillary tangles (Lane et 

al., 2018), profound cell loss is also observed in the hippocampal formation (Buckner et 

al., 2005). 

Since the MTL is one of the first regions to present neuropathological changes, the first 

and most common clinical symptoms are represented by memory difficulties, especially 

centered on episodic memory (Dickerson & Eichenbaum, 2010). At this phase, it may be 

possible to make a diagnosis for Mild Cognitive Impairment (MCI) (Lane et al., 2018). 

This condition is, in fact, usually characterized by an isolated cognitive difficulty, 

generally centered on episodic memory, with minor or no difficulties in functional 

abilities (Chandra et al., 2019) and it is often seen as the prodromal phase of AD dementia 

(Petersen, 2016). In fact, studies have shown that 80% of these patients progress to AD 

within 6 years follow-up (Lopez, 2013; Petersen, 2016). However, it is important to note 
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that not all types of MCI are early AD dementia, and that other etiologies can lead to this 

type of condition (Petersen, 2016). As the disease progresses, the memory loss 

accelerates, and other cognitive impairments emerge (Lane et al., 2018). In particular, 

according to the NINCDS-ADRDA criteria, AD symptoms include, among others, 

deficits in two or more areas of cognition and progressive worsening of memory and other 

cognitive functions, especially language, motor skills and perception, in absence of other 

systemic disorders or brain diseases that could account for the symptoms (McKhann et 

al., 1984). Ultimately, these deficits begin to interfere with the person’s autonomy in 

activities of daily living: at this point, a diagnosis of probable AD dementia can be made. 

The clinical assessment, and in particular the interview with the patient and an informant 

and a cognitive examination, represents the mainstay of the diagnosis of probable AD 

dementia (Lane et al., 2018).   

 

Memory dysfunctions in AD 

Generally speaking, memory functions can be divided into two broad categories: implicit, 

which concerns knowledge of automatized behaviors part of the individual repertoire, 

e.g., riding a bike, and explicit memory, which instead is concerned with the conscious 

knowledge and recollection of facts (Budson & Price, 2005). Different categories of 

explicit memory, related to different neural correlates, exist, and MCI and AD patients 

usually exhibit impairments across all of them, in particular: semantic, episodic and 

working memory (Budson & Price, 2005). Moreover, impairments in explicit memory 

are usually seen as the defining symptom of MCI (Chandra et al., 2019). For instance, a 

large number of studies have suggested that the semantic storage in AD may present 

disruptions which could possibly arise years prior to diagnosis and affect the patient’s 
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language, especially verbal fluency and naming (Jahn, 2013). Semantic memory can be 

defined as a memory system storing factual and conceptual knowledge without referring 

to any particular context (Budson & Price, 2005). The disruption of this memory system 

in AD seems to be attributable to neuropathology in the inferolateral temporal lobes and 

in frontal cortices, leading to poor activation and therefore retrieval of semantic 

information (Jahn, 2013).  

Working memory, defined as the ability to temporarily maintain and manipulate 

information needed to complete a task, uses a vast network of cortical and subcortical 

areas among which the prefrontal cortex (PFC), which oversees the selection of relevant 

information from the environment and ultimately enables its manipulation (Budson & 

Price, 2005; Curtis & D’Esposito, 2003). In AD, the disruption of this memory storage is 

thought to be related to damages to frontal subcortical circuits that normally occur as the 

disease reaches advanced stages of neuropathology (Jahn, 2013).  

Episodic memory is defined as a memory system used to store and recall personal 

experiences, framed in the context (Budson & Price, 2005). In typical AD, the progression 

of clinical symptoms follows a sequential order, starting with episodic memory 

impairments, which occur long before the diagnosis of AD dementia, followed by 

semantic memory difficulties and ultimately by working memory disruption, meaning 

that episodic memory is the first memory storage to be involved from the earliest stages 

of MCI (Talwar et al., 2021). Difficulties in encoding and retrieval of episodic memories 

in MCI and AD patients are probably correlated to the disruption of an intricate network 

which includes different brain regions, notably the PFC, the MTL and the parietal 

posterior cortex (PPC)(Jahn, 2013). An in-depth explanation on the neural substrates of 
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episodic memory and their relationship to the AD pathology is provided in the following 

paragraph.  

 

Networks dysfunctions associated with episodic memory impairments in AD 

From a neurological point of view, global dysfunction, more than local alterations, have 

recently been recognized as a core feature of the AD brain. These alterations occur as 

cascades of structural and functional failures that follow specific spreading patterns, 

partially overlapping with known functional resting state networks (Buckner et al., 2005). 

In recent years, innovations in brain imaging have allowed detection of characteristic 

disruptions in functional networks in AD, particularly through resting-state functional 

magnetic resonance imaging (fMRI). FMRI is a neuroimaging technique used to depict 

brain activity by measuring changes in blood flow, the oxygen level-dependent (BOLD) 

signal, allowing the study of spontaneous region-to-region communication in the brain. 

Notably, communication across the brain self-organizes in functional brain networks, 

which are known to serve different sensitive (Visual, Auditory and Somatomotor 

networks) and cognitive (Frontopariatal, Limbic, Default Mode, Dorsal and Ventral 

Attention networks) functions (Chandra et al., 2019). The Default Mode Network (DMN) 

and the Frontoparietal Network (FPN) are especially known to be altered in the AD 

pathology (Badhwar et al., 2017).  

The DMN is recognized as the core network of the human brain during resting-state. It 

can be roughly divided into four distinguished subdivisions: the ventral medial prefrontal 

cortex (VMPFC); the dorsal medial prefrontal cortex (DMPFC); the posterior cingulate 

cortex and precuneus plus the lateral parietal cortex and the entorhinal cortex. The 
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VMPFC plays an important role in receiving external information and redirects that 

information to structures such as the hypothalamus, the amygdala, the periaqueductal 

gray matter. Therefore, the VMPFC is a key area for social behavior, mood control, 

motivational drive and personality (Raichle, 2015). The DMPFC, on the other hand, is 

involved in self-referential judgments (Raichle, 2015). Finally, the posterior cingulate 

cortex and the medial precuneus, along with the lateral and parietal components of the 

DMN, are associated with recollection and retrieval of previously encoded information 

(Raichle, 2015). Overall, the DMN appears hence to be involved in episodic memory 

processing, mental imagery and internal dialogue, and the strength of its characteristic 

negative correlation (i.e., antiphase) with the oscillatory activity of other networks has 

been promoted as a marker of good cognitive functioning and healthy aging (Vatansever 

et al., 2018). In AD, the loss of functional connectivity (FC) between DMN components 

mirrors disease progression and the associated cognitive symptoms from the earliest 

stages of MCI (Jones et al., 2016). In particular, a decrease FC in posterior and an increase 

FC in anterior and ventral DMN regions has been seen since the early stages of MCI and 

to eventually result in complete functional disconnection within 2-4 years from the AD 

diagnosis (Chandra et al., 2019). 

As opposed to the DMN, the FPN is crucial when cognitive effort is required, therefore 

showing opposite activation patterns with the DMN during cognitive processes (Badhwar 

et al., 2017). The FPN, which includes portions of the lateral prefrontal cortex (lPFC) and 

PPC, is believed to be a control network especially involved in a wide variety of tasks by 

modulating cognitive control abilities (Zanto & Gazzaley, 2013). In particular, it selects 

and represents relevant stimuli (Reineberg et al., 2015), directs attention (Zanto & 

Gazzaley, 2013) and provides flexibility by adjusting responses according to feedback 
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(Marek & Dosenbach, 2018). Similarly to the DMN, connectivity within the FPN is also 

disrupted in MCI and AD patients, characterized by a significant reduction in FC within 

PPC regions (Yang et al., 2023). Moreover, decreased positive correlations between 

prefrontal and parietal regions have been observed, suggesting that an anterior-posterior 

disconnection may be a key feature of the AD brain (Wang et al., 2007). On the other 

hand, some findings suggest that AD patients show increased activity and connectivity, 

especially within prefrontal areas and other brain regions such as parietal, occipital and 

temporal lobes (Sanz-Arigita et al., 2010). This evidence suggests that decreased 

connectivity is found mainly between lobes, whereas increased connectivity is mainly 

within lobes, implying that the increase within‐lobe connectivity represents a 

compensatory effect for the reduced connectivity between lobes (Wang et al., 2007).  

Of particular relevance for the study of AD, both the DMN and the FPN show a specific 

involvement in distinct stages of episodic memory encoding and retrieval. Episodic 

memory retrieval strongly depends on the efficient storage of events’ features when they 

are encoded (Shimamura, 2011, 2014). The reconstruction of source memory, seen as the 

memory for the contextual features such as time, place, people, thoughts and feelings, is 

an essential, if not defining feature of episodic memory, and it strongly contributes to the 

success of episodic retrieval (Shimamura, 2011, 2014). Neuroimaging studies have 

shown that the PFC and the MTL are robust neural correlates of both episodic encoding 

and retrieval; for instance, after the activation of bottom-up sensory processes in response 

to sensory stimuli, the PFC, part of the FPN, holds online the features defining the event 

as a working memory representation, selecting, maintaining and updating this 

information, whereas  during retrieval, it searches through memory and activates pertinent 

event feature (Sestieri et al., 2011; Shimamura, 2011, 2014). More specifically, the 
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ventrolateral PFC participates in the maintenance of event features and initiates retrieval, 

while the dorsolateral PFC plays an important role in the updating and the manipulation 

of retrieved features (Shimamura, 2011, 2014).  

The role of the MTL, consisting of the hippocampus and surrounding entorhinal, 

perirhinal and parahippocampal cortices, has been pointed out since the landmark 

neurological case of Henry Molaison, a patient who underwent an invasive operation 

consisting in the removal of the anterior MTL and that, as a result, lost his ability to 

remember episodic events (Neylan et al., 2000; Corkin, 2013; Shimamura, 2014). The 

MTL is a key structure for episodic memory, since it links coactive event features such 

as feelings, sights, time, place, people stored in different neocortical regions and plays a 

decisive role in binding source memory, seen as a single totality of those event features, 

facilitating therefore the reactivation or the replay of episodic memories and enabling 

their recollection at a later time (Shimamura, 2011). In recent years, numerous studies 

have reported the PPC as particularly involved in episodic memory and as one of the 

most, if not the most, activated region during the episodic retrieval (Naghavi & Nyberg, 

2005; Sestieri et al., 2011; Shimamura, 2011, 2014). More specifically, three PPC regions 

appear to be particularly implicated in this process: the dorsal PPC (superior parietal 

lobule, intraparietal sulcus), the ventral PPC (supramarginal gyrus, angular gyrus, 

temporal-parietal junction, and temporal-parietal junction), and the medial PPC 

(precuneus, retrosplenial cortex, posterior cingulate cortex) (Sestieri et al., 2011; 

Shimamura, 2011, 2014). Among these regions, the ventral PPC (vPPC) appears to be the 

most involved in episodic retrieval and source recollection, as its activation has shown in 

different studies strong positive correlations with the success of healthy controls in 

correctly identifying items as “old”(Sestieri et al., 2011; Shimamura, 2011). To better 
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understand the involvement of vPPC in episodic memory, a large number of theories have 

been proposed in literature. According to one of the most recent, the Cortical Binding of 

Relation Activity (CoBRA), the vPPC constitutes a convergence zone, binding episodic 

features together within the neocortex (Sestieri et al., 2011; Shimamura, 2011, 2014). To 

better understand its role in this process, it has to be noted that this region is often seen 

and described as a crossroad between the parietal, the temporal and the occipital cortices 

and it has intricate connections with the dorsal visual path, the ventral visual path, the 

MTL and the PFC, hence constituting a geographical central and well-connected region 

able to establish intermodal associations with diverse event features (spatial, acoustic, 

verbal) (Shimamura, 2011). The cortical binding operated by the vPPC works in parallel 

with the MTL, since the reactivation of episodic memories driven by the MTL induces 

the formation of neocortical bindings within the vPPC (Shimamura, 2011). In other 

words, according to this model, the vPPC would reinforce the inter-feature connections 

at a later stage, binding episodic memories within the neocortex (Shimamura, 2011). In 

AD, since the MTL and the PFC, part of the DMN, and the PPC, part of both the DMN 

and the FPN, are regions specifically targeted by the pathology and functionally 

disrupted, this system becomes deficient, although much debate exists on whether these 

issues are more related to difficulties in encoding, retrieval or both (Tromp et al., 2015).  

 

Graph theory in AD 

Graph theory is a recently developed analytical tool used to study complex interactions 

between components of a system, with applications ranging from the study of 

communication systems, social networks, power grids distribution, as well as biological 

ensembles (Albert & Barabasi, 2002). When applied to the brain, graph theory has been 
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widely employed to better investigate the information exchange between regions, 

represented as nodes, and their functional connections, represented as edges (Dennis & 

Thompson, 2014; Rubinov & Sporns, 2010). Investigating the brain as a graph holds 

several advantages, among which generalizability and interpretability (Bullmore & 

Bassett, 2011). For example, we can look at the topological properties of networks’ nodes 

to estimate global and local efficiency in information transfer between network’s 

components. Few examples of those measures include indexes of integration, such as the 

degree of connectivity of one node to the other nodes in the network (Nodal Degree) or 

the average distance between nodes in the network (Characteristic Path Length); as well 

measures of segregation, such as the tendency of nodes to clusterize and form triangular 

triples (Clustering Coefficient) or the extent for which a network can be divided in 

independent modules (Modularity) (Farahani et al., 2019). Taking advantage of such 

methodology, several studies in the literature have investigated network’s alterations in 

the MCI-AD continuum, reporting less interconnectivity and more segregated clusters in 

the DMN of AD patients compared to healthy controls (Çiftçi, 2011; delEtoile & Adeli, 

2017). Moreover, neuroimaging studies investigating FC have shown a similar pattern in 

MCI patients, reporting functional disruption in the DMN with a tendence for 

clusterization, but with a less marked inter-connectivity decrease compared to the AD 

brain (delEtoile & Adeli, 2017).  

While there is good evidence of functional disruption within the DMN and the FPN in 

MCI and AD, a more precise understanding of how these patterns of altered connectivity 

may contribute to the early clinical symptoms, notably memory impairments, is still 

missing.  
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The current study 

To this aim, we investigated if altered communication within DMN and FPN nodes is 

present in MCI patients and if it can be predictive of episodic memory impairments over 

a time window of 2 years. Furthermore, we aimed to do so using graph theory analysis 

and a specific battery of tests assessing all stages of memory encoding, retrieval and recall 

to shed light on the association between topological alterations and memory impairments. 

The identification of early biomarkers of pathology represents indeed the most current 

challenge in AD studies (Humpel, 2011; Sharma, 2016), as it might help direct 

interventional therapies to counteract disease progression. Moreover, functional 

connectivity may represent a truly advantageous biomarker, since fMRI is a non-invasive 

imaging technique that does not require injections, as in lumbar punctures or blood 

withdrawal, or radiation exposure, as in positron emission tomography (PET), and can 

therefore be repeated many times in longitudinal studies.  

 

1. Methods 

1.1 Participants 

Longitudinal data of 41 healthy controls (HC, mean age: 71 ± 5.83; mean 

education:16.6±2.1; 22 males; 35 right-handed) and 32 MCI (mean age: 69.9 ± 9.11; 

mean education: 15.7±2.3; 17 males; 27 right-handed) patients were retrieved from the 

Alzheimer Disease Neuroimaging Initiative, third phase of the project (ADNI3, 

https://adni.loni.usc.edu/).  Inclusion criteria for HC participants include: Mini-Mental 

State Exam (MMSE) score between 24 and 30, a Clinical Dementia Rating (CDR) score 

of 0 and absence of significant impairment in cognitive functions or activities of daily 
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living. On the other hand, MCI patients meet the following inclusion criteria: MMSE 

score between 24 and 30 inclusive, CDR of at least 0.5, general cognition and functional 

performance sufficiently preserved such that a diagnosis of AD cannot be made. 

Participants suffering any significant neurologic disease were excluded (Weiner et al., 

2016). Demographic characteristics of sample participants are detailed in Table 1. 

 

 HC MCI t-test 

Education 16.6±2.1 15.7±2.3 t(73) = 1.75, p = 0.08 
Age 71±5.8 69.9±9.1 t(73) = 0.64, p = 0.5 

MMSE 29±1.4 27.9±2.2 t(73) = 2.93, p = 0.004 
Table 1. Demographic characteristics of HC and MCI participants considered in this study. 

 

1.2 Cognitive evaluation 

The ADNI project’s clinical core includes an extensive test battery; however, for the 

purpose of our study, we chose to focus on two scales, the Alzheimer’s Disease 

Assessment Scale - Cognitive Subscale (ADAS-Cog) (Kueper et al., 2018; Weiner et al., 

2016), which assesses the participant’s general cognitive functioning and it is often 

employed in pre-dementia studies, and a measure specifically developed to assess 

memory functions: the Embic Corporation Digital Cognitive Biomarkers (DCBs) scale 

(Bock et al., 2022). 

The ADAS-COG is a structured scale to assess the level of cognitive dysfunction in AD 

and pre-clinical populations (Kueper et al., 2018; Weiner et al., 2016). It includes a 

number of tasks evaluating memory (word recall, word recognition), reasoning 

(following commands), language (naming, comprehension), orientation, ideational praxis 

(placing letter in envelope) and constructional praxis (copying geometric designs) 



16 
 

(Weiner et al., 2016). On the other hand, the DCBs scale was specifically developed to 

quantify latent cognitive processes that underlie memory functions. (Bock et al., 2022). 

The DCBs results from the application of a hierarchical Bayesian cognitive processing to 

scores from wordlist memory tests commonly used to test learning, recall and recognition. 

This approach allows to study in a more subtle but distinct way cognitive changes at 

processes that are not quantifiable using observed behaviors. The model results in seven 

scores, each representing the probability of the information being processed through 

different encoding (N1, N2, N3, N4) or retrieval (R1, R2, R3), to and from three distinct 

storage stages (pre-task, transient, durable) (see Table 2). Three measures (M1, M2, M3) 

have been added, quantifying the probability of recall from transient storage on 

immediate recall tasks, durable storage on immediate recall tasks and durable storage on 

delayed recall tasks (see Table 2). 

 

DCBs Correlate Description 

N1 Encoding Probability of encoding into the DURABLY LEARNED 
State 

N2 Encoding Probability of encoding into the TRANSIENTLY 
LEARNED State 

N3 Encoding Probability of encoding into the DURABLY LEARNED 
State, following previous TRANSIENT LEARNING (N2) 

N4 Encoding Probability of encoding into the DURABLY LEARNED 
State, due to successful retrieval (R1) from the 
TRANSIENTLY LEARNED State 

R1 Retrieval Probability of retrieving from the TRANSIENTLY 
LEARNED State 

R2 Retrieval Probability of retrieving from the DURABLY LEARNED 
State 
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R3 Retrieval Probability of retrieving from the DURABLY LEARNED 
State after a 5-minute delay with distraction 

M1 Recall Probability of immediate recall of a non-durably stored 
episodic memory 

M2 Recall Probability of immediate recall of a durably stored episodic 
memory 

M3 Recall Probability of delayed recall of a durably stored episodic 
memory 

Table 2. Available Digital Cognitive Biomarkers. Description of available scores, each 

representing the probability of the information being processed through different encoding (N1, 

N2, N3, N4), retrieval (R1, R2, R3), and recall (M1, M2, M3) stages. Adapted from Bock et al., 

2022. 

 

Three different wordlists were used across different visits; for each visit, wordlists were 

presented in a shuffled way to prevent the accumulative serial position effects of primacy 

and recency on encoding. A normative adjustment was therefore developed and applied 

to the wordlists (Bock et al., 2022).  

For the purpose of this study, we analyzed the scores of the aforementioned 

neuropsychological batteries that were collected at baseline and after two years for all 

participants.  

1.3 Neuroimaging data 

T1-weighted anatomical data [repetition time (TR) = 2300 ms, time interval (TI) = 900 

ms, matrix size = 208 x 240 x 256mm, voxel size = 1x1x1mm] and functional resting 

state data [acquisition parameters: number of volumes = 195, TR = 3000ms, TE = 30ms, 

matrix size = 220 x 220 x 160mm, voxel size = 3.4 mm3, flip angle (FA) = 90 deg.] were 

collected according to the ADNI3 guidelines (https://adni.loni.usc.edu/adni-3/). All 
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processing of brain data was performed in FSL (Jenkinson et al., 2012). The following 

pre-statistics processing was applied: motion correction using MCFLIRT (Jenkinson et 

al., 2002); non-brain removal using BET (Smith, 2002); spatial smoothing using a 

Gaussian kernel of FWHM 6.0 mm; grand-mean intensity normalization of the entire 4D 

dataset by a single multiplicative factor; high-pass temporal filtering (Gaussian-weighted 

least-squares straight line fitting, with sigma=50.0 s). Slice timing correction was also 

performed to correct for differences in time acquisition of the fMRI volumes. Then, 

FLIRT was used to co-register each participant’s functional and anatomical volume using 

the normalized mutual information as a cost function and 6-degree-of-freedom. Finally, 

the brain was parceled into 200 regions of interests (ROIs) according to the Schaefer Atlas 

(Schaefer et al., 2018). Functional connectivity matrices were then computed from the 

individual time series and further transformed into Fisher’s z-scores to ensure normality.  

1.4 Graph theory measures extraction 

The study of brain connectivity was approached based on the mathematical principles of 

graph theory. In order to extrapolate graph theory measures, a NxN connectivity matrix 

is constructed for each individual by correlating the fMRI timeseries of activation in all 

pairs of parcellated regions (Dennis & Thompson, 2014; Rubinov & Sporns, 2010). Then, 

the full matrix is thresholded to retain only the 10% to the 40% of strongest connections 

(Bullmore & Bassett, 2011). Such a stringent approach is necessary to reduce the risk of 

false positive connections in the graph while allowing to clearly distinguish the single 

units of the network (Sinclair et al., 2015). To measure the efficiency of the information 

flow in the system, we focus on four graph theory metrics extracted via Brain 

Connectivity Toolbox (https://sites.google.com/site/bctnet/) functions running in 

MATLAB 2017b, looking at integration measures:  
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i) Characteristic Path Length (CharPath):	the average distance between a node and 

all the other nodes of the system. 

ii)  Global Efficiency (Eglob): the inverse of the average shortest path, thus 

quantifying the amount of information shard across the whole network. 

and segregation measures: 

iii) Clustering Coefficient (ClusCoef):	the fraction of nodes being neighbors with the 

surrounding nodes, forming triangular triplets.  

iv) Local Efficiency (Eloc): the inverse of the average shortest path connecting a node 

to all other nodes of the system, thus quantifying the amount of information shared within 

the neighborhood.  

To test our hypothesis, such measures were extracted separately from the DMN and the 

FPN (network-level analysis), as well as their individual nodes (node-level analysis).  

1.5 Statistical Analyses 

Statistical analyses were run in Matlab 2017b (The Mathworks, Inc., Natick, MA, USA). 

At the network level, we first tested for differences in the topography of the DMN and 

FPN between HC and MCI patients by means of paired t-tests (significance level, p<0.05 

FDR-corrected). Then, multiple linear regression models were run to test the power of 

topological measures of DMN and FPN in predicting cognitive decay over a 2 years’ 

temporal window, as reported in the formula below: 

 

CognitiveMeasurey2 ~ CharPathbaseline ∗ 𝑔𝑟𝑜𝑢𝑝 + Eglobbaseline ∗ 𝑔𝑟𝑜𝑢𝑝 + ClusCoefbaseline 

∗ 𝑔𝑟𝑜𝑢𝑝 + Elocbaseline∗ 𝑔𝑟𝑜𝑢𝑝 + CognitiveMeasurebaseline∗ 𝑔𝑟𝑜𝑢𝑝 

(1) 
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In this formula (1): 

CognitiveMeasurey2 = ADAS composite score and EMBIC scores at year 2 

Group = interaction term 

CharPathbaseline = Characteristic Path Length at baseline 

Eglobbaseline = Global Efficiency at baseline 

ClusCoefbaseline = Clustering Coefficient at baseline 

Elocbaseline = Local Efficiency at baseline 

CognitiveMeasurebaseline = ADAS composite score and EMBIC scores at baseline 

To test if topological measures can be predictive of clinical decay in MCI patients 

compared to HCs, an interaction term (group) was added to the model. Importantly, 

baseline score measures were considered as a covariate to better model cognitive decay 

as a function of the individual starting point. Outliers were removed based on the models’ 

residuals. The significant threshold was set as p < 0.05. To reduce the risk of false positive 

results, only measures that proved to be significant across the thresholds tested (90-80-

70-60%) are reported and further discussed. To control for the risk of multicollinearity, 

the Variance Inflation Factor (VIF) was computed among all predictors in the formula, 

proving null to little collinearity between the variables. 

Finally, based on the significant results obtained at the network level in predicting 

memory performance at 2 years follow-up, we further investigated these measures at the 

single node level. In more details, t-tests were performed to test for differences in nodes’ 

topography between MCI and HC at baseline and after 2 years. To reduce the risk of false 

positives, only results surviving permutation (n=1000) correction were reported. 

Afterwards, multiple regression models were run again as reported in formula (1), but 

this time with the single nodes’ graph measures as predictors. 
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2. Results 

In this study, we tested the predictive power of functional alterations in the 

communication within the DMN and the FPN as possible early biomarkers of subsequent 

cognitive decay over a temporal window of 2 years. Longitudinal data on the cognitive 

fitness of our participants were collected based on a i) general index derived from the 

ADAS-COG scale and a ii) specific memory measure retrieved from the DCBs battery. 

Results are presented at the network- and node-level. 

2.1. Network-level results 

DMN 

Topography 

A significant difference in the topography of the DMN network was observed between 

HC and MCI patients for the segregation measures of clustering coefficient (t(71) = 3.21, 

pcorr = 0.007);  and local efficiency (t(71) = -2.39; pcorr = 0.03), but not for the integration 

measures of characteristic path length (t(71) = 0.13, pcorr = 0.89) or global efficiency (t(71) 

= -0.81, pcorr = 0.55) (see Figure 2). 
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Figure 2.  Boxplot of topography measures computed for the DMN. Significant higher 

measures of clustering coefficient and local efficiency were observed for MCI patients compared 

to HC. 

*p  <0.05, FDR-corrected 

 

ADAS-COG 

No graph theory measure was found to be predictive of individuals’ performance at the 

ADAS-COG scale, neither for the DMN (R2 = 0.714, F(59) = 13.4, p = <0.0001), nor for 

the FPN (R2 = 0.613, F(58) = 8.33, p = <0.0001). A significant positive correlation was 

observed between baseline ADAS-COG scores and the ADAS-COG scores collected 

after 2 years for both the DMN (β = 0.77, p = < 0.0001) and the FPN (β = 0.63, p = 

0.0002). 

 

DCBs 

Encoding (N1-N2-N3-N4) 
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After running a multiple regression model (R2 = 0.367, F(41) = 2.16, p = 0.036), we found 

a significant positive correlation between the measure of clustering coefficient and DCBs’ 

N1- probability of encoding into the durable learned state (β = 0.77, p = 0.016). Moreover, 

a significant interaction term between clustering coefficient and group was found (β = -

0.84, p = 0.028) (see Figure 3A), as well as a significant interaction between baseline and 

group (β = 0.64, p = 0.022) (see Figure 3B). These results remained consistent at different 

thresholds (90-80-70-60%, see Appendix I). 

On the other hand, no other graph theory measure was observed to significantly predict 

other encoding scores: N2 (R2 = 0.0748, F(41) = 0.301, p = 0.982), N3 (R2 = 0.275, F(41) = 

1.42, p = 0.203), N4 (R2 = 0.217, F(41) = 1.03, p = 0.435). 

 

Retrieval (R1-R2-R3) 

After running a multiple regression model (R2 = 0.414, F(41) = 2.63, p = 0.0122), we found 

a significant positive correlation between the measure of local efficiency and scores 

obtained at DCBs’ R3 - probability of retrieving from the durably learned state after a 5-

minute delay with distraction (β = 0.64, p = <0.01) (see Figure 3C). These results 

remained consistent at different thresholds (80-70-60%, see Appendix I). On the other 

hand, no other graph theory measure was observed to significantly predict other retrieval 

scores: R1 (R2 = 0.157, F(41) = 0.692, p = 0.739), R2 (R2 = 0.335, F(41) = 1.79, p = 0.09).   

 

Recall (M1-M2-M3) 

No graph theory measure was found to be predictive of individuals’ recall performance: 

M1 (R2 = 0.319, F(40) = 1.7, p = 0.108), M2 (R2 = 0.488, F(41) = 3.55, p = 0.00148), M3 
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(R2 = 0.361, F(41) = 2.11, p = 0.0419). Baseline scores were observed to be a significant 

predictor of recall for M2 (β = 0.67, p = 0.0003) and M3 (β = 0.5, p = 0.01) scores. 

 

 
Figure 3. DMN topological predictors of future memory impairments. A. A significant 

positive association can be appreciated between baseline DMN clustering coefficient measures 

and individual scores at DCBs - N1 measured 2 years after. This association appears to be present 

in the HC group, but lacking in the MCI group. B. DCBs - N1 baseline scores significantly 

predicted scores collected after 2 years in our MCI group. HC did not show significant changes 

in score as a function of time. C. DMN local efficiency measures were observed to positively 

predict DCBs-R3 scores at 2 years follow-up with no difference between our HC and MCI groups. 

 

FPN 

Topography 

No significant differences in the topography of the FPN network were observed between 

HC and MCI patients for the measures of characteristic path length (t(71) = 1.48, pcorr = 
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0.28), global efficiency (t(71) = -1.12, pcorr = 0.35), clustering coefficient (t(71) = 1.96, pcorr 

= 0.21) and local efficiency (t(71) = 0.35, p = 0.72) (see Figure 4). 

 

 

 
Figure 4.  Boxplot of topography measures computed for the FPN. No significant differences 

were observed in the topography of the FPN between HC and MCI. 

 

DCBs 

Encoding (N1-N2-N3-N4) 

After running a multiple regression model (R2 = 0.899, F(40) = 1.6, p = 0.136), we found 

a significant positive correlation between the measure of clustering coefficient and scores 

obtained at DCBs’ N2 - probability of encoding into the transiently learned state (β = 

0.64, p = <0.01). Despite the fact that the model did not emerge as significant, its main 

effects reached instead the statistical threshold consistently for all thresholds (80-70-60%, 

see Appendix I). The meaning behind this finding is further interpreted in the discussion.  
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On the other hand, no other graph theory measure was observed to significantly predict 

other encoding scores: N1 (R2 = 0.296, F(40) = 1.57, p = 0.146), N3 (R2 = 0.26, F(41) = 1.31, 

p = 0.253), N4 (R2 = 0.3, F(41) = 1.5, p = 0.134).  

 

 

Retrieval (R1-R2-R3) 

No graph theory measure was found to be predictive of individuals’ retrieval 

performance: R1 (R2 = 0.269, F(41) = 1.37, p = 0.222), R2 (R2 = 0.217, F(41) = 1.03, p = 

0.438), R3 (R2 = 0.407, F(41) = 2.55, p = 0.0146). Baseline scores were observed to be a 

significant predictor of retrieval for R3 (β = 0.46, p = 0.01) scores. 

 

Recall (M1-M2-M3) 

No graph theory measure was found to be predictive of individuals’ recall performance: 

M1 (R2 = 0.353, F(41) = 2.04, p = 0.0493), M2 (R2 = 0.492, F(41) = 3.61, p = 0.00128), M3 

(R2 = 0.507, F(41) = 3.84, p = 0.0008). Baseline scores were observed to be a significant 

predictor of retrieval for all DCBs: M1 (β = 0.5, p = 0.005), M2 (β = 0.6, p = 0.0003), M3 

(β = 0.5, p = 0.0008). 

 

2.2. Node-level results 

At baseline, 7 nodes belonging to the DMN showed significantly higher clustering 

coefficient in the MCI patients compared to HC. After 2 years, an even higher number of 

DMN nodes, especially frontal nodes, showed a marked difference between HC and MCI 

(see Table 3; Figure 5A). The same pattern was observed for the measure of local 
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efficiency, which was also observed to be higher in the DMN nodes of MCI patients 

compared to HC at baseline and even more so after 2 years (see Table 4; Figure 5B). 

 

 

 

 

 

Clustering coefficient 

 
Baseline 

 
Y2 

Left-
SupTemp

Gyrus 

Node 
[-58 -42 

8] 

t(71) = -2.03;  
pcorr = 0.01 

Left-DorsalACC Node 
[-6 44 8] 

t(71) = -
2.22;  
pcorr = 
0.004 

Left-
DorsalAC

C 

Node 
[-6 44 8] 

t(71) = -2.56;  
pcorr = 0.004 

Left-AntPFC Node 
[-8 60 20] 

t(71) = -
3.39;  
pcorr = 
0.0001 

Outside 
defined 

BAs 

Node 
[-6 30 24] 

t(71) = -2.89;  
pcorr = 0.0001 

Left-
VentAntCing 

Node 
[-6 30 24] 

t(71) = -
3.11;  
pcorr = 
0.003 

Outside 
defined 

BAs 

Node 
[-24 24 

48] 

t(71) = -2.85;  
pcorr = 0.004 

Left-
dlPFC(dorsal) 

Node 
[-12 48 

44] 

t(71) = -
3.03;  
pcorr = 
0.0001 

Outside 
defined 

BAs 

Node 
[8 58 18] 

t(71) = -2.69;  
pcorr = 0.008 

Left-
dlPFC(dorsal) 

Node 
[-4 34 44] 

t(71) = -
2.29;  
pcorr = 
0.02 

Outside 
defined 

BAs 

Node 
[16 46 

44] 

t(71) = -2.77;  
pcorr = 0.0001 

Right-
FrontEyeField 

Node 
[8 42 4] 

t(71) = -
2.19;  
pcorr = 
0.03 

Right-
DorsalPC

Node 
[12 -54 

t(71) = -2.62;  
pcorr = 0.02 

Right-AntPFC Node 
[8 58 18] 

t(71) = -
4.47;  
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C 14] pcorr = 
0.0001 

   Outside defined 
BAs 

Node 
[16 46 

44] 

t(71) = -
2.05;  
pcorr = 
0.005 

   Right-
FrontEyeField 

Node 
[28 30 

42] 

t(71) = -
2.41;  
pcorr = 
0.006 

   Right-VisMotor Node 
[6 -58 44] 

t(71) = -
2.21;  
pcorr = 
0.01 

Table 3. Nodes’ level analyses-clustering coefficient. MNI coordinates (x; y; z). 

 

 

Local efficiency 

 
Baseline 

 
Y2 

Right-
FrontEyeFi

eld 

Node 
[-6 30 24] 

t(71) = -2.05;  
pcorr = 0.02 

 

Outside 
defined BAs 

Node 
[-8 60 20] 

t(71) = -2.93;  
pcorr = 0.001 

Left-
FrontEyeFi

eld 

Node 
[-24 24 48] 

t(71) = -2.31;  
pcorr = 0.01 

 

Left-
VentAntCin

g 

Node 
[-6 30 24] 

t(71) = -2.43;  
pcorr = 0.03 

Outside 
defined 

BAs 

Node 
[16 46 44] 

t(71) = -2.02;  
pcorr = 0.03 

Left-
dlPFC(dorsa

l) 

Node 
[-12 48 44] 

t(71) = -2.59;  
pcorr = 
0.0001 

 

   Left-
DorsalPCC 

Node 
[-10 -56 12] 

t(71) = 2.25;  
pcorr = 0.03 

 

   Right-
AntPFC 

Node 
[8 58 18] 

t(71) = -4.05;  
pcorr = 
0.0001 
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   Outside 
defined BAs 

Node 
[28 30 42] 

t(71) = -2.51;  
pcorr = 0.008 

Table 4. Nodes’ level analyses- local efficiency. MNI coordinates (x; y; z). 

 
Figure 5. Topological differences between HC and MCI patients. Compared to HC, MCI 

patients showed significantly higher clustering coefficient (A) and local efficiency (B) values, 

especially over frontal nodes. After 2 years of time, the number of frontal nodes showing higher 

clustering coefficient/local efficiency in MCI patients increased, suggesting increased segregation 

over time. Nodes color and size is proportional to the z score values of clustering coefficient and 

local efficiency, respectively. 

 

Finally, we tested if the nodes that at baseline showed higher clustering coefficient in the 

MCI population were also predictive of memory impairments at 2 years follow up. In this 

regard, the model resulted significant (R2 = 0.66, F(16) = 3.84, p = 0.001), with a significant 

negative correlation between the measure of clustering coefficient of a node in the right 

DMPFC (coordinates [16 46 44]) and DCBs’ N1 - probability of encoding into the durable 

learned state (β= -0.56, p = 0.006) (see Figure 6A). Baseline scores were also observed 
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to be a significant predictor of memory performance 2 years after (β = 0.75, p = 0.0002) 

(see Figure 6B). When the same model was run to test the power of DMN nodes’ local 

efficiency in predicting memory performance a 2 years follow-up, no significant 

association was observed (R2 = 0.25, F(20) = 1.71, p = 0.18). 

 
Figure 6. Topological predictors of future memory impairment at the single node level. A. 

In MCI patients, the clustering coefficient of one DMN node in the right dorsomedial prefrontal 

cortex (marked in red) significantly predicted a decrease in memory performance after 2 years. 

B. The same model also predicted a positive correlation between scores collected at baseline and 

after 2 years. 

 

3. Discussion 

 
In this study, we tested if functional abnormalities within two large brain networks, the 

DMN and the FPN, could be predictive of memory impairments after two years. We 

investigated brain connectivity through graph theory, hypothesizing that a loss in the 

efficiency of information transfer within these networks may occur some time before the 



31 
 

onset of clinical symptoms, therefore constituting an early biomarker of MCI-to-AD 

progression. Graph theory represents a methodological advantage compared to traditional 

approaches, as complex systems- including the brain- subserve to universal optimization 

laws, which guarantee easier generalizability and interpretability of findings (Bassett et 

al., 2010; Bullmore & Bassett, 2011). As a result, the study of the brain as a graph 

becomes particularly useful when we wish to study any deviance from the norm of a 

pathological brain (Farahani et al., 2019). As the efficiency in the global and local 

processing of information is driven by where, along a continuum, the individual brain 

collocates in terms of wiring costs and structured organization, in this study we decided 

to look for alterations in both integration and segregation mechanisms. Indeed, the 

extensive FC changes observed in AD have given it a definition as a disconnection 

syndrome (Delbeuck et al., 2003; delEtoile & Adeli, 2017). For instance, the brain graph 

of AD patients has been observed to be characterized by less interconnectivity and more 

segregated clusters than that of healthy controls (Çiftçi, 2011), with a decreased inter-

regional connectivity typically reported over posterior cortices (Sanz-Arigita et al., 2010). 

This is often counterbalanced by an increased intra-regional connectivity over prefrontal 

areas (Sanz-Arigita et al., 2010), implying the presence of a compensatory mechanism 

(Hillary et al., 2015; Suckling et al., 2015), making the poster-to-anterior disconnection 

one of the main key features of the AD brain (Wang et al., 2007). Although less marked, 

some studies suggest that similar alterations might be visible since the earlier stages of 

MCI (Badhwar et al., 2017). Still, we lack a more specific understanding on how these 

patterns of hypo- and hyper-connectivity might be responsible for the earliest clinical 

symptoms that usually bring the individual under clinical attention, i.e., the emergence of 

episodic memory pitfalls. We aimed to fill this gap in the present study, which not only 
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strictly focuses on patients at prodromal stages, for which boosting interventions might 

still be possible, but also relies on a unique battery of data specifically aimed at 

investigating the steps-by-steps of memory encoding, consolidation and retrieval to 

disentangle where susceptibilities might emerge as a function of pathology. Furthermore, 

we aimed to do so in a proactive manner, trying to predict the emergence of memory 

weaknesses 2 years in advance based on the individual brain topology at baseline. 

From a general point of view, our results are consistent with prior findings in the 

literature. For instance, we observed distinguishable DMN topography features between 

HC and MCI, characterized by significantly greater segregation of this network (higher 

clustering coefficient and local efficiency) in MCI patients. When broken down at the 

single node level, we observed that this higher clustering coefficient/ local efficiency was 

mainly imputable to its frontal nodes. Importantly, this distribution was even more 

marked at 2 years follow-up compared to baseline, suggesting a progressive segregation 

pattern as a function of time and, presumably, pathology. As both graph measures reflect 

the tendency of a node to have a greater distribution of connections within neighboring 

nodes, and hence to share information transfer “locally”, these results are in line with the 

previously reported greater connectivity within frontal areas in MCI/AD (Chandra et al., 

2019; Wang et al., 2007). Generally, this has been interpreted as evidence of 

compensatory mechanisms, which would operate by increasing the FC in prefrontal 

regions to counteract the loss of connectivity between regions (Wang et al., 2007). When 

put in relation to episodic memory performance, as we did in this study, we observed a 

significant group effect in the relationship between DMN clustering coefficient and the 

probability of encoding into a durably learned state (DCBs’ N1 score), as well as the 

probability of retrieving from the durably learned state after a 5-minute delay with 
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distraction (DCBs’ R3 score). In particular, a positive association was observed between 

DMN clustering coefficient and memory encoding at 2 years in HC. On the other hand, 

at the nodes’ level analysis, MCI patients showed a negative association between the 

clustering coefficient of the right dorsomedial prefrontal cortex and efficient memory 

encoding after 2 years. Our interpretation is that, in HC, the easier the information transfer 

between DMN nodes, the higher the chances of correct episodic memory encoding. On 

the other hand, MCI patients present a greater recruitment of the same regions whilst 

showing a poorer performance. One possible interpretation is that compensatory 

mechanisms in the MCI brain result in greater functional costs with little behavioral 

benefit, such as that the individuals that at baseline already show a higher tendency of 

processing information locally within frontal areas, rather than more widely, will present 

greater encoding difficulties in the next 2 years. These patients might be the ones at higher 

risk of receiving a diagnosis of AD within the same time window. In the lack of task-

evoked activity fMRI data, our interpretation of the results as evidence of compensatory 

mechanisms can only be speculative, although in line with prior evidence in the literature 

(Hillary et al., 2015; Suckling et al., 2015; Wang et al., 2018). A secondary possible 

explanation for our findings has been given by different studies reporting 

hyperconnectivity as a common response to neurological disruption, and therefore 

occurring in various set of conditions, such as MCI, AD, but also traumatic brain injury 

or multiple sclerosis (Hillary et al., 2015). Frontal hyperconnectivity would occur in in 

combination of connectivity gain and loss withing networks and it would provide the 

minimum resources required to meet task demands (Hillary et al., 2015). Moreover, 

another study using fMRI has reported a parametric relationship between the continuous 

high baseline activity of regions and hubs in the DMN, especially frontal ones, and 
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amyloid deposition (Buckner et al., 2009), therefore suggesting that the hyperconnection 

found in frontal regions of MCI patients may be also interpreted as a maker of early 

diffusion of amyloid in the isocortex and hence as a marker of progression to AD 

(Buckner et al., 2009). Finally, our results indicating a possible involvement of the right 

dorsomedial prefrontal cortex during encoding of information may seem to be 

counterintuitive with regard to HERA model, for witch, in memory performances, left 

prefrontal areas are the ones selectively implicated (Habib et al., 2003). However, our 

findings may be explained in light of the HAROLD model, since a decrease in 

hemispheric asymmetry could account for the supplementary implication of right frontal 

regions (Cabeza, 2002).   

In support of the compensatory hypothesis, one possible contributor to such 

compensation mechanisms is the individual level of cognitive reserve, explained as the 

individual ability to show resilience and/or efficient compensation in face of pathology 

thanks to fitter brain patterns resulting from a life of engaging into cognitively stimulating 

activities and healthy lifestyles (Wang et al., 2007). In our study, all participants had high 

levels of education (HC: mean = 16.6±2.1; MCI:  15.7±2.3), which represents the most 

informative and used proxy in the computation of reserve estimates (Barulli & Stern, 

2013). Although the lack of variability in this metric prevents us from analyzing the effect 

that interindividual differences in reserve might have in shaping the observed relationship 

between DMN frontal segregation and encoding of episodic memory, it also augments 

the strength and predictive power of our measures. Indeed, patients with high levels of 

reserve can usually compensate better and for longer the cognitive dysfunctions caused 

by AD, for example through the use of alternative strategies to help them overcome the 

initial memory pitfalls (e.g. spontaneously using agendas or other memory aids) (Andel 
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et al., 2006; Bruandet et al., 2008; Menardi et al., 2018) However, this also often results 

in a delayed diagnosis of AD, when the underlying pathology has already reached a much 

more advanced stage compared to patients with lower cognitive reserve (Andel et al., 

2006; Bruandet et al., 2008; Menardi et al., 2018). Here, we prove that increased DMN 

clustering (especially of its frontal nodes) is predictive of memory decline in individuals 

with high reserve, suggesting a possible early detection of patients at risk of developing 

AD and that often go undiagnosed. This represents a crucial aspect, as today’s aging 

population is characterized by higher education compared to past generations (Burger & 

Mortimer, 2021; Mortimer et al., 2020), which brings the need to develop more sensitive 

tools. This interpretation is given from a qualitative perspective on our hand and future 

studies should be conducted to test this hypothesis, for example by including individuals 

with lower levels of reserve to observe if distinguishable patterns can be observed. 

In this study, models’ goodness in revealing an association between topography and 

behavior was also made possible by the use of a highly specific episodic memory 

assessment tool, the DCBs (Bock et al., 2022), which might provide greater sensitivity 

than global scales. Indeed, averaging the performance across encoding, retrieval and 

recall mechanisms might otherwise hinder early and more subtle impediments at specific 

stages. In particular, our results highlight that episodic memory impairments in MCI 

patients might particularly evolve around the encoding of relevant event features 

constituting the episodic memory. On the other hand, we were not able to predict changes 

in more general global cognitive scales, such as the ADAS-Cog, which provide more 

approximate and less sensitive indices of cognitive decline. 

Another contribution of the present study is that it highlights the role of prefrontal cortices 

in episodic memory impairments more (and probably earlier) than temporal regions, 
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which are the brain areas traditionally associated with memory difficulties in AD. Indeed, 

in typical AD, the emerge of symptoms follows a sequential order (episodic memory 

loss→ semantic memory loss → aphasic, apraxic, and visuospatial symptoms → motor 

and visual deficits) which mirrors neuronal loss due to atrophy (MTL (especially 

hippocampus) → posterior cingulate cortex → frontal and parietal cortices 

→ sensorimotor and occipital cortex) (Talwar et al., 2021). Here, we show that the earliest 

biomarker of future episodic memory impairments in MCI patients might instead be the 

functional clusterization of DMN’s frontal regions. With regard to the compensatory 

hypothesis, this is possibly due to the fact that functional compensatory mechanisms 

might be the more prominent feature of the pathology at its prodromal stages, when neural 

loss in the MTL is still only at the beginning. Hence, whilst temporal cortices still show 

activity patterns similar to normal aging since atrophy of these regions might have not 

yet reach a critical stage, frontal cortices might show an earlier neurocompensatory role 

in trying to maintain cognitive efficiency (Wang et al., 2018), representing an early 

stressor. Unfortunately, the computation of gray matter estimates fell beyond the scope 

of this study, but our interpretation suggests an important link between cortical atrophy 

over posterior DMN regions and a counteracting increased connectivity over its frontal 

component. Distinct functional alterations between anterior and posterior components of 

the DMN have indeed been recently proved (Yang et al., 2023). It is also important to 

highlight that in this study, the frontal involvement was indeed within regions belonging 

to the DMN rather than the FPN. For the latter, we still observed a positive correlation 

between its degree of clustering coefficient and the probability of encoding, this time into 

a transiently learned state (DCBs- N2 scores). This significant association between main 

effects in the model was observed across thresholds, but the models per se did not reach 
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statistical significance. We hypothesize that this might represent a trend in the data but 

that the somehow limited sample size of the current study might have limited the strength 

of the model.  

 

4. Conclusions 

 
The present study highlights the role of DMN topological alterations, especially in terms 

of increased segregation in the information processing of its frontal components, as an 

early biomarker of cognitive worsening in episodic memory encoding. In particular, the 

study emphasizes that functional compensatory mechanisms in prefrontal regions might 

be a more prominent feature of the pathology at its prodromal stages, representing an 

early stressor. These findings might be potentially useful in the early detection of patients 

at higher risk of clinical progression and for whom resilience boosting interventions 

might still be put in place. 
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6. Appendix I 
 
 
DCBs: Networks results at different thresholds  

DMN 

Encoding 

80% 

Significative interaction term (R2 = 0.474, F(38) = 3.11) between clustering coefficient and 

group a 80% threshold (β= -1.06, p = 0.01). 

Interaction between baseline and group at 80% threshold (R2 = 0.474, F(38) = 3.11, p = 

0.0045, β = 0.6, p = 0.01). 

70% 

Significative interaction (R2= 0.543, F(39) = 4.07, p = 0.0005) between baseline and group 

at 70% threshold (β = 0.5, p = 0.01). 

60% 

Significative interaction (R2= 0.478, F(40) = 43.32, p = 0.003) between baseline and group 

at 60% threshold (β = 0.5, p = 0.02). 

 

Retrieval 

70% 

Significative positive correlation (R2 = 0.414, F(41) = 2.63, p = 0.012) between the measure 

of local efficiency and scores obtained at DCBs’ R3 at 70% threshold (β = -1.06, p = 

0.008). 

60% 

Significative positive correlation (R2 = 0.428, F(41) = 2.79, p = 0.01) between the measure 

of local efficiency and scores obtained at DCBs’ R3 at 60% threshold (β = 0.5, p = 0.008). 
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FPN 

Encoding 

70% 

Significative positive correlation (R2 = 0.277, F(40) = 1.4, p = 0.212) between the measure 

of clustering coefficient and scores obtained at DCBs’ N2- probability of encoding into 

the transiently learned state at 70% threshold (β = -1.69, p = 0.006). 

60% 

Significative positive correlation (R2 = 0.202, F(41) = 0.946, p = 0.509) between the 

measure of clustering coefficient and scores obtained at DCBs’ N2- probability of 

encoding into the transiently learned state at 60% threshold (β = -1.7349, p = 0.01). 

 


