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Abstract

The key reconciliation stage in the secret key generation process may

leak partial information to the eavesdropper through the public chan-

nel. In this thesis, two metrics, based on rate-distortion and entropy

are considered to gauge the secrecy achievable with a channel scheme

with side information at the receivers. Two theorems that provide

bounds on the performance in this scenario according to different met-

rics are considered, and the resulting performance in terms of secret

key rate is assessed.
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Chapter 1

Secret Key Generation

1.1 Secret Key Generation Process

The generation of a secret key from a random source as described in [3] and [4]

is divided in various stages as shown in figure 1.1 from [5]. This process must be

repeated periodically, as the number of generated secrecy bits of a key is limited,

therefore a new one must be created. This pushes for higher key generation

rate, which is related to the b bits sent between Alice and Bob to generate a

key of length B. The process Includes the steps of channel probing, advantage

distillation and information reconciliation.

1.1.1 Channel Probing

Alice and Bob have to determine one or more parameters of the received signal

used to generate the keys. The parameter must be chosen so that it is random

and enough time correlated. The latter condition is because Alice and Bob are

operating in half-duplex, therefore they will probe the same channel with delay

∆t between the two.

We assume, without loss of generality, that the communication is started by

Alice, who sends Bob the ith signal at time ti,A. The latter will evaluate the

chosen parameters, after which Bob repeats the same process, sending a signal

at time ti,B until all the needed samples are measured.

The channel feature chosen is usually Received Signal Strength (RSS), as it

provides enough randomness and its measurement is featured in most telecommu-

nication devices. Even if Alice and Bob send signal with period ∆t small enough,

there is still going to be a difference between the two signals.

1
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Figure 1.1: Scheme of the secret-key generation process
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It is also to be noted that Eve’s received signal is not going to be correlated

to the Alice and Bob’s if it is more than half a wavelength away from the source

of the signal, making it impossible for them to reconstruct the original signal to

recreate the generated key. We also assume the channel is partially reciprocal, so

the noise added to Bob’s and to Alice’s received signals is correlated.

1.1.2 Quantization

In order to generate the key bits, the real values of the probing stage are quantized

into bits. In most cases, so that the generated keys at Bob and Alice have a small

number of differing bits, the quantizer uses a Gray code, since the sampled values

at the legitmate receivers are not going to be the same.

In [3], the distribution function of the parameters is known, the authors

propose to generate random bits from the samples is by dividing the space into

M equi-probable intervals. Guard intervals are inserted on quantization intervals

borders, with width proportional to the standard deviation of the signal.

However, with this technique some samples are bound to be discarded and,

instead of a single signal, only escursions of length L are used as valid samples.

We consider a case in which the receivers also have access to side-information,

corresponding to the measurements obtained through channel probing, which

forms Markov chain B−X−W . In this case (as explained in [4]), a way to achieve

randomness is to optimize the quantizer so that the secret key capacity Csk is

maximized, where sA = {X}, sB = {M,B} and sE = {M,W} are respectively

the side information and the message received by Alice, Bob and Eve. Since the

expression of the secrecy capacity is not known in closed form we maximise the

secrecy capacity lower bound

C low
sk (TA, TB, TE) = I(sA, sB)−min{I(sA, sE), I(sB, sE)} (1.1)

1.1.3 Information Reconciliation

The distillation phase as described in [4] makes the two sequences potentially

close enough to be within error code correction range.

Therefore Alice, who has already calculated the key X /∈ Cn from the real

value X uses the error correction code Cn, to calculate the syndrome σ = HX, in

order to find the coset leader ξ(σ), which is then used to calculate the codeword

c = X + ξ(σ) ∈ Cn.



4 Chapter 1. Secret Key Generation

ξ(σ) is sent to Bob who has calculated the key B /∈ Cn from the real value B,

and uses it to calculate B′ = B+ξ(σ). This step ensures that the same codeword

is decoded by Bob, as it closes the Hamming distance between B′ and X to be

small enough to be within correction distance. The same process done by Alice

is reapeated for Bob, therefore

σ′ = HB′ (1.2a)

c′ = B′ + ξ(σ′) (1.2b)

If the code correction went accordingly c′ = c, so Alice and Bob obtained the

same key.

1.1.4 Privacy Amplification

As the reconciliation is done through public channel, part of the information is

revealed to the eavesdropper. In order to remove such leakage [5] and obtain

a secret key, Alice and Bob use privacy amplification. Privacy amplification

can be implemented by extractor, universal hashing function, cryptographic hash

function and Merkle-Damgard hash function



Chapter 2

Performance Constraints Measures

In order to compute the limits of the secrecy of a channel with eavesdropper we

use two constraint metrics, as explained in [1], [2].

We consider a channel where the transimitter Alice sending over a channel

messageM , given informationX. A passive attacker Eve decodes the information

Z given side information W and received message M . Analogously the legitimate

receiver Bob decodes information Y given side-information B message M . X and

B are correlated but their statistics are not the same in general. The goal is to

use a key reconciliation scheme that exploits the correlation advantage between

X and B, in order to leak the least amount of information to Eve. We summarize

the scheme in figure 2.1.

2.1 Performance Constraints Measures

To compute the performance constraints of the secret key generation process

we consider the information reconciliation, as during this stage M , which is a

function of X, is sent over the public channel.

A positive secrecy capacity is achievable if the error rate between Alice’s and

Bob’s side information is lower than the error rate between Alice’s and Eve’s side

information. This is because the message through the public channel, as explained

in the following section, can be decoded only using the side information. For this

reason we want to minimize the mutual information between the side information

W and X.

We consider two metrics, one based on distortion [1], the other [2] based

on the equivocation between the side information at Eve and the information

it retrieves from the channel. We’ll consider M = f(U, V,X), where f is an

5
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Alice Bob

Eve

M

X

Y

B

W

Z

Figure 2.1: block diagram of the channel considered

invertible function given X, where the variables are connected as a Markov chain,

such that

U − V −X − (B,W )

2.1.1 Rate-distortion metric

The metric described in [1] bases the constraints on rate-distortion. The rate-

distortion function is defined as [6]

R(I)(D) = min
p(X|X̂):E[d(X,X̂)]<D

I(X; X̂), (2.1)

representing the minimum rate so that the distortion D is achievable, where

distortion function d, usually in the form d(X, X̂) = ∥X − X̂∥
n
, defines the

distortion caused by lossy transmission between the inputX and decoded message

X̂.

The considered decoder is stochastic, as V and U aren’t deterministic given

X. From [6], the rate-distortion function with side information B given the
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distortion D is

RB(D) = min
P (V |X)

min
f

I(X;B|V ) =

= min
P (V |X)

min
f

[I(X;V )− I(B;V )],
(2.2)

∑

x

∑

v

∑

b

P (X = x,B = b)P (V = v|X = x)d(X = x, f(B = b, V = v)) ≤ D,

with |V | ≤ |X|+ 1,

(2.3)

which is a non-increasing convex function of D. Going back to our scenario we

introduce the following distortion metrics:

• Db: the distortion of the decoded signal at Bob

• Dw: the distortion of the decoded signal at Eve

• R: rate of the encoder

Next we introduce the following theorems

Theorem 1 (Distortion Achievability [1]) A rate-distortion triple (R,Db, Dw)

is achievable if there exist a sequence of rate R encoder and decoder tuple (fn, gn)

such that:

E[db(X
n, Y n)] ≤n Db (2.4a)

min
PZn|MWn

E[dw(X
n, Zn)] ≥n Dw (2.4b)

We assume that Eve decodes M using PZn|MWn .

Theorem 2 (Achievability using distortion measurement [1]) A rate-distortion

triple (R,Db, Dw) is achievable if:

R > I(V ;X|B) (2.5a)

Db ≥ E[db(X, Y )] (2.5b)

Dw ≤ min
z(u,w)

E[dw(X,Z(U,W ))] (2.5c)
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I(V ;B|U) > I(V ;W |U) (2.5d)

for some PUV XBW = PXBWPV |XPU |V where Y = ϕ(V,B) for some function ϕ

Theorem 3 (Converse (Distortion measure) [1]) If a rate-distortion triple

(R,Db, Dw) is achievable then:

R > I(V ;X|B) (2.6a)

Db ≥ E[db(X, Y )] (2.6b)

Dw ≤ min
z(w)

E[dw(X,Z(W ))] (2.6c)

for some P V XBW = PXBWP V |X where Y = ϕ(V,B) for some function ϕ.

If the legitimate receiver has strictly less noisy side information

I(V ;B) > I(V ;W ) (2.7)

the previous theorem is tight.

Additionally if the receivers must reconstruct the source sequence losslessly, we

have the following inner bound.

Theorem 4 (Achievability using distortion measurement Corollary [1])

A rate-distortion tuple (R,Dw) is achievable if:

R > H(X|B)

Dw ≤ min
z(u,w)

E[dw(X,Z(U,W ))]

I(X;B|U) > I(X;W |U)

(2.8a)

Dw ≤ min
z(u,w)

E[dw(X,Z(U,W ))] (2.8b)

I(X;B|U) > I(X;W |U) (2.8c)

for some PUV XBW = PXBWPV |XPU |V where Y = ϕ(V,B) for some function ϕ

2.1.2 Equivocation Measurement

In [2] the secrecy metrics are measured through the equivocation between the

information at Alice (X) and the information at Eve (M and W ).
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Theorem 5 [2] A tuple (R,D,∆) ∈ R
3
+ is said to be achievable if, for any ϵ > 0,

there exists a (n,R + ϵ)-code with encoder f and decoder g such that

E[d(Xn, g(f(Xn), Bn))] ≤ D + ϵ (2.9a)

1

n
H(Xn|f(Xn),W n) ≥ ∆− ϵ (2.9b)

Theorem 6 (Equivocation Measure [2]) Region R∗ is the set of all tuples

(R,D,∆) such that there exist random variables U , V , on sum finite sets U ,

V, such that they form a Markov chain U − V − X − (B,W ), and a function

X̂ : V × U → X such that

R ≥ I(V ;X|B) (2.10a)

D ≥ E[d(X, X̂(V,B))] (2.10b)

∆ ≤ [H(X|V B) + I(X;B|U)− I(X;W |U)]+ (2.10c)

intuition for third inequality: H(X|V B) is the equivocation rate at Bob, exploited

to increase the one at Eve, I(X;B|U) − I(X;E|U) refers to how much Bob is

more capable than Eve.

There exist the following cardinality constraints for U and V :

∥U∥ ≤ ∥X∥+ 2 (2.11a)

∥V∥ ≤ (∥X∥+ 2)(∥X∥+ 1) (2.11b)

Theorem 7 (B is less noisy than W(Equivocation Measure) [2]) B is less

noisy than W if

I(U ;B) ≥ I(U ;W ) (2.12)

In this case (R,D,∆) is achievable if

R ≥ I(V ;X|B) (2.13a)

D ≥ E[d(X, X̂(V,B))] (2.13b)

∆ ≤ [H(X|V B) + I(X;B)− I(X;W )]+ (2.13c)

The worst case is the one in which the two quantizers are exactly the same.

We assume B is strictly less noisy than W as, if the contrary was the case,

Eve’s measurements are on par with Alice’s and Bob’s ones, meaning that if the
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key generation algorithm is known, Eve will always be able to generate the same

private key as Alice.

U and V are discrete variables and the probability P (U |V ) determines the

maximum distortion Z that can be achieved within the theorem bounds.

2.2 Codebook generation

The following section gives context to the relation between U , V and M , using

the proof of achievability in [1]. X is encoded into four messages Ms, M
′
s, Mp,

M ′
p, where M ′

p and M ′
s aren’t sent over but they will be decoded from the other

two messages. Fix a distribution PUV XBW = PUPV |UPX|V PBW |X satisfying the

achievability conditions. Fix rates:

Rp +R′
p > IP (U ;X), (2.14a)

R′
p < IP (U ;B) (2.14b)

Rs +R′
s > IP (X;V |U) (2.14c)

IP (V ;W |U) < R′
s < IP (V ;B|U) (2.14d)

the joint distribution is:

P (xn, bn, wn,mp,m
′
p,ms,m

′
s, y

n)
∆
=

PXnBnWn(xn, bn, wn)PE(mp,m
′
p,ms,m

′
s|x

n)

PD(m
′
p,m

′
s|x

n,mp,ms, b
n)Pφ(y

n|mp, m̂
′
p,ms, m̂s, b

n)

(2.15)

where PE is the source encoder, PD the first part of the decoder, decoding m′, Pφ

is the decoder of the sequence. Index by (mp,m
′
p) ∈ {1...2nRp} × {1...2nR

′
p} the

sequences of 2n(Rp,R
′
p) symbols in Un generated from the distribution

∏n

t=1 P (ut),

the codebook called Cn
U .

(ms,m
′
s) ∈ {1...2nRs} × {1...2nR

′
s} in the same way according to the distribu-

tion of Vn with distribution
∏n

t=1 P (vt|ut(mp,m
′
p)) this codeboox is denoted as

C
(n)
v (mp,m

′
p) indexed by (mp,m

′
p,ms,m

′
s)

We compute the encoded message distribution as:

PE(m|xn) =
L(m|xn)

∑

m∈M L(m|xn)
(2.16)
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where

LE(m|xn) = PXn|V n(xn|vn(m)) (2.17)

The decoder is composed of two parts:

1. channel decoder PD(m̂
′
p, m̂

′
s|mp,ms, b

n) a good channel decoder in respect

to the superposition sub-codebook {vn(mp, ap,ms, as)}ap,as and memoryless

channel PB|V

2. fix a function ϕ(·, ·) as the concatenation {ϕ(vt, bt)}
n
t=1 and set the decoder

Pφ to be the deterministic function

PΦ(y
n|mp, m̂

′
p,ms, m̂

′
s)

∆
=

1{yn = ϕn(vn(mp, m̂
′
p,ms, m̂

′
s))}

(2.18)

where U and V are discrete variables
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Chapter 3

System design

In the following chapter two examples of channel with eavesdropper and side-

information are shown in order to formulate an optimization problem of the per-

formance parameters shown in chapter 2. the GEKKO python library was used

to solve the optimization problems.

3.1 Example from [1]

For validation purposes we now reproduce the results in [1].

3.1.1 Problem setup

The transition probabilities used in the following section (identical to the ones

in [1]) for the side-information are as shown in the scheme in figure 3.1, where

X

0

1

W

0

1

B

0

1

e

α

α

1-α

1-α

β

β

1-β

1-β

Figure 3.1: Transition probabilities of the problem, from [1]

13
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• binary variable with lossless compression sent over binary channel as U to

all receivers, therefore the corollary 4 can be used in such case.

• the distortion function used is Hamming distance.

• the channel ahs the following transition probabilities:

PX(0) = 1− PX(1) = 1− p (3.1a)

B ∈ {0, e, 1} (3.1b)

PB|X(e|x) = α (3.1c)

PB|X(b ̸= e|x) = 1− α (3.1d)

PU(i) = ui (3.1e)

PX|U(0|i) = δi (3.1f)

PX|U(1|i) = 1− δi (3.1g)

PW |X(1− x|x) = β (3.1h)

3.1.2 Results

As explained previously, this particular case fits the hypothesis of corollary 4,

therefore (R,Dw) is achievable if:

Rate

The rate has the following constraint:

R > H(X|B) = αh(p) (3.2a)

where

P (X = 0|B = 1) = P (X = 1|B = 0) = 0 (3.2b)

P (X = 1|B = 1) = P (B = 0|B = 0) = 1 (3.2c)

P (X = 0|B = e) = 1− p (3.2d)

P (X = 1|B = e) = p (3.2e)

P (B = e) = α (3.2f)
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Distortion at Eve

In order to minimize the expected value of the distortion at Eve can be defined

as
∑

ui

(Pdistortion(ui)P (U = i)) (3.3)

(as the distortion is either 0 or 1), where Pdistortion is the probability of distortion

if ui is received, fixed the probability distribution of U , the decoder can either

choose to use w as the value of the decoded x, with distortion probability β, or

interpret ui as value 0 or 1, with respective distortion probability 1− δi, δi so the

minimum expected distortion is

Dw ≤
∑

ui

min{δi, 1− δi, β}PU(i) (3.4)

In order to find the maximum achievable distortion at Eve Dw we need to maxi-

mize it over the probability ui and δi

Mutual Information Constraint Formula

The following constraint represents the constraint of mutual information between

X and the side-information at the receivers

I(X;B|U) =H(X|U)−H(X|B,U) > I(X;W |U) =

=H(X|U)−H(X|W,U)

⇒−H(X|B,U) > −H(X|W,U)

(3.5)

P (X = 0|B = 1, ui) = P (X = 1|B = 0, ui) = 0 (3.6aa)

P (X = 1|B = 1, ui) = P (X = 0|B = 0, ui) = 1 (3.6ab)

P (X = 0|B = e, ui) =
P (X = 0, B = e, ui)

P (B = e, ui)
=

=
P (B = e|X = 0, ui)P (X = 0|ui)P (ui)

P (B = e|ui)P (ui)
= δi

(3.6ac)

P (X = 1|B = e) = p (3.6ad)

p(b = e) = α (3.6ae)
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H(X|B,U) =
∑

i

uiP (B = e|ui)((1− δi) log2
1

1− δi
+

+δi log2
1

δi
) =

∑

i

uiαh(δi)
(3.6b)

P (W = 0|ui) = δi(1− β) + (1− δi)β (3.6ca)

P (W = 1|ui) = δiβ + (1− δi)(1− β) (3.6cb)

P (X = 0|W = 1, ui) =
P (W = 1|ui, X = 0)P (ui, X = 0)

P (ui,W = 1)
=

=
P (W = 1|ui, X = 0)P (ui, X = 0)

P (W = 1|ui)
=

=
βδi

P (W = 0|ui)

(3.6cc)

P (X = 0|W = 0, ui) =
P (W = 0|ui, X = 0)P (ui, X = 0)

P (ui,W = 0)
=

=
P (W = 0|ui, X = 0)P (ui, X = 0)

P (W = 0|ui)
=

=
(1− β)δi

P (W = 0|ui)

(3.6cd)
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H(X|W,U) =

=
∑

i

ui(P (W = 0|ui)(P (X = 0|W = 0, ui) log2 P (X = 0|W = 0, ui) =

+ P (X = 1|W = 0, ui) log2 P (X = 1|W = 0, ui)) + P (W = 0|ui)(

P (X = 0|W = 0, ui) log2 P (X = 0|W = 0, ui)

+ P (X = 1|W = 0, ui) log2 P (X = 1|W = 0, ui))) =
∑

i

ui(

β(1− δi) log2
δi(1− β) + (1− δi)β

β(1− δi)
+ (1− β)δi log2

β(1− δi) + (1− δi)β

δi1− β

+ (1− β)(1− δi) log2
(1− δi)(1− β) + δiβ

(1− β)(1− δi)
+ βδi

log2
βδi + (1− δi)(1− β)

δiβ
)

=
∑

i

ui(β(1− δi)(log2 δi(1− β) + β(1− δi))+

+ log2
1

β(1− δi)
+ δi(1− β)(log2 δi(1− β) + β(1− δi)

log2
1

δi(1− β)
) + δiβ(log2 (1− δi)(1− β) + βδi+

+ log2
1

βδi
) + (1− δi)(1− β)(log2 (1− δi)(1− β) + βδi

log2
1

(1− δi)(1− β)
)) =

(decomposing log
1

ab
= log

1

a
+ log

1

b
)

=
∑

i

ui(β log2
1

β
+ (1− β) log2

1

(1− β)
+

+ δi log2
1

δi
+ (1− δi) log2

1

(1− δi)
+

+ log ((1− δi)(1− β) + βδi)((1− δi)(1− β) + βδi)+

+ log ((1− δi)β + (1− β)δi)((1− δi)β + (1− β)δi))

≥ 0

(3.6d)

3.1.3 Problem definition

Using the previous result the constraints are expressed in an optimization problem

of Dw
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Constants

α, β

Problem

Dw = max
{ui,δi}

3
∑

i=1

ui min{δi, 1− δi, β} (3.4)

s.t.

R ≥ αh(p) (3.5a)

3
∑

i=1

ui = 1 (3.5b)

3
∑

i=1

uiδi = 1− p (3.5c)

Information constraint

h(β) +
3
∑

i=1

ui[(1− α)h(δi)+

+ log ((1− δi)(1− β) + βδi)((1− δi)(1− β) + βδi)+

+ log ((1− δi)β + (1− β)δi)((1− δi)β + (1− β)δi)]

≥ 0

(3.5d)

3.2 Distortion measure with arbitrary cardinality of

the side information

The general case is considered using theorem 2, without assumption of the car-

dinality of B and W . This is done to more easily derive particular cases in the

next sections

Rate Constraint

The rate has the following constraint:

R > I(V ;X|B) = I(X;V |B) = H(X|B)−H(X|V,B) (3.6a)
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X

0

1

B

0

||B||

i

W

0

||W ||

i

β00
α00

....
α0i

α1i

α1||B||

....
β0i

....
....

β1i

β1||W ||

Figure 3.2: transition probabilities for the side information in the general case

where:

H(X|B) =

−
∑

i

P (B = i)(
∑

j

P (X = j|B = i) log2 P (X = j|B = i)) =

−
∑

ij

P (B = i|X = j)P (X = j) log2
P (B = i|X = j)P (X = j)

P (B = i)

(3.6b)

H(X|V,B) =

−
∑

i,j

P (V = i, B = j)(

∑

k

P (X = k|V = i, B = j) log2 P (X = k|V = i, B = j)) =

−
∑

i,j

∑

k

P (B = j|X = k)P (V = i|X = k)P (X = k)

log2
P (B = j|X = k)P (V = i|X = k)P (X = k)

∑

k′ P (V = i|X = k′)P (B = j|X = k′)P (X = k′)

(3.6c)

distortion at Bob constraint

Db ≥ E[db(X, Y )] choose Y = ϕ(V,B) in order to minimize the distortion of Y

within the bounds. Assuming the cardinality is finite the number of ϕ is finite,

therefore the complexity is exponential to the cardinality of V and B
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constraint on the distortion at Eve

Dw ≤ minZ(u,w) E[dw(X,Z)], where the Z(u, w) that minimizes the distortion is

therefore, if X is binary, the distiortion is

Dw ≤
∑

ij

min{P (U = i,W = j,X = 0), P (U = i,W = j,X = 1)} (3.7)

Noisiness of the side information Contraint

I(V ;B|U) > I(V ;W |U) ⇒ H(B|U) − H(V,B|U) > H(W |U) − H(V,W |U) the

computation for H(B|U)−H(V,B|U) is shown, H(W |U)−H(V,W |U) is anal-

ogous:

H(B|U) = −
∑

j

P (U = j)(
∑

i

P (B = i|U = j) log(P (B = i|U = j))) =

[P (B = i|U = j) =
P (B = i, U = j)

P (U = j)
]

−
∑

i,j

(
∑

k

P (B = i, X = k, U = j)) log

∑

k P (B = i, X = k, U = j)

P (U = j)
=

[P (B = i, X = k, U = j) = P (B = i, U = j|X = k)P (X = k) =

P (B = i|X = k)P (U = j|X = k)P (X = k)]

−
∑

i,j

(
∑

k

P (B = i|X = k)P (U = j|X = k)P (X = k))

log

∑

k P (B = i|X = k)P (U = j|X = k)P (X = k)

P (U = j)
=

(3.8a)

H(V,B|U) =

−
∑

i,j,k

P (V = i, B = j, U = k) log2

(

P (V = i, B = j, U = k)

P (U = k)

)

=

−
∑

i,j,k

(

∑

l

P (B = j|X = l)P (U = k|V = i)P (V = i|X = l)P (X = l)

)

log2

(∑

l P (B = j|X = l)P (U = k|V = i)P (V = i|X = l)P (X = l)

P (U = k)

)

(3.8b)

H(X,B) =−
∑

ij

P (B = j|X = i)P (X = i)

log2 P (B = j|X = i)P (X = i)

(3.8c)
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3.2.1 Problem definition

In the following the constraints are formulated as an optimization problem where

we find the maximum value of Dw, with X binary.

Constants

αij, βij, ϕ,Db, p

Problem

Dw = max
∑

ij

min{ωi0β0jp0, ωi1β1jp1} (3.9)

s.t.

αij = P (X = i|B = j)

αij ∈ [0, 1], i ∈ [0, 1] (3.10a)

βij = P (X = i|W = j)

βij ∈ [0, 1], i ∈ [0, 1] (3.10b)

Transition probability P (V = j|X = i)

δij ∈ [0, 1], i ∈ [0, 1] (3.10c)

Transition probability P (U = j|V = i)

γij ∈ [0, 1], i ∈ [1, 3] (3.10d)

where p0 = P (X = 0)

p0 = p, p1 = 1− p0 (3.10e)

constraint of the transition probabilities
∑

i P (B = i|X = k) = 1

∑

i

αki = 1 (3.10f)
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constraint of the transition probabilities
∑

i P (W = i|X = k) = 1

∑

i

βki = 1 (3.10g)

constraint of the transition probabilities
∑

i P (V = i|X = k) = 1

∑

i

δki = 1 (3.10h)

constraint of the transition probabilities
∑

i P (U = i|X = k) = 1

∑

i

γki = 1 (3.10i)

vi = P (V = i)

vi =
∑

j=0,1

δjipj (3.10j)

ui = P (U = i)

ui =
∑

j

γjivj (3.10k)

bi = P (B = i)

bi =
∑

j

αjipj (3.10l)

∆ij = P (X = i|V = j)

∆ij =
δijpi
vj

(3.10m)

ξij = P (X = i|U = j)

ξij =

∑

k γkjδikpi
uj

(3.10n)

ωij = P (U = j|X = i)

ωij =
ξijuj

pi
(3.10o)

R > −
∑

ij

αjipj log2
αjipj
bi

+
∑

ijk

αkjδkipk log2
αkjδkipk
∑

l αl,jδlipl
(3.10p)
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Db ≥ E[db(X,ϕ(B, V ))] (3.10q)

(noisiness of the side information constraint)

−
∑

ij

(
∑

k

αkiωjkpk)log2
(
∑

k αkiωjkpk)

uj

+
∑

ijk

(
∑

l

αljγikδlipl) log2
(
∑

l αljγikδlipl)

uj

>

−
∑

ij

(
∑

k

βkiωjkpk)log2
(
∑

k βkiωjkpk)

uj

+
∑

ijk

(
∑

l

βljγikδlipl) log2
(
∑

l βljγikδlipl)

uj

(3.10r)

3.3 Equivocation measure with arbitrary

cardinality of the side information

In this section the purpose is the same as the previous but using theorem 6. The

setup is the same, with transition probabilities shown in figure 3.2

R ≥ I(V ;X|B) (3.11a)

Db ≥ E[d(X, X̂(V,B))] (3.11b)

∆ ≤ [H(X|V,B) + I(X;B|U)− I(X;W |U)]+ (3.11c)

∆ parameter formula

H(X|V,B) is computed in the previous section, only I(X;B|U)− I(X;W |U) is

shown.

I(X;B|U)− I(X;W |U) =

= H(X|U) +H(B|U)−H(X,B|U)− (H(X|U) +H(W |U)−H(X,W |U))

= H(B|U)−H(X,B|U)− (H(W |U)−H(X,W |U))

(3.12)
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H(X,B|U) =

= −
∑

i

P (U = i)
∑

i,k

P (X = j, B = k|U = i) log2 P (X = j, B = k|U = i) =

=
∑

i,k,j

P (U = i|X = j)P (B = k|X = j)P (X = j)

log2
P (U = i|X = j)P (B = k|X = j)P (X = j)

P (U = i)

(3.13)

3.3.1 Side information B is less noisy than side information E

We also considered the theorem 7 as the hypothesis is coherent with the require-

ments to achieve secrecy in our case. Most of the formulas are analogous to

previous examples, therefore omitted here

Noisiness Constraint

I(U ;B) ≥ I(U ;E) ⇒ H(B)−H(U,B) ≥ H(W )−H(U,W ) (3.14a)

H(U,B) = −
∑

i,j

(

∑

k

P (U = i|X = k)P (B = j|X = k)P (X = k)

)

log2
∑

k

P (U = i|X = k)P (B = j|X = k)P (X = k) =

(3.14b)

∆ parameter formula

∆ ≤ [H(X|V B) + I(X;B)− I(X;W )]+ (3.15a)

H(X,B) =−
∑

ij

P (B = j|X = i)P (X = i)

log2 P (B = j|X = i)P (X = i)

(3.15b)

3.3.2 Problem definition

In the following, the previous constraints are formulated as an optimization prob-

lem where we find the maximum value of ∆, with X binary.

Constants

αij, βij, ϕ,Db, p
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Problem

∆ = max{ −
∑

ijk

αkjδkipk log2
αkjδkipk
∑

l αl,jδlipl

−
∑

ij

(
∑

k

αkiωjkpk)log2
(
∑

k αkiωjkpk)

uj

+
∑

ijk

(ωijαjkpj) log2
ωijαjkpj

ui

−(−
∑

ij

(
∑

k

βkiωjkpk)log2
(
∑

k βkiωjkpk)

uj

+
∑

ijk

(ωijβjkpj) log2
ωijβjkpj

ui

)}

(3.16a)

s.t.

αij ∈ [0, 1], i ∈ [0, 1] (3.17a)

βij ∈ [0, 1], i ∈ [0, 1] (3.17b)

δij ∈ [0, 1], i ∈ [0, 1] (3.17c)

γij ∈ [0, 1], i ∈ [1, 3] (3.17d)

p0 = p, p1 = 1− p0 (3.17e)
∑

i

αki = 1 (3.17f)

∑

i

βki = 1 (3.17g)

∑

i

δki = 1 (3.17h)

∑

i

γki = 1 (3.17i)

vi =
∑

j=0,1

δjipj (3.17j)

ui =
∑

j

γjivj (3.17k)

bi =
∑

j

αjipj (3.17l)



26 Chapter 3. System design

wi =
∑

j

βjipj (3.17m)

∆ij =
δijpi
vj

(3.17n)

ξij =

∑

k γkjδikpi
uj

(3.17o)

ωij =
ξijuj

pi
(3.17p)

R > −
∑

ij

αjipj ∗ log2
αjipj
bi

+
∑

ijk

αkjδkipk log2
αkjδkipk
∑

l αl,jδlipl
(3.17q)

Db ≥ E[db(X,ϕ(B, V ))] (3.17r)

3.3.3 Problem definition side information at Bob less noisy

than he one at Eve

In the following the problem is formulated as an optimization problem where

we find the maximum value of ∆, with X binary. The definition of the proxy

variables is the same as the previous section

Constants

αij, βij, ϕ,Db, p

Problem

∆ = max{ −

(

∑

ijk

αkjδkipk log2
αkjδkipk

(
∑

l αl,jδlipl)

)

−

(

∑

i

bi log2 bi

)

+

(

∑

ij

αijpi

(

−

(

∑

i

wi log2 bi

)

+

(

∑

ij

βijpi

)))

}

(3.18a)

s.t.

αij ∈ [0, 1], i ∈ [0, 1] (3.19a)

βij ∈ [0, 1], i ∈ [0, 1] (3.19b)
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δij ∈ [0, 1], i ∈ [0, 1] (3.19c)

γij ∈ [0, 1], i ∈ [1, 3] (3.19d)

p0 = p, p1 = 1− p0 (3.19e)
∑

i

αki = 1 (3.19f)

∑

i

βki = 1 (3.19g)

∑

i

δki = 1 (3.19h)

∑

i

γki = 1 (3.19i)

vi =
∑

j=0,1

δjipj (3.19j)

ui =
∑

j

γjivj (3.19k)

bi =
∑

j

αjipj (3.19l)

∆ij =
δijpi
vj

(3.19m)

ξij =

∑

k γkjδikpi
uj

(3.19n)

ωij =
ξijuj

pi
(3.19o)

R > −
∑

ij

αjipj ∗ log2
αjipj
bi

+
∑

ijk

αkjδkipk log2
αkjδkipk
∑

l αl,jδlipl
(3.19p)

Db ≥ E[db(X,ϕ(B, V ))] (3.19q)
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side information noisiness constrains

−
∑

i

bi log2 bi

+
∑

ij

(
∑

k

ωkiαkjpk) log2(
∑

k

ωkiαkjpk)

> −
∑

i

wi log2 wi

+
∑

ij

(
∑

k

ωkiβkjpk) log2(
∑

k

ωkiβkjpk)

(3.19r)

3.4 Equivocation measure with arbitrary

cardinality of the side information and R = 0

The setup is the same as the previous case, however now we don’t assume the

cardinality of X, B and W and we assume no message is sent(R = 0). This is

needed in order to compare the performance of the equivocation with the case in

which no message is sent.

Db ≥ E[d(X,B))] (3.20a)

∆ ≤ [H(X|B) + I(X;B)− I(X;W )]+ (3.20b)

Formulas

I(X;B)− I(X;W ) =

= H(X) +H(B)−H(X,B)− (H(X) +H(W )−H(X,W ))

= H(B)−H(X,B)− (H(W )−H(X,W ))

(3.21)

H(X,B) =

= −
∑

i,k

P (X = j, B = k) log2 P (X = j, B = k) =

=
∑

i,k

P (B = k|X = j)P (X = j)

log2 P (B = k|X = j)P (X = j)

(3.22)
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X

0

1

W

0

1

e

B

0

1

e

α

α

1-α

1-α

β

β

1-β

1-β

Figure 3.3: transition probabilities for the side information at the receivers for the considered case
study

H(B) =

= −
∑

k

(

∑

j

P (X = j, B = k)

)

log2
∑

j

P (X = j, B = k) =

=
∑

k

(

∑

j

P (B = k|X = j)P (X = j)

)

log2
∑

j

P (B = k|X = j)P (X = j)

(3.23)

3.5 Binary Deletion Channel Example Using

Rate-Distortion Measure [1]

Using the general formulas obtained in previous sections in order to solve a par-

ticular case. In the following section we consider the case in which B and W

are binary variables with deletion.U, V,B,W have cardinality 3 and X is a binary

source. The transition probabilities are shown in figure 3.1

Parameters

P (B = 0|X = 0) = P (B = 1|X = 1) = α (3.24a)

P (B = 1|X = 0) = P (B = 0|X = 1) = 0 (3.24b)

P (B = e|X = 0) = P (B = e|X = 1) = 1− α (3.24c)

P (W = 0|X = 0) = P (W = 1|X = 1) = β (3.24d)
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P (W = 1|X = 0) = P (W = 0|X = 1) = 0 (3.24e)

P (W = e|X = 0) = P (W = e|X = 1) = 1− β (3.24f)

Variables

the following transition probabilities are considered variables in this context

P (V = i|X = j) = δji (3.25a)

P (U = i|V = j) = γji (3.25b)

Definitions

vi ≜ P (V = i) =
∑

j

P (V = i|X = j)P (X = j) (3.26a)

ui ≜ P (U = i) =
∑

j

P (U = i|V = j)P (V = j) (3.26b)

∆ji ≜ P (X = j|V = i) =
P (V = i|X = j)P (X = j)

P (V = i)
(3.26c)

Γji ≜ P (V = j|U = i) =
P (U = i|V = j)P (V = j)

P (U = i)
(3.26d)

ωji ≜P (U = j|X = i) =

∑

k P (U = j,X = i, V = k)

P (X = i)
=

∑

k

P (U = j|V = k)P (V = k|X = i)
(3.26e)

Constraints

The following formulas are obtained using theorem 2

Rate Constraint

R > I(V ;X|B) = I(X;V |B) = H(X|B)−H(X|V,B) (3.27a)
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where the entropy can be computed as following:

H(X|B) =

−
∑

i

P (B = i)(
∑

j

P (X = j|B = i) log2 P (X = j|B = i)) =

every value of B ̸= e yields zero information

− P (B = e)((P (X = 1|B = e) logP (X = 1|B = e) + P (X = 0|B = e) logP (X = 0|B = e)))

= (1− α)h(p)

(3.27b)

H(X|V,B) =

−
∑

i,j

P (V = i, B = j)(

∑

k

P (X = k|V = i, B = j) logP (X = k|V = i, B = j)) =

analogous to the previous case, every value of B ̸= e yields zero information

−
∑

i

P (V = i, B = e)

(
∑

k

P (X = k|V = i, B = e) logP (X = k|V = i, B = e)) =

−
∑

ik

P (V = i|X = k)P (B = e|X = k)P (X = k)

log
P (V = i|X = k)(B = e|X = k)P (X = k)

P (V = i, B = e)
=

−
∑

ik

(1− α)P (X = k|V = i)P (V = i)

log
P (V = i|X = k)(1− α)P (X = k)

∑

k′ P (V = i|X = k′)P (B = e|X = k′)P (X = k′)
=

1− α = P (B = e|X = k),k ∈ {0, 1}

and vi =
∑

k

P (V = i|X = k)P (X = k)

− (1− α)
∑

ik

P (X = k|V = i)P (V = i) log
P (X = k|V = i)P (V = i)

vi
=

− (1− α)
∑

i,k

∆kivi log∆ki = (1− α)
∑

i

vih(∆ki)

(3.27c)
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Distortion at Bob constraint

Db ≥ E[db(X, Y )] choose Y = ϕ(V,B) in order to minimize the distortion of Y

within the constraints

Distortion at Eve constraint

Dw ≤ minZ(u,w) E[dw(X,Z)] analogous to the general case, however some consid-

erations are to be made. In this case if Eve receives either 0 or 1 the distiortion is

0 in all cases, as the probability of transition between the two values is zero. Only

if Eve receives e the value received is ambiguos, therefore the previous inequality

is:

Dw ≤
∑

i

min{1P (X = 0,W = e, U = i), 1P (X = 0,W = e, U = i)} =

∑

i

min{P (W = e|X = 0)P (X = 0|U = i)P (U = i),

P (W = e|X = 1)P (X = 1|U = i)P (U = i)} =
∑

i

(1− β)(P (U = i))min{P (X = 0|U = i), P (X = 1|U = i)}

(3.28)
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Noisiness of the side information constraint

I(V ;B|U) > I(V ;W |U) ⇒ H(B|U) − H(V,B|U) > H(W |U) − H(V,W |U) the

formula for H(B|U)−H(V,B|U) is shown, H(W |U)−H(V,W |U) is analogous:

H(B|U) = −
∑

j

P (U = j)(
∑

i

P (B = i|U = j) log(P (B = i|U = j))) =

[P (B = i|U = j) =
P (B = i, U = j)

P (U = j)
]

−
∑

i,j

(
∑

k

P (B = i, X = k, U = j)) log

∑

k P (B = i, X = k, U = j)

P (U = j)
=

[P (B = i, X = k, U = j) = P (B = i, U = j|X = k)P (X = k) =

P (B = i|X = k)P (U = j|X = k)P (X = k)]

−
∑

i,j

(
∑

k

P (B = i|X = k)P (U = j|X = k)P (X = k))

log

∑

k P (B = i|X = k)P (U = j|X = k)P (X = k)

P (U = j)
=

[P (B ∈ {0, 1}, B ̸= X) = 0]

−
∑

j

(P (B = 0|X = 0)P (U = j|X = 0)P (X = 0))

log
P (B = 0|X = 0)P (U = j|X = 0)P (X = 0)

P (U = j)
+

(P (B = 1|X = 1)P (U = j|X = 1)P (X = 1))

log
P (B = 1|X = 1)P (U = j|X = 1)P (X = 1)

P (U = j)
+

(P (B = e|X = 0)P (U = j|X = 0)P (X = 0)+

P (B = e|X = 1)P (U = j|X = 1)P (X = 1))

log(
P (B = e|X = 0)P (U = j|X = 0)P (X = 0)

P (U = j)

+
P (B = e|X = 1)P (U = j|X = 1)P (X = 1)

P (U = j)
)

(3.29a)
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H(V,B|U) =

−
∑

i,j,k

P (V = i, B = j, U = k) log(
P (V = i, B = j, U = k)

P (U = k)
) =

−
∑

i,j,k

(
∑

l

P (B = j|X = l)P (U = k|V = i)P (V = i|X = l)P (X = l))

log(
P (V = i, B = j, U = k)

P (U = k)
) =

−
∑

i,k

(P (B = 0|X = 0)P (U = k|V = i)P (V = i|X = 0)P (X = 0))

log(
P (V = i, B = 0, U = k)

P (U = k)
)+

(P (B = 1|X = 1)P (U = k|V = i)P (V = i|X = 1)P (X = 1))

log(
P (V = i, B = 1, U = k)

P (U = k)
)+

(P (B = e|X = 0)P (U = k|V = i)P (V = i|X = 0)P (X = 0)+

P (B = e|X = 1)P (U = k|V = i)P (V = i|X = 1)P (X = 1))

log(
P (V = i, B = e, U = k)

P (U = k)
)

(3.29b)

3.5.1 Problem definition

In the following the previous formulas are formulated as an optimization problem

where we find the maximum value of Dw, by using proxy variables to make the

formulas more readable.

Constants

α, β, ϕ,Db, p

Problem

Dw = max
δij ,γih

∑

i

ui(1− β)min{ξ0i, ξ1i} (3.30)

s.t.

Transition probability P (V = j|X = i)

δij ∈ [0, 1], i ∈ [0, 1], j ∈ [1, 3] (3.31a)
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Transition probability P (U = j|V = i)

γij ∈ [0, 1], i ∈ [1, 3], j ∈ [1, 3] (3.31b)

where p0 = P (X = 0)

p0 = p, p1 = 1− p0 (3.31c)

constraint of the transition probabilities
∑

i P (V = i|X = k) = 1

∑

i

δki = 1 (3.31d)

constraint of the transition probabilities
∑

i P (U = i|X = k) = 1

∑

i

γki = 1 (3.31e)

vi = P (V = i)

vi =
∑

j=0,1

δjipj (3.31f)

ui = P (U = i)

ui =
∑

j

γjivj (3.31g)

∆ij = p(X = i|V = j)

∆ij =
δijpi
vj

(3.31h)

ξij = p(X = i|U = j)

ξij =

∑

k γkjδikpi
uj

(3.31i)

ωij = P (U = j|X = i)

ωij =
ξijuj

pi

(3.31j)

R >(1− α)(p0 log2
1

p0
+ p1 log2

1

p1
)−

− (1− α)(
∑

i

vi(∆0i log2
1

∆0i

+ (1−∆0i) log2
1

1−∆0i

))
(3.31k)
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Db ≥ E[db(X,ϕ(B, V ))] (3.31l)

(information noisiness constraint)

−
∑

j

αω0jp0 log2
αω0jp0
uj

+ αω0jp1 log2
αω1jp1
uj

+

(1− α)(ω0jp0 + ω1jp1) log2
(1− α)(ω0jp0 + ω1jp1)

uj

+

∑

i,k

αγikδ0ip0 log2
αγikδ0ip0

uk

+ αγikδ1ip1 log2
αγikδ1ip1

uk

+

(1− α)(γikδ0ip0 + γikδ1ip1) log2
(1− α)(γikδ0ip0 + γikδ1ip1)

uk

>

−
∑

j

βω0jp0 log2
βω0jp0
uj

+ βω0jp1 log2
βω1jp1
uj

+

(1− β)(ω0jp0 + ω1jp1) log2
(1− β)(ω0jp+ ω1jp1)

uj

+

∑

i,k

βγikδ0ip0 log2
βγikδ0ip0

uk

+ βγikδ1ip1 log2
βγikδ1ip1

uk

+

(1− β)(γikδ0ip0 + γikδ1ip1) log2
(1− β)(γikδ0ip0 + γikδ1ip1)

uk

(3.31m)

3.6 Binary Deletion Channel Example Using

Equivocation Measure

the problem set-up is the same as the previous section, formulas explained pre-

viously are omitted. The transition probabilities, as in the previous section, are

shown in figure 3.3. In this section this type of channel is considered using the

theorem 6 states that:

R ≥ I(V ;X|B) (3.32a)

Db ≥ E[d(X, X̂(V,B))] (3.32b)

∆ ≤ [H(X|V,B) + I(X;B|U)− I(X;W |U)]+ (3.32c)

The formulas are derived from the general case.



3.6 Binary Deletion Channel Example Using Equivocation Measure 37

∆ parameter Constraint

as H(X|V,B) was computed in the previous section only I(X;B|U)−I(X;W |U)

is shown

I(X;B|U)− I(X;W |U) =

= H(X|U) +H(B|U)−H(X,B|U)− (H(X|U) +H(W |U)−H(X,W |U))

= H(B|U)−H(X,B|U)− (H(W |U)−H(X,W |U))

(3.33)

The entropies are computed in the following section.

H(X,B|U) =

= −
∑

i

P (U = i)
∑

i,k

P (X = j, B = k|U = i) log2 P (X = j, B = k|U = i) =

=
∑

i,k,j

P (U = i|X = j)P (B = k|X = j)P (X = j)

log2
P (U = i|X = j)P (B = k|X = j)P (X = j)

P (U = i)
=

∑

i

P (U = i|X = 0)P (B = 0|X = 0)P (X = 0)

log2
P (U = i|X = 0)P (B = 0|X = 0)P (X = 0)

P (U = i)
+

+ P (U = i|X = 0)P (B = e|X = 0)P (X = 0)

log2
P (U = i|X = 0)P (B = e|X = 0)P (X = 0)

P (U = i)
+

+ P (U = i|X = 1)P (B = 1|X = 1)P (X = 1)

log2
P (U = i|X = 1)P (B = 1|X = 1)P (X = 1)

P (U = i)
+

+ P (U = i|X = 1)P (B = e|X = 1)P (X = 1)

log2
P (U = i|X = 1)P (B = e|X = 1)P (X = 1)

P (U = i)

(3.34)

3.6.1 Problem definition

The constraints are shown in the following section as an optimization problem,

using the composition of the results of the previous section, by using proxy vari-

ables to make the formulas more readable (defined in the same way as in the
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previous problem). Analogously to the previous problem, we decide to maximize

∆.

Constants

α, β, ϕ,Db, p

Problem

∆ =

max{ − (1− α)
∑

i,k

∆kivi log∆ki + (1− α)
∑

i

vih(∆ki)

−
∑

j

(αξ0,jp0) log
αξ0,jp0
uj

+ (αξ1,jp1) log
αξ1,jp1
uj

+

((1− α)ξ0,jp0 + (1− α)ξ1jp1)

log
(1− α)ξ0,jp0 + (1− α)ξ1jp1

uj

∑

i,(j,k)∈[(0,e),(1,e)]

ωji(1− α)pj log2
ωji(1− α)pj

ui

+

∑

i,(j,k)∈[(0,0),(1,1)]

ωjiαpj log2
ωjiαpj
ui

− (−
∑

j

(βξ0,jp0) log
βξ0,jp0
uj

+ (βξ1,jp1) log
βξ1,jp1
uj

+

((1− β)ξ0,jp0 + (1− β)ξ1jp1)

log
(1− β)ξ0,jp0 + (1− β)ξ1jp1

uj

∑

i,(j,k)∈[(0,e),(1,e)]

ωji(1− β)pj log2
ωji(1− β)pj

ui

+

∑

i,(j,k)∈[(0,0),(1,1)]

ωjiβpj log2
ωjiβpj
ui

)}

(3.35)

s.t.

δij ∈ [0, 1], i ∈ [0, 1], j ∈ [1, 3] (3.36a)

γij ∈ [0, 1], i ∈ [1, 3], j ∈ [1, 3] (3.36b)

p0 = p, p1 = 1− p0 (3.36c)
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∑

i

δki = 1 (3.36d)

∑

i

γki = 1 (3.36e)

vi =
∑

j=0,1

δjipj (3.36f)

ui =
∑

j

γjivj (3.36g)

∆ij =
δijpi
vj

(3.36h)

ξij =

∑

k γkjδikpi
uj

(3.36i)

ωij =
ξijuj

pi
(3.36j)

R >(1− α)(p0 log2
1

p0
+ p1 log2

1

p1
)−

− (1− α)(
∑

i

vi(∆0i log2
1

∆0i

+ (1−∆0i) log2
1

1−∆0i

))
(3.36k)

Db ≥ E[db(X,ϕ(B, V ))] (3.36l)

3.6.2 Side information B is less noisy than side information

W

Using the same metric as previous section but we assume side-information B

is less noisy than side information W , therefore using theorem 7 Most of the

formulas are analogous to previous examples, therefore omitted here

I(U ;B) ≥ I(U ;W ) ⇒ H(B)−H(U,B) ≥ H(W )−H(U,W ) (3.37a)

H(U,B) = −
∑

i,j

(
∑

k

P (U = i|X = k)P (B = j|X = k)P (X = k))

log2
∑

k

P (U = i|X = k)P (B = j|X = k)P (X = k) =

where (j, k) ∈ [(0, 0), (1, 1), (e, 0), (e, 1)]

(3.37b)

∆ ≤ [H(X|V B) + I(X;B)− I(X;E)]+ (3.37c)
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H(X,B) =−
∑

i∈[0,1],j∈[i,e]

P (B = j|X = i)P (X = i)

log2 P (B = j|X = i)P (X = i)

(3.37d)

3.6.3 Problem definition (side information B is less noisy

than side information W)

The previous formulas are shown in the form of an optimization problem

Constants

α, β, ϕ,Db, p

Problem

∆ =

max{−(1− α)(
∑

i

vi(∆0i log2
1

∆0i

+ (1−∆0i) log2
1

1−∆0i

))

−(
∑

i

bi log2 bi)− (−
∑

i

αpi log2 αpi + (1− α)pi log2 ((1− α)pi))

−((−
∑

i

wi log2 wi)− (−
∑

i

βpi log2 (βpi) + (1− β)pi log2 ((1− β)pi)))}

(3.38)

s.t

δij ∈ [0, 1], i ∈ [0, 1], j ∈ [1, 3] (3.39a)

γij ∈ [0, 1], i ∈ [1, 3], j ∈ [1, 3] (3.39b)

p0 = p, p1 = 1− p0 (3.39c)
∑

i

δki = 1 (3.39d)

∑

i

γki = 1 (3.39e)

vi =
∑

j=0,1

δjipj (3.39f)

ui =
∑

j

γjivj (3.39g)

∆ij =
δijpi
vj

(3.39h)
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ξij =

∑

k γkjδikpi
uj

(3.39i)

ωij =
ξijuj

pi
(3.39j)

(Noisiness contraint)

−(αp0 log2 αp0 + αp1 log2 αp1 + (1− α)(p1 + p0) log2 (1− α)(p1 + p0))

+
∑

i

((
∑

j∈[0,1]

ωij(1− α)pj log2
∑

j∈[0,1]

ωij(1− α)pj)

+ωi0αp0 log2 ωi0αp0)

+ωi1αp1 log2 ωi1αp1) >

−(βp0 log2 βp0 + βp1 log2 βp1 + (1− β)(p1 + p0) log2 (1− β)(p1 + p0))

+
∑

i

((
∑

j∈[0,1]

ωij(1− β)pj log2
∑

j∈[0,1]

ωij(1− β)pj)

+ωi0βp0 log2 ωi0βp0)

+ωi1βp1 log2 ωi1βp1)

(3.39k)

R >(1− α)(p0 log2
1

p0
+ p1 log2

1

p1
)−

− (1− α)(
∑

i

vi(∆0i log2
1

∆0i

+ (1−∆0i) log2
1

1−∆0i

))
(3.39l)

Db ≥ E[db(X,ϕ(B, V ))] (3.39m)

3.7 Secret key capacity

We want to compute C low
sk for the optimization solution, defined as

C low
sk = I(sa; sb)−min{I(sa; se), I(sb; se)} (3.40)

The formulas for the binary deletion channel needed for the examples in sections

3.5.1 and 3.6.3 are omitted, as the value X must be the value of W or B if either

of them is in {0, 1}, otherwise its value is either 0 or 1 if W and B are equal to

e, but the formulas remain almost the same.

C low
sk is computed as explained next:
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sa = {X} (3.41a)

sb = {M,B} = {U, V,B}

We assume Bob is able to decode both U and V using side information B

(3.41b)

se = {M,B} = {U,B}

We assume Eve is able to decode only U using side information W
(3.41c)

I(sa; sb) = H(sa) +H(sb)−H(sa, sb) (3.41d)

I(sa; se) = H(sa) +H(se)−H(sa, se) (3.41e)

I(se; sb) = H(se) +H(sb)−H(se, sb) (3.41f)

H(sa) = H(X) (3.41g)

H(sb) = H(U, V,B) =

= −
∑

i,j,k

p(U = i, V = j, B = k) log2 p(U = i, V = j, B = k)

= −
∑

i,j,k

(
∑

l

p(B = k|X = l)p(U = i|V = j)p(V = j|X = l)p(X = l))

log2
∑

l

p(B = k|X = l)p(U = i|V = j)p(V = j|X = l)p(X = l)

(3.41h)

H(se) = H(U,W ) =

−
∑

ij

P (U = i,W = j) log2 P (U = i,W = j) =

−
∑

ij

(

∑

kl

P (U = i|V = k)P (V = k|X = l)P (W = j|X = l)P (X = l)

)

log2

(

∑

kl

P (U = i|V = k)P (V = k|X = l)P (W = j|X = l)P (X = l)

)

(3.41i)
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H(sa, se) = H(U,X,W ) =

−
∑

ijl

P (U = i,W = j,X = l) log2 P (U = i,W = j,X = l) =

−
∑

ij

(

∑

k

P (U = i|V = k)P (V = k|X = l)P (W = j|X = l)P (X = l)

)

log2

(

∑

k

P (U = i|V = k)P (V = k|X = l)P (W = j|X = l)P (X = l)

)

(3.41j)

H(sa, sb) = H(U, V,X,B) =

= −
∑

i,j,k,l

p(U = i, V = j, B = k,X = l) log2 p(U = i, V = j, B = k,X = l)

= −
∑

i,j,k,l

p(B = k|X = l)p(U = i|V = j)p(V = j|X = l)p(X = l)

log2 p(B = k|X = l)p(U = i|V = j)p(V = j|X = l)p(X = l)

(3.41k)

H(sb, se) = H(U, V,W,B) =

= −
∑

i,j,k,l

p(U = i, V = j, B = k,W = l) log2 p(U = i, V = j, B = k,X = l)

= −
∑

i,j,k,l

(
∑

c

p(B = k|X = c)p(W = k|X = c)

p(U = i|V = j)p(V = j|X = c)p(X = c))

log2
∑

c

p(B = k|X = c)p(W = l|X = c)p(B = k|X = c)

p(U = i|V = j)p(V = j|X = c)p(X = c)

(3.41l)

3.8 Secret key capacity with R=0

We now consider the case in which no message is shared during the information

reconciliation stage, therefore the information is used as is, at most converted to

binary in the case of deletion. This formulas are needed to have a reference of

the performance of the metrics.

sa = {X} (3.42a)

sb = {B} (3.42b)
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se = {W} (3.42c)

The formulas are analogous to the previous case

H(sa) = H(X) (3.43a)

H(sb) = H(B) (3.43b)

H(se) = H(W ) (3.43c)

H(sa, se)analogous to H(sa, sb) (3.43d)

H(sa, sb) = H(X,B) =

= −
∑

k,l

P (B = k,X = l) log2 P (B = k,X = l)

= −
∑

k,l

P (B = k|X = l)P (X = l)

log2 P (B = k|X = l)P (X = l)

(3.43e)

H(sb, se) = H(W,B) =

= −
∑

k,l

P (B = k,W = l) log2 P (B = k,X = l)

= −
∑

i,j,k,l

(
∑

c

P (B = k|X = c)P (W = k|X = c)

P (X = c))log2
∑

c

P (W = l|X = c)P (B = k|X = c)P (X = c)

(3.43f)
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Numerical Results

In the following section the optimization problems obtained in chapter 3 are

solved and the plots of the resulting values are shown. In the case of ambiguous

values of the function only the maximum is shown (such as the values for different

values of the ϕ function)

4.1 Reproducing Results of [1]

for validation purpose and check if the code is working correctly, the plots in [1]

are going to be reproduced, using the formulas from section 3.1. As shown in

figure 4.2, where we reproduce the inner bound of the distortion at Eve Dw,

by fixing the transition parameters for the side information α and β. Leaving

R unbound, we maximize Dw to reproduce the results in [1], by iterating over

the values of p, with the constraint I(X;B|U) > I(X;W |U). As expected the

distortion is non-decreasing as a function of the entropy of the source, as this is

a increasing function of p, for p ∈ (0, 0.5]. However, since distortion function in

the optimization problem contains a min between a constant and two variables,

the result saturates after a certain value, which in figure 4.2 corresponds to the

transition probability.

4.2 Numerical Results For Binary Deletion

Channel Example Using Rate-distortion Metric

In this section the optimization problem is taken from section 3.5.1. In order to

find these values, without a fixed value of Db and ϕ the optimization is computed

45
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0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

·10−2

p

D
w

Figure 4.1: result of the optimization problem from example in [1] with α = 0.4,beta = 0.04
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Figure 4.2: result of the optimization problem from example in [1] with α = 0.4,β = 0.1
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Figure 4.3: result of the upper bound of the optimization problem in [1] with α = 0.6,beta = 0.96
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Figure 4.4: result of the optimization problem in 3.5.1 with α = 0.6,β = 0.9
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as explained in the following:

1. fix α and β

2. iterate over the values of p = P (X = 0) ∈ [0.01, 0.5] as the entropy of the

source is higher the most p is close to 0.5

3. for each p iterate over the possible ϕ functions(which in our case are 2||V ||·||B||,

as the number of lines in the lookup table is determined by the number of

V and U symbols combinations), which determines the value of Db

4. for each ϕ iterate over the valid values of Db ∈ [0, 1] as X and Y are binary

5. compute the optimization of Dw for these values

This order of operation was determined so that, starting from a point where the

distributions of δij and γij are uniform, at every step a better starting point for

the optimization can be determined by adding one constraint at a time. R is not

part of the optimization constraints in the program and is calcultated afterwards

In figure 4.4 are shown the results of the optimization of the problem in section

3.5

4.3 Numerical Results For Binary Deletion

Channel Example Using The Equivocation

Metric

The optimization is computed analogously to the previous section, using formulas

from section 3.6.3, by optimizing the ∆ parameter. As we can see, the value

converges to the value with R = 0, since the maximum equivocation is in the

case that U carries no information about X.

4.4 Numerical results of the Secret key capacity

By optimizing the two metrics the following results are obtained by computing

the skc using the obtained distribution from the optimization. As expected, since

the value of the ∆ and Dw parameters converge on the value with R = 0, the

value of skcs are close to the value for R = 0.
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Figure 4.5: result of the optimization problem in 3.6.3 with α = 0.9,beta = 0.6
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Figure 4.6: Results with the distortion measure α = 0.9 and β = 0.6
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Figure 4.7: skc with the distortion metric α = 0.9 and β = 0.6
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Figure 4.8: Results with equivocation measure α = 0.9 and β = 0.6
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Figure 4.9: skc with equivocation metric α = 0.9 and β = 0.6
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Figure 4.10: Results with entropy measure α = 0.9 and β = 0.6 with constraints on the noise power
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Figure 4.11: skc using entropy metric α = 0.9 and β = 0.6 with constraints on the noise power
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Chapter 5

Conclusions

From the results in the simple case shown in Chapter 4, the secret key capacity

with R ̸= 0 is higher than the one with R = 0. In particular both the distortion

and equivocation metric converge to the value they have with R = 0, as the

metrics focus mostly on the correlation between W and U to achieve secrecy,

whereas uses V and X for the distortion at Bob. These constraints and the setup

of the problem, allow U to converge to a transition probability such that it does

not carry any information about X, as we can see in the plot of I(sa, se), as this

is the same if R = 0 or R ̸= 0.

This also shows that these schemes don’t have a performance advantage sig-

nificantly higher than without any information reconciliation. It is also to note

that, unlike what was expected from the power constraints, the secret key ca-

pacity obtained with Theorem 7 is lower than the one obtained with Theorem

6. However, it must be considered that these theorems are meant for the case in

which U and V as an embedding of X, whereas the simple cases considered use

∥U∥ = ∥V ∥ = 3 > ∥X∥ = 2.
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