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Abstract

The Witten-Kontsevich theorem relates intersection products of certain coho-
mology classes in the tautological ring of the moduli space of stable curves, to the
KdV hierarchy of partial differential equations. In this thesis, a recent proof of this
theorem is presented. Firstly, the ELSV formula relates such intersection products
to simple Hurwitz numbers, which count branched covers of algebraic curves. Sub-
sequently, the link between Hurwitz theory and integrable systems is made via the
Sato Grassmannian construction for the KP hierarchy.
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1 Introduction
This thesis is about Witten’s conjecture, or the Witten-Kontsevich theorem. Its
main object of interest is the moduli space of stable genus g curves with n marked
points, denoted by Mg,n. The theorem gives us topological information about
Mg,n by relating intersections in the top degree of certain natural cohomology
classes to an integrable system of partial differential equations, from which one
obtains recursive relations between these intersection numbers. It is the simplest
example of an ongoing effort to understand the connection between Gromov-Witten
invariants and classical integrable hierarchies of nonlinear PDEs.

The conjecture was first stated by theoretical physicist Edward Witten in
[Wit90], where he noted that the statement of the conjecture followed by sup-
posing that two approaches to two-dimensional quantum gravity coincide. It was
first proved by Maxim Kontsevich in [Kon92], by combinatorializing the top inter-
sections using ribbon graphs and applying Feynman diagram techniques. Various
other proofs have appeared in the literature, many of which use different techniques
to Kontsevich. For example, the approach taken in [KL06] uses virtual functorial
localization on the moduli space of stable morphisms to P1, while the one in [Mir07]
establishes a relationship with the Weil-Petersson volume of the moduli space of
hyperbolic Riemann surfaces. On the other hand, the proofs in [OP01] and [KL07]
go via the route of Hurwitz numbers. This is the route that we will focus on in this
thesis, with particular attention paid to the latter paper by Kazarian and Lando.

We briefly present the statement of Witten’s conjecture. Starting from the
moduli space Mg,n of curves of genus g with n marked points, there is a natural
way to compactify it, thus obtaining the moduli spaceMg,n of stable curves. Then,
one considers a collection of geometrically significant classes on this space, called
ψ-classes. Their Poincaré duals are denoted by ψi for i = 1, . . . , n, and lie in
A1(Mg,n;Q) or H2(Mg,n;Q), depending on whether one prefers to work in the
Chow ring or cohomology ring. For d1 + · · · + dn = dimCMg,n = 3g − 3 + n, the
intersection product ψd1

1 · · ·ψdn
n in the top cohomological degree is denoted by

⟨τd1 · · · τdn⟩ :=
Ú

Mg,n

ψd1
1 · · ·ψ

dn
n ∈ Q.

The generating function in the formal variables t∗ = (t0, t1, t2, . . . ) given by

F (t∗) =
Ø
n≥0

Ø
(d1,...,dn)

⟨τd1 · · · τdn⟩
td1 . . . tdn

|Aut(d1, . . . , dn)|
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encodes all such top intersection products. By the automorphisms of (d1, . . . , dn) we
mean all the ways of permuting the dj with the same value, e.g. |Aut(4, 4, 2, 2, 2, 1)| =
2!·3!·1!. Witten’s conjecture states that U = ∂2F

∂t20
is a solution of the KdV hierarchy,

or in other words F satisfies the following system of compatible PDEs:

(2n+ 1) ∂3F

∂tn∂t20
= ∂2F

∂tn−1∂t0

∂3F

∂t30
+ 2 ∂3F

∂tn−1∂t20

∂2F

∂t20
+ 1

4
∂5F

∂tn−1∂t40
, n ≥ 1.

In particular, U satisfies the famous KdV equation:

∂U

∂t1
= U

∂U

∂t0
+ 1

12
∂3U

∂t30
.

These PDEs, together with the string equation

∂F

∂t0
= t20

2 +
∞Ø
i=0

ti+1
∂F

∂ti

give recursive relations that allow one to compute all the top intersections ⟨τd1 · · · τdn⟩.

The idea behind the proof in [KL07] is to relate the generating function F to
the simple Hurwitz potential H, which is another generating function that encodes
simple Hurwitz numbers. These numbers count ramified coverings of P1 with cer-
tain prescribed ramification profiles. The ELSV formula, first proved in [Eke+99;
Eke+01], provides the bridge from F to H. Then, one can show that H is a solution
of the KP hierarchy, another integrable hierarchy of PDEs of which the KdV hier-
archy is a special case. To do this, one uses the cut-and-join equation from Hurwitz
theory to express eH in an explicit basis of polynomials, and then observes that the
image of eH under the linear isomorphism from the Boson-Fermion correspondence
satisfies the Plücker relations from the Sato Grassmannian construction of the KP
hierarchy. The goal of this thesis is to develop all the aforementioned theory in order
to understand this proof, and to gain an appreciation of how Witten’s conjecture
inspired ongoing research into the connection between Gromov-Witten invariants
and integrable hierarchies.

Section 2 introduces the moduli space of curves, its compactification, and its
tautological ring R∗(Mg,n;Q) ⊂ H∗(Mg,n;Q). In some sense, this ring contains
most of the geometrically relevant classes, of which the ψ-classes will be our main
focus. We then show some preliminary results on top intersections of ψ-classes,
which point towards Witten’s conjecture. Most of the content of this section comes
from Vakil’s and Zvonkine’s expository papers [Vak03; Vak08; Zvo14] and Witten’s
original paper [Wit90].
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Section 3 introduces Hurwitz numbers and their links to algebra and com-
binatorics, following Cavalieri and Miles’ textbook [CM16]. We prove that the
cut-and-join operator annihilates the Hurwitz potential H• for simple disconnected
Hurwitz numbers. Next, following [Lan10], we express H• as an expansion in a
basis of symmetric functions called Schur functions. At the end, the ELSV formula
and some of its consequences are presented.

Section 4 gives a brief but detailed overview of the KdV and KP hierarchies,
following Buryak’s lecture notes [Bur22]. Next, we explain how solutions of these
hierarchies can be understood in the context of the Boson-Fermion correspondence,
following the textbook [MJD00]. Next, we explain how the space of solutions in
the Fermionic picture can be identified with an infinite-dimensional Grassmannian,
the Sato Grassmannian, embedded into an ambient wedge space.

Section 5 puts all of the theory developed thus far together, to present the
remaining parts of the proof of Witten’s conjecture in [KL07]. We end the thesis
by presenting some generalizations of Witten’s conjecture and the essential objects
of Gromov-Witten theory.
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2 The moduli space of curves

2.1 Examples and dimension
The moduli space of curves is a central object in geometry, and efforts to understand
it involve ideas from many areas in mathematics and physics. In everything that
follows we work over C, and by a curve we will mean a smooth, compact, complex
curve; in other words a Riemann surface. We will also assume that curves are
connected, although disconnected curves will enter the discussion in Section 3. By
“dimension” we will mean the algebraic/complex dimension, which is half of the
real dimension.

A natural question to ask is: can we classify curves up to isomorphism? This
brings us to the first definition.

Definition 2.1.1. The moduli space of curvesMg is the set of isomorphism classes
of genus g curves. For 2g−2+n > 0, the moduli spaceMg,n is the set of isomorphism
classes of genus g curves with n distinct marked points. The elements of Mg,n are
denoted by (C, x1, . . . , xn).

Despite calling Mg and Mg,n by the name of “spaces”, for the moment they are
simply defined as sets. For them to be of any use, we would like to endow them
with some sort of structure, ideally that of a projective variety or complex manifold.
This is not always possible because of the presence of nontrivial automorphisms of
curves, which give these spaces the structure of Deligne-Mumford stacks (in the
algebro-geometric setting) or orbifolds (in the analytic setting). We will give more
details on these structures shortly.

The condition 2g−2+n > 0 in the second part of the definition is necessary for
the orbifold structure to exist. This comes from the fact that a genus g curve has a
finite group of automorphisms which preserve the n marked points if and only if its
Euler characteristic is negative, 2− 2g − n < 0. We explain this briefly. For g ≥ 2,
the automorphism group of a genus g curve is finite due to a theorem by Hurwitz
[Mir95, III.3]. A genus g = 1 curve C with one marked point is an elliptic curve,
which has finite automorphism group [Sil09, III.10]. When one forgets the marked
point, the automorphism group is infinite because for any x1, x2 ∈ C, there is an
automorphism that sends x1 to x2 [Har77, IV.4]. For g = 0, we first remark that
any genus zero curve C is isomorphic to the Riemann sphere P1 [Mir95, VII.1]; this
is a consequence of the Riemann-Roch theorem. The automorphism group of P1 is
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the group of Möbius transformations PGL(2,C), acting bya b

c d

 · x = ax+ b

cx+ d

Since PGL(2,C) has dimension three, we see that fixing less than three points on
P1 allows infinitely many automorphisms, while fixing at least 3 points forces any
automorphism to be the identity. In fact, given distinct points x1, x2, x3 ∈ P1 there
is a Möbius transformation sending the triple to 0, 1,∞ respectively, given by

x Ô−→ (x− x1)(x2 − x3)
(x− x3)(x2 − x1) . (2.1)

Hence we see that the pairs (g, n) for which (C, x1, . . . , xn) does not have a finite
group of automorphisms are (0, 0), (0, 1), (0, 2) and (1, 0).

The discussion above furnishes us with the first few examples of moduli spaces
of curves.

Example 2.1.2. Let g = 0. Any rational curve with three marked points (C, x1, x2, x3)
is isomorphic to (P1, 0, 1,∞) using (2.1). Therefore M0,3 = {∗} consists of a sin-
gle point. Similarly any (C, x1, x2, x3, x4) is isomorphic to (P1, 0, 1,∞, t), where
t = (x4−x1)(x2−x3)

(x4−x3)(x2−x1) . Hence M0,4 = P1 \ {0, 1,∞}. Generalizing this argument gives

M0,n = {(t1, . . . , tn−3) ∈
1
P1 \ {0, 1,∞}

2n−3
: ti ̸= tj}.

We see that M0,n has dimension n− 3.

Example 2.1.3. ConsiderM1,1, the moduli space of elliptic curves. Every elliptic
curve is isomorphic to C/Λ for Λ = z1Z⊕z2Z a rank 2 lattice. Multiplying the basis
of Λ by ±1/z1 gives Λ = Z ⊕ τZ for some τ ∈ H. Two elliptic curves determined
by τ and τ ′ are isomorphic if and only if τ ′ lies in the SL(2,Z)-orbit of τ , namely

τ ′ =

a b

c d

 · τ = aτ + b

cτ + d
.

Therefore M1,1 = H/ SL(2,Z). In this case, M1,1 has dimension 1.

In the examples above, the dimension of the moduli space refers to how many
parameters, also referred to as moduli, are required to uniquely determine a curve
and its marked points. For example, forM0,n we need n−3 parameters t1, . . . , tn−3
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while forM1,1 we need one parameter τ . This corresponds to the dimension ofMg,n

as an orbifold. Before discussing the orbifold structure, we compute the dimension
of Mg,n following [Hor+03, Exercise 23.2.1].

Proposition 2.1.4. Let 2g − 2 + n > 0. The dimension of the space Mg,n is
3g − 3 + n.

Proof. We show that dimMg = 3g − 3. The result for Mg,n follows since fixing
n distinct points imposes n more independent conditions. The following argument
only works for g ≥ 2, but it will nevertheless give the correct statement for g = 0
and g = 1. The idea is the following: fix an integer d > 2g − 2, and compute the
dimension of

Cdg = {f : C → P1 ramified cover | g(C) = g,deg f = d},

the space of degree d covers of P1 by genus g curves, in two different ways. First,
we compute dim Cdg as

dim Cdg = dimMg + dimFdC ,

where FdC is the space of degree d covers of P1 by a fixed curve C of genus g. To
compute dimFdC , consider a degree d line bundle L over C. The degree of the
canonical bundle KC of C is 2g − 2 [Mir95, V.1], so

deg(KC ⊗ L∗) = degKC − degL = 2g − 2− d < 0.

So any nonzero section of KC ⊗ L∗ has a pole, which means h0(C,KC ⊗ L∗) = 0.
But h0(C,KC ⊗ L∗) = h1(C,L) by Serre duality, so applying the Riemann-Roch
theorem gives h0(C,L) = h0(C,L)−h1(C,L) = d+1−g; hence L has a (d+1−g)-
dimensional space of sections. Two independent sections s, t ∈ H0(C,L) determine
a degree d cover f : C → P1 by setting f(x) = [s(x) : t(x)]. Note that rescaling both
sections gives the same cover. Conversely, any such cover f determines two sections
s and t up to rescaling, by taking div(s) = f−1([0 : 1]) and div(t) = f−1([1 : 0]).
Hence a cover in FdC is uniquely determined by a choice of line bundle L ∈ PicdC
and two independent sections s, t ∈ H0(C,L) up to rescaling:

dimFdG = dim PicdC + (2h0(C,L)− 1)

= g + 2(d− g + 1)− 1 = 2d− g + 1. (2.2)

In the second equality we used the isomorphism Pic0C ∼= PicdC that twists the
sheaf of sections d times at a point, and the fact that dim Pic0C = g [Har77, B.5].
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On the other hand, consider a degree d cover of P1 by a genus g curve. By the
Riemann-Hurwitz formula [CM16, 4.4], the number of branch points on P1 (counted
with multiplicity) is given by b = 2d + 2g − 2. By Riemann’s existence theorem
[CM16, 6.2], the branch points determine the cover, so

dim Cdg = 2d+ 2g − 2. (2.3)

Putting (2.3) and (2.2) together we obtain 2d + 2g − 2 = dimMg + 2d − g + 1,
which implies dimMg = 3g − 3.

2.2 Complex orbifolds
As we have mentioned, it would be ideal if the moduli space Mg,n had the struc-
ture of a projective variety or complex manifold, but this is not always the case.
To obtain a category in which these moduli spaces live, the notions of varieties or
manifolds have to be relaxed to include Deligne-Mumford stacks or complex orb-
ifolds. Intuitively, an orbifold generalises the notion of a manifold by being locally
isomorphic to an open subset of Cn factored by the action of a finite group. Below
we give the essential definitions and results following [Zvo14], without presenting
proofs and without delving into the intricacies of the construction of Mg,n as an
orbifold. Details of this can be found in [HM98].

Definition 2.2.1. Let X be a topological space. A complex orbifold chart on X

consists of a homeomorphism φ : U → V/G, where U ⊂ X is an open set and
V ⊂ Cn is a contractible open set endowed with a biholomorphic action of a finite
group G.

The notions of subcharts and compatible charts are similar to the ones for manifolds,
with the added condition that they behave well with respect to the group actions.
Moreover, the formal definition of a complex orbifold using an atlas follows the
same idea as for manifolds.

Definition 2.2.2. A chart φ′ : U ′ → V ′/G′ is a subchart of φ : U → V/G if U ′ ⊂ U
and there is a group homomorphism σ : G′ → G and a holomorphic embedding
i : V ′ → V such that the stabilizers G′

y′ and Gi(y′) are isomorphic for all y′ ∈ V ′,
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and the following diagrams commute:

V ′ ×G′ V ×G U ′ U

V ′ V V ′/G′ V/G

ρ′

(i,σ)

ρ

i

φ′ φ

j

where ρ′ and ρ denote the group actions and j is the map induced by i, which is
well-defined due to the commutativity of the first diagram.

Definition 2.2.3. Two orbifold charts (U,φ) and (U ′, φ′) are compatible if every
point in U ∩ U ′ is contained in a chart (U ′′, φ′′) that is a subchart of both (U,φ)
and (U ′, φ′).

Definition 2.2.4. An orbifold atlas on a topological space X is a family of compat-
ible orbifold charts covering X. A complex orbifold is a topological space together
with a maximal orbifold atlas.

Definition 2.2.5. Let X be a complex orbifold. The stabiliser of x ∈ X is the
stabiliser subgroup Gφ(x) of a representative of φ(x) in V , where φ : U → V/G is
some chart around x.

Notice that if the stabilizer of every point of an orbifold is trivial, then a complex
orbifold structure is exactly the same as a complex manifold structure. We complete
the definition of the orbifold category by defining a morphism of orbifolds as in
[KL14].

Definition 2.2.6. A morphism of complex orbifolds X1 → X2 is given by a con-
tinuous map f : X1 → X2 of the underlying topological spaces with the additional
data for every x ∈ X1: charts φ1 : U1 → V1/G1 and φ2 : U2 → V2/G2 around x and
f(x) respectively, a holomorphic map f̂ : V1 → V2, and a group homomorphism
σ : G1 → G2 making the following diagrams commute:

V1 ×G1 V2 ×G2 V1 V2

V1 V2 V1/G1 V2/G2

U1 U2

ρ1

(f̂ ,σ)

ρ2

f̂

f̂

f̄

φ1 φ2

f
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where f̄ is the well-defined map induced by f̂ .

Before stating the main result about Mg,n, we define a family of curves.

Definition 2.2.7. Let B be an orbifold. A family of genus g curves with n marked
points over B is a morphism p : CB → B endowed with n disjoint sections si : B →
CB, such that every fibre of p is isomorphic to a smooth curve of genus g.

Intuitively, the section si picks out the ith marked point in each fibre. We now state
a simplified version of the result, which will suffice for us.

Theorem 2.2.8. Suppose 2g−2+n > 0. ThenMg,n has a (3g−3+n)-dimensional
complex orbifold structure. Moreover, there exists a (3g−2+n)-dimensional complex
orbifold Cg,n and an orbifold morphism π : Cg,n → Mg,n satisfying the following
conditions for every C = (C, x1, . . . , xn) ∈Mg,n:

• There is a chart U → V/G around C and a chart π−1(U)→ C/G of Cg,n;

• The map π̂ : C → V is a family of genus g curves with n marked points;

• The fibre C0 = π̂−1(0) is isomorphic to C;

• The G-action on C preserves C0 and acts as Aut(C);

• For any family of genus g curves with n marked points p : CB → B such that
p−1(b) ∼= C for some b ∈ B, there is a subset B′ ⊂ B containing b and a map
f : B′ → V such that the restriction of p : CB → B to B′ is the pull-back of
π̂ : C → V by f . In other words,

p−1(B′) C

B′ V

p π̂

f

is a pull-back square.

Because of the universal property in the last bullet point, we call the map π :
Cg,n → Mg,n the universal curve over Mg,n. Moreover, a consequence of the
third and fourth bullet points is that the stabiliser of (C, x1, . . . , xn) ∈ Mg,n is
isomorphic to Aut(C, x1, . . . , xn), the group of automorphisms of C which fix each
xi. From the discussion in Section 2.1, we know that n-marked curves of genus g
have finitely many automorphisms if and only if 2g − 2 + n > 0, or equivalently
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(g, n) ̸= (0, 0), (0, 1), (0, 2), (1, 0). Therefore Mg,n has an orbifold structure if and
only if 2g − 2 + n > 0, which is why this condition is included at the start of the
theorem. We have also discussed how P1 with n ≥ 3 marked points has a trivial
automorphism group. This is equivalent to the stabiliser of every point in M0,n

being trivial, which means that Theorem 2.2.8 endows M0,n with the structure of
a complex manifold. This is not true anymore when g = 1 because elliptic curves
always have a nontrivial automorphism (the involution), so M1,1 is unavoidably
a complex orbifold. We see that in general, the obstruction to Mg,n having the
structure a complex manifold is the presence of nontrivial automorphisms of curves
inside Mg,n.

2.3 Deligne-Mumford-Knudsen compactification
In Example 2.1.2 we argued thatM0,4 = P1 \{0, 1,∞}, which shows that the space
Mg,n need not be compact. A sensible compactification Mg,n of Mg,n would be
one where we add objects that look like curves, in such a way that M0,4 = P1.
Such a compactification was given by Deligne and Mumford for n = 0 in [DM69],
and by Knudsen for n general in [Knu83]. To explain it, we use M0,4 as guiding
example.

The objects that we add to Mg,n to compactify it should arise as limits of
sequences of curves in as natural a way as possible. For example, consider the
four-pointed rational curve (C, x1, x2, x3, x4) ∼= (P1, 0, 1,∞, t) ∈ M0,4 as t→ 0. In
the limit we obtain a curve where the points x1 and x4 coincide. But this is not
independent of the local coordinate on C; if we change it via the map x Ô→ x/t, we
would get C(x1, x2, x3, x4) ∼= (P1, 0, 1/t,∞, 1) and in the t→ 0 limit the points x2

and x3 coincide. In order to make our choice independent of coordinates, we include
both possibilities in the limit curve. With this description, a four-pointed rational

Figure 1: Limit curve of (C, x1, x2, x3, x4) ∈M0,4.
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curve tends to two two-pointed rational curves meeting along a simple node, see
Figure 1. This node is analytically isomorphic to xy = 0 in C2, so the figure is
somewhat misleading as the curves should meet transversally. This is a simple
example of a stable curve with two components. We give the general definition.

Definition 2.3.1. A stable curve C is a curve whose points are either smooth or
simple nodes, and such that Aut(C) is finite. A stable curve with n marked points
x1, . . . , xn is a stable curve whose marked points are smooth. A special point on C
is a point that is either a marked point or a node.

For a normal genus g curve with n marked points, its automorphism group is
finite if and only if 2g − 2 + n > 0. For a stable curve C, a similar statement is
true when we consider its connected components. Let C1, . . . , Ck be the connected
components of C, which are smooth curves meeting at the simple nodes. Let gi
be the genus of Ci and ni be the number of special points on Ci. Then Aut(C) is
finite if and only if 2gi − 2 + ni > 0 for every i. The genus g of C is the genus
of the smooth curve that arises by “smoothening” all the nodes. A combinatorial
argument involving Euler characteristics shows that

2− 2g + 2δ =
kØ
i=1

(2− 2gi)

=⇒ g =
kØ
i=1

gi − k + 1 + δ,

where δ is the number of nodes in C.

Definition 2.3.2. For 2g − 2 + n > 0, the the moduli space of stable curves Mg,n

is the set of isomorphism classes of stable curves of genus g with n marked points.

A theorem analogous to Theorem 2.2.8 states that Mg,n is a complex orbifold
and has the properties that one would desire for a compactification of Mg,n. A
detailed exposition of this can be found in [HM98, Chapter 4].

Theorem 2.3.3. Suppose 2g − 2 + n > 0. Then Mg,n is compact and has a
(3g− 3 +n)-dimensional complex orbifold structure. Moreover, there exists a (3g−
2+n)-dimensional complex orbifold Cg,n and an orbifold morphism π : Cg,n →Mg,n

satisfying the following conditions for every C ∈Mg,n:

• Mg,n ⊂Mg,n is an open dense sub-orbifold and π−1(Mg,n) = Cg,n ⊂ Cg,n;

11



• There is a chart U → V/G around C and a chart π−1(U)→ C/G of Cg,n;

• The map π̂ : C → V is a family of stable genus g curves with n marked points;

• The fibre C0 = π̂−1(0) is isomorphic to C;

• The G-action on C preserves C0 and acts as Aut(C);

• For any family of stable genus g curves with n marked points p : CB → B such
that p−1(b) ∼= C for some b ∈ B, there is a subset B′ ⊂ B containing b and a
map f : B′ → V such that the restriction of p : CB → B to B′ is the pull-back
of π̂ : C → V by f .

We also refer to the family π : Cg,n →Mg,n as the universal curve over Mg,n.

There is a natural stratification ofMg,n, which we now outline. To each stable
curve one can associate a graph consisting of numbered vertices, edges and half-
edges, called its dual graph. The vertices correspond to the irreducible components
and the number at each vertex corresponds to the genus of the component. An
node between two components is represented by an edge between the correspond-
ing vertices, and each marked point is represented by a half-edge incident to the
appropriate vertex. We illustrate some examples in Figure 2. The vertices without

Figure 2: Dual graphs of stable curves.
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a number inside them represent a genus 0 component. The moduli space Mg,n is
stratified by dual graphs. This means that each stratumMΓ ⊂Mg,n is labelled by
a stable graph Γ, which represents the topological type of the curves in the stratum.

In Example 2.1.2 and Example 2.1.3 we argue that M0,4 = P1 \ {0, 1,∞}
and M1,1 = H/ SL(2,Z). The only boundary stratum of M1,1 is the third one in
Figure 2, while the three boundary strata of M0,4 = P1 are given in Figure 3, and
correspond to the missing points 0, 1 and ∞.

Figure 3: Boundary strata of M0,4.

2.4 Interlude: Chow ring versus cohomology ring
Perhaps the most important reason for why one wants to compactify Mg,n is to
be able to apply powerful tools from algebraic topology and geometry, such as
intersection theory and cohomology. For example, a result in [Beh02] shows that
an analogue of Poincaré duality [Bre93, VI.8] is true for compact complex orbifolds
such as Mg,n:

Hk(Mg,n;Q) ∼= H2d−k(Mg,n;Q), (2.4)

where d = dimMg,n = 3g−3+n. We remind that d denotes the complex/algebraic
dimension, which is why we have written 2d in the equation above. Here, by the
(co)homology groups of an orbifold X over Q we mean the singular (co)homology
groups of the underlying topological space with coefficients in Q. By the same
reference, there is an associative multiplicative structure on H∗(X;Q) making it
into a graded ring. From now on, when working with the orbifold Mg,n we will
always consider its cohomology ring over Q, and write it as H∗(Mg,n) instead
of H∗(Mg,n;Q). The reason why we take coefficients in Q rather than in Z is
because the orbifold structure involves factoring by finite groups of automorphisms,
which gives rise to rational numbers when performing computations in enumerative
geometry. For example, see equation (2.16) later.

We momentarily interrupt our discussion of the moduli space of curves to com-
ment on the conventions that we will adopt when discussing cohomology classes on
Mg,n, which arise from the difference between the cohomology ring and its algebro-
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Figure 4: Rational equivalence between hyperbola and union of two lines in P2 [EH16, p. 17].

geometric counterpart, the Chow ring. We briefly present the Chow ring A∗(X) of
a smooth quasi-projective algebraic variety X over C following [EH16, Chapter 1]
in order to be aware of these differences.

Firstly, denote by Z(X) the free abelian group generated by the subvarieties
of X. Elements of this group are called cycles, and are given by formal sumsq
i niYi with ni ∈ Z and where each Yi ⊂ X is a subvariety. Two cycles A,B ∈

Z(X) are rationally equivalent if there is a rationally parametrized family of cycles
interpolating between them; this means that there is a cycle on P1 × X whose
restrictions to two fibres {t0} × X and {t1} × X are A and B. See Figure 4 for
an example. The Chow group of X is defined by identifying rationally equivalent
cycles in X:

A(X) = Z(X)/Rat(X).

The subgroup of A(X) generated by dimension k subvarieties is denoted by Ak(X),
and Ak(X) is the one generated by codimension k subvarieties. Two subvarieties
Y,Z ⊂ X are generically transverse if for every p ∈ Y, Z, the tangent spaces to Y
and Z span the tangent space to X:

TpY + TpZ = TpX.

This is equivalent to the condition

codim (TpY ∩ TpZ) = codim (TpY ) + codim (TpZ) . (2.5)

This definition is extended to cycles by saying that A = q
i niYi and B = q

jmjZj
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are generically transverse if each Yi is generically transverse to eachg Zj . The
following are two fundamental results in intersection theory in algebraic geometry,
with the second one following from the first.

Lemma 2.4.1 (Moving lemma). Let X be a smooth quasi-projective variety. Then
for every α, β ∈ A(X) there are generically transverse cycles A,B ∈ Z(X) such
that [A] = α and [B] = β. Moreover, the class [A ∩ B] ∈ A(X) is independent of
the choice of such cycles A and B.

Theorem 2.4.2. Let X be a smooth quasi-projective variety. There is a unique
product structure on A(X) defined by

αβ = [A ∩B], ∀α, β ∈ A(X)

where we use the notation from the moving lemma. This makes

A∗(X) :=
dimXn
k=0

Ak(X)

into an associative commutative ring, graded by codimension.

The resulting ring A∗(X) is the Chow ring of X. It is graded by codimension due
to condition (2.5). The moving lemma was proved by Chow in [Cho56], whose first
sentence is “It is well-known that there is a close analogy between the intersection
theories in the abstract algebraic geometry and in topology”. By comparing what
we have presented above to a topology text such as [Bre93, VI. 6], one sees that
the topological intersection product is similar to the algebraic intersection product
(Theorem 11.9 in the reference is analogous to Theorem 2.4.2).

As before, one can construct this for a complex orbifold such as Mg,n as well.
In general the Chow ring is neither a stronger nor a weaker invariant than the
cohomology ring. An important difference, however, is that the Chow ring only sees
even-graded cohomology, since the index in Ak(X) refers to the complex/algebraic
codimension. Then there is a natural map Ak(X)→ H2k(X;Q). For our purposes,
from this point onward, we will not worry about whether we need to work in
H∗(Mg,n) or in A∗(Mg,n) and we will always use H∗(Mg,n) in our notation. Then,
for example, the class of a codimension 1 sub-orbifold (a divisor) of Mg,n will
lie in H2(Mg,n), since complex codimension 1 corresponds to real codimension
2. By Poincaré duality (2.4) this is the same as lying in H2d−2(Mg,n), where
d = dimMg,n = 3g − 3 + n.

15



2.5 The tautological ring
In this section we introduce some natural cohomology classes on the moduli space
of stable curves Mg,n, which constitute its so-called tautological ring.

There is a forgetful morphism between moduli spaces of stable curves, which
forgets the last marked point:

Mg,n+1 −→ Mg,n,

(C, x1, . . . , xn, xn+1) Ô−→ (Ĉ, x̂1, . . . , x̂n).
(2.6)

We remind that every irreducible component Ci of C must satisfy 2gi − 2 + ni > 0
for C to be a stable curve, where gi is the genus of Ci and ni is the number of
special points on Ci. This may no longer be true after we have forgotten xn+1,
since the number of special points on the component containing xn+1 is decreased
by 1. Hence by (Ĉ, x̂1, . . . , x̂n) we mean the stabilisation of (C, x1, . . . , xn), which
consists in shrinking the component containing xn+1 to a point if it has become
unstable. An important fact, outlined in the proposition below, is that the forgetful
morphism (2.6) is the universal curve over Mg,n.

Proposition 2.5.1. Let 2g− 2 + n > 0. The universal curve π : Cg,n →Mg,n and
the forgetful map Mg,n+1 →Mg,n are isomorphic as families over Mg,n.

Proof. For every stable curve (C, x1, . . . , xn, xn+1) ∈Mg,n+1, let y ∈ (Ĉ, x̂1, . . . , x̂n)
be the image of xn+1 under the stabilization of (C, x1, . . . , xn). This defines a map
of families over Mg,n:

Mg,n+1 −→ Cg,n,
(C, x1, . . . , xn, xn+1) Ô−→ ((Ĉ, x̂1, . . . , x̂n), y),

(2.7)

where by ((Ĉ, x̂1, . . . , x̂n), y) we mean the point y ∈ Cg,n lying over (Ĉ, x̂1, . . . , x̂n) ∈
Mg,n. There are the following three possibilities for what y could be:

(i) If the curve (C, x1, . . . , xn) is stable, then it equals its stabilization (Ĉ, x̂1, . . . , x̂n) ∈
Mg,n, so y = xn+1.

(ii) If (C, x1, . . . , xn) is unstable, then xn+1 could lie on a genus 0 component of
C with another marked point xi and one node, and no other special points.
Then, when stabilizing (C, x1, . . . , xn) to obtain (Ĉ, x̂1, . . . , x̂n) ∈ Mg,n, this
component is shrunk to the point x̂i. Therefore y = x̂i.

(iii) Alternatively, if (C, x1, . . . , xn) is unstable, then xn+1 could lie on a genus 0
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component with no other marked points and two nodes. This component gets
shrunk to a node in (Ĉ, x̂1, . . . , x̂n), so y equals that node in (Ĉ, x̂1, . . . , x̂n).

These are the only possibilities. To check this, notice that (C, x1, . . . , xn) is unstable
if and only if the component Ci containing xn+1 satisfies 2gi − 2 + (ni − 1) ≤ 0,
which can only happen if xn+1 falls in case (ii) or (iii). We use cases (i)-(iii) to
construct the inverse map Cg,n →Mg,n+1. Given ((C, x1, . . . , xn), y) ∈ Cg,n:

(i) If y is not a special point of (C, x1, . . . , xn), then send it to the stable curve
(C, x1, . . . , xn, y) ∈Mg,n+1.

(ii) If y is one of the marked points xi, then send it to the stable curve
(C ′, x1, . . . , xi−1, x

′
i, xi+1, . . . , xn, y

′) ∈ Mg,n+1 obtained by replacing xi ∈ C
by a genus 0 curve with two marked points x′

i and y′, joined to the rest of C
by a simple node.

(iii) If y is a node in C, then send it to the stable curve (C ′′, x1, . . . , xn, y
′′) ∈

Mg,n+1 obtained by replacing the point y by a genus zero curve with one
marked point y′′, joined to its two adjacent components by two simple nodes.

Figure 5 illustrates this isomorphism with the dotted arrow for (g, n) = (2, 2).

Figure 5: The universal curve over Mg,n as the forgetful morphism [Zvo14, p. 18].

Because of this proposition, we will henceforth use the notations π : Cg,n →Mg,n

and π :Mg,n+1 →Mg,n interchangeably to denote the universal curve.

There are two other morphisms of interests, called gluing morphisms. The first
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one
gl1 :Mg1,n1+1 ×Mg2,n2+1 −→Mg1+g2,n1+n2

takes two marked curves (C, x1, . . . , xn1+1) and (C ′, x′
1, . . . , x

′
n2+1) and identifies

them along the points xn1+1 and x′
n2+1 to create one curve with n1 + n2 marked

points. The second one
gl2 :Mg,n+2 −→Mg+1,n

takes a marked curve (C, x1, . . . , xn+1, xn+2) and identifies the last two points xn+1

and xn+2. This creates an extra ‘hole’ in C, thereby increasing its genus by one.
The three morphisms described so far are called natural morphisms. They induce
pushforwards on cohomology:

π∗ : H∗(Mg,n+1)→ H∗(Mg,n),

(gl1)∗ : H∗(Mg1,n1+1)⊗Q H
∗(Mg2,n2+1)→ H∗(Mg1+g2,n1+n2),

(gl2)∗ : H∗(Mg,n+2)→ H∗(Mg+1,n).

Knowing the structure of the cohomology ring of a space allows one to understand
its properties more deeply. In the case of Mg,n, it turns out that the entire co-
homology ring H∗(Mg,n) is far too large and complicated to work with. For this
reason, it is common to restrict one’s attention to a certain subring of H∗(Mg,n)
defined below.

Definition 2.5.2. The system of tautological rings
1
R∗(Mg,n) ⊂ H∗(Mg,n)

2
g,n

is
the smallest system of Q-algebras that is closed under pushforwards by the natural
morphisms.

Notice that the tautological rings are defined for all (g, n) simultaneously. This
definition is due to Faber and Pandharipande [FP03], and the idea behind it is
that most of the classes in Mg,n arising from geometry lie inside the tautological
ring, although this is not immediately apparent. As it turns out, constructing
nontautological classes in Mg,n is highly nontrivial [GP01].

We now start giving examples of natural cohomology classes on Mg,n arising
from geometry. Firstly, denote the set of nodes in the singular fibres of Cg,n by
∆ ⊂ Cg,n, and consider the line bundle over Cg,n\∆ whose fibre at every point y ∈ C
is the cotangent line T ∗

yC. This can be extended to a line bundle L→ Cg,n, called
the relative cotangent line bundle [Zvo14]. For i = 1, . . . , n let si :Mg,n → Cg,n be
the section of the universal curve that selects the ith marked point on each curve.
Pulling back along these sections gives line bundles Li := s∗

iL over Mg,n, whose
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fibre at at (C, x1, . . . , xn) is T ∗
xi
C.

Definition 2.5.3. The ψ-classes in Mg,n are the first Chern classes of the line
bundles Li →Mg,n:

ψi := c1(Li) ∈ H2(Mg,n), i = 1, . . . , n.

Each ψ-class lies in the tautological ring: ψi ∈ R2(Mg,n) [Sch20, Proposition 6.25].
A description of R∗(Mg,n) that is equivalent to Definition 2.5.2 was given in [GV05]:

Definition 2.5.4. The system of tautological rings
1
R∗(Mg,n) ⊂ H∗(Mg,n)

2
g,n

is
the smallest system of Q-vector spaces closed under pushforwards by the natural
morphisms, such that all monomials in ψ1, . . . , ψn are contained in R∗(Mg,n).

The tautological ring was first studied by Mumford in [Mum83] for Mg. In his
paper, he defined two other types of tautological classes called the κ and λ-classes.
The former are defined as pushforwards of powers of ψ := c1(L) ∈ H2(Cg,n) along
the universal curve π : Cg,n →Mg,n:

κi := π∗
1
ψi+1

2
∈ H2i(Mg,n), i = 0, 1, . . . . (2.8)

There is rank g vector bundle E →Mg,n, given by E := π∗(L). This is called the
Hodge bundle, and its fibre over (C, x1, . . . , xn) is the space of abelian differentials
on C. The λ-classes on Mg,n are

λj := cj(E) ∈ H2j(Mg,n), j = 1, . . . , g. (2.9)

Using previous work by Looijenga [Loo95], Faber made various conjectures
about the tautological ring ofMg [Fab99], including that it is a Gorenstein algebra
with socle in codimension g−2. In other words, that it behaves like the cohomology
ring of a compact (g − 2)-dimensional manifold. In [Pan02] a similar conjecture
is made for Mg,n, namely that R∗(Mg,n) is a Gorenstein algebra with socle in
codimension 2(3g − 3 + n). This was proved in [FP03].

Proposition 2.5.5. The degree 2d = 2(3g − 3 + n) of the tautological ring is one-
dimensional: R2d(Mg,n) ∼= Q. Moreover Ri(Mg,n) = 0 for i > 2d, and the pairing
induced by the intersection product

Rk(Mg,n)×R2d−k(Mg,n)→ Rd(Mg,n) ∼= Q
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is nondegenerate.

This is nontrivial if the tautological ring is defined in terms of the Chow ring,
whereas it is true if we work in H∗(Mg,n) (the degree is doubled in the statement of
the conjecture because we work in cohomology). The notation for the isomorphism
in the top degree is given by the integral,Ú

Mg,n

: R2d(Mg,n)
∼=−→ Q,

in analogy with how integrating top-degree forms on a compact, connected, ori-
entable manifold establishes an isomorphism HdimM

dR (M) ∼= R [Spi99, Chapter 8].

Proposition 2.5.5 implies that one can recover the structure of the tautological
ring ofMg,n from knowledge of intersection products of classes inMg,n in the top
degree. Therefore, since ψ-classes are central to the definition of the tautological
ring, it is natural to study the following intersection products:

⟨τd1 · · · τdn⟩ :=
Ú

Mg,n

ψd1
1 · · ·ψ

dn
n ∈ Q. (2.10)

These numbers are defined for any n-tuple of natural numbers (d1, . . . , dn), and the
genus g is determined by the condition d1 + · · ·+ dn = dimMg,n = 3g − 3 + n. If,
for every i ≥ 0, we say that ni is the number of integers in (d1, . . . , dn) equal to i,
we can write (2.10) as

⟨τn0
0 τn1

1 · · · ⟩ = ⟨τ0 · · · τ0ü ûú ý
n0 times

τ1 · · · τ1ü ûú ý
n1 times

· · · ⟩, (2.11)

whereqi≥0 ni = n. In this case, the genus g is determined byqi≥0 ni(i−1) = 3g−3.
Witten’s conjecture gives a recursive way to compute all such numbers (2.10) and
(2.11).

2.6 Towards Witten’s conjecture
The simplest example of an intersection product (2.10) for 2g − 2 + n > 0 is

⟨τ3
0 ⟩ =

Ú
M0,3

1 = 1,

sinceM0,3 consists of the single point (P1, 0, 1,∞). InM0,n it is possible to express
each ψi as a linear combination of certain divisors [Zvo14, 2.2], which allows one
to compute successively complicated intersection products on M0,n. For example
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⟨τ3
0 τ1⟩ = 1.

There is an elegant and efficient way of computing intersection products of
ψ-classes in M0,n. The first step towards this is understanding the discrepancy
between ψ-classes on Mg,n+1 and pull-backs of ψ-classes on Mg,n by the forgetful
morphism π :Mg,n+1 →Mg,n. Before explaining this, we fix some notation. This
notation is the same as in Definition 2.5.3, but with an added “prime” everywhere
to indicate that we are working on the (g, n + 1) level. So we have sections s′

i :
Mg,n+1 → Cg,n+1 corresponding to the ith marked points, the relative cotangent
bundle L′ → Cg,n+1, its pull-back by the sections L′

i := s′∗
i L′ → Mg,n+1, and

the ψ-classes ψ′
i := c1(L′

i) ∈ H2(Mg,n+1). Moreover, denote the forgetful map
on the level of universal curves by πC : Cg,n+1 → Cg,n. This maps a point on a
curve (C, x1, . . . , xn, xn+1) to the image of the same point on the stabilized curve
(Ĉ, x̂1, . . . , x̂n). Then there is a commutative diagram of orbifold morphisms

Mg,n+1 Cg,n+1

Mg,n Cg,n

s′
i

πCπ

si

for every i = 1, . . . , n. We now prove the following result following [Wit90, 2b].

Lemma 2.6.1 (Comparison). Let D0,{i,n+1} ⊂ Mg,n+1 be the boundary divisor
corresponding to stable curves with one node, where one component is genus 0 and
contains only the marked points xi and xn+1 (see Figure 6). Then for i = 1, . . . , n:

ψ′
i = π∗ψi +D0,{i,n+1}.

Proof. Let α be a local nonzero section of L→ Cg,n. For each 1 ≤ i ≤ n, consider
the image of D0,{i,n+1} under s′

i, denoted by Di ⊂ Cg,n+1. This is the locus of
marked points xi belonging to an irreducible component that becomes unstable
after forgetting xn+1 (this corresponds to possibility (ii) in the proof of Proposition
2.5.1). Therefore πC maps every component of Di to a point. Because of this, the
local section π∗

Cα of the line bundle π∗
CL→ Cg,n+1 vanishes onDi, with a simple zero.

One can see this by expressing α in local coordinates, i.e. as a sum of differentials
on Cg,n. On the other hand, the line bundles L′ → Cg,n+1 and π∗

CL → Cg,n+1 are
isomorphic outside of tni=1Di ⊂ Cg,n+1, since πC will not map a component outside
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of Di to a point. Therefore

L′ ∼= π∗
CL⊗

np
i=1
O(Di). (2.12)

The pull-back of on
i=1O(Di) along the section s′

i : Mg,n+1 → Cg,n+1 is just
O(D0,{i,n+1}), since im s′

i and im s′
j do not intersect for i ̸= j. Hence the pull-

back of (2.12) along s′
i is

L′
i = s′∗

i L′ ∼= s′∗
i π

∗
CL⊗O(D0,{i,n+1})

∼= π∗Li ⊗O(D0,{i,n+1}),

where we used πC ◦ s′
i = si ◦ π. Taking the Chern class of the above expression

yields ψ′
i = π∗ψi +D0,{i,n+1}.

Figure 6: The dual graph of D0,{i,n+1} ⊂Mg,n+1.

Using the comparison lemma, we can express a power of a ψ-class in Mg,n+1

as follows.

ψ′ d
i = ψ′

i (π∗ψi +D0,{i,n+1})d−1

= ψ′
i (π∗ψi)d−1 + ψ′

iD0,{i,n+1}(· · · ),

where (· · · ) represents other terms. The line bundle L′
i is trivial over D0,{i,n+1},

since every point in D0,{i,n+1} is a rigid object. So the product ψ′
iD0,{i,n+1} =

c1(L′
i)D0,{i,n+1} = c1

1
L′
i|D0,{i,n+1}

2
is zero. This leaves us with

ψ′ d
i = (π∗ψi +D0,{i,n+1})(π∗ψi)d−1

= π∗(ψdi ) + π∗(ψd−1
i )D0,{i,n+1}.
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Therefore the product ψ′ d1
1 · · ·ψ′ dn

n inside Mg,n+1 (excluding ψ′
n+1) is

1
π∗(ψd1

1 ) + π∗(ψd1−1
1 )D0,{1,n+1}

2
· · ·
1
π∗(ψdn

n ) + π∗(ψdn−1
n )D0,{n,n+1}

2
=π∗(ψd1

1 · · ·ψ
dn
n ) +

nØ
i=1

π∗(ψd1
1 · · ·ψ

di−1
i · · ·ψdn

n )D0,{i,n+1}, (2.13)

where we have used D0,{i,n+1}D0,{j,n+1} = 0 for i ̸= j because the divisors do
not intersect. Using (2.13) we express the intersection product ⟨τd1 · · · τdnτ0⟩ on
Mg,n+1 as a sum of similar products on Mg,n, by integrating along the fibres of
π :Mg,n+1 →Mg,n and applying the push-pull formula [EH16, Theorem 1.23]:

⟨τd1 · · · τdnτ0⟩ =
Ú

Mg,n+1
ψ′ d1

1 · · ·ψ′ dn
n =

Ú
Mg,n

π∗
1
ψ′ d1

1 · · ·ψ′ dn
n

2
=
Ú

Mg,n

π∗
1
π∗(ψd1

1 · · ·ψ
dn
n )
2

+
nØ
i=1

Ú
Mg,n

π∗
1
π∗(ψd1

1 · · ·ψ
di−1
i · · ·ψdn

n )D0,{i,n+1}
2

=
Ú

Mg,n

ψd1
1 · · ·ψ

dn
n π∗(1′) +

nØ
i=1

Ú
Mg,n

ψd1
1 · · ·ψ

di−1
i · · ·ψdn

n π∗(D0,{i,n+1}).

In the sum it is implied that all terms with negative exponents are ignored. The
fundamental class 1′ = [Mg,n+1] ∈ H0(Mg,n+1) is the multiplicative identity. The
first term above vanishes by definition because ψd1

1 · · ·ψdn
n π∗(1′) is not a top inter-

section class. For the second term, we have already argued that π contracts the
genus 0 component of every point in D0,{i,n+1}, making the latter isomorphic to
Mg,n via π. Hence π∗(D0,{i,n+1}) = [Mg,n] = 1, and we are left with

Ú
Mg,n+1

ψ′ d1
1 · · ·ψ′ dn

n =
nØ
i=1

Ú
Mg,n

ψd1
1 · · ·ψ

di−1
i · · ·ψdn

n , (2.14)

or equivalently

⟨τd1 · · · τdnτ0⟩ =
nØ
i=1
⟨τd1 · · · τdi−1 · · · τdn⟩. (2.15)

Equations (2.14) and (2.15) are called the string equation. They allow one to
compute all intersection numbers of ψ-classes on M0,n inductively.

Proposition 2.6.2. For any n ≥ 3 and any n-tuple of nonnegative integers (d1, . . . , dn)
such that d1 + · · ·+ dn = dimM0,n = n− 3:

Ú
M0,n

ψd1
1 · · ·ψ

dn
n =

A
n− 3

d1, . . . , dn

B
= (n− 3)!
d1! · · · dn! .

Proof. By induction on n. The n = 3 case is ⟨τ3
0 ⟩ = 1. Assuming the result is true
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for n, consider Ú
M0,n+1

ψd1
1 · · ·ψ

dn
n ψ

dn+1
n+1 .

Notice that d1 + · · · + dn+1 = dimM0,n+1 = n − 2 implies that dn+1 = 0 without
loss of generality. Then, using the string equation and the inductive hypothesis,

Ú
M0,n+1

ψd1
1 · · ·ψ

dn
n =

nØ
i=1

Ú
M0,n

ψd1
1 · · ·ψ

di−1
i · · ·ψdn

n =
nØ
i=1

A
n− 3

d1, . . . , di − 1, . . . , dn

B

=
A

n− 3
d1, . . . , dn

B
nØ
i=1

di =
A

n− 2
d1, . . . , dn

B
=
A

n− 2
d1, . . . , dn, dn+1

B
,

where we multiplied the top and bottom of the ith fraction by di in the third
equality.

For genus g = 1, the first intersection product is

⟨τ1⟩ =
Ú

M1,1
ψ1 = 1

24 . (2.16)

For two different proofs of this fact, see [Vak08, 3.13], [Ric22, Theorem 12.4.3], or
[Zvo14, Proposition 2.26]. The factor of 1

12 in 1
24 arises because a rational elliptic

fibration has 12 singular fibres, or because there exists an elliptic modular form of
weight 12 with a simple zero at the cusp. The additional factor of 1

2 is due to the
fact that elliptic curves have two automorphisms, the identity and the involution.
Obtaining the analogue of Proposition 2.6.2 for intersections of ψ-classes in M1,n

follows a similar procedure to the one for M0,n, which we outline below.

Denote by f :Mg,n+1 → Cg,n the isomorphism (2.7) between the forgetful mor-
phism and the universal curve over Mg,n. Similarly to Lemma 2.6.1, we compute
the ‘discrepancy’ between the line bundles L′

n+1 and f∗L over Mg,n+1. Noticing
that f = si◦π = πC◦s′

i when restrictred to D0,{i,n+1} ⊂Mg,n+1, a similar argument
to the lemma gives

L′
n+1
∼= f∗L⊗

np
i=1
O(D0,{i,n+1}).

Therefore the degree of L′
n+1 along the fibres of π :Mg,n+1 →Mg,n is the sum of

the corresponding degrees of L and each O(D0,{i,n+1}), which is 2g − 2 + n. Hence

π∗(ψn+1) = (2g − 2 + n)[Mg,n]. (2.17)

As a side remark, notice that the left-hand side of (2.17) is the κ-class κ0, which
was defined in (2.8). Multiplying equation (2.13) for the intersection product
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ψ′ d1
1 · · ·ψ′ dn

n in Mg,n+1 by ψ′
n+1 we obtain

ψ′ d1
1 · · ·ψ′ dn

n ψ′
n+1 = π∗(ψd1

1 · · ·ψ
dn
n )ψ′

n+1,

since D0,{i,n+1}ψn+1 = 0 for every 1 ≤ i ≤ n. Therefore, integrating along the
fibres of π :Mg,n+1 →Mg,n and using the push-pull formula,

⟨τd1 · · · τdnτ1⟩ =
Ú

Mg,n+1
ψ′ d1

1 · · ·ψ′ dn
n ψ′

n+1 =
Ú

Mg,n

π∗
1
ψ′ d1

1 · · ·ψ′ dn
n ψ′

n+1

2
=
Ú

Mg,n

π∗
1
π∗(ψd1

1 · · ·ψ
dn
n )ψ′

n+1

2
=
Ú

Mg,n

ψd1
1 · · ·ψ

dn
n π∗(ψ′

n+1).

Applying (2.17) one obtainsÚ
Mg,n+1

ψ′ d1
1 · · ·ψ′ dn

n ψ′
n+1 = (2g − 2 + n)

Ú
Mg,n

ψd1
1 · · ·ψ

dn
n , (2.18)

or equivalently
⟨τd1 · · · τdnτ1⟩ = (2g − 2 + n)⟨τd1 · · · τdn⟩. (2.19)

Equation (2.18) and (2.19) are known as the dilaton equation. Using both the string
and dilaton equations, we can recursively compute top intersections of ψ-classes on
M1,n starting from the initial condition ⟨τ1⟩ = 1

24 . This is because for every such
intersection product Ú

M1,n

ψd1
1 · · ·ψ

dn
n , (2.20)

the dimension condition d1 + · · ·+ dn = dimM1,n = n ensures that dn ≤ 1 without
loss of generality. One also obtains an expression for (2.20) similar to the one in
Proposition 2.6.2. It is [LZ04, Proposition 4.6.11]

Ú
M1,n

ψd1
1 · · ·ψ

dn
n = 1

24

A
n

d1, . . . , dn

BA
1−

nØ
k=1

(k − 2)!(n− k)!
n! ek(d1, . . . , dn)

B
,

where ek is the kth symmetric function

ek(d1, . . . , dn) =
Ø

i1<···<ik
di1 · · · dik .

From this discussion, one can deduce that the more relations one has such as
the string and dilaton equations, the higher up in genus g one can go to compute
intersections of ψ-classes recursively. A useful way of storing all this information
is through a generating function. Let t∗ = (t0, t1, t2 . . . ) be formal variables, and
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define
F (t∗) =

Ø
(d1,...,dn)

⟨τd1 · · · τdn⟩
td1 · · · tdn

|Aut(d1, . . . , dn)| .

This generating function was first introduced in [Wit90]. The sum runs over all
positive integers n and all n-tuples of nonnegative integers (d1, . . . , dn), and we
do not sum over the genus g since it is determined by 3g − 3 + n = qn

j=1 dj .
By Aut(d1, . . . , dn) we mean the group of automorphisms of (d1, . . . , dn), so that
|Aut(d1, . . . , dn)| = r∞

i=0 ni!, where ni = |{j : dj = i}|. Therefore one can express
F as a sum over (n0, n1, . . . ) where only finitely many ni are nonzero:

F (t∗, . . . ) =
Ø

(n0,n1,... )
⟨τn0

0 τn1
1 · · · ⟩

∞Ù
i=0

tni
i

ni!
.

This time the genus is determined by 3g − 3 = q∞
i=0 ni(i− 1).

As a first example of the usefulness of this generating function, we show that
the string equation (2.15) is equivalent to the following partial differential equation
for F :

∂F

∂t0
= t20

2 +
∞Ø
i=0

ti+1
∂F

∂ti
. (2.21)

Firstly, the term containing t20 on the left is ∂
∂t0
⟨τ3

0 ⟩
t30
3! = ⟨τ3

0 ⟩
t20
2 . Therefore (2.21)

says that ⟨τ3
0 ⟩ = 1, as expected. In general, the term containing the monomial

td1 ···tdn

|Aut(d1,...,dn)| = r∞
i=0

t
ni
i
ni! on the left is

∂

∂t0

A
⟨τn0+1

0 τn1
1 τn2

2 · · · ⟩
tn0+1
0

(n0 + 1)!

∞Ù
i=1

tni
i

ni!

B
= ⟨τ0 τ

n0
0 τn1

1 τn2
2 · · · ⟩

∞Ù
i=0

tni
i

ni!

= ⟨τ0 τd1 · · · τdn⟩
td1 · · · tdn

|Aut(d1, . . . , dn)| .

(2.22)

On the right, the coefficient of the same monomial comes from terms with one more
power of ti and one less power of ti+1, for every i:

∞Ø
i=0

ti+1
∂

∂ti

A
⟨· · · τni+1

i τ
ni+1−1
i+1 · · · ⟩ · · · tni+1

i

(ni + 1)!
t
ni+1−1
i+1

(ni+1 − 1)! · · ·
B

=
∞Ø
i=0

ni+1⟨· · · τni+1
i τ

ni+1−1
i+1 · · · ⟩

∞Ù
k=0

tnk
k

nk!

=
nØ
j=1
⟨· · · τdj−1 · · · ⟩

td1 · · · tdn

|Aut(d1, . . . , dn)| . (2.23)
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Comparing (2.22) and (2.23) gives the string equation (2.15). By a similar proce-
dure, one can show that the dilaton equation (2.19) is equivalent to

∂F

∂t1
= 1

3

∞Ø
i=0

(2i+ 1)ti
∂F

∂ti
+ 1

24 .

A surprising fact is that the dilaton PDE can be deduced if one assumes that
F obeys the string equation and U = ∂2F

∂t20
obeys the KdV equations, a particular

system of partial differential equations (see [Koc01, Lemma 3.4.2]). This was one
of the pieces of evidence that led Witten to make his conjecture [Wit90], which was
later proved in [Kon92].

Theorem 2.6.3 (Witten-Kontsevich).

(1) U(t∗) := ∂2F
∂t20

obeys the KdV equations:

∂U

∂tn
= ∂Rn+1

∂t0
, n ≥ 0, (2.24)

where the Rn are polynomials in U, ∂U∂t0 ,
∂2U
∂t20

, · · · determined inductively by

R1 = U,
∂Rn+1
∂t0

= 1
2n+ 1

A
∂U

∂t0
Rn + 2U ∂Rn

∂t0
+ 1

4
∂3Rn
∂t30

B
.

(2) The generating function F (t∗) obeys the string equation (2.21).

We have already proved (2). It is not immediately apparent how (1) and (2)
uniquely determine F , so we explain this briefly. Firstly, the string equation pro-
vides us with the initial datum U(t0, 0, 0, . . . ) = t0, which is equivalent to ⟨τ3

0 ⟩ = 1.
This, together with the KdV equations, completely determines U (see Theorem
4.1.3). To show that F is also completely determined, it suffices to show that every
W := ⟨τd1 · · · τdn⟩ can be recovered from knowledge of U and the string equation.
When n = 1 we have

W = ⟨τ3g−2⟩ = ⟨τ3gτ
2
0 ⟩ = ∂U

∂t3g

-----
ti=0

,

where the second equality is obtained by applying the string equation (2.15) twice.
For general (d1, . . . , dn), one can assume 1 ≤ dj ≤ 3g − 2 for each j. Then one
inducts on r := maxj{dj}. The base case is r = 3g− 2, which we have done above.
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To deduce the r − 1 case, assume d1 = r − 1 and introduce the known quantity

W ′ = ⟨τd1+2 τd2 · · · τdnτ
2
0 ⟩ = ∂nU

∂td1+2∂td2 · · · ∂tdn

----
ti=0

.

If W ′ contains no τ0 and τ1 factors, applying the string equation twice expresses
W ′ as a sum of W and other objects that are known by the inductive hypothesis. If
W ′ does contain such factors, this procedure needs to be repeated a finite number
of times with other suitable known objects W ′′,W ′′′, . . . , because other factors of
τ0 will appear.

In any case, knowledge of U and the string equation suffices to compute each
intersection product ⟨τd1 · · · τdn⟩. Hence the statement of the Witten-Kontsevich
theorem determines F uniquely. This establishes the surprising fact that the topol-
ogy of the moduli space of curves encoded in its tautological ring is governed by
an integrable hierarchy of partial differential equations. We now dedicate the next
two sections to developing the necessary tools to understand the proof of this result
given in [KL07].
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3 Hurwitz theory

3.1 Hurwitz numbers
The proof of the Witten-Kontsevich theorem proposed in [KL07] relates the gener-
ating function

F (t∗) =
Ø

(d1,...,dn)
⟨τd1 · · · τdn⟩

td1 · · · tdn

|Aut(d1, . . . , dn)|

for top intersection products of ψ-classes in Mg,n to another generating function,
which encodes Hurwitz numbers. We introduce these now. For proofs of the subse-
quent statements about Riemann surfaces, see [CM16]. Much of this entire section
is adapted from [CM16].

Consider two connected, compact Riemann surfaces X,Y and f : X → Y a
non-constant holomorphic map between them. For every x ∈ X there are charts
centred at x and f(x) such that the local form of f in these charts is z Ô→ zkx for
some integer kx ≥ 1. This integer is called the ramification index of f at x. If
kx = 1 then f is said to be unramified at x. If kx ≥ 2 then x is called a ramification
point of f . The ramification locus R ⊂ X is the subset of all ramification points
of f , and it is finite. The image of R is the branch locus B ⊂ Y , and given any
two points y1, y2 ∈ Y \B outside of the branch locus, the cardinalities of the fibers
at those points agree: |f−1(y1)| = |f−1(y2)|. The degree d of f is defined as the
cardinality of these fibers. For a branch point y ∈ B we have |f−1(y)| < d instead.

Now for any point y ∈ Y , consider its preimage f−1(y) = {x1, . . . , xℓ} ⊂ X and
the corresponding ramification indexes (kx1 , . . . , kxℓ

), ordered so that kx1 ≥ kx2 ≥
· · · ≥ kxℓ

. The n-tuple k = (kx1 , . . . , kxℓ
) is called the ramification profile of f at y.

It is always true that
ℓØ
i=1

kxi = d. (3.1)

Definition 3.1.1. Let d be a positive integer. A partition of d is a non-increasing
tuple of positive integers µ = (µ1, . . . , µℓ) such that qℓ

i=1 µi = d, and this is indi-
cated by the symbol µ ⊢ d. The sum d of the elements is called the size of µ and
is denoted by |µ|, and the number of elements ℓ is called the length of µ and is
denoted by ℓ(µ). The set of all partitions of d is denoted by Pd, and P := à

d≥0 Pd.

With this definition in mind, equation (3.1) says that the ramification profile of f
at any point in Y is a partition of the degree d of f . When y ∈ Y \B is not a branch
point, the previous paragraph implies that ℓ = d and (kx1 , . . . , kxd

) = (1, . . . , 1). In
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this case, f is said to be unramified over y. If, instead, y ∈ B is a branch point, then
ℓ < d and f is said to have ramification over y. We further distinguish between two
types of ramification. If (kx1 , . . . , kxℓ

) = (2, 1, . . . , 1) then f is said to have simple
ramification over y. If not, f has non-simple ramification over y.

Given two such maps f : X → Y and f ′ : X ′ → Y , we say that f and f ′ are
isomorphic if there exists a biholomorphism φ : X → X ′ such that the diagram

X X ′

Y

φ

f f ′

commutes. The group of automorphisms of f is denoted by Aut(f). We now
present the definition of Hurwitz numbers, which count how many holomorphic
maps there are between Riemann surfaces of a certain genus with prescribed ram-
ification profiles, appropriately weighted by the number of automorphisms of such
maps.

Definition 3.1.2. Let Y be a connected, compact Riemann surface of genus h
with n marked points b1, . . . , bn ∈ Y . Let µ1, . . . , µn ∈ Pd be partitions of a
positive integer d, and let g ≥ 0. The connected Hurwitz number for the data
g, h, d, µ1, . . . , µn is

H
g

d−→h
(µ1, . . . , µn) =

Ø
[f ]

1
|Aut(f)| .

The sum runs over all isomorphism classes of holomorphic maps f : X → Y , where
X is a connected, compact Riemann surface of genus g, the branch locus of f is
{b1, . . . , bn} ⊂ Y and the ramification profile of f at bi is µi.

The first to discuss these numbers was Hurwitz in his 1891 paper [Hur91], where
he wished to find a systematic way of computing all such numbers. When we allow
the source curve X to be possibly disconnected in the above definition, we denote
the corresponding disconnected Hurwitz number by

H•
g

d−→h
(µ1, . . . , µn).

Note that the genus of a disconnected Riemann surface is determined by the addi-
tivity of the Euler characteristic. In other words, if X has connected components

30



C1, . . . , Cn of genus g1, . . . , gn, then the genus g of X is determined by

2− 2g =
nØ
i=1

(2− 2gi)

=⇒ g = 1− n+
nØ
i=1

gi. (3.2)

In order for a Hurwitz number to be well-defined, its data needs to satisfy the
Riemann-Hurwitz formula

2− 2g = d(2− 2h)−
Ø
x∈R

(kx − 1),

which in this case means

2− 2g = d(2− 2h)− nd+
nØ
i=1

ℓ(µi). (3.3)

Hence the genus g does not need to be specified in the data because it is completely
determined by the other pieces of data. By definition, a Hurwitz number whose
data does not satisfy (3.3) is equal to 0.

In general, the Hurwitz number for a given data will be a rational number
rather than just an integer, because we are weighting each isomorphism class of
maps by its automorphism group. This might seem counter-intuitive, since the
objective is to ‘count’ or ‘enumerate’ how many maps there are between Riemann
surfaces. Nevertheless, there are several reasons for which it is important to retain
the information about automorphisms at the cost of obtaining rational numbers.
One of these reasons is the connection between Hurwitz numbers and the moduli
space of curves. In Section 2.2, we outlined how the orbifold structure of mod-
uli spaces is due to the presence of non-trivial automorphisms of curves. This is
also the reason why we consider coefficients in Q rather than Z when studying the
cohomology ring of Mg,n. Another reason for why we wish to take into account
automorphisms will become apparent in the next section, where we show that com-
puting Hurwitz numbers essentially boils down to counting equivalence classes in
symmetric groups subject to certain conditions.

3.2 Monodromy representations
We now give a simple example of a computation of a Hurwitz number.

Example 3.2.1. Take g = 0 and Y = P1 with branch points b1 = 0, b2 = ∞ and
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ramification profiles µ1 = µ2 = (d). Hence we wish to compute H
0

d−→0
((d), (d)).

Firstly, the source curve X is isomorphic to P1 because its genus is 0, so we can
simply take it to be P1. A Hurwitz cover for this data is p : P1 → P1, x Ô→ xd. We
now show that any other Hurwitz cover f : P1 → P1 for this data is isomorphic to
p. Since f is a rational function it is of the form

f(x) = a
(x− x1)d
(x− x2)d ,

for some a, x1, x2 ∈ C (assuming x1 ̸= ∞, x2 ̸= ∞). Let η be a d th root of a, and
φ : P1 → P1 be given by

φ(x) = η
x− x1
x− x2

.

Then the diagram
P1 P1

P1

φ

pf

commutes, so f is isomorphic to p. By replacing f with p in the above discussion,
we see that Aut(p) is the group of d th roots of unity. Hence

H
0

d−→0
((d), (d)) = 1

|Aut(p)| = 1
d
.

Another example is the Hurwitz number counting genus g hyperelliptic covers of
P1:

H
g

2−→0
((2)2g+2) = 1

2 .

In this case, every ramification profile is simple and the Riemann-Hurwitz formula
forces there to be 2g + 2 ramification points. One can show that only one Hurwitz
cover contributes to the sum, and one uses the Riemann existence theorem to
construct such a hyperelliptic cover.

Computing further examples with more exotic data becomes more challenging
without a systematic framework to understand ramified covers algebraically. To
begin developing such a framework, start with a degree d ramified covering f : X →
Y as before. Take a basepoint y0 ∈ Y \ B together with a loop γ : [0, 1] → Y \ B
based at y0. For any x ∈ f−1(y0), the loop γ lifts to a unique path γ̃x : [0, 1]→ X

satisfying γ̃x(0) = x and f ◦ γ̃x = γ. Notice that γ̃x(1) ∈ f−1(y0) because γ(1) = y0,
so we get a map

σ̃γ : f−1(y0) −→ f−1(y0),
x Ô−→ γ̃x(1).
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This is a bijection due to the existence and uniqueness of such path lifts. Since
the basepoint y0 does not belong to the branch locus B ⊂ Y , there is a bijection
L : f−1(y0)→ {1, . . . , d}, called a y0-labeling.

Definition 3.2.2. The pair consisting of a degree d ramified covering f : X → Y

and a y0-labeling L : f−1(y0) → {1, . . . , d} is called a y0-labeled map. Two y0-
labeled maps (f : X → Y, L) and (f ′ : X ′ → Y,L′) are isomorphic if there is a
biholomorphism φ : X → X ′ such that the diagrams

X X ′ f−1(y0) (f ′)−1(y0)

Y {1, . . . , d}

φ

f ′f

φ

L L′

commute.

The composite map

σγ := L ◦ σ̃γ ◦ L−1 : {1, . . . , d} → {1, . . . , d}

is a permutation in the symmetric group Sd. Of course, it is essential that σγ be
independent of the choice of labeling, or equivalently, invariant under isomorphisms
of y0-labeled maps. This is indeed the case: let (f, L) and (f ′, L′) be isomorphic
y0-labeled maps as above, let γ : [0, 1] → Y \ B be a loop centred at y0, and let
σγ and σ′

γ be the resulting permutations. The lift of γ to φ(x) ∈ (f ′)−1(y0) is
γ̃′
φ(x) = φ ◦ γ̃x for every x ∈ f−1(y0). Therefore

σ̃′
γ(φ(x)) = γ̃′

φ(x)(1) = φ(γ̃x(1)) = φ(σ̃γ(x)),

so σ̃′
γ = φ ◦ σ̃γ ◦ φ−1. Then, using φ|f−1(y0) = (L′)−1 ◦ L,

σ′
γ = L′ ◦ σ̃′

γ ◦ (L′)−1 = L′ ◦ φ ◦ σ̃γ ◦ φ−1 ◦ (L′)−1

= L′ ◦ (L′)−1 ◦ L ◦ σ̃γ ◦ L−1 ◦ L′ ◦ (L′)−1 = L ◦ σ̃γ ◦ L−1

= σγ ,

as claimed.

Moreover, the homotopy invariance of the path lift γ̃x of γ implies that the
permutation σγ only depends on the homotopy class of γ. Thus an isomorphism
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class of y0-labeled maps (f, L) induces a well-defined map

Φ : π1(Y \B, y0) −→ Sd,

[γ] Ô−→ σγ .

The map Φ is a group homomorphism. This is because the lift of a concatenation
γ∗η of loops at x is γ̃x∗ η̃γ̃x(1), which implies that σ̃γ∗η(x) = η̃γ̃x(1)(1) = (σ̃η ◦σ̃γ)(x).
Such a homomorphism is called a monodromy representation, and the key result
which shows how information about the ramification profiles of f : X → Y is
encoded in Φ is given now.

Lemma 3.2.3. Let f : X → Y be a degree d ramified covering and b ∈ B ⊂ Y a
branch point with ramification profile (k1, . . . , kℓ). Let ρ be a simple loop based at
y0 ∈ Y \B winding once around b. Then the cycle type of Φ(ρ) ∈ Sd is (k1, . . . , kℓ).

Proof. Denote f−1(b) = {x1, . . . , xℓ} ⊂ X, so that kj is the ramification index at xj .
In what follows, refer to Figure 7. For each j = 1, . . . , ℓ let Uj ⊂ X and Vj ⊂ Y be
local charts with coordinates z and w respectively, centred at xj and b such that the
local form of f is w = zkj . Let yj ∈ Y be the point corresponding to w = 1, and αj
a path connecting y0 to yj . Moreover let βj be the simple loop based at yj winding
once around b along the circle {w : |w| = 1} in Vj . We investigate the permutation
Φ(βj) = σβj

, which is determined by the map σ̃βj
: f−1(yj)→ f−1(yj). In the chart

Uj the preimage f−1(yj) is {z : zkj = 1} =
î

exp
1

2πi
kj
mj

2
: mj = 0, 1, . . . , kj − 1

ï
,

the set of kth
j roots of unity. For every mj = 0, 1 . . . , kj − 1 the path β̃mj : [0, 1]→

Uj ⊂ X defined by β̃mj (t) = exp
1

2πi
kj

(mj + t)
2

is the lift of βj at exp
1

2πi
kj
mj

2
.

Hence the map σ̃βj
is

exp
A

2πi
kj
mj

B
Ô−→ β̃mj (1) = exp

A
2πi
kj

(mj + 1)
B
.

for every j = 1, . . . , ℓ. Upon the choice of labeling Lj : f−1(yj)→ {1, . . . , kj} given
by exp

1
2πi
kj
mj

2
Ô→ mj + 1, the resulting permutation σβj

= (12 · · · kj) has cycle
type (kj). Now notice that ρ is homotopic to αj ∗βj ∗α−1

j for every j = 1, . . . , ℓ, so
Φ(ρ) has the same cycle type as σβj

when restricted to the kj numbers in {1, . . . , d}
picked out by the labeling Lj . Hence Φ(ρ) is the product of the disjoint cycles
σβ1 , . . . , σβℓ

, which has cycle type (k1, . . . , kℓ).

This result implies that the image of a monodromy representation Φ induced by a
ramified cover f : X → Y is determined by the ramification profiles of f .
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Figure 7: The proof of Lemma 3.2.3.

Definition 3.2.4. Let Y be a connected, compact Riemann surface of genus h
with basepoint y0 ∈ Y and B = {b1, . . . , bn}, and let µ1, . . . , µn be partitions of a
positive integer d. A monodromy representation of type (h, d, µ1, . . . , µn) is a group
homomorphism Φ : π1(Y \ B, y0) → Sd such that if ρi is the homotopy class of a
simple loop around bi, then Φ(ρi) has cycle type µi. If im Φ acts transitively on
{1, . . . , d} then Φ is a connected monodromy representation.

So Lemma 3.2.3 essentially says that a degree d cover f : X → Y with Y a
(connected) genus h Riemann surface and ramification profiles µ1, . . . µn induces
a (connected) monodromy representation of type (h, d, µ1, . . . , µn). Remark that
the genus g of the source curve X is not included in the data of the monodromy
representation, since it is completely determined by the Riemann-Hurwitz formula
(3.3). The set of all connected monodromy representations of type (h, d, µ1, . . . , µn)
is denoted by Mh,d(µ1, . . . , µn), and the corresponding set for possibly disconnected
representations is M•

h,d(µ1, . . . , µn).

We now have a natural map from the set of ramified coverings to the set of
monodromy representations. We now show that one can go the other way. Given
a monodromy representation Φ : π1(Y \ B, y0) → Sd of type (h, d, µ1, . . . , µn), we
wish to construct a degree d ramified cover f : X → Y with X of the correct genus
and ramification profiles µ1, . . . , µn at the branch points b1, . . . , bn ∈ B ⊂ Y .
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Firstly, we give a description of the fundamental group of an n-punctured
surface Y \ B of genus h. If h = 0 then Y is P1 ∼= S2, and the punctured sphere
S2 \ B is homotopy equivalent to a flower graph with n − 1 petals, which one
may denote by the wedge sum xn−1

i=1 S
1. By the Seifert-Van Kampen theorem the

fundamental group is the free group generated by n− 1 elements, see for example
[Hat01, 1.2]. We can present this more symmetrically by adding an extra generator
and a relation:

π1(S2 \B, y0) = ⟨ρ1, . . . , ρn | ρ1 · · · ρn⟩, (3.4)

where ρi represents a simple loop around bi. If, instead, we take B = ∅ and Y

a genus h surface, we may represent Y as an identification polygon with 4h sides
given by α1β1α1β1 · · ·αhβhαhβh. Then the fundamental group is

π1(Y, y0) =
+
α1, β1, . . . , αh, βh | [α1, β1] · · · [αh, βh]

,
, (3.5)

where [αk, βk] = αkβkα
−1
k β−1

k , where αk and βk represent the loops around the
kth handle of the surface. For a discussion about this, see for example [Die08,
2.8]. Putting (3.4) and (3.5) together, we may represent an n-punctured genus h
surface Y \B as the identification polygon s1s1 · · · snsnα1β1α1β1 · · ·αhβhαhβh with
n punctured vertices corresponding to the punctures. Therefore

π1(Y \B, y0) =
+
α1, β1, . . . , αh, βh, ρ1, . . . , ρn | [α1, β1] · · · [αh, βh]ρ1 · · · ρn

,
.

So a monodromy representation Φ of type (h, d, µ1, . . . , µn) is equivalent to a choice
of permutations Φ(α1),Φ(β1), . . . ,Φ(αh),Φ(βh),Φ(ρ1), . . . ,Φ(ρn) ∈ Sd such that
each Φ(ρi) has cycle type µi and [Φ(α1),Φ(β1)] · · · [Φ(αh),Φ(βh)]Φ(ρ1) · · ·Φ(ρn)
equals the identity. In fact, we will often regard the sets of monodromy represen-
tations Mh,d(µ1, . . . , µn) and M•

h,d(µ1, . . . , µn) as being the sets of such collections
of permutations, see for example Theorem 3.4.3.

To illustrate how one obtains a ramified covering from a monodromy represen-
tation of a certain type, we use an example.

Example 3.2.5. Let Y = P1 with basepoint y0 and punctures b1, b2, b3 ∈ P1. From
the previous discussion, the fundamental group π1(Y \ {b1, b2, b3}, y0) is
⟨ρ1, ρ2, ρ3 | ρ1ρ2ρ3⟩. Consider the monodromy representation given by Φ(ρ1) =
(123),Φ(ρ2) = (13),Φ(ρ3) = (12). We construct the source curve X as follows,
see Figure 8. Choose another point p ∈ P1 and draw line segments from p to each
bi, so that P1 \B is homeomorphic to the identification polygon in the figure. Take
three copies of the polygon labeled P1, P2, P3 and consider the natural projection
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Figure 8: Constructing a Hurwitz cover from a monodromy representation.

P1 ⊔ P2 ⊔ P3 → P1 \B. Let yi ∈ Pi be the three preimages of y0 under this projec-
tion. Now use the permutations Φ(ρ1),Φ(ρ2) and Φ(ρ3) to dictate how the three
polygons should be glued together. For example, consider Φ(ρ1) = (123):

• Since Φ(ρ1) sends 1 Ô→ 2, the lift ρ̃1,1 of ρ1 starting at y1 should end at y2.
Hence the top left side of P1 and the bottom left side of P2 should be identified
(single green arrow).

• Since Φ(ρ1) sends 2 Ô→ 3, the lift ρ̃1,2 of ρ1 starting at y2 should end at y3.
Hence the top left side of P2 and the bottom left side of P3 should be identified
(single blue arrow).
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• Since Φ(ρ1) sends 3 Ô→ 1, the lift ρ̃1,3 of ρ1 starting at y3 should end at y1.
Hence the top left side of P3 and the bottom left side of P1 should be identified
(single red arrow).

Repeating the procedure with Φ(ρ2) and Φ(ρ3) ensures that all the sides of the
three polygons are identified according to Φ, as shown in the figure. Hence we
obtain a topological surface X◦ = (P1 ⊔ P2 ⊔ P3) / ∼ and a topological cover f◦ :
X◦ → P1 \ B induced by the projection. By Riemann’s existence theorem, there
is a unique compact Riemann surface X containing X◦ as a dense open subset
such that f◦ extends to a holomorphic map f : X → Y . By construction f is a
ramified covering with branch points b1, b2, b3 whose respective ramification indexes
are given by the cycle types of Φ(ρ1),Φ(ρ2),Φ(ρ3).

For a surface Y of genus h and an arbitrary monodromy representation Φ of type
(h, d, µ1, . . . , µn), one follows a similar procedure to construct the associated rami-
fied cover. One represents the punctured surface Y \B as a (4h+2n)-sided identifi-
cation polygon by drawing segments from an arbitrary point to the branch points.
Then one takes d copies of this polygon and identifies their sides according to the
permutations Φ(ρ1), . . . ,Φ(ρn). Note that for genus h ̸= 0 one must also identify
the sides labeled by αi, βi in (3.5) according to the monodromy representation.

Proposition 3.2.6. Let Y be a Riemann surface of genus h with B = {b1, . . . , bn} ⊂
Y , and let Φ be a monodromy representation of type (h, d, µ1, . . . , µn). Then there
is a y0-labeled map f : X → Y whose branch locus is B and whose associated mon-
odromy representation is Φ. This map is unique up to isomorphism of y0-labeled
maps.

Given a Riemann surface Y of genus h, thanks to Lemma 3.2.3 and subse-
quently Proposition 3.2.6 there is a bijection between the set of isomorphism classes
of (connected) y0-labeled maps f : X → Y of degree d with branch locus B and
ramification profiles µ1, . . . , µn, and the set of (connected) monodromy representa-
tions Φ : π1(Y \B, y0)→ Sd of type (h, d, µ1, . . . , µn). As a result, we arrive at the
main theorem linking Hurwitz numbers H

g
d−→h

(µ1, . . . , µn) and the corresponding
set of monodromy representations Mh,d(µ1, . . . , µn).

Theorem 3.2.7. Let Y be a Riemann surface of genus h with n marked points
b1, . . . , bn ∈ Y . The connected Hurwitz number for the data h, d, µ1, . . . , µn is given
by

H
g

d−→h
(µ1, . . . , µn) = 1

d!
--Mh,d(µ1, . . . , µn)

--.
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The corresponding disconnected Hurwitz number is

H•
g

d−→h
(µ1, . . . , µn) = 1

d!
--M•

h,d(µ1, . . . , µn)
--.

Proof. Pick a basepoint y0 ∈ Y . The proof will be done for connected Hurwitz
numbers, and the disconnected case follows analogously. By definition, we wish to
compute the right-hand side of

H
g

d−→h
(µ1, . . . , µn) =

Ø
[f ]

1
|Aut(f)| ,

where the sum runs over isomorphism classes of ramified covers f : X → Y sat-
isfying the data. For any such f , let Sf = {L : f−1(y0) → {1, . . . , d}} be the
set of y0-labelings. There is a free left group action of Aut(f) on Sf given by
φ ·L = L◦φ−1. Notice that the y0-labeled maps (f, L) and (f, L′) are isomorphic if
and only if L′ lies in the orbit Aut(f) ·L of L, and by the Orbit-Stabilizer theorem
the cardinality of Aut(f) ·L is simply |Aut(f)|. Hence the number of isomorphism
classes of y0-labeled maps for the given map f is

mf = |Sf |
|Aut(f)| = d!

|Aut(f)| .

As a result, Ø
[f ]

1
|Aut(f)| = 1

d!
Ø
[f ]
mf .

Since isomorphic y0-labeled maps give rise to the same monodromy representation,
the number mf is also equal to the number of distinct monodromy representa-
tions arising from f by different labelings of f−1(y0). Hence, by Lemma 3.2.3 and
Proposition 3.2.6, the sum q

[f ]mf is equal to
--Mh,d(µ1, . . . , µn)

--.
Theorem 3.2.7 allows one to easily compute many Hurwitz numbers. For ex-

ample, all the connected and disconnected numbers for degree 3 covers of P1 are
readily computed. We provide one such computation.

Example 3.2.8. Let m, k ≥ 1 and consider the Hurwitz number

H•
g

3−→0

!
(3)m, (2, 1)k

"
.

The exponents of (3) and (2, 1) denote the number of ramification profiles of that
type. Firstly, the Riemann-Hurwitz formula (3.3) forces k to be the even number
k = 2(g −m + 2) =: 2n and therefore the genus of the source is g = m + n − 2.
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Secondly, the presence of a branch point with ramification profile (3) implies that
the image of the associated monodromy representation will always contain a 3-
cycle, which acts transitively on {1, 2, 3}. Hence the disconnected Hurwitz number
is equal to the connected one H

g
3−→0

!
(3)m, (2, 1)2n". By the theorem, this is equal

to 1
3!
--M0,3

!
(3)m, (2, 1)2n"--. The number of distinct monodromy representations is

simply the number of ways to pick 3-cycles ρ1, . . . , ρm and 2-cycles τ1, . . . , τ2n in S3

such that ρ1 · · · ρm τ1 · · · τ2n equals the identity. There are 2m32n−1 ways of doing
this, so

H•
g

3−→0

!
(3)m, (2, 1)2n" = H

g
3−→0

!
(3)m, (2, 1)2n" = 1

3!2
m32n−1 = 2m−132n−2.

3.3 Simple Hurwitz potential
From now on we focus our attention on simple Hurwitz numbers, where the base
curve is P1 and there is only one branch point with non-simple ramification. With-
out loss of generality, one can take this branch point to be 0 ∈ P1. These numbers
are

H
g

d−→0

!
µ, (2, 1, . . . , 1)b

"
and H•

g
d−→0

!
µ, (2, 1, . . . , 1)b

"
, (3.6)

where µ = (µ1, . . . , µℓ) ̸= (2, 1 . . . , 1) ∈ Pd and b is the number of branch points
with simple ramification. Notice that d = |µ| by definition, and b = 2g− 2 + ℓ+ |µ|
by the Riemann-Hurwitz formula (3.3). We therefore simplify the notation for the
simple Hurwitz numbers (3.6) to

Hb
g(µ) and H•,b

g (µ). (3.7)

If we need to specify the individual components of the partition µ = (µ1, . . . , µℓ),
we write Hb

g(µ1, . . . , µℓ) and H•,b
g (µ1, . . . , µℓ). We stress that in this case each µi is

a component of a partition µ, rather than an individual partition as in Section 3.2.
We write the corresponding sets of monodromy representations as

M b(µ) and M•,b(µ). (3.8)

Theorem 3.2.7 says that the numbers (3.7) and the cardinalities of (3.8) are re-
lated by multiplication by 1/|µ|!. Now, introduce the formal variables β and
p∗ = (p1, p2, p3, . . . ), and for a partition µ = (µ1, . . . , µℓ) denote the monomial
pµ1 · · · pµℓ

by the shorthand notation pµ. Just as in Section 2.6, consider the follow-
ing generating functions which encode all the connected and disconnected simple
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Hurwitz numbers:

H(β; p∗) =
Ø

Hb
g(µ) pµ

βb

b! ,

H•(β; p∗) =
Ø

H•,b
g (µ) pµ

βb

b! .

These are called the connected and disconnected simple Hurwitz potentials, respec-
tively. We take the sums over all nonnegatve integers b ≥ 0 and ℓ ≥ 0 and all non-
increasing ℓ-tuples µ = (µ1, . . . , µℓ) of nonnegative integers (for ℓ = 0 the only choice
is µ = (∅)). There is no need to sum over g because it is completely determined by
b and (µ1, . . . , µℓ) via the Riemann-Hurwitz formula g = 1

2(2 + b− |µ| − ℓ(µ)). Al-
ternatively, one could sum over g and let b vary accordingly instead. The variables
p∗ parameterize the non-simple ramification data over 0 ∈ P1, while the variable
β keeps track of the number of simple branch points. Of course, one can define
Hurwitz potentials for general Hurwitz numbers as in [CM16], with more variables
to keep track of more pieces of data, but for our purposes the generating functions
above will suffice.

For most of the rest of this section, we find an expansion for H and H• in a
particular basis of polynomials. Before we do this, we show how H and H• are
related. To gain some intuition first, consider an arbitrary cover associated to the
disconnected simple Hurwitz number H•,b

g (µ). This consists of a disjoint union of
connected covers f1 ⊔ · · · ⊔ fn : X1 ⊔ · · · ⊔Xn → P1 such that:

• the genera g1, . . . , gn of the connected components X1, . . . , Xn satisfy 1−n+qn
i=1 gi = g (see equation (3.2));

• each connected cover has only one non-simple branch point 0 ∈ P1;

• the non-simple ramification profiles µ1, . . . , µn ∈ P of each cover are such that
(µ1; . . . ;µn) = µ (up to reordering);

• the number of simple branch points b1, . . . , bn for each cover satisfy qn
i=1 bi =

b.

Thus H•,b
g (µ) will be equal to the sum of all the possible products of connected

Hurwitz numbers riH
bi
gi

(µi) arising in this way, weighted by the automorphisms
that arise from distributing the simple branch points and from permuting connected
components with identical data. This is made precise in the following elegant result,
which we adapt from [CM16, Theorem 10.2.1].

Proposition 3.3.1. The connected and disconnected Hurwitz numbers are related
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by exponentiation:
H• = eH − 1.

Proof. Let s = (g, b, µ) with µ ∈ P|µ| denote data for a simple Hurwitz number,
and let Hs and H•

s denote the corresponding simple Hurwitz numbers Hb
g(µ) and

H•,b
g (µ). The monomial associated to s is

mon(s) = pµ1 · · · pµℓ
βb = pµβ

b,

so that Hs and H•
s are the coefficients of 1

b! mon(s) in H and H• respectively. For
another set of data s′ = (g′, b′, µ′) define

s + s′ =
!
g + g′ − 1, b+ b′, (µ;µ′)

"
,

so that mon(s+s′) = mon(s) mon(s′). For a collection of such data s1, . . . , sn define
the tuple

s⃗ =
!
sk1

1 , . . . , s
kn
n

"
,

where ski
i =

ki timesú ýü û
si, . . . , si. Intuitively, this denotes a disjoint union of N := qn

i=1 ki

connected curves whose Hurwitz data sums toqn
i=1 kisi =: |⃗s|, which is the Hurwitz

data for the entire disconnected curve. The disconnected Hurwitz number H•
s for

s = (g, b, µ) will therefore involve a sum over all tuples s⃗ such that |⃗s| = s, and
products of connected Hurwitz numbers corresponding to such tuples:

H•
s =

Ø
|⃗s|=s

A
b

b1, . . . , bN

B
1

k1! · · · kn!

nÙ
i=1

(Hsi)ki .

The multinomial coefficient arises from the different ways in which one can dis-
tribute the simple branch points among the connected components, while the frac-
tion after that arises from permuting the connected components with identical data.
Hence the coefficient of mon(s) in H• is

1
b!H

•
s =

Ø
|⃗s|=s

1
b1! · · · bN !

1
k1! · · · kn!

nÙ
i=1

(Hsi)ki . (3.9)

On the other hand, since |⃗s| = s implies that mon(|⃗s|) = mon(s), the coefficient of
mon(s) in

eH − 1 =
Ø
N≥1

1
N !

AØ
s′

1
b!Hs′ mon(s′)

BN
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is equal to

Ø
|⃗s|=s

1
N !

A
N

k1, . . . , kn

B
nÙ
i=1

3 1
bi!
Hsi

4ki

=
Ø
|⃗s|=s

1
k1! · · · kn!

1
b1! · · · bN !

kiÙ
i=1

(Hsi)ki ,

which is the same as (3.9).

3.4 Cut-and-join
Now that we know that the disconnected simple Hurwitz potential is simply the
exponential of the connected one, we work with H•. We develop recursive relations
among disconnected simple Hurwitz numbers in the form of a partial differential
equation for the generating function H•. This is done by analyzing what happens
when one shrinks a loop surrounding two branch points, one of which is the branch
point with non-simple ramification. From the algebraic point of view given us by
Theorem 3.2.7, this amounts to analyzing what happens to the cycle type of a
permutation in the symmetric group when composed with a transposition.

Lemma 3.4.1 (Cut). Let σ ∈ Sd be a permutation with cycle type µ = (µ1, . . . , µℓ),
written as a disjoint union of cycles σ = σ1 · · ·σℓ. Let τ = (a b) ∈ Sd be a
transposition. If a and b belong to the same cycle of σ, say σℓ, then this cy-
cle is cut in two upon composition with τ . In other words, τσ has cycle type
λ = (µ1, . . . , µℓ−1,m

′,m′′), where m′ +m′′ = µℓ. If m′ ̸= m′′ then there are µℓ such
transpositions τ giving rise to the cycle type λ, while if m′ = m′′ there are µℓ/2.

Proof. Write σℓ as the cycle (a a2 a3 · · · am′ b am′+2 · · · aµℓ
) for some 2 ≤ m′ ≤ µℓ−1.

Then

τσℓ = (a b)(a a2 a3 · · · am′ b am′+2 · · · aµℓ
) = (a a2 a3 · · · am′)(b am′+2 · · · aµℓ

)

has cycle type (m′,m′′) where m′′ = µℓ−m′. If m′ ̸= m′′, we may suppose m′ < m′′.
Then the µℓ transpositions that give rise to this cycle type are (a b), (a2 am′+2),
(a3 am′+3), . . . , (am′ a2m′), (j a2m′+1), . . . , (am′′ aµℓ

), (am′′+1, a1), . . . , (aµℓ
, am′). Ifm′ =

m′′ = µℓ/2, then the list stops at (am′ , a2m′) since the subsequent cycles will already
have been counted, so there are only µℓ/2.

Lemma 3.4.2 (Join). Let σ ∈ Sd be a permutation with cycle type µ = (µ1, . . . , µℓ),
written as a disjoint union of cycles σ = σ1 · · ·σℓ. Let τ = (a b) ∈ Sd be a trans-
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position. If a and b belong to different cycles of σ, say σℓ−1 and σℓ, then these
cycles are joined upon composition with τ . In other words, τσ has cycle type
λ = (µ1, . . . , µℓ−2, µℓ−1 +µℓ). There are µℓ−1µℓ such transpositions τ giving rise to
the cycle type λ.

Proof. Write σℓ−1 and σℓ as the cycles (a a2 a3 · · · aµℓ−1) and (b b2 b3 · · · bµℓ
) respec-

tively. Then

τσℓ−1σℓ = (a b)(a a2 a3 · · · aµℓ−1)(b b2 b3 · · · bµℓ
) = (a a2 a3 · · · aµℓ−1 b b2 b3 · · · bµℓ

)

has cycle type (µℓ−1 + µℓ). Any choice of transposition τ = (a b) with a belonging
to σℓ−1 and b belonging to σℓ will give rise to this cycle type, so there are µℓ−1µℓ

such transpositions.

With these two results in hand, we describe their consequence in terms of the
simple disconnected Hurwitz potential H•, which was first described in [GJ97].

Theorem 3.4.3 (Cut-and-join). The simple disconnected Hurwitz potential H•(β; p1, p2, . . . )
is annihilated by the cut-and-join differential operator:

∂

∂β
− 1

2

∞Ø
i,j=1

A
ijpi+j

∂2

∂pi∂pj
+ (i+ j)pi pj

∂

∂pi+j

B
.

Proof. Let µ = (µ1, . . . , µℓ) be a partition of |µ| = d and b ≥ 0. The coefficient of
the monomial pµ β

b

b! in ∂H•

∂β is

H•,b+1
g (µ) = 1

d!
--M•,b+1(µ)

-- (3.10)

by Theorem 3.2.7. It suffices to show that this is the same as the coefficient of pµ β
b

b!
in

1
2

∞Ø
i,j=1

A
ijpi+j

∂2H•

∂pi∂pj
+ (i+ j)pi pj

∂H•

∂pi+j

B
. (3.11)

The elements of M•,b+1(µ) are collections of permutations (σ, τ0, τ1, . . . , τb) ∈ Sb+2
d

where σ has cycle type µ, the τj are transpositions and τbτb−1 · · · τ0 σ is the identity.
Let Λ be the set of all partitions λ ⊢ d that are obtained by cutting a cycle in µ or
joining two cycles in µ, as in the cut and join lemmas. The map

Ψ : M•,b+1(µ) −→
à
λ∈Λ

M•,b(λ),

(σ, τ0, τ1, . . . , τb) Ô−→ (τ0σ, τ1, . . . , τb),
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allows one to write equation (3.10) as

1
d!
--M•,b+1(µ)

-- = 1
d!
Ø
λ∈Λ

--Ψ−1(M•,b(λ))
--. (3.12)

So let x := (ρ, τ1, . . . , τb) ∈ M•,b(λ) for some partition λ = (λ1, . . . , λℓ′) ∈ Λ. The
cardinality of Ψ−1(x) is equal to the number of transpositions τ0 in Sd such that
τ−1

0 ρ has cycle type µ. We split the possibilities in three cases, depending on how
µ is obtained from λ, and use the cut and join lemmas.

• Suppose µ is obtained from λ by joining two cycles of length i and j. Let
ni = |{k : λk = i}| and define nj similarly. Then, by Lemma 3.4.2 there
are ini jnj transpositions τ0 that cause this to happen, so |Ψ−1(x)| = ijninj .
Therefore

1
d!
--Ψ−1(M•,b(λ))

-- = 1
d!

Ø
x∈M•,b(λ)

|Ψ−1(x)| = 1
d!
--M•,b(λ)

-- ijninj
= ijninjH

•,b
g−1(λ). (3.13)

This is precisely the coefficient of the monomial pµ β
b

b! in the term ijpi+j
∂2H•

∂pi∂pj

of the cut-and-join operator (3.11). To see this, note that differentiating H•

with respect to pi and pj selects the monomials whose associated partition
contains at least one i and one j, such as λ. Then, indeed,

ijpi+j
∂2

∂pi∂pj
H•,b
g−1(λ) pλ

βb

b! = ijninj H
•,b
g−1(λ) pi+j pλ

pi pjü ûú ý
=pµ

βb

b! ,

where the equality under the brace is due to how µ is obtained from λ.

• Suppose µ is obtained from λ by cutting a cycle of length i+ j into two cycles
of lengths i and j, with i ̸= j. Let ni+j = |{k : λk = i + j}|, as before. By
Lemma 3.4.1 we have |Ψ−1(x)| = (i+ j)ni+j , so

1
d!
--Ψ−1(M•,b(λ))

-- = 1
d!

Ø
x∈M•,b(λ)

|Ψ−1(x)| = 1
d!
--M•,b(λ)

-- (i+ j)ni+j

= (i+ j)ni+j H•,b
g (λ). (3.14)

This is the coefficient of pµ β
b

b! in the term (i+ j)pi pj ∂H
•

∂pi+j
of the cut-and-join
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operator (3.11), with i ̸= j. To see this,

(i+ j)pi pj
∂

∂pi+j
H•,b
g (λ) pλ

βb

b! = (i+ j)ni+j H•,b
g (λ) pi pj pλ

pi+jü ûú ý
=pµ

βb

b! .

• Suppose µ is obtained from λ by cutting a cycle of length i+ j into two cycles
of lengths i and j, with i = j this time. Then, by Lemma 3.4.1, the same as
the previous case occurs but with a factor of 1

2 .

1
d!
--Ψ−1(M•,b(λ))

-- = 1
2(i+ j)ni+j H•,b

g (λ). (3.15)

This is the coefficient of pµ β
b

b! in the term 1
2(i+j)pi pj ∂H

•

∂pi+j
of the cut-and-join

operator (3.11), with i = j, as above.

We have now considered all possible partitions λ ∈ Λ, so that the coefficient of pµ βb!
in ∂H•

∂β , which is given by equation (3.12), is the sum of the three terms (3.13),
(3.14) and (3.15) over all possible values of i and j, with an additional factor of 1

2
when i ̸= j to avoid double counting. By the arguments made in each of the three
cases, this is precisely the coefficient of the same monomial in the cut-and-join
operator (3.11).

We have established that the disconnected simple Hurwitz potentialH•(β; p1, p2, . . . )
satisfies a partial differential equation that encodes recursive relations among its
coefficients:

∂H•

∂β
= 1

2

∞Ø
i,j=1

A
ijpi+j

∂2

∂pi∂pj
+ (i+ j)pi pj

∂

∂pi+j

B
ü ûú ý

=:A

H•. (3.16)

Using the exponentiation relation H• = eH − 1 from Proposition 3.3.1, it follows
almost immediately that the corresponding cut-and-join equation for the connected
Hurwitz potential, which was first presented in [GJV00], is

∂H

∂β
= 1

2

∞Ø
i,j=1

A
ijpi+j

A
∂2H

∂pi∂pj
+ ∂H

∂pi

∂H

∂pj

B
+ (i+ j)pi pj

∂H

∂pi+j

B
.

We now analyze the consequences of the cut-and-join equation (3.16), follow-
ing the work in [Lan10]. With the aid of some representation theory of symmetric
groups, we will arrive at an explicit expression for H•(β; p1, p2, . . . ) in terms of
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eigenfunctions of the cut-and-join operator A. First, expand the disconnected po-
tential H• in the variable β as follows:

H•(β; p∗) =
∞Ø
b=0

H•
(b)(p∗)β

b

b! .

The cut-and-join equation ∂H•

∂β = AH• can be written recursively as H•
(b+1)(p∗) =

AH•
(b)(p∗), so

H•
(b)(p∗) = AbH•

(0)(p∗).

The term H•
(0)(p∗) encodes all simple Hurwitz covers with no simple branch points.

In the connected case, this can only happen if the genus of the source g and the
single ramification profile µ satisfy g = 1

2(2 − |µ| − ℓ(µ)) ≥ 0, from which one can
deduce that either µ = (∅) or µ = (1). The former is not possible, as it would
imply the existence of an isomorphism from a genus g = 1 curve to P1. Hence the
only possibility is the unique isomorphism class of isomorphisms P1 → P1. In the
disconnected case, one can take d copies of this isomorphism for every d, weighted
by 1

d! automorphisms arising from permuting the copies of P1. Hence

H•
(0)(p∗) =

Ø
d≥0

H•,0
1−d
!
(1d)

"
pd1 =

Ø
d≥0

1
d!p

d
1 = ep1 .

Next, we take a brief detour towards the representation theory of symmetric
groups in order to further understand the cut-and-join equation. For a partition
µ ⊢ d, denote by Cµ the equivalence class in Sd of permutations with cycle type µ.
Consider the group algebra C[Sd] of Sd, whose elements are formal linear combina-
tions qσ∈Sd

aσσ with aσ ∈ C. Addition in C[Sd] is given by

Ø
σ∈Sd

aσσ +
Ø
σ∈Sd

bσσ =
Ø
σ∈Sd

(aσ + bσ)σ,

while multiplication is the composition of permutations in Sd extended to C[Sd]
by requiring it to be bilinear. Use the same notation Cµ to denote the element in
C[Sd] given by the sum of all permutations of cycle type µ. This lies in the centre
of C[Sd], since for every ρ ∈ Sd we have

ρCµ ρ
−1 =

Ø
σ∈Cµ

ρσρ−1 =
Ø
σ′∈Cµ

σ′ = Cµ.

The centre of C[Sd], denoted henceforth by ZC[Sd], is called the class algebra of Sd
and {Cµ : µ ⊢ d} forms a basis of it. When µ = (2, 1, . . . , 1) is the cycle type of a
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transposition, we shorten the notation for C(2,1,...,1) to C2.

The irreducible representations of Sd are called Specht modules and there is
one for each partition µ ⊢ d [Sag91]. We denote the Specht module associated to
µ by Sµ and its associated representation by ρµ : Sd → GL (Sµ). Notice that ρµ
can be naturally extended to a representation of C[Sd], which we also denote by
ρµ : C[Sd]→ GL(Sµ). There is another basis {χµ : µ ⊢ d} of ZC[Sd] where each χµ
acts with as a scalar with trace 1 on the irreducible representation ρµ and trivially
on all other irreducible representations ρλ (λ ̸= µ). Concretely, they are given by

χµ =
Ø
λ⊢d

1
d! χ

µ
λ Cλ, (3.17)

where χµλ = χµ(Cλ) ∈ C is the character of the representation ρµ evaluated at any
element of the conjugacy class Cλ. Since C2 is in the centre of C[Sd], it also acts
as a scalar on every irreducible representation ρµ : C[Sd] → GL(Sµ) by Schur’s
lemma. Denote this scalar by f2(µ). Then the product C2χµ acts as a scalar with
trace f2(µ) on Sµ and trivially on Sλ (λ ̸= µ), so we must have

C2 χµ = f2(µ)χµ ∈ ZC[Sd].

In other words, the action of C2 on ZC[Sd] is diagonal in the basis {χµ : µ ⊢ d}.
We find an expression for f2(µ) as follows:

χµ(C2) = 1
|C2|

Ø
σ∈C2

χµ(σ) = 1
|C2|

χµ
1 Ø
σ∈C2

σ
2

= 1
|C2|

Tr ρµ(C2) = 1
|C2|

f2(µ) dimSµ,

so that
f2(µ) = |C2|

χµ(C2)
dimSµ

. (3.18)

This agrees with the more general expression for fCλ
(µ) in [Oko00]. The cardinality

of C2 is the number of transpositions in Sd, namely d(d−1)/2. The value of χµ(C2)
can be computed using the Frobenius character formula [FH04, Lecture 4]. This
states that if µ = (µ1, . . . , µℓ) ⊢ d, then χµ(C2) is the coefficient of the monomial
xµ1+ℓ−1

1 xµ2+ℓ−2
2 · · ·xµℓ−1+1

ℓ−1 xµℓ
ℓ in

(x2
1 + x2

2 + · · ·x2
ℓ )(x1 + x2 + · · ·+ xℓ)d−2 Ù

1≤i<j≤ℓ
(xi − xj).

The last term in (3.18) is dimSµ. This is equal to the number of standard µ-
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tableaux [Sag91, 2.6], which is in turn equal to

d! det
3 1

(µi − i+ j)!

4
(3.19)

by the determinantal formula [Sag91, 3.2]. The matrix in the determinant is taken
to be ℓ(µ)× ℓ(µ), although we can take it to be arbitrarily large by setting µk = 0
for k > ℓ(µ). In the end, the expression (3.18) for f2(µ) turns out to be

f2(µ) = 1
2

ℓ(µ)Ø
i=1

µi(µi − 2i+ 1). (3.20)

We now transfer this information to the world of Hurwitz theory. Firstly, there
is an isomorphism of algebras

ZC[Sd] −→ C[p∗]d,
Cµ Ô−→ |Cµ| pµ,

(3.21)

between ZC[Sd] and the algebra of weighted homogeneous polynomials of degree
d in the variables p∗ = (p1, p2, . . . ), where the variable pi is given the weight i.
In the literature this is known as the characteristic map [Sag91, 4.7]. Under this
isomorphism, the basis elements χµ ∈ ZC[Sd] are mapped to

χµ Ô−→ sµ(p∗) :=
Ø
λ⊢d

1
d! χ

µ
λ|Cλ| pλ (3.22)

due to equation (3.17). This is one of the many characterizations of the Schur
functions {sµ(p∗) : µ ⊢ d} given by a theorem of Frobenius [Sag91, Theorem 4.6.4].
The Schur functions sk(p∗) := s(k)(p∗) for the partitions (k) containing only one
number satisfy the expansion

Ø
k≥0

sk(p∗)zk = exp

Ø
j≥1

pj
zj

j

 , (3.23)

and the Schur function for an arbitrary partition µ is determined by the Jacobi-
Trudi determinant [Sag91, 4.5]

sµ(p∗) = det
1
sµi−i+j(p∗)

2
. (3.24)

The matrix in the determinant can be taken to be ℓ(µ) × ℓ(µ) or larger, just as
for equation (3.19). Setting p1 = 1 and pj = 0 for j > 1 in (3.23) we obtain
sk(1, 0, 0, . . . ) = 1/k! for every k ≥ 0. Then, combining the Jacobi-Trudi determi-
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nant (3.24) with the determinantal formula (3.19) we get

sµ(1, 0, 0, . . . ) = 1
d! dimSµ, µ ⊢ d. (3.25)

Moreover, the action of C2 on ZC[Sd] given by multiplying by C2 is mapped to
the action of the cut-and-join operator A on C[p1, p2, . . . ]d, via the characteristic
isomorphism (3.21). This is because the cut-and-join operator measures the way
in which the cycle type of a permutation is changed upon composition with a
transposition in C2. Therefore the equation C2 χµ = f2(µ)χµ in ZC[Sd] translates
to C[p∗]d as

Asµ(p∗) = f2(µ) sµ(p∗), (3.26)

in other words the Schur functions form a complete set of eigenfunctions for the
cut-and-join operator. Lastly, inverting the formula (3.22) for the basis change from
{pµ : µ ⊢ d} to {sµ(p∗) : µ ⊢ d} yields [GJ08]

pλ =
Ø
µ⊢d

χµλ sµ(p∗). (3.27)

We are now in a position to expand the disconnected Hurwitz potentialH•(β; p∗)
in the basis of Schur functions for C[p∗] = m

d≥0 C[p∗]d. We remind that we ex-
pandedH•(β; p∗) in the variable β asqb≥0H

•
(b)(p∗)βb

b! , withH•
(b)(p∗) = AbH•

(0)(p∗) =
Abep1 . Using the fact that for every d ≥ 0 the monomial pd1 is the monomial in the
variables p∗ corresponding to the partition (1, . . . , 1) = (1d), we compute

ep1 =
Ø
d≥0

1
d! p(1d)

(3.27)=
Ø
d≥0

1
d!
Ø
µ⊢d

χµ(1d) sµ(p∗)

=
Ø
d≥0

Ø
µ⊢d

1
d! dimSµ sµ(p∗) (3.25)=

Ø
d≥0

Ø
µ⊢d

sµ(1, 0, 0, . . . ) sµ(p∗)

=
Ø
µ

sµ(1, 0, 0, . . . ) sµ(p∗).

In the third equality we used the fact that the character χµ of the representation Sµ

applied to the identity in Sd gives the dimension of Sµ. Therefore the disconnected
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simple Hurwitz potential is

H•(β; p∗) =
∞Ø
b=0

H•
(b)(p∗)β

b

b! =
∞Ø
b=0

Abep1 β
b

b!

=
∞Ø
b=0

Ø
µ

sµ(1, 0, 0, . . . )Absµ(p∗)β
b

b!

(3.26)=
∞Ø
b=0

Ø
µ

sµ(1, 0, 0, . . . )f2(µ)b sµ(p∗)β
b

b!

=
Ø
µ

sµ(1, 0, 0, . . . )sµ(p∗)ef2(µ)β.

3.5 ELSV formula
We now state a celebrated result that links Hurwitz theory to intersection theory
on the moduli space of curves from Section 2. In their paper [GJV00], Goulden and
Jackson conjectured that the connected simple Hurwitz number for µ = (µ1, . . . , µn)
should be of the form

Hb
g(µ) = b!

nÙ
i=1

µµi
i

µi!
Pg,n(µ1, . . . , µn),

where Pg,n is a symmetric polynomial of degree 3g−3+n with no term of degree less
than 2g− 3 + n, whose coefficient in degree d has sign (−1)d−(3g−3+n). This “poly-
nomiality conjecture” was confirmed by Ekedahl, Lando, Shapiro and Vainshtein
in [Eke+99; Eke+01], where they proved the following remarkable theorem.

Theorem 3.5.1 (ELSV formula). Let µ = (µ1, . . . , µn) and 2g − 2 + n > 0. Then

Hb
g(µ) = b!

nÙ
i=1

µµi
i

µi!

Ú
Mg,n

1− λ1 + λ2 − · · ·+ (−1)gλg
(1− µ1ψ1) · · · (1− µnψn) . (3.28)

In some references there is an additional multiplicative factor of 1
|Aut(µ)| on the

right-hand side of (3.28); this arises when one chooses to mark the points in the
preimage of the branch point with nonsimple ramification, which we do not do
here. A few other comments on this formula are in order. Firstly, the number
of simple ramification points b is determined by the Riemann-Hurwitz formula,
namely b = 2g − 2 + n+ |µ|. The λ-classes in the numerator are the Chern classes
of the Hodge bundle E → Mg,n, which were introduced in equation (2.9). The
ψ-classes appearing in the denominator contribute to the integrand by considering
each fraction 1

1−µiψi
as its geometric series expansion. Hence the entire term in the
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integral is

gØ
j=0

(−1)jλj
nÙ
i=1

Ø
d≥0

(µiψi)d =
gØ
j=0

Ø
(d1,...,dn)

(−1)jλjψd1
1 · · ·ψ

dn
n µd1

1 · · ·µ
dn
n .

Since the cohomology classes ψi and λj lie in H2(Mg,n) and H2j(Mg,n) respec-
tively, and dimRMg,n = 2(3g − 3 + n), the integral only picks out the monomials
λjψ

d1
1 · · ·ψdn

n which satisfy j + d1 + · · ·+ dn = 3g− 3 +n. Let us see what happens
when we set g = 0. The integral in (3.28) isÚ

Mg,n

1
(1− µ1ψ1) · · · (1− µnψn) =

Ø
(d1,...,dn)⊢n−3

µd1
1 · · ·µ

dn
n

Ú
Mg,n

ψd1
1 · · ·ψ

dn
n .

We have already computed the genus 0 intersection products of ψ-classes in Propo-
sition 2.6.2. Hence we obtain

Ø
(d1,...,dn)⊢n−3

µd1
1 · · ·µ

dn
n

A
n− 3

d1, . . . , dn

B
= (µ1 + · · ·+ µn)n−3 = |µ|n−3.

The ELSV formula then implies

Hb
0(µ) = b!|µ|n−3

nÙ
i=1

µµi
i

µi!
.

This was first observed by Hurwitz himself in his 1891 paper [Hur91], but it was only
proved much later in [GJ97]. In general Hurwitz numbers are easier to compute
than intersections of ψ-classes, so the ELSV formula is useful to solve problems in
the moduli space of curves.

Subsequently, a special case of the ELSV formula was proved by Fantechi and
Pandharipande using different techniques [FP02], followed by Graber and Vakil
[GV03] who proved it in its general case using virtual localization. What is inter-
esting to note is that Goulden and Jackson’s initial polynomiality conjecture could
not be proven without the ELSV formula until a decade lateer [Dun+15]. For fur-
ther details on the ELSV formula and Graber and Vakil’s proof, see [Cav16; OP01;
Liu10]. We now describe one of its consequences, which is the first step in the proof
of Witten’s conjecture presented in [KL07].

Lemma 3.5.2. For every nonnegative integer d and µ = 1, . . . , d + 1, there are
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unique constants cdµ such that

d+1Ø
µ=1

cdµ
1− µψ = ψd +O(ψd+1). (3.29)

Proof. Expanding the fraction 1
1−µψ as a geometric series, the condition (3.29)

becomes Ø
k≥0

d+1Ø
µ=1

µk cdµ

ψk = ψd +O(ψd+1).

This is equivalent to a linear system

Bd cd = (0, . . . , 0, 1)T ,

where cd = (cd1, . . . , cdd+1)T and Bd is the (d+ 1)× (d+ 1) Vandermonde matrix



1 1 1 · · · 1 1
1 2 3 · · · d d+ 1
12 22 32 · · · d2 (d+ 1)2

...
...

... . . . ...
...

1d−1 2d−1 3d−1 · · · dd−1 (d+ 1)d−1

1d 2d 3d · · · dd (d+ 1)d


.

Then the terms cdµ can be computed as

cdµ =
1
B−1
d

2
µ,d+1

= 1
detBd

(adjBd)µ,d+1

= (−1)µ+d+1 detBd⟨d+ 1, µ⟩
detBd

,

where ⟨d + 1, µ⟩ denotes removal of the (d + 1)th row and µth column. Using the
Vandermonde determinants

detBd =
Ù

1≤i<j≤d+1
(j − i) and detBd⟨d+ 1, µ⟩ =

Ù
1≤i<j≤d

(aj − ai)

with ai =

i, 1 ≤ i ≤ µ− 1

i+ 1, µ ≤ i ≤ d+ 1
, one obtains cdµ = (−1)d−µ+1

(d−µ+1)!(µ−1)! .

Using this lemma, we can ‘invert’ the ELSV formula (3.28) to obtain an expres-
sion for the invariants ⟨τd1 · · · τdn⟩ =

s
Mg,n

ψd1
1 · · ·ψdn

n in terms of simple Hurwitz
numbers. For an n-tuple (d1, . . . , dn) consider all the numbers cd1

µ1 , . . . , c
dn
µn

with
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µi = 1, . . . , di + 1 and the genus g such that d1 + · · ·+ dn = dimMg,n = 3g− 3 +n.
We compute the following sum

d1+1Ø
µ1=1

· · ·
dn+1Ø
µn=1

cd1
µ1 · · · c

dn
µn

Ú
Mg,n

1− λ1 + λ2 − · · ·+ (−1)gλg
(1− µ1ψ1) · · · (1− µnψn)

by noticing that it involves n multiples of equation (3.29):

=
Ú

Mg,n

d1+1Ø
µ1=1

cd1
µ1

1− µ1ψ1

 · · ·
dn+1Ø
µn=1

cdn
µn

1− µnψn

 (1− λ1 + λ2 − · · ·+ (−1)gλg)

=
Ú

Mg,n

1
ψd1

1 +O(ψd1+1
1 )

2
· · ·
1
ψdn
n +O(ψdn+1

n )
2

(1− λ1 + λ2 · · ·+ (−1)gλg)

=
Ú

Mg,n

1
ψd1

1 · · ·ψ
dn
n +O

2
=
Ú

Mg,n

ψd1
1 · · ·ψ

dn
n ,

where O denotes tautological classes in degree > d1 + · · · + dn = dimMg,n. We
have shown that

⟨τd1 · · · τdn⟩ =
d1+1Ø
µ1=1

· · ·
dn+1Ø
µn=1

3 nÙ
i=1

cdi
µi

4Ú
Mg,n

1− λ1 + λ2 − · · ·+ (−1)gλg
(1− µ1ψ1) · · · (1− µnψn) .

Using the ELSV formula, we can express the integral in the above equation as a
multiple of a Hurwitz number, thus obtaining the following proposition.

Proposition 3.5.3. Let d1, . . . , dn be nonnegative integers. Then

⟨τd1 · · · τdn⟩ =
d1+1Ø
µ1=1

· · ·
dn+1Ø
µn=1

A
1
b!

nÙ
i=1

(−1)di−µi+1

(di − µi + 1)!µµi−1
i

B
Hb
g(µ1, . . . , µn),

where b = 2g − 2 + n+ µ1 + · · ·+ µn in each term of the sum and g = (d1 + · · ·+
dn − n+ 3)/3.
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4 Integrable hierarchies
We now have two generating functions in the variables t∗ = (t0, t1, . . . ) and p∗ =
(p1, p2, . . . )

F (t∗) =
Ø
⟨τd1 · · · τdn⟩

td1 · · · tdn

|Aut(d1, . . . , dn)| ,

H•(β; p∗) =
Ø

H•,b
g (µ) pµ

βb

b! ,

encoding top intersections of ψ-classes in the moduli space of stable curves and
disconnected simple Hurwitz numbers, respectively. In Section 3.4 we obtained an
expression for the second one in terms of Schur functions:

H•(β; p∗) =
Ø
µ

sµ(1, 0, 0, . . . )sµ(p∗)ef2(µ)β, (4.1)

where f2(µ) = 1
2
qℓ(µ)
i=1 µi(µi−2i+1). On the other hand, in Section 2.6 we presented

evidence for the Witten-Kontsevich theorem, which states that U = ∂2F
∂t20

satisfies
the KdV equations. The goal of this thesis, as mentioned in the introduction, is to
present a proof of this theorem given in [KL07]. To be able to do this, it remains
to discuss integrable hierarchies of partial differential equations, of which the KdV
hierarchy is a notable example.

In the first three sections, we introduce integrable hierarchies following [Bur22,
Sections 2-5]. The first section involves integrable hierarchies with one dependent
variable, such as the KdV hierarchy. In the next section, we generalize to the case
of several dependent variables and introduce the KP hierarchy. We will see how
the KdV hierarchy can be obtained as a reduction of the KP hierarchy. The third
section is about encoding all the information about the KP hierarchy in a single
function, called the tau-function. The next two sections focus on the rich algebraic
structure that underpins integrable hierarchies. The main reference for these two
sections is [MJD00], which is based on earlier work by Sato [SMJ78]. The last
section brings all the results together to show that the simple disconnected Hurwitz
potential (4.1) is a tau-function of the KP hierarchy.

4.1 KdV hierarchy
Before beginning, we generalize the definition of the set of partitions P = à

d≥0 Pd
to include zeroes, and we introduce an ordering on the set of generalized partitions.

Definition 4.1.1. A generalized partition µ = (µ1, . . . , µℓ) is a partition as in
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Definition 3.1.1 where the components are allowed to equal zero, i.e. µ1 ≥ µ2 ≥
· · ·µℓ ≥ 0. The set of all generalized partitions of d is denoted by åPd, and åP :=à
d≥0

åPd.
Definition 4.1.2. The lexicographical order > on P and åP is given by µ > λ if
and only if |µ| > |λ|, or |µ| = |λ| and µ1 = λ1, . . . , µk = λk, µk+1 > λk+1 for some
k.

This section is adapted from [Bur22, Section 2]. From now on, let u be a formal
variable. Consider the formal variables un for n ≥ 0 and identify u0 = u. We will
also write ux := u1, uxx = u2, uxxx := u3, etc. Let

R := C[u0, u1, u2, . . . ] = C[un]n≥0

be the algebra of polynomials in these formal variables. We think of u = u0 as a
variable which we evaluate at a power series ω(x) ∈ C[[x]], and we think of ux =
u1, uxx = u2, . . . as variables which we evaluate at the derivatives ∂xω(x), ∂2

xω(x), . . . .
Therefore u denotes the dependent variable in our discussion, and x is the inde-
pendent variable. We call an object P = P (u, ux, uxx, . . . ) ∈ R a polynomial,
since it becomes a differential polynomial in x when evaluated at u0 = ω(x), u1 =
∂xω(x), u2 = ∂2

xω(x), . . . . We write P |un=∂n
xω

for this differential polynomial.

There is an operator ∂x : R → R which behaves how one would intuitively ex-
pect it to behave, by replacing each “nth derivative” un by the “(n+1)th derivative”
un+1:

∂x =
Ø
n≥0

un+1
∂

∂un
.

Clearly C ⊂ ker ∂x, but in fact C = ker ∂x. To prove this, suppose P ∈ R does not
lie in C. If P = P (u), then ∂xP = ∂P

∂u ux ̸= 0 so P /∈ ker ∂x. Otherwise we may
suppose that it can be expressed as a finite sum

P =
Ø
µ∈P

cµuµ,

where cµ ∈ C[u] and uµ denotes uµ1 · · ·uµℓ
. Let λ = max{µ ∈ P : cµ ̸= 0}, where

the maximum is taken with respect to the lexicographical order. Then |λ| ≥ 1, so

∂xP = cλuλ′ +
Ø
µ<λ

c′
µuµ ̸= 0,

where λ′ = (λ1 + 1, λ2, λ3, . . . ) and c′
µ ∈ C[u]. Hence P /∈ ker ∂x, and we have
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proved that C = ker ∂x. Some of the proofs in this section involve such arguments
with partitions.

For P ∈ R, define the evolutionary operator DP : R → R by

DP =
Ø
n≥0

(∂nxP ) ∂

∂un

so that DPu = P , and the associated evolutionary PDE by

∂u

∂t
= P, (4.2)

where we have introduced an additional independent variable t. Note that evolu-
tionary operators satisfy [DP , ∂x] = 0 and the Leibniz rule DP (QR) = (DPQ)R +
Q(DPR). In fact, any operator H : R → R satisfying those two conditions is
an evolutionary operator [Bur22, Proposition 2.1]. In our discussion, solutions of
evolutionary PDEs will always be formal power series ω(x, t) ∈ C[[x, t]]. For such
a solution of (4.2) and any Q ∈ R we have

∂

∂t

1
Q|un=∂n

xω

2
= (DPQ)|un=∂n

xω
. (4.3)

In particular ∂ω
∂t = (DPu)|un=∂n

xω
. An example of an evolutionary PDE is

∂u

∂t
= 3uux + 1

4uxxx. (4.4)

This is known as the Korteweg-de Vries (KdV) equation, and we have already
introduced it in Theorem 2.6.3, up to a change of independent coordinate t Ô→ 3t.
It originates from physics in the description of shallow water waves.

For P,Q ∈ R a computation shows that [DP , DQ] = DR, where R = DPQ −
DQP . The two evolutionary PDEs associated to P and Q

∂u

∂t
= P,

∂u

∂s
= Q, (4.5)

are said to be compatible if [DP , DQ] = 0, or equivalently DPQ = DQP . One says
that the flows ∂

∂t and ∂
∂s commute, or that each flow is an infinitesimal symmetry

of the other. In the following theorem, we introduce countably many independent
variables {tj : j ∈ J}, and we use the shorthand notation t∗ to denote (tj)j∈J .

Theorem 4.1.3. Let J be a countable set of indices and Pj ∈ R for each j ∈ J .
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Then the system of PDEs
∂u

∂tj
= Pj , j ∈ J,

has a unique solution ω(x, t∗) ∈ C[[x, t∗]] for an arbitrary initial condition ω|t∗=0 =
f(x) ∈ C[[x]] if and only if [DPj , DPj′ ] = 0 for all j, j′ ∈ J .

Proof. We prove the theorem for |J | = 2, so denote P1 = P, P2 = Q and t1 = t, t2 =
s as in (4.5). The general case follows analogously. Firstly, suppose [DP , DQ] = 0.
If ω(x, t, s) ∈ C[[x, t, s]] is a solution with ω(x, 0, 0) = f(x), then using equation
(4.3) we have

∂m+nω

∂tm∂sn

-----
t=s=0

= (Dm
P D

n
Qu)

---
un=∂n

x f(x)
,

so Taylor expanding ω(x, t, s) around (t, s) = (0, 0) gives

ω(x, t, s) =
Ø

m,n≥0

tmsn

m!n! (Dm
P D

n
Qu)

---
un=∂n

x f(x)
=
!
etDP +sDQu

"---
un=∂n

x f(x)
.

This proves the uniqueness of ω(x, t, s). For the existence, we show that ω(x, t, s)
given by the above equation satisfies ∂u

∂t = P and ∂u
∂s = Q.

∂ω

∂t
=
3
∂

∂t
etDP +sDQu

4----
un=∂n

x f(x)
=
1
DP e

tDP +sDQu
2---
un=∂n

x f(x)

=
1
etDP +sDQDPu

2---
un=∂n

x f(x)
=
1
etDP +sDQP (u, ux, uxx, . . .

2---
un=∂n

x f(x)

= P
1
etDP +sDQu, ∂xe

tDP +sDQu, ∂2
xe
tDP +sDQu, . . .

2---
un=∂n

x f(x)

= P (ω, ∂xω, ∂2
xω, . . . ),

and similarly for ∂u
∂s = Q. Clearly, ω(x, t, s) =

1
etDP +sDQu

2---
un=∂n

x f(x)
also sat-

isfies the initial condition ω(x, 0, 0) = f(x). For the converse direction, suppose
ω(x, t, s) ∈ C[[x, t, s]] satisfies the system (4.5). We wish to show that [DP , DQ] = 0,
or equivalently R := DPQ−DQP = 0 since [DP , DQ] = DR. Notice that

(DPQ)|un=∂n
xω

= (DPDQu)|un=∂n
xω

= ∂

∂t

∂ω

∂s
= ∂

∂s

∂ω

∂t

= (DQDPu)|un=∂n
xω

= (DQP )|un=∂n
xω
,

so R|un=∂n
xω

= 0. We can write R as a finite sum

R =
Ø
µ∈åP cµuµ, cµ ∈ C.
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If ω(x, 0, 0) = f(x) = q
i≥0 bixi (bi ∈ C) is the initial condition, then

0 =
1
R|un=∂n

x f(x)

2---
x=0

=
Ø
µ∈åP cµ

Ù
i≥0

(i!bi)ni(µ)

for any values of b0, b1, b2, . . . , where ni(µ) = |{k : µk = i}|. Hence all the numbers
cµ
r
i≥0(i!)ni(µ) vanish. So cµ = 0 for all µ ∈ åP and R = 0, as required.

One way of understanding the statement of the theorem is as follows: given an
initial condition ω(x, 0, 0) ∈ C[[x]] and a system of two PDEs ∂u

∂t = P, ∂u∂s = Q, the
compatibility condition [DP , DQ] = 0 is equivalent to the following diagram being
“commutative”:

ω(x, t, 0) ω(x, t, s)

ω(x, 0, 0) ω(x, 0, s)
A

B

B

A

where A andB denote the operations ‘solve ∂u
∂t = P ’ and ‘solve ∂u

∂s = Q’ respectively.

Definition 4.1.4. An integrable hierarchy is a countable sequence of pairwise com-
patible evolutionary PDEs

∂u

∂tj
= Pj , j ∈ J,

where the Pj ∈ R are linearly independent.

The space of local functionals is

I := R/(im ∂x ⊕ C),

and the natural surjection R → I is denoted by P Ô→
s
P dx. The evolutionary

operator DP : R → R descends to a well-defined operator DP : I → I because
[DP , ∂x] = 0.

Definition 4.1.5. An element h =
s
Qdx ∈ I is called a conserved quantity for

the PDE ∂u
∂t = P if DPh = 0.

The reason for this definition is that if ω(x, t) is a solution of ∂u
∂t = P and

s
Qdx is

a conserved quantity of this PDE, then the function Q(x, t) =
s
Q|un=∂n

xω
dx does
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not depend on t:

∂

∂t

Ú
Q|un=∂n

xω
dx =

Ú
∂

∂t

1
Q|un=∂n

xω

2
dx =

Ú
(DPQ)|un=∂n

xω
dx

=
3
DP

Ú
Qdx

4----
un=∂n

xω
= 0.

As an example, we show that
s
u2 dx is a conserved quantity of the KdV equation

∂u
∂t = P := 3uux + 1

4uxxx.

DP

Ú
u2 dx =

Ú
DPu

2 dx =
Ú Ø

n≥0
(∂nxP ) ∂

∂un
u2 dx =

Ú
(3uux + 1

4uxxx)2u dx

= 6
Ú
u2ux dx+ 1

2

Ú
uuxxx dx = 2

Ú
∂x(u3) dx+ 1

2

Ú
(∂x(uuxx)− uxuxx) dx

= −1
4

Ú
∂x(u2

x) dx = 0.

Here we have used
s

im ∂x dx = 0 ∈ I repeatedly. The KdV equation has infinitely
many conserved quantities, of which the above one is the first [Bur22, Theorem
2.16]. They are given by

s
Hj dx, j ≥ 1, where the Hj ∈ R are determined recur-

sively by

Hj =


1
2u, j = 1,
i

2
√

2∂xHj−1 − 1
2
q
a+b=j−1HaHb, j ≥ 2.

It turns out that the even-indexed conserved quantities are irrelevant since
s
H2j dx =

0, and that the odd-indexed ones span the space of all conserved quantities of the
KdV equation [Bur22, Corollary 2.36]. Hence we rename (and renormalize) the
conserved quantities as follows:

h
KdV
j = (−1)j2j+1(2j + 1)

Ú
H2j+1 dx, j ≥ 0. (4.6)

We have chosen to start the indexing from j = 0, while [Bur22] starts at j = 1.
This is done in order to be consistent with the indexing choice in [Wit90; KL07].
We list the first few:

h
KdV
0 =

Ú
u dx,

h
KdV
1 =

Ú 3
2u

2 dx,

h
KdV
2 =

Ú 35
2u

3 + 5
8uuxx

4
dx,

h
KdV
3 =

Ú 335
8 u

4 + 35
16u

2uxx + 7
32uuxxxx

4
dx.
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The variational derivative is the operator

δ

δu
:=
Ø
n≥0

(−∂x)n ◦ ∂

∂un
: R → R,

where ◦ denotes composition of operators. One can check that im ∂x ⊕C ⊂ ker δ
δu ,

and moreover it is true that im ∂x⊕C = ker δ
δu [Bur22, Theorem 2.22], so it induces

a well-defined inclusion δ
δu : I → R. Define a bracket {·, ·} : I × I → I by

{h, g} =
Ú
δh

δu
∂x
δg

δu
dx.

By associating to h ∈ I the evolutionary operator

Dh := D
∂x

δh
δu

=
Ø
n≥0

∂n+1
x

A
δh

δu

B
∂

∂un
,

one can recover the bracket {·, ·} on I by noticing that for g =
s
g dx ∈ I we have

Dh g =
Ú Ø

n≥0
∂n+1
x

A
δh

δu

B
∂g

∂un
dx = −

Ú Ø
n≥0

∂nx

A
δh

δu

B
∂x

3
∂g

∂un

4
dx

= · · · =
Ú Ø

n≥0
∂x

A
δh

δu

B
(−∂x)n

3
∂g

∂un

4
dx =

Ú
∂x

A
δh

δu

B
δg

δu
dx = {g, h}.

The bracket {·, ·} on I is the infinite-dimensional analogue of the Poisson bracket on
a manifold M , and the evolutionary operators Dh are analogous to the Hamiltonian
vector fields Xh ∈ X(M). For a reference, see [MR99, 5.5]. The equation above
is similar to the Poisson bracket-Lie derivative identity {h, g} = Xg(h). Moreover,
the commutator identity [Xh, Xg] = X{g,h} is true in our case as well, namely
[Dh, Dg] = D{g,h} [Bur22, Theorem 2.29]. These facts imply that {·, ·} endows I
with the structure of a Lie algebra and that the map R×I → R, (P, h) Ô→ DhP is
a right Lie algebra action of I on R.

Definition 4.1.6. A Hamiltonian PDE is an evolutionary PDE of the form

∂u

∂t
= ∂x

δh

δu
. (4.7)

The local functional h ∈ I is called the Hamiltonian.

Notice that if g ∈ I is a conserved quantity of the Hamiltonian PDE (4.7), then
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the PDE
∂u

∂s
= ∂x

δg

δu

is compatible with (4.7), since 0 = Dh g = {g, h} implies [Dh, Dg] = D{g,h} = 0.
This means that two Hamiltonian PDEs with Hamiltonians h and g are compatible
if and only if {g, h} = 0. We return to our example of the KdV equation ∂u

∂t =
3uux + 1

4uxxx and show that it is Hamiltonian:

1
5∂x

δh
KdV
2
δu

= ∂x
δ

δu

31
2u

3 + 1
8uuxx

4
= ∂x

Ø
n≥0

(−∂x)n ∂

∂un

31
2u

3 + 1
8uuxx

4

= ∂x

33
2u

2 + 1
8uxx + 1

8uxx
4

= 3uux + 1
4uxxx.

Therefore, by the previous statement, the conserved quantities hKdV
j of the KdV

equation give rise to infinitely many Hamiltonian PDEs

∂u

∂tj
= PKdV

j := 1
2j + 3∂x

δh
KdV
j+1
δu

, j ≥ 0, (4.8)

that are compatible with the KdV equation. We remind that we have started
the indexing from j = 0 instead of j = 1 to be consistent with [Wit90; KL07].
A little more work [Bur22, Corollary 2.36] shows that the evolutionary operators
DPKdV

j
pairwise commute and that they form a basis for the space of infinitesimal

symmetries of the KdV equation. Therefore (4.8) forms an integrable hierarchy in
the sense of Definition 4.1.4, which is called the KdV hierarchy. It is the same set
of PDEs as (2.24) in Theorem 2.6.3, after the rescaling tj Ô→ (2j + 1)tj . The first
three equations are

∂u

∂t0
= ux,

∂u

∂t1
= 3uux + 1

4uxxx,

∂u

∂t2
= 15

2 u
2ux + 5

2uxuxx + 5
4uuxxx + 1

16uxxxxx.

From the first two equations, we see that the independent variables t0 and t1 can
be identified with x and t from the original KdV equation (4.4).
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4.2 KP hierarchy
We now extend the formalism developed in Section 4.1 to include multiple depen-
dent variables (ui)1≤i≤N , following [Bur22, Sections 3-4]. Similarly to before, we
identify ui,x := ui,1, ui,xx := ui,2, ui,xxx := ui,3, . . . , and define the algebra

Ru = C[ui,n]1≤i≤N
n≥0

.

As before, we have the operator

∂x =
NØ
i=1

Ø
n≥0

ui,n+1
∂

∂ui,n
: Ru −→ Ru

which satisfies ker ∂x = C. The space of local functionals is

Iu = Ru/(im ∂x ⊕ C)

and the variational derivatives

δ

δui
=
Ø
n≥0

(−∂x)n ◦ ∂

∂ui,n
: Iu −→ Ru, 1 ≤ i ≤ N.

satisfy im ∂x ⊕ C = uN
i=1 ker δ

δui
. To an N -tuple P = (P1, . . . , PN ) ∈ RNu we

associate the evolutionary operator

DP =
NØ
i=1

Ø
n≥0

(∂nxPi)
∂

∂ui,n
: Ru −→ Ru

which satisfies [DP , ∂x] = 0 and the Leibniz rule, and the evolutionary PDEs

∂ui
∂p

= Pi, 1 ≤ i ≤ N, (4.9)

where we denote the independent variable by p now. Analogously to (4.3), if
ω1(x, p), . . . , ωN (x, p) ∈ C[[x, p]] are solutions of (4.9) then for any Q ∈ Ru we
have

∂

∂p

1
Q|ui,n=∂n

xωi

2
= (DPQ)

--
ui,n=∂n

xωi
. (4.10)

Two N -tuples of evolutionary PDEs associated to P and Q are called compatible
if DR = [DP , DQ] = 0, where Ri = DPQi −DQPi. Analogously to Theorem 4.1.3,
given a countable set of indices J and P j = (P1,j , . . . , PN,j) for each j ∈ J , the
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system of PDEs
∂ui
∂pj

= Pi,j , 1 ≤ i ≤ N, j ∈ J,

has a unique solution ω1(x, p∗), . . . , ωN (x, p∗) ∈ C[[x, p∗] if and only if [DP j
, DP j′

] =
0 for every j, j′ ∈ J . Such a system is also called an integrable hierarchy.

We now introduce the KP hierarchy, an important example of an integrable
hierarchy with countably many (N → ∞) dependent variables. First, consider
composing ∂x : Ru → Ru with the operator induced by P ∈ Ru. By the product
rule of differentiation, this is

∂x ◦ P = ∂xP + P ◦ ∂x.

Applying the product rule n ≥ 1 times gives

∂nx ◦ P =
nØ
k=0

A
n

k

B
(∂kxP ) ∂n−k

x . (4.11)

We may treat the operator ∂x as a formal variable, and extend the ring of operators
on Ru by introducing its formal inverse ∂−1

x . With this in mind, we define a pseudo-
differential operator as being a Laurent series of the form

A =
Ø
n≤m

an∂
n
x , m ∈ Z, an ∈ Ru.

Moreover the positive part, the negative part and the residue of A are defined as

A+ =
Ø

0≤n≤m
an∂

n
x , A− = A−A+, resA = a−1.

We extend the multiplication (4.11) to pseudo-differential operators as follows: Ø
n1≤m1

an1∂
n1
x

 ◦
 Ø
n2≤m2

bn2∂
n2
x

 =
Ø

n1≤m1
n2≤m2

Ø
k≥0

A
n1
k

B
an1(∂kxbn2) ∂n1+n2−k

x . (4.12)

This endows the space POu of pseudo-differential operators with an algebra struc-
ture, which is associative [Bur22, Proposition 4.1]. The commutator of A,B ∈ POu
is [A,B] = A ◦ B − B ◦ A. The action of an evolutionary operator DP on POu is
given coefficient-wise by

DP

Ø
n≤m

an∂
n
x

 =
Ø
n≤m

(DP an)∂nx , (4.13)
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from which the Leibniz rule DP (A ◦ B) = (DPA) ◦ B + A ◦ (DPB) for every
A,B ∈ POu follows. Now consider the pseudo-differential operator

L = ∂x +
Ø
i≥1

ui∂
−i
x .

The positive part is L+ = ∂x, while L− = q
i≥1 ui∂

−i
x and resL = u1. For any

j ≥ 1 let Lj = L ◦ · · · ◦ Lü ûú ý
j times

. As an example, let us compute the second and third

powers of L using the multiplication rule (4.12).

L2 = ∂2
x + ∂x

Ø
i≥1

ui∂
−i
x +

Ø
i≥1

ui∂
−i+1
x +

Ø
i≥1

ui∂
−i
x

Ø
j≥1

uj∂
−j
x


= ∂2

x + 2u1ü ûú ý
(L2)+

+
Ø
i≥1

(∂xui + 2ui+1) ∂−i
x +

Ø
i,j≥1
k≥0

A
−i
k

B
ui(∂kxuj)∂−i−j−k

x

ü ûú ý
(L2)−

, (4.14)

in particular resL2 = ∂xu1 + 2u2. The third power is given by the slightly longer
expression

L3 =

(L3)+ú ýü û
∂3
x + 3u1∂x + 3u2 + 3∂xu1 +

Ø
i≥1

(∂2
xui + 3∂xui+1 + 3ui+2)∂−i

x

+
Ø
i≥1
ℓ≥0

A
2
A
−i
ℓ

B
ui(∂ℓxu1) + uiuℓ+1

B
∂−i−ℓ
x

+
Ø
i,j≥1
ℓ≥0

A
−i
ℓ

B3
(∂xui)(∂ℓxuj) + 2ui(∂ℓxuj+1) + ℓ+ 2− i

ℓ+ 1 ui(∂ℓ+1
x uj)

4
∂−i−j−ℓ
x

+
Ø

i,j,k≥1
ℓ,m,n≥0

A
−i
m

BA
−j
ℓ

BA
m

n

B
(∂nxuj)(∂ℓ+m−n

x uk)∂−i−j−k−ℓ−m
x ,

in particular resL3 = ∂2
xu1 + 3∂xu2 + 3u3 + 3u2

1. The positive parts of the commu-
tators [(Lj)+, L] satisfy

[(Lj)+, L]+ = [Lj − (Lj)−, L]+ = −[(Lj)−, L]+
= −[(Lj)−, L+ + L−]+ = −[(Lj)−, L+]+
= −[(Lj)−, ∂x]+ = 0,

so [(Lj)+, L] is equal to its negative part [(Lj)+, L]−. The KP (Kadomtsev-Petviashvili)
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hierarchy is obtained from this commutator as the following system of evolutionary
PDEs:

∂ui
∂pj

= Pi,j := Coef∂−i
x

[(Lj)+, L], i, j ≥ 1, (4.15)

where the expression on the right-hand side means that we select the coefficient
of ∂−i

x in [(Lj)+, L]. This is a system of countably many PDEs for the countably
many dependent variables u1, u2, . . . , each of which depend on countably many
independent variables p1, p2, . . . . Notice that L+ = ∂x implies that [L+, L] =q
i≥1(∂xui)∂−i

x , so
∂ui
∂p1

= ∂xui, i ≥ 1. (4.16)

Hence x is identified with the first independent variable p1. If we write P j =
(P1,j , P2,j , . . . ) and denote the associated evolutionary operators by Dj := DPj

,
then (4.15) is equivalent to

∂L

∂pj
= DjL = [(Lj)+, L],

where the action of ∂
∂pj

and Dj on L is coefficient-wise (4.13). Since L contains
all the dependent variables ui as its coefficients, it uniquely determines the KP
hierarchy. The following result shows that the KP hierarchy is indeed an integrable
hierarchy in the sense of Definition 4.1.4.

Theorem 4.2.1. The operators Dj of the KP hierarchy pairwise commute: [Dj , Dj′ ] =
0. Moreover, the local functionals

s
resLi dx are conserved quantities for any flow

∂
∂pj

of the KP hierarchy.

Proof. We first check that [Dj , Dj′ ] = 0 for any j, j′ ≥ 1, or equivalently [Dj , Dj′ ]L =
0. Write Lj+ := (Lj)+ for brevity. By the Leibniz rule, we have

DjL
j′ =

Ø
a+b=j′−1

La ◦DjL ◦ Lb =
Ø

a+b=j′−1
La ◦ [Lj+, L] ◦ Lb = [Lj+, Lj

′ ], (4.17)

where the last equality can be proved by inducting on j′. Hence

Dj(Dj′L) = Dj [Lj
′

+, L] = [(DjL
j′)+, L] + [Lj′

, DjL]

= [[Lj+, Lj
′ ], L] + [Lj′

, Lj+].

Then [Dj , Dj′ ]L = Dj(Dj′L)−Dj′(DjL) equals the expression

[[Lj+, Lj
′ ], L] + [Lj′

, Lj+]− [[Lj
′

+, L
j ], L]− [Lj , Lj

′

+],
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which vanishes due to the Jacobi identity and using Lj = Lj+ + Lj−. The local
functionals

s
resLi dx are conserved quantities of all the KP equations since

Dj

Ú
resLi dx =

Ú
Dj resLi dx =

Ú
resDjL

i dx =
Ú

res[Lj+, Li]dx.

The last expression vanishes because
s

res[A,B]dx = 0 for any A,B ∈ POu. For
example, for A = P∂nx and B = Q∂mx ,

res[P∂nx , Q∂mx ] =


! m
n+m+1

"
P (∂n+m+1

x Q)−
! n
n+m+1

"
(∂n+m+1
x P )Q, n+m+ 1 ≥ 0,

0, else.

For n+m+ 1 ≥ 0,

Ú AA
m

n+m+ 1

B
P (∂n+m+1

x Q)−
A

n

n+m+ 1

B
(∂n+m+1
x P )Q

B
dx

=
Ú AA

m

n+m+ 1

B
+ (−1)n+m

A
n

n+m+ 1

BB
P (∂n+m+1

x Q) dx = 0,

as claimed.

We now wish to see how the KdV and KP hierarchies are related, and for this
we give some general results on reductions of integrable hierarchies. In addition to
the algebra Ru associated to the dependent variables u1, . . . , uN , consider another
set of dependent variables v1, . . . , vM and their associated algebra Rv. Let (Dj :
Ru → Ru)j≥1 and (D′

j : Rv → Rv)j≥1 be two collections of pairwise commuting
evolutionary operators in Ru and Rv giving rise to the two integrable hierarchies

∂ui
∂pj

= Pi,j = Djui, 1 ≤ i ≤ N, j ≥ 1, (4.18)

∂vk
∂pj

= Qk,j = D′
jvk, 1 ≤ k ≤M, j ≥ 1. (4.19)

Let θ : Ru → Rv be an algebra morphism that commutes with ∂x and is compatible
with the evolutionary operators, in other words [θ, ∂x] = 0 and θ ◦Dj = D′

j ◦ θ.

Lemma 4.2.2. Suppose a collection of formal power series νk(x, p∗) ∈ C[[x, p∗]], 1 ≤
k ≤M, is a solution of the second integrable hierarchy (4.19). Then the collection

ωi(x, p∗) := θ(ui)|vk,n=∂n
x νk
∈ C[[x, p∗]], 1 ≤ i ≤ N,

is a solution of the first integrable hierarchy (4.18).
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Proof. We use equation (4.10) to compute

∂ωi
∂pj

= ∂

∂pj

1
θ(ui)|vk,n=∂n

x νk

2
= D′

j(θ(ui))
---
vk,n=∂n

x νk

= θ(Dj(ui))|vk,n=∂n
x νk

= θ(Pi,j)|vk,n=∂n
x νk

=
1
Pi,j |ui′,m=∂m

x θ(ui′ )

2---
vk,n=∂n

x νk

= Pi,j |ui,n=∂n
xωi

,

where in the second-to-last equality we used [θ, ∂x] = 0.

As an example with N = M =∞, we present a change of dependent variables
for the KP hierarchy that resemble the action-angle variables from the Liouville-
Arnold theorem [Arn89, Chapter 10].

Example 4.2.3. Since each resLi has the form resLi = iui + Qi for some poly-
nomials Qi ∈ Ru depending only on u1, . . . , ui−1 and their derivatives, the algebra
homomorphism θ : Ru → Rv sending ∂nx resLi to vi,n to is an isomorphism com-
muting with ∂x. Let D′

j : Rv → Rv be the evolutionary operators induced by the
KP operators Dj and the isomorphism θ, namely D′

j = θ ◦ Dj ◦ θ−1. By Lemma
4.2.2, the solutions of the KP hierarchy (4.15) are in bijective correspondence with
solutions of

∂vi
∂pj

= D′
jvi, i, j ≥ 1. (4.20)

By Theorem 4.2.1 we know that Dj resLi ∈ im ∂x, so D′
jvi = θ(Dj(resLi)) is of the

form ∂xQi,j with Qi,j ∈ Rv. The polynomials Qi,j are symmetric in i and j since

Dj resLi = res[Lj+, Li] = − res[Lj−, Li] = − res[Lj−, Li+]

= − res[Lj , Li+] = res[Li+, Lj ] = Di resLj

implies D′
ivj = D′

jvi. Moreover, if we introduce a gradation on Rv by defining
deg vi,n := n, then Qi,j does not contain monomials of degree d when d is odd
[BRZ21, Lemma 3.9]. The dependent variables vi are called the normal coordi-
nates of the KP hierarchy, since they correspond to the conserved quantities resLi.
Similarly to the first equations (4.16) of the original KP hierarchy we have

∂vi
∂p1

= ∂v1
∂pi

= ∂xvi, i ≥ 1.
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Using the previous computations for L,L2 and L3 we obtain

v1 = θ(resL) = θ(u1),

v2 = θ(resL2) = θ(∂xu1 + 2u2),

v3 = θ(resL3) = θ(∂2
xu1 + 3∂xu2 + 3u3 + 3u2

1),

which we use to compute the PDE in (4.20) corresponding to i = j = 2:

∂v2
∂p2

= D′
2v2 = θ

1
D2(resL2)

2
= θ

1
res[L2

+, L
2]
2

= θ

A
res
5
∂2
x + 2u1,

3Ø
i=1

(∂xui + 2ui+1)∂−i
x +

Ø
i,j≥1,k≥0
i+j+k≤3

A
−i
k

B
ui(∂kxuj)∂−i−j−k

x

6B

= θ
1
∂3
xu1 + 4∂2

xu2 + 4∂xu3 + 2∂xu2
1

2
= ∂xθ

34
3 resL3 − 2(resL)2 − 1

3∂
2
x resL

4
= ∂x

34
3v3 − 2v2

1 −
1
3∂

2
xv1

4
ü ûú ý

Q2,2

. (4.21)

In the previous example we had an algebra isomorphism θ : Ru → Rv commut-
ing with ∂x. In the following lemma, θ : Ru → Rv is a surjective algebra morphism
commuting with ∂x such that ker θ is invariant under each Dj .

Lemma 4.2.4. Let θ : Ru → Rv be a surjective algebra morphism commuting with
∂x such that Dj ker θ ⊂ ker θ. Consider the integrable hierarchy

∂ui
∂pj

= Pi,j = Djwi, i, j ≥ 1. (4.22)

For any collection of formal power series fi(x) ∈ C[[x]], i ≥ 1, such that K|ui,n=∂n
x fi(x) =

0 for every K ∈ ker θ, we have

K|ui,n=∂n
xωi

= 0,

where ωi(x, p∗) ∈ C[[x, p∗]], i ≥ 1, is the solution to (4.22) with initial condition
ωi(x, 0) = fi(x).

Proof. By the proof of Theorem 4.1.3, the solution ωi(x, p∗) is

ωi(x, p∗) =
3

exp
1Ø
j≥1

pjDj

2
ui

4------
uk,n=∂n

x fk(x)

,
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which implies that for any Q ∈ ker θ,

K|ui,d=∂n
xωi

=
3

exp
1Ø
j≥1

pjDj

2
K

4------
ui,n=∂n

x fi(x)

= 0,

where the last equality follows from Dj ker θ ⊂ ker θ.

Under the assumptions of the above lemma, θ induces an algebra isomorphism
θ : Ru/ ker θ → Rv that commutes with ∂x. The evolutionary operators (Dj :
Ru → Ru)j≥1 induce pairwise compatible evolutionary operators (Dj : Ru/ ker θ →
Ru/ ker θ)j≥1. For each j ≥ 1, let D′

j = θ ◦ Dj ◦ θ
−1 be the corresponding evolu-

tionary operator in Rv. Then the resulting integrable hierarchy

∂vk
∂pj

= Qk,j = D′
jvk, 1 ≤ k ≤M, j ≥ 1

is called a reduction of the initial hierarchy (4.22). By Lemma 4.2.2 and Lemma
4.2.4, solutions of the reduced hierarchy are in bijective correspondence with solu-
tions of the initial hierarchy that vanish on ker θ. The polynomials Qk,j are given
by θ(DjPk), where Pk ∈ Ru is an arbitrary polynomial such that θ(Pk) = vk.

There is a reduction from the KP hierarchy (4.15) to the KdV hierarchy (4.8),
which we now illustrate [Bur22, Section 4.4].

Example 4.2.5. Firstly, consider the pseudo-differential operator L = ∂x+qi≥1 ui∂
−i
x

from the definition of the KP hierarchy. From the computation in equation (4.14),
its square L2 has the form

L2 = ∂2
x +

Ø
i≥0

Ri∂
−i
x ,

where Ri = 2ui+1 + åRi and åRi only depends on u1, . . . , ui and their derivatives.
Consider the single dependent variable u from Section 4.1 and its algebra R =
C[un]n≥0 (which is distinct from Ru = C[ui,n]i≥1,n≥0). Then there are unique
polynomials Zi ∈ R, i ≥ 1, such that

3
∂x +

Ø
i≥1

Zi∂
−i
x

42
= ∂2

x + 2u. (4.23)
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They are given recursively by

Zi =


u, i = 1,

−1
2
åRi−1

---
uk,n=∂n

xZk

, i ≥ 2.

Define an algebra morphism θ : Ru → R by ui,n Ô→ ∂nxZi, whose kernel ker θ is the
ideal generated by {∂nxRi : i ≥ 1, n ≥ 0}. Notice that for each KP operator Dj we
have

Ø
i≥1

DjRi ∂
−i
x = Dj(L2

−) = Dj(L2)−
(4.17)= [Lj+, L2]−

= [Lj+, L2
−]− =

Ø
i≥1

[Lj+, Ri∂−i
x ]−,

so ker θ = (∂nxRi)i≥1,n≥0 is invariant under the KP operators since [Lj+, Ri∂−i
x ] ∈

(∂nxRi)i≥1,n≥0. So by Lemma 4.2.4 the morphism θ : Ru → R defines a reduction
of the KP hierarchy (4.15) to the integrable hierarchy in one dependent variable

∂u

∂pj
= Qj , j ≥ 1, (4.24)

where Qj = θ(Dju1). Notice that

θ(L)2 =
3
∂x +

Ø
i≥1

θ(ui)∂−i
x

42
=
3
∂x +

Ø
i≥1

Zi∂
−i
x

42 (4.23)= ∂2
x + 2u,

so θ(L)2j = θ(L)2j
+ . Therefore the even-indexed equations of the reduced hierarchy

(4.24) are trivial:

Q2j = θ(D2ju1) = θ(D2j resL) (4.17)= θ(res[L2j
+ , L])

= res[θ(L)2j
+ , θ(L)] = res[θ(L)2j , θ(L)] = 0.

Correspondingly, the even-indexed conserved quantities
s

resL2idx of the KP hier-
archy are mapped to zero under θ:

θ

3Ú
resL2j dx

4
=
Ú

res θ(L)2jdx =
Ú

res
1
∂2
x + 2u

2j
dx = 0.

On the other hand, the odd-indexed equations correspond to the ones for the KdV
hierarchy (4.8) since Q2j+1 = PKdV

j for j ≥ 0 [Bur22, Proposition 4.18] (we remind
that we have started the indexing for the KdV hierarchy at j = 0 instead of j = 1),
while the odd-indexed conserved quantities of the KP equations are mapped to the
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conserved quantities of the KdV equation:

θ

3Ú
resLdx

4
=
Ú

res θ(L) dx =
Ú

res
3
∂x +

Ø
i≥1

Zi∂
−i
x

4
dx

=
Ú
Z1 dx =

Ú
u dx = h

KdV
0 ,

and for j ≥ 1

θ

3Ú
resL2j+1 dx

4
=
Ú

res θ(L)2jθ(L) dx =
Ú

res
1
∂2
x + 2u

2j 3
∂x +

Ø
i≥1

Zi∂
−i
x

4
dx

= (−1)j2j+1(2j + 1)
Ú
H2j+1 dx = h

KdV
j .

From this example we conclude that, under the identification of independent vari-
ables tj = p2j+1, there is a bijective correspondence between solutions ω(x, t∗) ∈
C[[t∗]] of the KdV hierarchy (4.8) and solutions L|ui=ωi

=
1
∂x +q

i≥1 ui∂
−1
x

2---
ui=ωi

of the KP hierarchy (4.15) satisfying L2
− = 0, i.e. L2 = ∂2

x + 2u.

4.3 Tau-functions
In the previous section, we introduced the KP hierarchy

∂ui
∂pj

= Coef∂−i
x

[(Lj)+, L], i, j ≥ 1, or equivalently

∂L

∂pj
= [(Lj)+, L], j ≥ 1, L = ∂x +

Ø
i≥1

ui∂
−i
x .

The first PDEs of this hierarchy are ∂ui
∂p1

= ∂xui, so that we can identify x with
the independent variable p1. Therefore, by a solution of the KP hierarchy we mean
a collection of power series ω1(p∗), ω2(p∗), · · · ∈ C[[p∗]], or equivalently a pseudo-
differential operator with coefficients in C[[p∗]] given by

L = ∂x +
Ø
i≥1

ωi(p∗)∂−i
x ,

which satisfy the PDEs above. The algebra POp of pseudo-differential operators
with coefficients in C[[p∗]] has the same multiplication (4.12) as in POu, but with
differentiation by x replaced by differentiation by p1. The positive part, negative
part, and residue of elements of POp are defined in the same way as POu.

The KP hierarchy has many equations: one for every pair consisting of a de-
pendent variable and an independent variable. It would be useful if we could store
all this information in a single equation for a single function. In this section, we
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develop the necessary tools to do that, following [Bur22, Section 5]. First, we in-
troduce yet another set of formal variables w1, w2, . . . and their associated algebra
Rw. Let

W := 1 +
Ø
i≥1

wi∂
−i
xü ûú ýåW
∈ POw.

The inverse of W in POw is the well-defined pseudo-differential operator W−1 =
1− æW + æW 2 − æW 3 + · · · . A careful computation [Bur22, Lemma 5.5] shows that

W ◦ ∂x ◦W−1 = ∂x +
Ø
i≥1

Yi∂
−i
x ,

where the coefficients Yi ∈ Rw are of the form Yi = −wi,x + åYi and åYi only depends
on w1, . . . , wi−1 and their derivatives. Therefore the algebra homomorphism θ :
Ru → Rw given by θ(ui,n) = ∂nxYi is injective. Moreover,

θ(L) = ∂x +
Ø
i≥1

θ(ui)∂−i
x = ∂x +

Ø
i≥1

Yi∂
−i
x = W ◦ ∂x ◦W−1.

For j ≥ 1 let åDj : Rw → Rw be the evolutionary operator defined by

åDjW = −(W ◦ ∂jx ◦W−1)− ◦W = −θ(L)j− ◦W.

Proposition 4.3.1. Let (Dj : Ru → Ru)j≥1 be the evolutionary operators of the
KP hierarchy, which are given by DjL = [Lj+, L]. Then

θ ◦Dj = åDj ◦ θ.

Proof. Applying åDj to both sides of W ◦W−1 = 1 yields åDjW
−1 = −W−1 ◦ åDjW ◦

W−1 = W−1 ◦ θ(L)j−. Then

( åDj ◦ θ)L = åDj(W ◦ ∂x ◦W−1) = ( åDjW ) ◦ ∂x ◦W−1 +W ◦ ∂x ◦ ( åDjW
−1)

= −θ(L)j− ◦W ◦ ∂x ◦W−1 +W ◦ ∂x ◦W−1 ◦ θ(L)j− = −θ(L)j− ◦ θ(L) + θ(L) ◦ θ(L)j−
= −[θ(L)j−, θ(L)] = θ(−[Lj−, L]) = θ([Lj+, L]) = (θ ◦Dj)L,

as claimed.

By the above proposition and repeated use of Lj = Lj+ + Lj−, one can also show
that the operators ( åDj : Rw → Rw)j≥1 pairwise commute. Hence we obtain an
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integrable hierarchy

∂W

∂pj
= åDjW = −(W ◦ ∂jx ◦W−1) ◦W, j ≥ 1, (4.25)

known as the SW (Sato-Wilson) hierarchy. By Lemma 4.2.2, if W ∈ POp is a
solution of the SW hierarchy then L := W ◦ ∂x ◦ W−1 is a solution of the KP
hierarchy. Notice that the correspondence of solutions is not bijective, since the
morphism θ : Ru → Rw is injective but not surjective. One can prove [Bur22,
Proposition 5.11] that given a solution L of the KP hiearchy, there exists a solution
W of the SW hierarchy such that L = W ◦ ∂x ◦W−1, which is defined up to the
transformation

W Ô−→W ◦

1 +
Ø
i≥1

ci∂
−i
x

 , ci ∈ C. (4.26)

The operator W is called a dressing operator of the KP hierarchy.

Consider the repeated action of ∂x on exz:

∂xe
xz = zexz, ∂2

xe
xz = z2exz, ∂3

xe
xz = z3exz . . . .

One can extend this action to negative powers of ∂x by defining ∂−i
x exz = z−iexz, so

that a pseudo-differential operator A = q
n≤m an∂

n
x ∈ POp acts on exz as follows:

Aexz :=
Ø
n≤m

anz
nexz = âAexz, (4.27)

where on the right we are multiplying Laurent series. The Laurent series âA =q
n≤m anz

n ∈ C[[p∗]][[z, z−1]] is the symbol of A, defined by identifying ∂nx with
zn. Notice that multiplication of Laurent series is not well-defined in general, for
example (· · ·+z−2+z−1+1)(1+z+z2+· · · ). In our discussion, however, the Laurent
series that appear will always have a well-defined multiplication. We extend (4.27)
in two ways: firstly, the action of another pseudo-differential operator B ∈ POp on
Aexz is defined as B(Aexz) = (B ◦A)exz. Secondly, let

ξ(p∗, z) :=
Ø
j≥1

pjz
j (4.28)

and define the corresponding action of A ∈ POp on eξ(p∗,z) by identifying p1 = x:

Aeξ(p∗,z) := e
q

j≥2 pjz
j âAep1z.
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Definition 4.3.2. Let L ∈ POp be a solution of the KP hierarchy, and W a
dressing operator of L. The wave function associated to L and W is

ψ(p∗, z) := Weξ(p∗,z) ∈ C[[p∗]][[z, z−1]].

The wave function ψ satisfies the basic properties

Lψ = L(Weξ(p∗,z)) = (L ◦W )eξ(p∗,z) = (W ◦ ∂x ◦W−1 ◦W )eξ(p∗,z)

= W (∂xeξ(p∗,z)) = zWeξ(p∗,z) = zψ (4.29)

and consequently

∂ψ

∂pj
= ∂

∂pj
(Weξ(p∗,z)) = ∂W

∂pj
eξ(p∗,z) +W

∂eξ(p∗,z)

pj
= −(Lj− ◦W )eξ(p∗,z) + zjWeξ(p∗,z)

= −Lj−ψ + Ljψ = Lj+ψ. (4.30)

The adjoint of a pseudo-differential operator A = q
n≤m an∂

n
x ∈ POp is defined as

A† :=
Ø
n≤m

(−∂x)n ◦ an =
Ø
n≤m

(−1)n
Ø
k≥0

A
n

k

B
(∂kxan) ∂n−k

x ,

and it satisfies the properties that one would expect of it [Bur22, Lemma 5.16]:

(A ◦B)† = B† ◦A†, (A†)† = A, (A†)± = (A±)†.

The adjoint wave function associated to a solution L of the KP hierarchy and its
associated dressing operator W is

ψ†(p∗, z) := (W †)−1e−ξ(p∗,z).

Similarly to (4.29) and (4.30), the adjoint wave function satisfies

L†ψ† = zψ† and ∂ψ†

∂pj
= −(L†)j+ψ†.

After the following lemma, we prove the defining property of the wave functions ψ
and ψ† of the KP hierarchy.

Lemma 4.3.3. For any A = q
i ai∂

j
x and B = q

j bj∂
j
x the following holds:

resz(Aexz ·Be−xz) = res∂x(A ◦B†),
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where resz denotes the coefficient of z−1 and res∂x the coefficient of ∂−1
x .

Proof. The left-hand side is

resz

3Ø
i

aiz
iexz

4
·
3Ø

j

bj(−z)je−xz
4 = resz

Ø
i,j

(−1)jaibjzi+j
 =

Ø
i+j=−1

(−1)jaibj ,

while the right-hand side is

res∂x

3Ø
i

ai∂
i
x

4
◦
3Ø

j

(−1)j∂jx ◦ bj
4 = res∂x

Ø
i,j

(−1)jai∂i+jx ◦ bj


= res

Ø
i,j

(−1)jai
Ø
k≥0

A
i+ j

k

B
(∂kxbj) ∂i+j−kx

 =
Ø

i+j+1≥0
(−1)jai

A
i+ j

i+ j + 1

B
∂i+j+1
x bj

=
Ø

i+j+1=0
(−1)jaibj ,

where in the last equality we used the fact that
! i+j
i+j+1

"
= 0 for i+ j + 1 > 0.

Theorem 4.3.4 (Bilinear identity). Let L be a solution of the KP hierarchy and W
a dressing operator, and ψ,ψ† the associated wave functions. Introduce the formal
variables λ∗ = (λj)j≥1 and p′

∗ := p∗ + λ∗. Then

resz
1
ψ(p∗, z) · ψ†(p′

∗, z)
2

= 0. (4.31)

The converse is also true: if γ(p∗, z) =
1
1 +q

i≥1 γiz
−i
2
eξ(p∗,z) and

ρ(p∗, z) =
1
1 +q

i≥1 ρiz
−i
2
e−ξ(p∗,z) satisfy

resz
!
γ(p∗, z) · ρ(p′

∗, z)
"

= 0,

then γ = Weξ(p∗,z) = ψ and ρ = (W †)−1e−ξ(p∗,z) = ψ† for a solution W of the SW
hierarchy.

Proof. Since p′
∗ = p∗ + λ∗, Taylor expanding the bilinear identity (4.31) around

λ∗ = 0 gives the equivalent condition

resz
A
ψ · ∂nψ†

∂pj1 · · · ∂pjn

B
= 0 for all n ≥ 0, j1, . . . , jn ≥ 1, (4.32)
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so we wish to prove (4.32). The property ∂ψ†

∂pj
= −(L†)j+ψ† implies that

∂nψ†

∂pj1 · · · ∂pjn
=

mØ
j=0

fj∂
j
xψ

†

for some m ≥ 0 and fj ∈ C[[p∗]], since only the positive part of each power of L†

is involved. So it suffices to prove resz(ψ · ∂jxψ†) = 0 for any j ≥ 0. Using Lemma
4.3.3,

resz(ψ · ∂jxψ†) = resz
1
Weξ(p∗,z) · (∂jx ◦ (W †)−1)e−ξ(p∗,z)

2
(4.28)= resz

1
Wexz ·

!
∂jx ◦ (W †)−1"e−xz

2
= res∂x

1
W ◦

!
∂jx ◦ (W †)−1"†2

= res∂x

1
W ◦W−1 ◦ (∂jx)†

2
= res∂x((−∂x)j) = 0.

Let us now prove the converse. Let æW = 1 +q
i≥1 γi∂

−i
x and åV = 1 +q

i≥1 ρi∂
−i
x ,

so that γ = æWeξ(p∗,z) and ρ = åV e−ξ(p∗,z). We have to prove that åV = (æW †)−1 and
that æW is a solution of the SW hierarchy. For the first part, we have that γ and ρ

satisfy (4.32), so the same computation that we have just done yields

0 = resz(γ · ∂jxρ) = (−1)j res∂x

1æW ◦ åV † ◦ ∂jx
2

for every j ≥ 0, which implies (æW ◦ åV †)− = 0. But (æW ◦ åV †)+ = 1, so æW ◦ åV † = 1
as required. Next, we show that æW satisfies the SW hierarchy (4.25)

∂æW
∂pj

= Lj− ◦ æW, L := æW ◦ ∂x ◦ æW−1. (4.33)

Firstly, notice that

∂æW
∂pj

eξ(p∗,z) = ∂

∂pj
(æWeξ(p∗,z))− (æW ◦ ∂jx)eξ(p∗,z) = ∂

∂pj
(æWeξ(p∗,z))− Lj(æWeξ(p∗,z)),

so A
∂æW
∂pj

+ Lj− ◦ æW
B
eξ(p∗,z) = ∂γ

∂pj
− Lj+γ.
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By assumption γ and ρ satisfy (4.32), so for all k ≥ 0:

0 = resz
A
∂kx ◦

A
∂γ

∂pj
− Lj+γ

B
· ρ
B

= resz
A
∂kx ◦

A
∂æW
∂pj

+ Lj− ◦ æW
B
eξ(p∗,z) · (æW−1)†e−ξ(p∗,z)

B

= res∂x

A
∂kx ◦

A
∂æW
∂pj

+ Lj− ◦ æW
B
◦ æW−1

B
.

Therefore
11

∂ åW
∂pj

+ Lj− ◦ æW2
◦ æW−1

2
−

= 0. But the positive part of this expression
also vanishes, so we obtain (4.33).

From now on, fix a solution W = 1+qi≥1 ωi(p∗)∂−i
x ∈ POp of the SW hierarchy

and L = W ◦ ∂x ◦ W−1 the corresponding solution of the KP hierarchy. DefineãW † := \(W †)−1
---
z Ô→−z

so that the adjoint wave function ψ† = ãW †e−ξ(p∗,z). Introduce
an operator Gz : C[[p∗]]→ C[[p∗]][[z−1]] defined by

f(p∗) Ô−→ f

3
p1 −

1
z
, p2 −

1
2z2 , p3 −

1
3z3 , . . .

4
. (4.34)

The action of Gz on C[[p∗]][z, z−1]] is given coefficient-wise, namely

Gz ·
Ø
n≤m

fn(p∗)zn =
Ø
n≤m

Gz(fn)zn.

Two consequences of the bilinear identity (4.31) are [Bur22, Propositions 5.24-5.25]

ãW−1 = Gz(ãW †) and ∂x log ãW = ω1 −Gz(ω1). (4.35)

Moreover, if we differentiate (4.34) by z we get

∂

∂z
Gz(f) =

Ø
j≥1

z−j−1 ∂

∂pj
Gz(f),

so the operator Nz := ∂
∂z −

q
j≥1 z

−j−1 ∂
∂pj

satisfies Nz(Gz(f)) = 0 for every f ∈
C[[p∗]]. With these facts and definitions in mind, we introduce the tau-function of
the KP hierarchy in the following theorem [Bur22, Theorem 5.27].

Theorem 4.3.5. Let W ∈ POp be a solution of the SW hierarchy. There exists a
unique formal power series τ(p∗) ∈ C[[p∗]] such that τ(0) = 1 and

ãW = Gz(τ)
τ

. (4.36)
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Moreover we have

∂ log τ
∂pj

= resz
1
zjNz(log ãW )

2
, j ≥ 1. (4.37)

We make a few comments about this theorem. Firstly, given a solution L = W ◦
∂x ◦W−1 ∈ POp of the KP hierarchy, equation (4.36) is taken as the definition of a
tau-function of the KP hierarchy associated L. This definition is actually equivalent
to the second condition (4.37), since

ãW = Gz(τ)
τ

⇐⇒ log(ãW ) = logGz(τ)− log τ = Gz(log τ)− log τ

⇐⇒ Nz(log ãW ) = −Nz(log τ) =
Ø
k≥1

z−k−1∂ log τ
∂pk

⇐⇒ resz
1
zjNz(log ãW )

2
= res

Ø
k≥1

zj−k−1∂ log τ
∂pk

 = ∂ log τ
∂pj

, j ≥ 1.

The second and third equivalences are valid because both expressions only contain
negative powers of z. The condition (4.37) arises because of the tau-symmetry

∂

∂pi
resz

1
zjNz(log ãW )

2
= ∂

∂pj
resz

1
ziNz(log ãW )

2
, i, j ≥ 1.

Tau-symmetry plays an important role in the theory of Hamiltonian evolutionary
PDEs, see [Dub+16] for example. We now see how to recover the conserved quan-
tities of the KP hierarchy from the tau-function.

Proposition 4.3.6. Let τ(p∗) ∈ C[[p∗]] be a tau-function of the KP hierarchy and
L = W ◦ ∂x ◦W−1 ∈ POp the corresponding solution. Then

resLi = ∂2 log τ
∂p1∂pi

, i ≥ 1. (4.38)

Proof. Consider the computation

∂2 log τ
∂p1∂pi

= ∂

∂p1
resz

1
ziNz(log ãW )

2
= resz

3
ziNz

3
∂

∂p1
log ãW44

(4.35)= resz
1
ziNz(ω1 −Gz(ω1))

2
= resz

1
ziNz(ω1)

2
= resz

−Ø
j≥1

zi−j−1∂ω1
∂pj

 = −∂ω1
∂pi

.

The last term is the coefficient of −∂−1
x on the left-hand side of the equation for
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the SW hierarchy,
∂W

∂pi
= −Li− ◦W.

Since Li− = resLi +q
j≥2 ωj∂

−j
x and W = 1 +q

j≥1 ωj∂
−j
x , the coefficient of −∂−1

x

on the right-hand side is resLi, proving the claim.

In Example 4.2.3 we switched to the normal coordinates of the KP hierarchy,
and obtained

∂

∂pj
resLi = res[Lj+, Li], i, j ≥ 1.

We computed the PDE corresponding to i = j = 2:

∂

∂p2
resL2 = ∂x

34
3 resL3 − 2(resL)2 − 1

3∂
2
x resL

4
.

Using Proposition 4.3.6, we can write this in terms of the tau-function by identifying
x = p1:

∂2 log τ
∂p2

2
= 4

3
∂2 log τ
∂p1∂p3

− 2
A
∂2 log τ
∂p2

1

B2

− 1
3
∂4 log τ
∂p4

1
. (4.39)

This is a form of the original KP equation, which describes nonlinear wave motion
[KP70].

In Example 4.2.5 we established a bijective correspondence between solutions
of the KdV hierarchy and solutions L ∈ POp of the KP hierarchy satisfying L2

− = 0.
By definition, a tau-function of the KdV hierarchy is a tau-function of the associ-
ated KP hierarchy. Therefore we see that the statement of the Witten-Kontsevich
theorem (Theorem 2.6.3) is that the generating series F for intersections of ψ-classes
is a tau-function of the KdV hierarchy.

Corollary 4.3.7. Let τ ∈ C[[p∗]] be a tau-function of the KP hierarchy. If τ is
a tau-function of the KdV hierarchy then ∂ log τ

∂p2j
is constant for all j ≥ 1. On the

other hand, if ∂ log τ
∂p2

is constant then τ is a tau-function of the KdV hierarchy.

Proof. Let L be the solution of the KP hierarchy associated to τ , and W a dressing
operator of L. If τ is a tau-function of the KdV hierarchy, then L2j

− = 0, so

∂W

∂p2j
= −L2j

− ◦W = 0.

Applying ∂
∂p2j

to
∂ log τ
∂pi

= resz
1
ziNz(log ãW )

2
, i ≥ 1, (4.40)
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gives ∂2 log τ
∂p2j∂pi

= 0 for all i ≥ 1, so ∂ log τ
∂p2j

is constant. On the other hand, sup-
pose ∂ log τ

∂p2
is constant. The dressing operator W is defined uniquely up to the

transformation (4.26)

W Ô−→W ◦

1 +
Ø
i≥1

ci∂
−i
x

 , ci ∈ C.

Therefore, since ãW = Gz(τ)
τ , the tau-function τ is defined uniquely up to the trans-

formation

τ Ô−→ τ exp

Ø
i≥1

dipi

 , di ∈ C, (4.41)

where 1 + q
i≥1 ciz

−i = exp
1
−
q
i≥1

di
i z

−i
2
. Therefore åτ = τ exp(−dp2) is also a

tau-function associated to L, where d = ∂ log τ
∂p2

. Then ∂ logåτ
∂p2

= 0, so the correspond-
ing dressing operator æW satisfies

0 = ∂æW
∂p2

= −L2
− ◦ æW,

so L2
− = 0, i.e. τ is a tau-function of the KdV hierarchy.

Thanks to the above corollary and the transformation (4.41) for the tau-function,
we deduce that solutions of the KdV hierarchy are in bijective correspondence with
tau-functions of the KP hierarchy that do not depend on the even variables. This
makes sense, because in the last section we identified the KdV variables tj with the
odd KP variables p2j+1. Moreover, the statement of the Witten-Kontsevich theorem
(Theorem 2.6.3) says that the generating series F (t∗) for intersection numbers of
ψ-classes is a tau-function of the KdV hierarchy.

To conclude this section we give an answer to the problem that we introduced
at the start, namely how to encode the countably many PDEs for the countably
many variables of the KP hierarchy into a single equation for a single function. It
would make sense for this single function to be the tau-function, since the equality

resLi = ∂2 log τ
∂p1∂pi

, i ≥ 1,

from Proposition 4.3.6 implies that one can obtain all the values of the normal
coordinates resLi from τ . The equation that we want will be a corollary of the
bilinear identity (4.31). Firstly, since the dressing operator W associated to τ
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satisfies ãW = Gz(τ)
τ , the corresponding wave function is

ψ(p∗, z) = Gz(τ)
τ

eξ(p∗,z) =
τ
1
p1 − 1

z , p2 − 1
2z2 , p3 − 1

3z3 , . . .
2

τ(p1, p2, p3, . . . )
eξ(p∗,z). (4.42)

Now introduce an operator G†
z : C[[p∗]]→ C[[p∗]][[z−1]] inverse to (4.34), namely

f(p∗) Ô−→ f

3
p1 + 1

z
, p2 + 1

2z2 , p3 + 1
3z3 , . . .

4
. (4.43)

The property Gz(W †) = ãW−1 from equation (4.35) implies that

ãW † = G†
z(Gz(ãW †)) (4.35)= G†

z(ãW−1) = G†
z

3
τ

Gz(τ)

4
= G†

z(τ)
τ

.

Hence the adjoint wave function is

ψ†(p∗, z) = G†
z(τ)
τ

e−ξ(p∗,z) =
τ
1
p1 + 1

z , p2 + 1
2z2 , p3 + 1

3z3 , . . .
2

τ(p1, p2, p3, . . . )
e−ξ(p∗,z). (4.44)

Corollary 4.3.8 (Hirota bilinear identity). Let τ(p∗) ∈ C[[p∗]] satisfy τ(0) = 1.
Then τ is a tau-function of the KP hierarchy if and only if

resz
3
τ

3
p1 −

1
z
, p2 −

1
2z2 , . . .

4
· τ
3
p′

1 + 1
z
, p′

2 + 1
2z2 , . . .

4
eξ(p∗,z)−ξ(p′

∗,z)
4

= 0,
(4.45)

where p′
∗ = p∗ + λ∗.

Proof. Suppose τ is a tau-function of the KP hierarchy. By Theorem 4.3.4, the
wave functions ψ(p∗, z) and ψ†(p∗, z), given by equations (4.42) and (4.44), satisfy
the bilinear identity

resz(ψ(p∗, z) · ψ†(p′
∗, z)) = 0,

which is equivalent to (4.45). Conversely, suppose τ satisfies (4.45). Then γ :=
Gz(τ)
τ eξ(p∗,z) and ρ := G†

z(τ)
τ e−ξ(p∗,z) satisfy the bilinear identity

resz
!
γ(p∗, z) · ρ(p′

∗, z)
"

= 0.

Then by Theorem 4.3.4, γ and ρ are wave functions associated to a solution W of
the SW hierarchy. Hence τ is a tau-function of the KP hierarchy.

We explain how the Hirota bilinear identity (4.45) encodes all the PDEs of
the KP hierarchy (4.15), following the ideas in [MJD00, Chapter 3]. To do this,
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we use the Hirota derivative. For two functions f(p) and g(p) of a single variable
p, the Hirota derivatives Di

pf · g, i ≥ 0, are defined by the Taylor expansion of
f(p+ q)g(p− q) around q = 0:

exp(qDp)f · g :=
Ø
i≥0

qi

i! (Di
pf · g) = f(p+ q)g(p− q).

In other words
1
i!D

i
pf · g =

Ø
n,m≥0
n+m=i

(−1)m
n!m!

∂nf

∂pn
∂mg

∂pm
.

For many independent variables p1, p2, . . . the Hirota derivativesDi1
pj1
· · ·Dik

pjk
f ·g :=

Di1
j1
· · ·Dik

jk
f · g are defined in a similar way:

exp

 ∞Ø
j=1

qjDj

 f · g = f(p1 + q1, p2 + q2, . . . )g(p1 − q1, p2 − q2, . . . ). (4.46)

We warn that the Dj in (4.46) are not to be confused with the evolutionary oper-
ators of the KP hierarchy from last section. In this case the standalone symbol Dj

does not mean anything, since it is not a differential operator. The notation estab-
lished above requires the presence of two functions f and g in the definition, and
so Djf · g should be interpreted as a single symbol. Consequently, the expression
Dj1Dj2f · g is not to be interpreted as Dj1(Dj2f · g), since this last expression has
no meaning.

Now we shift the variables p∗ in the Hirota bilinear identity (4.45) by p∗ Ô→
p∗ + 1

2λ∗ and define p′
∗ = p∗ − 1

2λ∗, so that the product of tau-functions has the
form of equation (4.46):

τ

3
pj +

11
2λj −

1
jzjü ûú ý

qj

24
j≥1

τ

3
pj −

11
2λj −

1
jzjü ûú ý

qj

24
j≥1

.

Then, using ξ(p∗ + 1
2λ∗, z)−ξ(p∗− 1

2λ∗, z) = q
j≥1 λjz

j , the Hirota bilinear identity
can be written as

resz

exp
1Ø
j≥1

λjz
j
2

exp
AØ
j≥1

1λj
2 −

1
jzj

2
Dj

B
τ · τ

 = 0. (4.47)

Expanding the two exponentials and taking the coefficient of z−1 yields all the
equations of the KP hierarchy, which appear as coefficients of monomials in the λ∗
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variables, which are of the form

P (D1, D2, D3, . . . )τ · τ = 0 (4.48)

for some polynomial P . Define the weight of the variable λj to be j. If the monomial
in λ∗ has weighted degree d, then the polynomial P in its coefficient (4.48) has
weighted degree d+ 1, where Dj is given the weight j.

As an example, we compute the coefficients of all the monomials in λ∗ of
weighted degree ≤ 3. Firstly,

exp
1Ø
j≥1

λjz
j
2

=1 + (λ1z + λ2z
2 + λ3z

3 + · · · ) + 1
2!(λ1z + λ2z

2 + · · · )2

+ 1
3!(λ1z + · · · )3 + · · ·

=1 + λ1z +
3
λ2 + 1

2λ
2
1

4
z2 +

3
λ3 + λ1λ2 + 1

6λ
3
1

4
z3 + · · · , (4.49)

where we have ignored all terms in z4 and above. For the second exponential, first
notice that the Hirota derivatives Di1

j1
· · ·Dik

jk
τ · τ are zero when i1 + · · ·+ ik is odd.

For example,

Djτ · τ = ∂τ

∂pj
τ − τ ∂τ

∂pj
= 0,

D3
j τ · τ = ∂3τ

∂p3
j

τ − 3∂
2τ

∂p2
j

∂τ

∂pj
+ 3 ∂τ

∂pj

∂2τ

∂p2
j

− τ ∂
3τ

∂p3
j

= 0.

So when expanding the second exponential in (4.47), we need only take the terms
of even power.

exp
AØ
j≥1

1λj
2 −

1
jzj

2
Dj

B

= 1 + 1
2!

331
2λ1 −

1
z

4
D1 +

31
2λ2 −

1
2z2

4
D2 +

31
2λ3 −

1
3z3

4
D3 + · · ·

42

+ 1
4!

331
2λ1 −

1
z

4
D1 + · · ·

44
+ · · ·

= − 1
2λ1D

2
1z

−1 + 1
2D

2
1z

−2

− 1
2λ2D1D2z

−1 − 1
4λ1D1D2z

−2 + 1
2D1D2z

−3

+
3
−1

2λ3D1D3 −
1
12λ

3
1D

4
1

4
z−1 +

3
−1

4λ2D
2
2 + 1

16λ
2
1D

4
1

4
z−2

+
3
−1

6λ1D1D3 −
1
12λ1D

4
1

4
z−3 +

31
8D

2
2 + 1

3D1D3 + 1
24D

4
1

4
z−4 + · · · ,
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where we have ignored all terms without z−1, z−2, z−3 or z−4. When we multiply
the above with (4.49) and only keep the z−1 term in accordance with the Hirota
bilinear identity, all the coefficients of monomials in λ∗ of weighted degree 1 and 2
(i.e. of λ1, λ

2
1 and λ2) vanish, and we are left with

0 = 1
144λ

3
1

1
D4

1 + 3D2
2 − 4D1D3

2
τ · τ − 1

24λ1λ2
1
D4

1 + 3D2
2 − 4D1D3

2
τ · τ

+ 1
24λ3

1
D4

1 + 3D2
2 − 4D1D3

2
τ · τ.

Hence we obtain the single Hirota bilinear PDE (D4
1 + 3D2

2 − 4D1D3)τ · τ = 0.
Using the readily checked facts

Dj1Dj2τ · τ = 2τ2 ∂
2 log τ

∂pj1∂pj2
, D4

j τ · τ = 2τ2∂
2 log τ
∂p4

j

+ 6τ2
A
∂2 log τ
∂p2

j

B2

,

we see that this PDE is exactly

∂2 log τ
∂p2

2
= 4

3
∂2 log τ
∂p1∂p3

− 2
A
∂2 log τ
∂p2

1

B2

− 1
3
∂4 log τ
∂p4

1
.

This is the original KP equation, which we already computed in (4.21) and (4.39).

In general, taking more terms in z when expanding the Hirota bilinear identity
yields the subsequent equations of the KP hierarchy in the form P (D1, D2, D3, . . . )τ ·
τ = 0, where P is an even polynomial of weighted degree ≥ 5. In general [KM81],
these Hirota bilinear equations have the form

det



åpµ1+1
1
− åD2 2 åpµ1+1

1 åD
2

2
· · · åpµ1+ℓ−1

1 åD
2

2
åpµ2

1
− åD2 2 åpµ2

1 åD
2

2
· · · åpµ2+ℓ−2

1 åD
2

2
...

... . . . ...åpµℓ−ℓ+2
1
− åD2 2 åpµℓ−ℓ+2

1 åD
2

2
· · · åpµℓ

1 åD
2

2


τ · τ = 0, (4.50)

where µ1 ≥ µ2 ≥ · · · ≥ µℓ ≥ 1, ℓ ≥ 2, åD = (D1, D2/2, D3/3, . . . ) and the
polynomials åpi are defined by

exp
1Ø
j≥1

λjz
j
2

=
Ø
i≥1

åpi(λ∗)zi.

The independent PDEs of the KP hierarchy obtained from (4.50) are indexed by
two-part partitions (µ1, µ2) ∈ Pd of d ≥ 4 (corresponding to the weighted degree
of P ) that do not contain a 1 [Mvo22]. For d = 4 there is a single equation corre-
sponding to the partition (2, 2), and for d = 5 there is also only one corresponding
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to (3, 2). For d = 6 there are two arising from (4, 2) and (3, 3), and so on.

4.4 Fock spaces
In the last section we introduced a way of encoding all the data of the KP hierarchy
into a single equation for a single function. The function is the tau-function τ(p∗) ∈
C[[p∗]], which is defined as the unique power series for which we can express the
wave function ψ(p∗, z) = ãWeξ(p∗,z) as

ψ(p∗, z) = Gz(τ)
τ

eξ(p∗,z) =
τ
1
p1 − 1

z , p2 − 1
2z2 , . . .

2
τ(p1, p2, . . . )

eξ(p∗,z).

The equation is the Hirota bilinear identity from Corollary 4.3.8:

resz
3
τ

3
p1 −

1
z
, p2 −

1
2z2 , . . .

4
τ

3
p′

1 + 1
z
, p′

2 + 1
2z2 , . . .

4
eξ(p∗,z)−ξ(p′

∗,z)
4

= 0.

These statements are pertinent to the space C[p∗], or rather its completion C[[p∗]].
In what follows, the space of polynomials in the variables p∗ will be referred to
as charge zero Bosonic Fock space. In general, Bosonic Fock space C[p∗][z, z−1]
includes an additional variable z. The differentiation and multiplication operators
∂
∂pn

and pn act in the usual way on C[p∗]. The commutation relations

5
∂

∂pn
,
∂

∂pm

6
= 0, [pn, pm] = 0,

5
∂

∂pn
, pm

6
= δnm :=

1, n = m,

0, n ̸= m,

define an algebra structure on the space generated by these operators. This algebra
is called the Heisenberg algebra B. The element 1 ∈ C[p∗] is called the vacuum state
and it generates the charge zero Bosonic Fock space, in the sense that C[p∗] = B ·1.
The differentiation operators ∂

∂pn
∈ B are referred to as annihilation operators since

they annihilate the vacuum state: ∂
∂pn
· 1 = 0. The multiplication operators pn ∈ B

are referred to as creation operators and C[p∗] has a linear basis obtained from the
action of the creation operators on the vacuum state: {pn1pn2 · · · pnr · 1}.

The reason for introducing this notation and nomenclature is because there
is another Fock space F0, called charge zero Fermionic Fock space. The Bosonic
representation of the Heisenberg algebra B can be identified with the Fermionic
representation of the Clifford algebra A, via the Boson-Fermion correspondence.
In particular, this provides a linear isomorphism between C[p∗] and F0. In this
section, we introduce the Clifford algebraA and its representation in Fermionic Fock
space, and derive the Fermionic counterparts of the tau-function and Hirota bilinear
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identity obtained from the Boson-Fermion correspondence. This is useful because it
gives one a relatively straightforward way of checking whether a function is actually
a tau-function of the KP hierarchy (i.e. whether it satisfies the Hirota bilinear
identity), which we will use to deduce that the disconnected Hurwitz potential

H•(β; p∗) =
Ø
µ

sµ(1, 0, 0, . . . )sµ(p∗)ef2(µ)β ∈ C[[p∗]][[β]]

from Sections 3.3-3.4 is a tau-function of the KP hierarchy. Most of this section
is adapted from [MJD00, Chapters 4-9], and a brief but detailed overview can be
found in [JM83, §1-§2].

Consider the Clifford algebra A generated by {ai, a†
i : i ∈ Z + 1

2} with the
anticommutation relations

{ai, aj} = 0, {a†
i , a

†
j} = 0, {ai, a†

j} = δi+j,0 =

1, i = −j,

0, i ̸= −j.
(4.51)

The anticommutator {·, ·} is defined by {A,B} := AB+BA. We call the elements
ai and a†

i Fermions, and they are indexed by half-integers. The relations above
imply, in particular, that a2

i = (a†
i )2 = 0. Note that the authors in [MJD00]

denote the Fermions by ψi and ψ∗
i , but we have opted for the notation above to

avoid confusion with the KP wave functions ψ and ψ†. By successively using the
anticommutation relations to transpose the order of products of Fermions, one can
write every element of the Clifford algebra A as a linear combination of monomials
of the form

ai1 · · · aira
†
j1
· · · a†

js
, i1 < · · · < ir and j1 < · · · < js.

The set of elements of this form form a linear basis of A [Bou59, Section 9.3].

Just like the Heisenberg algebra B acts on Bosonic Fock space, the Clifford
algebra A acts on Fermionic Fock space F . The space F is generated by increasing
sequences of half-integers λ = (λ1, λ2, λ3, . . . ) such that λj+1 = λj + 1 for all j
sufficiently large. We write them as

|λ⟩ = |λ1, λ2, λ3, . . . ⟩.

We can represent each generator |λ⟩ by a Maya diagram: a row of black and white
Go stones, where far away enough to the right all the stones are black, and far
away enough to the left all the stones are white. The components λ1, λ2, λ3, . . .
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Figure 9: Maya diagrams.

of |λ⟩ indicate the positions of the black stones, and all the other positions are
occupied by white stones. See Figure 9 for some examples. The vacuum state
|vac⟩ := |12 ,

3
2 ,

5
2 , . . . ⟩ corresponds to the Maya diagram where all the stones to the

left of 0 are white, and all the stones to the right of 0 are black. The action of
a−i ∈ A, i ∈ Z + 1

2 , on a vector |λ⟩ = |λ1, λ2, λ3, . . . ⟩ ∈ F is given as follows:

a−i|λ⟩ =

(−1)j−1|λ1, . . . , λj−1, λj+1, . . . ⟩, if λj = i for some j ≥ 1,

0, else.

The first expression is to be understood as |λ2, λ3, . . . ⟩ if λ1 = i. In terms of Maya
diagrams, if |λ⟩ contains a black stone at the ith position then the action of the
fermion a−i replaces it with a white stone. Otherwise it sends the vector |λ⟩ to
zero. On the other hand the action of a†

i ∈ A is

a†
i |λ⟩ =

(−1)j |λ1, . . . , λj , i, λj+1, . . . ⟩, if λj < i < λj+1 for some j ≥ 1,

0, else,

The first expression is to be understood as |i, λ1, λ2, . . . ⟩ if i < λ1. In this case if
|λ⟩ contains a white stone at the ith position then the action of a†

i replaces it with
a black stone. If not, it sends |λ⟩ to zero. Thanks to the powers of −1 in the above
definitions these actions are compatible with the anticommuation relations (4.51),
so that they define a representation of the Clifford algebra A on F . As an example,
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the action of ai and a†
i on the vacuum state |vac⟩ = |12 ,

3
2 ,

5
2 , . . . ⟩ is

ai|vac⟩ =

(−1)i+1|12 , . . . ,−i− 1,−i+ 1, . . . ⟩, if i < 0,

0, if i > 0,

a†
i |vac⟩ =

(−1)i|i, 1
2 ,

3
2 , . . . ⟩, if i < 0,

0, if i > 0.

From this we see that the fermions {ai, a†
i}i>0 indexed by positive half-integers an-

nihilate the vacuum state, and for this reason they are called annihilation operators.
On the other hand the fermions {ai, a†

i}i<0 indexed by negative half-integers are
called creation operators. It is clear that every Maya diagram can be obtained by
starting with the vacuum state diagram and switching white and black stones a
finite amount of times, so that every generator |λ⟩ ∈ F is obtained (up to a sign)
by applying creation operators to |vac⟩:

|λ⟩ = ± ai1 · · · aira
†
j1
· · · a†

js
|vac⟩, i1 < · · · < ir < 0 and j1 < · · · < js < 0. (4.52)

Such elements form a linear basis of F . The charge of |λ⟩ given above is ℓ :=
r− s ∈ Z, or equivalently ℓ := limj→∞(λj− j+ 1

2). Intuitively, the charge measures
how many times a white stone has replaced a black stone when starting from the
vacuum state. For each ℓ ∈ Z, we define |ℓ⟩ := |ℓ+ 1

2 , ℓ+ 3
2 , ℓ+ 5

2 , . . . ⟩ as the charge
ℓ Maya diagram obtained by shifting the vacuum state ℓ steps to the right, or −ℓ
steps to the left if ℓ < 0:

|ℓ⟩ =


a†
ℓ+ 1

2
· · · a†

− 1
2
|vac⟩, if ℓ < 0,

|vac⟩, if ℓ = 0,

a−ℓ+ 1
2
· · · a− 1

2
|vac⟩, if ℓ > 0.

Let F ℓ ⊂ F be the subspace spanned by the charge ℓ Maya diagrams. Then F
decomposes as the direct sum

F =
n
ℓ∈Z
F ℓ.

The dual Fermionic Fock space F∗ is defined dually to F . It is generated by
decreasing sequences of half-integers η = (η1, η2, η3, . . . ) such that ηj+1 = ηj − 1 for
j large enough. We write them as

⟨η| = ⟨. . . , η3, η2, η1|.
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In terms of Maya diagrams, each ηj denotes the position of a white stone. The
fermion ai ∈ A, i ∈ Z + 1

2 , acts on ⟨η| by replacing a black stone at the ith position
(if there is one) with a white one:

⟨η|ai =

(−1)j⟨. . . , ηj+1, i, ηj , . . . , η1|, if ηj+1 < i < ηj for some j ≥ 1,

0, else,

where the first expression is to be understood as ⟨. . . , η2, η1, i| if η1 < i. The action
of a†

−i replaces a white stone at the ith position with a black one:

⟨η|a†
−i =

(−1)j−1⟨. . . , ηj+1, ηj−1, . . . , η1|, if ηj = i for some j ≥ 1,

0, else,

where the first expression is to be understood as ⟨. . . , η3, η2| if η1 = i. As before, the
vacuum state ⟨vac| = ⟨. . . ,−5

2 ,−
3
2 ,−

1
2 | corresponds to the Maya diagram where all

the stones to the left of 0 are white and all the stones to the right of 0 are black.
The fermions {ai, a†

i}i<0 with negative index annihilate ⟨vac| in this case. Hence
each Maya diagram ⟨η| ∈ F∗ is of the form

⟨η| = ±⟨vac|ai1 · · · aira
†
j1
· · · a†

js
, 0 < i1 < · · · < ir and 0 < j1 < · · · < js.

The charge of ⟨η| given by the above equation is also defined as ℓ := r − s. The
standard charge ℓ Maya diagram ⟨ℓ| := ⟨. . . , ℓ− 5

2 , ℓ−
3
2 , ℓ−

1
2 | is therefore given by

⟨ℓ| =


⟨vac|a 1

2
· · · a−ℓ− 1

2
, if ℓ < 0,

⟨vac|, if ℓ = 0,

⟨vac|a†
1
2
· · · a†

ℓ− 1
2
, if ℓ > 0.

(4.53)

There is a pairing F∗ ×F → C, which is given by

(⟨η|, |λ⟩) Ô−→ ⟨η|λ⟩ := δλ1+η1,0 δλ2+η2,0 δλ3+η3,0 · · ·

on the generators, and extended linearly to all elements (⟨u|, |v⟩) ∈ F∗ × F . It
satisfies ⟨vac|vac⟩ = 1 and (⟨u|a)|v⟩ = ⟨u|(a|v⟩) for all a ∈ A, so we denote the
latter by ⟨u|a|v⟩. Moreover, we denote the vacuum expectation value ⟨vac|a|vac⟩ by
⟨a⟩ for short. The first few examples of vacuum expectation values are

⟨1⟩ = 1, ⟨ai⟩ = 0, ⟨a†
i ⟩ = 0, ⟨aiaj⟩ = 0, ⟨a†

ia
†
j⟩ = 0, (4.54)
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since in each case (except the first) one of the fermions will act as an annihilation
operator on the left or on the right; for example either ai|vac⟩ = 0 or ⟨vac|ai = 0, so
we must have ⟨ai⟩ = 0. The vacuum expectation value ⟨aia†

j⟩ can only be nonzero
if j < 0 < i, in which case we use the anticommutation relation (4.51) to get

⟨aia†
j⟩ = ⟨

!
{ai, a†

j} − a
†
jai
"
⟩ = δi+j,0⟨1⟩ − 0 = δi+j,0. (4.55)

In the spirit of the previous sections, we introduce the formal variable z and the
generating functions

a(z) :=
Ø

i∈Z+ 1
2

aiz
−i− 1

2 and a†(z) :=
Ø

i∈Z+ 1
2

a†
iz
i− 1

2

in order to keep track of a large number of fermions at once. From the equations
in (4.54) we obtain ⟨a(z)a(z′)⟩ = ⟨a†(z)a†(z′)⟩ = 0, whereas (4.55) gives

⟨a(z)a†(z′)⟩ =
Ø

i,j∈Z+ 1
2

⟨aia†
j⟩z

−i− 1
2 z′ −j− 1

2 =
Ø
j<0<i

δi+j,0z
−i− 1

2 z′ −j− 1
2

=
Ø
i>0

z−i− 1
2 z′ i− 1

2 =
Ø
n≥0

z−n−1z′n = 1
z − z′ .

When considering the representation of a product of Fermions in F it is useful
to have the annihilation operators on the right and the creation operators on the
left. To justify this statement, let us first look at the Heisenberg algebra B and its
left action on Bosonic Fock space C[p∗]. Let E = q

n≥1 npn
∂
∂pn

be the Cauchy-Euler
operator. Despite this being an infinite sum, its left action on C[p∗] is well-defined
because E · f(p∗) is a finite sum for any polynomial f(p∗). This is because all
the annihilation operators ∂

∂pn
∈ B are on the right and all the creation operators

pn ∈ B are on the left. If we consider E′ = q
n≥1 n

∂
∂pn

pn instead, the commutation
relation

è
∂
∂pn

, pn
é

= 1 gives E′ = q
n≥1 n

1
1 + pn

∂
∂pn

2
, which gives rise to an infinite

sum when acting on 1 ∈ C[p∗], for example. For this reason, we introduce a normal
product on the algebra B, denoted by colons. It is defined inductively by

: 1 : = 1, : b ∂

∂pn
: = : b : ∂

∂pn
, : pn b : = pn : b : , b ∈ B,

and by imposing the condition that creation and annihilation operators inside the
colons commute with each other. Then, for example,

: ∂

∂pn
pn : = : pn

∂

∂pn
: = pn

∂

∂pn
.
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We define the normal product in the Clifford algebra A in the same way, by plac-
ing the annihilation operators {ai, a†

i}i>0 on the right and the creation operators
{ai, a†

i}i<0 on the left. This time we impose the condition that annihilation and
creation operators anticommute with each other inside the colons. For example, if
i < 0 < j then : aia†

j : = aia
†
j . If j < 0 < i on the other hand, then

: aia†
j : = − : a†

jai : = −a†
jai = aia

†
j − {ai, a

†
j}.

So for any i, j ∈ Z + 1
2 we can use the vacuum expectation value (4.55) to write

: aia†
j : = aia

†
j − ⟨aia

†
j⟩.

We define another generating series by

Ø
n∈Z

Hnz
−n−1 = : a(z)a†(z) : =

Ø
i,j∈Z+ 1

2

: aia†
j : z−i−j−1,

so that each coefficient is

Hn =
Ø

i∈Z+ 1
2

: a−ia
†
i+n : . (4.56)

From the previous discussion, the presence of normal products in this infinite sum
ensures that the action of each Hn on F gives rise to well-defined finite sums. The
following commutation relations hold:

[Hn, ai] = ai+n, [Hn, a
†
i ] = −a†

i+n, [Hn, Hm] = nδm+n,0. (4.57)

Let
H(p∗) :=

Ø
n≥1

pnHn.

Using the commutation relations (4.57) between Hn and the fermions ai, a†
i , we can

compute the corresponding commutators between H(p∗) and a(z), a†(z):

[H(p∗), a(z)] =
Ø
n≥1

Ø
i∈Z+ 1

2

pn[Hn, ai]z−i− 1
2 =

Ø
n≥1

Ø
i∈Z+ 1

2

pnai+nz
−i− 1

2

=
Ø
n≥1

pnz
n
Ø

i∈Z+ 1
2

aiz
−i− 1

2 = ξ(p∗, z)a(z),
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where ξ(p∗, z) = q
n≥1 pnz

n was introduced in Section 4.3. Hence

eH(p∗)a(z) =
Ø
k≥0

1
k!H(p∗)ka(z) =

Ø
k≥0

1
k!a(z)(H(p∗) + ξ(p∗, z))k

= a(z)eH(p∗)+ξ(p∗,z) = a(z)eH(p∗)eξ(p∗,z). (4.58)

A similar procedure yields

[H(p∗), a†(z)] = −ξ(p∗, z)a†(z) and eH(p∗)a†(z) = a†(z)e−ξ(p∗,z). (4.59)

We can now relate Fermionic Fock space F and Bosonic Fock space C[p∗][z, z−1]
[MJD00, Theorem 5.1].

Theorem 4.4.1. The map Φ : F → C[p∗][z, z−1] given by

Φ(|u⟩) :=
Ø
ℓ∈Z

zℓ⟨ℓ|eH(p∗)|u⟩.

is an isomorphism of vector spaces.

We remind that for ℓ ∈ Z, the vector ⟨ℓ| ∈ F∗ is the charge ℓ Maya diagram (4.53)
obtained by shifting the vacuum state ℓ steps to the right. The full statement of
the Boson-Fermion correspondence [MJD00, Theorem 5.2] also realizes the action
of the Clifford algebra A on F in terms of the action of the Heisenberg algebra B
on C[p∗][z, z−1], but in our case we only need the linear isomorphism Φ. From the
expression for Hn in equation (4.56) one readily sees that HnF ℓ ⊂ F ℓ for every
charge ℓ subspace F ℓ ⊂ F , so Φ|Fℓ gives an isomorphism F ℓ

∼=−→ zℓC[p∗].

In particular we have a linear isomorphism between the charge zero Fock spaces:
F0 ∼=−→ C[p∗]. We briefly present an alternative way of describing the former, which
is more commonly used in modern literature [Bur22; Kaz08; KL07; Lan10; Wan21].
Charge zero Fermionic Fock space F0 is the semi-infinite wedge product of Laurent
series w∞/2 C[z, z−1]. It is the space spanned by the following vectors indexed by
generalized partitions (see Definition 4.1.1):

vµ := z1−µ1 ∧ z2−µ2 ∧ z3−µ3 ∧ · · · , µ1 ≥ µ2 ≥ · · · ≥ 0. (4.60)

The vacuum state is the vector corresponding to the partition of zero: |vac⟩ =
v(0,0,... ) = z1∧z2∧z3∧· · · . The correspondence between charge zero Maya diagrams
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and semi-infinite wedge products is

|λ1, λ2, λ3, . . . ⟩ Ô−→ zλ1+ 1
2 ∧ zλ2+ 1

2 ∧ zλ3+ 1
2 ∧ · · · ,

|12 − µ1,
3
2 − µ2,

5
2 − µ3, . . . ⟩ ←−[ z1−µ1 ∧ z2−µ2 ∧ z3−µ3 ∧ · · · ,

(4.61)

in other words λj + 1
2 = j − µj . The condition λj+1 = λj + 1 for j large enough

translates to µj+1 = µj = 0, and the action of the Clifford algebra A is given by
composing (4.61) with the previously defined actions. All the previous statements
about F in terms of Maya diagrams can be readily translated into statements about
semi-infinite wedge products. In particular, the linear isomorphism Φ : F0 → C[p∗]
sends the basis elements (4.60) to the Schur functions introduced in Section 3.4:

vµ Ô−→ sµ(p∗).

Therefore the disconnected Hurwitz potential H•(β; p∗) ∈ C[[p∗]][[β]] is mapped to

Ø
µ

sµ(1, 0, 0, . . . )ef2(µ)β vµ ∈ F0[[β]],

where F0 denotes the completion of F0.

Now that we have a correspondence between F0 and C[p∗], we explain the
Fermionic analogues of the Hirota bilinear identity and the KP wave function. The
essential question that we would like to answer is: to what subset of F0 is the set of
tau-functions in C[p∗] mapped to under the Boson-Fermion isomorphism? Firstly,
we generalize expressions such as Hn = q

i∈Z+ 1
2

: a−ia
†
i+n : to include general

charge-preserving operators involving quadratic expressions in Fermions:

XA =
Ø

i,j∈Z+ 1
2

cij : a−ia
†
j : ,

where A = (cij) denotes an infinite matrix. As before, we have expressed such
operators with the normal product in order for their action on F0 to be well-defined.
We impose a further condition on A, namely

there exists N > 0 such that cij = 0 whenever |i− j| > N. (4.62)

The infinite-dimensional Lie algebra gl(∞) is defined to be the vector space gen-
erated by operators XA satisfying (4.62). For example, each Hn belongs to gl(∞)
since its matrix coefficients are cij = δi+n,j . Condition (4.62) ensures that the com-
mutator bracket of gl(∞) only involves finite sums, and hence is well-defined. The
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infinite-dimensional Lie group corresponding to gl(∞) is

GL(∞) = {eX1eX2 · · · eXk : k ≥ 0, Xi ∈ gl(∞)}.

Since each Xi ∈ gl(∞) preserves charge, every element in GL(∞) does so too. Thus
the representation of A in F restricts to a representation of GL(∞) in F0. Denote
the orbit of the vacuum state |vac⟩ in this representation by GL(∞)|vac⟩ ⊂ F0.
The following theorem answers the question: to what subset of F0 is the set of
tau-functions in C[p∗] mapped to under the Boson-Fermion isomorphism?

Theorem 4.4.2. The set of tau-functions in C[p∗] corresponds to GL(∞)|vac⟩
under the isomorphism Φ : F0 → C[p∗].

To prove this, first consider any |u⟩ ∈ F0 and denote Φ(|u⟩) by f(p∗). Let ε(z−1)
be shorthand notation for

1
1
z ,

1
2z2 ,

1
3z3 , . . .

2
. Using Wick’s theorem, one can show

[MJD00, Lemma 5.3] that

⟨1|a(z) = ⟨vac|e−H(ε(z−1)). (4.63)

Using this we compute the image of a(z)|u⟩ in C[p∗]:

Φ
!
a(z)|u⟩

"
= ⟨1|eH(p∗)a(z)|u⟩ (4.58)= ⟨1|a(z)eH(p∗)|u⟩eξ(p∗,z)

(4.63)= ⟨vac|e−H(ε(z−1))eH(p∗)|u⟩eξ(p∗,z)

= ⟨vac|eH(p∗−ε(z−1))|u⟩eξ(p∗,z) = f(p∗ − ε(z−1))eξ(p∗,z)

= f

3
p1 −

1
z
, p2 −

1
2z2 , p3 −

1
3z3 , . . .

4
eξ(p∗,z),

(4.34)= Gz(f)eξ(p∗,z) = Gz
!
Φ(|u⟩)

"
eξ(p∗,z). (4.64)

Using the similar result ⟨−1|a†(z) = ⟨vac|eH(ε(z−1)) and equation (4.59) one also
shows that

Φ
!
a†(z)|u⟩

"
= G†

z

!
Φ(|u⟩)

"
e−ξ(p∗,z). (4.65)

For the set of independent variables p′
∗, denote the isomorphism F0 → C[p′

∗] by Φ′.
Then Φ(|u⟩) ∈ C[p∗] satisfies the Hirota bilinear identity

resz
1
Gz
!
Φ(|u⟩)

"
·G†

z

!
Φ′(|u⟩)

"
eξ(p∗,z)−ξ(p′

∗,z)
2

= 0
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if and only if

resz
1
Φ
!
a(z)|u⟩

"
· Φ′!a†(z)|u⟩

"2
= 0

⇐⇒ resz

 Ø
i,j∈Z+ 1

2

Φ(aj |u⟩) · Φ′(a†
i |u⟩)z−i−j−1

 = 0

⇐⇒
Ø

i∈Z+ 1
2

Φ(a−i|u⟩) · Φ′(a†
i |u⟩) = 0

⇐⇒ (Φ⊗ Φ′)

 Ø
i∈Z+ 1

2

a−i|u⟩ ⊗ a†
i |u⟩

 = 0

⇐⇒
Ø

i∈Z+ 1
2

a−i|u⟩ ⊗ a†
i |u⟩ = 0. (4.66)

We call this last equation the Fermionic bilinear identity, since it is the equivalent
of the Hirota bilinear identity in charge zero Fermionic Fock space F0. By Corollary
4.3.8, the polynomial Φ(|u⟩) ∈ C[p∗] is a tau-function of the KP hierarchy (up to an
additive constant) if and only if |u⟩ satisfies the Fermionic bilinear identity (4.66).
Therefore the statement of Theorem 4.4.2 is a direct corollary of the next theorem,
which is preceded by the following small lemma.

Lemma 4.4.3. Let

|u⟩ := ai1 · · · aira
†
j1
· · · a†

jr
|vac⟩ ∈ F0, i1 < · · · < ir < 0, j1 < · · · < jr < 0,

be a generic charge zero Maya diagram. Then one can ‘replace’ the white and black
stones arising from the action of ai1 and a†

j1
as follows:

(1− b†
i1,j1

bi1,j1)|u⟩ = (−1)r−1ai2 · · · aira
†
j2
· · · a†

jr
|vac⟩,

where bi1,j1 := ai1 + a−j1 and b†
i1,j1

:= a†
−i1 + a†

j1
.

Proof. We perform the proof for r = 1, the general case following analogously. Let
|u⟩ = aia

†
j |vac⟩ for i, j < 0. Then using the anticommutation relations (4.51):

bij |u⟩ = aiaia
†
j |vac⟩+ a−jaia

†
j |vac⟩ = −aia−ja

†
j |vac⟩ = −ai|vac⟩+ aia

†
j a−j |vac⟩ü ûú ý

=0

.
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Thus

b†
ijbij |u⟩ = −a†

−iai|vac⟩−a†
jai|vac⟩ = −|vac⟩+ai a

†
−i|vac⟩ü ûú ý

=0

+aia†
j |vac⟩ = −|vac⟩+ |u⟩.

Rearranging yields (1− b†
ijbij)|u⟩ = |vac⟩.

As previously mentioned, this next theorem gives a direct proof of Theorem
4.4.2. A similar proof can be found in [KR87, Proposition 7.2].

Theorem 4.4.4. Let |u⟩ ∈ F0 be nonzero. Then |u⟩ lies in GL(∞)|vac⟩ if and
only if it satisfies the Fermionic bilinear identity

Ø
i∈Z+ 1

2

a−i|u⟩ ⊗ a†
i |u⟩ = 0.

Proof. Suppose |u⟩ = g|vac⟩ for some g ∈ GL(∞). If g = 1, then |u⟩ = |vac⟩ clearly
satisfies the Fermionic bilinear identity because either a−i|vac⟩ = 0 or a†

i |vac⟩ = 0
for every i ∈ Z + 1

2 . If g = eXA with XA = q
i,j cij : a−ia

†
j : , consider first the

readily computed commutation relations

[XA, a−i] =
Ø

j∈Z+ 1
2

cji a−j and [XA, a
†
i ] =

Ø
j∈Z+ 1

2

(−cij) a†
j .

Hence the transformation matrices corresponding to {a−i}i and {a†
i}i are the con-

tragredient of one another, so

Ø
i∈Z+ 1

2

[XA, a−i]|vac⟩ ⊗ a†
i |vac⟩+

Ø
i∈Z+ 1

2

a−i ⊗ [XA, a
†
i ]|vac⟩ = 0.

We write this more suggestively as

Ø
i∈Z+ 1

2

1
XAa−i|vac⟩ ⊗ a†

i |vac⟩+ a−i|vac⟩ ⊗XAa
†
i |vac⟩

2
=

Ø
i∈Z+ 1

2

1
a−iXA|vac⟩ ⊗ a†

i |vac⟩+ a−i|vac⟩ ⊗ a†
iXA|vac⟩

2
.
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Hence if we consider the two power series in t given by

f(t) =
Ø

i∈Z+ 1
2

etXAa−i|vac⟩ ⊗ etXAa†
i |vac⟩,

g(t) =
Ø

i∈Z+ 1
2

a−ie
tXA |vac⟩ ⊗ a†

ie
tXA |vac⟩,

the result above implies that dn

dtn f(t)
---
t=0

= dn

dtn g(t)
---
t=0

for all n ≥ 0. Therefore
f(1) = g(1), or in other words

Ø
i∈Z+ 1

2

eXAa−i|vac⟩ ⊗ eXAa†
i |vac⟩ =

Ø
i∈Z+ 1

2

a−ie
XA |vac⟩ ⊗ a†

ie
XA |vac⟩ (4.67)

=
Ø

i∈Z+ 1
2

a−i|u⟩ ⊗ a†
i |u⟩.

But the first expression in (4.67) vanishes for the same reason as before, so |u⟩
satisfies the Fermionic bilinear identity. Applying this reasoning repeatedly, one
can show that (4.67) holds for any g = eX1eX2 · · · eXk ∈ GL(∞) instead of just
eXA , which shows that any |u⟩ = g|vac⟩ satisfies the Fermionic bilinear identity.
Conversely, suppose |u⟩ ∈ F0 satisfies qi∈Z+ 1

2
a−i|u⟩⊗ a†

i |u⟩ = 0. The vector |u⟩ is
a linear combination of charge zero Maya diagrams

ai1 · · · aira
†
j1
· · · a†

jr
|vac⟩, i1 < · · · < ir < 0, j1 < · · · < jr < 0.

The fermions bij and b†
ij (i, j < 0) from Lemma 4.4.3 satisfy {bij , b†

ij} = 2 and
(bij)2 = (b†

ij)2 = 0, so (b†
ijbij)k = 2k−1b†

ijbij for k ≥ 1. Hence

GL(∞) ∋ eiπb
†
ijbij/2 = 1− b†

ijbij .

Thus by Lemma 4.4.3 we can transform |u⟩ by a suitable element g ∈ GL(∞) to
reduce it to the form

g|u⟩ = |vac⟩+
Ø
i,j<0

dijaia
†
j |vac⟩+ · · · ,

where dij ∈ C and the remaining terms involve |vac⟩ being acted on by four or more
fermions. Next, acting with g′ = exp

1
−
q
i,j<0 dijaia

†
j

2
∈ GL(∞) yields

|u′⟩ := g′g|u⟩ = |vac⟩+
Ø

i1,i2,j1,j2<0
di1,i2,j1,j2ai1ai2a

†
j1
a†
j2
|vac⟩+ · · · .

As we have shown in the first part of this proof in equation (4.67), the Fermionic
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bilinear identity (4.66) is invariant under the action of GL(∞), so that our initial
assumption about |u⟩ implies

Ø
i∈Z+ 1

2

a−i|u′⟩ ⊗ a†
i |u

′⟩ = 0. (4.68)

Since the terms in |u′⟩ after |vac⟩ involve multiplication by at least four fermions we
have a−i|u′⟩ ≠ 0 for −i < 0 and a†

i |u′⟩ ≠ 0 for i < 0. Then (4.68) implies a†
i |u′⟩ = 0

for −i < 0 and a−i|u′⟩ = 0 for i < 0. Thus |u′⟩ is annihilated by all the annihilation
operators, and so it must be a scalar multiple of |vac⟩. We therefore conclude that
|u⟩ = (g′g)−1|u′⟩ lies in GL(∞)|vac⟩.

We have completed the proof of Theorem 4.4.2, which claimed that the tau-
functions of the KP hierarchy are in bijective correspondence with elements in the
orbit of the vacuum state. We denote the tau-function corresponding to g|vac⟩ ∈
GL(∞)|vac⟩ by

τg(p∗) := Φ(g|vac⟩) = ⟨vac|eH(p∗)g|vac⟩.

Moreover, thanks to equations (4.64) and (4.65), the wave function ψg(p∗, z) =
Gz(τg)
τg

eξ(p∗,z) and adjoint wave function ψ†(p∗, z) = G†
z(τg)
τg

e−ξ(p∗,z) of τg(p∗, z) are

ψg(p∗, z) = Φ(a(z)g|vac⟩)
Φ(g|vac⟩) = ⟨1|e

H(p∗)a(z)g|vac⟩
⟨vac|eH(p∗)g|vac⟩

,

ψ†
g(p∗, z) = Φ(a†(z)g|vac⟩)

Φ(g|vac⟩) = ⟨−1|eH(p∗)a†(z)g|vac⟩
⟨vac|eH(p∗)g|vac⟩

.

Our next goal is to understand the inclusion of the set of tau-functions in C[p∗],
which we now know to be equivalent to the inclusion of GL(∞)|vac⟩ in F0, as
an embedding of a certain Grassmannian into a projectivized wedge space. This
is called the Plücker embedding, and the equations that define it (the Plücker
relations) will give us a relatively straightforward criterion to determine whether a
function is a tau-function of the KP hierarchy.

4.5 Plücker embedding
We start by describing the simplest nontrivial instance of the Plücker embedding.
Let G(2, 4) denote the set of 2-dimensional subspaces of the C-vector space V = C4.
Fix a basis {v1, v2, v3, v4} of C4. Every element W of G(2, 4) is determined by a
choice of basis {w1, w2}, or equivalently by a choice of a 4×2 matrix (w1w2) of full
rank. This choice is not unique, since the set of all possible bases of W is given by
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the GL(2) orbit of {w1, w2}:aw1 + bw2, cw1 + dw2 :

a b

c d

 ∈ GL(2)

 .
Thus we identify G(2, 4) with V (2, 4)/GL(2), where V (2, 4) is the set of 4 × 2
matrices of full rank and the action of GL(2) is by right matrix multiplication. For
an element (w1w2) ∈ G(2, 4), consider the wedge product w1 ∧ w2 ∈

w2 C4. A
different representative (w1w2)g, g ∈ GL(2), of the same equivalence class will give
rise to the wedge product det(g)w1∧w2, so the assignment G(2, 4)→ w2 C4 is only
well-defined up to a scalar constant. Hence projectivizing the target space gives
rise to a well-defined map

G(2, 4) −→ P
1Þ2

C4
2
.

This is the Plücker embedding. It maps elements of G(2, 4) to decomposable forms
in P

1w2 C4
2
, and conversely every decomposable form lies in its image. The space

G(2, 4) has a structure of a complex manifold of dimension dimV (2, 4)/GL(2) =
dimV (2, 4) − dimGL(2) = 4. The basis {v1, v2, v3, v4} of C4 induces a basis
{v1 ∧ v2, v1 ∧ v3, v1 ∧ v4, v2 ∧ v3, v2 ∧ v4, v3 ∧ v4} of w2 C4, consisting of

!4
2
"

= 6
elements. Hence P

1w2 C4
2

is a complex manifold of dimension
!4

2
"
− 1 = 5. It is

therefore natural to ask what the defining equation of the Plücker embedding is,
or equivalently the equation that determines whether a sum of wedge products is
decomposable. To answer this consider a 4 × 2 matrix with columns w1 and w2,
with wk = q4

i=1 xikvi:

(w1w2) =


x11 x12

x21 x22

x31 x32

x41 x42

 .

This matrix determines an element of G(2, 4) if and only if it is of full rank, or
equivalently if at least one of the six 2× 2 subdeterminants

yij := xi1xj2 − xi2xj1, i < j, (4.69)

is nonzero. These subdeterminants appear as coefficients in the wedge product

w1 ∧ w2 =
A 4Ø
i=1

xi1vi

B
∧

 4Ø
j=1

xj2vj

 =
Ø
i<j

yijvi ∧ vj .
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Thus the linear coordinates of the image of (w1w2) ∈ G(2, 4) under the Plücker
embedding are yij = xi1xj2 − xi2xj1, which we call the Plücker coordinates of an
element of G(2, 4). They are quadratic expressions in {xik}, and they satisfy the
quadratic relation

y12y34 − y13y24 + y14y23 = 0. (4.70)

Conversely if qi<j Yijvi ∧ vj is any element of P
1w2 C4

2
whose linear coordinates

Yij satisfy (4.70), then Yij must be of the form (4.69), so qi<j Yijvi ∧ vj lies in the
image of the Plücker embedding. Hence the relation above uniquely describes the
Plücker embedding, and is called the Plücker relation.

The story for general Grassmannians is similar. Let n ≥ 0 and k ≤ n, and let
G(k, n) be the Grassmannian manifold of k-dimensional subspaces W of V = Cn.
Every subspace is determined by an n× k matrix of full rank up to a right GL(k)-
action, so G(k, n) ∼= V (k, n)/GL(k). Taking the wedge product of basis elements
up to a scalar factor defines the Plücker embedding

G(k, n) −→ P
3Þk

Cn
4
. (4.71)

The dimension of G(k, n) is dimV (k, n)− dimGL(k) = nk − k2 = k(n− k), while
the dimension of P

1wk Cn2 is the generally much larger number
!n
k

"
− 1. Given

a basis {v1, . . . , vn} of Cn, the linear coordinate in wk Cn corresponding to the
basis element vi1 ∧ · · · ∧ vik (1 ≤ i1 < · · · < ik ≤ n) is denoted by Yi1,...,ik . The
relations that determine the Plücker embedding are once again linked to the k × k
subdeterminants yi1,...,ik of a matrix in V (k, n) [MJD00, Theorems 8.1-8.2].

Theorem 4.5.1. Let (Yi1,...,ik) be linear coordinates of an element of P
1wk Cn2.

Then this element lies in the image of the Plücker embedding G(k, n)→ P
1wk Cn2

if and only if, for every choice of distinct indices 1 ≤ i1, . . . , in−1, j1, . . . , jn+1 ≤ n,
we have

k+1Ø
ℓ=1

(−1)ℓ−1Yi1,...,in−1,jℓ Yj1,...,jℓ−1,jℓ+1,...,jn+1 = 0. (4.72)

The equations above are the Plücker relations.

Notice that these relations are once again quadratic, just like the Hirota and
Fermionic bilinear identities (4.45), (4.66).

We now give a brief overview of how one may understand the inclusionGL(∞)|vac⟩ ⊂
F0 as an infinite-dimensional analogue of the Plücker embedding (4.71), following
[MJD00, Chapter 9] and [JM83, §1-§2]. First, for arbitrary n ≥ 1, denote by An the
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subalgebra of the Clifford algebra A generated by the fermions ai, a†
i with indices

|i| < n. Let

Vn :=
n
|i|<n

Cai, V †
n :=

n
|i|<n

Ca†
i , Wn := Vn ⊕ V †

n

be the vector spaces generated by the individual fermions. Notice that the dimen-
sion of Vn and V †

n is 2n. Define the finite-dimensional Fermionic Fock space Fn in
the same way as in the previous section.

Let A×
n ⊂ An denote the subset of invertible elements. This is nonzero, since

for example (a− 1
2

+ a†
1
2
)−1 = a− 1

2
+ a†

1
2
. For g ∈ A×

n , define Tg : An → An by
a Ô→ gag−1. The Clifford group is

G(Wn) = {g ∈ A×
n : Tg(Wn) ⊂Wn}.

The anticommutator bracket {·, ·} defines a nondegenerate symmetric bilinear form
on Wn. Denote the orthogonal subgroup of GL(Wn) with respect to {·, ·} by O(Wn).
A straightforward check confirms that g ∈ G(Wn) =⇒ Tg ∈ O(Wn). The converse
is also true.

Lemma 4.5.2. Any T ∈ O(Wn) is of the form Tg for some g ∈ G(Wn).

Proof. An element g ∈ Wn is invertible if and only if {g, g} ̸= 0, in which case
g−1 = 2g

{g,g} . For such a g we have

Tg(a) = gag−1 = (−ag + {a, g})g−1 = −a+ 2
î
a,

gð
{g, g}

ï gð
{g, g}

for all a ∈ An, so −Tg is a reflection through the plane perpendicular to g√
{g,g}

.
The lemma follows because O(Wn) is generated by reflections.

Lemma 4.5.3. Let g, g′ ∈ G(Wn). Then Tg = Tg′ ⇐⇒ g = cg′ for some c ∈ C×.

Proof. The ⇐= direction follows by definition of Tg. Since Tg ◦ Tg′ −1 = Tgg′ −1 we
can take g′ = 1 without loss of generality. If Tg = id then g belongs to the centre
of An. Since the algebra An is isomorphic to the algebra of 22n × 22n matrices
[Bou59][Section 9.4], its centre is C.

Define a subgroup of the Clifford group G(Wn) by

Gn = {g ∈ A× : Tg(Vn) ⊂ Vn, Tg(V †
n ) ⊂ V †

n}.
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As n → ∞ this corresponds to the infinite-dimensional Lie group GL(∞) defined
in the previous section. The reason for this is that given a Fermionic operator of
the form XA = q

i,j∈Z+ 1
2
cij : a−ia

†
j : , the commutation relations

[XA, a−i] =
Ø

j∈Z+ 1
2

cji a−j and [XA, a
†
i ] =

Ø
j∈Z+ 1

2

(−cij) a†
j

imply that eXAVne
−XA ⊂ Vn and eXAV †

n e
−XA ⊂ V †

n for any n ≥ 1, where we use

eXAae−XA = 1 + [XA, a] + 1
2! [XA, [XA, a]] + 1

3! [XA, [XA, [XA, a]]] + · · · .

Proposition 4.5.4. The map Gn → GL(Vn), g Ô→ Tg is a surjective group homo-
morphism with kernel C.

Proof. Let T ∈ GL(Vn), written as Ta−i = q
|j|<n cjia−j . Define T † ∈ GL(V †

n ) by
T †a†

i = q
|j|<n c

−1
ij a

†
j . Then

{Ta−i, T
†a†
j} =

Ø
|k|,|ℓ|<n

ckic
−1
jℓ {a−k, a

†
ℓ} =

Ø
|k|<n

ckic
−1
jk = δji = {a−i, a

†
j}.

Thus T ⊕ T † ∈ GL(Wn) lies in O(Wn). By Lemma 4.5.2 we have T ⊕ T † = Tg

for some g ∈ G(Wn). By construction g lies in the subgroup Gn, and moreover
T = Tg|Vn

. The fact that the kernel is C is a direct consequence of Lemma 4.5.3.

Now for |u⟩ ∈ Fn, let

Vn(|u⟩) := {a ∈ Vn : a|u⟩ = 0}

be the subspace of Vn consisting of elements that annihilate |u⟩. Then, for example,
Vn(|vac⟩) = m

0<i<nCai and

Vn(ai1 · · · aira
†
j1
· · · a†

jr
|vac⟩) =

n
0<i<n

i ̸=−i1,...,−ir

Cai ⊕
rn
ℓ=1

Cajℓ

are both n-dimensional subspaces of the 2n-dimensional space Vn, in other words
elements of the Grassmannian G(n, 2n). For g ∈ Gn and a ∈ Vn we can write ag =
gTg

−1(a), so a ∈ Vn(g|vac⟩) ⇐⇒ gTg
−1(a)|vac⟩ = 0 ⇐⇒ Tg

−1(a) ∈ Vn(|vac⟩).
Hence Vn(g|vac⟩) = TgVn(|vac⟩), which means that Vn(g|vac⟩) is an n-dimensional
subspace of Vn for every g ∈ Gn.
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Proposition 4.5.5. Let g, g′ ∈ Gn. Then

Vn(g|vac⟩) = Vn(g′|vac⟩) ⇐⇒ g = cg′ for some c ∈ C×.

Proof. The ⇐= direction is clear. Since Vn(g|vac⟩) = TgVn(|vac⟩) we can assume
that g′ = 1. Then suppose Vn(g|vac⟩) = Vn(|vac⟩). Firstly, this implies that
aig|vac⟩ = 0 for all 0 < i < n. Next, define the subspace V †

n (g|vac⟩) ⊂ V †
n in the

same way as before. Since g ∈ Gn, by the reasoning in Proposition 4.5.4 the matrix
(cij) corresponding to Tg|Vn

is the inverse transpose of the one for Tg|V †
n

. Hence
we also have TgV †

n (|vac⟩) = V †
n (|vac⟩), and since the former subspace is equal to

V †
n (g|vac⟩), this implies that a†

ig|vac⟩ = 0 for all 0 < i < n. We have concluded
that g|vac⟩ is annihilated by all the annihilation operators {ai, a†

i}0<i<n, so it must
be a scalar multiple of |vac⟩.

The consequence of Propositions 4.5.4 and Propositions 4.5.5 is the following.

Corollary 4.5.6. There is a bijective correspondence

Gn|vac⟩/C× −→ G(n, 2n),
|u⟩ Ô−→ Vn(|u⟩).

Proof. The injectivity is due to Proposition 4.5.5. Let W be an n-dimensional
subspace of Vn, in other words an element of G(n, 2n). Let T ∈ GL(Vn) be such
that T (W ) = Vn(|vac⟩). Then by Proposition 4.5.4 T = Tg−1 for some g ∈ Gn, so
W = TgVn(|vac⟩) = Vn(g|vac⟩).

Taking n → ∞ gives a correspondence between elements of the vacuum orbit
GL(∞)|vac⟩ ⊂ F0 up to a scalar multiple, and “half-infinite-dimensional sub-
spaces”. The Grassmannian G(∞/2,∞) of half-infinite-dimensional subspaces is
called the Sato Grassmannian. The ambient space of G(∞/2,∞) from the Plücker
embedding is the semi-infinite wedge product of Laurent series w∞/2 C[z, z−1],
which is the equivalent characterization of charge zero Fermionic Fock space F0

given in Section 4.4. The image of the Sato Grassmannian in w∞/2 C[z, z−1] con-
sists of decomposable elements

φ1(z) ∧ φ2(z) ∧ · · ·

where φi(z) = zi + (lower order terms) for all i > n for some n ≥ 1.
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Now that we have obtained our goal of understanding tau-functions of the KP
hierarchy as elements of the Sato Grassmannian, we summarize the main points of
Sections 4.2-4.5 in the following diagram.

Solutions L = ∂x +q
i≥1 ui(p∗)∂−i

x

∈ POp of the KP hierarchy


Tau-functions τ ∈ C[p∗]

of the KP hierarchy


Polynomials τ ∈ C[p∗] satisfying the

Hirota bilinear identity (4.45)



GL(∞)|vac⟩ ⊂ F0

 Vectors |u⟩ ∈ F0 satisfying the
Fermionic bilinear identity (4.66)



G(∞/2,∞) ⊂ w∞/2C[z, z−1]

Decomposable elements of w∞/2C[z, z−1]
satisfying the Plücker relations (4.72)



Example 4.2.3,
Proposition 4.3.6

Corollary 4.3.8

Theorem 4.4.1

Theorem 4.4.4

Theorem 4.4.1,
Theorem 4.4.2

Corollary 4.5.6

Theorem 4.5.1

4.6 Hurwitz potential revisited
From the results of Section 3, the connected and disconnected Hurwitz potentials
H(β; p∗) and H•(β; p∗) are related by H• = eH − 1, and the disconnected potential
is

H•(β; p∗) =
Ø
µ

sµ(1, 0, 0, . . . )sµ(p∗)ef2(µ)β,

where the sum runs over all partitions µ and sµ(p∗) are the Schur functions, and

f2(µ) = 1
2

ℓ(µ)Ø
i=1

µi(µi − 2i+ 1).

The image of H•(β; p∗) under the Boson-Fermion isomorphism is the following
element in the formal completion of w∞/2C[z, z−1]:

Ø
µ

sµ(1, 0, 0, . . . )vµ ef2(µ)β (4.73)

where vµ = z1−µ1 ∧ z2−µ2 ∧ v3−µ3 ∧ · · · . By the results of Section 4.5, to show
that H•(β; p∗) is a tau-function of the KP hierarchy we show that (4.73) is of the
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form φ1(z)∧φ2(z)∧φ3(z)∧ · · · , where φi(z) = zi + (lower order terms) for i large
enough. Following [KL07], we do this for β = 0 first.

For i ≥ 1, let

φi(z) = ziez
−1 :=

Ø
k≥0

1
k!z

i−k =
Ø
j≤i

1
(i− j)!z

j .

Then

φ1(z) ∧ φ2(z) ∧ · · · =
Ø

k1,k2,···≥0
i−ki ̸=i′−ki′

AÙ
i≥1

1
ki!

B
z1−k1 ∧ z2−k2 ∧ · · ·

=
Ø

j1,j2,···∈Z
ji ̸=ji′ , ji≤i

AÙ
i≥1

1
(i− ji)!

B
zj1 ∧ zj2 ∧ · · · (ji := i− ki).

Now notice that for a fixed partition µ, the wedge product zj1 ∧zj2 ∧· · · is equal to
±vµ = ±z1−µ1 ∧ z2−µ2 ∧ · · · if and only if (j1, . . . , jℓ(µ)) = (1− µ1, . . . , ℓ(µ)− µℓ(µ))
up to reordering of the left-hand sequence, and ji = 0 for i > ℓ(µ). Let Jµ be the set
of sequences j = (j1, j2, . . . ) satisfying these two conditions. Moreover, for j ∈ Jµ

let σj ∈ Sℓ(µ) be the permutation such that ji = σj(i)−µσj(i) for every 1 ≤ i ≤ ℓ(µ).
Then the coefficient of vµ in φ1(z) ∧ φ2(z) ∧ · · · is

Ø
j∈Jµ

sgn(σj)
ℓ(µ)Ù
i=1

1
(i− ji)!

=
Ø
j∈Jµ

sgn(σj)
ℓ(µ)Ù
i=1

1
(µσj(i) − σj(i) + i)!

=
Ø

σ∈Sℓ(µ)

sgn(σ)
ℓ(µ)Ù
i=1

1
(µσ(i) − σ(i) + i)! = det

A
1

(µj − j + i)!

B
(3.23)= det

1
sµj−j+i(1, 0, 0, . . . )

2 (3.24)= sµ(1, 0, 0, . . . ).

This is precisely the coefficient of vµ in the Fermionic version ofH•(0; p∗) in equation
(4.73), so we are done for β = 0.

For general β, let us first consider the action of the diagonal endomorphisms
of C[z, z−1] on w∞/2 C[z, z−1]. A diagonal endomorphism diag(. . . , a−1, a0, a1, . . . )
of C[z, z−1] with respect to the basis {zi : i ∈ Z} sends zi Ô→ aiz

i. The obvious
induced action on w∞/2 C[z, z−1] would be

vµ Ô−→
3Ù
i≥1

ai−µi

4
vµ,
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but this is ill-defined as it gives rise to an infinite product. To get around this
problem, we can exploit the fact that ai−µi

ai
= 1 for i > ℓ(µ) to normalize the above

expression so that |vac⟩ = v(0,0,... ) is mapped to |vac⟩ [Lan10]:

vµ Ô−→
3Ù
i≥1

ai−µi

ai

4
vµ =

Aℓ(µ)Ù
i=1

ai−µi

ai

B
vµ. (4.74)

Now consider the diagonal matrix diag
!
ei(i−1)β/2"

i∈Z. The product arising in (4.74)
is

ℓ(µ)Ù
i=1

e(i−µi)(i−µi−1)β/2
ei(i−1)β/2 =

ℓ(µ)Ù
i=1

eµi(µi−2i+1)β/2 = e
qℓ(µ)

i=1 µi(µi−2i+1)β/2 = ef2(µ)β,

so the action of diag
!
ei(i−1)β/2"

i∈Z maps φ1(z)∧φ2(z)∧· · · = q
µ sµ(1, 0, 0, . . . )vµ toq

µ sµ(1, 0, 0, . . . )vµ ef2(µ)β, which is the Fermionic counterpart of H•(β; p∗). This
is once again equal to a decomposable element φβ1 (z)∧φβ2 (z)∧· · · of w∞/2 C[z, z−1],
where

φβi (z) =
Ø
j≤i

1
(i− j)!e

(j(j−1)−i(i−1))β/2 zj .

We conclude:

Theorem 4.6.1. The disconnected Hurwitz potential H•(β; p∗) is a tau-function
of the KP hierarchy.
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5 The Witten-Kontsevich theorem

5.1 Completing Kazarian and Lando’s proof
In this section, we re-scale our independent variables t∗ = (t0, t1, t2 . . . ) and p∗ =
(p1, p2, p3, . . . ) as follows:

ti Ô−→ (2i+ 1)ti, pj Ô−→ jpj .

This is in order to be consistent with [Wit90; KL07]. We now finish outlining the
proof of the Witten-Kontsevich theorem (Theorem 2.6.3). What we have so far is
a generating series for the intersection numbers ⟨τd1 · · · τdn⟩ =

s
Mg,n

ψd1
1 · · ·ψdn

n of
the form

F (t∗) =
Ø

(d1,...,dn)
⟨τd1 · · · τdn⟩

td1 · · · tdn

|Aut(d1, . . . , dn)| ,

which satisfies the string and dilaton equations

∂F

∂t0
= t20

2 +
∞Ø
i=0

ti+1
∂F

∂ti
,

∂F

∂t1
= 1

3

∞Ø
i=0

(2i+ 1)ti
∂F

∂ti
+ 1

24 . (5.1)

Witten’s conjecture states that F is a tau-function of the KdV hierarchy, or equiv-
alently that U = ∂2F

∂t20
is a solution of this hierarchy.

Next, we have the connected and disconnected simple Hurwitz potentials

H(β; p∗) =
Ø

g≥0,µ∈P
Hb
g(µ)pµ

βb

b! ,

H•(β; p∗) =
Ø

g≥0,µ∈P
H•,b
g (µ)pµ

βb

b! ,

where pµ = pµ1 · · · pµn . They are related by the exponentiation relation H• = eH−1
from Proposition 3.3.1. We proved that H• is a tau-function of the KP hierarchy
in Theorem 4.6.1, and so H = logH• satisfies the first KP equation (see after
Proposition 4.3.6)

∂2H

∂p2
2

= ∂2H

∂p1∂p3
− 1

2

A
∂2H

∂p2
1

B2

− 1
12
∂4H

∂p4
1
. (5.2)

Moreover, the ELSV formula

Hb
g(µ) = b!

nÙ
i=1

µµi
i

µi!

Ú
Mg,n

1− λ1 + λ2 − · · ·+ (−1)gλg
(1− µ1ψ1) · · · (1− µnψn) (5.3)
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gave us a way of expressing intersections of psi-classes in terms of simple Hurwitz
numbers in Proposition 3.5.3:

⟨τd1 · · · τdn⟩ =
d1+1Ø
µ1=1

· · ·
dn+1Ø
µn=1

A
1
b!

nÙ
i=1

(−1)di−µi+1

(di − µi + 1)!µµi−1
i

B
Hb
g(µ1, . . . , µn), (5.4)

where b = 2g − 2 + n + |µ| and g = (d1 + · · · + dn − n + 3)/3 in each term of the
sum. Since the ELSV formula involves integrating over the moduli space of curves,
it is only valid for 2g − 2 + n > 0. With this mind, we separate the generating
series H(β; p∗) into unstable and stable parts by writing H = H0;1 + H0;2 + Hst.
The first two parts correspond to the terms with (g, n) = (0, 1) and (g, n) = (0, 2)
in the sum, where the ELSV formula is not valid. The first one is

H0;1(β; p∗) =
∞Ø
µ=1

Hµ−1
0 (µ) pµ

βµ−1

(µ− 1)! =
∞Ø
µ=1

µµ−2

µ! pµβ
µ−1,

where we used Hµ−1
0 (µ) = µµ−2

µ , which was first sketched in [Hur91] and later
proved in [Dén59]. The simple Hurwitz numbers in H0;2 are computed in [Arn96,
§4]:

Hµ1+µ2
0 (µ1, µ2) =


µ

µ1
1 µ

µ2
2 (µ1+µ2−1)!
µ1!µ2! , µ1 ̸= µ2 or µ1 = µ2 = 1,

1
2
µ

µ1
1 µ

µ2
2 (µ1+µ2−1)!
µ1!µ2! , µ1 = µ2 > 1,

Therefore

H0;2(β; p∗) =
∞Ø

µ1,µ2=1
Hµ1+µ2

0 (µ1, µ2) pµ1pµ2
βµ1+µ2

(µ1 + µ2)!

= 1
2p

2
1β

2 + 1
2

∞Ø
µ1,µ2=1

(µ1,µ2 )̸=(1,1)

µµ1
1 µµ2

2
µ1!µ2!(µ1 + µ2)pµ1pµ2β

µ1+µ2 .

Therefore the KP equation (5.2) for H implies that Hst = H −H0;1−H0;2 satisfies
the following PDE:

∂2Hst
∂p2

2
= ∂2Hst
∂p1∂p3

− 1
2

A
∂2Hst
∂p2

1

B2

− 1
12
∂4Hst
∂p4

1
− 1

2β
2∂

2Hst
∂p2

1
. (5.5)

Inspired by equation (5.4), introduce the change of independent variables given
by

pµ =
∞Ø

d=µ−1

(−1)d−µ+1

(d− µ+ 1)!µµ−1β
−µ− 2d+1

3 td, (5.6)

and denote by Gst(β; t∗) the result of this coordinate change in Hst(β; p∗). This
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is a power series in t∗ = (t0, t1, . . . ) whose coefficients are formal Laurent series in
β2/3. To see this, notice that the power of β in the monomial pµβb = pµ1 · · · pµnβ

b

when expressed in the t∗ variables is

b+
nØ
i=1

3
−µi −

2di + 1
3

4
= 2g − 2 + n− 1

3n−
2
3

nØ
i=1

di

= 2
3

A
3g − 3 + n−

nØ
i=1

di

B
, (5.7)

where we used b = 2g − 2 + n + qn
i=1 µi. We can actually say more, namely

that Gst(β; t∗) only contains nonnegative powers of β2/3. To prove this, write the
coefficient of pµβb using the ELSV formula (5.3):

1
b!H

b
g(µ) =

nÙ
i=1

µµi
i

µi!

Ú
Mg,n

1− λ1 + λ2 − · · ·+ (−1)gλg
(1− µ1ψ1) · · · (1− µnψn)

=
nÙ
i=1

µµi
i

µi!

gØ
j=0

∞Ø
d1=1
· · ·

∞Ø
dn=1

(−1)j
Ú

Mg,n

λj(µ1ψ1)d1 · · · (µnψn)dn . (5.8)

Integrating overMg,n only picks out monomials satisfying j+qn
i=1 di = dimMg,n =

3g − 3 + n, so the power of β given in (5.7) is 2j/3 ≥ 0.

Proposition 5.1.1. The free term in β in Gst(β; t∗) coincides with the generating
series for intersections of ψ-classes:

Gst(0; t∗) = F (t∗).

Proof. Since Gst(β; t∗) only contains nonnegative powers of β2/3, the expression
Gst(0; t∗) is well-defined. Collect the terms in Hst(β; p∗) corresponding to a given
partition as follows:

Hst(β; p∗) =
Ø
µ

Hµ(β) pµ, where Hµ(β) :=
Ø
g≥0

Hb
g(µ)β

b

b! .

Writing b = 2g− 2 + n+ |µ| as b =
1
|µ|+ 1

3n
2

+ 2
3 (3g − 3 + n) and using equation

(5.8) we obtain

Hµ(β) = C
Ø
g≥0

gØ
j=0

∞Ø
d1=1
· · ·

∞Ø
dn=1

(−1)j
Ú

Mg,n

λj(µ1ψ1)d1 · · · (µnψn)dn β
2
3 (j+qn

i=1 di)

= C
Ø
g≥0

Ú
Mg,n

1− β2/3λ1 + β4/3λ2 − · · ·+ (−1)gβ2g/3λg
(1− µ1β2/3ψ1) · · · (1− µnβ2/3ψn)

, (5.9)
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where C = β|µ|+ 1
3n
rn
i=1

µ
µi
i
µi! . Now collect the terms in Gst(β; t∗) in a similar way:

Gst(β; t∗) =
Ø

d=(d1,...,dn)
Gd(β) td1 · · · tdn

|Aut(d1, . . . , dn)| .

To find Gd(β) for any d = (d1, . . . , dn), we first apply the coordinate transformation
(5.6) to Hst(β; p∗), using the notation cdµ = (−1)d−µ+1

(d−µ+1)!(µ−1)! from Lemma 3.5.2:

Gst(β; t∗) = Hst(β; p∗(t∗)) =
Ø
n≥0

∞Ø
µ1=1

· · ·
∞Ø

µn=1
Hµ(β) pµ1 · · · pµn

=
Ø
n≥0

∞Ø
µ1=1

· · ·
∞Ø

µn=1

∞Ø
d1=µ1−1

· · ·
∞Ø

dn=µn−1

A
nÙ
i=1

cdi
µi

µi!
µµi
i

β−µi−
2di+1

3

B
Hµ(β) td1 · · · tdn

=
Ø
n≥0

∞Ø
d1=1
· · ·

∞Ø
dn=1

d1+1Ø
µ1=1

· · ·
dn+1Ø
µn=1

C−1
3 nÙ
i=1

cdi
µi

4
β− 2

3
q

i
di Hµ(β)

ü ûú ý
=|Aut(d1,...,dn)|Gd(β)

td1 · · · tdn

Combining this with (5.9) we obtain

Gd(β) = β− 2
3
q

i
di
Ø
g′≥0

d1+1Ø
µ1=1

· · ·
dn+1Ø
µn=1

3 nÙ
i=1

cdi
µi

4
×

Ú
Mg′,n

1− β2/3λ1 + β4/3λ2 − · · ·+ (−1)g′
β2g′/3λg′

(1− µ1β2/3ψ1) · · · (1− µnβ2/3ψn)

= β− 2
3
q

i
di
Ø
g′≥0

Ú
Mg′,n

d1+1Ø
µ1=1

cd1
µ1

1− µ1β2/3ψ1

 · · ·
dn+1Ø
µn=1

cdn
µn

1− µnβ2/3ψn

×
1
1− β2/3λ1 + β4/3λ2 − · · ·+ (−1)g′

β2g′/3λg′

2
= β− 2

3
q

i
di
Ø
g′≥0

Ú
Mg′,n

1
(β2/3ψ1)d1 +O(d1 + 1)

2
· · ·
1
(β2/3ψn)dn +O(dn + 1)

2
×

1
1− β2/3λ1 + β4/3λ2 − · · ·+ (−1)g′

β2g′/3λg′

2
=
Ú

Mg,n

ψd1
1 · · ·ψ

dn
n +O(β2/3),

where we used Lemma 3.5.2 in the third equality. We conclude that Gd(0) =
⟨τd1 · · · τdn⟩, and hence Gst(0; t∗) = F (t∗).

The change of independent variables (5.6) induces in the following change of
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partial derivatives:

∂

∂p1
= β4/3 ∂

∂t0
,

∂

∂p2
= 2β9/3 ∂

∂t1
+ 2β7/3 ∂

∂t0
,

∂

∂p3
= 9β14/3 ∂

∂t2
+ 9β12/3 ∂

∂t1
+ 9

2β
10/3 ∂

∂t0
.

Substituting this in first KP equation (5.5) for Hst(β; p∗), we see that the term
containing β14/3 cancels and so we can divide by β16/3 to obtain

∂2Gst
∂t0∂t1

− 1
2

A
∂2Gst
∂t20

B2

− 1
12
∂4Gst
∂t40

+ β2/3
A

9 ∂
2Gst

∂t0∂t2
− 4∂

2Gst
∂t21

B
= 0.

Taking β = 0 and applying the proposition above we get

∂2F

∂t0∂t1
− 1

2

A
∂2F

∂t20

B2

− 1
12
∂4F

∂t40
= 0,

which upon differentiation by t0 yields the KdV equation for U = ∂2F
∂t20

. The string
and dilaton equations (5.1) for F become

∂U

∂t0
= 1 +

∞Ø
i=0

ti+1
∂U

∂ti
,

∂U

∂t1
= 2

3U + 1
3

∞Ø
i=0

(2i+ 1)ti
∂U

∂ti

when differentiated by t0 twice. These give sufficient initial conditions to ensure
that if U is a solution to the KdV equation, then it is a solution of the entire KdV
hierarchy (see for example [LZ04, Remark 4.7.3]). This concludes the proof of the
Witten-Kontsevich theorem.

In short, Kazarian and Lando’s idea uses the ELSV formula as a bridge be-
tween intersections of ψ-classes on Mg,n and Hurwitz numbers, in order to deduce
properties of F (t∗) from previously known properties of H(β; p∗). An interesting
question to ask is whether their method can be understood in terms of a reduction
from the KP to the KdV hierarchy which we outlined in Example 4.2.5, and sub-
sequently translated in a statement about tau-functions in Corollary 4.3.7. There
does not seem to be an obvious way to do this. One of the reasons for this is that
the transformation from p∗ to t∗ given by (5.6) does not provide one with a set of
independent variables such that F (t∗) is independent of the even-indexed ones.

One could also ask if the subsequent equations of the KP hierarchy for H give
rise to higher equations of the KdV hierarchy for F . As we mentioned at the end
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of Section 4.3, the PDEs of the KP hierarchy are indexed by two-part partitions
(µ1, µ2) ∈ Pd of d ≥ 4 that do not contain a 1. The partition (2, 2) of d = 4 gives
rise to the first KP equation which we have written above, while the partitions
(3, 2) for d = 5, and (4, 2) and (3, 3) for d = 6 yield [Kaz08, Section 4]:

H3,2 = H4,1 −
1
6H2,13 −H12H2,1,

H4,2 = H5,1 −
1
4H3,13 −H12H3,1 −

1
2 (H2,1)2 + 1

8 (H13)2 + 1
12H12H14 + 1

120H16 ,

H3,3 = H5,1 −
1
3H3,13 −H12H3,1 − (H2,1)2 + 1

4 (H13)2 + 1
3 (H12)3 + 1

3H12H14 + 1
45H16 .

We have used the short-hand notation

Hµ
n1
1 ,...,µ

nℓ
ℓ

= ∂n1µ1+···+nℓµℓH

∂pn1
µ1 · · · ∂p

nℓ
µℓ

.

The corresponding PDEs for H ′ := Hst = H −H0;1 −H0;2 are

H ′
3,2 =H ′

4,1 −
1
6H

′
2,13 −H ′

12H ′
2,1 −

1
2β

2H ′
2,1 −

2
3β

3H ′
12 ,

H ′
4,2 =H ′

5,1 −
1
4H

′
3,13 −H ′

12H ′
3,1 −

1
2
1
H ′

2,1

22
+ 1

8
!
H ′

13
"2 + 1

12H
′
12H ′

14 + 1
120H

′
16

− β2
31

2H
′
3,1 −

1
24H

′
14

4
− 2

3β
3H ′

2,1 −
9
8β

4H ′
2,1,

H ′
3,3 =H ′

5,1 −
1
3H

′
3,13 −H ′

12H ′
3,1 −

1
H ′

2,1

22
+ 1

3
!
H ′

12
"3 + 1

4
!
H ′

13
"2 + 1

3H
′
12H ′

14 + 1
45H

′
16

− β2
31

2H
′
3,1 −

1
2
!
H ′

12
"2 − 1

6H
′
14

4
− 4

3β
3H ′

2,1 −
7
8β

4H ′
12 .

Applying the changes in partial derivatives to the PDEs above like in the last
section, with the use of the next two changes in partial derivatives

∂

∂p4
= 64β19/3 ∂

∂t3
+ 64β17/3 ∂

∂t2
+ 32β15/3 ∂

∂t1
+ 32

3 β
13/3 ∂

∂t0
,

∂

∂p5
= 625β24/3 ∂

∂t4
+ 625β22/3 ∂

∂t3
+ 625

2 β20/3 ∂

∂t2
+ 625

6 β18/3 ∂

∂t1
+ 625

24 β
16/3 ∂

∂t0
,

all lead to the same outcome: the term containing the lowest power of β2/3 (which
is the β17/3 term for d = 5 and the β20/3 term for d = 6) vanishes, and dividing by
the next highest power of β2/3 leaves one with a PDE of the form

∂2Gst
∂t0∂t1

− 1
2

A
∂2Gst
∂t20

B2

− 1
12
∂4Gst
∂t40

+ β2/3(· · · ) + β4/3(· · · ) + β6/3(· · · ) = 0.

Once again, β = 0 yields the KdV equation for U = ∂2F
∂t20

, rather than the higher
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KdV equations. Thus our question has a negative answer, which is not too surpris-
ing considering that only the first KdV equation is needed to generate the entire
KdV hierarchy when one has the string and dilaton equations.

As a conclusion to this thesis, we introduce a modern research area that has
been heavily influenced by the Witten-Kontsevich theorem.

5.2 Beyond Witten’s conjecture
Our discussion so far has centred around the moduli space of stable curves Mg,n,
which is but a particular instance of a more general construction in the field of
Gromov-Witten theory. We give a short introduction of the main objects in this
field and how they relate to our work so far, with more details to be found in [FP97;
CK99; Koc01; KV07; Ros14], for example.

Let X be a smooth projective variety over C, and β an element in A1(X).
Consider the tuple (C, x1, . . . , xn, µ), where C is a genus g curve with n marked
points x1, . . . , xn, and µ : C → X is a morphism satisfying µ∗([C]) = β. An isomor-
phism between two such tuples (C, x1, . . . , xn, µ) and (C ′, x′

1, . . . , x
′
n, µ

′) consists of
an isomorphism τ : C → C ′ sending xi to x′

i, such that µ′ ◦ τ = µ. Denote by
Mg,n(X,β) the set of isomorphism classes of such tuples. Of course, in order to
obtain a well-behaved space one may want to impose some additional conditions
on β, depending on the nature of X. Our original moduli space of curves Mg,n is
recovered when X is a point and β = 0.

There is a compactification Mg,n(X,β) of the Mg,n(X,β), whose objects
(C, x1, . . . , xn, µ) consist of a pointed stable curve (C, x1, . . . , xn) ∈ Mg,n together
with a stable map µ : C → X, which means that for every irreducible component
C ′ ⊂ C one must have:

• If C ′ ∼= P1 and C ′ is mapped to a point by µ, then C ′ must contain at least
three special points (we remind that a special point is either a marked point
or a nodal point);

• If C ′ has genus 1 and is mapped to a point by µ, then C ′ must contain at
least one special point.

The space Mg,n(X,β) is a compact Deligne-Mumford stack, although in general
not smooth [BM96]. Once again, our original moduli space of stable curves Mg,n

is recovered when X is a point and β = 0.
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As before, there is morphism that forgets the last marked point

π :Mg,n+1(X,β)→Mg,n(X,β)

which can be identified with the universal curve Cg,n(X,β) → Mg,n(X,β), and
plays an important role in the theory. There are new morphisms that we did not
have before. The first one forgets the stable map, while the second ones evaluates
the stable map at the ith marked point:

p : Mg,n(X,β) −→ Mg,n,

(C, x1, . . . , xn, µ) Ô−→ (C, x1, . . . , xn),

evi : Mg,n(X,β) −→ X,

(C, x1, . . . , xn, µ) Ô−→ µ(xi).

Given generic subvarieties X1, . . . , Xn of X, their corresponding homology classes
have Poincaré duals γi ∈ H∗(X), and the intersection product

ev∗
1γ1 · ev∗

2γ2 · · · ev∗
nγn ∈ H∗(Mg,n(X,β)) (5.10)

represents those maps µ : C → X such that µ(xi) ∈ Xi for each i = 1, . . . , n
(we still take coefficients in Q in the cohomology ring). Since the location of the
marked points on C varies over the moduli space, we can interpret the cohomology
class above as representing the collection of morphisms µ : C → X such that µ(C)
intersects Xi for each i = 1, . . . , n. If (5.10) is a top degree class in H∗(Mg,n(X,β)),
then the number of such morphisms should be finite and is given byÚ

Mg,n(X,β)
ev∗

1γ1 · · · ev∗
nγn.

Unfortunately, the expression above does not make sense in general because the
fundamental class of Mg,n(X,β) is not always well-defined. When Mg,n(X,β)
happens to be smooth, the Grothendieck-Riemann-Roch theorem implies that its
dimension is

vdimMg,n(X,β) := (3− dimX)(g − 1) + c1(X) ∩ β + n.

This number is called the virtual dimension of Mg,n(X,β). To get around the
problem of not always having a fundamental class over which one can integrate,
a virtual fundamental class [Mg,n(X,β)]vir ∈ H2 vdim Mg,n(X,β)(Mg,n(X,β)) can be
constructed [BF97; LT98] with similar properties to an ordinary fundamental class.

115



With this in mind, one defines the primary Gromov-Witten invariants to be

⟨γ1 · · · γn⟩Xg,β :=
Ú

[Mg,n(X,β)]vir
ev∗

1γ1 · · · ev∗
nγn.

Since we would like these invariants to not depend explicitly on the cycle β, intro-
ducing the Novikov ring [Get99, §1] allows us to write

⟨γ1 · · · γn⟩Xg =
Ø

β∈H+
2 (X,Z)

qβ⟨τd1(γ1) · · · τdn(γn)⟩Xg,β.

We will not comment on the Novikov ring, or on the meaning of H+
2 (X,Z) and qβ.

Now choose a basis γ1, . . . , γr of H2(X) and let γ0 = 1 ∈ H0(X) be the Poincaré
dual of the fundamental class [X]. The genus g Gromov-Witten potential is the
generating series in t∗ = (t0, t1, . . . ) and q given by

ΦX
g (q; t∗) :=

Ø
(n0,n1,... )

⟨γn0
0 γn1

1 · · · ⟩
X
g

∞Ù
i=0

tni

ni!
,

and the total Gromov-Witten potential is

ZX(q; ℏ; t∗) := exp

Ø
g≥0

ℏg−1ΦX
g

 .

Analogously to what we did forMg,n, one can construct ψ-classes onMg,n(X,β).
Given the n sections of the universal curve si : Mg,n(X,β) → Mg,n+1(X,β)
corresponding to the marked points, the pullback of the relative dualizing sheaf
L → Mg,n+1(X,β) by each si gives line bundles Li → Mg,n(X,β) whose fibre at
(C, x1, . . . , xn, µ) is T ∗

xi
C. The ψ-classes are ψi = c1(Li) ∈ H2(Mg,n(X,β)). The

descendant Gromov-Witten invariants are

⟨τd1(γ1) · · · τdn(γn)⟩Xg,β =
Ú

[Mg,n(X,β)]vir
ψd1

1 · · ·ψ
dn
n ev∗

1γ1 · · · ev∗
nγn.

The genus g Gromov-Witten potential and the total Gromov-Witten potential are
defined in a similar way:

DX(q; ℏ; t∗) := exp

Ø
g≥0

ℏg−1FXg

 , where

FXg (q; t∗) :=
Ø
n≥0

1
n!

Ø
(d1,...,dn)
(a1,...,an)

⟨τd1(γa1) · · · τdn(γan)⟩Xg ta1
d1
· · · tan

dn
.
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Thus the Witten-Kontsevich theorem concerns the descendant Gromov-Witten po-
tential for X = {∗} (in this thesis, we took ℏ = 1 as is customary in the literature
regarding the Witten-Kontsevich theorem). A generalization of Witten’s conjec-
ture to an arbitrary variety X is known as the Virasoro conjecture [Get99]. The
statement is as follows: in [EHX97], the authors constructed a sequence (Lk)k≥−1

of differential operators satisfying

[Lk, Lℓ] = (k − ℓ)Lk+ℓ. (5.11)

When X = {∗}, the PDEs L−1D
X = 0 and L0D

X = 0 correspond to the string
and dilaton equations for F (t∗).

Conjecture 5.2.1 (Virasoro). If X is a smooth projective variety over C then

LkD
X = 0 for all k ≥ −1.
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