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Abstract 

In studies involving Event-Related Potentials (ERPs), ocular artifacts such as blinks and saccades can 

compromise the quality of the recorded neural signals. To address this issue, researchers often 

manually reject epochs (that is a specific time-window extracted from the continuous EEG signal) 

containing these artifacts. However, this procedure consistently reduces the number of epochs that 

can be used for extracting ERPs. An alternative solution is to use Independent Component Analysis 

(ICA), which can preserve more epochs for analysis by removing only the artifact from the EEG 

recording. However, the reliability of ICA in neurocognitive studies of lateralized ERP components, 

such as the Sustained Posterior Contralateral Negativity (SPCN) related to visual working memory 

load, remains unclear, particularly in contexts where subjects are more likely to make saccades during 

the task. Furthermore, by using ICA, we are assuming that ocular movements do not interact with the 

neural signal, which has yet to be confirmed. For this reason, in the present experiment, all the 

participants were asked to perform a change detection task under two conditions: a ‘free gaze/saccade’ 

condition, where they were allowed to move their eyes to look at the lateralized stimuli, and a 

‘fixation’ condition, where they were required to maintain the gaze on the center of the monitor. The 

subjects were also split into two groups, each performing the same experiment but with different 

stimulus presentation times (100 ms and 500 ms) to investigate whether saccades could differently 

affect the ERP in these conditions. The SPCN components were then extracted using both the 

Independent Component Analysis (ICA) correction and epoch-rejection methods. The results 

revealed that ICA correction is a robust and reliable method for experimental paradigms with a short 

presentation time of the stimuli (100 ms). By removing only the saccades, the features of the SPCN 

are preserved, suggesting that with this method we can retain a higher number of epochs for the ERP 

extraction with the certainty that saccades do not alter the neural signal.  
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1. INTRODUCTION TO EEG 

Researchers of neurocognitive psychology have always been interested in instruments that allow the 

measurement of neural activity to understand the cognitive and perceptual mechanisms that take place 

in the brain. Thanks to a series of scientific and engineering achievements started by the Italian 

scientist Luigi Galvani in 1791 (Galvani, 1791), a technique to directly measure the brain’s electrical 

activity has been developed: electroencephalography. 

Electroencephalography consists in the recording and interpretation of the electroencephalogram 

(EEG), which is typically defined as the electrical activity produced by the firing of neurons in the 

human brain, and is normally recorded at the brain scalp (Blinowska & Durka, 2006). To acquire 

high-quality EEG signals, a comprehensive EEG measurement system necessitates several 

elements: the electrodes (that can be divided into active, reference, and ground electrodes) with 

conductive medium (gel or saline), amplifiers with filters (to amplify the signal of interest while 

lowering the voltage from other sources), analog-to-digital (A/D) converter, and recording device 

(Teplan, 2002). 

The number of electrodes used can range from 1 to 256 

(high-density electrode arrays can be useful to improve the 

spatial resolution), but some researchers demonstrated that 

recording from 32/64 active electrode sites is appropriate 

for most experiments (Luck, 2014). The standard protocol 

for electrode placement is called “The International 10–20 

System”, established by the International Federation in 

Electroencephalography and Clinical Neurophysiology (see 

Figure 1). In this protocol, the electrodes are placed at 10% 

and 20% intervals along lines of both latitude (from the left preauricular point to the right one) and 

longitude (from the inion to the nasion). The name of each electrode contains two parts, that is one or 

Figure 1: Electrode’s positions with an EEG system 
with 64 active electrodes, following the 

‘International 10-20 system’. 
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two letters and a number. The letters stand for the brain region to which the electrode corresponds, 

with abbreviations such as ‘Fp’ for frontal pole, ‘F’ for frontal, ‘C’ for central, ‘P’ for parietal, ‘O’ for 

occipital, and ‘T’ for temporal. The numerical component indicates the electrode's distance from the 

midline: larger numbers indicate a greater distance, with odd numbers positioned in the left 

hemisphere and even numbers situated in the right hemisphere. 

It is demonstrated that the EEG arises from summed synchronized synaptic activities in populations 

of cortical neurons, with a main contribution from pyramidal cells, oriented perpendicular to the 

cortical surface. The postsynaptic potentials, which are voltages induced by the binding of 

neurotransmitters to their receptors on the membrane of the postsynaptic neuron, are considered the 

primary contributors of EEG activity due to their longer duration (50–200 ms) and the greater 

potential field compared to the action potentials (Hu & Zhang, 2019).  

Another important aspect of EEG is that the voltage fluctuation measured at any electrode on the 

scalp will be the sum of activities produced by numerous neural sources: this phenomenon is known 

as spatial smearing of the signal, which determines the poor spatial resolution of EEG (Hu & Zhang, 

2019). 

Hence, electroencephalography is a technique that provides a direct measure of electrical brain 

activity generated by thousands of synchronized neurons, with excellent temporal resolution but poor 

spatial resolution. In addition to the neural signal, EEG also records a lot of noise. All the non-EEG 

signals (noise) are referred to as artifacts, and they usually have higher amplitudes and distinct 

morphologies compared to neural signals recorded on the scalp.  

Nonetheless, there are a lot of doubts about how to correctly deal with the noise in EEG recordings, 

and the most effective method to do so has yet to be found. Understanding and distinguishing between 

the source of noise and the signal of interest is essential for effectively approaching and interpreting 

the EEG results in the best way possible, and this is what we tried to establish in this study. 
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1.1. EEG ARTIFACTS     

Artifacts in EEG recordings refer to signals that are not generated by the brain and have the potential 

to mask neural activity, preventing an accurate EEG interpretation. These are commonly divided into 

non-physiological artifacts and physiological artifacts (Sazgar & Young, 2019).  

The most common non-physiological artifacts are: power line interference at 50/60 Hz, impedance 

fluctuations, cable movements, broken wire contacts, low battery, and near electronic devices 

interference (see images in Figure 2). These are caused by environmental or system noise, and they 

can be corrected or prevented with adequate precautions, knowing their systematic appearance 

(Sazgar & Young, 2019; Teplan, 2002). 

 

 

 

 

 

 

 

 

The physiological artifacts instead include: muscular artifacts, head movements, cardiac artifacts 

(Figure 3), respiration artifacts, artifacts caused by minor body movements, glossokinetic artifacts 

(caused by talking and tongue movements), sweating artifacts, and eye movements artifacts such as 

blinks, horizontal and vertical eye movement (Sazgar & Young, 2019). 

Fig 2: Two examples of non-physiological artifacts: to the left, the power line interference at 50 Hz can be observed in each 
channel, because of the noisy/non-smooth signal; to the right, channel noise due to impedance fluctuations can be 

observed. 
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Some artifacts are tiny and steady, like cardiac activity and the power line interference; others are 

bigger and with a slow frequency resulting in drift in the signal like when the patient is sweating or 

slowly moving the head; and others, instead, are large and transient like blinks and ocular movements 

(Hu & Zhang, 2019). Especially in cognitive research, there is one particular kind of artifact that is 

difficult to avoid and handle, because of its strong link to almost all our cognitive processes, and its 

highly frequent occurrence: the ocular movements (Figure 4). 

 

 

  

Figure 3: To the left, an example of physiological artifacts due to a head movement. The movement affects all the channels. To the 
right, an example of a cardiac artifact. It can be observed through the small spikes present especially in the posterior electrodes. 

Figure 4: to the left, a blink artifact with a monophasic wave and opposite polarity between the frontal channels and 
the ‘VEOG_down’ channel. To the right, a saccade artifact can be observed especially at channels ‘HEOG_right’ and 

‘HEOG_left’, with opposite polarity. 
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1.2. OCULAR ARTIFACTS IN COGNITIVE NEUROSCIENCE  

The ocular artifacts we observe in EEG can be divided into blinks and saccades.  

Blinks are physical cut in our visual continuity, and in normal situations they spread tears across the 

eyes to eliminate the irritants and foreign objects. In some cases, they can be caused by a potential 

threat (such as a sudden loud sound or a moving object toward us) like in the startle reflex (Bradley 

et al., 1999). Blinks can be defined as semi-autonomic rapid eyelid closures because they are partially 

under our control (for instance, we can change the blink rate and close the eyelid when we want to), 

but we cannot cease blinking for a long period, as attempting to do so would lead to discomfort. In 

EEG recordings, the blinks have an amplitude of roughly 100-200 µV (microvolt) while the neural 

signal typically falls below 100 µV. A blink is characterized by an increase or decrease in amplitude 

(monophasic waveform) generally within 100 and 500 ms and it is recorded by all the electrodes, but 

it is particularly evident in the signal from frontal channels like “Fp1” and “Fp2” (Chang et al., 2016). 

During experiments, EEG is recorded from subjects while they are performing a task in front of a 

computer, for at least 30 min; thus, it is not possible to ask participants to refrain from blinking 

because prolonged computer use tends to irritate the eyes, causing eye strain (Sheppard & Wolffsohn, 

2018). For this reason, the only way to prevent as much as possible blink contaminations in the EEG 

is to ask participants to blink only in prespecified moments (for instance after responding or during 

time windows of non-interest for the study). Nevertheless, this could be considered as an additional 

task (Drisdelle et al., 2017) and the possible implication of that will be discussed below. 

Saccades, due to the visual restrictions imposed by the fovea (1.5 degree diameter), are essential to 

bringing the selected portion of the retinal image to the area with higher visual acuity (fovea) or to 

maintain stable gaze on moving objects (Kowler, 1995). The eyes move in a conjunctive way (the 

movements in each eye have the same amplitude and direction) and the eyeball is relatively light and 

mobile. As a result, the metabolic costs of very frequent and rapid movements are very low and this 

suggests that saccadic sampling is a significant aspect of vision (Gilchrist, 2011). These fast eye 
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movements are typically followed by a fixation which is a period during which the eye remains fixed. 

Saccades last for about 50 ms, and their average latency can vary from as little as 100 ms to as much 

as 1000 ms because it is significantly influenced by the nature of the stimuli that must be responded 

to (Gilchrist, 2011). We can distinguish between ‘top-down’ and ‘bottom-up’ factors that determine 

which area of the space is selected for the next fixation. A ‘bottom-up’ signal emerges from the visual 

input and attracts the eyes to the stimulus location, regardless of the task being performed at the time. 

Conversely, the ‘top-down’ control allows the eyes to be directed to locations that are task-relevant 

regardless of their visual salience (Gilchrist, 2011). The movement of the eye blurs the image on the 

retina, probably functioning as backward masking because it may limit the ability to report visual 

information from the fixation before the saccade (Gilchrist, 2011). Saccades have an EEG amplitude 

of 20-80 µV, and they are associated with the deployment of spatial attention toward the object of 

interest. However, we can allocate attention to objects without making saccades and this ability is 

called covert attention (Fawcett et al., 2015). This ability allows subjects to maintain fixation on the 

center of the monitor during cognitive tasks, while still effectively directing their attention to relevant 

lateralized objects. 

It must be noted that eyes are not completely stationary even during the fixation phase of the saccade. 

There are three types of miniature movements during fixation: tremor, drift, and microsaccades 

(Carpenter, 1988). All three types of movements play a role in reducing neural adaptation, which 

prevents the visual picture from fading (Martinez-Conde et al., 2004). Microsaccades can have a 

small impact on EEG measurements, including both posterior sites (Dimigen et al., 2009) and 

lateralized ERPs (e.g., SPCN/CDA, see Kang & Woodman, 2014).  

As previously mentioned, refraining from blinking and moving the eyes during a neurocognitive 

experiment could be considered a secondary task that affects the primary cognitive activity of interest 

(Drisdelle et al., 2017). For example, Verleger in 1991, demonstrated that “the harder some frequently 

blinking subjects try to refrain from blinking, the smaller might become their P3 amplitudes” 
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(Verleger, 1991). Therefore, the influence of saccadic movements on ERP latency or amplitude 

remains a topic of ongoing investigation and is not yet fully understood. 

This is a significant concern considering that there are ERP components whose amplitude is 

modulated by the manipulation of some experimental variables (e.g., SPCN component, see 

subchapter 2.2): if the amplitude or latency of an ERP is modified not only by the independent 

variable of interest but also by other covariates of non-interest, there is a risk of misinterpreting the 

results. 

To gain a better understanding of the problems and the solutions adopted to avoid the impact of eye 

movements and the relative artifacts, it is crucial to have a clear idea of what an ERP is. 
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2. THE ERPs   

"Event-Related Potentials" (ERPs) are waveforms of electrical activity generated by the brain after 

the occurrence of an event, which could be the presentation of a particular stimulus or the execution 

of a response (Bradley & Keil, 2012; Hu & Zhang, 2019). Usually, ERP components are named based 

on their polarity (positive or negative) and their latency (the time after the event at which they occur). 

For example, the N200 component is a negative (‘N’) deflection in the EEG that occurs about 200 

milliseconds after the presentation of a stimulus. However, other components such as the SPCN, 

N2pc, or MMN, are named also considering the polarity, the spatial localization of the activity, or 

some other features of the waveform (e.g., ‘Sustained Posterior Contralateral Negativity’, ‘Mismatch 

Negativity’). 

The ERP components are thought to reflect specific sensory-cognitive processes such as attention, 

memory, and decision-making. ERP technique is useful because EEG data have a low signal-to-noise 

ratio (SNR), and it cannot be utilized in its raw form to measure most of the neural processes related 

to a specific event or task (Hu & Zhang, 2019). However, by time-locking the neural activity recorded 

in each trial of the same condition and averaging these for each channel, random noises tend to cancel 

each other out. Ideally, this leaves only the signal of interest generated by the event: the ERP.  

According to the sensory stimuli that are presented we obtain different Event-related potentials. For 

instance, the presentation of an auditory stimulus evokes potentials generated in the cochlea, known 

as Auditory Evoked Potentials (see Figure 5). Within a few milliseconds after a sudden sound onset, 

the first set of auditory responses appears, reflecting the flow of information from the cochlea through 

the brainstem and into the thalamus. These are called brainstem auditory evoked potentials (BAEPs) 

and even though they exhibit very low voltage (approximately 0.5 µV in amplitude), they can be used 

to evaluate the integrity of the auditory pathways (Hu & Zhang, 2019). These waves are followed by 

the mid-latency responses (MLRs), which encompass responses occurring between 10 and 50 ms 

after stimulus, and subsequently by other long-latency responses (occurring between 50 and 200 ms). 
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These long-latency responses include, in sequence: the P50 (also known as P1), N100 (known as N1), 

and P160/P2 components (Luck, 2014). With auditory stimuli, we can also observe the “Mismatch 

Negativity” component (MMN) which is thought to indicate an automatic response to a stimulus that 

differs from the preceding ones. MMN seems to be modulated by attention even though there are 

studies suggesting that it may arise from an attention-independent process (Sussman, 2007). 

 

Figure 5: Typical sequence of auditory evoked components. The waveform elicited by an auditory stimulus is represented over a 
period of time to show the auditory brainstem responses (waves I– VI), the mid-latency responses, and the long-latency responses. 

 

The presentation of visual stimuli, instead, generates ‘Visual Evoked Potentials’ (Figure 6). The first 

major visual ERP component is the P1 wave, peaking between 100 and 130 ms at lateral occipital 

electrode sites after 60–90 ms post-stimulus presentation. It is thought to be generated in the 

extrastriate visual areas (Di Russo et al., 2002). Following the P1 wave there is the visual N1 wave, 

which is highly refractory, meaning that the response to the second stimulus is significantly 

diminished if the first stimulus is presented at the same location after a very short delay. The earliest 

N1 subcomponent peaks at 100–150 ms post-stimulus at anterior electrode sites. These components, 
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together with the N2 wave, are influenced by or reflect spatial attention. Following, there are also 

other components and subcomponents, such as: the P300, related to working memory and attention; 

N400 and P600, which are associated with semantic and syntactic language control respectively (Hu 

& Zhang, 2019). 

 

Figure 6: Typical visual evoked components, including P1, N1, P2, N2, and P3 components. 

 

These are only a few examples of ERPs that we can observe, but there are many more in the 

literature. For instance, other ERPs are observed in response to: electrical stimulation of fibers in 

the peripheral nerve (for ‘Somatosensory evoked potentials’ see Cruccu et al., 2008), infrared 

stimulation of nociceptors in the superficial layers of the skin (for ‘Laser evoked potentials’ see 

Bromm & Treede, 1984), stimulus anticipation (for “Readiness Potential” see Schurger et al., 2021), 

and so on. ERPs can represent both higher and lower cognitive functions.  

  



12 
 

2.1. LATERALIZED ERPs  

Another way to categorize ERP components is by considering the asymmetric pattern of activity, like 

for the “lateralized ERPs”. The word “lateralized” means that the presentation of the stimulus of 

interest, which is often visual, is presented only on a specific side of the monitor (either the right or 

left hemifield), leading to a difference in the electrical activity of the contralateral hemisphere to the 

stimulus compared the ipsilateral hemisphere. Specifically, when we subtract the ipsilateral ERP of 

one channel from the contralateral ERP of the oppositive channel (e.g., PO7 and PO8), we typically 

observe an increase in the negativity of the waveform amplitude at scalp recording sites contralateral 

to the visual hemifield occupied by the target stimulus (Roy & Faubert, 2023; Vogel & Machizawa, 

2004). These lateralized ERPs seem to be associated with the allocation of resources for specific 

cognitive processes (e.g., spatial attention or visual working memory) toward relevant objects on the 

side of the screen. For instance, one well-known lateralized component is the ‘N2pc’. The N2pc is 

typically observed between 180–300 ms following stimulus onset at posterior electrodes contralateral 

to an attended visual field, and it is strongly related to the deployment of visual-spatial attention 

toward lateral targets (Eimer, 1996; Luck & Hillyard, 1994).   

 

2.2. SPCN/CDA  

Another relevant lateralized ERP component is the so-called ‘SPCN’ or ‘CDA’. ‘CDA’ stands for 

“Contralateral delay activity” (Vogel & Machizawa, 2004), and ‘SPCN’ for “Sustained Posterior 

Contralateral Negativity” (Jolicœur et al., 2006): different names that represent the same ERP 

component. From now on, we will refer to this component as SPCN. The common way to elicit a 

SPCN component is by presenting lateralized objects accompanied by a visual cue displayed before 

the stimuli to indicate which side of the screen is task-relevant. The so-called ‘contralateral control 

method’ allows isolating the visual working memory (VWM) specific activity by subtracting the 

ipsilateral from the contralateral activity elicited by the to-be-remembered stimuli (Figure 7). In this 
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way, common low-level sensory and perceptual processes are removed, isolating the VWM-specific 

ERP activity. The SPCN is observed at posterior electrodes, it begins roughly 300–400 ms post-

stimulus onset and appears to be dissociable from the N2pc. A particular aspect of this component is 

its sustained activity during the retention interval before the recall phase (Vogel & Machizawa, 2004). 

From the literature emerges that SPCN amplitude correlates with the number of to-be-remembered 

stimuli, reaching a plateau around the estimated capacity of 3/4 elements (Luria et al., 2016). SPCN 

amplitude also increases for complex stimuli (Luria et al., 2010) and faces (Sessa et al., 2011), 

supporting the idea that complex objects require more VWM resources. This component has been 

associated with the parietal cortex, in particular the intraparietal sulcus (Becke et al., 2015). Hence, 

SPCN seems to be associated with the maintenance of information in visual short-term memory and 

it is sensitive to several VWM features, such as capacity, precision, and distractor filtering (Luria et 

al., 2016).  

 

 

 

 

 

 

2.3. RELEVANCE OF SPCN  

Studies investigating how saccadic eye movement activity can affect posterior lateralized ERP 

components, already exist in literature (Drisdelle et al., 2017). However, the focus of Drisdelle’s study 

was primarily on the N2pc component that is relatively transient compared to the SPCN (which lasts 

for the whole duration of the retention interval). Hence, the probability of saccadic eye movements 

Figure 7: The CDA is time-locked to the onset of the memory array, and the activity is measured throughout the retention interval. 
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and blinks occurring during the time window of interest is higher for the SPCN, and if not properly 

handled, these artifacts can significantly distort the waveform. 

Besides, since SPCN is sensitive to different levels of memory load, and we currently have no 

information regarding how ocular artifacts influence SPCN amplitude at different set sizes of the 

memory array, this is an extremely important aspect to investigate. 

Given that the SPCN component is measured at posterior electrodes (with the greatest amplitude 

observed at PO7 and PO8 electrodes), it could be that the influence of ocular artifacts’ activity is too 

small to affect the waveform. Anyway, volume conduction (which refers to the transfer of electrical 

potentials to a site a distance away from the generator) of large ocular artifacts could still be 

sufficiently large to contaminate EEG data at the posterior sites. Indeed, the amplitude of a blink and 

saccade is in the order of hundreds or dozens of µV while the amplitude of this component is usually 

not larger than 5 µV (Drisdelle et al., 2017; Hu et al., 2010).  

The SPCN is a very informative component to investigate VWM thanks to its sensitivity to different 

features and quantities of stimuli. It is, therefore, crucial to establish the best practice for extracting 

it, and assessing its reliability in the presence of saccadic movements and blinks. All the ERPs are 

extracted following a similar procedure that is based on an important principle: the more trials 

available for averaging, the higher the SNR and the better the ERP component. Therefore, it is 

imperative to enhance the SNR by removing the artifacts, to obtain accurate and clear ERPs.  
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3. PROCEDURE AND CRITICS  

The preprocessing of the raw EEG data is a delicate and crucial step in the ERP extraction because 

little mistakes or inadequate techniques in the procedure could ruin completely the Event-related 

potential. The most important steps in the preprocessing pipeline are (Hu & Zhang, 2019): 

1. Import data: usually, a Matlab toolbox such as “EEGLAB” or “BRAINSTORM” is needed 

to upload the digital version of the EEG recordings, but it can also be used some R packages 

(for example, “eeguana” and “eegUtils”, see Nicenboim, 2020).  

2. Import channel locations: this step is needed to load the channel location file describing the 

channel positions on the head. This file can be created specifically for the study or found inside 

the “EEGLAB” folder, since all the EEG montages follow “The International 10–20 System”. 

3. Filter data: Filtering is often necessary due to several reasons, such as the presence of 50 Hz 

or 60 Hz line noise, high and low frequency noises. As a result, digital filters that employ the 

“Fourier transformation” can be applied to the raw EEG recordings and they can significantly 

enhance the quality of EEG signals, otherwise heavily contaminated by environmental 

artifacts. Usually, it is used a “bandpass filter” to maintain only the frequencies between 0.01 

Hz and 30/45 Hz (according to the kind of neural signal of interest), and a “notch filter” or 

“band-stop filter” to remove the 50/60 Hz frequency caused by the power line. 

4. Re-reference data: basically, EEG consists in the detection of current potential differences 

between one (or more) active electrode (A) and an online reference (R). The presence of the 

ground electrode (G) is fundamental to obtaining an output (‘channel 1’= (A - G) - (R - G) = 

A - R). It is also possible to re-reference the data offline. In this case, we use as online reference 

only one lateralized electrode, like the right/left mastoid or right/left earlobe, and the average 

of the two earlobes/mastoids is commonly used as re-reference to avoid lateralization bias in 

the data (Hu & Zhang, 2019). 
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5. Check and interpolate bad channels: it is possible that some electrodes may not properly 

record the signal due to factors such as sweat, a bad montage, or technical issues. During this 

step, electrodes that exceed a certain threshold (e.g., three standard deviations from the mean) 

are interpolated with the signal of the neighbor electrodes. 

6. Segment the EEG data and extract epochs: EEG data are time-locked to the onset of specific 

events of interest and then are segmented, to identify changes in EEG activity, at the onset of 

sensory stimulation. In this phase, the selection of the event onset (the time point “0”) and the 

time windows (how much time before and after the event onset to consider) are essential to 

segment the continuous EEG recording. These segments are called epochs. 

o Baseline correction: removing the mean of baseline values from each epoch is 

necessary since the electrical potential at baseline varies across data epochs. Baseline 

correction serves as a potential alternative to strong high-pass filtering and the baseline 

period to consider should be that before the external event occurs. 

7. Epoch rejection: EEG epochs that are greatly contaminated by artifacts (e.g., eye blinks and 

movements) are marked as bad epochs and then rejected. This phase is important to increase 

the SNR for the final step, and it could be done manually (selecting the “bad epochs” by 

visually analyzing them), or automatically, considering the peak-to-peak amplitude in the EEG 

data and selecting only the epochs that exceed a pre-defined threshold. This threshold cutoff is 

applied to the electrooculogram (EOG) based on the characteristics of the ocular activity 

(Drisdelle et al., 2017). For what concerns blink, there is a monophasic deflection often 

exceeding 100 µV and with an opposite polarity for electrodes placed above (e.g., Fp1, Fp2) 

and below (vertical EOG, or VEOG) the eye. Regarding the saccades, there is a large increase 

in positivity at the electrodes on the same side as the foveated visual field relative to electrodes 

on the other side (e.g., if we look right, a positive-going deflection is observed in the right 

horizontal EOG or HEOG). Both automatic and manual methods have flaws: the manual one 

is time-consuming, and the results can vary a lot according to who is doing it; while the 
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automatic method could use criteria not appropriate for all subjects, raising both type I and II 

errors. In any case, the automatic procedure is the most used.  

8. Average of epochs to obtain the ERP: as last step, all the epochs belonging to the same 

condition are averaged, and if the noise/artifacts correction has been done correctly, we obtain 

event-related potential for each condition in each channel. Additionally, a “Grand Average” 

can be done, firstly creating an average ERP for each subject and then, averaging them together. 

However, ‘step 7’, involving epoch rejection, can be a particularly problematic step in EEG data 

analysis. Indeed, as we have already mentioned, having more epochs per condition is generally 

desirable because it leads to a reduction in noise and a higher SNR in the ERP, which in turn can 

improve the reliability of the results.  

Although this methodology is necessary to ensure data quality, researchers often reject as much as 

50% or more of the data for any particular subject (Drisdelle et al., 2017). Therefore, the experimental 

design must include many more trials than would be necessary as well as several additional subjects 

to compensate for expected attrition. Even though this strategy is often used, making the task longer 

takes a lot of time, and leads to other problems concerning fatigue, a decrease in concentration, and 

participants’ discomfort (Hu & Zhang, 2019). Indeed, considering the EEG montage, the experiment 

may last more than one hour and a half in some cases. Thus, in the effort to add more trials to reduce 

the noise, there is the risk of inadvertently increasing noise. Another problem with the epoch-rejection 

method is that by excluding the trials with ocular artifacts, we are assuming that these artifacts do not 

significantly interact with the perceptual and cognitive effects being observed in EEG data (Drisdelle 

et al., 2017). However, this assumption may not always be true. 

Furthermore, despite carefully developed EEG experimental paradigms, epoch rejection might lead 

to unbalanced designs due to unequal rejection rates between conditions. When different conditions 

have varying numbers of rejected trials, it can lead to differences in variances between conditions, 

creating a homoscedasticity problem, with difficulties in comparing them statistically. This aspect is 
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particularly relevant in studies of visual-spatial attention and memory, especially when participants 

are presented with stimuli in the visual periphery. In such experiments, participants may naturally 

saccade to task-relevant stimuli, even when instructed to maintain fixation on the center of the screen 

(Drisdelle et al., 2017), leading to unequal rejection of epoch among subjects and conditions. 

Alternative or integrative techniques must be considered to deal with these issues.  

 

3.1. ALTERNATIVE APPROACHES  

The best way to resolve or attenuate the problems of the epoch rejection technique (e.g., too few trials 

to extract good ERPs and inhomogeneous variances between conditions), would be a method that 

manages ocular artifact by isolating and removing the eye movement-related activity, while 

preserving the underlying neural sources (Drisdelle et al., 2017).  

Several well-known approaches can be employed for this purpose, including: linear regression 

(Schlögl et al., 2007), dipole modeling (Berg & Scherg, 1991), Principal Component Analysis (PCA), 

and Independent Component Analysis (ICA). 

The linear regression is a statistical technique that can be used to model and remove ocular artifacts. 

By regressing out of the EEG data the ocular artifacts, it is possible to estimate a propagation factor 

between the EOG (electrooculogram) channels and each EEG scalp channel and subtract the 

proportion of activity corresponding to the EOG activity from the ERPs at each scalp site. This is 

possible because researchers have demonstrated that both eye blinks and horizontal saccades 

propagate through the head via volume conduction in a linear way (Plöchl et al., 2012), though 

differently on the scalp. With this method, EOG artifacts can be reduced by 80% and it can be used 

with any number of electrodes (Schlögl et al., 2007). The problem with this technique is that EOG 

channels contain not only ocular activity; indeed, the risk is to also remove neural signals of interest 
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from the EEG data. The neural signal loss appears to range from about 5% for frontal EEG channels 

to less than 1% for occipital channels (Schlögl et al., 2007). 

Another approach to the ocular artifacts’ correction is dipole modeling. This model, originally 

proposed by Berg and Scherg, is based on the understanding that the retina is electrically charged 

(positive at the front and negative at the back). For this reason, it assumes that “the electromagnetic 

field can be represented at distances corresponding to those of sensors placed on the head and around 

the eyes by an equivalent current source dipole located somewhere in each eye and oriented 

approximately in the direction of gaze” (Berg & Scherg, 1991). Effects of the dipole are undetected 

if the eyes are still, but when the eyes move, the effects of changes in position or orientation of the 

ocular dipole can be detected. Basically, this procedure models spatiotemporal dipoles by assuming 

a priori the number of dipoles related to ocular movements (e.g., blinks, saccades). The problem in 

this case arises from the “a priori assumptions”: if they are incorrect, this may lead to subsequent 

inaccuracies in the source’s locations and the contributions of EOG to EEG (Drisdelle et al., 2017).  

The PCA is another option. Principal Component Analysis finds the components in the data that 

explain the greatest variance (the order in which they are presented is due to the proportion of variance 

explained by each component) and that are orthogonal to each other. Therefore, PCA aims to extract 

the smallest set of variables with less redundancy, where redundancy is defined by correlations 

between data elements (Bugli & Lambert, 2007). This procedure is a dimensionality reduction 

technique that allows the simplification of the data in 

multivariate statistics. This means that it is not the best tool to 

find distinct components in the data, but rather to identify 

underlying variables that are uncorrelated with each other. In 

fact, if some components are uncorrelated, it does not mean that 

they are also independent: as can be seen in Figure 8, knowing 

the values of x provides information about y, even though x and Figure 8: Uncorrelated but dependent 
variables. 
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y are uncorrelated. This is problematic since PCA can extract a large set of different but statistically 

equivalent uncorrelated/orthogonal components, failing to accurately identify the original individual 

components (Stone, 2002). Additionally, since PCA generates a series of orthogonal base vectors 

where each vector accounts for as much variance as possible (Bugli & Lambert, 2007), the first vector 

will result significantly larger in magnitude than all the subsequent ones. When the SNR is low, 

important information in these subsequent vectors can get lost. Moreover, it has been seen that PCA 

does not completely separate artifacts from neural activity, especially when they have similar 

amplitudes (Lagerlund et al., 1997).  

Thus, the last technique to consider is the Independent Component Analysis, and as we are going to 

see, it seems to be the more appropriate to use for artifact correction in EEG data. 

 

3.2. ICA  

ICA was originally developed to deal with the cocktail party problem, that is the attempt to isolate a 

pertinent conversation from the noise of other conversations in a cocktail party (Hyvärinen & Oja, 

2000). Consider a party where many people are talking at the same time. If there is a microphone, 

then its output is a mixture of voices (X). Given such a mixture, ICA identifies those individual signal 

components (Ũ) of the mixture that are unrelated. Since the only unrelated components within the 

signal mixture are the voices of different people, this is what ICA identifies (Stone, 2002). It is worth 

stressing that ICA requires more than one simultaneously recorded mixture in order to find the 

components and it does not include any information specific to speech signals (Stone, 2002). 

The effectiveness of ICA is based on the assumption that source signals are not only uncorrelated but 

are also ‘statistically independent’, which means that the value of one variable provides absolutely 

no information about the value of the other (Hyvärinen & Oja, 2000). ICA also relies on the 

assumption that signal mixtures, which are combinations of independent source signals, must have 
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non-Gaussian distributions (Hyvärinen & Oja, 2000). Hence, ICA is a reliable instrument to deal with 

EEG signals, since EEG data might not always meet the normality assumption (Sugimoto et al., 

1978), and consist in a mixture of activity produced from different physical processes in various brain 

regions (neural and nonneural processes). Must be said that ICA is a technique of dimensionality 

reduction, but differently from PCA, it first separates the independent components and then removes 

those of no interest from the data. It can be considered a generative model, which means that it 

describes how the observed data are generated by a process of mixing the components (Hyvärinen & 

Oja, 2000). 

Through the ICA formula, we can observe that the final signal “X” (with EEG data, it consists in a 

matrix ‘channels*time’) can be expressed as a linear combination of independent components “U” (a 

matrix ‘components*time’) and an unknown mixing matrix (A): 

X = A*U 

Since we are interested in extracting the independent components that compose the final signal, ICA 

defines a separating/demixing matrix “W” (the inverse of the estimated mixing matrix A) to recover 

an estimation of the components (Ũ), multiplying it with the mixture signal (Hyvärinen & Oja, 2000):  

Ũ = W*X 

Thus, while in the original EEG data each row of the recording data matrix represents the time course 

of activity of the channel (channel = A – R), after ICA decomposition each row of the transformed 

data matrix represents the time course of the activity of one independent component (IC), spatially 

filtered from the channel data. These outputs reveal information about the temporal and spatial 

characteristics of the ICs. To remove artifacts embedded in EEG recordings, the computed ICs are 

first classified as either artefactual or neural components (Zou et al., 2016). If detected and flagged 

as artifact-related ICs, they can be subtracted from the recorded data putting to ‘0’ the column of the 

mixing matrix (A) associated with the flagged artifact, and the remaining data can be remixed. In ICA 
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correction, artefactual ICs can be identified thanks to their characteristic shapes (topographies, time 

courses, and frequency spectra) and can often be classified automatically. 

It must be also said that ICA is a special case of “Blind Source Separation” (BSS). “Source” means 

an original signal (i.e. independent component), and “Blind” indicates that we have little to no 

knowledge of the mixing matrix (Hyvärinen & Oja, 2000). This blind source separation has some 

drawbacks: it may result in the possibility of variation in the separation of these underlying sources, 

and the variability in the source related to the artifact may reflect the inclusion of elements of non-

artifactual sources. That is, when the EEG signals are reconstructed without the artifact component, 

there is the potential that portions of the neural signal may have unknowingly been removed (Pontifex 

et al., 2017). Besides, with ICA we cannot determine the variances as well as the order of the 

independent components (Hyvärinen & Oja, 2000).  

 

3.3. ICA ARTIFACTS  

As already mentioned, artifact components generally can be identified according to the topographies 

of the electrodes on the scalp, the across-trial temporal distributions (consisting in a matrix 

‘trial*time’ that shows where in time and how often in the trials the artifactual components appear), 

and frequency distributions of the components (Hu & Zhang, 2019).  

Abnormal topographies can appear as (1) power concentrated just in the frontal lobe in topography 

(ocular artifacts); (2) discontinued topography (noise artifacts); and (3) topography constrained 

within a single electrode (electrode artifacts). Abnormal across-trial temporal distributions can appear 

as (1) inconsistent between epochs (without clear peaks in average waveforms); (2) periodic 

waveform (power line interference); and (3) noisy patterns (like the Gaussian noise). In EEGLAB, 

the artifact components are already flagged and labeled by ICA, while the rejection of the artifacts 

can be done automatically or manually. If all labs were to use the same ICA algorithm and function 
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to automatically reject labeled ICs, it would be the most optimal approach. That is because it would 

reduce the variability that experimenters could introduce into the data by removing different 

components, thereby increasing the replicability of the results. However, since ICA is not perfect in 

labeling components, there is the risk of raising the amount of type I (rejecting an artifact that it is 

not) and type II (not rejecting an artifact when you should) errors. Because of this, manual rejection 

is still used, and it may even be more appropriate if the experimenters have enough experience. 

Nonetheless, a good practice is to follow the instructions above to decide whether a component is or 

not an artifact, and if we have some doubts about an IC, we shouldn’t remove it. Besides, it is advised 

to not remove more than 2-4 components when we have good quality EEG data (Hu & Zhang, 2019). 

Notably, the application of ICA seems to be particularly useful in removing blinks and other 

oculomotor artifacts (Plöchl et al., 2012). They tend to have an anterior distribution, and their time 

courses are largely flat with occasional very high-amplitude spikes indicating artifacts of the eye 

muscles (Figure 9). Using ICA to correct artifacts is generally considered the best (Hyvärinen & Oja, 

2000), especially in the case where we also want to investigate whether the cognitive processes 

change if we move the eyes. 

 

 

  

Figure 9: to the left, a saccades component found through ICA. We can appreciate the typical topography and the abnormal across-
trial temporal distribution, which represents a higher number of saccades during the saccade block of the task. To the right, a blink 

component found through ICA, with its typical topography and across-trial temporal distributions inconsistent between epochs. 
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3.4. ICA IN ERP PIPELINE  

Considering the pipeline proposed in ‘paragraph 3’, if we want to reduce the number of rejected 

epochs, we should perform ICA before the epoch rejection step: 

1. Import data; 

2. Import channel locations; 

3. Filter data; 

4. Re-reference data; 

5. Check and interpolate bad channels; 

6. Segment the EEG data and extract epochs; 

o Baseline correction; 

7. ICA (artifacts correction); 

8. Epoch rejection; 

9. Average of epochs to obtain the ERP. 

In this way, ICA corrects the artifacts before rejecting epochs that exceed the threshold, increasing 

the number of trials retained for the extraction of our ERP. 

Besides, some studies have shown that according to the algorithm used to compute ICA, some 

variability may be introduced into the data due to the uncertainty of the separation of the underlying 

sources/components (Pontifex et al., 2017). The matrix ‘W’ is estimated using an iterative algorithm 

that maximizes the independence of the estimated sources. The most reliable and used algorithms are 

called: ‘FastICA’, ‘SOBI’, and ‘infomax’. Pontifex demonstrated in a paper of 2017, that the 

‘infomax’ algorithm produces the greatest reduction in the eyeblink artifact, even though it is 

computationally slower than the others. Furthermore, uncertainty in the ‘infomax’ algorithm seems 

to produce a small amount of variability in potential solutions compared to the other two algorithms. 

Anyway, the mechanism underlying the superior performance of this algorithm is unclear. This aspect 

is extremely important for the goal of our study because, to understand whether ICA is a reliable 
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instrument and whether moving the eyes influences the underlying cognitive processes, it is essential 

to ensure that differences do not depend on the ICA algorithm used. 

In summary, we have identified the primary challenges associated with ERP studies and have 

proposed a potential solution to address these issues. Even though several experiments have already 

validated ICA as an appropriate procedure to remove artifacts for non-lateralized ERPs (Mennes et 

al., 2010), very few studies tried to examine the effect of saccadic eye movement activity on posterior 

lateralized ERP components like the SPCN component (Drisdelle et al., 2017).  
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4. RESEARCH QUESTIONS 

The experiment that we performed has been inspired by the paper of Drisdelle and colleagues of 2017, 

and we aim to assess the effectiveness of ICA for saccade and blink removal on a lateralized posterior 

ERP (SPCN component). This was accomplished by having the participants complete a “change 

detection task” (CDT) for visual working memory that was divided into two blocks: (1) one with 

traditional instructions (fixation condition), where subjects maintain fixation during experimental 

trials; and (2) another with heavily saccade-contaminated data (free gaze/saccade condition), where 

subjects are instructed to saccade toward the target. Then, we analyzed the data with both methods 

(ICA and epoch-rejection method) to determine if ICA somehow distorted the signals, especially 

when saccades were present. The effects of saccades on SPCN components were evaluated 

investigating whether the differences in amplitude at different memory set sizes were coherent with 

the findings present in literature and whether the method of analysis interacted with those. This 

experiment has a within-subjects design, but we also added a between-subjects variable, that is the 

presentation time of the memory array (500 vs 100 ms) because the traditional condition with 

presentation time at 100 ms could be suboptimal for letting subjects saccade toward the target (given 

that the latency of a saccade is higher than 100 ms, see Gilchrist, 2011). In this way, we also assessed 

possible differences in SPCN amplitude at different presentation times for each experimental block, 

between the two methods of analysis. 

To sum up, we are going to investigate these main questions: 

1) Does ICA produce reliable and solid results compared to using only the epoch-rejection 

method when extracting SPCN components? 

2) Do saccades influence the SPCN waveform? If so, in which conditions? 

3) Does a more ecological setup (longer presentation time and possibility to saccade) improve 

the SPCN components if properly handled with ICA? 

  



27 
 

5. METHOD 

5.1. Subjects 

Forty-four students at the University of Padova (30 women, and 14 men) took part in the present 

experiment after giving formal consent. All participants reported normal or corrected-to-normal 

vision and had no history of neurological and/or psychiatric disorders. Specifically, twenty-three 

subjects performed the experiment with the memory array presented for 100 ms, and twenty-one 

performed the experiment with the memory array presented for 500 ms. Eight subjects were excluded 

from the analysis (five from the first group and three from the second group): one participant did not 

reach an accuracy of 60% of correct responses in the change detection task; four participants were 

removed because the trials remaining after artifact rejection were less than 50%; and other three 

subjects were rejected because the ERPs presented contaminations of alpha waves and muscular 

artifacts that disrupted the waveforms. Thus, thirty-six subjects were kept: eighteen for the first group 

(age: M = 23.6, SD = 2.27; 6 males; 1 left-handed) and eighteen for the second group (age M = 23.2, 

SD = 2.03; 6 males; 1 left-handed). The experimental protocol was vetted by the local Ethical 

Committee. 

 

5.2. Stimuli and Task 

The stimuli of the change detection task were generated with E-Prime 2 software (Psychology 

Software Tools Inc.) and displayed on the black (RGB: 0, 0, 0) background of a 24” CRT monitor 

with a refresh rate of 60 Hz at a distance of about 65 cm. An example of the stimuli and a schematic 

illustration of the sequence of events in the single-probe change detection task (CDT) is reported in 

Figure 10. 
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Figure 10: Schematic illustration of the sequence of events in one trial of the single probe change detection task. 

 

Each trial started when the participants pressed the spacebar of the keyboard positioned in front of 

them. Upon spacebar press, a white (RGB: 255, 255, 255) dot, subtending .8 × .8° of visual angle, 

was displayed at the center of the screen for a 900–1000 ms interval, randomly jittered in steps of 20 

ms. A white (RGB: 255, 255, 255) arrow appeared around the dot for a 150 ms interval, pointing 

toward the side participants had to attend. Two memory arrays composed of two, three, or five 

equiluminant colored squares were then displayed to the left and right of the fixation dot for 100 or 

500 ms (according to the group the subject was assigned before the experiment started). The cued 

side could be, with equal probability, the right or left hemifield. Participants had to attend and 

memorize only the memory array on the cued side. Each square subtended 1° × 1° and the colors 

were randomly chosen among blue (RGB: 0, 0, 255), brown (RGB: 157, 0, 23), orange (RGB: 255, 

128, 0), purple (RGB: 128, 0, 255), dark green (RGB: 30, 140, 60), cyan (RGB: 0, 255, 255), pink 

(RGB: 255, 174, 201), magenta (RGB: 255, 0, 255), yellow (RGB: 255, 255, 0), red (RGB: 255, 0, 

0), and light green (RGB: 0, 255, 0). After a 900 or 500 ms blank retention interval (according to the 

group the subject was assigned before the experiment started) in which only a white dot at the center 
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of the screen was present, a test-colored square (single probe) was displayed representing, with equal 

probability, a color present or absent in the memory array that subjects had memorized. The color of 

the probe was selected randomly between the colors present in the previous memory array or between 

the colors absent from the memory array. The probe remained in view until participants pressed one 

of two keys (i.e., the keys ‘A’ or ‘L’ of the computer keyboard, counterbalanced across participants) 

to indicate whether it was present or absent from the memorized memory array. The experiment was 

composed of 696 trials divided into two experimental blocks (348 each). For half of the experiment 

(i.e., one block), subjects were instructed to maintain fixation on the dot at the center of the screen 

(fixation block). For the other half of the experiment, subjects were instructed to direct their gaze 

toward target items, that is the memory array in the cued side (saccade block). The order of 

experimental blocks was counterbalanced across subjects. Every 29 trials there was a pause whose 

duration was decided by the subjects. Usually, the pause between the two experimental blocks was 

the longest. Before each experimental block, there were 18 trials of practice. On average, subjects 

took 1 hour and 15 minutes to complete the task. 

 

5.3. Electroencephalography 

The EEG was recorded from 64 active electrodes placed on an elastic Acti-Cap according to the 10/20 

International System, referenced to the left earlobe. Electrodes mounted on an elastic cap were placed 

at the following sites: Fp1, Fpz (as ground), Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, 

F4, F6, F8, FT9 (as VEOG), FT7, FC5, FC3, FC1, FCz (as left earlobe reference), FC2, FC4, FC6, 

FT8, FT10 (as right HEOG), T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9 (as left HEOG), TP7, CP5, 

CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10 (as right earlobe reference), P7, P5, P3, P1, Pz, P2, P4, 

P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2, and Iz (as FCz). The EEG was re-referenced offline 

to the average of the left and right earlobes. Horizontal EOG (HEOG) was recorded as the voltage 

difference between electrodes placed at the external canthi of the left and right eye, to measure 
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saccades. To measure blinks, vertical EOG (VEOG) was recorded as the voltage difference between 

an electrode placed under the left eye and the electrode at Fp1, located above the left eye. The 

electrode impedance was kept at less than 10 KΩ. EEG and EOG signals were amplified and digitized 

at a sampling rate of 500 Hz (pass band 0.01–30 Hz and notch filter to remove frequencies between 

48 and 52 Hz) and resampled offline at 250 Hz. The EEG was segmented into 1100-ms epochs starting 

100 ms before the onset of the memory array. The epochs were baseline-corrected based on the mean 

activity during the 100-ms pre-stimulus period. Then, ocular artifacts rejection was performed in two 

different ways for the same data (see section below) and epochs with artifacts non-eye movement-

related (signal exceeding ±100 µV within 1 second time window after memory array onset) were 

excluded from all analyses. Trials associated with incorrect responses were discarded from analysis 

and we kept participants who showed at least 30 trials in each condition. If a subject had more than 

50% of trials removed because of artifacts, was rejected from the analysis. Then, we extracted the 

lateralized ERPs for each subject, and we created a ‘Grand Average’ SPCN component considering 

the channels PO7 and PO8, which are where the SPCN component is maximally expressed (Luria et 

al., 2016). 

 

5.3.1. Ocular Artifacts rejection and ICA correction 

The first approach we used to remove ocular artifacts (horizontal and vertical eye movements) was 

the traditional epoch-rejection method. In this procedure, epochs exceeding an arbitrary threshold, 

are labeled, and then excluded from the analysis. The same criteria were established for VEOG and 

HEOG movements (deflection > 80 µV within 1 second time window after memory array onset). The 

threshold value used for blinks represents the electrical activity that an average blink produces, and 

it is largely used in literature (Drisdelle et al., 2017; Meconi et al., 2018). Our goal here was to remove 

as many blinks as possible from the analysis as artifacts of no interest. The threshold value used for 

saccades is more lenient and it has been used to leave some saccades in the epochs, for both fixation 
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and saccade blocks. This allows us to evaluate the efficacy of ICA correction when subjects make 

saccades by mistake under fixation instructions, and the effects of ICA and saccades on the lateralized 

ERP when subjects perform a lot of lateral eye movements during the task. 

In the second approach, we performed ICA on the segmented data for each subject to identify and 

subsequently remove ocular components. In this manner, we can save epochs for the analysis by 

removing only the specific artifact from the data, instead of removing the whole epoch, and so, useful 

data. We used the infomax (information maximization) ICA algorithm, developed by Bell and 

Sejnowski (1995), and then we removed manually only the artifacts representing ocular artifacts. In 

a few cases, components representing obvious muscular artifacts or channel noises were discarded. 

After ICA correction, we also performed the epoch-rejection procedure on the ‘clean’ data with the 

same criteria used in the first approach. We do that to remove any big artifacts left in the data and to 

evaluate the number of epochs saved performing ICA compared to the epoch-rejection method. 

 

5.4. Procedure and Statistical Analysis  

When participants arrived at the lab, we gave them the formal consent to read and sign. After that, we 

started to measure the participants’ head and scrub the areas where EOG electrodes must be placed. 

We put an elastic cap on their head, filled the electrodes’ holes with electroconductive gel before 

attaching each electrode in the right position, and then we checked the electrodes’ impedance. On 

average, this procedure took 45 minutes. We explained to the subjects the task they were about to do, 

instructing them to avoid blinking before they gave the response (each trial lasted around 5 seconds). 

Then, we left them alone to do the experiment that lasted on average 1 hour and 15 minutes.  

The Data processing was performed using custom MATLAB code that called functions in the 

EEGLAB, MATLAB toolbox, and the ERPLAB plugin for EEGLAB. The statistical analyses for 

EEG data were conducted using Rstudio on the mean values of SPCN components for each condition 
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and participant, taken within the time interval of interest. We also used Rstudio to analyse the 

accuracy and Cowan’s K. The Cowan’ K is an estimate of working memory capacity extracted using 

change detection paradigms (Figure 10), representing the number of available slots at each set size 

(Cowan, 2001; Pashler, 1988; Rouder et al., 2011). It comes from a popular conceptualization that 

considers the visual working memory being composed of a limited number of slots, one for each item 

to remember (Cowan, 2001). The formula is: 

K = S *(H - F) 

where K is the memory capacity, S is the size of the array, H is the observed hit rate, and F is the false 

alarm rate (Vogel & Machizawa, 2004). We used Cowan’s formula instead of Pashler’s formula 

because it seems more appropriate when we have a single-probe change detection task (Rouder et al., 

2011). 
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6. RESULTS 

6.1. Accuracy data 

The accuracy results obtained from the subjects kept for the final analysis can be seen in Figure 11. 

Notably, the accuracy for the fixation block was 77.74% (± 11.71%), and for the free gaze/saccade 

block was 82.11% (± 10.89%). For the different set sizes (2, 3, 5), the accuracy was respectively 

88.44% (± 8.44%), 80.91% (± 9.50%), and 70.43% (± 8.55%). When the presentation of the memory 

array lasted 100 ms the subjects obtained a 77.00% (± 11.82%) accuracy, whereas with the 

presentation time at 500 ms, the accuracy was 82.85% (± 10.43%). These results suggest that subjects 

were more accurate when they could saccade toward the cued side of the monitor and when the 

presentation time was longer (500 ms). Additionally, as the set size of the memory array increased, 

accuracy decreased. 

 

 

 

To assess the effect of these variables, we conducted a 2 x 2 x 2 x 3 mixed ANOVA, examining the 

different blocks (within-subject, two levels: fixation or free gaze/saccade), the presentation time 

(between-subjects, two levels: 100 ms or 500 ms), the side of appearance of the memory array (within-

Figure 11: Violin boxplot representing the mean subjects’ accuracy at different memory set size, divided for experimental blocks and 
presentation time. 
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subject, two levels: left or right) and the set size of the memory array (within-subject, three levels: 2, 

3, or 5). A significant difference was observed between: fixation and saccade blocks, F(1,34) = 23.71, 

p < 0.001; presentation times of the memory array, F(1,34) = 8.98, p = 0.005; and different set sizes, 

F(2,68) = 339.76, p < 0.001. No significant difference in accuracy was observed between the left and 

right presentation side, F(1,34) = 0.0005, p = 0.98. No interactions between experimental factors were 

significant (see Table 1). The between-subjects factor ‘presentation’ had different variances between 

the two groups, but when it was corrected with the Welch test, it remained significant (p < .001). 

 

Table 1: Four ways ANOVA results for accuracy data. 

 

Thus, performance is affected by experimental factors, and accuracy is higher when: the set size of 

the memory array is smaller; the subjects can saccade toward the cued side; and the presentation time 

of the memory array is longer (500 ms).  

Post-hoc comparisons were conducted via three dependent t-tests using the false discovery rate (FDR; 

Benjamini & Hochberg, 1995) correction for multiple comparisons. The accuracy with set size 2 was 

significantly higher than accuracy with set size 3, t(143) = 12.67, p  < .001; accuracy with set size 3 

was higher than accuracy with set size 5, t(143) = 15.98, p  < .001; and accuracy with set size 2 

resulted higher than accuracy with set size 5, t(143) = 27.31, p  < .001.  
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6.2. Cowan’s K  

The results for ‘Cowan’s K’ from the subjects included in the final analysis are presented in Figure 

12. The K value for the fixation block was 1.67 (± 0.65) and for the free gaze/saccade block was 1.96 

(± 0.62). The Ks for the different set sizes (2, 3, 5) corresponded respectively to 1.54 (± 0.34), 1.85 

(± 0.56), and 2.05 (± 0.85). When the presentation of the memory array lasted 100 ms the K was 1.60 

(± 0.60), whereas with the presentation time at 500 ms, the K was 2.02 (± 0.64). The image suggests 

that there could be differences in the estimated K between fixation and saccade blocks, different set 

sizes of the memory array, and presentation times. 

 

Figure 12: Violin boxplot representing the mean K values at different set sizes, divided for experimental blocks and presentation 
times. 

 

To test these observations, we conducted a 2 x 2 x 2 x 3 mixed ANOVA, like for the accuracy analysis. 

A significant difference was present between: fixation and saccade blocks, F(1,34) = 24.04, p < 0.001; 

presentation times, F(1,34) = 11.44, p = 0.002; and the different set sizes of the memory array, F(2,68) 

= 46.55, p < 0.001. Besides, two interactions were observed: one between presentation time and the 

set size of the memory array, F(2,68) = 15.33, p < 0.001; and another between the different 

experimental blocks (fixation and free gaze/saccade block) and the set sizes, F(2,68) = 6.11, p = 

0.004. No other main effects and interactions were significant (see Table 2). The between-subjects 
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factor ‘presentation’ had different variances between the two groups, but when was corrected with 

the Welch test, it remained significant (p < .001). 

 

Table 2: Four ways ANOVA results for Cowan’s K. 

 

Thus, Cowan’s K is influenced by experimental factors, and it was higher when: the presentation time 

of the memory array was longer (500 ms); the set size of the memory array was bigger; and the 

subjects could saccade toward the cued side. However, the differences in the K’s values for different 

set sizes changed at different presentation times of the memory array and between the two 

experimental blocks (fixation and saccade block). 

In a post hoc analysis using the false discovery rate method, we found that: the K with set size 2 was 

significantly smaller than the value of K with set size 3, t(143) = -9.15, p  < .001; the value of K with 

set size 3 was smaller relative to the K with set size 5, t(143) = -3.46, p = 0.004; and the value of K 

with set size 2 was smaller than the value of K with set size 5, t(143) = -8.54, p  < 0.001. Moreover, 

with presentation time of 100 ms: the value of K with set size 2 was significantly smaller than the 

value of K with set size 3, t(71) = -4.27, p  < .001; the value of K with set size 3 was not different 

from the value of K with set size 5, t(71) = -0.01, p = 1, as well as the value of K between set size 2 

and 5, t(71) = -2.71, p  = 0.06. However, with a presentation time of 500 ms: the value of K with set 

size 2 was smaller than the value of K with set size 3, t(71) = -9.43, p  < .001; the value of K with set 
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size 3 was significantly smaller than the value of K with set size 5, t(71) = -5.62, p  < .001; and the 

value of K with set size 2 was smaller than the value of K with set size 5, t(71) = -10.86, p  < .001.  

Looking at the previous results, we can observe that the differences between K values at different set 

sizes change at different presentation times, and this explains the significant interaction we found 

between presentation times and set sizes. At 100 ms the K values at set sizes 3 and 5, as well as the 

Ks at set sizes 2 and 5, are almost the same; whereas with 500 ms there is an increase of the Ks as the 

set size increases.  

For what concerns the interaction between experimental blocks and set sizes of the memory array, in 

the fixation block of the experiment: the value of K with set size 2 was significantly smaller than the 

value of K with set size 3, t(71) = -5.73, p  < .001; the value of K with set size 3 was not different 

from the value of K with set size 5, t(71) = -0.88, p = 1; and the value of K with set size 2 was smaller 

than the value of K with set size 5, t(71) = -4.10, p  < .001. However, in the free gaze/saccade block: 

the value of K with set size 2 was smaller than the value of K with set size 3, t(71) = -7.25, p  < .001; 

the value of K with set size 3 was significantly smaller than the value of K with set size 5, t(71) = -

4.32, p  < .001; and the value of K with set size 2 was smaller than the value of K with set size 5, 

t(71) = -8.53, p  < .001. As we can see, the differences between K values at different set sizes change 

whether subjects make or not a saccade, and this explains the interaction between set sizes and the 

experimental blocks. When subjects fixate on the center of the monitor, the K values between set 

sizes 3 and 5 are the same, while in the saccade condition, there is an increase of the K as the set size 

increases (see Figure 13). All the post-hoc analyses were conducted via dependent t-tests using the 

false discovery rate to correct for all the comparisons performed. 
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Figure 13: Violin boxplot representing mean K values at each set size, divided for fixation and saccade blocks. 

 

6.3. EEG DATA 

6.3.1. Trials rejection 

As already mentioned, an important concern with the epoch-rejection approach is the possible small 

number of non-artefactual trials to extract the ERP averages. In this experiment, we analyzed the 

same EEG data using two different methods to evaluate the differences in the number of trials saved 

and the final ERP averages extracted. For both methods of analysis, we used the same rejection 

criteria for HEOG and VEOG (change of at least 80 µV within a 1 second time window from the 

stimulus onset). Then, we also checked for artifacts higher than 100 µV in all the other channels.  

Thus, for the data with the presentation time at 100 ms and epoch-rejection approach, 6.07% of the 

epochs (SD = 6.22%) were labeled as containing ocular artifacts (blinks or saccades), and the 

rejections due to saccades were 1.71%, (SD = 4.53%) of the total artifacts. After ICA correction, 

instead, 0.75% of the epochs (SD = 1.06%) were labeled as containing ocular artifacts (blinks or 

saccades), and the rejections due to saccades were 0.37%, (SD = 0.89%) of the total artifacts. For the 
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data with a presentation time of the memory array of 500 ms and epoch-rejection approach, 5.64% of 

the epochs (SD = 6.07%) were labeled as containing ocular artifacts (blinks or saccades), and the 

rejections due to saccades were 1.01%, (SD = 2.10%) of the total artifacts. After ICA correction, 

0.24% of the epochs (SD = 0.31%) were labeled as containing ocular artifacts (blinks or saccades), 

and the rejections due to saccades were 0.04%, (SD = 0.10%) of the total artifacts. Overall, when the 

ICA method was used in addition to the epoch-rejection approach, 85% of epochs labeled as ocular 

artifacts, and in particular 81% of epochs with saccades, were kept for the analysis. 

 

      6.1.2 SPCN amplitude 

Exploratory analysis 

After conducting the preprocessing to extract the SPCN components, we obtained several SPCN 

separated by set size of the memory array, experimental block (fixation and free gaze/saccade blocks), 

and presentation time. Figures 14 and 15 illustrate the lateralized ERPs at a presentation time of 100 

ms, following the epoch-rejection method. Figure 14 shows SPCN components for each set size in 

the fixation blocks, while Figure 15 represents the components in the free gaze/saccade blocks. 

 

Grand-averaged SPCN waveforms (at PO7/PO8) at 100 ms of presentation time for the fixation condition after the epoch-rejection 
procedure on the left (Figure 14), and for the saccade condition after the epoch-rejection procedure on the right (Figure 15). 
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Looking at the images, we can appreciate the SPCN components from 300 ms post-stimulus onset 

until the end of the temporal window (1 second after stimulus onset). It seems there is an effect of the 

set size of the memory array, with increased negativity as the set size increases (reaching a plateau 

around a set size of 3, given that with 3 and 5 elements the waves are very similar). It seems that in 

the saccade blocks, there is a decrease in negativity at the end of the temporal window. 

Instead, Figures 16 and 17 illustrate the SPCN components for each set size at a presentation time of 

100 ms following ICA correction, in the fixation and the free gaze/saccade blocks, respectively. 

 

 

Grand-averaged SPCN waveforms (at PO7/PO8) at 500 ms presentation time for the fixation condition after ICA correction on the 
left (Figure 16), and for the free gaze/saccade condition after ICA correction on the right (Figure 17). 

 

These images are very similar to those obtained with the epoch-rejection method, even though it 

seems that the differences between the components at different set sizes are reduced, as well as the 

decrease in negativity at the end of the temporal window for SPCN in the saccade blocks. 

 

Figures 18 and 19 represent the SPCN components for each set size at a presentation time of 500 ms 

following the epoch-rejection method, in the fixation and the free gaze/saccade blocks, respectively. 
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Grand-averaged SPCN waveforms (at PO7/PO8) at 500 ms of presentation time for the fixation condition after the epoch-rejection 
procedure on the left (Figure 18), and for the saccade condition after the epoch-rejection procedure on the right (Figure 19). 

 

We can appreciate how the increase in negativity for larger set sizes seems to be maintained. Probably 

the amplitude of the components is more negative compared to those for the presentation time of 100 

ms, and the decrease in negativity at the end of the temporal window for the saccade condition is even 

more evident. 

Finally, we have the last two images (Figures 20 and 21) illustrating the SPCN components for each 

set size at a presentation time of 500 ms following ICA correction, in the fixation and free 

gaze/saccade blocks, respectively.  

 

Grand-averaged SPCN waveforms (at PO7/PO8) at 500 ms presentation time for the fixation condition after ICA correction on the 
left (Figure 20), and for the free gaze/saccade condition after ICA correction on the right (Figure 21). 
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The differences between the components at different set sizes seem reduced as well as the amplitude 

(especially in the free gaze condition). The decrease in negativity in the blocks where the subjects 

foveated the cued side of the monitor is still present. 

 

Statistical analysis 

To test our hypotheses, we conducted the statistical analyses in Rstudio using the package “ez” 

(Lawrence & Lawrence, 2016). SPCN amplitude was measured making the mean of the time points 

within a time window of 500 ms. This time window started at 500 ms post-stimulus onset and ended 

at the end of the epochs (1 second post-stimulus onset). We chose this interval because, when 

considering a classical time window beginning at 300 ms post-stimulus onset, in the condition with a 

presentation time of 500 ms we would also take into account 200 ms during which the participants 

still had the memory array present on the screen. For this reason, we reduced the time interval of 

interest considering only the SPCN amplitude during the retention period after the memory array 

presentation.  

Then, we performed a 2 x 2 x 2 x 3 mixed ANOVA, examining the method of analysis (within-subject, 

2 levels: epoch-rejection and ICA correction), the experimental blocks (within-subject, 2 levels: 

fixation block and free gaze/saccade block), the presentation time of the memory array (between-

subjects, 2 levels: 100 ms and 500 ms) and the set size of the memory array (within-subject, 3 levels: 

2, 3, and 5). The results obtained can be observed in Table 3. 
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Table 3: Four ways ANOVA for EEG data. 

 

A significant difference was observed between methods of analysis, F(1,34) = 13.22, p < 0.001, and 

set sizes of the memory array, F(2,68) = 8.96, p < 0.001. Two interactions were observed between: 

the presentation times of the memory array and the methods of analysis, F(1,34) = 5.55, p = 0.02; and 

methods of analysis and set sizes of the memory array, F(2,68) = 6.81, p = 0.004 (corrected for 

sphericity after Mauncly’s test). Besides, a three-way interaction was observed between presentation 

times of the memory array, methods of analysis, and experimental blocks, F(1,34) = 11.37, p = 0.002. 

Table 4 and Figure 22 can help us to interpret better the significant main effects. 

 

Table 4: The SPCN mean amplitudes for the three factors (set size, experimental blocks, and presentation time) at different methods 
of analysis (epoch-rejection method and ICA correction). Between brackets are reported the standard deviations. 
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Figure 22: SPCN mean amplitudes at each specific condition. 

 

As we can appreciate also from Table 4, the amplitudes of the SPCN, when the ICA correction was 

performed, were lower almost everywhere compared to the amplitudes of the components under the 

epoch-rejection method. For what concerns the results of the set size corrected for multiple 

comparisons with the false discovery rate method of Benjamini and Hochberg, there was: a significant 

difference between the memory array with the set size of 2 and 3, t(143) = 4.81, p < .001; and a 

significant difference between the memory array with the set size of 2 and 5, t(143) = 4.21, p < .001. 

No difference was observed between the memory array with set sizes 3 and 5. Overall, we can say 

that when the memory array has set size 2, the SPCN amplitude is more positive than with set sizes 

3 and 5. It is interesting to notice that overall, SPCN amplitude is not affected by both different 

presentation times of the memory array and experimental blocks (fixation and saccade blocks). 

To understand better the significant interactions, some post-hoc analyses and graphs might be helpful. 

Figure 23 shows the interaction between the presentation times and the methods of analysis. 
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Figure 23: SPCN amplitude values for different methods of analysis and presentation times. 

 

This interaction indicates that there is a difference in the SPCN amplitudes between the methods of 

analysis, across the levels of presentation time of the memory array. After conducting a post-hoc 

analysis, and correcting for multiple comparisons with the false discovery rate method, it appeared 

that SPCN amplitude is almost the same with a presentation time of 100 ms between the two methods 

of analysis, but there was a significant difference when the presentation time is of 500 ms, t(107) = -

6.07, p < 0.001: the data analyzed with epoch-rejection method only, are more negative than those 

analyzed also with ICA correction when the presentation time is longer. The differences between the 

same method of analysis across the levels of the presentation time were not significant.  

The other interaction is between methods of analysis and set sizes of the memory array. As we can 

see also from Figure 24, when ICA was performed, only the SPCN amplitude at set size 2 was more 

positive than that at set size 3, t(71) = 2.79, p = 0.05; all other comparisons were not significantly 

different. However, when the epoch-rejection method was performed, the amplitude at set size 2 was 

significative more positive than with set size 3, t(71) = 3.98, p = 0.003, and the amplitude with set 

size 2 was more positive than with set size 5, t(71) = 3.82, p = 0.003. To be precise, it was not the 
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amplitude at set size 2 to be more positive, but those of set size 3 and 5 to be more negative with 

epoch-rejection approach than with ICA correction (t(71) = -3.87, p = 0.003; t(71) = -4.58, p < .001, 

respectively). Thus, with both methods of analysis, there is no difference between set sizes 3 and 5, 

but with ICA correction set sizes 2 and 5 do not differ.  

 

 

For what concerns the three-way interaction between presentation times, methods of analysis, and 

experimental blocks (fixation and free gaze/saccade), Figure 25 and Table 5 can help us. This 

interaction means that the interaction between the methods of analysis and the experimental blocks 

varies across the levels of the presentation time. 

Figure 24: The SPCN mean values at different set size for the two methods of analysis. 

Table 5: SPCN mean amplitudes in each specific condition of the three-way interaction. 
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In the post-hoc analyses, the comparisons, corrected with the false discovery rate method, in the 

condition with presentation time 100 ms between experimental blocks and methods of analysis, 

resulted not significant: basically, there was not a reliable difference in the SPCN values between 

them. Anyway, in the condition with a presentation time of 500 ms, when participants made a saccade 

toward the cued side, SPCN amplitude was more positive when ICA correction was performed (t(53) 

= 5.96, p < 0.001, respectively).  

 

 

  

Figure 25: SPCN amplitude values for each level of the factors of the three-way interaction. 
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7. DISCUSSION 

With this experiment, we wanted to evaluate three main points: whether ICA correction of ocular 

artifacts (blinks and, in particular, saccades) could be used as a reliable method to avoid high numbers 

of epochs rejected in visual working memory experiments studying lateralized ERPs (SPCN 

component); whether letting subjects to make a saccade toward lateralized items during the encoding 

phase of the task, could influence the SPCN waveform; and whether experimental paradigm with a 

longer presentation time of the memory array and less constraints on the eye movements, could 

produce similar or better results compared to the traditional design. Using a mixed-subject design, 

we assessed the presence of the memory load effect on the SPCN components under two different 

methods of data analysis (epoch-rejection method and ICA correction) when participants were 

instructed to maintain fixation at the center of the monitor, and also when they were instructed to 

saccade toward target items at the side of the monitor. Besides, two groups of subjects conducted two 

versions of the same experiment (one with a presentation time of the memory array of 100 ms and a 

retention time of 900 ms, and another with a presentation time of 500 ms and a retention time of 500 

ms) to evaluate whether, with more time to efficiently saccade toward the items, there could be any 

differences in the SPCN components compared to the experiment with less time.  

The study produced several interesting results. First of all, we observed that with ICA, more than 

80% of the epochs removed using the epoch-rejection approach were saved. There was also a 

consistent reduction in the variability of discarded epochs among subjects and conditions. We 

succeeded in replicating the effect of memory load on the SPCN amplitude reported in literature 

(Luria et al., 2016; Vogel & Machizawa, 2004), with increased negativity observed as the number of 

representations being held in memory increased. We obtained this finding for both experiments with 

different presentation times, noticing that SPCN amplitude reached an asymptotic limit at set size 3 

in the ‘Grand Average’ ERP. Then, we observed that the method of analysis used influenced the SPCN 

amplitude, with increased negativity for the ERPs following the epoch-rejection approach. This result 
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was expected since the trials’ rejection was done using a lenient rejection criterion that led to the 

creation of saccade-conserved data for the condition in which subjects could move their eyes toward 

the target items. Thus, the reduced amplitude negativity with the ICA correction method may be due 

to the removal of the saccades’ activity. The same reason might be the cause of the smaller amplitude 

differences between set sizes after performing the ICA correction (set size 5 did not differ from set 

size 2). In contrast, with the epoch-rejection method, the differences were greater and the amplitudes 

at set sizes 3 and 5 were more negative. Perhaps, the SPCN waves were not affected at set size 2 

because, with so few items to memorize, subjects did not perform large saccades (this hypothesis 

must be tested). However, we saw in the three-way interaction, that these differences caused by the 

method of analysis used, were mainly driven by the experiment with a presentation time of 500 ms. 

In this condition, there was a big reduction in the SPCN amplitude after the ICA correction, while in 

the experiment with a presentation time of 100 ms, it was negligible. Indeed, we observed that, only 

when the presentation time was longer, the SPCN amplitude was reduced after ICA, especially when 

subjects had to make a saccade.  

An explanation for these results may be that subjects with the longer presentation time and the 

possibility to saccade the target items have more time to make eye movements and navigate the space 

where the items are (given that the elements are still present on the monitor when they complete the 

saccade). This aspect may have resulted in increased saccade activity in this condition compared to 

when subjects were required to saccade with a presentation time of 100 ms. This could have led to a 

significant reduction in amplitude after ICA correction due to the removal of large artifacts, and 

perhaps an increased difficulty in disentangling saccades from the neural signal. Besides, the fact that 

also with a presentation time of 500 ms in the fixation blocks, there was a reduction in SPCN 

amplitude following ICA correction (even if it was not significant after the multiple comparisons 

correction), it may indicate that subjects were more inclined to break the fixation instruction when 

the presentation time was longer. In short, even though the presentation time does not result 

significant in the first statistical analysis, there might be some specific situations in which a longer 
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presentation time, interacting with other factors (method of analysis and ocular movements) might 

generate unreliable or problematic SPCN components. However, it is important to pinpoint that in 

experiments with a presentation time of 100 ms, there were no significant alterations or differences 

due to different methods of analysis or eye movements, and the SPCN values at different set sizes 

under any conditions were similar (except for a small reduction in negativity after ICA correction). 

Moreover, it does not seem that making a saccade with a presentation time of 100 ms leads to 

backward masking: the SPCN components were still present; they did not differ from those of the 

fixation blocks; and the accuracy and Cowan’s K results were not compromised. This suggests that 

researchers could be more tolerant if subjects do not follow the fixation instruction in each trial of 

experiments with brief presentation times, given that the ERPs do not disappear and, using ICA 

correction in conjunction with the epoch-rejection approach produces almost indistinguishable 

results. 

 

Accuracy and Cowan’s K 

We also observed interesting results in the behavioral analysis, and it could be useful to interpret these 

in light of what we observed in the EEG analysis.  

For what concerns accuracy, the subjects showed an effect of the factor ‘set size’. This was very clear 

in both experiments with different presentation times, having higher accuracy when the number of 

item-to-be-remembered was lower. However, when the presentation time was at 500 ms, the accuracy 

was higher than when it was at 100 ms, and the subjects also had an improvement when they could 

saccade toward the target items compared to when they had to maintain fixation. The effects of 

presentation time and experimental condition (fixation and free gaze/saccade blocks) suggest that the 

less we constrain subjects to follow non-ecological instructions (e.g., maintaining fixation) and the 

more time we give them to encode the items, the better their performance. Still, the SPCN amplitude 

with a presentation time of 100 ms does not change between fixation and saccade instructions. This, 
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perhaps, indicates that the facilitation in the saccade condition does not influence directly this ERP’s 

working memory correlates, but it rather allows the subjects to not perform a second task (e.g., 

avoiding saccades) and be more focused on the primary task. If we consider the experiment with a 

presentation time of 500 ms, it may be that the more time the subjects had to accumulate information 

about the items, the better the final performance. The accuracy increased even more when participants 

could move their gaze. However, the SPCN amplitudes in these conditions were particularly 

influenced by these factors yielding results not completely reliable, especially when different methods 

of analysis were used. It might be that subjects in this condition are free to saccade and navigate the 

targets’ space more effectively (due to the longer presentation time), improving their performance 

thanks to the more ecological situation, but worsening the EEG data due to larger ocular artifacts. It 

should be noted that one possible explanation for the improved performance with a presentation time 

of 500 ms could be that the retention time before the response was 500 ms, compared to 900 ms in 

the experiment with a presentation time of 100 ms. Besides, differently from us, Drisdelle and 

colleagues did not observe any differences in accuracy between fixation and saccade blocks, which 

could potentially be attributed to the use of a different experimental paradigm. 

‘K’ is an estimate of working memory capacity, and it can be considered to reflect the number of 

available ‘slots’ for storing distinct objects (Cowan, 2001). The main effects found for the K were the 

same as those found for accuracy: there was an increase of K values as the set size of the memory 

array increased; Ks were higher when the presentation time was longer compared to when it was at 

100 ms, and they were higher also when subjects could saccade toward the target items. Thus, also 

here, with a longer presentation time and without a second task (e.g., avoid saccades), the participants 

were facilitated, and more ‘slots’ were available. However, in the fixation blocks and in the condition 

with a presentation time of 100 ms, there was not a significant difference between K values at set 

sizes 3 and 5. These results are consistent with our observations of the SPCN amplitudes for this 

condition: at set size 3, both the ERPs’ waves and K values reach a plateau. In contrast, with a 

presentation time of 500 ms, K values continued to increase as the number of items in the memory 
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array increased, for both the fixation and saccade blocks. In this case, these results contradict what 

has been found in ERP data, suggesting that this condition is more problematic to handle in EEG 

studies.  

 

8. CONCLUSION 

The current experiment has shown that ICA correction is an effective method for managing ocular 

activity, particularly saccades, in electrophysiological studies of visual working memory. This is 

evident from the overall form of SPCN components at different numbers of items presented and the 

statistical results obtained. Specifically, we replicated the first finding of Drisdelle and colleagues, 

demonstrating that using ICA to correct trials contaminated with HEOG artifact (saccades), either 

under fixation or saccade instructions, does not alter the effect of memory load of the SPCN 

component, previously shown to be involved in VWM (even though slightly reductions in the SPCN 

amplitude could appear compared to the epoch rejection method). However, this finding is valid only 

for experiments with briefly presented stimuli (probably less than 200 ms) for which little useful 

information could be acquired after the saccade. Hence, ICA correction retains a greater proportion 

of trials than the standard procedure of rejecting trials with artifacts, promoting robust and reliable 

results without affecting the SPCN properties.   

 

Limitations and Future Directions 

A critical aspect of this study was the low effect size associated with most of the results from the 

ANOVA. One possible explanation could be that the number of subjects per condition was low. 

Indeed, after removing subjects with accuracy lower than 50% and excessive trials with artifacts, we 

had only 18 participants in each group (group of the experiment with a presentation time of 100 ms 

and 500 ms). This number falls below the standard number of subjects, which is typically around 30, 
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required for cognitive and neurocognitive psychological experiments. Furthermore, it is not based on 

any objective measure. A ‘Bayesian power analysis’ could be useful to determine the sample size 

necessary to strengthen the final effect size. Another reason for the low effect size could be the 

distribution of the data. In fact, the distribution of the EEG data in this study deviates slightly from 

the normal distribution necessary to meet the normality assumption of parametric tests, such as 

ANOVA. With a violation of normality, a statistical test could misrepresent the results or report a low 

effect size. In this case, it could be useful to replicate the analysis with a non-parametric test like the 

‘Permutation test’, which does not need a normal distribution of the data to be performed and it 

manages well the ‘Type I error’. Another criticality is the experimental design. In the present study 

the average duration of the experiment was around 2 hours (45/50 minutes for the EEG montage and 

1 hour and 15 minutes to complete the task) and a lot of subjects reported tiredness and difficulties 

remaining focused after 20 minutes from the beginning of the task. Drisdelle and colleagues, in their 

study, used a multiple-frame procedure (MFP) in which they showed six consecutive visual search 

presentations, or frames, in each trial (instead of a single one), instructing subjects to respond at the 

end of these frames the number of frames containing a target. In this way, they presented a larger 

number of visual stimuli without increasing the duration of the experiment. Trying to apply this 

procedure to our paradigm could be very useful to improve the quality of the data acquired. 

Furthermore, some subjects reported difficulty in distinguishing the colors of certain squares. This 

may have impacted the accuracy of the subjects and, consequently, the extracted ERPs. This issue 

must be addressed in the future. 

For future experiments could be interesting to introduce a third method of analysis, consisting in an 

epoch-rejection approach with more strict threshold criteria for ocular artifacts. With this approach 

will be more difficult to reach an appropriate number of trials to extract the ERPs. However, it 

would be worthwhile to assess the actual number of epochs rejected if we try to remove all the eye 

movements and the SPCN waveform that it would produce, with the certainty that all the saccades, 

blinks, and associated cognitive processes have been deleted. Then, to increase the reproducibility, 
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an automatic procedure to detect and label the ocular artifacts with the ICA correction should be 

implemented, because manually removing them introduces a high degree of variability due to the 

differing abilities of the experimenters. We should also investigate whether the observed increase in 

positivity at the end of the time windows in the SPCN of the saccade condition (Figures 15, 17, 19, 

21) could have masked any effects in the means of the SPCN amplitude values used for the 

statistical analyses. Besides, replicating the SCN component (saccade contralateral negativity) 

found by Drisdelle and colleagues (Drisdelle et al., 2017), could provide valuable insights into 

whether it is the cause of the observed increase in positivity. 
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