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Abstract

Currently one of the most important obstacles to a wider utilization of robots
in industry is their accuracy. This is a critical issue for applications that allow
no margin of error such as medical applications or precision machining. A
possibility is to solve the problem at its root by manufacturing better robot,
but that would require substantial economical and time investments. A viable
alternative is to improve the robot accuracy through a calibration process, either
by creating a model of the robot that closely represents the real robot or by
studying the error model of the robot to compensate it directly. The aim of
this study is to develop a correction algorithm to improve the robot accuracy
by remapping the robot workspace through the use of computer vision and
machine leaning techniques. Different correction techniques were tested against
each other to find the one that would bring the robot accuracy closer to its
repeatability, together with some important additions to seamlessly include the
correction algorithm into an existing pipeline.
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1
Introduction

The purpose of this thesis is to develop an algorithm to improve the accuracy
of a robot manipulator. In order to do so the robot workspace will be remapped
through the use of computer vision and machine leaning techniques.

1.1 Robot calibration

Currently one of the most important obstacles to a wider utilization of robots
in industry is their accuracy [1]. This is a critical issue for industrial applications
that allow no margin of error and considerable impediment to a more exten-
sive use of advanced robot programming techniques. The identified parameters
relating to robot positional performance are accuracy, repeatability, and resolu-
tion. Each of these depends on the various components used in constructing the
robot (links, motors, encoders, etc.), the construction procedure, and the capa-
bilities of the driving actuators and the controller. Resolution is defined as the
smallest incremental move that the robot can physically produce. It is defined
through the control system used to power the manipulator, but is also affected
by the construction procedure, manipulator stiffness, (structural flexibility) and
encoders. Repeatability is a measure of the ability of the robot to move back to
the same position and orientation over and over again [2]. Accuracy is defined

1



1.1. ROBOT CALIBRATION

as the ability of the robot to precisely move to a desired position in 3D space [3].
For majority of today industrial robots manipulators the repeatability is on

the order of 0.1 mm but the absolute positioning accuracy is on the order of 1
mm [4]. There is no need to explain that it is desirable that the robot reaches
both high accuracy and repeatability. However, due to the fact that the absolute
positioning accuracy error is frequently greater than the repeatability by an
order of magnitude, low accuracy of a robot is often regarded as a more pressing
problem, because it practically restricts the applications to the ones that can be
satisfactorily programmed by 𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑏𝑦 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 methods where a human
operator manually guides the robot through a series of movements to teach it a
task.

This is a valuable tool in industrial robotics but it has its limitations: the
accuracy of the taught path is limited by the operator’s ability to guide the
robot, can be time consuming as the operator must physically guide the robot
through the entire task and the final path will probably not be optimized [5].

Robot accuracy is influenced by a number of factors, which can be classified
into five categories [6]:

1. environmental: temperature or humidity changes;

2. parametric: variation of kinematic parameters, joint zero-reference; off-
sets, influence of dynamic parameters, drive-train compliance, friction
and other nonlinearities, including hysteresis and backlash;

3. measurement: resolution and nonlinearity of joint position sensors;

4. computational: computer round-off and steady-state servo errors;

5. application: installation errors and workpiece position and geometry er-
rors.

Analysis of their influence and its elimination is a subject of intensive research
aimed at the improvement of both accuracy and repeatability through robot
calibration processes. Over the course of time multiple research papers or robot
calibration have been published but one of particular interest is the one written
by Roth, Mooring and Ravani where they proposed a hierarchical classification
in which the three calibration levels are separated [7]:

1. joint level calibration: calibrating the robot by establishing the correct rela-
tionship between the joint sensor signal and the actual joint displacement;
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CHAPTER 1. INTRODUCTION

2. kinematic model calibration: calibrating the robot by improving the kine-
matic model, with the assumption that the robot is composed of ideally
rigid links and nonelastic joints [8];

3. nongeometric (nonkinematic) calibration: at this level, deviations from the
ideal kinematic model due to effects, such as joint compliance, backlash
and link compliance are considered.

The aim of this thesis is to develop an algorithm to improve the robot accuracy
through the use of computer vision and machine leaning techniques to be able
to remap the robot workspace. In doing this it won’t be necessary to create an
accurate model of the robot. The position error distributed in its workspace will
instead be studied and compensated directly.

1.2 Sources of error

The major error contributions can be subdivided into structural, kinematic,
and dynamic. An illustration of the hierarchy of the factors that contribute to
the positional accuracy and repeatability of a robot is presented in Figure 1.1
[9]. Solutions such as building a better robot, building more rigid fixtures, and
improving manufacturing processes that could help in improving this problem
are often not feasible due to the required or unavailable resources. Compensa-
tion for this error through an in-process feedback mechanism is a much more
attractive alternative. As in any control system, the process parameters will
define the level of required sophistication. The joint zero position error is often
responsible for 90% [9] of the robot positional error.

A mathematical model within each robot controller assumes that the links on
one robot are the same length as the links on another robot of the same model and
type. Additionally, the same model also assumes that the relative orientations
of the joints on one robot are the same as on another robot of the same type.
Unfortunately, this assumption is not true due to manufacturing imperfections
and assembly variations [10]. Therefore, the controller will incorrectly estimate
the robot pose given a set of joint angles. The next most significant factor in
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the robot positional error is joint compliance. This may be thought of as a
factor representing the elasticity of each joint caused by the effects of gravity,
payload, and inertia. Each of the following robot characteristics: accuracy,
repeatability, and resolution depends upon many factors that include, but are
not limited to, friction, temperature, loading, and manufacturing tolerances. Of
the three robot characteristics, high accuracy is the one that this thesis aims
to improve. Differences between the modelled, designed components and the
actual, built components will affect the accuracy. The controller software can
be designed to account for discrepancies between the mathematical controller
model and the actual built part. However, this approach is not cost-effective for
mass-produced robots because considerable effort must be expended to identify
the characteristics of the various robot components within the desired accuracy
using complex, expensive, and time-consuming techniques [11].

1.3 State of the art

The main objective of robot calibration is to establish an accurate relationship
between the nominal and actual end-effector pose. To achieve this result two
main approaches were developed: model-based or parametric methods [12] and
modeless or non-parametric methods [13]. The model-based methods involve
defining a kinematic model for the robot, measuring positions and orientations
of the robot end-effector, identify the actual kinematic parameters to minimise
the errors between the locations predicted by the model and the actual measured
ones and compensating for its pose errors by modifying its joint angles [14].

The advantage of a model based calibration method is that a large workspace
can be calibrated accurately and all pose errors within the calibrated workspace
can be compensated for by joint angles [15]. But model based calibration has
also some very important limitations: the kinematic model takes only geo-
metric factors into account, but non-geometric factors such as backlash, joint
compliance, etc., may be significant in affecting robot accuracy, depending on
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CHAPTER 1. INTRODUCTION

Figure 1.1: Factors contributing in the robot accuracy and
repeatability. Sourced from "On the Accuracy, Repeatability, and

Degree of Influence of Kinematics Parameters for Industrial Robots"
[9].

the application. Including those factors into the kinematic model will increase
its complexity exponentially. Furthermore the identification of the kinematic
parameters is a complex procedure [16] which can suffer from the numerical
problem of ill-conditioning resulting in inaccuracy and inefficiency. The results
of identification can hardly be near-perfect due to the numerical inaccuracy and
limitations of the model used.

Finally the implementation of the identified model can be problematic due to
the difficulty of modifying the controller parameters which are not always acces-
sible, depending on the manufacturer, and the additional difficulty in solving the
inversion problem of the modified kinematic model. The alternative proposed
in this thesis belongs to the modeless category, in the following paragraphs
the motivation of this choice will be explained in detail and the advantages of
modeless calibration methods will be highlighted. A modeless method does
not go through any kinematic modelling and identification steps instead it is
divided into two stages. The first stage comprehend the data gathering process
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during which the robot workspace is divided into a sequence of small squares in
a two-dimensional (2D) case, or cubes in a three-dimensional (3D) case with the
relative distance between the cells assumed known. A camera or other measure-
ment device is attached on the robots end-effector to find the position errors of
the end-effector and a calibration board is installed on the robots workspace such
that the pattern of the board matches with the grid division of the workspace.
During this process, all position errors on the grid points are measured and
recorded by moving the robot through all the grid points. These position errors
are stored in memory to be used later in the second phase where the information
gathered about the robot position errors are used to actually correct the robot
position in an application. If the manipulator only has to move in a limited num-
ber of points during a specific application then having the grid overlap with the
needed points and using a simple lookup function will be enough to correct the
errors. But often more flexibility is needed. For common tasks such as picking
or placing objects in pallets the robot manipulator only needs high accuracy on a
small portion of the workspace. But we can’t expect that the objects to be picked
or placed will always be in the same exact positions, a small misalignment of the
pallets and the lookup function will be unable to locate the correct points. So a
way to extract additional information from the saved points is needed. This is
done by interpolating errors from its neighbouring grid points.

Different techniques to generalize the information acquired in the data gath-
ering step have been explored, such as: bilinear interpolation and neural net-
works since they can easily work either in Cartesian space [17] or joint space [18].
this thesis proposes a direct comparison between such techniques, together with
some important additions to help transition from the controlled environment of
the data gathering step to performing tests in a real application.

1.4 Thesis outline

This thesis is divided into six main chapters. This chapter provided the mo-
tivation that lead to the development of this thesis and explain the problem of
robot calibration more in depth. The following chapter "Framework" will briefly
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illustrate all the components used in this thesis, both hardware and software.
The third chapter "Proposed approach" will introduce the reader to the math-
ematical tools used to correct the robot position such as bilinear interpolation
and neural networks. Chapter four "Implementation" will dive deeper on the
techniques used to actually implement the correction algorithms, starting with
the physical setup with a camera mounted on the end effector of the robot and
a calibration board and following with the pipeline to gather information about
the robot current repeatability and accuracy. The last sections of the chapter
illustrate how to integrate the theoretical correction models already introduced
in chapter three into a real pipeline that allows us to objectively quantify the
improvements on the robot accuracy provided by the correction algorithms
and will also expose some potential problems and solutions that may emerge
when moving from the controlled environment of the data gathering step to
performing tests in a real application. Chapter five "Results and discussion"
will illustrate the results achieved by this thesis and the different approaches
presented to improve the robot accuracy will have their performance compared
against one another. In the final chapter some possibilities to continue the work
begun in this thesis will be considered.
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2
Framework

This chapter illustrates all the components used in this thesis, both hardware
and software. All the hardware components and the software licenses used for
the experiments have been provided by 𝑅𝑜𝑏𝑜 𝑊𝑎𝑟𝑒 [19].

2.1 Dobot Mg400

The robot used to perform the experiments is the Mg400 provided by Dobot,
it can be seen in Figure 2.1 [20]. It is a small collaborative desktop robotic arm
with four actuated joints and a closed kinematic chain to keep the flange always
orthogonal to the ground plane.

Since it supports drag-to-teach and collision detection features the Mg400
is usually applied to automate small batch flexible productions, it can carry a
payload of up to 750 g and can extend up to 440 mm.

The Mg400 has a very high repeatability, so it can return to a saved point
with a precision of up to +- 0,05 mm but as it is common for industrial robots its
accuracy is much worse [21], so when asked to reach a new point the error will
be not negligible. This creates complications when it is used for applications that
require high precision. An example of such applications where this problem
emerges are palletizing operations where the robot has to pick or place objects
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2.2. CAMERA

Figure 2.1: Dobot Mg400. Sourced from 𝐷𝑜𝑏𝑜𝑡 𝑅𝑜𝑏𝑜𝑡𝑖𝑐𝑠 [20].

that are stacked in a pallet. In these applications the human operator teaches
the robot only the positions of the extremes of the pallet and the robot has to
compute all the intermediate positions. In this instance instead of moving in a
straight line the robot motion presents a slight drift and the end effector moves
on a curved line. Teaching by showing the robot new points is a time intensive
process for the human operators so registering all the positions on the pallet is
not a viable option.

The aim of this thesis is to improve the accuracy of the Mg400 through the
means of a camera mounted on the end effector and computer vision techniques.

2.2 Camera

The camera used to perform the experiments was a Hikrobot MV-CE050-
30UC which was included in the vision kit provided by Dobot. The camera can
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CHAPTER 2. FRAMEWORK

be seen in Figure 2.2 [22], has a resolution of 5 Mp and can be connected to a
computer by means of an USB 3.0 cable. Some other useful specifications are
the pixel size 2.2 µm Œ 2.2 µm, the image resolution 2592 x 1944 and the focal
length of the lens of 12 mm.

Figure 2.2: Hikrobot MV-CE050-30UC. Sourced from 𝐻𝑖𝑘𝑟𝑜𝑏𝑜𝑡 [22].

2.3 Calibration board

The calibration board used in this thesis, seen in Figure 2.3 [23] comes from
Calib.io. It is composed by aluminium/LDPE (Low-Density Polyethylene) com-
posite sheets. It measures 400x300 mm and is covered in a circle grid pattern
of 26 columns and 19 rows of 6 mm diameter circles equispaced by 15 mm. Al-
though only the first 11 rows were used as the whole board would not fit inside
the robot workspace at the height it needed to operate.

At the beginning of the study some cheaper options were considered such
as printing the calibration grid on a sheet of paper and fixing it in place inside
the robot workspace. After some tests it emerged that the measurement of the
vertical position error of the robot is very sensitive to printing defects on the
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calibration grid that may alter the dimension of the single dots and to the paper
not laying completely flat on a plane as it will be discussed more in the "Results
and discussion" chapter.

Figure 2.3: Calibration board. Sourced from 𝐶𝑎𝑙𝑖𝑏.𝑖𝑜 [23].

2.4 Comparator and aluminum table

In order to have a mechanical feedback on the efficacy of the correction
algorithms in the final tests the camera and calibration board were switched for
an mechanical comparator and a milled aluminum plate, (Figure 2.4) to simulate
a real application. The mechanical comparator has a sensibility of 0.01 mm while
the milled aluminum plate has a tolerance of 0.1 mm. This allows both to test
how the correction algorithms would behave when the tool and the board would
change between the data gathering step and the test phase as it would happen
when they are deployed in a real application.

12



CHAPTER 2. FRAMEWORK

To measure the position errors in this situation the robot first tries to align
the comparator’s pointer to the four sides of each square on the plate, using all
the four sides instead of just two allows to measure both positive and negative
errors. Then the comparator’s pointer is raised by 90 degrees and the robot has
to align it to the top of each square. In the case considered in this thesis the
vertical error was always negative but if the same procedure has to be executed
on a robot with a positive vertical error a fixed offset can be used to allow the
comparator to measure it.

Figure 2.4: Specifications of the milled aluminum plate and
comparator used to obtain a mechanical feedback.

2.5 Software

• DobotStudio Pro: is the Dobot proprietary software used to control all
Dobot robots by programming them in Lua. It was used in this thesis in
the 2.7.1 version to control the Mg400 during the experiments. It includes
some useful features such as saving the current robot position and creating
custom reference frames both in the space and attached to the current tool
being used;

13
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• DobotVisionStudio: is the Dobot proprietary computer vision software
and it’s the result of a joint effort between Dobot and Hikrobot. It allows to
disjoint the code controlling the robot and the one controlling the camera
and allowing the two to communicate via TCP/IP protocol. It includes
some useful features such as recognizing patterns or shapes. It was used
in the 4.1.2 version;

• Google Colab: is an online platform for writing and running Python code
in a collaborative environment. It offers Jupyter Notebook-like functional-
ity and integration with Google Drive. In this thesis it was used to analyze
the data coming from the camera, create graphs and to train the neural
networks model before importing them in DobotStudio Pro.

2.6 Experimental setup

2.6.1 Camera and calibration board

Figure 2.5 is a photo of the experimental setup for the data gathering step
using the camera and calibration board. It is possible to see the how the Hikrobot
MV-CE050-30UC camera is attached to the robot flange and can be moved by the
robot over the calibration board. More details such as the 3D printed attachment
to connect the camera to the robot flange, the camera calibration procedure and
how it is possible to compute the position errors of the robot using the camera
will be discussed in the next chapters.

14
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Figure 2.5: Photo of the experimental setup for the data gathering
step using the camera and calibration board.

2.6.2 Comparator and aluminum table

Figure 2.6 is a photo of the experimental setup for the test phase using the
mechanical comparator and the milled aluminum plate. Using two different
setups to study the position errors of the robot offers two important advantages:
first of all it can provide a physical feedback on the improvement of the robot
accuracy achieved by the correction algorithms presented in this thesis and
additionally it simulates a real application where the camera would be swapped
with the actual tool so it allows to test how well the correction algorithms would
perform in this case.
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Figure 2.6: Photo of the experimental setup for the test phase using
the comparator and milled aluminum plate.
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3
Proposed approach

In the following sections different interpolation techniques proposed in the
literature will be taken into consideration and evaluated against each other.

3.1 Interpolation techniques

Figure 3.1 [24] illustrates the setup for the data gathering process. A camera is
mounted on the end effector of the manipulator which is moved over a calibration
board at a constant height. The calibration board is composed of a series of
black circles placed at constant distance between each other on the corners of
an imaginary grid. All movements of the robot are in a 2D plane at the same
height relative to the calibration board. In the figure it is possible to see four
points of the calibration board: point 𝑃00, point 𝑃10, point 𝑃01 and point 𝑃11 with
coordinates (𝑋0,𝑌0), (𝑋1,𝑌0), (𝑋0,𝑌1) and (𝑋1,𝑌1) respectively. In addition a fifth
point is visible in the figure: point 𝑃′

00, with coordinates (𝑋 ′
0, 𝑌′

0).
After the data gathering process the corrections to apply to reach points

𝑃00, 𝑃10, 𝑃01 and 𝑃11 will be known, the goal of interpolation is to extrapolate
the correction to reach point 𝑃

′
00 given these information. There are many

interpolation techniques such as: linear interpolation, polynomial interpolation,
fuzzy interpolation, spline interpolation [25] and so on. In this thesis we will take

17
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Figure 3.1: Set up for local calibration. Sourced from "Improving
Position Accuracy of Robot Manipulators Using Neural Networks"

[24].

into consideration linear interpolation, or in this case bilinear interpolation since
the camera moves on a plane parallel to the ground the function to interpolate
has two free variables (x and y) and neural networks as universal function
approximators [24]. Both methods can be implemented to work in Cartesian
space, both on the position of the tool center point (TCP) or on the position of
the flange. This is relevant because if the position error is caused by a mismatch
between the nominal robot model used by the controllers and the actual robot
model then both corrections will give the same results. This is because in this
case each point in the workspace will have a nominal position and actual position
and the calibration process will consist in finding the function that expresses the
relationship between the two [26].

On the other side if the errors are caused by a series of mechanical slackness’s
or a missing correspondence between the nominal and actual values of the
joints then the correction function will express the relationship between the
joint positions either directly in joint space or indirectly through the position of
the flange. So even changing the tool the correction to apply will be the same as
long as the joint position is the same and not connected to the Cartesian position
of the TCP that is dependant on the tool used. In the next sections the theory
behind bilinear interpolation and neural networks will be explored, together

18



CHAPTER 3. PROPOSED APPROACH

with some possible advantages and disadvantages of each method.

3.2 Bilinear interpolation

Bilinear interpolation is a method for interpolating functions of two vari-
ables by using linear interpolation repentantly [27]. Bilinear interpolation is
performed using linear interpolation first in one direction, and then again in
another direction. Although each step is linear in the sampled values and in the
position, the interpolation as a whole is not linear but rather quadratic in the
sample location. Looking at Figure 3.2 [17] for a visual reference, it is possible to
see how the correction for a point P’(x’, y’) is computed. To simplify the notation
in this section the correction along one axis for a generic point P will be referred
as f(P). To compute f(P’) we will have to look at the four points closest to it of
which the correction is already known during the data gathering step. In the

Figure 3.2: Graphical representation of bilinear interpolation.
Sourced from "Robot manipulator calibration using neural network

and a camera-based measurement system" [17].

case illustrated by the figure the four closes points are: 𝑃1(𝑥, 𝑦), 𝑃2(𝑥 + 1, 𝑦),

19



3.2. BILINEAR INTERPOLATION

𝑃3(𝑥, 𝑦 + 1) and 𝑃4(𝑥 + 1, 𝑦 + 1), where 1 represents the unit distance between
two points on the grid. The first step is to linearly interpolate 𝑃1 with 𝑃2 and 𝑃3

with 𝑃4 along the x axis obtaining 𝑃12 and 𝑃34.

𝑓 (𝑃12) = 𝑑𝑥
𝑑𝑥 + (1 − 𝑑𝑥) ∗ 𝑓 (𝑃1) + 1 − 𝑑𝑥

𝑑𝑥 + (1 − 𝑑𝑥) ∗ 𝑓 (𝑃2) (3.1)

𝑓 (𝑃34) = 𝑑𝑥
𝑑𝑥 + (1 − 𝑑𝑥) ∗ 𝑓 (𝑃3) + 1 − 𝑑𝑥

𝑑𝑥 + (1 − 𝑑𝑥) ∗ 𝑓 (𝑃4) (3.2)

The equations above show how to obtain 𝑓 (𝑃12) and 𝑓 (𝑃34). Then the two
are linearly interpolated along the y axis to finally obtain 𝑓 (𝑃′)

𝑓 (𝑃′) = 𝑑𝑦
𝑑𝑦 + (1 − 𝑑𝑦) ∗ 𝑓 (𝑃12) + 1 − 𝑑𝑦

𝑑𝑦 + (1 − 𝑑𝑦) ∗ 𝑓 (𝑃34) (3.3)

Since the correction has to be applied along all three axis the same proce-
dure will be repeated for each one. By applying the formulas seen above some
important assumptions are made, the first is that each square on the grid is
perfectly square and not slightly a parallelogram but also that the lines of the
grid are parallel with those of the unit axis. The first assumption is addressed in
the "Framework" chapter when discussing the calibration grids used while the
second assumption will be discussed in further details in the implementation
section.
Bilinear interpolation is the simplest interpolation technique presented in this
thesis but nevertheless it can be quite effective. If the points on the grid are close
enough, in fact, not much will differ between an optimal interpolation and a bi-
linear interpolation since the error is expected to change in a regular way without
sudden jumps or shifts. In addition bilinear interpolation does not require train-
ing so as soon as the data gathering step is over it can be deployed immediately
into the robotic application to improve the accuracy of the manipulator. Despite
its many advantages bilinear interpolation has some drawbacks too: first of all
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a lot of data has to be stored in memory, if the area of the workspace to map
is large and the grid is very dense the amount of points to save will increase
consistently. Modern computer can store huge amount of data without prob-
lems but it can become cumbersome in terms of time to find the four closest
points to interpolate to make corrections. Additionally increasing the number
of dimensions such as by switching from 2D to 3D or from Cartesian space
to joint space [28] will increase the complexity of computations significantly.
Finally bilinear interpolation lacks reversibility due to its inherent information
loss during the process. The interpolation method computes weighted averages
of nearby grid points, leading to multiple possible original configurations for a
given interpolated value. This absence of one-to-one correspondence prevents
exact recovery of the original data from the interpolated values.

3.3 Neural network

An Artificial Neural Network is a computing system based on a collection
of connected units or nodes called artificial neurons, the name is derivative
from the loose similarity with the neurons in a biological brain. An artificial
neuron, just like its biological counterpart, receives signals from other neurons
then processes them and can send signals to neurons connected to it [29]. The
connections mirror the synapses in a biological brain, can transmit a signal
to other neurons. Each neuron receives a number of inputs "signals" as real
numbers from other neurons, the output of each neuron is computed by some
non-linear function of the sum of its inputs and is transmitted to other neurons.
The connections are called edges. Edges typically have a weight that adjusts as
learning proceeds. The weight increases or decreases the strength of the signal at
a connection. Neurons may have a threshold such that a signal is sent only if the
aggregate signal crosses that threshold. Typically, neurons are aggregated into
layers. Different layers may perform different transformations on their inputs.
Signals travel from the first layer (the input layer), to the last layer (the output
layer), possibly after traversing multiple layers.

Figure 3.3 [30] illustrates more in details the functioning of a single artificial
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Figure 3.3: Comparison between a biological and artificial neuron.
Sourced from 𝑇𝑜𝑤𝑎𝑟𝑑𝑠 𝐷𝑎𝑡𝑎 𝑆𝑐𝑖𝑒𝑛𝑐𝑒 [30].

neurons and the comparison with its biological counterpart. The first artificial
neural networks attempted to exploit the architecture of the human brain to
perform tasks that conventional algorithms had little success with. They soon
reoriented towards improving empirical results, abandoning attempts to remain
true to their biological counterpart. Each simulated neuron is connected to other
nodes via links, it has inputs and produces a single output which can be sent to
multiple other neurons, like a biological axon-synapse-dendrite connection. All
the nodes connected by links take in some data and use it to perform specific
operations and tasks on the data. Each link has a weight, determining the
strength of one node’s influence on another, allowing weights to regulate the
strength of the signal between neurons.

The initial inputs are external data, the outputs of the final output neurons of
the neural net instead accomplish the task, such as classifying a sample, produc-
ing a real value or recognizing an object in an image. To find the output of the
neuron it is necessary to take the weighted sum of all the inputs, weighted by the
weights of the connections from the inputs to the neuron. A bias term is added
to this sum. This weighted sum is called the activation. The weighted sum is
then passed through an activation function to produce the output. It is impor-
tant to use a nonlinear function as activation for the neurons that compose the
hidden layers, otherwise the resulting network will be equivalent to a network
with a single layer. The neurons are typically organized into multiple layers,
neurons of one layer connect only to neurons of the immediately preceding and
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immediately following layers.
Between two layers, multiple connection patterns are possible. The networks

considered in this thesis are "fully connected", with every neuron in one layer
connecting to every neuron in the next layer. Common activation functions
include the rectified linear unit, sigmoid and hyperbolic tangent. Neurons
with structure that forms a directed acyclic graph are known as feedforward
networks. Alternatively, networks that allow connections between neurons in
the same or previous layers are known as recurrent networks.

Figure 3.4: Illustration of the structure of a simple artificial neural
network. Sourced from 𝑈𝑝𝐺𝑟𝑎𝑑 [31].

Figure 3.4 [31] illustrates the structure of a simple feedforward artificial neu-
ral network. Each circular node represents an artificial neuron and an arrow
represents a connection from the output of one artificial neuron to the input of
another. This particular network has the input layer composed of three neurons,
this means that the network can process data belonging to R3. Then there are
two fully connected hidden layers of dimension four and an output layer com-
posed of a single neuron, so the output of the network will belong to R.
To use an artificial neural network in a real application a learning process is
necessary to set the weights of each connection. Learning involves adjusting the
weights (and optional thresholds) of the network to improve the accuracy of the
result. This is done by minimizing the observed errors on sample observations
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called train set. Learning is complete when examining additional observations
does not usefully reduce the cost function, which is a function defined to repre-
sents the average distance between the output and the correct answer. Learning
attempts to reduce the total of the differences across the observations.

To implement learning in a feedforward neural network algorithms such as
backpropagation are used. Backpropagation computes the gradient of a loss
function with respect to the weights of the network for a single inputoutput
example, and does so efficiently, computing the gradient one layer at a time, iter-
ating backward from the last layer to avoid redundant calculations of intermedi-
ate terms in the chain rule; this can be derived through dynamic programming.
Variants of gradient descent, such as stochastic gradient descent, are commonly
used [32]. The term backpropagation strictly refers only to the algorithm for
computing the gradient, not how the gradient is used to update the weights.
However, the term is often used loosely to refer to the entire learning algorithm,
including how the gradient is used to update the weights, such as by gradient
descent or stochastic gradient descent. The learning rate defines the size of the
corrective steps that the model takes to adjust for errors in each observation.
A high learning rate shortens the training time, but with lower ultimate accu-
racy, while a lower learning rate takes longer, but with the potential for greater
accuracy. In order to avoid oscillation inside the network such as alternating
connection weights, and to improve the rate of convergence, refinements use an
adaptive learning rate that increases or decreases as appropriate and the concept
of momentum allows the balance between the gradient and the previous change
to be weighted such that the weight adjustment depends to some degree on the
previous change.
The main advantages of artificial neural networks are their ability to reproduce
and model nonlinear processes, this is proven by the universal approximation
theorem that illustrates how the multilayer perceptron is a universal function
approximator. In addition, as it will be shown in the following subsections neu-
ral networks offer the flexibility to easily change the dimensions of input and
output and to be able to train with additional data without changing the di-
mensions of the calibration grid. Artificial neural networks also have important
drawbacks too, fist of all the number of training samples needed to optimize
the model increases exponentially. This is a particular harsh problem in the
application considered in this thesis since the calibration grid can only contain
so many points. Furthermore not all the points can be used on the training

24



CHAPTER 3. PROPOSED APPROACH

set, some random points will be left out for the validation set. This is neces-
sary to prevent overfitting but it may create some "holes" in the coverage of the
remapped workspace.

A lesser problem but still worth considering is the training time, while the
correction model based on bilinear interpolation can be deployed immediately
after the data gathering process the artificial neural network will need a few
minutes to train on the dataset before being able to make new predictions but in
exchange once trained the predictions can be made in constant time with respect
to the size of the mapped workspace and the number of points on the calibration
grid saved. An additional advantage of the artificial neural network over the
bilinear interpolation is that while the bilinear interpolation can only predict
the correction form points that are completely inside the mapped workspace
(unless a way of extending it artificially is implemented) the neural network can
also process points outside the mapped workspace, even though its accuracy is
expected to degrade quickly as the distance to the closest point in the mapped
workspace increases. In the next subsections the architectures of the networks
used will be considered with additional details.

3.3.1 Neural network in Cartesian space

Figure 3.5 [33] illustrates the architecture of the artificial neural network used
to predict the corrections to apply in Cartesian space. Since the camera moves
on a plane parallel to the ground the requested z coordinate is always constant
so the only relevant input data are the x and y coordinates of the desired point
that we want to reach, this is why the dimension of the input layer is two. On the
other hand the correction has to be applied along all three axis so the dimension
of the output layer is three.
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Figure 3.5: Architecture of the artificial neural network for
predictions in Cartesian space. Drawn with 𝑁𝑁 − 𝑆𝑉𝐺 [33].

3.3.2 Neural network in joint space

Figure 3.6 [33] illustrates the architecture of the artificial neural network used
to predict the corrections to apply in joint space. Even though the camera moves
on a plane parallel to the ground the values of all four joints are constantly
changing. But since the fourth joint does not contribute to the position of the
flange and we are interested in the correction to apply at that specific point
only the values of the first three joints are going to be used as input for the
network. This explains why both the input and output layer are composed by
three neurons.
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Figure 3.6: Architecture of the artificial neural network for
predictions in Cartesian space. Drawn with 𝑁𝑁 − 𝑆𝑉𝐺 [33].
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4
Implementation

This chapter details the steps requires to implement the calibration algo-
rithms, the first sections will dive into the setup of all the equipment including
mounting the camera on the robot arm and determining the new tool center
point (TCP), then the data gathering process will be explored in depth together
with the methods implemented to compute the error positions and lastly will
come the correction tecniqes that can be applied to improve the accuracy with
some important considerations to facilitate the transition between train and test.

4.1 Camera calibration

There are two possible types of setups for vision-based robot pose measure-
ment. One is to fix cameras in the robot environment so that the cameras can
see a calibration tool mounted on the robot end effector while the robot changes
its pose [34]. The locations of the calibration tool in the world coordinate system
can be computed by the cameras in various robot poses. This type of setups
has two main advantages. First, it is non-invasive. The cameras are normally
installed outside of the robot workspace, and need not be removed after robot
calibration. Second, there is no need to identify the transformation from the
camera to the end effector, although this transformation is easy to compute in
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the case taken into consideration by this thesis. The major problem existing in
all stationary camera setups is system accuracy. In order to have a large field
of view for the stationary cameras, one has to sacrifice measurement accuracy.
The second type of setups is to mount a camera on the end effector of the robot
manipulator, this method is invasive, which may prevent it from being used in
certain applications and it requires to find the transformation from the camera
system to the tool system, but it resolves the conflict between high accuracy
and large field-of-view of cameras as the cameras only need to perform local
measurement so it was the one chosen for this thesis [35].

Figure 4.1: Perspective and section view of the 3D model for the
camera attachment.

To mount the camera on the end effector of the robot a custom attachment
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was modeled and 3D printed in PLA (Polylactic Acid). Figure 4.1 shows some
perspective views and a section view. The view on the bottom left shows the
face where the camera is attached so that it can face the ground and the view
on the top right shows the slot where the flange can be fixed through the use of
four screws. In the section view on the bottom right it is possible to notice how
the slot for the flange is not flush but curved. This is a feature implemented to
allow to partially regulate the orientation of the camera in case in which it is not
perfectly orthogonal to the ground plane. During the data gathering process in
fact, the camera has to be moved over the calibration grid keeping its orientation
constant and to do the robot has to act on the values of the first and fourth joints.

In the unfortunate case in which the camera is not perfectly orthogonal to
the ground changing the values of the first and fourth joints will also change
the field of view of the camera in an undesirable way. To avoid this problem a
simple procedure is iterated.

Figure 4.2: Set up for calibrating camera orientation. Sourced from
"Improving Position Accuracy of Robot Manipulators Using Neural

Networks" [24] and edited.

The core concept to calibrate the orientation of the camera is illustrated in
Figure 4.2 [24], if the camera was perfectly orthogonal to the ground then by
changing its height its field of view would remain centered on the same point,
if instead the camera is oriented in a slightly different way then the center of the
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field of view will shift according to Equation 4.1

𝑑𝑥 = 𝑑𝑧 ∗ 𝑠𝑖𝑛(𝛼)
𝑐𝑜𝑠(𝛼) 𝛼 = 𝑡𝑎𝑛−1(𝑑𝑥

𝑑𝑧
) (4.1)

Where dz is the shift of the height of the camera which can be easily set
through the manipulator parameters and dx is the shift of the center of the
field of view of the camera. There are multiple ways to measure the horizontal
displacement of the field of view, the simplest method is to mark on a sheet of
paper positioned under the camera the center of the field of view before and
after moving the camera and then measure the distance between the two with a
ruler.

Start

Change camera height: 𝑑𝑧

Measure change in field of view: 𝑑𝑥

Compute orientation error:
𝛼 = 𝑡𝑎𝑛−1( 𝑑𝑥𝑑𝑧 )

Is the error
under the
treshold?

Adjust camera
orientation
accordingly

Stop

yes

no

Figure 4.3: Iterative procedure to calibrate camera orientation

Alternatively if the software to compute the distance between the projection
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on the ground of center of the field of view and a point on the grid that will
be explained in the following sections has already been implemented then it is
possible to align the center of the field of view of the camera with one of the
points on the calibration grid before introducing the height displacement and
run the program to compute the horizontal error afterwards. Independently by
the method used, it is not essential to have an exact estimate of the error, also
because the error may be influenced not only by the orientation of the camera
but by the robot miscalibration too. An accurate measurement of the direction
and an idea of the magnitude is enough to proceed with the iterative procedure
shown in Figure 4.3 until the results are satisfactory.

At this point it is worth addressing why a camera calibration procedure as
intended in computer vision terms [36] wasn’t performed to discover the internal
parameters of the camera with exact precision. First of all the camera used is
intended for guiding the robot manipulator to pick object detected through a
matching system and in order to do so it is already using high quality lenses
with a distortion lower than 0.28%, additionally in the data gathering sections
an in depth explanation will be provided of the methodologies used to avoid
relying on the camera to directly compute the exact values of the errors. To do
so the vision system will be used to guide the robot to the correct pose through
an iterative procedure that aims to minimize the error between the requested
position on the plane and the one provided by the robot manipulator when
asked to reach said position.

4.2 Tool Center Point determination

When requesting the robot manipulator to move the end effector to a certain
position we are usually asking to align the tool reference frame of the robot to
the specific pose in the space. During the data gathering step the tool mounted
on the robot flange is a camera so it is necessary to create a new tool reference
frame to communicate to the robot that its end effector does not coincide with
the flange anymore but an additional rototranslation is needed to align the two.
The process of discovering the parameters of the rototranslation needed to align
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the flange with the camera will be detailed in this section and it takes the name
of tool center point determination. In the field of robotics, the Tool Center
Point (TCP) plays a pivotal role in defining and controlling a robot’s actions and
movements. Referred to as the Tool Center Frame (TCF) or Tool Center Position
(TCP), the TCP represents the specific location on a robotic end-effector or tool
where the robot interacts with the environment or performs tasks, it serves as
a reference point that determines the position and orientation of the tool with
respect to the robot’s base coordinate system. The TCP is typically located at the
tip or end of the robot’s tool and acts as the primary point of interaction with
the surrounding environment. Accurately determining the TCP is essential
because it defines the position and orientation of the tool in relation to the
robot’s base coordinate system. By knowing the TCP’s location, the robot can
accurately plan and execute its movements, including tasks such as grasping
objects, manipulating tools, or performing precise operations.

In the case considered in this thesis the tool center point will be represented
by just a translation along the plane perpendicular to the ground while its height
will be the same as to the one of the flange. With this consideration aligning
the tool center point with one of the calibration point will mean to move the
camera directly over it, at a specific height, such that the center of the calibration
point corresponds to the center of the image provided by the camera. It is very
important to determine the tool center point correctly for this application, as
the camera moves over the calibration grid it will keep a constant orientation
with respect to the robot reference frame. To be able to do it consistently with
the position of the tool center point the transformation needs to be as precise as
possible.

DobotStudio Pro provides an easy to use interface to determine the tool
center point transformation by aligning it over the same point but thought two
different manipulator poses. This has the advantage of being a quick, ready
to use method but it also has a very important drawback that makes it unfit
for this application: if the robot has not been calibrated correctly and there is
a mismatch between the nominal and actual positions of the end effector then
performing the necessary alignments in one area of the workspace or another or
using different orientations to achieve the two necessary poses to compute the
tool center point will lead to different transformations as a result. In the case
considered in this thesis considering just one alignment with just two different
poses is not enough. It is necessary to use multiple alignments with multiple
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different poses for each of them and to average them in some way to compensate
the errors introduced by the missed calibration. Unfortunately DobotStudio Pro
does not contemplate this possibility so a different more laborious method has
to be implemented. Following, in this section the method used will be explained
in depth but in order to do so a brief subsection on the theory behind rotation
matrices, translation vectors and rototranslation matrices is necessary.
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4.2.1 Rototranslation matrices

A rotation matrix is a mathematical construct used to describe the orientation
of an object or coordinate system in three-dimensional space. It represents a pure
rotation around a specified axis or a combination of rotations around multiple
axes. A rotation matrix is denoted as 𝑅 and is a 3x3 matrix of the form:

𝑅 =


𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33


where 𝑟𝑖 𝑗 represents the elements of the matrix. To be considered a rotation
matrix, the matrix 𝑅 must satisfy the following properties:

1. orthogonality: the rotation matrix is orthogonal, meaning its transpose
is equal to its inverse: 𝑅𝑇 = 𝑅−1. This property ensures that the length and
orthogonality of vectors are preserved under rotation and allow us to quickly
invert a rotation matrix by simply computing its transpose.

2. determinant: the determinant of the rotation matrix is either +1 or -1,
depending on whether it represents a proper (rotation) or improper (reflection)
rotation.

The rotation matrix is used to transform points or vectors in a coordinate
system from one orientation to another. By multiplying a vector 𝑣0 by the
rotation matrix 𝑅, the transformed vector 𝑣′ is obtained:

𝑣′ = 𝑅𝑣0

Figure 4.4 [37] illustrates a simple example of this in 2D space.
Of particular interest for this application are elementary rotation matrices.

The elementary rotation matrix, also known as a basic rotation matrix or ele-
mental rotation matrix, is a specific type of rotation matrix that represents a
rotation around a single axis in three-dimensional space. It is used to perform
simple rotations around the x, y, or z axes. The elementary rotation matrices are
denoted as 𝑅𝑥(𝜃), 𝑅𝑦(𝜃) and 𝑅𝑧(𝜃) for rotations around the x, y, and z axes, re-
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Figure 4.4: Illustration of the application of a rotation matrix on a
vector in 2D space. Sourced form 𝑊𝑜𝑙 𝑓 𝑟𝑎𝑚 𝑀𝑎𝑡ℎ𝑊𝑜𝑟𝑙𝑑 [37]

spectively. Each rotation matrix is a 3x3 matrix that depends on a single rotation
angle 𝜃. By combining these elementary rotation matrices, complex rotations
and transformations can be achieved in three-dimensional space.

Since the Mg400 used for this thesis has a closed kinematic chain meant to
keep the flange always parallel to the z axis, every rotation of the end effector
can be expressed as an elementary rotation matrix 𝑅𝑧(𝜃) Where cos(𝜃) and

𝑅𝑧(𝜃) =

cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1


sin(𝜃) represent the cosine and sine of the rotation angle 𝜃, respectively. This
will greatly simplify a lot of computations in the following sections when the
computation of the direct kinematic formulas of the manipulator will come into
play.

Rotation matrices can also be applied directly to references frame as it can be
seen from Figure 4.5 [38] where an elementary rotation matrix 𝑅𝑧(𝜃) is applied
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Figure 4.5: Illustration of the application of a elementary rotation
matrix on a reference frame in 3D space along the z axis. Sourced

from 𝑀𝑎𝑡ℎ𝑊𝑜𝑟𝑘𝑠 [38].

to a reference frame in 3D space. It is possible to notice how the points in the
space are not moving just like the black point represented in the figure but the
same point will have different coordinates after the frame is rotated according
to the formulas seen above.

Another important mathematical construct needed to compute the tool center
point are the translation vectors. A translation vector represents the displace-
ment or shift of an object or coordinate system in three-dimensional space. It
describes the magnitude and direction of translation along the x, y, and z axes.
A translation vector is denoted as 𝑡 and is a 3x1 vector of the form:

𝑡 =


𝑡𝑥
𝑡𝑦
𝑡𝑧


where 𝑡𝑥 , 𝑡𝑦 , and 𝑡𝑧 represent the translation components along the x, y, and z
axes, respectively. The translation vector is used to move points or vectors in a
coordinate system by adding the translation vector to their coordinates. Given a
vector 𝑣, the transformed vector 𝑣′ incorporating the translation is obtained as:

𝑣′ = 𝑣 + 𝑡

The translation vector represents a shift without any rotation, and it does not
affect the orientation of the object or coordinate system. It is typically used
in combination with rotation matrices to represent complete transformations
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involving both rotation and translation.

Figure 4.6: Illustration of the application of a translation vector on a
reference frame in 3D space. Sourced from "2-Point-based Outlier

Rejection for Camera-IMU Systems with applications to Micro
Aerial Vehicles" [39].

Figure 4.6 [39] illustrates how a translation vector can be applied to a reference
frame. In the figure reference frame 1 is translated along its y axis by a translation
vector of length 𝑂2𝑂1.

In general to align two reference frames both a rotation R and a translation t
will be needed, as can be seen in Figure 4.7 [40], so a point 𝑃𝑏 in the coordinates
of the first reference frame can be rewritten as

𝑃𝑎 = 𝑅𝑎
𝑏𝑃

𝑏 + 𝑂𝑏𝑎

in the coordinates of the second reference frame, where in the notation the
superscript represent the reference frame with respect to which the point, vector
or matrix was written.
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Figure 4.7: Illustration of the combined application of a rotation
matrix and a translation vector on a reference frame in 3D space.

Sourced from 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 𝐶ℎ𝑟𝑜𝑛𝑜 [40].

To simplify the notation it is possible to combine rotation and translation
in a single matrix product by using homogeneous coordinates. Homogeneous
coordinates provide a powerful framework for representing points and vectors
in projective geometry, facilitating the efficient manipulation of transforma-
tions, including rototranslation. In homogeneous coordinates, a point in three-
dimensional space is represented as a four-dimensional vector [𝑥, 𝑦, 𝑧, 𝑤], where
𝑤 is a non-zero scalar usually set equal to one. This representation allows for
the seamless integration of translations and rotations as part of the transforma-
tion matrix, enabling concise and efficient computations. Using homogeneous
coordinates it is possible to combine a rotation matrix and a translation vector
into a single matrix called a rototranslation matrix. The rototranslation matrix,
denoted as 𝑇, is a 4x4 matrix that combines a rotation matrix 𝑅 and a transla-
tion vector 𝑣 to represent the complete transformation between two coordinate
systems. It is defined as:

𝑇 =

[
𝑅 𝑣

0 1

]
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or in extended form:

𝑇 =


𝑟11 𝑟12 𝑟13 𝑣𝑥
𝑟21 𝑟22 𝑟23 𝑣𝑦
𝑟31 𝑟32 𝑟33 𝑣𝑧
0 0 0 1


where 𝑅 represents a 3x3 rotation matrix, 𝑣 represents a 3x1 translation vector,
and 0 and 1 are placeholders to maintain homogeneity. Using this notation a
point 𝑃𝑏 in the coordinates of the first reference frame can be rewritten as

𝑃𝑎 = 𝑇𝑎
𝑏 𝑃

𝑏

in the coordinates of the second reference frame.
The rototranslation matrix provides a comprehensive representation of com-

bined rotational and translational transformations in three-dimensional space.
In robotics, it enables the precise control of robot end-effectors, facilitating tasks
such as grasping, manipulation, and trajectory planning.

4.2.2 TCP calibration

Now that the topic of rototranslation matrices has been explored it is possible
to apply this mathematical tool to the determination of the tool center point. For
this application it is of crucial importance to calibrate the tool center point
accurately [41], as the camera moves over the calibration grid it will keep a
constant orientation with respect to the robot reference frame. To be able to do it
consistently with the position of the tool center point the transformation needs
to be as precise as possible.

The robotic visual inspection system mainly consists of an industrial robot
and a non-contact visual sensor, which is represented by a camera in this thesis.
Figure 4.8 [41] illustrates the reference frames in play during the robot calibration
procedure. The coordinate systems of the robotic visual inspection system
consist of robot base frame (BF), end-effector frame (EF), camera frame (CF)
and world frame (WF) [42]. The measured result of the visual sensor is usually
transformed to the workspace frame. For a visual point P on the work piece, the
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mapping relationship between the coordinate 𝑃𝑤 in the world frame and 𝑃𝑐 in
the camera frame is expressed as follows:

𝑃𝑤 = 𝑇𝑤
𝑏 𝑇𝑏

𝑒 𝑇
𝑒
𝑐 𝑃𝑐

where 𝑇 𝑒
𝑐 denotes the transform matrix between the camera frame and the

robot end-effector frame, which is also called hand-to-eye relationship [43]. 𝑇𝑏
𝑒

denotes the transform relationship between the robot end-effector frame and the
robot base frame. It can be obtained from the robot forward kinematic model
and it will change as the robot moves. 𝑇𝑤

𝑏 is the transformation matrix between
the robot base frame and the workspace frame.

Figure 4.8: Illustration of the most important reference systems in
play during vision based robot calibration. Sourced from "A

Vision-Based Self-Calibration Method for Robotic Visual Inspection
Systems " [41].

To determine the robot tool center point it is equivalent to determine 𝑇 𝑒
𝑐 .

Luckily the transformation between the camera reference frame and the end
effector reference frame is always constant as the camera and end effector are
locked together so it will be sufficient to perform the following procedure only
once offline and then the results can be imported directly into DobotStudio Pro
where the new tool reference frame can be set and used from now on. In this
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thesis, the TCP position is defined as the intersection point of the camera optical
axis and the plane of movement of the robot end effector. When the camera is
mounted on the robot end-effector, the TCP is a fixed point with respect to the
robot end-effector.

As mentioned before, DobotStudio Pro provides an easy to use interface
to determine the tool center point transformation by aligning it over the same
point thought two different manipulator poses. This is optimal to set up the
robot quickly but if the robot has not been calibrated correctly and there is a
mismatch between the nominal and actual positions of the end effector then
performing the necessary alignments in one area of the workspace or another
or using different orientations to achieve the two necessary poses to compute
the tool center point will lead to different transformations as a result. To avoid
this problem in this method, the robot is controlled to align the TCP to multiple
fixed points at several different robot poses, that is to say, making the robot
TCP position coincident with the fixed points. Figure 4.9 [44] illustrates an
example of this, viewed from above the Mg400 can be mistaken from a two
degrees of freedom manipulator since only two of its revolute joints are parallel
to the z axis. A two degrees of freedom manipulator like the one in the figure
could only reach the same point through two different poses but thanks to
the two additional joints that the Mg400 is provided with every point in its
dexterous workspace could theoretically be reached with any orientation along
the z axis. Due to mechanical limitations this is not possible so a limited number
of orientations was chosen to compute the tool center point of the camera.

For the purpose of this thesis five points were chosen in the workspace of the
Mg400, each point was reached through three different poses. Assuming that
𝑋𝑏 is the coordinate of the fixed point P in the robot base frame, 𝑅𝑖 𝑗 and 𝑇𝑖 𝑗 are
the orientation and position of robot flange obtained for point i and pose j. 𝑋𝑡 is
the TCP position relative to the robot flange and the unknown that we are going
to determine. Aligning the tool center point on the same point through three
different poses allow us to write the following equations:

𝑋𝑏 = 𝑅11𝑋𝑡 + 𝑇11

𝑋𝑏 = 𝑅12𝑋𝑡 + 𝑇12

𝑋𝑏 = 𝑅13𝑋𝑡 + 𝑇13

(4.2)

Since 𝑋𝑏 does not change it is possible to subtract the equations two by two and
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Figure 4.9: Illustration of how the robot manipulator can align the
tool center point on the same point but with different poses.
Sourced from "Encyclopedia of Systems and Control" [44].

rearrange them into a system:

(𝑅11 − 𝑅12)𝑋𝑡+ = 𝑇12 − 𝑇11

(𝑅12 − 𝑅13)𝑋𝑡+ = 𝑇13 − 𝑇12
(4.3)

Since this operation was repeated across five point the ten resulting equations
can be rewritten in matrix form:

𝑅11 − 𝑅12

𝑅12 − 𝑅13

𝑅21 − 𝑅22

𝑅22 − 𝑅23
...


𝑋𝑡 =



𝑇12 − 𝑇11

𝑇13 − 𝑇12

𝑇22 − 𝑇21

𝑇23 − 𝑇22
...


(4.4)

𝑋𝑡 can then be found by solving the redundant linear system with the form
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Ax = b where

𝐴 =



𝑅11 − 𝑅12

𝑅12 − 𝑅13

𝑅21 − 𝑅22

𝑅22 − 𝑅23
...


, 𝑥 = 𝑋𝑡 , 𝑏 =



𝑇12 − 𝑇11

𝑇13 − 𝑇12

𝑇22 − 𝑇21

𝑇23 − 𝑇22
...


(4.5)

Which can be solved easily by a computer by means of singular value de-
composition and least square method. It is also possible to compare the results
obtained with this method with the ones provided by the two points calibra-
tion method of DobotStudio Pro and notice how they differ. To appreciate the
improvement it is also possible to center the camera over a point on the grid
and, once the tool reference frame is set, modify the orientation of the tool along
the z axis. If the procedure above has been followed correctly it is possible to
see how during the rotation the point in the center of the image captured with
the camera stays aligned with the point on the grid. Otherwise the center of
the image captured by the camera will slowly drift away from the point on the
calibration grid and then align itself again once a full rotation along the z axis
is completed. Of course since the robot is not calibrated correctly the procedure
discussed above will only mitigate the effects and since the calibration error
manifest itself differently in different regions of the workspace some drift will
always be present even after the tool center point determination procedure.

Now that the setup is in place it is possible to begin discussing the tech-
niques applied to measure the calibration errors. In the next section the error
computation and data gathering steps will be analyzed in detail, discussing this
and more.
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4.3 Identification of the position errors

After performing a movement with the robot to be able to measure the
displacement between the desired position and the actual position with the
camera it is necessary to have a fixed point of reference [45]. In this thesis this
role will be covered by the calibration grid. The particular grid used for this
thesis is a white slate composed of aluminium/LDPE composite sheets covered
by a grid of black circles with a diameter 4 mm and a constant distance between
each center of 15 mm. Since it is not possible to easily obtain the position of a
point on the grid with respect to the robot reference frame, other than by using
the robot itself (which cannot be trusted since it has calibration issues), at the
beginning of the data gathering step the tool center point previously determined
is positioned over a dot on the corner of the grid so that the center of the dots
coincides with the center of the image captured by the camera. Then a Lua script
controls the robot to move the camera over each subsequent dot by using relative
motions and the displacement error in Cartesian space can be determined by
observing the error occurring in pixel space. Figure 4.10 illustrates this process,
the white rectangle represent the field of view of the camera and how it slides
form dot to dot.

Figure 4.10: Illustration of how the view of the camera moves as the
robot moves the camera across the calibration grid
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For the purposes of this application it is necessary that the calibration grid is
very precise. A small difference between the stated distance between the center
of each dot and the actual one and every step of the robot this error will be added
incrementally. It is easy to see how with a grid with rows of 26 dots like the
one used for this thesis even a small error could then get enlarged very quickly
and become a problem. Another relevant observation is that by aligning the
tool center point with the first dot on the grid and then measuring the position
error on each dot as the robot moves, at the end of the data gathering process
the error measured on the first dot will always be zero. This will be discussed
in more details in the Counter Correction sections of this thesis.

A similar problem could occur in the case in which the robot is not moving
perfectly parallel to the rows of the grid. However it is not possible to position
the grid in the workspace such that it is perfectly parallel to the robot reference
frame. DobotStudio Pro gives us the possibility to create custom references
frames with just two points as input. So by aligning the tool center point of the
robot to a dot in a corner of the calibration grid and then to a dot on the corner
on the same row but on the opposite side the new origin will be placed on the
first saved point with the height set as the height of the end effector. The z axis
will be parallel to the z axis of the robot reference frame, the x axis will be placed
orthogonal to the z axis and pointing towards the second saved point and the y
axis will be placed such that it is orthogonal to both the x and z axis to create a
right handed reference frame. By creating a new custom reference frame in this
way it it possible to move across the columns and rows of the calibration grids
using fixed increments of x and y respectively.

This method of generating custom reference frames allows for a quick devel-
opment of robot applications but there are some important limitations. Firstly
the generated frames can be aligned with the robot reference frame with just a
translation and an elementary rotation along the z axis, so no rotations along
the x or y axis are allowed. This should not be a big problem for the Mg400 since
rotations along the x or y axis are not part of its degrees of freedom. But consider
the case in which the z axis of the robot reference frame is not orthogonal to the
ground plane, in this scenario also all the z axes of the generated custom refer-
ence frames wont be orthogonal to the ground plane. Additionally no integrated
function is present to transform the coordinates of a point between different co-
ordinate systems and neither between flange and tool reference frames. Both
these problems will be relevant later in this thesis so a different method to
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move along the calibration grid will be used and to transform points between
coordinate systems.

The following subsections will detail how the position errors are computed
both on the x, y plane parallel to the ground and along the z axis orthogonal to
the ground.

4.3.1 Circle detection

The Dobot environment already allows for the integration of a vision system
where cameras are usually fixed and makes available a software to process
the images, DobotVisionStudio. DobotVisionStudio allows to create a script by
dragging and connecting together command blocks. Then a TCP server can be
set in place, whenever the server receives a TCP message containing a chosen
string it will run the script. So from the robot prospective a TCP client can be
created in the Lua script and when the robot placed the camera over a dot on
the calibration grid a TCP message is sent to DobotVisionStudio to trigger the
script.

Figure 4.11 is a screenshot taken from DobotVisionStudio which shows the
script used for this thesis. Figure 4.12 details the purpose of each block.

The first block is the image acquisition block, it allows to connect to a camera,
an Hikrobot-MV-CE050-30UC in the case of this thesis, and to import the images
obtained by the camera to the next block. It also allows to modify some important
parameters such as the exposure time.

The second block is the most interesting one for the purposes of this the-
sis since it is the one dedicated to the circle detection. Unfortunately in the
DobotVisionStudio manual there is no mention about the details of the de-
tection algorithm but by looking at the output image in Figure 4.13 and the
parameters that can be modified in the block some guesses can be made. A set
of lines generate from the center of the image, represented in blue in the figure,
the first time these lines encounter a sudden change in gradient the point in
which it happened is saved, the green crosses, and then the resulting points are
interpolated into a circle, highlighted in green. It is also possible to specify if the
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Figure 4.11: Screenshot from DobotVisionStudio of the blocky script
to detect a circle on the image and to transmit the data back to the

Lua script running on the robot

algorithm should focus on sudden rises or falls in the gradient to better identify
the circles if they are dark dots on a bright background or bright dots on a dark
background. The limitation of this algorithm is that it can only find a circle if
the center of the image belongs to it or if it is very close to its border. This can
become a serious limitation in the case in which the position error of the robot
may be big enough that the center of the image falls outside the circle and the
detection block won’t be able to detect it. This means that having a starting
guess about the order of magnitude of the error so that the calibration grid used
can have dots big enough and with enough space between them such that this
problem will not occur.

The third block takes the output information of the second block and con-
catenates the data into into a single string adding a ";" between each value to
allow the TCP client to separate them once again. The second block has the
possibility to output a variety of different information but for the purpose of
this thesis only the radius and x, y postition of the center of the circle in pixel
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Start

Image ac-
quisition

from camera

Detecting
presence and
position of
the circle

Formatting the
TCP message

Sending TCP
message

back to client

Stop

Figure 4.12: Flowchart of the DobotVisionStudio script used for
detecting the presence and position of the calibration dots in an

image

coordinates were used. The length of the radius, also expressed in pixels, can
also be used as a control parameter too, if no circle is detected the returned
radius will be zero and setting a threshold on the maximum length of the radius
can prevent false positive that tend to happen when the center of the image falls
slightly outside of the calibration dot.

Finally the last block is the one that actively sends the response string back to
the TCP client once the script is over. The TCP client on the robot can then read
the response string from the communication stream and parse it to extract all the
necessary informations. In the following sections the steps necessary to turn the
informations about the calibration dot detected by the camera into informations
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Figure 4.13: Screenshot from DobotVisionStudio of the Circle Search
block and the result of it detecting a circle in the image

about the position error of the robot will be explored in depth, starting with the
computation of the planar error along the x, y plane parallel to the ground plane
and following with the error along the z axis orthogonal to the ground plane.

4.3.2 Planar Error computation

Figure 4.14 illustrates the output of the DobotVisionStudio in the case in
which there is an error in the xy plane when the robot is asked to position the
camera over one of the dots on the calibration grid. The dot on the calibration
board will still be detected but its center will not coincide with the center of
the image. The blue circle represents the center of the image and the blue cross
the center of the detected circle. If the position of the end effector was correct
the two would overlap but in the illustarted case they don’t and the red arrow
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highlights the displacement.

Figure 4.14: Illustration of the planar displacement as displayed in
DobotVisionStudio, the blue circle represents the center of the
image and the blue cross the center of the detected circle. If the

position of the end effector was correct the two would overlap but in
the illustarted case they don’t and the red arrow highlights the

displacement.

To convert this information into the error the robot manipulator committed
when asked to move on the expected position it is necessary to follow a process
composed of two steps.

First we need to compute the error in image coordinates an then to convert
it in robot coordinates. Since the requirement for the robot was to align the tool
center point over the dot on the calibration board to accomplish the first task it
is sufficient to find the distance in pixel between the center of the image and the
center of the circle. Since the image reference frame is positioned on the top left
corner of the image as seen in Figure 4.15 [46] to compute the pixel coordinates
of the center of the image we can halve the width and height of the image and
thus obtaining the x and y coordinates of the center. The dimensions of the
image provided by the camera are 2592 pixels in width and 1944 pixels in height
so the coordinates of the image center in the image coordinate reference frame
are going to be 1296 x and 972 y. To obtain the distance between the center
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Figure 4.15: Coordinate reference frame of a 2D image compared to
a coordinate reference frame in 3D space. Sourced from "Unreal

Engine Physics Essentials" [46].

of the dot on the calibration board and the center along the axis of the image
coordinate reference frame it is sufficient to subtract the two measures so:

𝑑_𝑥 = 𝑚_𝑥 − 𝑐_𝑥 (4.6)

𝑑_𝑦 = 𝑚_𝑦 − 𝑐_𝑦 (4.7)

𝑑_𝑡𝑜𝑡 =
√
𝑑_𝑥2 + 𝑑_𝑦2 (4.8)

Where m_x and m_y are the pixel coordinates of the center of the dot on
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the calibration board returned by the DobotVisionStudio script and c_x and
c_y are the pixel coordinates of the center of the image computed above. It is
important to notice that c_x and c_y are always constant. d_x and d_y are the
displacements computed along the x and y axis respectively and d_tot is the
total displacement parallel to the horizontal plane.

It is possible to apply Pythagoras’s theorem to also compute the total distance,
this may be useful for statistical reasoning but to better understand how the
position error is manifesting across the robot workspace it is also important to
store separately the displacements along the axis of the image reference frame
(and convert them in the robot reference frame too).

The second step is to find a relation that can allow us to convert the displace-
ments form pixel coordinates into robot coordinates. This is where the radius
of the dots of the calibration board comes into play and also one of the reasons
why a circle pattern was used instead of a square pattern. By knowing the
radius dimension both in mm and in pixels it is possible to set up a proportional
relation of the type:

𝑑_𝑚𝑚
𝑟_𝑚𝑚

=
𝑑_𝑝𝑖𝑥
𝑟_𝑝𝑖𝑥 (4.9)

𝑑_𝑚𝑚 = 𝑑_𝑝𝑖𝑥 ∗ 𝑟_𝑚𝑚
𝑟_𝑝𝑖𝑥 (4.10)

Where r_mm is the dimension of the radius of one of the dots on the cali-
bration board measured in mm. For the specific calibration board used in this
thesis 2.5 mm. r_mm represents the dimension of the radius of the dot on the
calibration board over which the camera is positioned, expressed in pixels. This
value is provided by the DobotVisionStudio script. d_pix represents the dis-
placement measured in pixels, obtained as discussed above and d_mm is the
displacement now converted in mm.

To convert the displacement from the image coordinate frame to the robot
reference frame it is not sufficient, however to convert the measured distances
from pixels to mm. The image coordinate frame is in fact a left handed reference
frame. Meaning that if we imagine the z axis exiting from the image and parallel
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to the robot z axis the two frames are not compatibles and cannot be aligned
with a rotation.

Figure 4.16: Illustration of the alignment between the image
coordinate frame (on the left) and robot reference frame (on the

right).

To simplify the conversion as much as possible it is possible to observe some
precautions. When choosing the orientation of the camera and the position
of the calibration board in the robot workspace it will be done is such a way
that when the custom robot reference frame will be create the axis of the two
coordinate systems will be parallel two by two. Figure 4.16 shows an example
of this, in this case the y axis of the image coordinate frame and robot reference
frame (the robot reference frame is aright handed reference frame so the z axis
is exiting the image) coincide so no additional computations are necessary, the
x axes on the other hand have the same orientation but opposite directions so to
complete the conversion between the x displacement in image coordinates and
the x displacement in robot coordinates it will be sufficient to swap its sign. To
summarise everything said so far the following equations apply:
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𝑟_𝑑_𝑥 = −(𝑚_𝑥 − 𝑐_𝑥) ∗ 𝑟_𝑚𝑚
𝑟_𝑝𝑖𝑥 (4.11)

𝑟_𝑑_𝑦 = (𝑚_𝑦 − 𝑐_𝑦) ∗ 𝑟_𝑚𝑚
𝑟_𝑝𝑖𝑥 (4.12)

Where r_d_x is the displacement of the robot along the x axis in mm, r_d_y is
the displacement of the robot along the y axis in mm, m_y is the y coordinate in
pixels of the match point, radius_ mm is the radius of the dot on the calibration
grid expressed in mm, r_pix is the radius of the dot on the calibration grid
expressed in pixels, c_x and c_y represent the coordinates of the image center
expressed in pixels.

The following sections will contain detailed explanations on how to use
the error just computed to correct the robot position but before it is necessary
to compute the displacement along the vertical axis too. As it is possible to
imagine, since the camera has been positioned in such a way that its optical
axis is orthogonal to the xy plane, a vertical displacement of the robot will not
translate into a displacement in the image obtained by the camera. So in the next
section the methodology applied to estimate the distance between the camera
and the calibration board using only the 2D image captured by the camera will
be discussed in depth.

4.3.3 Vertical Error computation

In this section we will discuss the methodologies applied to estimate the
vertical displacement of the robot. This is particularly problematic since the
robot has not been calibrated properly which means its internal information
about its position is not to be trusted so the only source of reliable data at our
disposal is the 2D camera which does not provide any explicit information about
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the depth of what it is seeing. The main idea to extract depth information from
a 2D image is to use the knowledge we already have about the objects that
appear in the image captured by the camera and the fact that objects further
away from the camera appear smaller in the image than objects that are closer
to the camera. Since we can use the informations about the planar displacement
(along the x and y axes) to move the robot is such a way to align the optical axis
of the camera with the center of the dot on the calibration grid it is then possible
to relate the size of the dot in the image in pixels with the size of the dot in mm.
Knowing the camera intrinsic parameters it is possible to estimate the distance
between the calibration board and the camera sensor with a quite high level of
accuracy. To properly understand the procedure it is necessary to introduce the
mathematical camera model used in this thesis and what intrinsic parameters
were employed.

Pinhole Camera model

The simplest way to model a camera is the pinhole camera model which
describes the mathematical relationship between the coordinates of a point in
three-dimensional space and its projection onto the image plane of an ideal
pinhole camera, as can be seen from Figure 4.17 [47], where the camera aperture
is described as a point and no lenses are used to focus light [48]. The pinhole
camera model applies a lot of simplifications with respect to a real camera.
The model does not include, for example, geometric distortions or blurring of
unfocused objects caused by lenses and finite sized apertures. It also does not
take into account that real cameras have only discrete image coordinates. This
means that the pinhole camera model can only be used as an approximation of
the mapping from a 3D scene to a 2D image. Its validity depends on the quality
of the camera and, in general, decreases from the center of the image to the
edges as lens distortion effects increase [49]. But this is fine for the application
taken into account is this thesis since we are already trying to position the
camera directly over the dot on the calibration board that is going to be used as a
reference to compute the distance, so the influence caused by distortion should
be minimal.

As can be seen from Figure 4.18 [50] in this model, we assume that light
travels in straight lines and that the camera’s lens can be reduced to a single
point called the "pinhole". The key elements of the pinhole camera model are
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Figure 4.17: Illustration of the basic principle of the pinhole camera
model. Sourced from 𝐸𝑚𝑏𝑖𝑏𝑒 [47].

as follows:

• pinhole (aperture): the pinhole is a small hole on the front surface of the
camera, opposite to the image plane. It is through this hole that light
enters the camera and forms the image. The size of the pinhole directly
affects the sharpness and clarity of the resulting image. A smaller pinhole
will produce a sharper image, but it will also reduce the amount of light
reaching the image sensor or film. A larger pinhole on the other hand will
allow more light to enter the camera but at the same time since more light
rays will bounce on the object and enter the camera, multiple projections
of the object will overlap on the image plane resulting in a blurred image.
It is denoted as "C" in Figure 4.18 [50];

• image plane: the image plane is the surface inside the camera where the
final image is formed. This is usually the camera’s sensor in digital cameras
or the film in traditional film cameras. When light passes through the
pinhole, it projects an inverted image of the scene onto the image plane.
The distance between the pinhole and the image plane is known as the
"focal length" of the camera, which will be denoted as "f" in Figure 4.18
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[50]. In the figure the image plane is moved by symmetry with respect to
the camera center. This can be done to avoid including the inversion in the
computations of the perspective projection;

• camera center (principal point): the camera center is the point at which the
optical axis (the imaginary line passing through the pinhole perpendicular
to the image plane) intersects the image plane. It is denoted as "P" in Figure
4.18 [50];

• optical axis: the optical axis is the straight line that connects the camera
center (p in Figure 4.18 [50]) with the pinhole. This axis is crucial for
understanding the perspective in the image;

• scene: the scene refers to the three-dimensional objects and points in the
real world that the camera is capturing. These objects are projected onto
the image plane to form a two-dimensional representation of the scene.

Figure 4.18: Detailed illustration of the basic basic geometry
involved in the pinhole camera model. Sourced from "Multi-View

Geometry in Computer Vision" [50].

The pinhole camera model can be mathematically described using perspec-
tive projection. If a point in 3D space is considered with X, Y, Z coordinates with
respect to the world reference frame then its projection x, y on the image plane
can be obtained by using the following equations:
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𝑥 = − 𝑓 ∗ 𝑋
𝑍

(4.13)

𝑦 = − 𝑓 ∗ 𝑌
𝑍

(4.14)

Where X, Y, and Z are the coordinates of the point in the world coordinate
system, x and y are the image coordinates of the point on the image plane and f is
the focal length of the camera. These equations show that the image coordinates
are directly proportional to the world coordinates of the point and inversely
proportional to its distance from the camera (Z). It is important to note that the
negative signs indicate that the image formed is inverted. Additionally, the field
of view (FOV) of the camera can be determined based on the sensor size and the
focal length. The FOV is the angular extent of the scene that is captured by the
camera and is typically measured in degrees or radians.

Thin lens equation

The thin lens equation is a formula that relates the distances of an object and
its image formed by a thin lens. It provides a simple way to predict where the
image will be located based on the object distance and the focal length of the
lens. In this equation, we assume that the lens is thin, meaning its thickness
is negligible compared to its other dimensions [51]. This is an idealization but
we will discuss how in the application considered in this thesis it is possible to
make these assumptions without loss of generality.

The thin lens equation can be stated as follows:

1
𝑓
=

1
𝑑𝑜

∗ 1
𝑑𝑖

(4.15)

Where f is the focal length of the lens, 𝑑𝑜 is the is the object distance or the
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distance between the object and the lens, called 𝑢 in the illustration shown in
Figure 4.19 [52] and 𝑑𝑖 is the image distance or the distance between the lens
and the image formed, called 𝑣 in the illustration.

Figure 4.19: Illustration of the geometry involved in the thin lens
equation. Sourced from "Copper for particle accelerators: electron

stimulated desorption and study of hydrogen content measurement
by laser ablation" [52].

The equation indicates that the reciprocals of the focal length and the object
and image distances are related. The focal length is a property of the lens, while
the object and image distances can vary depending on the position of the object
with respect to the lens. This equation allows us to determine the image distance
or object distance given the other two values. For example, if we know the focal
length and object distance, we can find the image distance using the equation.
Similarly, if we know the focal length and image distance, we can find the object
distance, just like we aim to do in this thesis.

When the image distance 𝑑𝑖 is positive, the image is formed on the opposite
side of the lens from the object, meaning it is a real image. A positive 𝑑𝑜 indicates
that the object is on the same side as the incident light (the side from which the
light is coming). Conversely, when the image distance 𝑑𝑖 is negative, the image
is formed on the same side as the object, meaning it is a virtual image. In this
case, 𝑑𝑜 is also negative. The thin lens equation is a powerful tool used in optics
for understanding and predicting the behavior of light passing through lenses
in various optical systems, including cameras, telescopes, and eyeglasses.
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Computing the vertical displacement

Now that we have all the theoretical knowledge needed at our disposal it is
time to actually compute the vertical displacement.

Figure 4.20: Illustration of the how the objects seen by the camera are
projected through the lenses onto the surface of the sensor. Sourced
from "Multiple sensors’ lenslets for secure document scanners" [53].

Figure 4.20 [53] can help to visualize the main concept that allows us to com-
pute the vertical displacement using only the 2D image and the prior knowledge
we have about the object and the camera. As seen in the figure the light bounces
off on the surface of the object. Then the light rays reflected by it pass through
the lenses of the camera and are projected on the sensor. So by knowing the
dimension of the object, its orientation and the camera intrinsic parameters we
can estimate the distance between the object and the camera sensor.

Figure 4.21 provides a more stylized representation of what was just de-
scribed but it is more helpful to relate the following computations to their
physical meaning. In the figure on the left is represented the dot on the calibra-
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tion board with it’s radius expressed in mm. The horizontal line represents the
camera optical axis which should be centered on the dot except for a hopefully
small horizontal displacement caused by the robot manipulator. On the right
is represented the dot on the calibration board projected on the camera sensor
with it’s radius expressed in pixels. The distance between the camera lens and
the object is represented by 𝑑𝑜 and the distance between the camera lens and the
sensor is represented by 𝑑𝑖 .

Figure 4.21: Illustration of the geometry involved in computing the
vertical displacement of the camera.

It is possible to notice the two triangles formed by the radius of the dot on the
calibration board, the distance between the center of the dot and the segment
formed by the center of the camera lens and the intersection between the radius
of the dot on the calibration board and the outer border of the dot itself. Since
both of these triangles are sharing two angles: the 90◦ one and 𝜃 they are similar
triangles. This allows us to write the equation:

𝑑𝑜
𝑟_𝑐 =

𝑑𝑖
𝑟_𝑠 (4.16)
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Where 𝑑𝑜 is the distance between the camera lens and the object, 𝑑𝑖 is the
distance between the camera lens and the sensor and 𝑟_𝑐 is the radius of the
dot on the calibration board expressed in millimeters. Of particular interest is
𝑟_𝑠 which represents the radius of the dot projected on the camera sensor. To
relate the two radiuses in the formula they need to be expressed in the same
unit of measurement. Right now we have available the radius of the dot on the
calibration board in millimeters and the radius of the dot in the image in pixels.
In order to express the radius of the dot in the image in millimeters too we need
the dimension of a single pixel on the camera sensor expressed in millimeters.
Luckily the datasheet of the camera includes the physical dimensions of the
sensors which are 5.76 x 4.29 mm. By knowing the image dimensions in pixels
it is possible to compute the dimensions of a single pixel:

𝑝_ℎ =
𝑠_ℎ
𝑖_ℎ =

4.29 𝑚𝑚
1944 𝑝𝑥

= 0, 0022 𝑚𝑚
𝑝𝑥

(4.17)

𝑝_𝑤 =
𝑠_𝑤
𝑖_𝑤 =

5.76 𝑚𝑚
2592 𝑝𝑥

= 0, 0022 𝑚𝑚
𝑝𝑥

(4.18)

Where 𝑝_ℎ is the height of a single physical pixel in mm, 𝑝_𝑤 is the width
of a single physical pixel in mm, 𝑠_ℎ is the height of the sensor in millimeters,
𝑠_𝑤 is the width of the sensor in millimeters, 𝑖_ℎ is the height of the image
captured by the camera in pixels and 𝑖_𝑤 is the width of the image captured by
the camera in pixels. It is possible to notice how the single pixels on the sensors
are squares as most common in modern cameras, this will help to simplify the
following calculations.

Thanks to this new information it is possible to rewrite 𝑟_𝑠 as:

𝑟_𝑠 = 𝑟_𝑠_𝑝𝑖𝑥 ∗ 𝑝𝑖𝑥_𝑑 (4.19)

Where 𝑝𝑖𝑥_𝑑 is one of the dimensions of a physical pixel just computed,
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𝑟_𝑠_𝑝𝑖𝑥 is the radius of the calibration dot on the image expressed in pixels and
𝑟_𝑠 is the radius of the calibration dot on the image expressed in millimeters.

The only unknown left from Equation 4.16 is 𝑑𝑖 , which is a constant and it
is possible to extract it from Equation 4.15, the thin lens equation. After some
computations we can write:

𝑑𝑖 =
𝑓 ∗ 𝑑𝑜
𝑑𝑜 − 𝑓

(4.20)

Equation 4.20 is the rewritten thin lens equation where 𝑑𝑖 is the distance
between the camera lens and the sensor, 𝑑𝑜 is the distance between the camera
lens and the object and 𝑓 is the focal length of the camera.

By putting together everything seen so far we obtain:

𝑑𝑜 = ( 𝑟_𝑐
𝑟_𝑠_𝑝𝑖𝑥 ∗ 𝑝𝑖𝑥_𝑑 + 1) ∗ 𝑓 (4.21)

Where 𝑑𝑜 is the distance between the camera lens and the object which is the
value we were looking for, 𝑟_𝑠_𝑝𝑖𝑥 is the radius of the calibration dot on the
image expressed in pixels 𝑝𝑖𝑥_𝑑 is the physical dimension of a single pixel on
the sensor expressed in millimeters, 𝑓 is the focal length of the camera and 𝑟_𝑐
is the radius of the dot on the calibration board expressed in millimeters. By
substituting all the constants we obtain:

𝑑𝑜 = ( 2 𝑚𝑚
𝑟_𝑠_𝑝𝑖𝑥 ∗ 0, 0022 𝑚𝑚

𝑝𝑥
+ 1) ∗ 12 𝑚𝑚 (4.22)

Of course using the thin lens equation for a real camera is an oversimplifica-
tion, as it is possible to notice from Figure 4.22 [54] the lens of a camera is actually
composed by multiple lenses and lens groups to compensate for distortion and
to provide a better final picture. This means that the measure we are going to
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find won’t be accurate but there will be a constant offset between the real height
of the camera and the estimated one. In this application this won’t be a problem:
since the robot is supposed to move the camera over each dot on the calibration
board keeping the height of the camera constant, without loss of generality, we
can assume that when the robot is placed at the starting point with the camera
over the first dot on the calibration board, it is also placed at the "correct" height.
So when the robot will move the camera over the calibration board instead of
computing the height of the camera as an absolute value we can just compute
the vertical displacement with respect with the first point as can be seen from
Equation 4.23.

𝑟_𝑑_𝑧 = 𝑑′𝑜 − 𝑑𝑜 (4.23)

Where 𝑟_𝑑_𝑧 is the estimated vertical displacement of the camera, 𝑑′𝑜 is the
estimated height of the camera over the first calibration point and 𝑑𝑜 is the esti-
mated height of the camera over the current calibration point. It is possible to
notice how by computing the vertical displacement using this formula the esti-
mated vertical displacement of the first point will always be 0. In the following
sections we will address how this can become a problem when switching from
the data gathering step to actually applying the corrections in an actual example
where the initial point is in a different position.

Some additional complications need to be addressed when computing the
vertical displacement, first of all the computations seen above are very reliant
on having a precise matching of the dot on the calibration board and a precise
measurement of its radius. This may become tricky in some situations, such as if
there are some printing artifacts on the calibration board that prevent the dots to
be all perfectly equal. If the circle is not exactly in the center of the image some
distortion effects may come into play. Or if, due to the vertical displacement,
the image is out of focus then the detection algorithm will have a hard time
measuring the radius of the dots accurately. If the image is only slightly out of
focus then having the calibration board illuminated not uniformly may lead to
see some dots slightly bigger than the others.

The last complication was solved by mounting a ring light around the camera
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Figure 4.22: Illustration of a section of a real camera. It is possible to
notice how the lens is actually composed by a series of lenses.

Sourced from 𝐸𝑥𝑝𝑒𝑟𝑡 𝑃ℎ𝑜𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦 [54].

to illuminate the area captured in the images always in the same way but in the
next section some countermeasures will be considered for all the other possible
complications too. The main idea is to not just measure the error on each position
but to actually correct the robot pose, this way we will instantly know if the error
was computed correctly and eventually correct the course.

Once both the vertical and horizontal displacements are available the total
displacement of the robot can be computed using Pythagoras’s theorem a seen
in Equation 4.24:

𝑑_𝑡𝑜𝑡 =
√
𝑑_𝑥2 + 𝑑_𝑦2 + 𝑑_𝑧2 (4.24)
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Where 𝑑_𝑡𝑜𝑡 represents the total displacement of the robot, 𝑑_𝑥 represent the
robot displacement along its x axis, 𝑑_𝑦 represent the robot displacement along
its y axis and 𝑑_𝑧 represent the robot displacement along its z axis. The total robot
displacement so computed only contains informations about the magnitude of
the robot displacement is that particular point but it is also important to store
the singular displacements ans they add informations about the direction of the
displacement which is essential to correct it.

4.3.4 Repositioning

In the previous sections it was mentioned how some important assumptions
were made to compute the horizontal and vertical displacements of the robot.
First of all about the quality of the image captured by the camera, both in terms
of resolution and absence of distortions. But also about the accuracy of the
estimation of the displacements. As it was discussed beforehand the conversion
between pixels and millimeters in based entirely on knowing the dimension of
the dot on the calibration board in the image in pixels so we are heavily relying
on having a match that outlines perfectly the dot. All of this means that it’s
not simply possible to correct the robot position by just reverting the estimated
displacement. Even if the displacement was estimated with 100% accuracy we
cannot assume that the error of the robot is constant in its workspace. So by
modifying the requested coordinates beforehand by the know displacement that
will be obtained by moving the robot to the desired coordinates a different dis-
placement will be generated and the robot will not move to the correct pose.
This concept will be made more clear after illustrating the iterative correction
procedure applied in this thesis, but the key concept is that it is not sufficient to
know the displacement in advance to prevent it we actually need to know the
coordinates to provide to the robot to reach the desired point.

Figure 4.23 illustrates the iterative procedure used to correct the robot pose.
After the first movement where the robot moves to the expected position the
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Start

Robot moves the cam-
era to expected position

Camera captures an image

Measure horizontal and vertical
displacement using the camera:
𝑟_𝑑_𝑥 = − 𝑟_𝑚𝑚

𝑟_𝑝𝑖𝑥 ∗ (𝑚_𝑥 − 𝑐_𝑥)
𝑟_𝑑_𝑦 = 𝑟_𝑚𝑚

𝑟_𝑝𝑖𝑥 ∗ (𝑚_𝑦 − 𝑐_𝑦)
𝑟_𝑑_𝑧 = 𝑑′𝑜 − ( 𝑟_𝑐

𝑟_𝑠_𝑝𝑖𝑥∗𝑝𝑖𝑥_𝑑 + 1) ∗ 𝑓

Is the error
under the
treshold?

Correct the
robot pose
using the
estimated

displacement

Save robot actaual coordi-
nates to reach desired point

Stop

yes

no

Figure 4.23: Iterative procedure to correct the robot pose.

camera captures an image and the horizontal and vertical displacements are
computed. As mentioned before we cannot assume that the displacement is
constant through the robot workspace so just moving in the opposite direction
of the computed displacement is not enough to correct it. But we can assume
that the robot displacement are continuous functions so by moving the camera in
the opposite direction of the displacements the discrepancy between the actual
robot pose and expected one will decrease. This process can be repeated until
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the total robot displacement is under a selected threshold. For the purposes of
this thesis the threshold was set at 0,02 mm which is under the expected robot
repeatability of 0,05 mm. During the experiments it emerged how the robot was
almost never able to satisfy the threshold on the first attempt but almost always
on the second. This fact underlines the importance of not limiting the data
gathering process on just estimating the displacements but to actually correct
the robot pose. This allows us to have available the actual robot coordinates that
we need to provide to the robot to reach the desired pose for each dot on the
calibration board.

Before seeing how to generalize this informations to be able to correct the
robot pose in any point in its workspace it is necessary to establish a baseline.
Juts measuring the displacements of the robot in reaching each dot on the
calibration board is meaningless if we don’t have an accurate estimation of the
robot repeatability to to compare them against. This is why in the next section
we will discuss the procedure used to recompute the robot repeatability

4.4 Determining the repeatability

An essential step when trying to improve any process is to provide a baseline.
This allows to compare the obtained improvements in an objective way and to
draw meaningful conclusions. In this thesis the baseline to improve upon is
represented by the displacements computed in the data gathering step and the
objective of this thesis is to decrease them as much as possible. It wont be
possible to reduce them to zero however because even when returning to a
previously shown point the robot will still commit an error. This is referred to
as the robot repeatability and in this thesis represents the lower bound that we
cannot improve further upon.
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4.4.1 Robot repeatability

Before going over the procedure applied to investigate the robot repeatability
it is important to define it in more details. Robot repeatability is a critical perfor-
mance metric in robotics, referring to the ability of a robot to consistently return
to a specified position or follow a predetermined path with high precision. It is
a measure of the robot’s ability to reproduce the same motion or action multi-
ple times under similar conditions, and it plays a fundamental role in various
industrial and research applications [55]. Repeatability is usually expressed as
a maximum deviation value from the desired position. In manufacturing pro-
cesses, robots frequently perform repetitive tasks and high repeatability ensures
that the robot executes these tasks with reliability. When a robot consistently
performs a task with a high level of precision, it becomes easier to control the
process and achieve consistent results, ultimately enhancing overall productiv-
ity.

Several factors influence the repeatability of a robot, including [56]:

• mechanical design: the mechanical structure of a robot plays a crucial role
in its repeatability. The robot’s structural rigidity, material quality, and
manufacturing tolerances determine how well it can resist deformations
and vibrations during operation. A stiffer and more precise mechanical de-
sign leads to reduced flexing and bending, resulting in improved accuracy
and repeatability;

• control system: the control system governs the robot’s movements and
responses to commands. Advanced control algorithms can compensate
for disturbances and uncertainties, enabling the robot to achieve more
accurate and repeatable motion. Properly tuned control loops enhance the
robot’s ability to reach desired positions with high precision;

• environmental conditions: variations in environmental conditions, such as
temperature and humidity, can affect the robot’s components and lead to
changes in its behavior. To maintain consistent repeatability, it is essential
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to control and monitor these environmental factors during robot operation;

• quality of sensors: sensors play a crucial role in providing feedback to the
robot’s control system. Encoders, for instance, measure the joint positions
accurately. High-quality sensors with better resolution and accuracy con-
tribute to improved repeatability by providing more reliable feedback to
the control system.

To achieve high repeatability, all these factors must be carefully considered
and optimized during the robot’s design, manufacturing, and operation. A
well-engineered robot with a stiff and precise mechanical design, advanced
control algorithms, accurate calibration, reliable sensors, and proper environ-
mental control is more likely to exhibit higher repeatability, making it suitable
for applications where precision and consistency are essential.

4.4.2 Repeatability estimation procedure

The procedure to estimate the robot repeatability is divided into two phases.
The first phase consist in moving the robot over some known points and memo-
rizing the robot coordinates associated with that robot pose. Once this is done it
is sufficient to go back to these poses and see if the robot is still centered on the
same reference point and eventually measure the displacement. In the previous
sections the procedures applied to align the camera to a point on the calibration
board and to measure the displacement were described in detail, so now it is
possible to combine them to estimate the robot repeatability.

The flowchart in Figure 4.24 illustrates the combined procedures to obtain the
robot repeatability. The first phase is the same as the data gathering step used to
collect the displacements of the robot to reach each point. So the robot through
a series of relative movements will try to position the camera over each dot on
the calibration board and using the informations provided by the camera it can
center itself over it. The coordinates of each correct position are memorized
by the robot. In the second phase then the robot will attempt to return to the
memorized positions. The displacements measured during the second phase
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Start

Robot moves the camera to expected po-
sition over a dot on the calibration board

Camera captures an image

Measure horizontal and vertical
displacement using the camera

Correct the robot pose using
the estimated displacement

Store the new pose as-
sociated with that dot

Repeat for all dots on
the calibration board

Robot moves the camera to new
expected position over each dot
on the calibration board again

Camera captures an image

Measure horizontal and vertical
displacement using the camera

Stop

Figure 4.24: Procedure to estimate robot repeatability trough its
workspace.

are not due to robot miscalibration because the robot is returning to points
already memorized so by averaging the obtained displacements we can estimate

73



4.4. DETERMINING THE REPEATABILITY

the robot repeatability. As mentioned previously this step is essential in the
calibration process, it gives us a starting point thought the initial displacements
and a final theoretical goal through the robot repeatability and most important
it assures that once the robot accuracy gets close to its repeatability no resources
will be wasted trying to improve it further.
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4.5 Applying the correction

Now that the data about the robot displacements has been gathered it is time
to generalize it by finding a correction function capable of mapping between the
robot coordinates before and after the correction. There are many interpolation
techniques but the ones we will focus on in this thesis are bilinear interpolation
and neural networks used as ”𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑜𝑟𝑠”.

One thing worth mentioning now is how the reference frames were managed
between the data gathering step and the application of the correction. For the test
to be fair we cannot assume that the target points to measure the displacements
are in the same position between train and test set, otherwise interpolation
would be useless as the whole process would be equivalent to the repeatability
estimation procedure. To ensure that the data of the validation and test sets is
meaningful the calibration board is translated and rotated after the training data
has been gathered. This ensures that no two points will coincide thus creating
a fresh dataset. Having a new calibration board with a completely random
pattern of points would be a better solution but having only one calibration
board available this is a valid compromise.

To easily shift the robot from point to point with a relative movement a
reference frame is created on the calibration board with its axis aligned with
the calibration pattern. This is useful to move the robot without performing
additional computations but it means that the data from the train and test
set live on two different reference frames. To feed the data to the correction
function we first need to convert the desired point in the training set frame then
the actual point returned by the correction function needs to be converted to
the test frame again. DobotStudio Pro allows to easily create new reference
frames for the Mg400 by using only two points which are going to specify the
origin and direction of the x axis of the reference frame. Unfortunately there is
no function already implemented in DobotStudio Pro to use the rototranslation
matrix associated with a reference frame to convert points between different
reference frames. Furthermore there is no matrix product already implemented
in the Lua language, this is solved by the function in Figure 4.25 that shows a
code snippet implemented to be able to treat Lua tables as matrices. This will be
useful later too when the trained neural network model will have to be imported
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in DobotStudio Pro.

1 function dot(m1,m2)
2 if n_cols(m1) ~= n_rows(m2) then
3 print("Matrix mismatch ".. n_cols(m1).." != "..n_rows(m2))
4 return -1
5 end
6 result = {}
7 for i=1,n_rows(m1),1 do
8 result[i] = {}
9 for j=1,n_cols(m2),1 do

10 result[i][j] = 0
11 end
12 end
13 for i=1,n_rows(m1),1 do
14 for j=1,n_cols(m2),1 do
15 for k=1,n_cols(m1),1 do
16 result[i][j] = result[i][j] + m1[i][k]*m2[k][j]
17 end
18 end
19 end
20 return result
21 end

Figure 4.25: Code snippet from DobotStudio Pro showing how to
execute matrix multiplication in Lua using tables.

Since the Mg400 can only translate its end effector and rotate it along the z
axis the rototranslation matrices to jump from one frame to another are going to
be composed by a translation and an elementary rotation along the z axis:

𝑇0
𝑓 =


cos𝜃 − sin𝜃 0 𝑓 0

𝑥

sin𝜃 cos𝜃 0 𝑓 0
𝑦

0 0 1 𝑓 0
𝑧

0 0 0 1


(4.25)

𝑇0
𝑓 is the rototranslation matrix that allows us to write a point from a frame

f to frame 0. To write it we need to know the coordinates of the origin of the
reference frame f with respect to the reference frame 0 and the rotation 𝜃 be-
tween the two. Both of those information are provided by DobotStudio Pro.
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This matrix will be used to covert both the desired point from the test reference
frame to the reference frame 0 and the correction from the train reference frame
to the reference frame 0, but we will also need to convert the desired point from
the reference frame 0 to the train reference frame and the correction from the
reference frame 0 to the test reference frame. To do so we will also need the ro-
totranslation matrix 𝑇 𝑓

0 which can be computed by knowing the coordinates of
the reference frame 0 with respect to the reference frame f and the angle needed
to align the reference frame f to the reference frame 0. Since these informations
are not easily available to us in DobotStudio Pro we can resort to invert the 𝑇0

𝑓

matrix instead. To invert a rototranslation matrix 𝑇0
𝑓 :

𝑇0
𝑓 =

[
𝑅0

𝑓 𝑡0
𝑓

0 1

]
(4.26)

where R is the rotation matrix between f and 0 and t is the translation vector:

𝑅0
𝑓 =


cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0

0 0 1

 𝑡
0
𝑓 =


𝑓 0
𝑥

𝑓 0
𝑦

𝑓 0
𝑧

 (4.27)

To find the inverse of 𝑇0
𝑓 , we need to compute the inverse of the rotation

matrix 𝑅0
𝑓 :

𝑅 𝑓
0 = (𝑅0

𝑓 )−1 = (𝑅0
𝑓 )𝑇 =


cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0

0 0 1

 (4.28)

and apply the inverse translation 𝑡 𝑓0 :
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𝑡 𝑓0 = (𝑡0
𝑓 )−1 = 𝑅 𝑓

0 ∗ (−𝑡0
𝑓 ) = 𝑅 𝑓

0 ∗

− 𝑓 0

𝑥

− 𝑓 0
𝑦

− 𝑓 0
𝑧

 =

− 𝑓 0

𝑥 cos𝜃 − 𝑓 0
𝑦 sin𝜃

𝑓 0
𝑥 sin𝜃 − 𝑓 0

𝑦 cos𝜃
− 𝑓 0

𝑧

 (4.29)

Finally the inverse rototranslation matrix 𝑇 𝑓
0 is obtained by assembling 𝑅 𝑓

0
and 𝑡 𝑓0 :

𝑇 𝑓
0 = (𝑇0

𝑓 )−1 =

[
(𝑅0

𝑓 )−1 (𝑡0
𝑓 )−1

0 1

]
=


cos𝜃 sin𝜃 0 − 𝑓 0

𝑥 cos𝜃 − 𝑓 0
𝑦 sin𝜃

− sin𝜃 cos𝜃 0 𝑓 0
𝑥 sin𝜃 − 𝑓 0

𝑦 cos𝜃
0 0 1 − 𝑓 0

𝑧

0 0 0 1


(4.30)

Having written all of that, the flow used to apply the corrections in Cartesian
space using both bilinear interpolation and the neural network will look like the
one illustrated in Figure 4.26. The first step is to provide the algorithm with
the coordinates of the desired point written with respect to the reference frame
currently in use 𝐷𝑝𝑡𝑒𝑠𝑡 . The point is then rewritten with respect to frame 0 using
the rototranslation matrix 𝑇0

𝑡𝑒𝑠𝑡 : 𝐷𝑝0 = 𝑇0
𝑡𝑒𝑠𝑡 ∗𝐷𝑝𝑡𝑒𝑠𝑡 . Once 𝐷𝑝0 is available it can

be converted into the train reference frame, which was the one used during the
data gathering step, 𝐷𝑝𝑡𝑟𝑎𝑖𝑛 = 𝑇𝑡𝑟𝑎𝑖𝑛

0 ∗ 𝐷𝑝0. This may seem like an unnecessary
passage since the two rototranslation matrices could be easily combined into
one 𝑇𝑡𝑒𝑠𝑡

𝑡𝑟𝑎𝑖𝑛 = 𝑇𝑡𝑒𝑠𝑡
0 ∗ 𝑇0

𝑡𝑟𝑎𝑖𝑛 , but since the test frame can change based on the
application and the train frame remains constant it makes sense both logically
and computationally to keep the two steps separate.

𝐷𝑝𝑡𝑟𝑎𝑖𝑛 can be used directly by a correction algorithm, either bilinear inter-
polation or a neural network in Cartesian space. The correction algorithm will
output the actual point coordinates, with respect to the train reference frame
𝐴𝑝𝑡𝑟𝑎𝑖𝑛 . The actual point coordinates represent the coordinates that need to be
given as input to the robot to reach the desired point, in the case in which the
robot was perfectly calibrated desired point and actual point would coincide.
𝐴𝑝𝑡𝑟𝑎𝑖𝑛 is then converted back to frame 0 𝐴𝑝0 = 𝑇0

𝑡𝑟𝑎𝑖𝑛 ∗ 𝐴𝑝𝑡𝑟𝑎𝑖𝑛 and then to the
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test reference frame 𝐴𝑝𝑡𝑒𝑠𝑡 = 𝑇𝑡𝑒𝑠𝑡
0 ∗ 𝐴𝑝0. The robot could already reach 𝐴𝑝𝑡𝑟𝑎𝑖𝑛

correctly but the extra steps allow for the correction algorithm to be inserted
seamlessly into other robot programs without messing up further computations
that were meant to be applied to the desired point.

Start

Desired point provided in
test reference frame: 𝐷𝑝𝑡𝑒𝑠𝑡

Desired point converted from test
frame to frame 0: 𝐷𝑝0 = 𝑇0

𝑡𝑒𝑠𝑡 ∗ 𝐷𝑝𝑡𝑒𝑠𝑡

Desired point converted from frame 0
to train frame: 𝐷𝑝𝑡𝑟𝑎𝑖𝑛 = 𝑇𝑡𝑟𝑎𝑖𝑛

0 ∗ 𝐷𝑝0

Estimate the coordinates of the
actual point 𝐴𝑝𝑡𝑟𝑎𝑖𝑛 using one
of the correction algorithms

Actual point converted from train frame
to frame 0: 𝐴𝑝0 = 𝑇0

𝑡𝑟𝑎𝑖𝑛 ∗ 𝐴𝑝𝑡𝑟𝑎𝑖𝑛

Actual point converted from frame
0 to test frame: 𝐴𝑝𝑡𝑒𝑠𝑡 = 𝑇𝑡𝑒𝑠𝑡

0 ∗ 𝐴𝑝0

The robot can move to the actual point
coordinates instead of the desired

ones but the desired point is reached

Stop

Figure 4.26: Flow to apply a correction to a point in a different frame
with respect to the one used in the data gathering step.

The following sections will explore more in depth the specific correction
algorithms considered in this thesis and their specific implementation, starting
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with bilinear interpolation since its the simplest and most deterministic and
moving into neural networks, first in Cartesian space and then in joint space.

4.5.1 Correction with bilinear interpolation

Bilinear interpolation is the simplest interpolation technique presented in
this thesis, but at the same time it provide the important advantages of being
completely deterministic and not requiring any training unlike neural networks.
Bilinear interpolation is a method for interpolating functions of two variables by
using linear interpolation repentantly. Bilinear interpolation is performed using
linear interpolation first in one direction, and then again in another direction.
In the chapters sections the general idea for bilinear interpolation was already
presented briefly but it will be discussed now in more detail.

Consider a regular grid consisting of data points arranged in rows and
columns. Each data point is associated with a known value. Bilinear inter-
polation aims to compute an estimated value at a non-grid position, typically
within the region bounded by four neighboring grid points. This is achieved
by considering the weighted average of the known values of these four points,
taking into account their relative distances from the target position.

In the case taken into account by this thesis the grid is represented by the
calibration points, identified by their x, y desired coordinates and the known
values associated with each of them are their actual coordinates x, y and z. Any
desired point that belongs to the area covered by the calibration board will fall
in a square belonging to the original calibration board that was set up during
the data gathering step as illustarted by Figure 4.27 [57].

To identify the square on the original grid where the desired point would
belong it is sufficient to either scroll through all of them which is inefficient
but effective or, since the train reference frame x and y axis are parallel to the
calibration grid it is also possible to identify in advance the the row where the
point belongs (or column) and then only take into account only the cells in the
corresponding row (or column). This can help to avoid computational delays in
cases in which the calibration grid becomes a lot bigger. Once the original square
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Figure 4.27: illustration of the overlap between the calibration grid
used during the data gathering step and the test step. Sourced from

𝐺𝑖𝑠𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦 [57].

has been identified it is possible to recover from the data stored in memory the
four original points composing its corners as seen in Figure 4.28 [58]:

• 𝑄11 at coordinates (𝑥𝑑1,𝑦𝑑1) with associated values 𝑥𝑎11, 𝑦𝑎11 and 𝑧𝑎11;

• 𝑄12 at coordinates (𝑥𝑑1,𝑦𝑑2) with associated values 𝑥𝑎12, 𝑦𝑎12 and 𝑧𝑎12;

• 𝑄21 at coordinates (𝑥𝑑2,𝑦𝑑1) with associated values 𝑥𝑎21, 𝑦𝑎21 and 𝑧𝑎21;

• 𝑄22 at coordinates (𝑥𝑑2,𝑦𝑑2) with associated values 𝑥𝑎22, 𝑦𝑎22 and 𝑧𝑎22.

These points are used to create a weighted average that estimates the value
at the target position. Given 𝑣 and 𝑢 as:

𝑢 =
𝑥𝑑 − 𝑥𝑑1
𝑥𝑑2 − 𝑥𝑑1

, 𝑣 =
𝑦𝑑 − 𝑦𝑑1

𝑦𝑑2 − 𝑦𝑑1
(4.31)

Where 𝑢 represents the normalized horizontal distance from𝑄11 to the target
position (𝑥𝑑,𝑦𝑑) and 𝑣 represents the normalized vertical distance from 𝑄11 to
the target position (𝑥𝑑,𝑦𝑑). 𝑢 varies from 0 to 1 as 𝑥𝑑 goes from 𝑥𝑑1 to 𝑥𝑑2 and
𝑢 varies from 0 to 1 as 𝑦𝑑 goes from 𝑦𝑑1 to 𝑦𝑑2.
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Figure 4.28: 2D illustration of the bilinear interpolation principle.
Sourced from "Model risk and techniques for controlling market

parameters. The experience in Banco Popolare" [58].

To compute the interpolation we can write:

𝑅𝑎𝑥1 = (1 − 𝑢) ∗ 𝑥𝑎11 + 𝑢 ∗ 𝑥𝑎21 (4.32)

Equation 4.32 computes a linear interpolation between the values 𝑥𝑎11 and
𝑥𝑎21 along the horizontal direction. (1 − 𝑢) ∗ 𝑥𝑎11 represents the contribution
of 𝑥𝑎11 scaled by 1 − 𝑢 which decreases as 𝑥𝑑 moves from 𝑥𝑑1 to 𝑥𝑑2. 𝑢 ∗ 𝑥𝑎21

represents the contribution of 𝑥𝑎21 scaled by 𝑢 which increases as 𝑥𝑑 moves
from 𝑥𝑑1 to 𝑥𝑑2. Together, this part computes the weighted average of 𝑥𝑎11 and
𝑥𝑎21 along the horizontal line at the target vertical position.

𝑅𝑎𝑥2 = (1 − 𝑢) ∗ 𝑥𝑎12 + 𝑢 ∗ 𝑥𝑎22 (4.33)
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Equation 4.33 computes a linear interpolation between the values 𝑥𝑎12 and
𝑥𝑎22 along the horizontal direction. (1 − 𝑢) ∗ 𝑥𝑎11 represents the contribution
of 𝑥𝑎11 scaled by 1 − 𝑢 which decreases as 𝑥𝑑 moves from 𝑥𝑑1 to 𝑥𝑑2. 𝑢 ∗ 𝑥𝑎21

represents the contribution of 𝑥𝑎21 scaled by 𝑢 which increases as 𝑥𝑑 moves
from 𝑥𝑑1 to 𝑥𝑑2. Together, this part computes the weighted average of 𝑥𝑎11 and
𝑥𝑎21 along the horizontal line at the target vertical position.

The two equations can be put together to compute the final value

𝑃𝑎𝑥 = (1 − 𝑣) ∗ 𝑅𝑎𝑥1 + 𝑣 ∗ 𝑅𝑎𝑥2 (4.34)

Equation 4.34 computes a linear interpolation between the values 𝑅𝑎𝑥1 and
𝑅𝑎𝑥2 along the vertical direction. (1 − 𝑣) ∗ 𝑅𝑎𝑥1 represents the contribution of
𝑅𝑎𝑥1 scaled by 1 − 𝑣 which decreases as 𝑦𝑑 moves from 𝑦𝑑1 to 𝑦𝑑2. 𝑣 ∗ 𝑅𝑎𝑥2

represents the contribution of 𝑅𝑎𝑥2 scaled by 𝑣 which increases as 𝑦𝑑 moves
from 𝑦𝑑1 to 𝑦𝑑2. Together, this part computes the weighted average of 𝑅𝑎𝑥1 and
𝑅𝑎𝑥2 along the vertical line at the target horizontal position.

It is possible to notice how the points stored in memory are only identified
by their original x and y desired coordinates. This is because since the camera
is moving on a plane adding a value equal for all the points wouldn’t add any
information, also bilinear interpolation only accepts two values as input. In
the case in which the plane where the camera movements belong to is the same
between train and test then everything is fine. If instead the distance between the
camera and the calibration grid changes between train and test then a different
solution would have to be considered, maybe mapping the displacements at
different heights and then performing cubic interpolation including the height
information too [59]. This can be done but it would add to the complexity of the
algorithm so this case is going to be contemplated only for neural networks.

To compensate for small variation in height between train and test a simple
countermeasure is put into place: the vertical correction that would be applied
to the first point in the test set isn’t applied and instead it is saved as an offset to
compensate on all the other points too.
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One last consideration about bilinear interpolation is that its corrections
limited for points that fall inside the original calibration grid used during the
data gathering step. For points that fall just outside it is possible to extend
the correction by linearity but its accuracy will diminish quickly as the desired
points moves further away from the mapped area.

4.5.2 Correction with neural network in Cartesian space

Neural networks are a class of machine learning algorithms inspired by the
structure and functioning of the brain. These models are composed of inter-
connected computational units, referred to as neurons or nodes, organized into
layers that process and transform input data to produce desired output predic-
tions or classifications. In the case considered in this thesis, more specifically
they are used as function approximator, aiming to map input data to output
predictions. The network’s operation involves two fundamental components:
the weighted sum of inputs, often called activations, and an activation function
that introduces non-linearity. Neurons are organized into layers, with input data
provided to the input layer, intermediate computations performed in hidden lay-
ers, and final predictions obtained from the output layer. The number of hidden
layers and the number of neurons in each layer, known as the network’s archi-
tecture, significantly impact its capacity to learn and generalize. The learning
process in neural networks revolves around adjusting the weights and biases
to minimize a predefined loss function when making predictions on sample
data. This optimization is typically achieved using the backpropagation algo-
rithm coupled with gradient descent optimization methods. Backpropagation
involves computing the gradient of the loss with respect to the model param-
eters and updating the parameters in the opposite direction of the gradient to
minimize the loss [60].

Figure 4.29 shows a simplified view of the architecture of the neural network
used to make predictions in Cartesian space. Since the available dataset have a
limited dimension it wouldn’t make sense to use a big network or not enough
samples would be available to train it properly.
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Figure 4.29: Illustration of the structure of the neural network used
to make predictions in Cartesian space.

To avoid complications with different reference frames a validation set is
generated by randomly sampling some points from the train set, instead of
moving the grid and perform another data gathering process. This allows us
to perform a grid search looking for the best architecture and hyper-parameters
for the neural network. Different architectures were put to test and the results
showed very similar results for networks with one or two hidden layers with
at least four neurons each. The activation function that performed better in the
hidden layers is the hyperbolic tangent while the output neurons use the linear
function to not distort the results. Since the camera moves on a plane parallel
to the calibration board the desired z coordinate is always constant so the only
relevant input data are the x and y coordinates of the desired point that we
want to reach, this is why the dimension of the input layer is two. On the other
hand the correction has to be applied along all three axis so the dimension of
the output layer is three. The two hidden layers are composed of six neurons
each since this was the architecture that performed better when put to test on
the validation set. Changing the batch size does not seem to have an influence
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on the result but a small learning rate (1𝑒−5) allows the model to keep slowly
improving after the first few epochs reaching an overall better accuracy on the
validation set as seen in Figure 4.30.

Figure 4.30: Plot of the training and validation loss of the neural
network during training, it is possible to notice how after the first
few epochs of fast improvement the model keeps learning slowly

until it eventually stops.

Since the mapped workspace is relatively small the outputs of the neural
network are all very close in value this creates a problem during training: the
network easily falls into the local minima of always giving as output the average
of the training set instead of actually learning. To avoid this problem the datasets
are reformatted in such a way that the target values to predict are not the actual
point coordinates but the difference between the actual point coordinates and
the desired point coordinates. This allows to easily reconstruct the target value
after the prediction.
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Differently from the bilinear interpolation no special extension is needed
for the neural network model to generate prediction for points that fall outside
of the original calibration board used during the data gathering step, but just
like for the bilinear interpolation the accuracy of the predictions will quickly
deteriorate as soon as the requested point moves further away from the original
calibration board the network was trained on.

The complete set of steps to predict a correction using the neural network
in Cartesian space, without taking into account the frames conversions already
discusses, are:

1. normalize the input: the training set was normalized so any new input
needs to also be normalized according to the same normalization function;

2. apply the feedforward algorithm of the neural network to get the predicted
difference between actual and desired coordinates;

3. add the predicted difference to the original desired coordinates to obtain
the predicted desired coordinates.

One last important point to mention in how the neural network model was
imported into DobotStudio Pro in the Lua language. Google Colab and Python
offer a series of libraries that greatly simplify the creation and training of machine
learning models such as neural networks, they also offer the possibility to save
a trained model and upload it somewhere else. Unfortunately Lua does not
support any of this. To use the neural network model in DobotStudio Pro
a workaround had to be set up. The network was first trained on Google
Colab, then its weights were imported as tables in Lua. Once the network has
been trained only the feedforward algorithm needs to be applied which can be
reduced to a series of matrix multiplications and activation functions. Luckily
the same function shown previously that allows us to treat Lua tables as matrices
can be used again here.

Figure 4.31 shows some code snippets of the other functions created to use
a neural network model in Lua. The first is the 𝑡𝑎𝑛ℎ() function which is used as
activation function on a single value, the second allows us to apply the activation
function on a mono dimensional Lua table treating it as a vector and the third
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1 function tanh(x)
2 return ((math.exp(x) - math.exp(-x))/(math.exp(x) + math.exp(-x)))
3 end
4

5 function activation_function(h)
6 result = h
7 for i=1,n_rows(h)-1,1 do
8 result[i][1] = tanh(h[i][1])
9 end

10 return result
11 end
12

13 function feed_forward(j1d,j2d,j3d,j4d)
14 input = normalize_input(j1d,j2d,j3d,j4d)
15 h1 = dot(W1,input)
16 o1 = activation_function(h1)
17

18 h2 = dot(W2,o1)
19 o2 = h2
20 o2 = activation_function(h2)
21

22 o3 = dot(W3,o2)
23

24 return j1d+o3[1][1],j2d+o3[2][1], j3d+o3[3][1], j4d+o3[4][1]
25 end

Figure 4.31: Code snippets of the functions created to use a neural
network model in Lua.

shows how the feedforward algorithm can be written in a compact way thanks to
the functions previously implemented. W1,W2 and W3 are Lua tables containing
the weights of the trained neural network model which are outputted already
with the correct formatting by the Python script and are saved separately in a
different file.
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4.5.3 Correction with neural network in joint space

An alternative to estimating the corrections in Cartesian space is to do it
in joint space. The procedure is less intuitive but by using a neural network
the added complexity is masked by the network. There are many reasons to
try to correct the robot pose in joint space, the main one is that the forward
and inverse kinematics which allows us to move from joint to Cartesian space
and vice versa are non linear transformations so having them already included
in the data presented to the network can help it guide it to find patterns in
the error model that were harder to find in Cartesian space given the limited
number of samples available. In addition working in joint space saves us a lot
of troubles with reference frames conversions since the joint values for a point
in space are the same independently from which reference frame the point is
being associated to, the counterpoint of this is that when creating a point starting
from Cartesian coordinates its joint coordinates are generated automatically by
DobotStudio Pro but when creating a point in joint coordinates the Cartesian
coordinates are not generated automatically so a forward kinematics function
needs to be implemented in order for the algorithm to output the corrected point
in Cartesian coordinates.

Figure 4.32 illustrates a simplified schematic of the architecture of the artifi-
cial neural network used to predict the corrections to apply in joint space. Even
though the camera moves on a plane parallel to the ground the values of all four
joints are constantly changing. But since the fourth joint does not contribute
to the position of the flange and we are interested in the correction to apply at
that specific point only the values of the first three joints are going to be used as
input for the network, this is going to simplify the computations when changing
tool between train and test. This explains why both the input and output layer
are composed by three neurons. Additionally both during train and test the
orientation of the tool with respect to the zero reference frame was kept constant
so it would not make sense to include the fourth joint in the dataset to feed to
the neural network. This is because in the case in which the tool would need
a different orientation during test, as was the case when using the mechanical
comparator in the "Results and discussion" chapter, the correction on the fourth
joint would not only be useless but detrimental to the accuracy of the robot. As
it wouldn’t be possible to gather a dataset for each possible orientation of the
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tool the fourth joint is left out, furthermore since the tool link is almost always
short a small error in the fourth joint would result in a small error in the position
of the end effector while a small error in the first joint would result in a big error
in the position of the end effector due to its longer reach.

Figure 4.32: Illustration of the structure of the neural network used
to make predictions in joint space.

As for its Cartesian counterpart, using a validation set, different architectures
were put to test and the results showed very similar results for networks with
one or two hidden layers with at least four neurons each. The activation function
that performed better in the hidden layers is the hyperbolic tangent while the
output neurons use the linear function to not distort the results. One additional
consideration when training the neural network in joint space is that having three
inputs means that the network has more parameters to tune so it would need
more data for training, this can be achieved by performing the data gathering
step at slightly different heights from the calibration board. Operating in joint
space means that the additional data can be integrated into the training set
without worrying about frames transformations.
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Mg400 Direct Kinematics

As mentioned above in order to integrate the joint space based neural network
into other algorithms we need to be able to output he actual point coordinates
in Cartesian space and to do that it is necessary to implement a direct kinematic
function for the Mg400. Luckily having only four motorized joints and only
three of them contribute to the position of the flange the forward kinematics
transformation can be easily computed in closed form without the need for
creating Denavit Hartemberg frames.

Looking at Figure 4.33 [20] it is possible to see a schematic of the Mg400
joints and links. To compute the x and y position of the flange it is easier to com-
pute first the length of the projection of links two and three on the ground plane:

𝐿23 = 𝐿2 ∗ 𝑠𝑖𝑛(𝐽2) + 𝐿3 ∗ 𝑐𝑜𝑠(𝐽3) + 𝐿1𝑥 (4.35)

Where 𝐿2 is the length of link two, 𝐽2 is the value of joint two, 𝐿3 is the length
of link three, 𝐽3 is the value of joint three and 𝐿1𝑥 is the horizontal component of
link one or the horizontal displacement between the axis of joint one and two.
𝐿1𝑥 also includes the small horizontal displacement between the non actuated
joint at the end of link three and the flange.

Once 𝐿23 is available it is easy to decompose in its x and y components:

𝑃𝑥 = 𝑐𝑜𝑠(𝐽1) ∗ 𝐿23 = 𝑐𝑜𝑠(𝐽1) ∗ (𝐿2 ∗ 𝑠𝑖𝑛(𝐽2) + 𝐿3 ∗ 𝑐𝑜𝑠(𝐽3) + 𝐿1𝑥) (4.36)

𝑃𝑦 = 𝑠𝑖𝑛(𝐽1) ∗ 𝐿23 = 𝑠𝑖𝑛(𝐽1) ∗ (𝐿2 ∗ 𝑠𝑖𝑛(𝐽2) + 𝐿3 ∗ 𝑐𝑜𝑠(𝐽3) + 𝐿1𝑥) (4.37)

Where 𝑃𝑥 and 𝑃𝑦 are the x and y Cartesian coordinates of the point. 𝑃𝑧 can
then be computed as:
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Figure 4.33: Illustration of the Mg400, useful to compute the direct
kinematics transformation. Sourced from 𝐷𝑜𝑏𝑜𝑡 𝑅𝑜𝑏𝑜𝑡𝑖𝑐𝑠 [20].

𝑃𝑧 = −𝐿1𝑧 + 𝐿2 ∗ 𝑐𝑜𝑠(𝐽2) − 𝐿3 ∗ 𝑠𝑖𝑛(𝐽3) (4.38)

Where 𝐿1𝑧 is the horizontal displacement between the axis of joint one and
two. 𝐿1𝑧 is the vertical component of link one or the vertical displacement
between the axis of joint one and two. 𝐿1𝑧 also includes the small vertical
displacement between the non actuated joint at the end of link three and the
flange.

The direct kinematic transformation can be easily extended in case in which
the tool center point does not correspond with the flange:

𝑃𝑥 = 𝑐𝑜𝑠(𝐽1)∗(𝐿2∗𝑠𝑖𝑛(𝐽2)+𝐿3∗𝑐𝑜𝑠(𝐽3)+𝐿1𝑥)+𝑐𝑜𝑠(𝐽1+𝐽4)∗𝐿5𝑥−𝑠𝑖𝑛(𝐽1+𝐽4)∗𝐿5𝑦 (4.39)

𝑃𝑦 = 𝑠𝑖𝑛(𝐽1)∗(𝐿2∗𝑠𝑖𝑛(𝐽2)+𝐿3∗𝑐𝑜𝑠(𝐽3)+𝐿1𝑥)+𝑠𝑖𝑛(𝐽1+𝐽4)∗𝐿5𝑥+𝑐𝑜𝑠(𝐽1+𝐽4)∗𝐿5𝑦 (4.40)
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𝑃𝑧 = −𝐿1𝑧 + 𝐿2 ∗ 𝑐𝑜𝑠(𝐽2) − 𝐿3 ∗ 𝑠𝑖𝑛(𝐽3) (4.41)

In this case 𝐿5 represents the link attaching the tool to the flange and it can
be decomposed into its x and y components 𝐿5𝑥 and 𝐿5𝑦 while 𝐿5𝑧 is already
included in 𝐿1𝑧 . Just like 𝐿4 the link connecting the non actuated joint at the end
of link three and the flange is included in 𝐿1𝑥 since the two are always parallel.

1 L1_x = 109.5
2 L1_z = 53.0
3 L2 = 174.2076
4 L3 = 175.0707
5 L5_x = 59.45
6 L5_y = 4.905
7

8 function forward_k(j1,j2,j3,j4)
9 x = cos(j1)*(sin(j2)*L2+cos(j3)*L3 + L1_x) + cos(j1+j4)*L5_x -

sin(j1+j4)*L5_y
10 y = sin(j1)*(sin(j2)*L2+cos(j3)*L3 + L1_x) + sin(j1+j4)*L5_x +

cos(j1+j4)*L5_y
11 z = -L1_z + cos(j2)*L2 - sin(j3)*L3
12 r = -0.5
13 return x,y,z,r
14 end

Figure 4.34: Lua function for the forward kinematics transformation.

Figure 4.34 shows the Lua function to compute the forward kinematics of
the manipulator. The 𝑠𝑖𝑛() and 𝑐𝑜𝑠() functions are actually wrapper function to
access the math Lua library and convert the joint values from degrees to radians.
It is worth noting how the length of each link is different from their nominal
length, link two should be 175 mm long but it differs for almost 0.8 mm. This is
due to the robot calibration that was already performed in the factory to com-
pensate for manufacturing defects. The actual length of the links are extracted
from the robot internal files.

Figure 4.35 illustrates the complete procedure to estimate the actual point
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Start

Desired point provided in joint space 𝐷𝑗

Estimation of the actual joint co-
ordinates using the feedforward
algorithm and the trained neural

network 𝐴𝑗 = 𝑓 𝑒𝑒𝑑_ 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑(𝐷𝑗)

Forward kinematics transforma-
tion applied to convert the actual

coordinates in Cartesian space
𝐴𝑝0 = 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑_𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠(𝐴𝑗)

Actual point converted from frame
0 to test frame 𝐴𝑝𝑡𝑒𝑠𝑡 = 𝑇𝑡𝑒𝑠𝑡

0 ∗ 𝐴𝑝0

The robot can move to the actual point
coordinates instead of the desired

ones but the desired point is reached

Stop

Figure 4.35: Flow to apply a correction to a point in joint space.

coordinates using the neural network in joint space. The first step is to provide a
desired point in joint coordinates, this is easy since when a point is generated in
DobotStudio Pro in Cartesian space the corresponding joint value are assigned
to it immediately. Then the feedforward algorithm can be applied to estimate the
correction in joint space. These two steps could already be sufficient if the goal
was to just move the robot to the desired position but to integrate the correction
algorithm seamlessly in other pipelines it is necessary to output a point in
Cartesian coordinates written according to the current reference frame. This is
why the following steps include applying the direct kinematics transformation to
convert the actual coordinates in joint space into actual coordinates in Cartesian
space. Since the forward kinematics function is set up to output a Cartesian
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point according to the zero reference frame, the 𝑇𝑡𝑒𝑠𝑡
0 rototranslation matrix is

needed to convert the actual point from the zero reference frame to the test
reference frame currently in use.

The concepts seen in this section illustrate how to gather the necessary data,
train a neural network model, import it in Lua and use it to estimate predictions
and correct the robot pose. But an essential detail was left out: at the beginning
of the data gathering phase the robot is moved so that the camera is centered
over the first dot on the calibration grid, then when switching to the test phase
the calibration grid is moved in the robot workspace and the robot is moved
so that the camera is centered over the first dot on the calibration grid again.
In the next section this problem will be analyzed in depth together with some
possible solutions to adapt the error model generated during training to perform
correctly during test too.

4.6 Changing frames between train and test

As mentioned above it is not sufficient to convert a point from the reference
frame used in the training step to the reference frame used in the test step
to be able to successfully estimate the correction between different reference
frames. At the beginning of the data gathering phase the robot is moved so
that the camera is centered over the first dot on the calibration grid, then when
switching to the test phase the calibration grid is moved in the robot workspace
and the robot is moved again so that the camera is centered over the first dot on
the calibration grid. This means that the first point both in training and test will
have zero error, this is fine during training since the error model still has to be
generated but during test there will be a point with zero error in an area of the
workspace where the error is supposed to be different from zero. And the same
happens for the points closer to the first point, their displacement is going to be
lower since they are close to the point that was centered manually but if they
happen to be in an area of the workspace where the displacement was big during
the training step then the algorithm will try to apply an equally big correction
to their coordinate with the end result being worse than having no correction
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at all. This problem generates from the fact that moving the robot so that the
camera is centered over the first dot on the calibration grid is already applying
a correction. This creates a discrepancy between the error model generated
during training and the one that corresponds to the current situation during
test. In the following sections different cases in which this happens will be taken
into considerations together with some possible solutions.

4.6.1 Translating frames

The first simpler case to take into consideration is when the calibration board
has been translated at the end of the data gathering step but not rotated before
starting the test step. This means that the origin of the reference frame associated
with the calibration board has been translated, together with all the calibration
dots but the axis of the reference frames associated with the calibration board
are still parallel before and after the translation.

This situation is similar to the case discussed earlier when the test is per-
formed in at a different height with respect to the training. The solution that
was proposed back then was to memorize the vertical correction that the algo-
rithm wanted to impose on the first point of the test set and use it as a negative
offset for all the points, this way the first point in the calibration board will have
zero vertical error in the test phase too. A similar solution can be implemented
for the case of translating frames. By memorizing the first correction that the
algorithm proposes for the first point on the calibration board and using it as
negative offset for all the points in the test set it is possible to translate the error
model and have it match the error model generated during training. This way
the first point in the calibration board will have zero error in the test phase too
and the points neighboring it will have a smaller error since it is reduced by the
same amount that was computed for the first point.
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Start

Robot is moved so that the camera is
centered on the first calibration point

with coordinates: 𝑓 _𝐷𝑥, 𝑓 _𝐷𝑦 and 𝑓 _𝐷𝑧

Apply correction algorithm and
obtain 𝑓 _𝐴𝑥, 𝑓 _𝐴𝑦 and 𝑓 _𝐴𝑧

Since it was the first
point save the corrections

𝑓 _𝑥 = 𝑓 _𝐷𝑥 - 𝑓 _𝐴𝑥,
𝑓 _𝑦 = 𝑓 _𝐷𝑦 - 𝑓 _𝐴𝑦,
𝑓 _𝑧 = 𝑓 _𝐷𝑧 - 𝑓 _𝐴𝑧

Proceed for all the dots on the calibration
grid, apply the correction algorithm then

add the offsets to the estimated actual
coordinates (including the first dot)

𝐴𝑥 = 𝐴𝑥 + 𝑓 _𝑥,
𝐴𝑦 = 𝐴𝑦 + 𝑓 _𝑦,
𝐴𝑧 = 𝐴𝑧 + 𝑓 _𝑧

Stop

Figure 4.36: Flow to apply a counter correction when the calibration
board was just translated between the data gathering step and the

test phase.
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Figure 4.36 illustrates the flow of the counter correction procedure when the
calibration board was just translated between the data gathering step and the
test phase. When the first point with desired coordinates 𝑓 _𝐷𝑥, 𝑓 _𝐷𝑦 and 𝑓 _𝐷𝑧

is being processed the correction algorithm will output some actual coordinates
𝑓 _𝐴𝑥, 𝑓 _𝐴𝑦 and 𝑓 _𝐴𝑧. Since the camera was centered manually over the first
point the desired coordinates and actual coordinates of the first point should
be the same, but since the correction algorithm does not know that this point
was centered manually it will output a correction based just on the position
of the point in the workspace. To counter correct its position the robot needs
to stay still on the first point so the displacement between the correct desired
coordinates and the wrongly estimated actual coordinates is saved in memory:

𝑓 _𝑥 = 𝑓 _𝐷𝑥 − 𝑓 _𝐴𝑥 (4.42)

𝑓 _𝑦 = 𝑓 _𝐷𝑦 − 𝑓 _𝐴𝑦 (4.43)

𝑓 _𝑦 = 𝑓 _𝐷𝑦 − 𝑓 _𝐴𝑦 (4.44)

Where 𝑓 _𝑥, 𝑓 _𝑦 and 𝑓 _𝑧 are the correction offsets for the first point on the
calibration board. Then the test phase may proceed with the robot attempting
to move the camera over each dot on the calibration board, but this time after
applying the correction algorithm the initial offsets are being kept into account:

𝐴𝑥 = 𝐴𝑥 + 𝑓 _𝑥 (4.45)

𝐴𝑦 = 𝐴𝑦 + 𝑓 _𝑦 (4.46)

𝐴𝑦 = 𝐴𝑦 + 𝑓 _𝑦 (4.47)
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This way for the first point on the calibration board the desired and actual
coordinates will coincide and for all the other points the error model will be
translated back so that the overlap with the calibration board will coincide with
the error model generated during the training phase.

This case may seem like an oversimplification but it is important to keep in
mind that if the calibration is performed with a specific application in mind
for the robot so the calibration board can be positioned so that its reference
frame can be aligned with the one used in the application by means of just a
translation. This would greatly simplify the computations and save the need for
more complex procedures.

4.6.2 Rototranslating frames

A more complex problem is presented when the calibration board is not just
translated between the data gathering step and the test phase. In the case in
which a rotation is also applied to the calibration board the error model changes
drastically [61] and a simple translation is not sufficient anymore to realign it with
the one generated during the training phase. Applying the same rototranslation
to the error model would also not suffice since only some components of the
error model are changing. The solution proposed in this thesis is to take the
two calibration points that were used to create the reference frame associated
with the calibration board in the test phase, with one being the origin of the
reference frame and the other giving the direction of the x axis and applying
the inverse of the correction on both of them before recomputing the reference
frame. Applying this procedure on the origin of the frame means that when
applying the correction algorithm the output point will coincide with it as we
want. Furthermore applying the counter-correction procedure on the second
point composing the reference frame attached to the calibration board means
to realign the component of the error model that rotated back to its original
position during the data gathering step.

The problem with this solution is that both the bilinear interpolation and
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the neural networks are not invertible functions. But making some assumptions
on the error model of the robot it is possible through an iterative procedure to
find a point close to the actual point such that applying the correction algorithm
on the first point the output is very close to the actual point. Assuming that
the corrections to apply are small and that the error model is continuous it is
possible to come close to the inverted point by computing the correction of the
original point and then subtracting it to the original point. This can be done in
a single jump or through multiple small jumps to achieve a better accuracy as
will be shown later. The advantage of completing the jump in a single step is
that it saves computational time but the outcome is less accurate, this is because
even if we assume that the error model of the robot is continuous we cannot
assume that it is linear. As in the data gathering step we would need multiple
computations of the error to actually center the camera precisely over a dot on
the calibration board, multiple jumps reduced by a decaying factor provide an
overall better result in a similar fashion to the gradient descend algorithm.

Figure 4.37 [62] can give a better idea of this last concept. The blue gradient
map represents the error model of the robot generated during the training step,
𝑥0 represent the original point to counter correct and the green arrow shows the
point obtained feeding 𝑥0 to the correction algorithm. Since 𝑥0 may correspond
to the first point on the calibration board (or the other point giving the direction
of the x axis of the reference frame) having it in a different position with respect
to its corrected version means that the error on the first point wouldn’t be zero.
The objective is to find a point such that applying the correction algorithm to it
we would obtain 𝑥0 again.

Figure 4.38 can help provide a better understanding of the iterative process
proposed to find said inverted point such that applying the correction algorithm
the output is as close as possible to the input point. The first step, given an in-
put point with coordinates 𝐷𝑥, 𝐷𝑦 and 𝐷𝑧 is to apply one of the correction
algorithms seen before to obtain the estimated actual coordinates 𝐴𝑥, 𝐴𝑦 and
𝐴𝑧. In this case since the correction algorithms only work with the x and y
coordinates as input the z coordinate is ignored. Then to find the correction
offset the difference between the desired and actual coordinates is computed:

𝐷𝑖 𝑓 𝑓 _𝑥 = 𝐷𝑥 − 𝐴𝑥 (4.48)
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Figure 4.37: Comparison between the single jump and the multiple
jumps counter correction procedure. Sourced from "Metodo di

Edge-Detection basato sul calcolo di aree parziali"
(𝐸𝑑𝑔𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑎𝑟𝑒𝑎𝑠)

[62] and edited.

𝐷𝑖 𝑓 𝑓 _𝑦 = 𝐷𝑦 − 𝐴𝑦 (4.49)

𝐷𝑖 𝑓 𝑓 _𝑥 and 𝐷𝑖 𝑓 𝑓 _𝑦 gives us the correction vector to apply in the opposite
direction to try to reach the inverted point. So a new point is obtained by adding
the correction offset to the input point but scaled by a decaying factor which is
needed for the algorithm to converge since the magnitude of the correction does
not tend to zero as it would in the gradient descend algorithm:

𝐷𝑥′ = 𝐷𝑥 + 𝑑𝑒𝑐𝑎𝑦 ∗ 𝐷𝑖 𝑓 𝑓 _𝑥 (4.50)
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Start
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and the
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Stop

yes
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Figure 4.38: Flow to apply the iterative counter correction algorithm.
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𝐷𝑦′ = 𝐷𝑦 + 𝑑𝑒𝑐𝑎𝑦 ∗ 𝐷𝑖 𝑓 𝑓 _𝑦 (4.51)

Where 𝐷𝑥′ and 𝐷𝑦′ are candidate coordinates of a possible inverted point.
To verify the quality of the inversion we need to apply the correction algorithm
on 𝐷′ and and compute the distance between the obtained point 𝐴′ and the
original point 𝐷:

𝑑 =
√
(𝐴𝑥′ − 𝐷𝑥)2 + (𝐴𝑦′ − 𝐷𝑦)2 (4.52)

To see if the algorithm should continue or not it is possible to compare the
distance (𝑑 in the formula above) with a fixed threshold but it is usually better
to compare it with the distance obtained in the previous iteration to see if the
algorithm started diverging. At that point the algorithm can be stopped and the
output is set to the results of the previous iteration. In the case in which the
algorithm should continue the input point is set equal to 𝐷′ and the decay factor
is updated.

Different heuristics were put to test to update the decay factor such as keeping
it a constant value or having it decay exponentially but the one that worked better
in practise and allowed to reach the inverted point in the least number of jumps
was to start with a high value for the decay, 0.9 and after each iteration set it equal
to half the distance between 𝐷 and 𝐴′ so that it can auto regulate its magnitude
depending on how close the algorithm is to converging.

In order to have a reality check on the efficacy of the iterative counter cor-
rection algorithm another algorithm is used to make a comparison. Figure 4.40
shows its functioning. The main idea is the same but instead of executing mul-
tiple jumps in an iterative fashion the correction offset are added to the input
coordinates only once without any decaying factor. Even if the error model is not
linear the correction offsets are small enough that this algorithm can still achieve
a good approximation. However testing both algorithms in practice the iterative
procedure always outperformed the single jump algorithm, Figure 4.39 [62] can
give an idea of why is that. The red arrow shows the point obtained after apply-
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Figure 4.39: Comparison between the single jump and the multiple
jumps counter correction procedure results. Sourced from "Metodo

di Edge-Detection basato sul calcolo di aree parziali"
(𝐸𝑑𝑔𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑎𝑟𝑒𝑎𝑠)

[62] and edited.

ing the correction algorithm on the inverse point computed with the multi jump
algorithm while the blue arrow shows the point obtained after applying the cor-
rection algorithm on the inverse point computed with the single jump algorithm.

The complete procedure to apply the correction algorithm when the calibra-
tion board is rotated and translated between training and test is then to:

1. take the two points composing the test reference frame and apply the
counter correction algorithm to them;

2. recompute the test reference frame;

3. proceed with the test as normal.

104



CHAPTER 4. IMPLEMENTATION

In this case it would still be necessary to save the first z offset and use it as a
fixed correction to compensate fro height variations between train and test since
the iterative procedure only considers x and y.

Start

Input point to counter
correct: 𝐷𝑥, 𝐷𝑦 and 𝐷𝑧

Apply correction algorithm
and obtain 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧

Compute difference between desired and
actual coordinates: 𝐷𝑖 𝑓 𝑓 _𝑥, 𝐷𝑖 𝑓 𝑓 _𝑦

Update desired coordinates
𝐷𝑥′ = 𝐷𝑥 + 𝐷𝑖 𝑓 𝑓 _𝑥,
𝐷𝑦′ = 𝐷𝑦 + 𝐷𝑖 𝑓 𝑓 _𝑦

Compute correction on new desired point

Compute the distance be-
tween the first desired point

and the corrected second point

Stop

Figure 4.40: Flow to apply the single jump counter correction
algorithm.
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5
Results and discussion

In this chapter the results of all the experiments performed in this thesis will
be taken into consideration, examined and discussed. Starting form the repeata-
bility tests and following with the position errors measured both in Cartesian
space and joint space. We will then discuss the error compensation obtained
with the camera and calibration board (Figure 2.5) with all the algorithms con-
sidered in this thesis including bilinear interpolation and neural networks both
in Cartesian and joint space, followed by some edge cases when the calibration
board is translated and rotated between training and test. At the end for the
test phase the camera and calibration board will be switched for an mechanical
comparator and a milled aluminum plate to simulate a real application and have
a mechanical feedback on the effectiveness of the whole pipeline (Figure 2.6).

5.1 Repeatability

The first results that will be taken into consideration are the repeatability test
since they can give an idea of the best possible outcome we can expect from the
correction algorithm in the sense that they set a higher limit on the improvement
we can achieve.
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Figure 5.1: Robot repeatability error along the x axis, in the image
the robot is positioned over the top at the center.

Figure 5.2: Robot repeatability error along the y axis, in the image
the robot is positioned over the top at the center.
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Figure 5.3: Robot repeatability error along the z axis, in the image
the robot is positioned over the top at the center.

Figure 5.4: Robot total repeatability error, in the image the robot is
positioned over the top at the center.
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Figure 5.1 shows the repeatability errors of the robot measured with the
camera along the x axis. Figure 5.2 shows the repeatability errors of the robot
measured with the camera along the y axis and Figure 5.3 shows the repeata-
bility errors of the robot measured with the camera along the z axis. Figure
5.4 instead shows the total repeatability errors of the robot. The points used
to create the reference frame for these and all future images are the one on the
bottom right constituting the origin of the frame and the one on the bottom left
giving information about the orientation of the x axis. The robot is positioned
over the top at the center and was moving row by row from right to left and
from bottom to the top.

Figure 5.5: Reference frame zero and the reference frame solidal
with the calibration board drawn on the experimental setup.
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It is also worth noting that all the positions were converted back to frame
zero before computing the errors along each axis, Figure 5.5 shows how the
reference frame zero and the reference frame solidal with the calibration board
are positioned relative to each other in the experimental setup. This way all
errors are referred to the same reference frame. It is interesting to notice how
the errors are smaller closer to the robot and get progressively bigger the more
the robot arm has to stretch to reach the desired point. The following table
reports the averages, standard deviations and maximum errors obtained during
the experiment:

Error (mm) Total X Y Z
Average 0.066 0.037 0.022 0.043

Std 0.033 0.022 0.015 0.032
Max 0.228 0.095 0.104 0.181

The official repeatability for the Mg400 is of 0.05 mm and the average total
error computed here is very close if it wasn’t for the points at the edge of the
robot workspace that threw off the value.

5.2 Position errors

For the position error maps the setup is the same as for the repeatability
ones. Since the scale of the errors varies wildly between each axis a different
scale is used for each one, but from now on the same scale will be applied to
the corrections too. The setup is the same that was used for the repeatability
tests: the points used to create the reference frame are the one on the bottom
right constituting the origin of the frame and the one on the bottom left giving
information about the orientation of the x axis. The robot is positioned over the
top at the center (Figure 2.5) and was moving row by row from right to left and
from bottom to the top. As for the repeatability errors all the positions were
converted back to frame zero before computing the errors along each axis. This
way all errors are referred to the same reference frame
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5.3 Position errors in Cartesian space

The following graphs show the position error of the robot in Cartesian space.

Figure 5.6: Robot position error along the x axis, in the image the
robot is positioned over the top at the center.
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Figure 5.7: Robot position error along the y axis, in the image the
robot is positioned over the top at the center.

Figure 5.8: Robot position error along the z axis, in the image the
robot is positioned over the top at the center.
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Figure 5.9: Robot total position error, in the image the robot is
positioned over the top at the center.

Figure 5.6 shows the position errors of the robot measured with the camera
along the x axis, Figure 5.7 shows the position errors of the robot measured
with the camera along the y axis and Figure 5.8 shows the position errors of the
robot measured with the camera along the z axis. Figure 5.9 instead shows the
total position errors of the robot. The errors along the x and y axis show that
the robot is not moving the camera in a straight line but at an arc. While the z
errors shows that the robot is not moving on a plane parallel to the calibration
board but on a concave imaginary surface. All of the graphs show an inverted
phenomenon compared to the repeatability test where the error grew the more
the robot arm stretched, here the position error seems to be bigger closer to the
robot. This is an illusion given by the way the robot is moving from further
away to closer to itself and that the starting points are manually placed. As
mentioned in the translating frames section if the robot would start from the top
left point for example the whole error model would shift for a fixed offset. The
following table reports the absolute values of the averages, standard deviations
and maximum errors obtained during the experiment:
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Error (mm) Total X Y Z
Average 3.211 0.799 0.472 3.055

Std 1.374 0.371 0.316 1.328
Max 5.986 1.423 1.230 5.829

From the data it looks like the position errors of the robot are quite large,
especially along the z axis, but this leaves a lot of margin to improve upon. It
is important to keep in mind the repeatability errors and these errors in the
following sections too as they set a lower and upper bound on the error and will
give an idea of the improvement reached by the correction algorithms.

Figure 5.10: Robot position error along the z axis using a calibration
board printed on a sheet of paper.

At this point it is also important to underline the importance of using a rigid
calibration board for the experiments, Figure 5.10 shows the robot position error
along the z axis using a calibration board printed on a sheet of paper and it is
possible to see a weird undulating pattern happening along the horizontal axis.
The pattern is due to a combination of the folds of the piece of paper that wasn’t
secured properly on a plane parallel to the ground and imperfections in the
print. The effect disappeared once the LDPE calibration board came into play.
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5.4 Position errors in joint space

The following graphs show the position error of the robot in Cartesian space.
It is interesting to compare the position error in Cartesian space with the ones
in joint space and find patters and similarities between the two.

Figure 5.11: Robot position error in joint space along the first joint.
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Figure 5.12: Robot position error in joint space along the second
joint.

Figure 5.13: Robot position error in joint space along the third joint.
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Figure 5.14: Robot position error in joint space along the fourth joint.

Figure 5.11 shows the position errors of the robot in joint space measured
with the camera along the first joint, Figure 5.12 shows the position errors of the
robot in joint space measured with the camera along the second joint, Figure 5.13
shows the position errors of the robot in joint space measured with the camera
along the third joint and Figure 5.14 shows the position errors of the robot in
joint space measured with the camera along the fourth joint. It is possible to
notice form the images how much more regular and smooth the position error
appear in joint space rather than in Cartesian space. The following table reports
the absolute values of the averages, standard deviations and maximum errors
obtained during the experiment:

Error (deg) J1 J2 J3 J4
Average 0.042 1.186 0.445 0.042

Std 0.033 0.643 0.360 0.033
Max 0.147 2.847 1.505 0.147

It is worth noticing how most of the error resides between J2 and J3 since
their errors are at least an order of magnitude above the others. The remaining
error is split perfectly even between J1 and J4 and influences more the orientation
of the tool rather than its position. This reinforces the hypothesis of giving as
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input to the neural network in joint space only the values of the first three joints
to have the correction independent of the tool used by the robot.

5.5 Camera Correction by bilinear interpolation

The following graphs show the residual position error of the robot after
applying the correction algorithm using bilinear interpolation. Between train
and test the calibration board was moved so that no two points would match.

Figure 5.15: Robot residual position error along the x axis after
correction with bilinear interpolation.
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Figure 5.16: Robot residual position error along the y axis after
correction with bilinear interpolation.

Figure 5.17: Robot residual position error along the z axis after
correction with bilinear interpolation.
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Figure 5.18: Robot total residual position error after correction with
bilinear interpolation.

Figure 5.15 shows the residual position errors of the robot measured with the
camera along the x axis after the correction with bilinear interpolation, Figure
5.16 shows the residual position errors of the robot measured with the camera
along the y axis after the correction with bilinear interpolation and Figure 5.17
shows the residual position errors of the robot measured with the camera along
the z axis after the correction with bilinear interpolation. Figure 5.18 instead
shows the total residual position errors of the robot measured with the camera
after the correction with bilinear interpolation. The following table reports
the absolute values of the averages, standard deviations and maximum errors
obtained during the experiment:

Error (mm) Total X Y Z
Average 0.119 0.091 0.031 0.049

Std 0.039 0.042 0.029 0.036
Max 0.269 0.219 0.145 0.156

Although there is still some residual error the final results shows that the
correction algorithm improved the accuracy of the robot in the range of its
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repeatability. This was in the ideal case in which the calibration bard was just
shifted between the data gathering step and the test phase but it is also the most
common occurrence as the calibration should be performed with an application
already in mind so there should not be big variation between the two phases.

5.6 Camera Correction by Neural network in Carte-
sian space

The following graphs show the residual position error of the robot after
applying the correction algorithm using the neural network in Cartesian space.
Between train and test the calibration board was moved so that no two points
would match.

Figure 5.19: Robot residual position error along the x axis after
correction with the neural network in Cartesian space.
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Figure 5.20: Robot residual position error along the y axis after
correction with the neural network in Cartesian space.

Figure 5.21: Robot residual position error along the z axis after
correction with the neural network in Cartesian space.
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Figure 5.22: Robot total residual position error after correction with
the neural network in Cartesian space.

Figure 5.19, 5.20 and 5.21 show the residual position errors of the robot
measured with the camera along the x, y and z axis respectively after the cor-
rection with the neural network in Cartesian space. Figure 5.18 instead shows
the total residual position errors of the robot measured with the camera after
the correction with the neural network in Cartesian space. The waving pattern
that Figure 5.19 shows is probably due to the vibrations of the robotic arm or
some fixed steps on the motors. The following table reports the absolute values
of the averages, standard deviations and maximum errors obtained during the
experiment:

Error (mm) Total X Y Z
Average 0.552 0.136 0.079 0.525

Std 0.114 0.047 0.043 0.117
Max 0.850 0.283 0.183 0.844

The neural network in Cartesian space provides an important improvement
on the accuracy of the robot but it isn’t as good as the one obtained by the bilinear
interpolation. This can be due to the fact that having a very densely populated
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calibration board the optimal solution is already very close to the linear solution
so adding the uncertainty of the neural network training on top of it does not
help.

5.7 Translating frames

The following graphs show the position error of the robot when the data
gathering step is performed after translating the origin of the frame associated
with the calibration board to the point at the top left and the test phase has been
performed with the first point coinciding with the one on the bottom right. The
graph on the left shows the error model after the translation, we can notice how
different it is with respect to the one seen before when the origin of the frame
was on the bottom right. The graph on the right instead shows what happens
when the value that would be used in the correction of the first point in the test
phase is added, along each axis, to the error model. It is possible to appreciate
from the image how the graphs on the right are very similar to the ones seen
before when the origin of the frame was on the bottom right (the scale was
changed to be able to keep it constant in the before-after process). This shows
how easy it is to adapt the error model when the calibration board is translated
between training and test and thanks to it the correction algorithm can operate
undisturbed.

Figure 5.23: Error along the x axis with a translated frame before
and after adding the fixed counter correction offset.
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Figure 5.24: Error along the y axis with a translated frame before
and after adding the fixed counter correction offset.

Figure 5.25: Error along the z axis with a translated frame before
and after adding the fixed counter correction offset.

Figure 5.23, 5.24 and 5.25 show how the error model changes before (left)
and after (right) applying the fixed offset counter correction along the x, y and
z axis respectively.

Since it was the method that was performing better in the optimal case
only the bilinear interpolation algorithm is tested against this particular edge
case. The following table reports the absolute values of the averages, standard
deviations and maximum errors obtained during the experiment:

Error (mm) Total X Y Z
Average 0.153 0.062 0.039 0.124

Std 0.054 0.041 0.031 0.054
Max 0.262 0.173 0.153 0.224

It is possible to notice how the correction algorithm is not performing as
good as it was performing in ideal conditions, even though the improvements
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are still very good but looking at the graphs of the error model it is easy to see
that it would have gone completely off course without the counter correction
procedure.

5.8 Rotating frames

The following graphs show the position error of the robot when the data
gathering step is performed after rotating the reference frame associated with
the calibration board by 90◦. The new reference frame ha still the origin on the
point at the bottom right but the direction of the x axis is given by the point at
the top right instead of the one at the bottom left as it was used until now.

Figure 5.26: Robot position error along the x axis after rotating the
calibration board reference frame by 90◦.
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Figure 5.27: Robot position error along the y axis after rotating the
calibration board reference frame by 90◦.

Figure 5.28: Robot position error along the z axis after rotating the
calibration board reference frame by 90◦.
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Figure 5.29: Robot total position error after rotating the calibration
board reference frame by 90◦.

Figure 5.26, 5.27 and 5.28 show the position errors of the robot measured with
the camera along the x, y and z axis respectively after rotating the calibration
board reference frame by 90◦. Figure 5.29 instead shows the total position
errors of the robot measured with the camera after rotating the calibration
board reference frame by 90◦. It is possible to notice how the error pattern is
completely different along the x and y axis, no single fixed offset could bring it
back it to the original error model like we did in the translating frames section.
This is because centering the robot on the point at the top right of the calibration
board performed a correction, especially along the y axis that wasn’t present
before . The error model along the z axis instead is practically unchanged as
the rotation of the reference frame did not affect the vertical axis at all since the
reference frame is generated by only two points the direction of the z axis is
always kept parallel to the z axis of frame zero.

Since it was the method that was performing better in the optimal case
only the bilinear interpolation algorithm is tested against this particular edge
case. To evaluate the effectiveness of the the correction algorithm it was tested
without any counter correction procedure before and after with the counter
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correction procedure. In both cases during the test phase the reference frame
of the calibration board was shifted back to its original position to simulate
a rotation. The following table reports the absolute values of the averages,
standard deviations and maximum errors obtained during the experiment:

Error tot (mm)
No correction Bilinear interpolation Bilinear counter correction

Average 4.199 0.510 0.111
Std 1.418 0.100 0.055
Max 6.613 0.757 0.336

Error x (mm)
No correction Bilinear interpolation Bilinear counter correction

Average 2.672 0.278 0.051
Std 1.193 0.085 0.048
Max 4.672 0.466 0.179

Error y (mm)
No correction Bilinear interpolation Bilinear counter correction

Average 0.415 0.095 0.050
Std 0.486 0.041 0.033
Max 2.019 0.173 0.133

Error z (mm)
No correction Bilinear interpolation Bilinear counter correction

Average 3.067 0.405 0.066
Std 1.123 0.094 0.052
Max 5.306 0.743 0.319

From the first column it is apparent how a component of the position er-
ror shifted around between the x and y axis while the total error remain al-
most unchanged, which underlines the difference with the error models shown
previously. The second column shows the results obtained with the bilinear
interpolation algorithm without any counter correction applied. It is possible
to appreciate that the improvement is still very substantial even though it it
nowhere near the one obtained in optimal conditions. The last column instead
shows he results obtained with the bilinear interpolation algorithm when com-
bined with the counter correction procedure. The improvement with respect
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to the previous case is quite impressive and the residual position error of the
robot is very close to its repeatability leaving very small margin for further
improvements.

5.9 Comparator position errors in Cartesian space

In order to have a mechanical feedback on the efficacy of the correction
algorithms the camera and calibration board were switched for an mechanical
comparator and a milled aluminum plate to simulate a real application (Figure
2.6).

Figure 5.30: Reference frame zero and the reference frame solidal
with the aluminum plate drawn on the experimental setup.
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Since the comparator can only measure the error in one direction at a time the
data gathering procedure has to be run three times, one for each axis with the
robot first approaching and then position in the comparator’s pointer in contact
with the predisposed spot on the plate. For the x and y axis the comparator is
moved on both sides of the predisposed spots in order to measure both positive
and negative errors. As before all the positions were converted back to frame
zero before computing the errors along each axis, Figure 5.30 shows how the
reference frame zero and the reference frame solidal with the aluminum plate
are positioned relative to each other in the experimental setup.

Figure 5.31: Robot position error along the x axis, measured with a
mechanical comparator.
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Figure 5.32: Robot position error along the y axis, measured with a
mechanical comparator.

Figure 5.33: Robot position error along the z axis, measured with a
mechanical comparator.
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Figure 5.34: Robot total position error, measured with a mechanical
comparator.

Figure 5.31, 5.32 and 5.33 show the position errors of the robot measured
with the comparator along the x, y and z axis respectively. Figure 5.34 instead
shows the total position errors of the robot measured with the comparator. It is
possible to notice how even with the plate having a lower point resolution with
respect to the calibration board and the plate being smaller the error graphs
can be overlapped quite precisely to a portion of their counterparts computed
on the LDPE calibration board. The following table reports the absolute values
of the averages, standard deviations and maximum errors obtained during the
experiment:

Error (mm) Total X Y Z
Average 2.443 0.660 0.226 2.336

Std 1.197 0.364 0.151 1.142
Max 4.456 1.280 0.640 4.260

The error along the z axis was so big that the comparator would go out of
scale so the requested position had to be adjusted to keep track of the error.
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5.10 Comparator Correction by bilinear interpola-
tion

Switching the LDPE calibration board and the camera for an mechanical
comparator and a milled aluminum plate in the test phase allows to simulate a
real application where the data gathering step is still performed with the camera
but then the tool is swapped for something else. Since bilinear interpolation was
the method that was performing better in the previous cases it is the first one to
be put to test in this one too.

Figure 5.35: Robot residual position error along the x axis, measured
with a mechanical comparator. Correction algorithm with bilinear

interpolation.
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Figure 5.36: Robot residual position error along the y axis, measured
with a mechanical comparator. Correction algorithm with bilinear

interpolation.

Figure 5.37: Robot residual position error along the z axis, measured
with a mechanical comparator. Correction algorithm with bilinear

interpolation.
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Figure 5.38: Robot total residual position error, measured with a
mechanical comparator. Correction algorithm with bilinear

interpolation.

The following table reports the absolute values of the averages, standard
deviations and maximum errors obtained during the experiment:

Error (mm) Total X Y Z
Average 0.651 0.096 0.118 0.626

Std 0.234 0.077 0.050 0.235
Max 0.985 0.300 0.180 0.940

The improvements provided by the bilinear interpolation algorithm are no-
ticeable but, especially along the z axis the residual error is still quite high. This
can be explained by the fact that due to the shape of the comparator pointer
and the one of the plate the z displacement has to be measured on a different
plane at a higher height from the ground with respect to the one chosen for the
data gathering step with the camera. To be able to account for this situation it is
necessary to include more height data into the correction algorithm. But bilinear
interpolation cannot work at the same time on multiple planes without using
something like cubic interpolation so the next obvious choice was to give neural
networks another possibility. Since the neural network in Cartesian space was
always outperformed by bilinear interpolation the next neural network used
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will work in joint space. The idea is that ignoring the correction on the fourth
joint may be of help when changing tool.

5.11 Comparator Correction by Neural network in
joint space

First the neural network in joint space is tested against bilinear interpolation
using the same data gathered with the camera on a single plane of height.

Figure 5.39: Robot residual position error along the x axis, measured
with a mechanical comparator. Correction algorithm with neural

network in joint space.
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Figure 5.40: Robot residual position error along the y axis, measured
with a mechanical comparator. Correction algorithm with neural

network in joint space.

Figure 5.41: Robot residual position error along the z axis, measured
with a mechanical comparator. Correction algorithm with neural

network in joint space.
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Figure 5.42: Robot total residual position, measured with a
mechanical comparator. Correction algorithm with neural network

in joint space.

Figure 5.39, 5.40 and 5.41 show the residual position errors of the robot
measured with the comparator along the x, y and z axis respectively after being
corrected with the neural network working in joint space. Figure 5.42 instead
shows the total position errors of the robot measured with the comparator after
being corrected with the neural network working in joint space.

The following table reports the absolute values of the averages, standard
deviations and maximum errors obtained during the experiment:

Error (mm) Total X Y Z
Average 0.682 0.108 0.155 0.647

Std 0.314 0.090 0.074 0.308
Max 1.310 0.320 0.280 1.260

With the dataset coming from just one height plane the neural network results
are just slightly worse than the bilinear interpolation ones. Neural networks in
joint space seem to perform considerably better than in Cartesian space when
compared to the bilinear interpolation algorithm so it is worth investigating
what happens when the network is trained on more data.
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5.12 Comparator Correction by Neural network in
joint space increased dataset

The first experiment is performed using a dataset with just one value of
height, the same on which the bilinear interpolation is using. The second time
another dataset is added to the train set of the network, this one is about one
centimeter below the previous one. Finally a third dataset is used which also
include data from one centimeter above the original dataset.

Figure 5.43: Improvement of error along the x axis with no
correction and having a neural network with one, two or three sets

of data during training.
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Figure 5.44: Improvement of error along the y axis with no
correction and having a neural network with one, two or three sets

of data during training.

Figure 5.45: Improvement of error along the z axis with no
correction and having a neural network with one, two or three sets

of data during training.
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Figure 5.46: Total improvement of error with no correction and
having a neural network with one, two or three sets of data during

training.

Figure 5.43, 5.44 and 5.45 show a comparison of the position errors of the
robot measured with the comparator along the x, y and z axis respectively.
Figure 5.46 instead shows the total position errors of the robot measured with
the comparator. In each figure the top left graph shows the error situation
before applying any kind of correction, the graph at the top right shows the error
situation after applying a correction to the robot position using a neural network
in joint space with a dataset composed of a single pass over the calibration board.
The graphs at the bottom left and right show the same but now the neural
network has been trained with a dataset composed of two and three passes
respectively over the calibration board at different heights. The following table
reports the absolute values of the averages, standard deviations and maximum
errors obtained during the experiment:
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Error tot (mm)
No corr. Bilinear Network 1 Network 2 Network 3

Average 2.443 0.652 0.682 0.576 0.275
Std 1.197 0.234 0.314 0.208 0.168
Max 4.456 0.985 1.131 0.888 0.673

Error x (mm)
No corr. Bilinear Network 1 Network 2 Network 3

Average 0.660 0.096 0.109 0.052 0.081
Std 0.364 0.078 0.090 0.043 0.068
Max 1.280 0.300 0.320 0.150 0.300

Error y (mm)
No corr. Bilinear Network 1 Network 2 Network 3

Average 0.226 0.119 0.156 0.079 0.049
Std 0.151 0.051 0.075 0.073 0.042
Max 0.640 0.180 0.280 0.300 0.150

Error z (mm)
No corr. Bilinear Network 1 Network 2 Network 3

Average 2.336 0.626 0.647 0.561 0.240
Std 1.143 0.236 0.309 0.211 0.178
Max 4.260 0.940 1.260 0.880 0.650

From the results exposed on the table it is clear to see how much the correction
algorithm using the neural network in joint space can improve using more data.
Figure 5.47 shows how the average error of the robot decreases as the neural
network working in joint space, in green, is trained on more data. In blue is
the average robot repeatability to keep as a reference of the lower bound we can
obtain. In red is shown the average error obtained with the bilinear interpolation
algorithm which is still close to the repeatability line but definitely worse once
the neural network gets enough data. This graph shows that once the accuracy
needed for a specific application is know is up to the user to decide how much
time to dedicate to the data gathering step to improve the performance of the
algorithm.
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Figure 5.47: Comparison between error correction of bilinear
interpolation and neural network in joint space. Repeatability

added for reference.
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6
Conclusions and future works

The aim of this thesis has been to develop an algorithm to improve robot
accuracy by remapping the robot workspace through the use of computer vi-
sion and machine leaning techniques. The previous chapters walked through
the steps taken to get there. The "Introduction" chapter presented the problem
of robot calibration, underlined the causes of position errors that make it nec-
essary and discussed the current state of the art in this matter. The following
chapter "Framework" illustrated all the components used in this thesis, both
hardware and software. The third chapter "Proposed approach" introduced the
mathematical tools used to correct the robot position such as bilinear interpo-
lation and neural networks. At this point the idea of using neural networks
both in Cartesian and joint space was already introduced. Chapter four "Imple-
mentation" presented in a more practical way the techniques used to actually
implement the correction algorithms, starting with the physical setup with a
camera mounted on the end effector of the robot and a calibration board and
following with the pipeline to gather information about the robot current re-
peatability and accuracy. The last sections of the chapter illustrates how to
integrate the theoretical correction models already introduced in chapter three
into a real pipeline that allows us to objectively quantify the improvements on
the robot accuracy provided by the correction algorithms. It also discussed how
to deal effectively with problems that emerged when moving from the controlled
environment of the data gathering step to performing tests into a simulation of
a real application. Chapter five "Results and discussion" presented the results
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achieved by this thesis the performance of each approach considered to increase
the robot accuracy was evaluated. It was interesting to see how while using
the camera and calibration board the simpler, more deterministic method of
bilinear interpolation based correction algorithm was performing slightly better
than its neural network based counterpart. But when switching to the mechan-
ical comparator and the milled aluminum plate additional uncertainties were
introduced, such as a slight height change between the data gathering step and
the test phase and the need to modify the reference frame associated with the
board. In this situation the neural network based correction algorithm work-
ing in joint space was able to adapt more easily by integrating more data into
the training set. After all the needed fine tuning the correction algorithm was
able to successfully reduce the error and bring the robot accuracy closer to its
repeatability.

In the future it would be interesting to see how much the bilinear interpola-
tion method could be improved too. Since it does not require time for training it
would be a more attractive solution to deploy in a real application but some way
of integrating the height information should be included, cubic interpolation
could be a solution worth exploring. Furthermore if the correction algorithm
needs to be deployed quickly into an application it could be interesting to see
how many points on the calibration board are really necessary to obtain satis-
factory results. Less points would allow to save time in the data gathering step
but at the price of having less data to use to predict the corrections, more com-
plex interpolation techniques such as spline interpolation could be employed to
compensate for that.
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