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Sommario
Negli ultimi anni, la crescente importanza delle nuvole di punti in varie applicazioni

ha portato a una crescente necessità di metodi di archiviazione e trasmissione efficienti.

La dimensione di questo tipo dato presenta sĄde in termini di rendering, trasmissione

e usabilità generale. Questa tesi introduce un nuovo approccio alla compressione della

geometria delle nuvole di punti sfruttando le Implicit Neural Representations, in parti-

colare attraverso lŠuso di un modello di rete DiGS. Addestrando questo modello su una

singola nuvola di punti, otteniamo una rappresentazione neurale compatta della sua ge-

ometria. In particolare, questa consente la ricostruzione del modello 3D con risoluzione

arbitraria. Viene applicata a quasto punto inoltre la quantizzazione dinamica sul modello

addestrato, riducendone signiĄcativamente le dimensioni senza compromettere molto la

qualità della nuvola di punti ricostruita. I successivi processi di dequantizzazione ven-

gono utilizzati per ricostruire una rappresentazione ad alta fedeltà della nuvola di punti

originale. I nostri risultati sperimentali dimostrano lŠefficacia di questo approccio in

termini di rapporti di compressione e qualità della ricostruzione, valutati in termini di

tradeoff tra distorsione e dimensione del bitstream. Questa ricerca fornisce una direzione

promettente per lŠarchiviazione e la trasmissione efficienti della geometria della nuvola

di punti, soddisfacendo alcune delle crescenti esigenze dellŠera dei dati 3D.
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Abstract
In recent years, the increasing prominence of 3D point clouds in various applications has

led to an escalating need for efficient storage and transmission methods. The sheer size

of these point cloud datasets presents challenges in rendering, transmission, and general

usability. This thesis introduces a novel approach to point cloud geometry compression

leveraging neural implicit representations, speciĄcally through the use of a DiGS network

model. By training this model on a single point cloud, we achieve a compact neural

representation of its geometry. Notably, this representation allows for the reconstruction

of the point cloud with an arbitrary resolution. After training a reconstructing network,

dynamic quantization is applied on the trained weights, signiĄcantly reducing its overall

bitrate without strongly compromising the quality of the reconstructed point cloud. A

dequantization is then used to rebuild a high-Ądelity representation of the original point

cloud. Our experimental results demonstrate the efficacy of this approach in terms

of compression ratios and reconstruction quality, assessed using PSNR relative to the

bitrate. This research provides a promising direction for efficient point cloud geometry

storage and transmission, addressing some of the growing demands of the 3D data era.
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1
Introduction

In this chapter, a brief introduction of point clouds, their importance, main applications

and challenges are going to be presented.

1.1 Background on 3D Point Clouds

The evolution of digital technology has ampliĄed the accessibility and application of

three-dimensional data across a myriad of Ąelds, from architectural design and virtual

reality simulations to environmental modeling and medical imaging. The way we rep-

resent 3D structures and geometries deeply affects the relevance of such advancements.

Three primary representations have emerged as dominant in capturing the intricacies

of the 3D world: meshes (Figure 1.1a), point clouds (Figure 1.1b), and voxels (Figure

1.1c).

• Point Clouds: At its core, a point cloud is a set of data points in a three-

dimensional coordinate system. These points, which represent the external surfaces

of objects or landscapes, provide a direct and often unprocessed view of the 3D

world. They are commonly acquired using methods such as LiDAR scanning,

stereo imaging, or structured light techniques.

• Voxels: Voxels, or volumetric pixels, offer a different take on 3D representation.

Here, the 3D space is discretized into a regular grid, with each cell (or voxel)

typically carrying information about the presence or absence of the object in that

region of space. This representation is invaluable in applications demanding a

volumetric approximation of the inspected object, like medical imaging.

• Meshes: Meshes, on the other hand, are a structured approach to 3D represen-

tation. Comprising vertices (points), edges (lines connecting points), and faces

(surfaces), meshes provide a continuous view of 3D objects and are particularly

prominent in computer graphics and 3D modeling.

While each of these 3D representations carries its unique advantages tailored to speciĄc

applications, they all share a common challenge: the sheer volume of data. The resulting

data, especially at high resolutions, becomes unwieldy, posing signiĄcant challenges in

storage, transmission, and real-time rendering. Our research explicitly delves into the

realm of point clouds, aiming to tackle the size problem through the lens of neural

implicit representations and dynamic compression techniques.
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1. Introduction

(a) Mesh (b) Point Cloud (c) Voxels

Figure 1.1: Mesh, point cloud, and voxels representations of a bunny.

1.2 Importance and Applications of 3D Data Representations

The rise of digital transformation across various industries underscores the increasing

relevance of 3D data. The choice of representation, whether point clouds, voxels, or

meshes, often hinges on the speciĄc application in question. Below we delve deeper into

the value these representations bring and their wide-ranging applications:

• Urban Planning and Infrastructure Development. City planners and archi-

tects harness scanned 3D data (most of the time point clouds) for site inspections,

building modeling, and infrastructure development. The ability to capture a real-

world environment in detail aids in designing more efficient transportation systems,

optimizing city layouts, and even preserving historical sites. [5]

• Medical Imaging. The medical Ąeld has seen revolutionary advancements through

3D imaging, especially with voxel-based representations. From MRI scans to CT

images, a volumetric understanding of human parts aids in diagnostics, treatment

planning, and even surgical simulations. [6]

• Gaming and Entertainment. The entertainment industry, including video

games and movie production, leans heavily on mesh representations. These pro-

vide the means for a structured and detailed visualization necessary for character

design, environment modeling, and special effects, ensuring a lifelike and immersive

user experience. [7]

• Virtual and Augmented Reality (VR/AR). VR and AR platforms thrive on

detailed 3D representations. Whether itŠs for educational simulations or interactive

gaming, these platforms require high-Ądelity models to provide a seamless and

realistic experience.

• Autonomous Navigation. The autonomous vehicle industry, including drones

and self-driving cars, critically depends on point clouds for obstacle detection and

navigation. Generated in real-time through LiDAR or other sensors, these point

clouds provide a 360-degree view of the vehicleŠs environment, enabling safe and

efficient navigation. [8]
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• Environmental and Geological Surveys. For understanding terrain morphol-

ogy, forest density, or even riverbed topographies, 3D representations are invalu-

able. They provide researchers with tools to monitor environmental changes, pre-

dict natural disasters, or even assist in mineral and oil exploration.

While these applications underscore the potential and versatility of 3D data, they also

underline a critical challenge. The sheer density and size of this data pose hurdles in

efficient storage, quick rendering, and seamless transmission. Recognizing this, our work

seeks to address the dual challenge of data Ądelity and size efficiency, focusing mainly

on the point cloud geometry.

1.3 Challenges of 3D Data Size and the Need for Compression

3D datasets, given their rich detail and comprehensive coverage, are inherently very large

in size. As the digital world continues its evolution, 3D representations are becoming

denser and more detailed, worsening the problem further and thus introducing several

notable challenges.

High-Ądelity 3D datasets, particularly point clouds, can be vast. A single point cloud

can comprise millions, or even billions, of points, with each point recording its spatial

coordinates (typically x, y, and z) [9].

1.3.1 Impediments Posed by Large 3D Datasets

Handling extensive 3D datasets introduces several impediments:

• Storage Challenges. Larger datasets naturally demand more storage space,

increasing the infrastructure and maintenance costs. A single high-resolution 3D

model can occupy gigabytes of storage [10].

• Transmission Overheads. Transporting vast 3D models across networks is both

time-consuming and bandwidth-consuming. This is especially problematic in real-

time applications or environments with limited connectivity [11].

• Rendering Latency. Real-time rendering, essential in industries like gaming and

virtual reality, can experience signiĄcant delays when processing large datasets.

The latency can hamper the user experience, particularly in immersive environ-

ments [12].

• Memory Limitations. Processing extensive 3D models often exceeds the mem-

ory capabilities of standard computational devices, requiring specialized or dis-

tributed systems [13].

1.3.2 The Imperative for Compression

Given these challenges, thereŠs a palpable need for efficient compression methods. The

goal is twofold: substantially reduce data size while retaining the quality and integrity
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1. Introduction

of the original model. This ensures faster transmission, efficient storage, and seamless

rendering, all without signiĄcant quality degradation [14]. Our research seeks to address

this pressing concern, emphasizing neural implicit representationsŠ potential for point

cloud geometry compression.

1.4 Baseline

The usage of 3D point clouds in various domains underscores the necessity for efficient

storage and transmission methods. However, the vast sizes of these datasets pose chal-

lenges in both these areas. This research aims to address this crucial concern, delineating

both our goal and the methodology adopted to attain it.

Our primary objective is to devise a method that enables the compression of 3D point

cloud geometry without signiĄcantly compromising its integrity or Ądelity. In essence,

the aim is to reduce the data size for easier storage, transmission, and rendering, while

preserving the quality and the salient features of the original point cloud.

1.4.1 Adopted Approach

Achieving this objective entails a two-fold approach:

1. Neural Implicit Representation: We leverage the DiGS [15] network model to

train and establish a neural implicit representation of the 3D point cloud. This

representation allows for the reconstruction of the point cloud with arbitrary res-

olution, providing Ćexibility in its use.

2. Dynamic Quantization: Post-training, dynamic quantization is applied to the

model, effectively compressing it. This step is instrumental in reducing the size

of the neural model. Subsequent dequantization, based on stored quantization

parameters, ensures the reconstruction of a model closely resembling the original.

The efficacy of this compression-decompression cycle is evaluated based on the

difference between the original and reconstructed point cloud, called distortion, in

relation to the size of the compressed bitstream.

This baseline approach forms the foundation of our research, guiding our experiments

and evaluations in subsequent sections of this thesis.

1.5 Chapter Descriptions

Chapter 2 provides a comprehensive review of current point cloud compression tech-

niques, followed by an exploration of neural implicit representations. We also shed light

on the role of quantization techniques in deep learning models and how they have been

applied in related domains.

Chapter 3 provides a detailed account of our research approach. It describes the

dataset employed, introduces the DiGS network model, and elucidates the process of

reconstructing point clouds with arbitrary resolutions. The chapter also offers insight
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into the dynamic quantization process for the model, its subsequent dequantization, and

the metrics adopted for evaluating the effectiveness of the compression.

In the 4th Chapter, we document our experimental procedures and present the re-

sults. The training process of the DiGS model is detailed, followed by a deep dive into

the outcomes of the quantization and dequantization processes. The chapter places sig-

niĄcant emphasis on assessing the quality of reconstructed point clouds, both through

visual inspections and quantitative metrics such as PSNR.

Concluding the thesis, in the 5th Chapter, we summarize our primary Ąndings, their

potential impact on the industry, and how they could shape future research. This chapter

also provides directions for further studies, innovations, and enhancements in the domain

of 3D point cloud compression.
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2
Literature Review

In this chapter, we will delve into the foundational literature encompassing neural implicit

representations (NIR) compression and the existing techniques for point cloud coding.

2.1 Neural Implicit Representations (NIR)

Neural Implicit Representations (NIRs) are a way to represent 3D geometric data using a

neural network as the underlying function. Unlike traditional methods that represent 3D

shapes through explicit data structures like meshes, point clouds, or voxels, NIRs utilize

the neural network to implicitly encode the shape information. The neural network is

trained to map 3D coordinates to certain attributes like occupancy or signed distance,

thereby deĄning the shape in an implicit manner.

In NIRs, a neural network is trained to learn a mapping function f : R3 → R where

R
3 represents the 3D coordinate space and R is the attribute value, which can be either

an occupancy Ćag or a signed distance from the surface. For a given point in 3D space

x, the function f(x) would output a value that indicates whether the point is inside or

outside the shape, or how far it is from the surface.

In Figure 2.1 you can see a simple example of NIR on a 2D Image. As you can see,

the input of the model is the coordinates of the image and the output is the attribute

value, which is the color of the pixel in this example.

In the context of 3D data, this function f effectively acts as an implicit Ąeld over

the 3D space. You can query any point x in this space to determine its attribute with

respect to the represented shape. This allows NIRs to represent complex 3D shapes with

high Ądelity, simply by querying the trained neural network.

The concept of NIRs gained traction with the introduction of methods like DeepSDF

[16] and Occupancy Networks [17]. DeepSDF, for instance, uses a Signed Distance

Function (SDF) to represent a shape. In particular, it trains a neural network to predict

the SDF value for any given point in 3D space. Occupancy Networks employ a similar

approach but use occupancy grids as the representation.

One of the key advantages of NIRs is their ability to compactly represent complex

geometries. This makes them particularly useful for tasks such as shape completion, in-

terpolation, and reconstruction from partial or noisy data. Furthermore, NIRs facilitate

differentiable rendering, opening up new solutions in inverse graphics and simulation.

NIRs have a signiĄcant role in point cloud coding, especially when considering the

compression and transmission of 3D data. By converting explicit point clouds into an

implicit format, NIRs offer new scalability and Ćexibility opportunities in an efficient

point cloud coding scheme.
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Figure 2.1: Simple example of NIR on a 2D Image.

Despite their potential, NIRs face challenges in scalability and real-time rendering.

However, ongoing research focuses on optimizing these representations for better effi-

ciency and speed, such as the introduction of hierarchical and adaptive methods [18].

2.2 Neural Implicit Representations (NIR) Compression

Neural Implicit Representations (NIR) introduce a paradigm shift in data compression by

leveraging deep learning techniques to represent complex data structures implicitly. In-

stead of directly storing the raw data, NIR methods train neural networks to approximate

it, encapsulating its essence in the networkŠs weights and architecture. Once trained, only

the weights (and occasionally the network architecture) need to be stored/transmitted,

generally leading to signiĄcant reductions in the allocated memory space. In the context

of 3D point cloud data, as explored in this thesis, NIR compression becomes particu-

larly compelling. Point clouds, inherently voluminous and intricate, can be efficiently

and compactly represented using neural networks, allowing for high compression rates

without compromising the Ądelity of the reconstructed data. This approach not only

addresses storage challenges but also simpliĄes data transmission, making it highly-

valuable for applications that require efficient handling and transportation of large 3D

datasets (see Figure 2.2).

Neural Implicit Representations have emerged as a promising way for data compres-

sion, especially for complex high-dimensional data. Several research endeavors have

explored this domain, presenting innovative methodologies that leverage the power of

neural networks to achieve impressive compression rates without signiĄcant loss in data

Ądelity.
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Figure 2.2: Compressed implicit neural representations. An image is overĄtted with a neural
network mapping pixel locations (x, y) to RGB values (often referred to as an
implicit neural representation). The weights are then quantized to a lower bit-
width and transmit them. [1]

2.2.1 COIN: COmpression with Implicit Neural representations

The COIN methodology, introduced in [1], stands at the forefront of data compression

techniques that adopt implicit neural representations. It showcases a paradigm shift from

traditional compression methods by leveraging the SIREN [19] network architecture to

represent data implicitly.

The core principle behind COIN focuses on training a neural network, speciĄcally a

SIREN network, to replicate the input data that is compressed at a second stage.

What makes COIN particularly notable is its applicability to a diverse set of data

types, showing its versatility by effectively compressing both 2D images and 3D shapes.

Such Ćexibility indicates the robustness of the underlying SIREN network architecture

and its adaptability to different data intricacies.

However, the most groundbreaking contribution of the paper is the idea of using neural

networkŠs weights, and speciĄcally the SIREN architecture. This approach introduces a

novel perspective on data representation, storage, and transmission. This not only offers

a promising direction for future research in data compression but also paves the way for

applications where efficient data handling is paramount.

2.2.2 COIN++: Neural Compression Across Modalities

COIN++, an advanced extension of the original COIN model, marks a signiĄcant mile-

stone in the Ąeld of neural network-based data compression. The original COIN model

was groundbreaking in its own right (indeed, offering a neural network-based approach

to data compression across different data modalities). COIN++ pushes the boundaries

even further. By adopting the Model-Agnostic Meta-Learning (MAML), a learning al-

gorithm that signiĄcantly improves both training speed and model performance.

The essence of COIN++ lies in its innovative application of MAML, which allows for

quick adaptation to new tasks with minimal data. Traditional machine learning models

often require extensive training to perform well on new tasks, but the introduction of

MAML in COIN++ eliminates this bottleneck. By pre-training a model in a way that

it can be Ąne-tuned with a small amount of data for each new task, MAML makes

COIN++ far more efficient and adaptable (see Figure 2.3).

This adaptability is of paramount importance in the Ąeld of data compression. Tradi-
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Figure 2.3: By applying modulations ϕ(1), ϕ(2), ϕ(3) to a base network fθ, it is possible to obtain
different functions that can be decoded into data points d(1), d(2), d(3) by evaluating
the functions at various coordinates. While images are showing the same principle
can be applied to a range of data modalities. [2]

tional compression algorithms are often designed to work well for speciĄc types of data

but can perform poorly when applied to different data types. COIN++ addresses this

limitation by being a more universal, adaptable solution, capable of handling a myriad of

data modalities without the need for extensive re-training. Additionally, since each new

image can be seen as a new modality this allows for considerably reducing the encoding

time, i.e. the time required to overĄt the given sample.

However, itŠs essential to note that COIN++ does not generally outperform specialized

compression algorithms or even its autoencoder counterparts in all aspects. The rate-

distortion curves indicate that while COIN++ offers the advantage of adaptability and

training efficiency, it may not always deliver the highest compression rates or the best

reconstruction quality.

Moreover, COIN++ extends the vision for the future of neural network-based com-

pression methods. Its use of MAML points towards a new paradigm where the focus

shifts from designing specialized algorithms for each type of data to developing more uni-

versal methods that can be easily adapted to new tasks. This paradigm shift could have

far-reaching implications, potentially revolutionizing how we think about and approach

the problem of data compression across varied data types.
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2.2.3 LVAC: Learned Volumetric Attribute Compression

The paper "Learned Volumetric Attribute Compression for Point Clouds using Coordinate-

Based Networks" [20] delves into the novel use of coordinate-based networks for the com-

pression of 3D point cloud attributes. Unlike traditional methods that rely on domain-

speciĄc algorithms, LVAC employs neural networks trained to map 3D coordinates to

attributes such as colors and normals. This signiĄcantly reduces the need for separate

compression algorithms tailored to each attribute type.

The core idea behind LVAC is to utilize a neural network, speciĄcally a coordinate-

based network, to implicitly represent the attributes of a 3D point cloud. During the

training phase, the network learns to associate 3D coordinates with corresponding at-

tributes, thereby forming a compact representation. The trained model is then used to

reconstruct the attributes, allowing for effective compression and decompression.

One of the key innovations in LVAC is the use of Meta-Learning for task-agnostic

initialization. This enables the model to be Ąne-tuned on speciĄc datasets, further

enhancing compression efficiency. The modelŠs parameters serve as a compressed repre-

sentation of the attributes, which can be easily decoded to regenerate the original data

with high Ądelity.

LVAC also incorporates a rate-distortion optimization framework that balances be-

tween compression rate and reconstruction quality. This makes it versatile and applica-

ble for a variety of use cases, from real-time applications where low bit-rate is crucial,

to archival storage where quality preservation is more important.

In terms of performance, LVAC was benchmarked against traditional attribute com-

pression methods and showed competitive results. While it may not outperform spe-

cialized algorithms in every aspect, the adaptability and simplicity of LVAC offer a

compelling advantage.

In the end, LVAC introduces a new paradigm in attribute compression for point clouds

by leveraging the power of coordinate-based neural networks. Its ability to adapt and

Ąne-tune makes it a Ćexible solution for a wide range of applications opening up new

investigation tracks.

2.2.4 Signal Compression via Neural Implicit Representations

The paper "Signal Compression via Neural Implicit Representations" [21] introduces a

novel framework for signal compression utilizing neural implicit representations. Tradi-

tional signal compression methods largely rely on autoencoder-like structures. In con-

trast, this paper leverages neural networks trained to implicitly represent signals, where

the compact representation of the signal is not a latent space but the networkŠs weights

themselves (see Figure 2.4).

The authors propose a new compression paradigm termed Neural Implicit Compres-

sion (NIC). Unlike autoencoders, which use a universal encoding function to create a

compact latent space, NIC trains a neural network to represent a speciĄc signal directly.

In this paradigm, the networkŠs weights, biases, and architecture become the compact

representation of the signal.

The input to the neural network is a single coordinate from the signal domain (e.g.,

25



2. Literature Review

pixel location), and the output is the signal value at that coordinate (e.g., RGB value).

The authors particularly focus on SIREN (Sinusoidal Representation Networks) [19]

architectures for their implicit representations.

The paper also establishes a formal connection between NIC and traditional transform

coding, such as Discrete Cosine Transform (DCT). It shows that a two-layer SIREN

approximating a continuous function can be equivalent to an N-point 1D-DCT.

The authors introduce the use of meta-learning to provide an initial set of weights

that are close to an optimal solution for a speciĄc class of signals. This pre-training step

facilitates efficient Ąne-tuning for individual signals, enabling further rate savings.

Experiments were conducted on the task of compressing point cloud attributes. The

authors reported that NIC showed very competitive performance, reaching close to the

latest MPEG G-PCC standard. The methodology was also shown to be highly adaptable,

allowing for different numbers of layers, features, and quantization step sizes.

Figure 2.4: Neural implicit representation network mapping input coordinates to signal values,
analogous to transform coding.

The realm of Neural Implicit Representations (NIR) compression has witnessed sig-

niĄcant contributions, with four seminal papers standing out in recent times. The Ąrst,

COIN [1], pioneered the concept of employing SIREN networks for compression, focusing

on 2D images and 3D shapes. Its successor, COIN++ [2], built upon this foundation,

introducing multi-modal compression capabilities, thus broadening the scope to encom-

pass diverse data modalities such as images, videos, and 3D models. Both these papers

emphasize the revolutionary idea of storing only the weights of trained networks, high-

lighting the potential for impressive compression rates. However, while COIN laid the

groundwork, COIN++ showcased enhanced Ćexibility by catering to multiple data types,

indicating its potential as a more universal compression tool. Diverging from image and

video data, LVAC [20] delved into the challenge of point cloud attribute compression,

innovatively employing coordinate-based networks. The paper underscored the intrica-

cies of 3D data and provided a solution that achieved commendable compression rates

speciĄcally for point cloud attributes. Lastly, the work on signal compression via neu-

ral implicit representations [21] expanded the NIR paradigm to include various signal

types, emphasizing the techniqueŠs adaptability and robustness. In essence, while all
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four papers converge on the core idea of using neural networks for compression, they di-

verge in their speciĄc methodologies, data types targeted, and underlying architectures.

Their collective contributions highlight the vast potential of NIR compression but also

underscore the need for specialized approaches depending on the dataŠs complexity and

nature.

2.3 Point Cloud Coding

Point cloud data, representing three-dimensional spatial coordinates, has become in-

creasingly vital in various domains such as virtual reality, autonomous driving, medical

imaging, and geographical mapping. A point cloud is a collection of data points in a

three-dimensional coordinate system, deĄning the external surfaces of objects or envi-

ronments. With the burgeoning use of 3D data, the efficient coding and compression of

point clouds have become paramount challenges.

Point cloud coding refers to the process of efficiently representing point cloud data

in a compressed form. The main goal of point cloud coding is to reduce the data size

for efficient storage and transmission while preserving the quality and integrity of the

original data. This is a complex task due to the inherent high dimensionality and

irregular structure of point clouds, leading to the necessity for sophisticated coding

techniques.

Traditional methods for point cloud coding often involve Ąxed transformation, quan-

tization, and entropy coding. Deep learning-based methods, on the other hand, learn

the transformation directly from the data through the network architecture. While

traditional methods are effective in certain scenarios, they may struggle to handle the

complexity and diversity of point cloud data. Consequently, recent years have witnessed

the emergence of novel approaches that leverage machine learning, deep learning, and

hybrid techniques to enhance point cloud coding.

The importance of point cloud coding extends beyond mere data compression. It plays

a crucial role in enabling real-time processing, visualization, and analysis of 3D data,

particularly in applications where bandwidth and storage constraints are signiĄcant.

Moreover, scalable coding allows for accessing the data at various resolutions, suiting

different application needs.

This section will explore various advancements in point cloud coding, focusing on

the innovative methods and techniques that have shaped the Ąeld in recent years. The

discussion will be categorized into different thematic areas, including deep learning-

based approaches, loss functions and quantization techniques, standards and improved

methods, and synergistic and hybrid approaches.

2.3.1 Deep Learning-based Approaches

Autoencoder-based Approaches

Autoencoders, a speciĄc class of neural networks, have emerged as a powerful tool for

point cloud coding. An autoencoder learns to encode the input data into a compressed

representation and then decode it back to reconstruct the original data. This ability
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Figure 2.5: Block diagram for the ADAE encoding/decoding scheme. [3]

to learn efficient encodings has been exploited for point cloud compression, offering

promising advancements in the Ąeld.

Syndrome-Based Autoencoder for Point Cloud Geometry Compression

A notable example is the introduction of a syndrome-based autoencoder for point cloud

geometry compression [22]. This novel approach leverages error-correcting codes, known

as syndromes, within an autoencoder architecture. By utilizing syndromes, the method

efficiently represents point cloud geometry, achieving signiĄcant compression rates with-

out losing quality in the reconstructed data. The combination of syndromes with neural

network architectures represents a unique advancement, setting a new precedent in data

compression.

Adversarial Distributed Source Autoencoder for Point Cloud Compression (ADAE)

Following the aforementioned approach ADAE (Figure 2.5), an Adversarial Distributed

Source Autoencoder for point cloud compression [3]. ADAE synergizes autoencoding

with adversarial training, creating a robust model capable of handling complex point

cloud data. The adversarial component Ąne-tunes the compression, resulting in remark-

able results in both compression rates and reconstruction quality. ADAEŠs ability to

synergistically combine autoencoding with adversarial training makes it a promising

tool for various applications where point cloud data is vital.

Scalable Coding Approaches

Scalable coding of point cloud geometry refers to the ability to encode and decode the

data at different resolutions, quality levels, or bitrates. This adaptability is essential in

various scenarios where the same point cloud data might be accessed and processed at

varying levels of detail. Scalable coding approaches have been developed to address this
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need, providing Ćexibility and efficiency in handling point cloud geometries of various

complexities.

Deep Learning-based Point Cloud Geometry Coding with Resolution Scalability

A signiĄcant advancement in scalable coding is the introduction of a deep learning-

based method that emphasizes resolution scalability [23]. This approach offers Ćexible

and efficient coding across various resolutions by employing a hierarchical structure

and a combination of convolutional neural networks (CNNs) and other deep learning

components. The method ensures that point cloud data can be efficiently coded and

decoded at different resolutions without signiĄcant loss of quality. This innovation not

only enhances compression efficiency but also opens up new possibilities for applications

that require access to point cloud data at multiple levels of detail.

Point Cloud Geometry Scalable Coding with a Single End-to-End Deep Learning Model

Another noteworthy approach is the development of a scalable coding method for point

cloud geometry using a single end-to-end deep learning model [24]. This integrated model

handles the entire scalable coding process, from encoding to decoding, in a streamlined

manner. The end-to-end approach allows for Ćexibility and efficiency, adapting to differ-

ent point cloud geometries and resolutions. This key innovation in scalable coding offers

new opportunities for handling 3D data in various applications, from virtual reality to

remote sensing.

Scalable coding approaches provide a versatile solution to the challenges of point cloud

geometry compression. By enabling access to the data at various resolutions and quality

levels, these methods cater to diverse application needs and scenarios. The integration of

deep learning techniques further enhances the adaptability and performance of scalable

coding, positioning it as an essential aspect of modern point cloud processing.

Adaptive and End-to-End Learning Approaches

Adaptive and end-to-end learning approaches in point cloud coding represent cutting-

edge techniques that focus on Ćexibility, efficiency, and integrated processing. These

methods are designed to tailor their processing to different point cloud geometries dy-

namically and to handle the complete compression process in an integrated fashion.

Adaptive Deep Learning-Based Point Cloud Geometry Coding

An exemplary method of adaptive coding is the deep learning-based framework pre-

sented in [25]. This method dynamically adapts to the complexity and characteristics

of different point cloud geometries. By employing a combination of convolutional and

recurrent neural networks, it achieves signiĄcant improvements in compression efficiency

while maintaining high quality in the reconstructed data. The adaptive nature of this

method represents a signiĄcant advancement, allowing for more efficient and effective

coding that responds to the unique challenges of different point cloud geometries.
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Lossy Point Cloud Geometry Compression via End-to-End Learning

In [26] the authors present an approach for lossy point cloud geometry compression

where the network is optimized end to end. This method leverages deep learning to

perform the entire compression process, from encoding to decoding, in a seamless and

integrated manner. The end-to-end framework allows the method to adapt to various

point cloud geometries, achieving high compression rates while controlling quality loss.

This integrated approach simpliĄes the compression process and offers new possibilities

for optimizing the trade-off between efficiency and quality.

Point Cloud Geometry Scalable Coding with a Single End-to-End Deep Learning Model

Building on top of the previous work, [24] introduces a scalable coding method for

point cloud geometry using a single deep learning model. This approach integrates the

entire scalable coding process into one uniĄed framework, allowing for adaptability across

different resolutions and quality levels. This end-to-end method represents a signiĄcant

step in scalable coding, providing a streamlined solution for various applications.

Adaptive and end-to-end learning approaches offer innovative solutions to the chal-

lenges of point cloud coding. By creating models that can adapt to the speciĄc char-

acteristics of point cloud data and handle the entire coding process in an integrated

manner, these methods pave the way for further advancements in the Ąeld.

2.3.2 Quantization Techniques and Loss Functions

The performance of point cloud compression algorithms is highly dependent on the

quantization techniques employed and the loss functions used. These factors control

how well the compression algorithm adapts to the speciĄc characteristics of point cloud

data. In this section, we delve into the details of both.

Quantization in Point Cloud Coding

Quantization is a crucial step in any compression process, serving to map continu-

ous values to discrete representations. However, incorporating quantization into neu-

ral network-based point cloud coding presents challenges due to its non-differentiable

nature. This is typically overcome by employing techniques like straight-through esti-

mator (STE), or by adding uniform noise U(−0.5, 0.5), to enable backpropagation during

training.

Another innovative approach is described in [27], where they integrate quantization

with loss functions tailored for point cloud data. This ensures a balance between com-

pression efficiency and the quality of the reconstructed point cloud.

Loss Functions

After deĄning the quantization process, the choice of loss function becomes critical. The

loss functions aim to minimize the difference between the original and reconstructed

point cloud, subject to the constraints imposed by the quantization process.

Binary Cross-Entropy Loss (BCE):
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Often used in point cloud compression, it is deĄned as:

BCE = −
1

N

N
∑

i=1

[yi log(p(yi)) + (1 − yi) log(1 − p(yi))]

Focal Loss:

It is an extension of BCE and is particularly useful when there is a class imbalance.

This is particularly useful when considering voxelized representations since the number

of empty voxels is much bigger than the number of Ąlled ones. The focal loss is deĄned

as:

Focal Loss = −α (1 − pt)
γ log(pt)

Neighborhood Adaptive Loss Function (ωu):

Introduced in [27], this loss function considers the spatial relationships within the

point cloud. It adapts the traditional loss functions by incorporating the geometric and

topological features of the point cloud, thus allowing for a more effective and nuanced

compression process.

ωu = max



1 − resemblanceu

max(resemblance)
, 10−3



.

In summary, the choice of quantization techniques and loss functions is pivotal in

point cloud coding. By employing novel methods that take into account the spatial and

geometric properties of point clouds, signiĄcant advancements have been made in the

Ąeld, paving the way for more efficient and effective point cloud compression.

2.3.3 Standards and Improved Methods

Emerging MPEG Standards

The Moving Picture Experts Group (MPEG) has developed two distinct standards for

point cloud compression, one for static point clouds and another for dynamic point

clouds. These standards are not based on deep learning but employ traditional methods

to achieve robust, scalable, and efficient compression for point cloud data [28]. For static

point clouds, the standard focuses on compressing the geometry and attributes efficiently,

usually via octree-based methods. For dynamic point clouds, motion compensation

techniques are often used to efficiently represent the temporal changes in the data.

These standards aim to offer diverse compression solutions that can adapt to different

resolutions and quality levels. They serve as crucial resources for the future of point cloud

data handling, set to revolutionize the way point cloud data is stored, transmitted, and

utilized in various Ąelds such as entertainment, manufacturing, and healthcare.

Improved Deep Learning-based Methods

Improvements to existing deep learning-based methods for point cloud geometry com-

pression have led to signiĄcant advancements in the Ąeld [29]. Building upon existing

techniques, researchers have focused on optimizing various aspects of the neural network
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Figure 2.6: An Illustrated overview of the method in Learned-PCGC. [4]

architecture, training procedures, and coding strategies. These systematic enhancements

have resulted in optimized compression processes and signiĄcant performance gains in

terms of compression efficiency and quality preservation. The continued effort to reĄne

and advance deep learning-based point cloud compression methods is paving the way for

more efficient and intelligent 3D data processing.

2.3.4 Synergistic and Hybrid Approaches

Synergistic Combination of Autoencoding and Adversarial Training

One noteworthy advancement in point cloud compression is the synergistic combination

of autoencoding with adversarial training, as introduced in ADAE [30]. This novel ar-

chitecture leverages the beneĄts of both autoencoding and adversarial training to create

a robust compression model capable of handling complex point cloud data. By utilizing

adversarial training to Ąne-tune the compression, ADAE achieves impressive results in

terms of compression rates and reconstruction quality. This synergistic combination sets

a new standard in the Ąeld, demonstrating the potential of integrating different deep

learning paradigms for point cloud compression.

Hybrid Compression Frameworks

Hybrid compression frameworks that combine machine learning with traditional coding

strategies represent another signiĄcant innovation in the Ąeld [4]. Such approaches lever-

age neural networks alongside established coding techniques to achieve high compression

rates without signiĄcant loss of quality. By integrating machine learning into the com-

pression process, these hybrid methods enable models to adapt to different types of point

cloud geometries, leading to more Ćexible and efficient compression. The development

of hybrid frameworks opens new possibilities for more intelligent and adaptive 3D data

processing.

Learning Convolutional Transforms

The application of convolutional transforms speciĄcally for lossy point cloud geometry

compression (Figure 2.6) has also emerged as a promising technique [31]. By employing

learning-based techniques, the method enables a more nuanced and adaptable com-

pression process that tailors to the speciĄc characteristics of point cloud data. This
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innovation provides a fresh perspective on lossy compression, offering the potential for

further advancements in the handling of 3D data.

Synergistic and hybrid approaches in point cloud compression are pushing the bound-

aries of traditional methods by integrating diverse concepts and techniques. By creating

synergies between different deep learning paradigms and combining machine learning

with conventional coding, these approaches are paving the way for more innovative and

effective solutions. These combinations underscore the versatility of point cloud com-

pression methods and hint at an exciting future for the Ąeld, where integration and

collaboration between techniques become key drivers of innovation.

2.3.5 Conclusions

The exploration of various methods and approaches in point cloud coding reĆects the

dynamic and rapidly evolving nature of this Ąeld. From the introduction of novel

autoencoder-based and scalable coding techniques to the development of adaptive and

end-to-end learning approaches, the landscape of point cloud compression is witnessing

signiĄcant advancements.

• Innovation in Architectures: The emergence of synergistic combinations, such

as the integration of autoencoding with adversarial training and the development

of hybrid frameworks, demonstrates the creativity and adaptability within the

Ąeld. These innovations in architectures offer improved efficiency, adaptability,

and quality in point cloud compression.

• Emphasis on Scalability and Adaptability: The focus on scalable coding

and adaptive learning reĆects the growing need for Ćexibility in handling various

resolutions, quality levels, and complexities in point cloud data. Methods that

offer resolution scalability or dynamically adapt to different geometries are paving

the way for more intelligent and responsive compression solutions.

• Advancements in Loss Functions and Quantization: The formulation of

specialized loss functions and the integration of implicit and explicit quantiza-

tion techniques underline the nuanced understanding of the geometric properties

of point clouds. These advancements contribute to optimized compression that

preserves quality while achieving high efficiency.

• Emergence of Standards and Improved Methods: The development of

MPEG standards and continuous improvements to existing methods signify the

maturation and standardization in the Ąeld. These efforts are essential in shaping

the future of point cloud data handling across various industries and applications.

• Exploration of Hybrid Approaches: The blend of traditional coding strategies

with machine learning and deep learning techniques showcases the potential for

collaboration between different paradigms.

In conclusion, the Ąeld of point cloud coding is marked by a rich diversity of methods,

a relentless pursuit of innovation, and a clear focus on addressing the unique challenges of

3D data handling. The insights gained from the reviewed papers underline the potential
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and vitality of this Ąeld, setting the stage for continued growth and exploration. As

technology advances and the demand for efficient 3D data processing grows, point cloud

coding will undoubtedly remain a vibrant and essential area of research and development.

2.4 Quantization Techniques for model compression

Quantization techniques play a critical role in optimizing neural network models for both

performance and storage. By approximating the continuous-valued weights and biases,

quantization methods facilitate the efficient deployment of machine learning models,

particularly in resource-constrained environments. This section delves into the three

primary categories of quantization techniques: Dynamic Quantization, Static Quantiza-

tion, and Quantization-Aware Training. Each technique offers distinct advantages and

trade-offs that are crucial for effective model compression and deployment.

2.4.1 Static Quantization

Static quantization, as the name suggests, involves the quantization of model parameters

prior to the inference stage. Unlike dynamic quantization, which performs quantization

during inference, static quantization transforms both the weights and the activations in

the neural network during the training or pre-deployment phase. This results in a model

that is fully quantized and ready for efficient execution, with no additional computational

overhead during inference.

The primary advantage of static quantization lies in its performance gains. By quan-

tizing the model beforehand, it eliminates the need for on-the-Ćy calculations, making

it highly suitable for real-time and latency-sensitive applications. Additionally, static

quantization often involves Ąne-tuning the quantized model, which helps in preserving

the accuracy to a signiĄcant extent.

However, one drawback of static quantization is its lack of adaptability to varying

data distributions. Since the quantization is performed before inference, the model may

not be as Ćexible in handling inputs with different statistical properties, which can be a

limitation in scenarios involving complex data types like 3D point clouds.

Static quantization has been widely adopted in various machine learning applications,

ranging from computer vision to natural language processing and has recently found

applications in point cloud compression as well.

2.4.2 Dynamic Quantization

Dynamic quantization is a technique employed predominantly during the inference phase

of neural network models. Unlike static quantization, which quantizes the weights be-

fore inference, dynamic quantization performs this operation on-the-Ćy as the model

processes the input data. The primary advantage of this approach is its ability to adapt

to the statistical properties of the input, thereby achieving more efficient compression

without signiĄcant loss of quality.

One of the key beneĄts of dynamic quantization is its minimal impact on model
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accuracy. Since the quantization occurs during inference and adapts to the speciĄc

input, it allows for a more nuanced approximation of continuous-valued parameters.

This Ćexibility makes it particularly useful for models dealing with heterogeneous or

complex data distributions, such as 3D point clouds.

However, dynamic quantization is not without its limitations. The on-the-Ćy nature

of this technique can introduce computational overhead, making it less suitable for real-

time applications or systems with stringent latency requirements.

Recent advances in dynamic quantization have explored its application in various

domains, including image and video compression, natural language processing, and,

importantly for this thesis, point cloud compression.

2.4.3 Quantization-Aware Training (QAT)

Quantization-Aware Training (QAT) is an advanced approach that incorporates the

quantization process directly into the model training phase. Unlike static and dynamic

quantization, which are applied either before or during inference, QAT aims to simulate

the effects of quantization during training itself. This involves the use of fake quantiza-

tion layers that mimic the behavior of quantized operations, thereby allowing the model

to adapt to the reduced numerical precision in a more robust manner.

One of the key advantages of QAT is its ability to Ąne-tune the model for quantization

while it is being trained. This usually results in better model accuracy compared to post-

training quantization methods. It is particularly useful in scenarios where the model

needs to be highly optimized for both speed and accuracy, as in the case of point cloud

compression algorithms that deal with complex 3D geometries.

However, the downside of QAT is that it may prolong the training process, as the

model has to adapt to additional constraints imposed by the fake quantization layers.

But this trade-off is often justiĄed by the gains in model performance and the reduced

need for model Ąne-tuning post-quantization.

QAT has been effectively employed in various machine learning applications, including

neural networks designed for point cloud compression, and has shown to yield impressive

results in terms of model efficiency and accuracy.
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This chapter presents the various algorithms and methodologies developed to extend and

improve the baseline approach.

3.1 Dataset

An understanding of the dataset forms the foundation for the deep learning modelŠs

training. This section offers an overview of the datasetŠs characteristics and sources.

The point clouds (PCs) analyzed in this study were sourced using diverse acquisition

methods to ensure the representation of various noise types that a universal codec might

confront.

The dataset samples are categorized as follows:

• High-Quality Models: The dataset includes 6 superior quality PCs as depicted

in Figure 3.1. These were extracted from the MPEG dataset [32]. A set of 39

synchronized RGB cameras captured dynamic PCs, producing 300 frames at 30

fps. Only one frame was selected for the static model.

• Computer-Generated Models: Given that a signiĄcant portion of 3D models

in the industry is computer-generated, a PC in the dataset was derived by sampling

a mesh (see Figure 3.2). This synthetic signal is anticipated to be the least noisy

and thus, should present fewer challenges for the codec.

• Structure from Motion (S.f.M.) PCs: S.f.M. is a predominant PC acquisition

method known to yield sparse and noisy data, as showcased in Figure 3.3. Including

these samples ensures the neural network is trained to manage such data efficiently.

• Laser Scanner PCs: Recognized for their precision, laser scanners are extensively

used in various Ąelds, such as architectural acquisition. Therefore, PCs derived

using this method are incorporated in the dataset, with examples provided in

Figure 3.4.

Despite the presence of color information in these point clouds (PCs), our focus is

primarily on their geometric structures. Hence, for the purposes of this study and

the input to our model, we exclusively consider the spatial positions of the points,

disregarding their associated color data.
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Figure 3.1: Point Clouds from the MPEG dataset

Figure 3.2: Queen: PC sampled from a 3D mesh

3.2 DiGS Network Model Review

The representation and processing of 3D point cloud data have become increasingly

important in various Ąelds, including computer vision, robotics, and graphics. While

advancements in neural networks have facilitated progress in point cloud processing,

a signiĄcant challenge has been the accurate and efficient representation of unoriented

point clouds that lack consistent orientation or normal data. Addressing this chal-

lenge, the paper "DiGS: Divergence Guided Shape Implicit Neural Representation for
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(a) Facade15 (b) House

Figure 3.3: Point Clouds obtained with the structure from motion technique

(a) Facade09 (b) Facade64

(c) Shiva (d) Frog

Figure 3.4: Point Clouds obtained by using a laser scanner.

Unoriented Point Clouds" by Ben-Shabat et al [15]. presents an innovative model that

combines the strengths of implicit neural representations with divergence-guided tech-

niques. This section delves into the nuances of the DiGS model, its methodology, and

its signiĄcance in the realm of point cloud representation.
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3.2.1 Objective of the Paper

The heart of the paper lies in the introduction and exploration of the DiGS (Divergence

Guided Shape) model. Point clouds, while being a rich source of 3D information, of-

ten come without consistent orientation or normal data. Such unoriented point clouds

pose a unique set of challenges in terms of representation and processing. The primary

aim of the DiGS model is to offer a robust solution to this problem, enabling accurate

representation of these point clouds using implicit neural representations. By focusing

on unoriented point clouds, the authors address a signiĄcant gap in the current liter-

ature and technologies, aiming to enhance the versatility and accuracy of point cloud

processing techniques in various applications.

3.2.2 DiGS algorithm

As was anticipated in the previous chapters, an implicit representation for a 3D shape

implements a function f : R3 → R, where the shape S is deĄned by the zero level-set of

f , expressed as S = {x ∈ R
3|f(x) = 0}.

Neural networks, with their profound expressive capabilities, can be harnessed to

model the function f . Such networks, when trained, accept a 3D coordinate as input

and produce a scalar value in return. The training paradigm typically revolves around

minimizing the discrepancy between the networkŠs output and a predetermined scalar

value for a set of 3D coordinates. For instance, inside the shape, the target could be -1,

while outside, it might be +1.

The DiGS model integrates neural implicit representations as its foundational mech-

anism. However, it incorporates further innovations, like divergence-based analysis, to

amplify the capabilities of standard neural implicit representations, particularly for un-

oriented point clouds (see Figure 3.5).

Figure 3.5: An example in 2D: An implicit neural representation of a shape is trained from an
input point cloud that lacks orientation. The training combines an initial geometric
setup with a divergence penalty loss, based on the notion that the divergence of
the signed distance function is generally low across most areas.

By synergizing the Ćexibility of implicit representations with the prowess of neural

networks, the DiGS model presents a robust and efficient modality for representing

unoriented point clouds. The innate beneĄts of implicit representations, amalgamated

with the paperŠs novel contributions, position the DiGS model as a pivotal stride in the
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discipline.

The DiGS model introduces a systematic approach to constructing neural implicit

representations for unoriented point clouds. They use a smooth-to-sharp approach that

keeps the gradient vector Ąeld highly consistent during training (see Figure 3.6). This

improves the convergence speed of the model and acts as a regularizer allowing it to

generally obtain more precise surfaces. This approach, which hinges on divergence-based

analysis, can be broken down into four distinct steps:

1. Shape Initialization

The Ąrst step involves initializing a shape implicit function from the given unoriented

point cloud. This process employs the distances from the point cloud to a base shape,

often a sphere, ensuring that the initialized function is well-behaved and has a meaningful

gradient.

2. Neural Network Parameterization with SIREN

To represent the initialized shape implicit function, the DiGS model leverages the Si-

nusoidal Representation Networks (SIREN). SIREN is speciĄcally designed to represent

intricate functions, making it an ideal choice for point cloud data. It uses sinusoidal acti-

vation functions, ensuring that the network remains highly expressive and can effectively

capture the details of the point cloud.

3. Divergence Regularization

With the network in place, the next step is the actual training process. A critical

aspect of this training is divergence regularization. By adding a penalty based on the

divergence of the gradient of the implicit function, the model ensures that the implicit

function accurately captures the structure of the point cloud. This divergence-based

regularization is instrumental in enabling the model to handle unoriented point clouds

effectively.

4. Shape ReĄnement

Post-training, the model undergoes a reĄnement process. This step ensures that the

resultant implicit function is not just a mere approximation but a precise representation

of the input point cloud.

The entire process, from initialization to reĄnement, underscores the modelŠs emphasis

on capturing the intricacies of unoriented point clouds. The divergence-based approach,

combined with the power of SIREN, sets the DiGS model apart, offering a robust and

efficient solution for point cloud representation.

3.3 Rationale for Choosing the DiGS Network Model

The selection of an appropriate neural network model is crucial for the success of any

machine learning-based project. In the context of point cloud geometry compression, it
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Figure 3.6: Progressive results across four training iterations for both DiGS (upper row) and
SIREN without normalization (lower row), moving from earlier iterations on the
left to later ones on the right.

becomes especially vital given the high computational requirements and the intricacies

involved in 3D data handling. After thorough consideration and experimentation, we

chose the DiGS Network model as the foundational architecture for our work. Below,

we elaborate on the speciĄc reasons for this selection.

Convergence Speed

One of the most critical factors in the choice of a neural network model is its ability

to converge quickly. Slow convergence can dramatically increase the time required for

model training, thereby slowing down the entire research and development process. DiGS

Network was originally designed with convergence speed in mind, in particular, the

weight initialization strategy and the regularizers allow it to learn the required shape

very quickly. Because the training time is in fact the encoding time this property of the

DiGS model makes it the ideal choice for this project.

Versatility in Handling Unoriented Point Clouds

Our projectŠs scope necessitates a model capable of handling unoriented point clouds,

a common form of 3D data. The DiGS NetworkŠs inherent ability to accept unoriented

point clouds as input and construct a Neural Implicit Representation (NIR) allows for

considerably increased decoding speed, w.r.t. a network that simply predicts occupancy

because it allows to avoid sampling in regions where the predicted distance from the

surface is high. Furthermore, the original DiGS model outputs the reconstructed surface

as a Mesh, aligning closely with our projectŠs requirements. However, we adapted the

output from Mesh to Point Cloud to better suit our speciĄc needs.

In summary, the DiGS Network model was selected due to its fast convergence, efficient

training time, and Ćexibility it offers in handling various forms of 3D data, particularly

unoriented point clouds. These characteristics make it an excellent Ąt for our research

objectives, and we anticipate that it will signiĄcantly contribute to the successful com-

pletion of this project.
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3.4 Reconstruction of Point Cloud

The reconstruction process plays a critical role in the conversion of Neural Implicit

Representation (NIR) back to the point cloud (PC) format. The original DiGS Network

model was designed to produce meshes as the output. However, for the needs of our

research, we have adapted the model to generate point clouds. The function responsible

for this transformation is Implicit2pc().

The Implicit2pc() function uses the Marching Cubes algorithm for extracting a

polygonal mesh of an isosurface from a three-dimensional discrete scalar Ąeld.

The implementation is adapted from a paper by Atzmon and Lipman [33], titled "SAL:

Sign Agnostic Learning of Shapes from Raw Data." The original code for the SAL paper

is available on GitHub.

3.4.1 Arbitrary Resolution Reconstruction

One of the major advantages of using the DiGS Network for point cloud reconstruction is

the ability to generate point clouds at arbitrary resolutions. This Ćexibility allows us to

make the point cloud as dense as we wish, which is beneĄcial for applications requiring

high Ądelity. Conversely, there are scenarios where speed is more crucial than Ądelity;

in such cases, the model can be adjusted to perform faster reconstructions at the cost of

lower density.

The Ćexibility to control the density of the reconstructed point cloud is particularly

advantageous in real-world applications such as Augmented Reality (AR) and Virtual

Reality (VR). Consider a scenario where a viewer is using AR/VR glasses to interact with

a point cloud object. When the viewer is at a distance from the object, a high-resolution

point cloud is unnecessary because the details would not be discernible to the viewer.

In this case, a lower-density point cloud would suffice, speeding up the reconstruction

process and reducing computational load.

However, as the viewer approaches the object, the need for a more detailed, high-

resolution point cloud becomes evident. Being able to adjust the resolution of the point

cloud dynamically according to the viewerŠs proximity to the object is therefore an

essential feature. This adaptability in resolution is made possible through our arbitrary

resolution reconstruction approach, which allows for the generation of point clouds with

varying densities to suit the speciĄc requirements of the application.

3.5 Dynamic Quantization of the DiGS Model

Dynamic quantization serves as a powerful tool for model compression without signiĄ-

cantly compromising the performance or accuracy of the model. In the context of the

DiGS Network, the primary focus of utilizing dynamic quantization lies in reducing the

size of the trained model. This becomes particularly important when dealing with large

and complex 3D point clouds, where both computational cost and storage requirements

are substantial.
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3.5.1 Implementation Details

Dynamic quantization allows us to adjust the quantization level arbitrarily, enabling us

to control the bit-depth allocated for each value in the model. Originally, each value

is represented using 32 bits. By quantizing these values to fewer bits, we achieve a

substantial reduction in the model size. SpeciĄcally, we can set the bit-depth to any

arbitrary number of bits, thereby offering Ćexibility in determining the compression

level.

This process involves two steps:

1. Quantization: In this phase, the 32-bit Ćoating-point numbers in the model

are quantized to a lower bit-width. This quantized model is then used for the

compression of the point cloud.

2. Storing Metadata for Dequantization: Alongside the quantized model, itŠs

essential to store metadata that holds the boundary values for each quantized

parameter. This metadata is critical for the dequantization process, allowing us to

reconstruct the 32-bit values from their quantized forms.

3.5.2 Bitrate Considerations

The size of the quantized model divided by the number of points in the original point

cloud yields the Śbits per pointŠ (bpp) metric. This value serves as a measure of the

compression efficiency, indicating how many bits are used to represent each point in the

compressed point cloud, and therefore it is used as the measure for the rate.

By employing dynamic quantization in the DiGS model, we gain the ability to control

the rate, thereby optimizing the trade-off between model size and reconstruction quality.

3.6 Evaluation Metrics and Assessment Methodology

3.6.1 PSNR as a Metric

Peak Signal-to-Noise Ratio (PSNR) is a commonly used metric for assessing the quality

of reconstruction in image and signal processing. In the context of 3D point clouds,

PSNR serves to quantify the quality of the reconstructed point cloud as compared to

the original.

In particular, in point clouds, one of the most adopted metrics is the PSNR_D1 which

can be calculated using the following mathematical formulation:

Let PC1 and PC2 be the two point clouds being compared, each containing n points

in R
3. Let scale be an optional scale factor. If scale is not provided, it is calculated as

the maximum coordinate range of PC1.

The distance between each point in PC2 and its nearest neighbor in PC1, denoted

as d1i, is calculated. Similarly, the distance between each point in PC1 and its nearest

neighbor in PC2, denoted as d2i, is calculated.

The mean squared error (MSE) for these distances is calculated as:
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MSE1 =
1

n

n
∑

i=1
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Finally, the PSNR_D1 is calculated as:

PSNR_D1 = 10 log10



scale2

max(MSE1, MSE2)



This metric serves as a quantitative measure of the Ądelity of the reconstructed point

cloud in relation to the original.

3.6.2 Quality per Compression

To thoroughly evaluate the performance of our model, we plot PSNR against bpp. This

plot serves to illustrate the trade-off between rate and distortion, allowing us to identify

the optimal operating point where we achieve a balance between a small model size and

a high reconstruction quality based on the application requirements.

3.7 Role of Residuals in Compression

In our initial experiments, we focused on compressing the entire point cloud using neural

implicit representations. However, the performance, as measured by PSNR versus bits-

per-point (bpp), was not up to efficiently correlated to the human perception. This

led us to explore alternative approaches to improve the efficiency of our compression

algorithm.

After extensive experimentation, we shifted our focus to compressing residuals. In

this context, residuals are deĄned as the differences between the initial model, which is

initialized deterministically thanks to a Ąxed procedure and seed, in the DiGS Network

(see Figure 3.6), and the Ąnal learned model. We found that residuals had lower entropy

thus resulting in a lower rate when keeping distortion constant, thereby making the

compression more effective.

By compressing the residuals rather than the entire point cloud, we were able to

achieve a more balanced and effective compression scheme, with improved PSNR per

bpp metrics.

3.7.1 Why Use Residuals?

Quantization techniques are more effective when the range of data values is smaller.

Because with the same amount of bits you can represent the distribution of values with

smaller errors. During our experiments, we observed that the distribution of residuals

has a smaller standard deviation compared to the distribution of actual model weights.

This observation led us to the idea of compressing the residuals instead of the original

model weights.
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(a) decoder fc block net 0.0 weight (b) decoder fc block net 1.0 weight

(c) decoder fc block net 2.0 weight (d) decoder fc block net 3.0 weight

(e) decoder fc block net 4.0 weight

Figure 3.7: Comparison of residuals and actual weights.

3.7.2 Methodology

Our approach is as follows:

1. Compress the residuals using dynamic quantization.

2. Store these compressed residuals.

3. During the dequantization process, we decompress the residuals and add them

back to the initial model, which is initialized deterministically thanks to a Ąxed

procedure and seed, to reconstruct the Ąnal learned model.

3.7.3 Visual Evidence

We offer visual evidence to support our approach. Five charts comparing the distribution

of residuals and actual weights for different layers are presented in Figure 3.7:

This clearly supports our choice of compressing residuals for more efficient and effective

model compression. As you can see, for most layers, the range of residuals is smaller

than the weights themselves.
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Experiments and Results

In this chapter, we present a detailed account of the experiments conducted to validate

the efficacy of our proposed method for point cloud geometry compression using neural

implicit representations. The primary objective is to evaluate the performance of the

trained DiGS network model, especially in terms of compression ratios and reconstruc-

tion quality. To this end, we provide an exhaustive explanation of the experimental

setup, model conĄgurations, applied quantization techniques, and the metrics used for

assessment. Subsequently, we reveal the results and offer an in-depth analysis, comparing

them with existing methods and drawing insightful conclusions.

4.1 Experimental Setup

The experimental setup serves as the foundation upon which the entire study is built. It

is crucial to provide a thorough description to ensure the reproducibility of the results.

We begin by elaborating on the hardware and software conĄgurations employed during

the experiments.

The computational experiments were conducted on a dedicated machine equipped

with an Intel® Core™ i7-7700 CPU that operates at a clock speed of 3.60 GHz and

offers 8 cores. The machine is further enhanced with an NVIDIA GeForce GTX 1070

Graphics Processing Unit (GPU), which signiĄcantly accelerates the model training and

inference processes. To handle large datasets and facilitate complex computations, the

system is provisioned with 32 GB of Random Access Memory (RAM).

Our implementation is built on Python 3.7, chosen for its extensive libraries and com-

munity support for scientiĄc computing and machine learning tasks. Several special-

ized libraries were utilized to implement different aspects of the project. For numerical

operations, we relied on the numpy library, version 1.19.2. Visualization tasks were ac-

complished using matplotlib version 3.3.4, while scientiĄc computations leveraged the

scipy library, version 1.6.2. We used machine learning utilities that were covered by

pytorch.

The dataset used in this study has been elaborated upon in Chapter 3. We refer the

reader to that chapter for a comprehensive understanding of its characteristics and how

it aligns with the objectives of this research.
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4.2 Model Configuration

Understanding the architecture and hyperparameters of the DiGS network is pivotal for

comprehending the experimental results and ensuring the reproducibility of this study.

In this section, we delineate the conĄguration of the DiGS network, focusing on its

architecture, layers, and hyperparameters.

4.2.1 Architecture

The DiGS network is primarily composed of an optional encoder and a decoder. The

encoder can either be an ŠautodecoderŠ or be completely omitted (ŠnoneŠ), based on the

conĄguration. The core of the model lies in its decoder, which is implemented as a fully

connected neural network.

Decoder

The decoder is constructed as a fully connected network with varying numbers of hidden

layers, controlled by the parameter decoder_n_hidden_layers. Each hidden layer is

followed by a non-linearity, the type of which is speciĄed by the parameter nl. The

decoder takes as input the 3D coordinates concatenated with a latent vector, if an

encoder is used. The output is a single channel, representing the implicit Ąeld value at

the input coordinates.

4.2.2 Hyperparameters

The DiGS network allows for a variety of hyperparameters to be conĄgured. Some of

the key hyperparameters include:

• Latent Size (latent_size): Determines the size of the latent vector.

• Decoder Hidden Dimension (decoder_hidden_dim): SpeciĄes the number of

neurons in the hidden layers of the decoder.

• Non-Linearity (nl): DeĄnes the type of non-linear activation function used in

the network.

• Number of Hidden Layers in Decoder (decoder_n_hidden_layers): Con-

trols the depth of the decoder network.

• Initialization Type (init_type): Determines the weight initialization strategy

for the network.

• Number of Epochs (num_epochs): SpeciĄes the number of training cycles.

Initialization

The initialization of the network weights is particularly crucial for the training dynamics

and model performance. The DiGS network supports multiple initialization strategies
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like ŠsirenŠ, Šgeometric_sineŠ, and ŠmfgiŠ, each serving speciĄc purposes and offering

different characteristics during training.

4.2.3 Specific Configurations

For a concrete understanding, we specify the exact conĄgurations used in our experi-

ments. The following hyperparameters were chosen based on empirical testing and the

requirements of the model:

Hyperparameter Value

Latent Size (latent_size) 0 (for reconstruction)

Decoder Hidden Dimension (decoder_hidden_dim) 256

Non-Linearity (nl) sine

Number of Hidden Layers in Decoder (decoder_n_hidden_layers) 4

Initialization Type (init_type) mfgi

Number of Epochs (num_epochs) 5000

Table 4.1: SpeciĄc hyperparameters and conĄgurations used in the experiments.

It is worth noting that a latent size of zero indicates that no latent variables were used

in the model for the task of point cloud reconstruction. This conĄguration aligns with

our focus on using the weights of the network as a mean to represent the point cloud

and eliminates the inĆuence of latent variables on the reconstruction task.

4.3 Results

This section presents the empirical results obtained from the experiments. We focus

on multiple aspects including the performance of trained models before quantization,

the effect of dynamic quantization on these models, and a comparative analysis with

baseline methods. Each subsection is accompanied by tables and plots to provide a

comprehensive view of the Ąndings.

4.3.1 Performance Metrics After Training

To evaluate the initial reconstruction capabilities of the DiGS network model, we cal-

culated the Peak Signal-to-Noise Ratio (PSNR) for different 3D models after training

but before applying any quantization steps. These results serve as a baseline for under-

standing the inherent quality of the reconstructed point clouds.

The table and Ągure elucidate that the PSNR values vary depending on the complexity

and characteristics of the 3D model. Higher PSNR values generally indicate better

reconstruction quality, serving as an initial indicator of the modelŠs performance.

4.3.2 Performance Metrics After Quantization and Dequantization

For each model, we have generated individual tables to delve deeper into their perfor-

mances. These tables, like the one for the ŠthaiŠ model shown in Table 4.3, provide
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3D Model PSNR_D1 (dB)

House 35.193

Long 63.374

Soldier 54.253

Frog 39.238

Shiva 40.765

Thai 55.343

Boxer 60.250

Facade09 44.117

Facade15 39.747

Loot 47.834

Queen 50.088

RedandBlack 56.339

Table 4.2: PSNR values for different 3D models after training the DiGS network model, but
before quantization.

a more granular view. The tables show the performance metrics at various bitrates,

helping to ascertain the optimal operating point for each model.

Table 4.3: Performance Metrics of thai

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 181513 24.45 1.48

4 250424 30.03 2.04

8 447589 50.17 3.65

16 751972 50.46 6.13

Table 4.4: Performance Metrics of soldier

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 169256 24.32 1.24

4 232933 33.51 1.71

8 425053 48.62 3.12

16 741268 48.73 5.45

4.3.3 Comparison with Baselines

In our evaluations, we compared our models against established benchmarks such as

DRACO and G-PCC. Figure 4.2 shows that both DRACO and G-PCC outperform our

approach in terms of PSNR across different bitrates. One contributing factor to this is

the quality of the original Neural Implicit Representation (NIR) generated by the DiGS

model, which was not as high as anticipated.
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Figure 4.1: Graphical representation of PSNR values for different 3D models after training.

Table 4.5: Performance Metrics of shiva

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 170237 21.73 1.51

4 240926 36.85 2.14

8 429156 40.27 3.81

16 741416 40.29 6.59

4.3.4 Summary

Our work contributes to the point cloud compression literature by introducing a novel

approach that focuses on the compression of Neural Implicit Representations (NIRs).

However, as seen in Figure 4.2, our models have limitations in terms of PSNR when

compared to traditional methods like DRACO and G-PCC. These Ąndings suggest that

improving the initial NIR quality could be a key direction for future research to enhance

the performance of our approach.
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Figure 4.2: Performance measurement on thai.

Table 4.6: Performance Metrics of redandBlack

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 153060 23.84 1.62

4 245028 32.17 2.59

8 443213 50.86 4.68

16 750763 51.56 7.93

Figure 4.3: Performance measurement on soldier.
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Figure 4.4: Performance measurement on shiva.

Figure 4.5: Performance measurement on redandBlack.

Table 4.7: Performance Metrics of queen

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 178397 25.70 1.43

4 240947 30.14 1.93

8 424278 48.73 3.39

16 741151 48.81 5.92
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Figure 4.6: Performance measurement on queen.

Table 4.8: Performance Metrics of loot

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 166812 24.62 1.66

4 247830 31.42 2.46

8 439783 46.37 4.37

16 750556 46.44 7.46

Figure 4.7: Performance measurement on loot.
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Table 4.9: Performance Metrics of long

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 165733 28.22 1.55

4 240451 32.35 2.24

8 436023 54.49 4.07

16 747578 54.61 6.97

Figure 4.8: Performance measurement on long.

Table 4.10: Performance Metrics of house

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 153765 17.89 0.71

4 219378 33.06 1.02

8 420082 34.86 1.95

16 739323 34.89 3.43

Table 4.11: Performance Metrics of frog

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 152600 20.48 0.77

4 232233 37.17 1.17

8 434068 39.08 2.20

16 746808 39.12 3.78

Table 4.12: Performance Metrics of facade15

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 175558 21.20 1.69

4 249943 39.18 2.40

8 435191 40.23 4.19

16 745874 40.22 7.18
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Figure 4.9: Performance measurement on house.

Figure 4.10: Performance measurement on frog.

Table 4.13: Performance Metrics of facade09

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 143241 24.18 1.29

4 220739 40.60 1.98

8 425511 44.42 3.82

16 739363 44.40 6.65
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Figure 4.11: Performance measurement on facade15.

Figure 4.12: Performance measurement on facade09.

Table 4.14: Performance Metrics of boxer

Num Bits Compressed Model Size (Bytes) PSNR D1 (dB) Bitrate (bpp)

2 160608 27.36 1.29

4 241871 33.59 1.94

8 438967 52.04 3.53

16 748941 52.10 6.02

57



4. Experiments and Results

Figure 4.13: Performance measurement on boxer.

Figure 4.14: Average performance comparison.
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(a) long (b) soldier (c) boxer

(d) shiva

Figure 4.15: Snapshots from some reconstructed PCs with 16 bits
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5
Conclusions

This chapter presents the conclusions drawn from this thesis work.

5.1 Summary of Research Findings

The primary aim of this study was to explore the possibilities of compressing 3D point

cloud data effectively, with a particular focus on arbitrary bitrates and dynamic reso-

lution adjustments. While the PSNR metrics indicated that our compression method

did not necessarily outperform existing methods in terms of preserving Ąne details, it

still has greater Ćexibility in the choice of the decoded resolution and number of points

which is due to the inherent characteristics of neural implicit representations.

A groundbreaking feature of our approach lies in its capacity for dynamic resolution

adjustment. Leveraging the DiGS neural network model, we demonstrated that the point

cloudŠs resolution could be increased or decreased as needed during the reconstruction

phase. This offers signiĄcant advantages in real-world applications, such as augmented

reality (AR). In an AR setting, the modelŠs resolution can be dynamically adapted to the

userŠs proximity to the object, allowing for a balance between detail and computational

efficiency.

The ability to adjust the resolution of reconstructed point clouds dynamically has far-

reaching implications for various Ąelds. In Augmented Reality (AR) or Virtual Reality

(VR), for instance, our methodology allows for an adaptive experience. As the user

moves closer to or farther away from a 3D object, the system can modify the resolution,

balancing visual detail and computational efficiency. This adaptability could lead to

more immersive and responsive AR/VR applications.

Finally, the capability to function at arbitrary bitrates makes our approach highly ver-

satile, potentially serving as a foundational technology for future compression algorithms

that aim for both efficiency and adaptability.

While our method offers Ćexibility in resolution and bitrate, it does come with its

own set of limitations. One of the primary drawbacks of the approach is the suboptimal

PSNR values obtained using the uncompressed DiGS architecture which gives us a great

disadvantage w.r.t. other methods since after compression distortion can only increase.

However, as NIR approaches improve this type of solution might become more and

more viable given that the performance degradation introduced by compression is com-

parable with the one displayed by G-PCC and Draco. Additionally, the approach relies

on neural networks, which require substantial computational resources for training. This

could be a bottleneck for real-time applications where rapid encoding is necessary. How-

ever, by using the DiGS architecture we have already considerably reduced the training
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time compared to simpler solutions.

Another challenge lies in the Ąne-tuning of parameters, including the choice of loss

functions and quantization techniques, to strike an optimal balance between compression

rate and reconstruction quality. The adaptability of the method, while a strength, also

introduces complexity in Ąnding the best set of parameters for any given application.

The research presented here opens several future improvements. One of the most

immediate steps could be the exploration of other compression methods, such as Quan-

tization Aware Training (QAT). Implementing QAT could potentially lead to better

optimization and improved PSNR values, addressing one of the current limitations of

our method.

Another exciting direction for future work could be the integration of our compression

method with real-time applications, like augmented reality. This would involve over-

coming the current limitations related to computational resources and training time.

Lastly, further research can also focus on improving the initial model quality, which is

a key determinant in the Ądelity of the reconstructed point cloud. Enhancing the initial

model can potentially lead to better compression and reconstruction outcomes.

In summary, this thesis has explored the challenges and opportunities in point cloud

compression, particularly focusing on neural implicit representations as a novel approach.

While quality metrics like PSNR may not be comparable to traditional methods, its

versatility and scalability offer signiĄcant advantages. The ability to reconstruct point

clouds at arbitrary resolutions opens up new possibilities for applications ranging from

entertainment to scientiĄc research. As technology continues to evolve, the relevance of

efficient and versatile point cloud compression methods will only increase, making the

Ąndings of this research both timely and impactful.
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