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Abstract

In cardiovascular MRI, myocardial T1 mapping provides an imaging biomarker for
the non-invasive characterization of the myocardial tissue, with the potential to
replace invasive biopsy for the diagnosis of several pathological heart muscle con-
ditions such as fibrosis, iron overload, or amyloid infiltration. Over the last few
years, deep learning has become increasingly appealing for image reconstruction
to improve upon the commonly employed user-dependent regularization terms by
automatically learning image properties from the training dataset. This thesis in-
vestigates a novel neural network-based subspace MRI reconstruction method for
myocardial T1 mapping, which uses a single-shot inversion-recovery radial FLASH
sequence. The neural network utilized in this study is NLINV-Net, which draws in-
spiration from the NLINV image reconstruction technique. NLINV-Net addresses
the nonlinear inverse problem for parallel imaging by unrolling the iteratively reg-
ularized Gauss-Newton method and incorporating neural network-based regular-
ization terms into the process. It learned in a self-supervised fashion, i.e., with-
out a reference, correlations between the individual parameters encoded with the
FLASH sequence, and, consequently, a well-tuned regularization. NLINV-Net out-
performed NLINV in terms of T1 precision and generated high-quality T1 maps.
The T1 maps computed using NLINV-Net were comparable to the ones obtained
using another baseline method, which combines parallel imaging and compressed
sensing using the ℓ1-Wavelet regularization when solving the linear inverse prob-
lem for parallel imaging. In this case, the advantage of NLINV-Net is that it
removes the subjective regularization parameter tuning that comes with the fore-
named benchmark method. Thus, it provides an excellent basis for myocardial T1

mapping using a single-shot inversion-recovery radial FLASH sequence.





Sommario

La mappatura T1 del miocardio si è affermata come un promettente biomarker
per la caratterizzazione non invasiva del muscolo cardiaco nell’ambito della riso-
nanza magnetica cardiovascolare. Questo approccio ha il potenziale di sostituire
la biopsia nella diagnosi di diverse condizioni patologiche del miocardio, come la
fibrosi, l’accumulo di ferro o amiloidosi. Negli ultimi anni, il deep learning ha susci-
tato un crescente interesse per la ricostruzione delle immagini, portando a notevoli
miglioramenti rispetto alle tecniche che richiedono la predefinizione dei parametri
di regolarizzazione da parte dell’operatore, rendendo così il processo parzialmente
soggettivo. Il miglioramento è reso possibile grazie alla capacità delle reti neurali di
apprendere automaticamente le proprietà presenti nelle immagini del dataset uti-
lizzato per il training. La presente tesi si focalizza sull’analisi di un nuovo metodo
di ricostruzione subspaziale delle immagini di risonanza magnetica basato su reti
neurali per la mappatura T1 del miocardio, che utilizza una sequenza chiamata
single-shot inversion-recovery radial FLASH. È stata impiegata una rete neurale
nota come NLINV-Net, la quale trae ispirazione dalla tecnica di ricostruzione delle
immagini NLINV. NLINV-Net risolve il problema inverso non lineare per il parallel
imaging srotolando l’iteratively regularized Gauss-Newton method e incorporando
nel processo termini di regolarizzazione basati su reti neurali. La rete neurale ha
appreso le correlazioni esistenti tra i singoli parametri codificati dalla sequenza
FLASH in modo auto-supervisionato, ovvero senza richiedere un riferimento es-
terno. NLINV-Net ha dimostrato di superare NLINV per la precisione dei valori
T1, producendo mappe T1 di alta qualità. Le mappe ottenute con NLINV-Net sono
paragonabili a quelle ottenute con un altro metodo di riferimento, che combina par-
allel imaging e compressed sensing utilizzando la regolarizzazione ℓ1-Wavelet nella
risoluzione del problema lineare inverso per il parallel imaging. Il vantaggio di
NLINV-Net rispetto al suddetto metodo di appoggio è quello di sbarazzarsi della
predefinizione dei parametri di regolarizzazione da parte dell’operatore. In questo
modo, NLINV-Net fornisce una solida base per la mappatura T1 del miocardio
utilizzando la sequenza single-shot inversion-recovery radial FLASH.
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Chapter 1

Introduction

1.1 Background

Cardiovascular Magnetic Resonance Imaging (MRI) is an imaging technique
that offers a non-invasive tool for the accurate assessment of both the function
and structure of the cardiovascular system. It stands out from other imaging
techniques, such as X-ray Computed Tomography (CT) or Positron Emission
Tomography (PET), by employing neither ionizing radiation nor radioactive
substances but static and time-varying magnetic fields. A primary challenge
associated with MRI, especially in cardiovascular MRI, is the extended acquisition
time, which can cause patient discomfort and heighten the risk of motion artifacts.
A breakthrough in addressing this issue occurred in 1986 when Haase et al.
introduced the Fast Low Angle SHot (FLASH) sequence [1]. This innovation
harnessed Radio Frequency (RF) pulses with small flip angles to preserve most of
the longitudinal magnetization during excitation, eliminating the requirement for
waiting periods between consecutive experiments. Another notable advancement
was the development of parallel imaging in 1997 by Sodickson et al. [2]. This
technique involves the utilization of multiple receiver coils for signal acquisition,
resulting in a significant acceleration of acquisition times, often by a factor of two
or more [2]. A milestone in the quest for rapid MRI occurred in 2007 when Lustig
et al. [3] and Block et al. [4] introduced compressed sensing in the field of MRI.
It enables image reconstruction from signals acquired at sub-Nyquist sampling
rates, leading to substantial reductions in scan times. Modern MRI techniques
combine parallel imaging and compressed sensing by incorporating sparsifying
regularization terms when solving the inverse problem associated with parallel
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1.1 Background

imaging. Another approach developed to enhance imaging speed is non-Cartesian
MRI. Notably, the adoption of radial sampling has garnered significant attention
due to its inherent robustness against motion artifacts and its partial tolerance to
undersampling.

In the context of cardiac MRI, myocardial T1 mapping provides an imaging
biomarker for the non-invasive characterization of the myocardial tissue with
the potential to replace invasive biopsy for several pathological heart muscle
conditions such as fibrosis, iron overload, or amyloid infiltration [5]. Quantitative
T1 mapping typically involves an appropriate magnetization preparation pulse,
e.g., an inversion pulse, followed by the acquisition of a predefined number of
images of the relaxation period. After data acquisition and image reconstruction,
the relaxation model is fit to the images to derive the parameter maps. The
basic requirements for myocardial T1 mapping comprehend speed, practically
robustness, T1 accuracy, and sufficiently high spatial resolution, and a method
ensuring these needs was proposed by Wang et al. in 2016 [6]: myocardial T1

mapping can be accomplished by combining single-shot inversion-recovery radial
FLASH sequence with breath-hold and finger pulse triggering, i.e., data are
acquired within a breath-hold, and the inversion pulse is triggered to the early
diastolic phase with the use of finger pulse signal, iterative image reconstruction
by NonLinear Inversion (NLINV), as well as T1 fitting with automated deletion
of systolic frames based on the finger pulse triggering [6]. Instead of solving the
image reconstruction problem for as many images as the number of time points, it
is possible to model the physical laws that govern the MRI signal generation and
extract quantitative maps of the underlying physical parameters directly from
the measured k-space data without intermediate image reconstruction by fitting
the model to the data through a process called model-based MRI reconstruction
[7]. Furthermore, subspace-constrained MRI reconstruction [7] aims to reduce
the dimensionality of the MRI reconstruction problem as the model-based MRI
reconstruction does but preserves linearity through the projection of the data
onto a subspace. Finally, over the last few years, deep learning has become
even more appealing for image reconstruction to improve upon the previously
user-dependent regularization terms by automatically learning image properties
from the training dataset [8].
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Chapter 1. Introduction

1.2 Research Question

The main focus of this thesis is to develop and investigate a new neural
network-based MRI reconstruction method for myocardial T1 mapping based on
self-supervised subspace deep learning. The chosen neural network is NLINV-Net
[9]. Through its self-supervised learning approach, NLINV-Net can autonomously
learn how to reconstruct subspace images jointly with coil sensitivity maps
from undersampled radial cardiac data, which do not possess a ground truth
reference. The aim is to enhance the image quality of parameter maps compared
to NLINV method results and, if possible, improve over techniques incorporating
hand-crafted regularization terms.

1.3 Structure

As far as the organization of this thesis is concerned, Chapter 2 introduces fun-
damental MRI concepts and advanced image reconstruction techniques, including
parallel imaging, compressed sensing, and, for quantitative MRI, model-based and
subspace-constrained reconstruction. It also explores cardiovascular MRI, focusing
on myocardial T1 mapping. Furthermore, it delves into the basics of deep learning
and its integration into image reconstruction, representing the core investigation in
this thesis. Chapter 3 outlines the materials and methods exploited in this study.
Chapter 4 presents the experimental results. Chapter 5 delves into a detailed
discussion and analysis of the results, highlighting the strengths, limitations, and
potential future improvements. Chapter 6 presents the conclusions drawn from
the current study and highlights potential outlooks for future research.
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Chapter 2

Theoretical Background

This chapter introduces fundamental MRI concepts and advanced image recon-
struction techniques, including parallel imaging, compressed sensing, and, for
quantitative MRI, model-based and subspace-constrained reconstruction. It also
explores cardiovascular MRI, focusing on myocardial T1 mapping. Furthermore, it
delves into the basics of deep learning and its integration into image reconstruction,
representing the core investigation in this thesis.

2.1 Basics of Magnetic Resonance Imaging

MRI is a widely used non-invasive imaging technique to study the anatomy and
function of humans and animals. In contrast to other imaging techniques, such
as X-ray Computed Tomography (CT) or Positron Emission Tomography (PET),
MRI stands apart by employing neither ionizing radiation nor radioactive sub-
stances but static and time-varying magnetic fields. The manipulation of these
fields and their timing determines the possibility of acquiring images with differ-
ent contrasts, such as those based on signal relaxation times T1 and T2. For com-
prehensive information about MRI, it is recommended to refer to the textbook
[10].

2.1.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) is the basis of MRI. It was first described
by Rabi in 1938 [11], and then extended by Bloch and Purcell in 1946 [12][13].
NMR is the physical phenomenon in which nuclei in a strong static magnetic field
are perturbed by a weak oscillating magnetic field and respond by inducing an
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2.1 Basics of Magnetic Resonance Imaging

electric current with a frequency related to the strength of the static magnetic
field applied in a nearby coil.

Nuclei with odd number of protons and/or neutrons, such as 1H, 13C, 19F,
23Na, and 31P, carry an intrinsic angular momentum I, called spin. The magnetic
field that arises from the spin of a nucleus is called nuclear magnetic dipole
moment, and is related to the spin by

µ = γI (2.1)

where γ is the gyromagnetic ratio. The magnitude of µ is certain and given by

|µ| = γh̄
√

I(I + 1) (2.2)

where h̄ is the Planck’s constant divided by 2π, and I is the spin quantum number.
By contrast, the direction of µ is random due to random thermal motion, resulting
in zero macroscopic magnetization M , where M = ∑

i µi. In the presence of a
strong static external magnetic field B0 = B0ez, the spins experience the Zeeman
effect, which for the hydrogen protons means that they align in two energy states
given by

E↑ = −γ
h̄

2
B0 E↓ = γ

h̄

2
B0 (2.3)

where ↑ denotes the parallel and ↓ the anti-parallel alignment of µ with B0. Ac-
cording to the Boltzmann statistics, the distribution of the spins in the two popu-
lation stick to

N↑

N↓
= exp

(
− ∆E

KbT

)
(2.4)

where Kb is the Boltzmann constant and T is the temperature. Therefore, the pres-
ence of B0 generates an observable macroscopic magnetization M , which points
along the positive direction of B0 and has a magnitude equal to

M0 = |M | = ρ
γ2h̄2

4KbT
B0 (2.5)

where ρ is the proton density. M0 is called equilibrium magnetization.

The nuclear magnetic dipole moment µ precesses around B0 with an angu-
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Chapter 2. Theoretical Background

lar frequency equal to
ω0 = γB0 , (2.6)

and the precession is clockwise if observed against the positive direction of B0. In
pulsed NMR experiments, typical values of ω0, known as Larmor frequency, are in
the RF band, i.e., in the MHz range.

Excitation

The application of a weak, time-varying magnetic field B1(t) with frequency ω0

and perpendicular to ez rotates the macroscopic magnetization M by an angle α

with respect to ez, with M experiencing a torque perpendicular to the direction
of M according to

dM(t)
dt

= γM (t) × B(t) (2.7)

where

B(t) = B0 + B1(t) =


0
0

B0

+


B1(t) sin(ω0t)
B1(t) cos(ω0t)

0

 . (2.8)

During the excitation, M is tilted towards the xy-plane where it processes with
ω0. The rotation of M is a spiraling-downward motion due to the continuing
precession about the direction of B0. The flip angle α is proportional to the
integral over the envelope B1(t) of the pulse. B1(t) is also known as RF pulse
because of the frequency band of ω0. A pulse which rotates the magnetization
vector by a certain flip angle α will be called an α-pulse (e.g., a 90◦-pulse) in the
following. The physical phenomenon underlying the aforementioned excitation is
called resonance.

Relaxation

Once the RF pulse is turned off, the system tends toward its equilibrium state and
M realigns with B0, releasing electromagnetic energy in the so-called relaxation
process. This process can be described by the Bloch equations:

dM (t)
dt

= γM(t) × B(t) +


− 1

T2
Mx(t)

− 1
T2

My(t)
M0−Mz(t)

T1

 . (2.9)
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2.1 Basics of Magnetic Resonance Imaging

T1 represents the time constant governing the spin-lattice relaxation. This process
involves the absorption of released energy by the lattice and pertains to the relax-
ation of the longitudinal magnetization Mz. T2 is the time constant associated with
the spin-spin relaxation. This mechanism involves the absorption of the released
energy by other spins and pertains to the relaxation of the transversal magnetiza-
tion. T1 and T2 are specific characteristics of the sampled material, allowing for
the distinction of different tissues. To simplify the analysis, the two components
of the transversal magnetization Mx and My are usually combined into one single
complex-valued quantity:

M⊥(t) = Mx(t) + iMy(t) . (2.10)

In the absence of B1(t), the solution of Equation 2.9 with respect to M⊥(t), where
M⊥ satisfies the differential equation dM⊥(t)

dt
= −

(
iγBz(t) + 1

T2

)
M⊥(t), and Mz is

given by

M⊥(t) = M⊥(0)e−t/T2e−iγ
∫ t

0 Bz(τ)dτ (2.11)

= M⊥(0)e−t/T2e−iω0t (2.12)

Mz(t) = M0 + (Mz(0) − M0)e−t/T1 (2.13)

where M⊥(0) and Mz(0) are the transversal and longitudinal magnetization imme-
diately after turning off the RF pulse.

Free Induction Decay

The application of an RF pulse B1(t) in the presence of a static magnetic field B0

results in a nonzero, time-varying transversal magnetization M⊥(t) precessing with
Larmor frequency ω0 around B0. M⊥(t) can be captured by placing a receiver coil
in the xy-plane: according to the Faraday-Lens’s law of induction, the time rate of
change of the magnetic flux of M⊥(t) will induce in the coil an electromotive force,
which is called Free Induction Decay (FID) signal. The FID signal s(t) oscillates
at the Larmor frequency ω0 and can be modeled by the transversal magnetization
M⊥(t). Theoretically, the Larmor frequency ω0 is uniform across all positions
within B0. In practice, external field inhomogeneities lead to fluctuations in the
Larmor frequency as position shifts. Consequently, dephasing accelerates, and the
transversal relaxation occurs more rapidly than what T2 describes. The signal
decays with an effective spin-spin relaxation time T ∗

2 smaller than T2.

8



Chapter 2. Theoretical Background

2.1.2 Spatial Encoding

The FID signal generated by the application of an RF pulse B1(t) in the presence
of a static magnetic field B0 carry any information concerning the position of the
spins generating the signal. To inject spatial information into the acquired signal,
magnetic field gradients come into play. By adding gradients to B0, the resulting
magnetic field varies in space:

B(r, t) = B0 + G(t) · r =


0
0

B0

+


Gx

Gy

Gz

 ·


x

y

z

 (2.14)

Consequently, an additional phase term is generated on the transversal magneti-
zation:

M⊥(r, t) = M⊥(r, 0)e−t/T ∗
2 (r)e−i(ω0t+γ

∫ t

0 G(τ)dτ ·r) (2.15)

= M⊥(r, 0)e−t/T ∗
2 (r)e−i(ω0t+2πk(t)·r) . (2.16)

Here, to describe that the time evolution of the gradient induced spatial phase
variations, the k-space trajectory is defined as

k(t) = γ

2π

∫ t

0
G(τ)dτ , (2.17)

and the accumulated phase due to the application of the gradients is

ϕ(r, t) = γ
∫ t

0
G(τ)dτ · r = 2πk(t) · r . (2.18)

The signal detected by the receiver coil can be modeled by the integral
∫

V
M⊥(r, t)dr . (2.19)

Removing the term e−iω0t by quadrature demodulation, omitting the relaxation
term e−t/T ∗

2 (r), and assuming that the initial transversal magnetization M⊥(r, 0) is
proportional to the spin density ρ, the signal is then proportional to the Fourier
transform of ρ, sampled on a k-space trajectory k(t):

s(k(t)) ∝
∫

V
ρ(r)e−i2πk(t)·rdr (2.20)

9



2.1 Basics of Magnetic Resonance Imaging

or

s(kx(t), ky(t), kz(t)) ∝
∫ ∫ ∫

ρ(x, y, z)e−i2π(kx(t)x+ky(t)y+kz(t)z)dx dy dz (2.21)

where

kx(t) = γ

2π

∫ t

0
Gx(τ)dτ ky(t) = γ

2π

∫ t

0
Gy(τ)dτ kz(t) = γ

2π

∫ t

0
Gz(τ)dτ . (2.22)

Equation 2.22 shows that, by independently varying the gradients Gx, Gy, and Gz,
it is possible to sweep over the 3D k-space. Then, the challenge is to manipulate
the application of the gradients in such a way that the 3D k-space can be sampled
sufficiently. This is required in order that the reconstructed image ρ̂(r) be an accu-
rate estimate of ρ(r), where ρ̂(r) is the inverse Discrete Fourier Transform (DFT)
of the measured data. According to the Nyquist-Shannon sampling theorem, to
avoid aliasing the maximum distance of samples in k-space ∆k and the desired
Field Of View (FOV) of the object should satisfy

∆k ≤ 1
FOV

. (2.23)

An acquisition is "fully sampled" if Equation 2.23 holds. To spare acquisition time,
it is generally desirable to perform undersampling acquisitions, acquiring fewer
data than what the Nyquist-Shannon condition demands. Section 2.2 presents
the concepts of parallel imaging and compressed sensing, which circumvent the
Nyquist-Shannon condition and allow for suitable reconstructions even for high
undersampling factors.

2.1.3 Slice Selection

Slice selection aims to excite only a slice of the sample. A gradient is applied along
one of the axes, e.g., z-axes, resulting in a Larmor frequency varying linearly along
the gradient direction:

ω(z) = γ(B0 + Gz · z) = ω0 + γGz · z . (2.24)

As a result, by applying an RF pulse with a bandwidth ∆ω, only the spins with
the corresponding Larmor frequencies will be excited. Once a slice has been
selected, the remaining 2D plane can be spatially encoded.

10



Chapter 2. Theoretical Background

The slice selected gradient induces dephasing in the slice select direction
across the slice thickness ∆z, and the procedure to correct for this phase accumu-
lation is to have the gradient reversed after the RF pulse is turned off, such that
the spins realign in the transversal plane at the end of the reversed gradient lobe.

2.1.4 k-Space Trajectories

In principle, it is possible to generate any k-space trajectory by switching gradients
along time according to Equation 2.17. An example of 2D Cartesian trajectory is
shown in Figure 2.1a. k-space lines are collected line-by-line sequentially to fill in
a Cartesian grid. An example of 2D radial sampling trajectory is shown in Figure
2.1b. k-space lines, known also as a radial spoke or simply spoke, are still collected
line-by-line sequentially, but in a star-shaped pattern. Thus, each spoke is defined
by a specific angle and passes through the center of k-space. It is accomplished by
setting the gradients Gx and Gy according to

Gx = Gmax · cos(θ) Gy = Gmax · sin(θ) (2.25)

where Gmax denotes the amplitude required for sampling the central k-space
row (ky = 0), and θ is the desired angle of the spoke. To date, the most used
rotation scheme is golden-angle radial sampling, in which spokes are rotated by
a so-called "golden angle" [14]. Golden-angle based strategy covers the entire
k-space without repeating any angles and allows for arbitrary binning of spokes
to form one k-space frame [14]. A novel extension of the standard golden-angle
radial sampling is the tiny golden angle radial sampling [15].

In the case of Cartesian sampling, every sample lies on the Cartesian grid,
and this allows for simple reconstruction with a Fast Fourier Transform (FFT),
i.e., an efficient algorithm for calculating the DFT, when the Nyquist-Shannon
condition (Equation 2.23) is fulfilled. As for radial sampling, the samples do
not necessarily lie on the Cartesian grid, preventing direct FFT reconstruction.
Reconstructing radial k-space data involves a process called "gridding" before FFT,
where radial k-space data are interpolated onto a Cartesian grid. The entire recon-
struction process is also known as non-uniform Fast Fourier Transform (nuFFT)
[16]. Furthermore, Cartesian sampling is insensitive to gradient imperfections,
while radial sampling is heavily affected by inaccuracies of gradient timing, which
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2.1 Basics of Magnetic Resonance Imaging

can result in deviation of actually sampled k-space locations from the theoretical
sampling positions (gradient delay effect). As a result, Cartesian sampling is the
most common trajectory employed in clinical practice. However, radial sampling
combines the advantages of line-by-line scanning with better undersampling
behavior and is more robust to motion. Thanks to significant advancements in
modern MRI scanners and methods for gradient delay compensation, e.g., the
RING method [17], the overall performance of radial MRI has been significantly
improved. As a result, radial sampling now serves as a valuable alternative to
Cartesian sampling when enhanced motion robustness is required [18].

(a) Cartesian FLASH. (b) Cartesian trajectory.

Figure 2.1: Schematic representation of Cartesian (a) and radial (b) k-space tra-
jectory. A schematic of the gradients used to acquire the red k-space
lines can be found in Figure 2.2.

2.1.5 Pulse Sequence

Up until now, the focus has centered solely on the FID signal. However, the realm
of MRI encompasses a broader spectrum of signals. Within this context, pulse
sequences take center stage. A pulse sequence refers to a series of RF pulses and
magnetic field gradients designed to generate a meaningful MRI signal, allowing
for the reconstruction of an image with a specific contrast. The convention will be
to take the two imaging dimensions in the xy-plane, implying that the slice select
gradient is along the z-axis [19].
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Cartesian Gradient Echo

A slice select gradient Gz is applied along the z-axis during the RF pulse for a total
time of τRF . Since the slice selected gradient induces dephasing in the slice select
direction across the slice thickness ∆z, the gradient is reversed immediately after
the RF pulse is turned off for a time of τRF /2. At the end of the rephase lobe of
the slice select gradient, all the transversal magnetization components within the
slice are in phase with a common accumulated phase value ϕ = 0. For a boxcar
gradient, the signal immediately following the slice selection is given by

s(τRF ) ∝
∫ ∫ (∫ z0+ ∆z

2

z0− ∆z
2

ρ(x, y, z)dz

)
dx dy . (2.26)

After the slice select gradient is turned off, a phase encoding gradient Gy is
applied along the y-axis for a time of τy, and during this interval the magnetiza-
tion accumulates a y-dependent phase. The y-axis determines the so-called "phase
encoding" direction. Assuming for the moment that no other gradient is applied
during this period and that the applied gradient is a boxcar gradient, the signal
immediately following the phase encoding is given by

s(τRF + τy) ∝
∫ (∫ (∫ z0+ ∆z

2

z0− ∆z
2

ρ(x, y, z)dz

)
e−i2πky(Gy)ydy

)
dx (2.27)

where
ky(Gy) = γGyτy

2π
. (2.28)

To gather information about the y dependence of the spin density, the independent
variable Gy will be varied in a step-like fashion with step sizes ∆Gy. This will be
a repeated experiment where τy stays the same in every cycle.

Finally, a read gradient Gx is applied along the x-axis, which determines
the so-called "frequency encoding" direction. Gx has a first negative dephasing
lobe followed by a second positive read (or rephasing) lobe, during which the
signal is measured. The second lobe aims to generate an echo, where the time echo
TE corresponds to that time during the read lobe where the evolved area under
the second lobe just cancels the area of the first lobe. In terms of time-shifted
variable t′ = t − TE, the signal during the application of the read gradient is given

13



2.1 Basics of Magnetic Resonance Imaging

by

s(t′, Gy) ∝
∫ (∫ (∫ z0+ ∆z

2

z0− ∆z
2

ρ(x, y, z)dz

)
e−i2πky(Gy)ydy

)
e−2πkx(t′)xdx (2.29)

where
kx(t′) = γGxt′

2π
. (2.30)

Equation 2.29 shows that the signal obtained by measuring the received electro-
motive force over a period of time Ts, in the presence of a gradient echo structure
in the read direction after it is phase encoded by a fixed value of Gy, gives a line
in the k-space set of 2D Fourier transform values of the 2D spin density for the
selected slice. Thus, stepped changes in Gy produces a series of sampled lines in
a coverage of the 2D k-space pertaining to the 2D Fourier transform.

To shorten the echo time, the rephase lobe of the slice select gradient, the
phase encoding gradient table, and the dephase lobe of the read gradient are
all switched on at the same time. The gradient echo is the base of the FLASH
sequence.

FLASH Sequence

The FLASH sequence [1] takes advantage of RF pulses with small flip angles. Using
RF pulses with small flip angles, most of the longitudinal magnetization remains
unaffected, eliminating the need for waiting periods in between successive exper-
iments and reducing the acquisition time. The FLASH sequence is based on the
acquisition of the FID in the form of a gradient echo. A slice select gradient is
applied during the RF pulse. After termination of the RF pulse the slice select
gradient is inverted for proper refocusing of the transversal magnetization. The
in-plane spatial discrimination may be achieved by applying a fixed read gradient
and a perpendicular phase encoding gradient of variable strength. The read gra-
dient is inverted prior to the data acquisition period, leading to a gradient echo.
Immediately after acquisition of the data the experiment is repeated with a repeti-
tion time TR, i.e., the time between successive RF pulses, given by the time needed
for slice selection and data acquisition. Thus, the duration of the entire imaging
experiment is reduced by the same factor as conventional repetition times of the
order of 1 s are reduced to about 10-20 ms. After application of the first 20-40
excitation pulses, the spin system reaches a steady-state where the loss of longi-
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tudinal magnetization by excitation is compensated for by transversal relaxation
during the imaging sequence. Figure 2.2 reports the pulse diagram for a Cartesian
and a radial FLASH sequence.

RF

Acquisition

(a) Cartesian FLASH.

RF

Acquisition

(b) Radial FLASH.

Figure 2.2: Pulse diagram for a Cartesian (a) and a radial (b) FLASH sequence.
The FLASH sequence takes advantage of RF pulses with small flip
angles and is based on the acquisition of the FID in the form of a
gradient echo. A slice select gradient Gz is applied during the RF
pulse. After termination of the RF pulse the Gz is inverted for proper
refocusing of the transversal magnetization. The in-plane spatial dis-
crimination may be achieved by applying a fixed read gradient Gx and
a perpendicular phase encoding gradient Gy of variable strength. Gx is
inverted prior to the data acquisition period leading to a gradient echo.
Immediately after acquisition of the data the experiment is repeated
with a repetition time given by the time needed for slice selection and
data acquisition. The red color highlights the gradient strength used
to acquire a k-space line, which for the Cartesian FLASH sequence
is schematically depicted in Figure 2.1a, while for the radial FLASH
sequence it is represented in Figure 2.1b.

Inversion-Recovery

Inversion-recovery is useful in highlighting differences in T1 behavior. An inversion-
recovery pulse sequence consists of two parts. First, a 90◦-pulse (inversion pulse)
is applied to invert the magnetization. Second, after a waiting time known as
inversion time TI , a self-contained pulse sequence, e.g., gradient echo, is played
out.
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2.1.6 MRI Reconstruction as an Inverse Problem

The fundamental idea of MRI reconstruction originates from Equation 2.20 which
formalizes the Fourier relation between the MRI signal and the image content:
MRI reconstruction refers to the process of recovering an image from the acquired
k-space data through inverse Fourier transform. The mathematical relationship
mapping the image content into the acquired k-space data is known as the forward
model. Consequently, the MRI reconstruction problem is also known as forward
problem. Since the number of unknowns in the image, i.e., the number of pix-
els, is larger than the number of acquired k-space points, the forward problem is
underdetermined. For this reason, one may address it in the opposite direction ,
i.e., given the image, recover the k-space data [4]. Let m = ρ be the unknown
image content, y the acquired k-space data, and A the linear forward model that
maps the image content m into the k-space data y and includes the a matrix
of Fourier coefficients F and the sampling pattern P , i.e., the projection onto a
certain k-space trajectory. Omitting noise, the forward problem may be written
as

y = Am A = PF . (2.31)

For fully sampled Cartesian data, A reduces simply to F . Instead of trying to
directly invert Equation 2.31, it is more convenient to iteratively estimate the
image content m from k-space data y by solving the optimization problem

m̂ = arg min
m

∥Am − y∥2
2︸ ︷︷ ︸

Data Consistency

+ λR(m)︸ ︷︷ ︸
Regularization

(2.32)

where the optimization function is composed of a least-square data consistency
term as well as an additional regularization term. This is because the problem
is not only underdeterminded but also ill-posed, i.e., small variations in the ac-
quired data can result in large variations in the estimated image, and the noise
amplification decreases by adding a regularization term into the inversion. λ is
the regularization parameter controlling the balance of noise reduction and the
preservation of image details. More details on the MRI modelling are given in 2.2.
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2.2 Advanced MRI Reconstruction Techniques

The acquisition of MRI data often requires long acquisition times, leading to pa-
tient discomfort and increased susceptibility to motion artifacts. To overcome this
challenge, various advanced image reconstruction techniques have been proposed.

2.2.1 Parallel Imaging

Parallel imaging is a technique used in MRI that enables faster data acquisition
by simultaneously collecting data from multiple receiver coils. Each coil refers to
a distinct spatial sensitivity profile, which serves as an additional spatial encoding
function. This characteristic allows for the reduction of scan time by subsampling
k-space and reconstructing images exploiting sensitivity information. The MRI
signal obtained for multiple receiver coils is given by

sj(k(t)) ∝
∫

ρ(r)cj(r)ei2πk(t)·rdr j = 1, ..., N . (2.33)

Here, ρ denotes the proton density, cj the complex-valued coil sensitivity maps,
k(t) the chosen trajectory, and N the number of receiver coils.

Parallel Imaging as a Linear Inverse Problem

SENSitivity Encoding (SENSE) [20] poses the parallel imaging reconstruction
problem as a linear inverse problem. Let m be the unknown image content, and
y acquired k-space data. The linear forward model that maps the image content
m into the k-space data y is:

A = PFC . (2.34)

Here, C is the multiplication with the coil sensitivity maps, F is the 2D DFT, and
P is the projection to the sampling pattern. Figure 2.3 explains visually the linear
SENSE forward model. The coil sensitivity maps can be determined from auto-
calibration signal lines, e.g., using the ESPIRiT algorithm [21]. As an alternative,
they can be computed directly from the acquired k-space data using the NLINV
method, which will be presented in the next section. The forward model A is used
to formulate the following regularized linear inverse problem, which can be solved
for the image content m given the k-space data y:

m̂ = arg min
m

∥Am − y∥2
2 + λR(m) . (2.35)
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Here, R(·) is the regularization term, and λ is the regularization parameter con-
trolling the balance of noise reduction and the preservation of image details. When
a quadratic regularization is used, Equation 2.35 can be solved with very efficient
algorithms such as the Conjugate Gradient (CG) method, because the problem is
not only ill-posed, but also very large. This is known as CG-SENSE.

Figure 2.3: The linear SENSE forward model. The linear SENSE forward model
A maps the unknown image content m into the acquired k-space data
y. It can be factorized into the multiplication with the coil sensitivity
maps C, the 2D DFT F , and the projection to the sampling pattern P .
⊙ denotes the Hadamard product, which is also known as the element-
wise product. c denotes the coil sensitivity maps. Figure adapted from
[7].

Parallel Imaging as a Nonlinear Inverse Problem

NLINV [22] poses the parallel imaging reconstruction problem as a nonlinear in-
verse problem. It extends the capabilities of the SENSE method by enabling joint
estimation of both the image content and the coil sensitivity maps directly from
the acquired k-space data, eliminating the need for a separate calibration step and
leading to better coil sensitivity maps. Thus, both the image content and coil sen-
sitivity maps are unknown, and the inverse problem that NLINV attempt to solve
is nonlinear. Let m be the unknown image content, c the unknown coil sensitivity
maps, and y the acquired k-space data. The nonlinear forward model that maps
the image content m and the coil sensitivity maps c into the k-space data y is:

F (x) = F

m

c

 = PF(m ⊙ c) . (2.36)
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Here, ⊙ denotes the Hadamard product, which is also known as the element-wise
product, F is the 2D DFT, and P is the projection to the sampling pattern.
Figure 2.4 explains visually the NLINV forward model, i.e., the nonlinear SENSE
forward model. The forward model F is used to formulate the following regularized
nonlinear inverse problem, which can be solved for the image content m and the
coil sensitivity maps c given the k-space data y:

x̂ = arg min
x

∥F (x) − y∥2
2 + λR(m) . (2.37)

Here, R(·) is the regularization term, and λ is the regularization parameter. Equa-
tion 2.37 can be solved using the Iteratively Regularized Gauss-Newton Method
(IRGNM) [23], which iteratively approximates the nonlinear minimization problem
to the following linear minimization subproblem:

xn+1 = arg min
x

∥JF (xn)(x − xn) − (y − F (xn))∥2
2 + αn∥m∥2

2 + αn∥Wc∥2
2 .

(2.38)
Here, JF (xn) denotes the Jacobian of F at the point xn. The regularization
parameters are always chosen to be of the form of αn = α0q

n with the same
q ∈ (0, 1), usually q = 1

2 . For more details, see [22].

( (
Figure 2.4: The NLINV forward model, i.e., the nonlinear SENSE forward model.

F which maps the unknown image content m and the coil sensitivity
maps c into the acquired k-space data y. It can be factorized into the
Fourier transform F , and the projection to the sampling pattern P .
⊙ denotes the Hadamard product, which is also known as the element-
wise product. Figure adapted from [7].
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2.2.2 Compressed Sensing

Compressed Sensing [3] [4] is a technique used in MRI to expedite data acquisition
by acquiring significantly fewer k-space samples compared to what is traditionally
required according to the Nyquist-Shannon sampling theorem (Equation 2.23).
The compressed sensing approach requires that: (i) the desired image exhibits a
sparse representation in a known transform domain, i.e., it is compressible; (ii) the
aliasing artifacts due to k-space undersampling be incoherent in that transform
domain; (iii) a nonlinear reconstruction be used to enforce both sparsity of the
image reconstruction and consistency with the acquired data.

Advanced MRI reconstruction methods integrate parallel imaging and com-
pressed sensing by using sparsifying regularization terms when solving the inverse
problem for parallel imaging. Let m be the unknown image content, y the
acquired k-space data, and A the linear SENSE forward operator. The forward
model A is used to formulate the following regularized linear inverse problem
which can be solved for the image content m given the k-space data y [3]:

m̂ = arg min
m

∥Am − y∥2
2 + λ∥Ψm∥1 . (2.39)

Here, Ψ is the linear operator that transforms from pixel representation into a
sparse representation, and λ is the regularization parameter. Thus, among all so-
lutions which are consistent with the acquired data, Equation 2.39 finds a solution
compressible by the transform Ψ. An example of a sparsifying transform is the
Wavelet transform.

2.3 Quantitative MRI

While conventional MRI aims primarily at creating specific anatomical contrast,
e.g., T1-weighted contrast, quantitative MRI aims to provide quantitative measure-
ments of specific physical parameters, e.g., T1, that, ideally, are directly compara-
ble across imaging sites, time points, and different MRI acquisition methods. In
other words, a conventional T1-weighted image acquired on the same patient but
on scanners produced by different vendors may show different values for the same
tissue, and a simple calibration by rescaling the image intensities would usually not
resolve this issue because the intensity values typically depend nonlinearly on the
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settings in the imaging protocol and the MRI parameters. A perfect quantitative
T1 map would indicate the same value at both scanners, facilitating standardized
diagnosis and multicenter or longitudinal studies [24]. This section presents an ad-
vanced MRI reconstruction method for quantitative MRI, i.e., model-based MRI
reconstruction, together with subspace-constrained MRI reconstruction, which the
present work exploits to perform quantitative T1 mapping, that is the final topic
of the section.

2.3.1 Model-Based MRI Reconstruction

Model-based reconstruction [7] explicitly models the physical laws that govern the
MRI signal generation. Quantitative maps of the underlying physical parameters
can then be extracted directly from the measured k-space data without interme-
diate image reconstruction by fitting the model to the data. The specific signal
model depends on the applied sequence protocol and specifies which parameters
can be estimated. Often, an analytical model can be derived from the simulation
of the Bloch equations.

Let p be the unknown model parameters, and y the acquired k-space data.
The nonlinear forward model that maps the model parameters p into the k-space
data y is given by

F (p) = PFCM(p) . (2.40)

Here, M is the signal model, C is the multiplication with the coil sensitivity maps,
F is the 2D DFT, and P is the projection to the sampling pattern. Figure 2.5
explain visually the nonlinear model-based reconstruction forward model.

Model-based MRI reconstruction addresses a fundamental limitation of the
classical reconstruction methods, which involve solving the image reconstruction
problem for as many images as the number of time points. This limitation
becomes particularly challenging when the k-space is highly undersampled to
save time, leading to limited measurements available for each time point and
making reconstruction difficult without imposing structure. Model-based MRI
reconstruction takes a different approach by directly solving the image reconstruc-
tion problem for the parameter maps instead of reconstructing each time point
individually, achieving a significant reduction of the problem’s dimensionality.

21



2.3 Quantitative MRI

( (
Figure 2.5: The nonlinear model-based reconstruction forward model. The nonlin-

ear model-based reconstruction forward model F maps the unknown
parameters p into the acquired k-space data y. It can be factorized
into the signal model M, the multiplication with the coil sensitivity
maps C, the 2D DFT F , and the projection to the sampling pattern P .
⊙ denotes the Hadamard product, which is also known as the element-
wise product. c denotes the coil sensitivity maps. Figure adapted from
[7].

2.3.2 Subspace-Constrained MRI Reconstruction

Subspace-constrained MRI reconstruction [7] aims to reduce the dimensionality of
the MRI reconstruction problem as the model-based MRI reconstruction does but
preserves linearity, i.e., it approximates the MRI signal generation and maintains a
linear forward model. For quantitative MRI, the idea is to approximate the signal
evolutions in a linear, lower dimensional subspace, reconstruct in the subspace
using SENSE, and fit the model to the subspace reconstructions. The subspace
basis is computed as follows:

• A dictionary of representative signal curves is generated by evaluating the
signal model over a range of model parameters, and the signal curves are
summarized into a m × n matrix X.

• The Singular Value Decomposition (SVD) of the matrix X is computed:

X = UΣV T (2.41)

Here, U is a m × m orthogonal matrix, i.e., UUT = I and its columns are
called left-singular vectors, Σ is a m × n rectangular diagonal matrix and
its diagonal entries of Σ are called singular values, V is a n × n orthogonal
matrix, i.e., V V T = I and its columns are called right-singular vectors.
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• The first K left-singular vectors are taken as the subspace basis:

BK = U [:, 1 : K] (2.42)

Given the subspace basis BK , the signal model can be interpreted as a linear
combination of the K basis functions:

M(r, t) ≈ BK(t) · aK(r) =
K∑

k=1
Bk(t) · ak(r) . (2.43)

Here, r is the position, t is the time, aK is the matrix summarizing the K

coefficient maps, and BK is the matrix summarizing the K basis functions. In the
following, a will refer to aK and B will refer to to BK .

Let a be the unknown coefficient maps, and y the acquired k-space data.
The linear forward model that maps the coefficient maps a into the k-space data
y is:

A = PFCB . (2.44)

Here, B is the multiplication of the coefficient maps with the subspace basis, C is
the multiplication with the coil sensitivity maps, F is the 2D DFT, and P is the
projection to the sampling pattern.

Subspace-constrained reconstruction has two main advantages with respect
to the conventional nonlinear model-based reconstruction. Firstly, it is compu-
tationally more efficient. Since the subspace-constrained forward operator is
linear, PFCB = PBFC. For this reason, it is possible to compute the Fourier
transform K times, where K is the number of basis functions and of coefficient
maps, instead of computing it T times, where T is the number of time points.
Secondly, having more degrees of freedom, which are equal to the number of basis
functions, can be beneficial as it allows for enhanced expressiveness.

Finally, it is worth noting that not all the signal models are low dimensional,
meaning that this approach could not work for any signal model. For this reason,
it is fundamental to check if the considered data does live in a low-dimensional
space, otherwise it will not make sense to proceed with the subspace-constrained
reconstruction. For instance, an inversion-recovery signal can be well represented
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through singular value decomposition, while a multi-gradient-echo signal cannot.
For more information, see [7].

2.3.3 Quantitative T1 Mapping

This study focuses on quantitative T1 mapping, which is a quantitative MRI tech-
nique used to quantitatively assess the T1 relaxation times of tissues and display
them on a parametric map. The basis of several T1 mapping methods is the Look-
Locker approach.

Inversion-Recovery Look-Locker T1 mapping

The inversion-recovery Look-Locker sequence comprises an inversion pulse with a
spoiler gradient followed by a FLASH sequence to monitor the T1 relaxation. It
may be shown that an effective relaxation time T ∗

1 shorter than T1 is observed,
and that the magnetization approaches a saturation value M∗

0 lower than the
equilibrium value M0 [25]. M∗

0 is called steady-state magnetization. After spin
inversion, the longitudinal magnetization relaxes according to

M(r, t) = M∗
0 (r) − (M∗

0 (r) + M0(r)) · e−t·R∗
1(r) (2.45)

with
R∗

1(r) = 1
T ∗

1 (r)
= 1

T1(r)
− 1

TR

· log(α) , (2.46)

and
M∗

0 (r) = M0(r) · T ∗
1 (r)

T1(r)
. (2.47)

Here, r denotes the position, t the inversion time, M∗
0 the steady-state magneti-

zation, M0 the equilibrium magnetization, R∗
1 the effective T1 relaxation rate, TR

the repetition time, and α the flip angle. Since knowing the exact flip angle α is
impossible, computing T1 from Equation 2.46 is not trivial. Instead, if a three-
parameter fit according to M(r, t) = A(r) + B(r) · e−t·R∗

1(r) is performed, T1 can
be calculated as

T1(r) = − 1
R∗

1(r)

(
1 + B(r)

A(r)

)
= M0(r)

M∗
0 (r)

· T ∗
1 (r) . (2.48)

Noteworthy, the delay TD between the inversion and the start of the acquisition
would introduce a systematic error in the T1 evaluation [25]. This delay can amount
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to several milliseconds due to the duration of the inversion pulse and the subse-
quent spoiler gradient. During TD, there is a T1 relaxation, so the longitudinal
magnetization at the start of the acquisition is −M ′

0 with

M ′
0(r) =

(
M0(r) − 2M0(r) · e

− TD
T1(r)

)
≈ M0(r) ·

(
1 − 2 · TD

T1(r)

)
(2.49)

Consequently, T1 evaluation according to 2.47 yields an erroneous value T ′
1 given

by
T ′

1(r) = T1(r)∗ · M∗
0 (r)

M0(r)
= T1(r) · M ′

0(r)
M0(r)

= T1(r) − 2 · TD (2.50)

Thus, T1 values have to be corrected by adding 2 · TD.

2.4 Cardiovascular MRI

Cardiovascular MRI is an incredibly potent imaging technique that offers a non-
invasive means for the accurate assessment of both the function and structure of
the cardiovascular system.

2.4.1 The Cardiovascular System

The cardiovascular system consists of the heart, blood vessels, and blood. The
heart (Figure 2.6) is a muscular organ that acts as the central pump of the cardio-
vascular system. It is composed of three layers. The outer layer is the epicardium.
The middle and thicker layer is the myocardium, which is made up of cardiac
muscle tissue and is responsible for the heart’s pumping action. The inner layer
is the endocardium. It has four chambers: two atria and two ventricles. The
heart contracts rhythmically to pump oxygen-rich blood to the body’s tissues and
oxygen-poor blood to the lungs for reoxygenation. Blood vessels form a network of
tubes that carry blood. Blood is a fluid consisting of red blood cells transporting
oxygen, white blood cells composing the immune system, platelets assisting in clot-
ting, and plasma carrying nutrients and waste products. The cardiac cycle (Figure
2.7) refers to the sequence of events that occur during one complete heartbeat, as
the heart contracts and relaxes to pump blood throughout the circulatory system.
It can be divided into two main phases: one during which the heart muscle relaxes
and refills with blood, called diastole, following a period of robust contraction and
pumping of blood, called systole. Assuming a healthy heart and a typical rate of 70
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to 75 beats per minute, each cardiac cycle, or heartbeat, takes about 0.8 seconds
to complete the cycle. For comprehensive information about the cardiovascular
system, it is recommended to refer to the textbook [26].

Figure 2.6: Overview of the heart. LV stands for left ventricle, while RV indicates
the right ventricle. These two ventricles are distinct chambers sepa-
rated by the interventricular septum.

2.4.2 Myocardial T1 Mapping

In the context of cardiovascular MRI, myocardial T1 mapping provide an imaging
biomarker for non-invasive characterization of the myocardial tissue with the po-
tential to replace invasive biopsy for several pathological heart muscle conditions
such as fibrosis, iron overload or amyloid infiltration [5]. Wang et al. in 2016
[6] demonstrated that myocardial T1 mapping can be accomplished by combining
single-shot inversion-recovery radial FLASH sequence with breath-hold and finger
pulse triggering, i.e., data are acquired within a breath-hold and the inversion pulse
is triggered to the early diastolic phase with the use of finger pulse signal, iterative
image reconstruction by NLINV, as well as T1 fitting with automated deletion of
systolic frames based on the finger pulse triggering [6]. This method meets the
basic requirements for cardiac T1 mapping, which comprehend T1 accuracy, speed,
practically robustness, and sufficiently high spatial resolution, and is the basis of
the myocardial T1 mapping method presented in this thesis.
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Figure 2.7: Overview of the Cardiac Cycle. The cardiac cycle begins with atrial
systole and progresses to ventricular systole, atrial diastole, and ven-
tricular diastole, when the cycle begins again. Correlations to the
electrocardiogram (ECG) are highlighted. Figure extracted from [26].

2.5 Deep Learning

The human brain is a complex organ that serves as the command center for the
body. It consists of billions of specialized cells called neurons that communicate
with each other through electrical and chemical signals. These neurons form intri-
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cate networks, allowing information to be processed and transmitted throughout
the brain and to different parts of the body. Artificial Neural Network (ANN)s are
information processing systems inspired by biological neural networks consisting
of interconnected artificial neurons, which communicate by sending signals to one
another. Each connection between neurons is associated with a parameter called
connection weight or simply weight. Artificial neurons are mathematical models
that capture the basic aspects of the computation carried out at the single neuron
level. In mathematical terms [8], an ANN is a nonlinear function F (·) mapping
the input data x and the weights w to an output y = F (x; w). Training an ANN
corresponds to fitting the ANN to a training dataset by minimizing some suitable
error function E:

ŵ = arg min
w

E(w) E(w) =
N∑

n=1
En(w) En(w) = E(yn, F (xn; w)) . (2.51)

Here, N is the number of training samples. Usually, ANNs are constructed from
small building blocks such as fully connected layers, convolutional layers, or ac-
tivation functions. Backpropagation is used to compute the gradients of the loss
needed for gradient-based optimization algorithms such as stochastic gradient de-
scent or Adam. In the following, ANN and neural network will refer to the same
concept.

2.5.1 Fully Connected Layers

Fully connected or dense layers layers consist of a set of neurons where each neuron
is connected to every neuron in the previous layer. Let x be the input data, and
w the weights. The output y is obtained by applying an activation function f(·)
pointwise to the matrix multiplication w · x:

y = f(w · x) . (2.52)

2.5.2 Convolutional Layers

Convolutional layers consist of a set of filters or kernels that convolve across the
input data. If the input data is an image, this means that the filter slide over
the image, spatially convolving the kernel with each image patch. Let I be the
input image and K the kernel with dimension k1 × k2. The output S(i, j) of the
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convolution operation when the kernel K is in position (i, j) is given by

S(i, j) = (I ⊗ K)ij =
k1−1∑
m=0

k2−1∑
n=0

I(i + m, j + n)K(m, n) . (2.53)

A Convolutional Neural Network (CNN) is a type of ANN that includes at least one
convolutional layer in its architecture, which means that it employs convolution
in place of matrix multiplication in at least one layer. It is particularly effective
in processing data with a known grid-like topology, such as sequences (grid over
time) or images (grid over space).

2.5.3 Activation Functions

The activation function determines the firing intensity of the neuron. The input of
the activation function is called activation. It is given by the weighted sum of the
outputs coming from the neurons in the previous layer. There are several alter-
natives for activation functions, e.g. linear activation function, sigmoid function,
hyperbolic tangent, rectified linear unit.

Linear Activation Function

The linear activation function simply passes the input data through unchanged:

y = f(w · x) = w · x . (2.54)

Stacking together multiple layers with linear activation function results in a linear
model. Linear models have limited representation power and can only capture
simple linear relationships in the data. Introducing nonlinear activation functions
is crucial to enable the neural network to learn and represent more complex and
nonlinear relationships. Nonetheless, using a linear activation function as the last
layer of a deep neural network can be entirely suitable if the previous layers are
nonlinear.

Sigmoid Function

The sigmoid function is an S-shaped, bounded with output range [0,1], differen-
tiable, and monotonic function:

σ(c) = 1
1 + e−c

. (2.55)
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Since the output range is [0,1], this function is useful when predicting probabilities.
The sigmoid function has two main problems. Firstly, the output of the sigmoid
neuron saturates at either tail of 0 or 1, and the gradient at these regions is almost
zero. During backpropagation (see 2.5.5), the gradient of the activation function,
i.e., the local gradient, is one of the factors involved in the computation of the
error gradient with respect to the weight. Therefore, if the local gradient is tiny,
the resulting gradient will also be little, and almost no signal will flow through
the neuron. This phenomenon is known as the vanishing gradients problem. To
counter this problem, one must pay extra attention when initializing the weights
of sigmoid neurons to prevent saturation. For example, if the initial weights are
too large, most neurons will become saturated, and the network will barely learn.
Secondly, sigmoid outputs are not zero-centered, which is undesirable since neurons
in later layers of processing in a neural network would be receiving data that is not
zero-centered, leading to zig-zagging dynamics in weight updates during gradient-
based optimization (see 2.5.4): if the data coming to a neuron is always positive,
then the gradient on the weights will become during training either all positive or
all negative. While this is an inconvenience, it has less severe consequences than
the saturated activation problem, as it often is mitigated by updating a large batch
of data.

Hyperbolic Tangent

Hyperbolic tangent is an S-shaped, bounded with output range [-1,1], differentiable,
and monotonic function:

tanh(c) = ec − e−c

ec + e−c
. (2.56)

Since tanh has saturated regions, similar to the sigmoid function, the use of tanh
as an activation function leads to the vanishing gradients problem. However, since
the output range is [-1,1], tanh outputs are zero-centered, leading to balanced
dynamics in the gradient updates. For this reason, tanh is always preferable with
respect to the sigmoid function. Its output is simply the scaled version of the
sigmoid output:

tanh(c) = 2σ(2c) − 1 . (2.57)
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Rectified Linear Unit

Rectified Linear Unit (ReLU) function it is given by

ReLU(c) = max(0, c) . (2.58)

While sigmoid and tanh neurons involve expensive operations, e.g., exponentials,
ReLU can be implemented by simply thresholding a matrix of activations at zero.
Unfortunately, the ReLU units can irreversibly die during training: a large gradient
flowing through a ReLU neuron could cause the weights to update such that the
neuron will never activate on any data point again. If this happens, then the
gradient flowing through the unit will forever be zero from that point on. A
proper setting of the learning rate can solve this problem.

2.5.4 Gradient-Based Optimization Algorithms

A gradient-based optimization algorithm is an iterative method used to find the
minimum or maximum of an objective function based on the calculation and utiliza-
tion of the gradient, which is the vector that indicates the direction of the steepest
descent or ascent of the objective function at a specific point. The general idea
behind gradient-based optimization is to iteratively update the parameters of a
model in the direction of the negative gradient (for minimization) or the positive
gradient (for maximization) to converge toward the optimal solution. In a deep
learning framework, the model is a neural network. The basic steps involved in
a gradient-based optimization algorithm are the initialization of the parameters
with some initial values, the computation of the gradient of the objective function
with respect to each parameter, the update of the parameters by taking a step in
the opposite direction of the gradient (this step is determined by the learning rate,
which controls the step size of the parameter update). The gradient computation
and parameter update steps are repeated until a convergence criterion is met. This
criterion could be a specific number of iterations, reaching a certain threshold for
the objective function, or observing small changes in the parameters. Different
gradient-based optimization algorithms may have variations in how they update
the parameters or adjust the learning rate. Some common gradient-based opti-
mization algorithms include gradient descent, Stochastic Gradient Descent (SGD),
mini-batch gradient descent, and Adam. The backpropagation algorithm can be
used for gradient computation.
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Gradient Descent

Gradient descent is gradient-based optimization algorithm based on the gradients
computed from all the training examples at once. The update rule is given by

wij(t + 1) = wij(t) − η
∂E(w)
∂wij

. (2.59)

Here, wij(t) is the weight of the link between neuron i and neuron j at step t,
wij(t + 1) is the weight of the link between neuron i and neuron j at step t + 1,
η is the learning rate, and E(w) is the error function computed from all the N

training examples as defined in Equation 2.51.

Stochastic Gradient Descent

SGD is a gradient-based optimization algorithm based on the gradients computed
from a single training example at a time. Thus, it replaces the actual gradient
calculated from the entire data set with an estimate of the gradient calculated from
a randomly selected subset of the data. Using the SGD algorithm, instead of taking
a smooth descent towards the minimum as for the gradient descent algorithm, the
weight vector tends to jitter around the surface of the error function. The result is
a random walk, i.e., the path could locally deviate from the good direction. The
update rule is given by

wij(t + 1) = wij(t) − η
∂En(w)

∂wij

. (2.60)

Here, En(w) is the error function computed from the n-th training example as
defined in Equation 2.51.

Mini-Batch Gradient Descent

Mini-batch gradient descent is a gradient-based optimization algorithm based on
the gradients computed from a mini-batch, i.e., a small number of training exam-
ples, at a time. The update rule is given by

wij(t + 1) = wij(t) − η
∂Ebatchk

(w)
∂wij

. (2.61)

Here, Ebatchk
is the error computed from the k-th mini-batch.
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Adaptive Moment Estimation

Adaptive moment estimation (Adam) [27] is a stochastic gradient-based optimiza-
tion algorithm that computes individual learning rates for each parameter from
adaptive estimates of the first and second moments of the gradients, which are
used to update the parameters in a way that is invariant to diagonal rescaling of
the gradients. This makes the algorithm well-suited for problems with sparse or
noisy gradients, as it can adapt to the local geometry of the objective function and
converge more quickly to a good solution. Additionally, Adam is computationally
efficient and has low memory requirements, making it a popular choice for large-
scale optimization problems in machine learning and other fields. Overall, the
algorithm is a powerful and versatile tool for optimizing a wide range of objective
functions, and has been shown to outperform other methods in many empirical
tests.

2.5.5 Backpropagation

Backpropagation refers to the algorithm used to compute the gradients of the error
function with respect to the weights by propagating the error gradients from the
output layer to the input layer. The first step of the backpropagation algorithm
is the forward pass. The input data is fed into the neural network, and the com-
putations propagate forward through the layers. Each neuron of the current layer
applies a nonlinear activation function to the weighted sum of the outputs coming
from the neurons in the previous layer and passes its output to the next layer:

yj = f(aj) aj =
∑

k

wkjyk . (2.62)

Here, yj is the output of the neuron j belonging to the current layer, f(·) is
the nonlinear activation function, aj is the activation of neuron j, i.e., the input
of the nonlinear activation function given by the weighted sum of the outputs
coming from the neurons in the previous layer, k counts for the neurons in
the previous layer, then, yk are the outputs of the previous layer, and wkj are
the weights connecting the current neuron j with the neurons in the previous layer.

The second step is the error computation at the output layer. The error is
computed by comparing the predicted output of the neural network with the
desired output. The specific error metric depends on the task at hand, e.g., the
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Mean Square Error (MSE) can be used for regression. In the context of gradient
descent, where the error is computed across all the training examples at once, the
MSE is given by

E(w) = 1
N

N∑
n=1

∥yn − tn∥2 (2.63)

where N counts for the training examples, yn is the vector summarizing the
outputs at the last layer, i.e., the predicted output of the neural network, for the
n-th training example, tn is the vector summarizing the desired outputs at the
last layer for the n-th training example.

The third step is the backward pass. The error gradients with respect to
the weights are computed at the output layer, and then they are propagated
backward through the layers of the network using the same connections that
spread the computations forward. Always in the context of gradient descent, the
computation of the error gradients with respect to the weights is done using the
chain rule twice:

∂E(w)
∂wij

= ∂E(w)
∂yj

∂yj

∂wij

= ∂E(w)
∂yj

∂yj

∂aj

∂aj

∂wij

(2.64)

with
∂aj

∂wij

= yi
∂yj

∂aj

= ∂f(aj)
∂aj

. (2.65)

Here, E(w) is the error function computed for all the training examples, wij is the
weight of the link between neuron i and neuron j, aj is the activation of neuron j,
yj is the output of the nonlinear activation function for neuron j. ∂f(aj)

∂aj
is called

local gradient. ∂E(w)
∂yj

is straightforward to compute if the neuron j is in the output
layer because, in this case, the E(w) depends directly of yj. If the neuron j is in
a hidden layer, the computation is less obvious, and a recursive expression for the
gradient is obtained:

∂E(w)
∂yj

=
∑

ℓ

∂E(w)
∂aℓ

∂aℓ

∂yj

=
∑

ℓ

∂E(w)
∂yℓ

∂yℓ

∂aℓ

∂aℓ

∂yj

=
∑

ℓ

∂E(w)
∂yℓ

∂yℓ

∂aℓ

wjℓ (2.66)

Here, ℓ counts for the neurons receiving input from neuron j, i.e., the neurons of
the next layer. Therefore, at each layer, the gradients with respect to the outputs
∂E(w)

∂yj
can be calculated if all the gradients with respect to the outputs of the next

layer ∂E(w)
∂yℓ

are known.
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2.5.6 Batch Normalization

Batch normalization [28] is a technique used in deep learning to by normalizing
layer inputs for each training mini-batch. It addresses the issue of the internal
covariate shift problem, which refers to the change in the distribution of layer
inputs during the training process. The basic idea of batch normalization is to
normalize the input to a layer by subtracting the mini-batch mean and dividing
by the mini-batch standard deviation. This ensures that the inputs have zero mean
and unit variance, which helps in stabilizing and accelerating the training process.

2.5.7 Residual Learning

Conventional learning aims to learn the desired underlying mapping from the input
to the output vector. Residual learning aims to learn the residual mapping, repre-
senting the difference between desired underlying mapping and the input vector,
instead of directly learning the desired underlying mapping. A residual block can
be expressed through Equations 2.67 and 2.68, as presented in [29]. A Residual
neural Network (ResNet) is a type of ANN where residual blocks are stacked to-
gether to form the overall architecture of the network.

yℓ = xℓ + F (xℓ, wℓ) (2.67)

xℓ+1 = f(yℓ) (2.68)

Here, xℓ and xℓ+1 are input and output of the ℓ-th residual unit, wℓ = {wℓ,k |
1 ≤ k ≤ K} is the set of weights associated with the ℓ-th residual unit, K is the
number of layers in the ℓ-th residual unit, F (·) is a residual mapping, and f(·) is
a ReLU function.

Residual Learning for Image Denoising

Image denoising aims to recover a clean image x from a noisy observation y = x+v,
where v is the measurement noise. One common assumption is that v is additive
white Gaussian noise with standard deviation σ. Various methods have been
developed to address image denoising, ranging from classical filtering techniques
to more advanced algorithms based on statistical models and machine learning. For
instance, residual learning can be used for separating noise from noisy observation.
The author of [30] proposed denoising CNN (DnCNN) designed to predict the
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residual image (i.e., the difference between the noisy observation and the latent
clean image) rather than directly outputting the denoised image. In other words,
the proposed DnCNN implicitly removes the latent clean image with the operations
in the hidden layers. The batch normalization technique is further introduced
to stabilize and enhance the training performance of DnCNN. It turns out that
residual learning and batch normalization can benefit from each other, and their
integration is effective in speeding up the training and boosting the denoising
performance.

2.5.8 Self-Supervised Learning

Self-supervised learning refers to a type of machine learning approach where a
model learns from unlabelled data by creating surrogate supervisory signals from
the data itself. In self-supervised learning, the model is trained to predict or re-
construct missing or corrupted parts of the input data, effectively creating its own
supervision without the need for explicit labels. By leveraging the inherent struc-
ture or patterns in the unlabelled data, self-supervised learning enables models to
learn useful representations and capture meaningful features.

2.6 Deep Learning-Based MRI Reconstruction
Techniques

Deep learning-based MRI reconstruction algorithms have emerged as a cutting-
edge trend in accelerated MRI research. Some of these techniques, e.g., [9] [31]
[32] [33], leverage the concept of unrolling an iterative reconstruction algorithm for
a predefined number of iterations. The unrolled network alternates between Data
Consistency (DC) and regularization, in which the regularization is implemented
through an ANN.

2.6.1 Model-Based Reconstruction using Deep Learned
Priors

Let m be the unknown image content, y the acquired k-space data, and A the
linear forward model that maps the image content m into the k-space data y.
MOdel-based reconstruction using Deep Learned priors (MoDL) [33] method uses
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the forward model A to formulate the following regularized linear inverse problem
which can be solved for the image content m given the k-space data y :

m̂ = arg min
m

∥Am − y∥2
2 + λ∥Nw(m)∥2

2 . (2.69)

Here, Nw(m) is a learned CNN estimator of noise and alias patterns, which de-
pends on the learned parameters w. The first term is the DC term, and the
second term is the regularization term multiplied by the regularization parameter
λ. Nw(m) can be expressed as:

Nw(m) = m − Dw(m) . (2.70)

Here, Dw(m) is the denoised version of m. The use of the CNN-based prior
∥Nw(m)∥2

2, which gives high values when m is contaminated with noise and alias
patterns, results in solutions that are data-consistent and are minimally contami-
nated by noise and alias pattern. The substitution of Equation 2.70 in Equation
2.69 results in Equation 2.71.

m̂ = arg min
m

∥Am − y∥2
2 + λ∥m − Dw(m)∥2

2 . (2.71)

The optimization problem in Equation 2.71 is solved recursively as follows.
Dw(mn + ∆m) can be approximated using Taylor series as

Dw(mn + ∆m) ≈ Dw(mn) + Jn∆m . (2.72)

Here, n counts for the iterations, and Jn is the Jacobian matrix. Setting mn +
∆m = m, the regularization term can be approximated as

∥m − Dw(m)∥2
2 ≈ ∥m − Dw(mn)∥2

2 + Jn∆m . (2.73)

The Taylor approximation holds only if ∆m → 0, and under this condition the
resulting alternating algorithm that approximates Equation 2.71 is given by

zn = Dw(mn) (2.74)

mn+1 = arg min
m

∥Am − y∥2
2 + λ∥m − zn∥2

2 . (2.75)
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Equation 2.74 refers to the denoising block, and Equation 2.75 refers to the DC
block. The sub-problem described in Equation 2.75 can be solved as

mn+1 = (AHA + λI)−1(AHm + λzn) . (2.76)

The algorithm is initialized with z0 = 0. Once the number of iterations is fixed, the
update rules can be viewed as an unrolled linear CNN, whose weights at different
iterations are shared. Since the operator (AHA+λI) is not analytically invertible
for complex forward model such as in the case of multi-channel MRI, Equation
2.76 is solved using CG optimization. This means that the unrolled linear CNN
will have sub-blocks consisting of numerical optimization layers.

2.6.2 NLINV-Net

NLINV-Net [9] is a deep learning-based MRI reconstruction method proposed to
jointly estimate the image content and the coil sensitivity maps of radial cardiac
MRI data. NLINV-Net unrolls the IRGNM to solve the nonlinear SENSE inverse
problem, i.e., Equation 2.36, and the resulting alternating algorithm is given by

mn
ref = Net(mn) (2.77)

xn+1 = arg min
x

∥JF (xn)(x − xn) − (y − F (xn))∥2
2

+ (αn + λ)∥m − mn
ref∥

2
2 + αn∥Wc∥2

2 .
(2.78)

Equation 2.77 refers to the denoising block, which consist of a neural network.
Equation 2.78 refers to the DC block and is solved using the CG optimization. In
the absence of fully sampled data and a ground truth reference, NLINV-Net can
be trained using a self-supervised approach [31]. The acquired k-space data y is
randomly divided spoke-wise into two disjunct subsets Θ and Λ according to 8:2.
Θ is used by NLINV-Net to estimate the image content and the coil sensitivity
maps. From that, Λ is predicted by the NLINV forward model presented in
Equation 2.36 with the respective pattern. The weights of NLINV-Net, which
are shared across iterations, are optimized to minimize the difference between the
predicted and actual Λ. Figure 2.8 depicts a possible architecture for NLINV-Net
and the aforementioned self-supervised learning strategy.
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Figure 2.8: NLINV-Net and self-supervised learning. (a) Schematic representation
of the self-supervised training strategy. The acquired k-space data y
is randomly divided spoke-wise into two disjunct subsets Θ and Λ
according to 8:2. Θ is used by NLINV-Net to estimate the image con-
tent and the coil sensitivity maps. From that, Λ is predicted by the
NLINV forward model with the respective pattern. The weights of
NLINV-Net, which are shared across iterations, are optimized to min-
imize the NMSE of the predicted and actual Λ. (b) The DC block of
NLINV-Net. It is implemented using the CG algorithm. (c) A possi-
ble denoising block for NLINV-Net. It is a 5-layer ResNet, where each
layer consists of a convolutional layer (conv) with 64 filters followed by
batch normalization (BN) and ReLU acting independently on the real
and imaginary parts. The input of the denoising block is normalized
to a maximum magnitude of one, and its output is rescaled to the
original value. Figure adapted from [9].

2.7 Berkeley Advanced Reconstruction Toolbox

All the image reconstruction-related computations in this work were done using
the Berkeley Advanced Reconstruction Toolbox (BART). It is a free and open-
source image-reconstruction framework for computational MRI developed by the
research groups of Martin Uecker (Graz University of Technology), Jon Tamir
(UT Austin), and Michael Lustig (UC Berkeley). It consists of a programming
library and a toolbox of command-line programs. The library provides common
operations on multi-dimensional arrays, Fourier and wavelet transforms, as well as
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generic implementations of iterative optimization algorithms. The command-line
tools provide direct access to basic operations on multi-dimensional arrays as well
as efficient implementations of many calibration and reconstruction algorithms for
parallel imaging and compressed sensing [34]. The command structure follows
bart + command + options + input / output.
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Chapter 3

Materials and Methods

This chapter details the materials and methods used to perform subspace-
constrained myocardial T1 mapping. The general procedure for inversion-recovery
Look-Locker T1 mapping involves several key steps: (i) data acquisition using an
inversion-recovery FLASH sequence, which is characterized by a specific signal
model depending on specific parameters; (ii) subspace basis computation; (iii)
subspace-constrained MRI reconstruction to estimate the subspace images and the
coil sensitivity maps; (iv) pixel-wise fitting of signal model to the reconstructed
images in the subspace to compute the model parameters; (v) Look-Locker
computation of the T1 values based on the estimated model parameters.

3.1 Data Acquisition

The MRI data used in this work was acquired by the research group of Martin
Uecker at the University Medical Center Göttingen, Germany with funding of the
DZHK on a Siemens Skyra 3T scanner using a 32-channel body coil from thirty-
four volunteers without known illness after obtaining written informed consent and
with approval of the local ethics committee. The chosen acquisition scheme for
myocardial T1 mapping is illustrated in Figure 3.1, which refers to a single-shot
inversion-recovery radial FLASH sequence with breath-hold and finger pulse trig-
gering: data acquisition starts with a non-selective adiabatic 180◦ inversion pulse,
which is triggered to the early diastolic phase using a finger pulse signal. After in-
version, the signal is continuously acquired within almost 4 s breath-hold using the
FLASH readout to monitor the T1 relaxation recovery. Only data from the dias-
tolic phase will be retrospectively selected, based on the finger pulse triggering, to
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3.2 Data Preparation

avoid the motion effects of the systolic phase (see 3.2). Myocardial T1 maps were ac-
quired at a nominal in-plane resolution of 1.0×1.0mm2 and 6mm section thickness,
using a FOV= 364×364mm2 in combination with a resolution of 364 complex data
points per radial spoke. Other parameters were TR/TE/TD = 2.18/1.34/15.12ms,
flip angle 6◦. A 9-th tiny golden angle sampling scheme was employed to sample
the data continuously during inversion-recovery.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Tim e  a ft e r  In ve r s ion  [s ]

MRI 
Signal

Trigger 
Time

Finger Pulse Trigger
Inversion Pulse

1.0

0.8

0.6

0.4

0.2

0.0

0.2

S
ig

n
a

l 
In

te
n

si
ty

 [
a

.u
.]

A c c e p t e d

D is c a r d e d

Figure 3.1: Single-shot inversion-recovery radial FLASH sequence with breath-
hold and finger pulse triggering. The data acquisition starts with a
non-selective inversion pulse, which is triggered to the early diastolic
phase using a finger pulse signal. After inversion, the signal is continu-
ously acquired within 4 s breath-hold using the FLASH readout. Only
data from the diastolic phase will be retrospectively selected, based on
the finger pulse triggering, to avoid the motion effects of the systolic
phase. Finger pulse trigger = black bars. Inversion pulse = red bar.
Figure adapted from [6].

3.2 Data Preparation

Since binning spokes from neighborhoods with a proper size helps to reduce the
computation time as long as the T1 accuracy is not compromised [35], and golden-
angle-based strategy covers the entire k-space without repeating any angles and
allows for arbitrary binning of spokes to form one k-space frame [14], 17 spokes
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Chapter 3. Materials and Methods

were binned to create one k-space frame resulting in a temporal resolution of al-
most 36 ms and 110 frames in the present study. As shown in Figure 3.2, k-Space
trajectories consistent with the acquired k-space data were generated using the
bart traj command, by specifying 364 readout samples -x364, 1870 (17 × 110)
spokes -y1870, radial sampling -r, 9-th tiny golden angle -G -s9, double-angle
-D, and 1 turn -t1, i,e, single-shot acquisition. Data was corrected for gradient de-
lays. Gradient delays were estimated using the bart estdelay command, which
implements the RING method [17]. The first six dimensions for the k-space data
and k-space trajectories were assigned as reported in Tables 3.1 and 3.2. Gradi-
ent delays were computed considering only the last 270 repetitions because the
magnetization signal follows the single-shot inversion-recovery FLASH curve and
only the last time points are in a steady-state condition. Data was compressed
using the bart cc tool into 10 virtual coils through Principal Component Analy-
sis (PCA) to reduce the size of the dataset and, consequently, the computational
complexity. Only data from the diastolic phase was retrospectively selected using
subject-specific masks D created specifically to handle the motion effects during
the systolic phase. The subject-specific masks were designed to have a value of
one for diastolic time points and a value of zero for systolic time points.

Dimension Usage for k-space data
0 Not used, set to 1
1 Readout dimension
2 Number of binned spokes per frame
3 Number of coils
4 Not used, set to 1
5 Number of frames

Table 3.1: The first six dimensions for the k-space data.

Dimension Usage for k-space trajectories
0 Number of dimension, set to 3
1 Readout dimension
2 Number of binned spokes per frame
3 Not used, set to 1
4 Not used, set to 1
5 Number of frames

Table 3.2: The first six dimensions for the k-space trajectories.
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3.3 Subspace Basis Computation

Figure 3.2: k-Space trajectory. k-Space trajectories consistent with the acquired
k-space data were generated using the bart traj command, by spec-
ifying 364 readout samples -x364, 1870 (17 × 110) spokes -y1870,
radial sampling -r, 9-th tiny golden angle -G -s9, double-angle -D,
and 1 turn -t1, i,e, single-shot acquisition.

3.3 Subspace Basis Computation

After spin inversion, the longitudinal magnetization relaxes according to Equation
2.45, that was,

M(r, t) = M∗
0 (r) − (M∗

0 (r) + M0(r)) · e−t·R∗
1(r) .

Here, r is the position, t is the inversion time, M∗
0 is the steady-state magnetization,

M0 is the equilibrium magnetization, and R∗
1 is the effective T1 relaxation rate.

Based on this equation and on the method to create a subset basis explained
in 2.3.2, a dictionary of 100000 representative signal curves was generated using
1000 different R∗

1 values ranging from 5 to 5000 ms, combined with 100 M∗
0 values

ranging from 0.01 · M0 to M0. Since the simulated curves were highly correlated,
they can be well represented by a small number of basis functions B, which were
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computed by applying SVD and shared across subjects. Figure 3.3 shows a subset
of the signal curves composing the simulated signal curves dictionary, the first four
basis functions, and the first four basis functions masked to select data from the
diastolic phase only. Notably, the basis functions are the same for all subjects,
while the masks to discard systolic time points are subject-specific.

3.4 Subspace-Constrained MRI Reconstruction

Given the k-space data y, the coefficient maps a were estimated jointly with the
coil sensitivity maps c using subspace NLINV-Net (see 3.4.2), which this thesis
proposes as a new self-supervised subspace deep learning method for myocardial T1

mapping to automatically learn a regularization term and increase image quality
while decreasing computational efficiency.

3.4.1 Baseline Methods

To evaluate the effectiveness of the proposed neural network-based approach for
subspace-constrained myocardial T1 mapping, plain NLINV (see 3.4.1) and the
ℓ1-Wavelet Parallel Imaging Compressed Sensing (PICS) methods (see 3.4.1) were
used as baseline approaches.

Subspace NLINV

Let a be the unknown coefficient maps, c the unknown coil sensitivity maps, and y

the acquired k-space data. The nonlinear forward model that maps the coefficient
maps a and the coil sensitivity maps c into the k-space data y is

F (x) = F

a

c

 = PFDB(a ⊙ c) . (3.1)

Here, B is the multiplication of the coefficient maps with the subspace basis, D
is the multiplication of the signal evolution with the subject-specific mask select-
ing only data from the diastolic phase, P is the sampling pattern, F is the 2D
DFT. The forward model F is used to formulate the following regularized nonlin-
ear inverse problem, which can be solved for the coefficient maps a and the coil
sensitivity maps c given the k-space data y:

x̂ = arg min
x

∥F (x) − y∥2
2 + λR(m) . (3.2)
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(b) The first four basis functions obtained by applying singular value decomposition to
the signal curves dictionary.
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(c) The basis functions masked to select data from the diastolic phase only and deal with
motion effects.

Figure 3.3: Basis function computation.

Here, R(·) is the regularization term, and λ is the regularization parameter. The
regularized nonlinear inverse problem is solved using the IRGNM, which itera-
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tively approximates the nonlinear problem to the following linear minimization
sub-problem:

xn+1 = arg min
x

∥JF (xn)(x − xn) − (y − F (xn))∥2
2 + αn∥a∥2

2 + αn∥Wc∥2
2 . (3.3)

The NLINV reconstruction was performed in BART using the bart nlinv tool
and specifying 9 iterations -i9.

Subspace ℓ1-Wavelet Parallel Imaging Compressed Sensing

The ℓ1-Wavelet PICS method combines parallel imaging and compressed sensing by
using ℓ1-wavelet regularization when solving the linear inverse problem for parallel
imaging, i.e., the SENSE problem. Let a be the unknown coefficient maps, c the
coil sensitivity maps estimated by NLINV (see 3.4.1), and y the acquired k-space
data. The linear forward model that maps the coefficient maps a into the k-space
data y is

A = PFCDB . (3.4)

Here, B is the multiplication of the coefficient maps with the subspace basis, D is
the multiplication of the signal evolution with the mask selecting data only from
the diastolic phase, C is the multiplication with the coil sensitivity maps, P is the
sampling pattern, F is the 2D DFT. The forward model A is used to formulate the
following regularized linear inverse problem which can be solved for the coefficient
maps a given the k-space data y:

â = arg min
a

∥Aa − y∥2
2 + λ∥Ψa∥1 . (3.5)

Here, the sparsifying transform Ψ is a Wavelet transform, and λ is the regular-
ization parameter to be tuned to balance the preservation of fine details and the
residual noise. The regularized linear inverse problem is solved using the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA). The PICS reconstruction
was performed in BART using the bart pics tool and specifying 9 iterations
-i9 and ℓ1-Wavelet regularization -R W. Note that this wavelet regularization for
compressed sensing could also be included in the NLINV pipeline, but so far this
variant has not been implemented in BART.
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3.4 Subspace-Constrained MRI Reconstruction

3.4.2 Subspace NLINV-Net

NLINV-Net was used to jointly estimate the coefficient maps a and the coil sensi-
tivity maps c of the radial cardiac MRI data y. NLINV-Net unrolls the IRGNM
to solve the nonlinear SENSE inverse problem, i.e., Equation 3.2, for 9 iterations
but uses no network regularization, i.e., plain NLINV, in the first 6 iterations. The
resulting alternating algorithm is given by

an
ref = Net(an) (3.6)

xn+1 = arg min
x

∥JF (xn)(x − xn) − (y − F (xn))∥2
2

+ (αn + λ)∥a − an
ref∥

2
2 + αn∥Wc∥2

2 .
(3.7)

Equation 3.6 refers to the denoising block. Equation 3.7 refers to the DC block and
is solved using CG optimization. The NLINV-Net reconstruction was performed in
BART using the bart nlinvnet tool, which has two modes: training and inference.
The output of NLINV-Net in the training mode consists of the weights, which are
provided afterward in the inference mode to obtain a reconstruction. The dataset
was split into 24 training subjects and 10 test subjects. The training subjects were
used for training and learning the weights of NLINV-Net, while the test subjects
were used for inference and evaluation.

Denoising Block Architecture

The proposed architecture for the denoising block is a ResNet made of 5 layers.
Each layer consists of a convolutional layer (Conv) with 32 filters followed by ReLU
acting independently on the real and imaginary parts. The last layer does not have
the ReLU to avoid truncating the negative part of the learned noise patterns. The
ResNet has one input/output channel per coefficient map. Following the residual
learning strategy, the learned noise, i.e., the output of the last layer of the ResNet,
is added to the input of the denoising block to get the reconstructed image as the
output of the denoising block. The input of the denoising block is normalized to
a maximum magnitude of one, and its output is rescaled to the original value.

Training

The training step aimed to learn the weights of NLINV-Net. The k-space data,
the k-space trajectories, and the subject-specific masks for discarding systolic data
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of the 24 training subjects were stacked along the 15-th dimension, as the bart
nlinvnet command in the training mode requires that independent datasets, i.e.,
datasets of different subjects, should be stacked along the fiftieth dimension. Then,
the stacked variables and the basis functions, where the basis functions are the
same for all the subjects, were provided as input to NLINV-Net. In the absence
of fully sampled data and a ground truth reference, NLINV-Net was trained using
the self-supervised strategy presented in 2.6.2, with the difference that here, for
subspace-constrained reconstruction, the objects of estimation are the coefficient
maps and not the image content. Figure 3.4 shows the proposed architecture
for subspace NLINV-Net and the self-supervised learning strategy in the case of
subspace-constrained reconstruction. The weights of NLINV-Net, which are shared
across iterations, are optimized to minimize the MSE of the predicted and actual
Λ as follows:

ŵ = arg min
w

N∑
i=1

MSE(PΛ,i · yi; FΛ,i(NLINV-Net(PΘ,i · yi, w))) . (3.8)

Here, PΛ,i is the sampling pattern to get the k-space subset Λi, PΘ,i is the sampling
pattern to get the k-space subset Θi, NLINV-Net(PΘ,i · yi, w) is the output of the
last iteration, and FΛ,i is the forward model including the sampling pattern PΛ,i.
The number of complex-valued trainable parameters were 30,085, the batch size
was 12, the learning rate was 0.001, the network was trained for 500, 1000, and
2000 epochs.

Inference

The inference step aimed to reconstruct the coefficient and coil sensitivity maps
using the weights learned during the training step. It involved the 10 test subjects.
For each test subject, the basis functions, the k-space data, the k-space trajectory,
the subject-specific mask for discarding systolic data, and the learned weights were
provided as input to the trained NLINV-Net.

3.5 T1 Quantitation

After reconstruction, the coefficient maps a were fitted pixel-wise to the sig-
nal model in the subspace using the Gauss-Newton algorithm through the bart
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Figure 3.4: Subspace NLINV-Net and self-supervised learning. (a) Schematic rep-
resentation of the subspace self-supervised training strategy. The ac-
quired k-space data y is randomly divided spoke-wise into two disjunct
subsets Θ and Λ according to 8:2. Θ is used by NLINV-Net to esti-
mate the coefficient maps and the coil sensitivity maps. From that, Λ
is predicted by the NLINV forward model with the respective pattern.
The weights of NLINV-Net are optimized to minimize the MSE of the
predicted and actual Λ. (b) The DC block of NLINV-Net. It is im-
plemented using the CG algorithm. (c) The proposed denoising block
for subspace NLINV-Net. It is a ResNet made of 5 layers. Each layer
consists of a convolutional layer (conv) with 32 filters followed ReLU
acting independently on real and imaginary part. The last layer does
not have the ReLU to avoid truncating the negative part of the learned
noise patterns. The ResNet has one input/output channel per coeffi-
cient map. Following the residual learning strategy, the learned noise,
i.e., the output of the last layer of the ResNet, is added to the input of
the denoising block to get the reconstructed image as the output of the
denoising block. The input of the denoising block is normalized to a
maximum magnitude of one, and its output is rescaled to the original
value. Figure adapted from [9].

mobafit command:

p̂ =


M∗

0

M0

R∗
1

 = arg min
p

∥∥∥a − BHM(p)
∥∥∥2

2
. (3.9)
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Here, (·)H denotes the conjugate transpose. The coefficient maps were normalized
so that the steady-state magnetization was scaled to one, allowing consistent
initialization to the same value and improving the convergence of the parameter
estimation algorithm.

After the estimation of the model parameters M∗
0 , M0, and R∗

1, T1 was
computed using the bart looklocker which apply the corrected Look-Locker
equation:

T1 = M0

M∗
0 · R∗

1
− 2 · TD . (3.10)

Here, TD is the delay between the inversion and the start of the acquisition.

3.6 Data Analysis

The quality of myocardial T1 maps was evaluated on the ten test subjects using a
combination of qualitative and quantitative evaluations, even though quantitative
assessment has been challenging due to the absence of any ground truth reference.
However, significant insights emerged from the computation of several quantitative
metrics and the comparative analysis between the proposed neural network-based
approach and the baseline methods. The quantitative metrics computed were the
Coefficient of Variation (CV) within a specific Region Of Interest (ROI) to quantify
the precision of T1 estimation and the edge sharpness to quantify the preservation
of fine details.

3.6.1 ROI analysis

For the assessment of the myocardial T1 values, the interventricular septum was
carefully selected to exclude the blood pool using Python. Excluding the blood
pool from the evaluation process holds significant importance. This necessity arises
from the dynamic nature of blood circulation during diastole within the ventricles,
which results in image intensities that deviate from the expected signal model. This
deviation ultimately hinders the reliable estimation of blood T1 relaxation times.
The interventricular septum ROIs of the ten test subject are shown in Figure 3.5.
Similar to [35], the precision of the T1 estimation was evaluated through the CV
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withing the selected ROI:

CVROI = SDROI

meanROI
· 100% . (3.11)

T006440 T006587 T006588 T006589 T010020

T010021 T010022 T010023 T010024 T010025

Figure 3.5: Interventricular septum ROIs. For the assessment of the myocardial
T1 values, the interventricular septum was carefully selected to exclude
the blood pool using Python.

3.6.2 Edge Sharpness Analysis

T1 edge sharpness was quantitatively measured as follows [36]: (i) a binary edge
map was generated using the Canny Edge Detector (CED), and one edge-of-
interest (EOI) was manually selected using a graphical user interface in Matlab;
(ii) at each pixel of the EOI, an intensity profile was read along the horizontal
direction; (iii) the intensity profiles corresponding to all EOI pixels were individu-
ally fitted with a sigmoid function characterized by four parameters, including one
that represents the edge sharpness:

y(ρ, a0, a1, a2, s) = a1

1 + 10s(a0+ρ) + a2 . (3.12)

Here, ρ is the intensity profile, a0 determines the central location, a1 determines
the vertical range, a2 defines the vertical offset, and s quantifies the growth rate
or sharpness of the sigmoid. The higher |s|, the sharper the edges. The above
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nonlinear least square fitting was performed in MATLAB using the Levenberg-
Marquardt algorithm. Since there are multiple intensity profiles, the sharpness of
each image is represented by the distribution of s.

3.6.3 Statistical Analysis

Differences among the various methods for myocardial T1 mapping were statisti-
cally tested using one-way ANOVA (α = 0.05), which is a test that is used to find
out whether there exists a statistically significant difference between the mean val-
ues of more than one group. In addition, t-tests were performed to test one-to-one
differences. Multiple comparison correction [37] [38] was applied for controlling
False Discovery Rate (FDR) and for estimating corrected significant p-values for
each subject.

3.7 Implementation

All the image reconstruction-related computations were done in BART on a server
system equipped with two AMD EPYC 7662 processors, 1008 GB of RAM and
four NVIDIA A100-SXM-80GB GPUs from which one was used. Data analysis
was performed using Python 3.9.2, except for the edge sharpness analysis, which
was carried out in Matlab R2022a.
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Chapter 4

Results

4.1 Comparison of Different Basis Dimensions

Figure 4.1 shows myocardial T1 maps estimated using a variable number of princi-
pal components. A larger number of components results in noisier T1 maps. Figure
4.1a shows that simple NLINV reconstruction fails for some datasets when 20 com-
ponents are used, providing in those cases over-smoothed coefficient maps, as can
be observed in Figure 4.2. Table 4.1 reports the execution time of NLINV and
ℓ1-Wavelet PICS reconstruction in seconds as a function of the number of compo-
nents, showing a significant increase in computational effort when increasing the
size of the basis. Considering both the precision of the T1 maps and the computa-
tional effort, the superior result of using three, four, or five components compared
to using ten or twenty components is evident. However, the results of three, four,
or five components are difficult to distinguish. Figure 4.3 depicts the graph of
the cumulative explained variance and indicates that most of the variance, i.e.,
the 98.56%, is already explained by the first four components. Therefore, based
on this evidence and suggestions from the literature [7], the first four principal
components were used as subspace basis.
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Figure 4.1: NLINV and ℓ1-Wavelet PICS myocardial T1 maps estimated using a
variable number of principal components. A higher number of compo-
nents results in noisier T1 maps. Simple NLINV reconstruction fails
for the first test dataset when using twenty components, providing
over-smoothed coefficient maps, as shown in Figure 4.2. Black pixels
represent Not a Number (NaN) values.
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Figure 4.2: NLINV and ℓ1-Wavelet PICS coefficient maps reconstructed using
twenty components. Simple NLINV reconstruction fails for the first
test dataset when using twenty components, providing over-smoothed
coefficient maps. The color encodes the phase.

Number of
Components

Execution Time [s]
NLINV ℓ1-Wavelet PICS

3 4 17
4 5 19
5 5 19
10 6 25
20 10 57

Table 4.1: NLINV and ℓ1-Wavelet PICS execution time in seconds as a function
of the number of components. There is a significant increase in compu-
tational effort when increasing the basis dimension.
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Figure 4.3: Cumulative Explained Variance. Most of the variance, i.e., the 98.56%,
is already explained by the first four components. The red dot marks
the selected basis dimension. Connecting lines serve to guide the eye.
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4.2 Comparison of Different Regularization Pa-
rameters

Figure 4.4 and Figure 4.5 demonstrate the influence of the regularization parame-
ter λ used in the ℓ1-Wavelet PICS reconstruction on CV and edge sharpness. Low
values of λ increase noise in the myocardial T1 maps, i.e., higher CV, while high
values of λ lead to blurring, i.e., lower edge sharpness. The CV was evaluated in
the interventricular septum. The edge sharpness of each image is represented by
the distribution of the edge sharpness of the multiple sigmoid functions fitted to
the selected T1 intensity profiles. Figure 4.6 reports the fitting results of a repre-
sentative T1 intensity profile for the first test dataset and shows a good agreement,
i.e., low RMSE, between the profiles and the fitted sigmoid curves. This evidence
holds to all the datasets and all the selected profiles. Table 4.2 reports the mean ±
SD of the CV computed in the interventricular septum across test subjects. The
precision of the T1 values increases for higher λ values. Once the CV values were
identified as normally distributed by the Lilliefors test, t-tests revealed that (i) the
CV values for λ = 1.5 · 10−4 are significantly higher than the CV values for all the
other λ values (p < 0.005), (ii) the CV values for λ = 6.0 · 10−4 are significantly
higher than the CV values for the highest λ value, i.e., λ = 1.5 · 10−3 (p < 0.015),
(iii) no significant difference between the CV values for two highest λ values, i.e.,
λ = 1.0 · 10−3 and λ = 1.5 · 10−3 (p < 0.395). Since there is no denoising improve-
ment from λ = 1.0·10−3 to λ = 1.5·10−3 but, as can be observed in the last column
of Figure 4.4 and Figure 4.5, the edge sharpness keeps decreasing, λ = 1.0 · 10−3

was chosen to balance between noise reduction and preservation of image details.
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Figure 4.4: ℓ1-Wavelet PICS regularization parameter λ tuning for test subjects
from 1 to 5. Low values of λ increase noise in the myocardial T1
maps, i.e., higher CV, while high values lead to blurring, i.e., lower
edge sharpness. The CV was evaluated in the interventricular septum.
Connecting lines in the edge sharpness graphs serve to guide the eye.
Black pixels represent NaN values.

60



Chapter 4. Results
Su

bj
ec

t #
6

CV = 12.0%

 = 1.5 10 4

CV = 9.4%

 = 6.0 10 4

CV = 7.8%

 = 1.0 10 3

CV = 4.0%

 = 1.5 10 3

0

2

4

Edge Sharpness

Su
bj

ec
t #

7

CV = 11.3% CV = 9.2% CV = 7.7% CV = 6.0%
0

2

4

Su
bj

ec
t #

8

CV = 12.0% CV = 9.7% CV = 8.6% CV = 5.7% 0.5

1.0

1.5

Su
bj

ec
t #

9

CV = 13.4% CV = 11.1% CV = 9.7% CV = 7.0% 0

2

Su
bj

ec
t #

10

CV = 12.7% CV = 10.9% CV = 9.7% CV = 9.2% 0

1

2

3

0.0

0.5

1.0

1.5

T 1
 [s

]

0.0

0.5

1.0

1.5

T 1
 [s

]

0.0

0.5

1.0

1.5

T 1
 [s

]

0.0

0.5

1.0

1.5

T 1
 [s

]

0.0

0.5

1.0

1.5

T 1
 [s

]

Figure 4.5: ℓ1-Wavelet PICS regularization parameter λ tuning for test subjects
from 6 to 10. Low values of λ increase noise in the myocardial T1
maps, i.e., higher CV, while high values lead to blurring, i.e., lower
edge sharpness. The CV was evaluated in the interventricular septum.
Connecting lines in the edge sharpness graphs serve to guide the eye.
Black pixels represent NaN values.
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Figure 4.6: Edge sharpness as a function of the ℓ1-Wavelet PICS regularization pa-
rameter λ for the first dataset. On the top, T1 maps highlighting the
selected T1 intensity profile in dark blue. In the middle, the quantita-
tive edge sharpness value |s|. On the bottom, the selected T1 intensity
profile and the fitted sigmoid function, with the goodness of fit quan-
tified as RMSE. Higher values of λ lead to blurring, i.e., lower edge
sharpness.

λ CV [%]
1.5 · 10−4 11.6 ± 1.6
6.0 · 10−4 9.2 ± 1.8
1.0 · 10−3 7.8 ± 1.8
1.5 · 10−3 7.1 ± 1.6

Table 4.2: CV as a function of the ℓ1-Wavelet PICS regularization parameter λ.
Low values of λ increase noise in the myocardial T1 maps, i.e., higher
CV. The reported CV values are the mean ± SD of the CV values
evaluated in the interventricular septum across test subjects. The best
result is highlighted in bold.
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4.3 Self-Supervised Subspace Learning for My-
ocardial T1 Mapping

4.3.1 CV and Edge Sharpness

Figure 4.7 and Figure 4.8 illustrate the impact of extending the training duration
for NLINV-Net and reports the CV values computed in the interventricular
septum. A noticeable disparity is evident when comparing the T1 maps gen-
erated after 100 epochs of training against those after 500, 1000, and 2000
epochs. However, no significant visual difference is observed among the T1 maps
produced for 500, 1000, and 2000 epochs. Table 4.3 reports the mean ± SD
of the CV values computed in the interventricular septum across test subjects.
The precision of the T1 values increases for a higher number of epochs, with
comparable results for 1000 and 2000 epochs. Since training the network longer
increases the computational effort significantly, it is worth it only if enhanced
precision in the results is achieved. Thus, NLINV-Net trained for 1000 epochs was
selected as the optimal architecture. The training lasted almost 30 seconds/epoch.

Figure 4.9 and Figure 4.10 shows a comparison among NLINV-Net T1 maps and
the T1 maps computed using the baseline methods, i.e., NLINV and ℓ1-Wavelet
PICS, and reports the CV values computed in the interventricular septum as well
as the edge sharpness associated to the T1 maps. The edge sharpness of each
image is represented by the distribution of the edge sharpness of the multiple
sigmoid functions fitted to the selected T1 intensity profiles. Figure 4.11 reports
the fitting results of a representative T1 intensity profile for the first test dataset
and shows a good agreement, i.e., low RMSE, between the profiles and the fitted
sigmoid curves. This evidence holds to all the datasets and all the selected
profiles. Statistical tests (t-tests when the edge sharpness values were normally
distributed based on the Lilliefors test; Wilcoxon rank-sum tests when they
were not) revealed no significant differences among NLINV-Net and PICS edge
sharpness values for all the test subjects, except for the sixth. Thus, for most of
the datasets NLINV-Net is not over-smoothing the images compared to PICS.
NLINV-Net T1 maps exhibit reduced level of noise compared to the T1 maps
produced by plain NLINV. Conversely, no significant visual difference in noise
level is observed between NLINV-Net and PICS T1 maps. Table 4.4 reports the
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mean ± SD of the CV values computed in the interventricular septum across
subjects. NLINV-Net is the method leading to the best T1 precision, i.e., lowest
CV. Once the CV values were identified as normally distributed by the Lilliefors
test, t-tests revealed that (i) the NLINV-Net CV values are significantly lower
than the NLINV CV values (p<0.02), (ii) no significant difference between NLINV
and PICS CV values (p>0.3). Thus, the precision of NLINV-Net and PICS T1

maps as well as the precision of NLINV and PICS T1 maps is comparable, while
the precision of NLINV-Net T1 is higher than the precision of NLINV T1. Figure
4.12 reports the coefficient maps reconstructed by NLINV-Net, ℓ1-Wavelet PICS
and NLINV, and shows that the NLINV-Net coefficient maps are the less noisy.

#Epochs CV [%]
100 8.9 ± 1.2
500 7.5 ± 1.5
1000 7.2 ± 1.4
2000 7.2 ± 1.4

Table 4.3: CV as a function of the number of epochs. The precision of the T1
values increases for a higher number of epochs, with comparable results
for 1000 and 2000 epochs. The reported CV values are the mean ± SD
of the CV values evaluated in the interventricular septum across test
subjects. The best result is highlighted in bold.

Method CV [%]
NLINV-Net 7.2 ± 1.4
PICS 7.8 ± 1.8
NLINV 9.1 ± 1.5

Table 4.4: NLINV-Net, NLINV, and ℓ1-Wavelet PICS CV values. The reported
CV values are the mean ± SD of the CV values evaluated in the inter-
ventricular septum across test subjects. The best result is highlighted
in bold.
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Figure 4.7: NLINV-Net T1 maps as a function of the number of epochs for test
subjects from 1 to 5. A noticeable disparity is evident when comparing
the T1 maps generated after 100 epochs of training against those after
500, 1000, and 2000 epochs. However, no significant visual difference is
observed among the T1 maps produced for 500, 1000, and 2000 epochs.
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Figure 4.8: NLINV-Net T1 maps as a function of the number of epochs for test
subjects from 6 to 10. A noticeable disparity is evident when compar-
ing the T1 maps generated after 100 epochs of training against those
after 500, 1000, and 2000 epochs. However, no significant visual differ-
ence is observed among the T1 maps produced for 500, 1000, and 2000
epochs.
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Figure 4.9: NLINV-Net, NLINV, and ℓ1-Wavelet PICS T1 maps for test subjects
from 1 to 5. NLINV-Net T1 maps exhibit reduced level of noise com-
pared to the T1 maps produced by plain NLINV. Conversely, no signif-
icant visual difference in noise level is observed between NLINV-Net
and ℓ1-Wavelet PICS T1 maps. The T1 maps were computed using
four basis functions, and as for PICS, the regularization parameter
was λ = 1.0 · 10−3. The learning rate was r=0.001. Black pixels repre-
sent NaN values. The images are cropped for visualization purpose.
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Figure 4.10: NLINV-Net, NLINV, and ℓ1-Wavelet PICS T1 maps for test subjects
from 6 to 10. NLINV-Net T1 maps exhibit reduced level of noise
compared to the T1 maps produced by plain NLINV. Conversely, no
significant visual difference in noise level is observed between NLINV-
Net and ℓ1-Wavelet PICS T1 maps. The T1 maps were computed using
four basis functions, and as for PICS, the regularization parameter
was λ=0.01. The learning rate was r=0.001. Black pixels represent
NaN values. The images are cropped for visualization purpose.
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Figure 4.11: NLINV-Net, NLINV, and ℓ1-Wavelet PICS edge sharpness for the
first dataset. On the top, T1 maps highlighting the selected T1 in-
tensity profile in dark blue. In the middle, the quantitative edge
sharpness value |s|. On the bottom, the selected T1 intensity profile
and the fitted sigmoid function, with the goodness of fit quantified as
RMSE.
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Figure 4.12: NLINV-Net, NLINV, and ℓ1-Wavelet PICS coefficient maps. The
NLINV-Net coefficient maps are the less noisy. The color encodes
the phase.
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4.3.2 Loss Analysis

Figure 4.13 shows the training and test losses versus number of epochs for the
optimized architecture, i.e., 1000 epochs and learning rate r = 0.001. The loss
decreases as the number of epochs increases, meaning the network is learning to
reconstruct the coefficient maps even better. The randomness in the training loss
curve is caused by the epoch-wise random generation of the masks selecting the
input spokes for NLINV-Net.

Figure 4.14a highlights the presence of a consistent variability in the loss
values across different test subjects. Upon observing Figure 4.14b, which presents
the first coefficient maps of the test subjects, it becomes evident that this
variability might stem from the manner in which data is collected. Notably,
subjects with a horizontal display of the thorax exhibit lower loss values compared
to subjects with an oblique acquisition. Figure 4.15 shows a similar pattern in
the training set.
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Figure 4.13: Training and test loss versus number of epochs. The loss decreases as
the number of epochs increases, meaning the network is learning to
reconstruct the coefficient maps even better. The randomness in the
training loss curve is caused by the epoch-wise random generation of
the masks selecting the input spokes for NLINV-Net.
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Figure 4.14: Variability in the loss values among test subjects.
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(a) Loss values at the last epoch for the training subjects.
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Figure 4.15: Variability in the loss values among training subjects.
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Chapter 5

Discussion

This thesis investigates the performance of self-supervised subspace learning for
myocardial T1 mapping using single-shot inversion-recovery radial FLASH. The
employed neural network is NLINV-Net [9], which is trained in a self-supervised
fashion to reconstruct the coefficient maps jointly with the coil sensitivity maps
from undersampled radial cardiac data. This learning strategy is crucial for car-
diac data, which lack any ground truth reference. T1 maps are estimated using
pixel-wise fitting to the signal model [25]. Reconstruction and parameter mapping
were performed in the subspace. The reconstruction quality of the coefficient and
T1 maps computed using NLINV-Net was evaluated considering NLINV [22] and
ℓ1-Wavelet PICS as baseline methods, where ℓ1-Wavelet PICS combines parallel
imaging and compressed sensing by using ℓ1-Wavelet sparsity regularization when
solving the inverse problem for parallel imaging.

5.1 Comparison of Different Basis Dimensions

The problem of finding the optimal basis dimension for subspace-constrained recon-
struction is challenging, but several factors can help define its solution. According
to [7], a lower number of principal components causes bias for myocardial T1 map-
ping, while a higher number of components results in noisier T1 maps. Thus, the
chosen number of components needs to compromise between quantitative accuracy
and precision. Since one of the purposes of subspace-constrained reconstruction
is to reduce computational effort, another meaningful variable to keep in mind
when choosing the dimension of the basis is the execution time of the reconstruc-
tion algorithm. Finally, the cumulative explained variance graph is a useful tool
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for assessing how many components explain most of the variance. This metric
identifies the optimal basis size where the plateau starts. Based on the suggestion
found in [7] and according to which four components define an optimal trade-off
between quantitative accuracy and precision, and combining the aforementioned
parameters, the first four components were taken as the subspace basis for the
self-supervised subspace learning performed in this thesis. Noteworthy, NLINV
reconstruction fails for some datasets when performed in a twenty-dimensional
subspace, providing over-smoothed coefficient maps. The coefficient maps com-
puted by the ℓ1-Wavelet PICS method are not as smooth as the NLINV coefficient
maps and lead to at least meaningful T1 maps, which is interesting because the
coil sensitivity maps provided to ℓ1-Wavelet PICS to compute these coefficient
maps are those produced by the NLINV algorithm, which denotes that most of
the effort of NLINV in the case of many components lies in the computation of the
coefficient maps more than in the coil sensitivity maps. The last point about the
selection of the basis dimension refers to the consideration of healthy volunteers
only, as this study does. One could explore what happens when diseased subjects
are involved and observe how the method should translate to produce high-quality
T1 maps. Likely, it would require selecting a higher number of basis functions to
live up to the variability increase.

5.2 Comparison of Different Regularization Pa-
rameters

The inverse problem for MRI reconstruction is ill-posed, meaning that tiny errors
in the acquired data can result in significant errors in the estimated image. The
noise amplification decreases by adding a regularization term into the inversion.
However, the regularized inverse problem requires careful tuning of the regulariza-
tion parameter to balance between noise reduction and retaining fine details. In
this study, to choose the optimal regularization parameter λ for the ℓ1-Wavelet
PICS method, the noise was measured as CV, while the detail level as edge sharp-
ness. Considering these metrics, λ = 1.0 · 10−3 was identified as an optimal value.
It is worth noting that the process of tuning the regularization parameter is in-
fluenced by user preferences, making this method partially subjective. It is one
of the main driving forces of introducing deep learning into the image reconstruc-
tion process to learn automatically a regularization term. Notably, including the
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ℓ1-Wavelet regularization term for compressed sensing into the NLINV functional
is a possibility. However, up to date, this adaptation has not been integrated into
BART.

5.3 Self-Supervised Subspace Learning for My-
ocardial T1 Mapping

The lack of any ground truth reference compounds the major challenge of assessing
the performance of self-supervised subspace learning for myocardial T1 mapping.
However, the precision of NLINV-Net T1 maps was demonstrated to be high by
small CV values, ranging from 5.1 to 9.6%, without losing in image details, as
proved by the edge sharpness computation. The precision of NLINV-Net T1 maps
is improved compared to the precision obtained by the baseline methods, i.e.,
NLINV [22] and ℓ1-Wavelet PICS, but the difference between the network and
PICS is not statistically significant. Thus, NLINV-Net learns in a self-supervised
fashion, i.e., without a prior or reference, correlations between the parameters
encoded with the FLASH sequence and consequently a well-tuned regularization
and produces high-quality T1 maps as granted by PICS but getting rid of the
subjective regularization parameter tuning that comes with it. The first reason for
the inability of NLINV-Net to significantly outperform PICS could be the small
size of the sample, i.e., 24 subjects. Training the network on more data could help
improve its image reconstruction performance. However, this requirement would
be a possible bottleneck when projecting the application of this method in clinical
practice: acquiring more training data means increasing the installation time of the
technique. Thus, a fair balance between the two requirements needs to be found.
The second reason could be the inclination with which data are collected. It came
up that depending on the rotation of the thorax, different amount of energy in the
image lies outside the reconstructed field of view, which gives a constant offset for
the loss. Thus, one could improve the FOV selection for the reconstruction.
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Chapter 6

Conclusion and Outlook

This thesis investigates a novel neural network-based subspace MRI reconstruction
method for myocardial T1 mapping utilizing single-shot inversion-recovery radial
FLASH. NLINV-Net was able to learn in a self-supervised fashion, i.e., without a
prior or reference, correlations between the parameters encoded with the FLASH
sequence and consequently a well-tuned regularization, it outperformed NLINV in
terms of T1 precision and produced high-quality T1 maps as granted by ℓ1-Wavelet
PICS but getting rid of the subjective regularization parameter tuning that comes
with it, providing an excellent basis for myocardial T1 mapping using single-shot
inversion-recovery radial FLASH sequence.

The core of the proposed approach, the subspace NLINV-Net, holds signifi-
cant promise beyond its application in the specific three-parameter MRI approach
utilizing the FLASH sequence. For instance, it could be particularly valuable in
addressing more extensive quantitative MRI challenges, such as the quantitative
magnetization transfer mapping without constraints on model parameters [39]
[40] using Hybrid State Free Precession (HSFP) sequences [41]. The network’s
capacity to learn correlations among individual parameters, now encompassing a
substantial number (e.g., an eight-parameter model), could significantly enhance
the reconstruction process.
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