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Abstract

Expected increases in future extreme precipitation due to anthropogenic climate change

highlight the need for robust projections. However, the main drivers of this increase and

its precise rate remain uncertain. Numerous studies have sought empirical relationships to

identify how precipitation percentiles scale with temperature, but the exact changes in the

probability distribution of extremes under a warming climate remain poorly understood.

To address this gap, this thesis proposes to reformulate the Metastatistical Extreme Value

Distribution (MEVD), which accounts for the full distribution of underlying ”ordinary”

events, to explicitly incorporate their temperature dependence. Leveraging long historical

records of precipitation and temperature, their probabilistic relationship and the influence

of thermodynamics and large-scale circulation on their relationship are investigated. The re-

sults indicate that the change in daily precipitation extremes cannot be solely attributed to

thermodynamics; rather, the dynamical effects must also be considered. Conversely, at the

hourly scale, evidence emerges that changes in precipitation extremes, predominantly driven

by thermodynamics, manifest as an exponential relationship between the parameters of the

distribution of the “ordinary” events and temperature, leading to the intensification and the

increase in the frequency of hourly precipitation extremes under warming conditions.
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Sommario

Gli aumenti previsti delle future precipitazioni estreme a causa del cambiamento climatico

antropogenico evidenziano la necessità di proiezioni robuste. Tuttavia, i principali drivers

di questo aumento e il suo preciso tasso di incremento rimangono incerti. Numerosi studi

hanno cercato relazioni empiriche per identificare come i percentili delle distribuzioni delle

precipitazioni variano con la temperatura,ma gli esatti cambiamenti nella distribuzione della

probabilità degli eventi estremi in condizioni di riscaldamento climatico rimangono poco

compresi. Per colmare questa lacuna, questa tesi propone di riformulare la Distribuzione

Metastatistica dei Valori Estremi (MEVD), che tiene conto dell’intera distribuzione degli

eventi ”ordinari” sottostanti, per incorporare esplicitamente la loro dipendenza dalla temper-

atura. Sfruttando lunghe serie storiche di precipitazione e temperatura, sono studiate la loro

relazione probabilistica e l’influenza della termodinamica e della circolazione atmosferica a

grande scala sulla loro relazione. I risultati indicano che il cambiamento nelle precipitazione

giornaliere estreme non può essere attribuito esclusivamente alla termodinamica ma anche

gli effetti dinamici devono essere considerati. Al contrario, alla scala oraria, emergono evi-

denze che i cambiamenti nelle precipitazioni estreme, prevalentemente guidati dalla termod-

inamica, si manifestano come una relazione esponenziale tra i parametri della distribuzione

degli eventi ”ordinari” e la temperatura, portando all’intensificazione e all’aumento della fre-

quenza di eventi di precipitazioni orarie estreme in condizioni di riscaldamento.
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1
Introduction

Understanding the evolvingbehavior of extreme rainfall is of critical significance. TheEarth’s

climate system is undergoing substantial changes due to ongoing global warming driven by

the increase in greenhouse gas concentrations. These changes are expected to deeply affect

various environmental aspects. Specifically, they may result in modified patterns of extreme

rainfall in terms of frequency, intensity, and spatial distribution. These alterations could

increase the occurrence of hazards associated with such extremes, putting more people and

assets at risk on a global scale. Flash floods, landslides, and damage to the agricultural system

are among the hazards driven by rainfall extremes with far-reaching socio-economic impacts.

Therefore, a thorough understanding of extreme rainfall dynamics under a global warming

context becomes imperative. Such understanding is key for effective water resource man-
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agement, robust infrastructure planning, accurate risk assessment, and the development of

effective climate adaptation and mitigation strategies. Robust projections of these changes

provide engineers and planners with indispensable insights enabling the implementation of

measures that enhance infrastructure resilience against the growing threats of climate change.

Furthermore, this knowledge serves as a foundation for informed risk management and pol-

icy decisions aimed at mitigating hydrogeological vulnerabilities posed by these changing

extremes.

Several studies provide increasing evidence that awarmer climatewill lead tomore intense

[1, 2, 3] and frequent [1, 4, 5] extreme rainfall events. However, the precise rate of increase

and the roles of thermodynamic and atmospheric circulation processes remain uncertain.

Much of the research addressing the empirical scaling of extreme precipitation with temper-

ature is based on high precipitation percentiles. The relationship between extreme rainfall

and temperature varies across studies depending on the region, with differing findings rang-

ing from monotonic increasing trends at different scaling rates, and downward trends, to

hook structures characterized by increasing trends followed by subsequent declines at higher

temperatures [6, 7, 8, 9, 10]. However, the applicability of these observed scaling rates to ex-

plain global warming [11] or in the least, their suitability for characterizing future extreme

rainfall behavior in the region from which they were derived is still subject of discussion.

In this thesis, I propose to look at the probabilistic relation between precipitation and

temperature using long time series to investigate the role of thermodynamics in driving the

generation of daily and hourly precipitation extremes. Additionally, I aim to reformulate an

existing metastatistical extreme value model to investigate whether the change in the proba-

bility distribution of rainfall extremes under global warming can be accurately described by

a parsimonious probability model.
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2
Data andMethods

2.1 Extreme Precipitation

The term ”extreme” lacks a universally agreed-upon definition. Readers are encouraged to re-

fer to Gimeno et al. [12], which extensively addresses this issue by exploring disaster-related

and statistical perspectives. In this thesis, our focus will center on examining extreme pre-

cipitation from a statistical parametric standpoint. This involves the fitting of extreme value

distributions to estimate precipitation quantiles for given return periods, oftenmuch greater

than the observation interval. This topic will be thoroughly discussed in section 2.2.
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2.1.1 Precipitation GenerationMechanism

The space-time characteristics of precipitation events, and, hence, their probabilistic struc-

ture, depend on the precipitation generation mechanisms. We can distinguish three main

types ofprecipitationgenerationmechanisms, namely stratiform, convective, andorographic.

At a larger scale, stratiform precipitation emerges as a consequence of broad, sustained

processes. This form of precipitation occurs as widespread steady and long-duration events

typically associated with synoptic-scale weather systems. This phenomenon occurs in the

presence of relatively mild upward atmospheric motion [13].

In contrast, convective precipitation occurs on a more localized scale, resulting in shorter

yet more intense episodes. This form of precipitation is closely linked with atmospheric in-

stability and convection processes. Convective precipitation requires specific dynamic con-

ditions, including moisture, atmospheric instability, and lift to trigger its occurrence. No-

tably, the dynamics driving convective precipitation are characterized by high non-linearity,

making them remarkably sensitive to perturbations [8, 14, 5]. In Germany, observations

show that convective precipitation exhibits a faster increasewith temperature than stratiform

precipitation [6]. Extensive datasets are required for a precise classification of precipitation

events into these two distinct types. Radar data are typically used in that regard by looking

at the drop size or reflectivity gradients. [15]. Other approaches involve the use of cloud

type classification [6], or the occurrence of lightning or thunder as proxies to differentiate

between convective and stratiform precipitation events [16].

In addition to the previously mentioned mechanisms, we can identify orographic precip-

itation. This type occurs when moist air is lifted to saturation due to the orographic effect,

enhancing precipitation and triggering moist instabilities [17]. Therefore, it is strongly con-

nected to the local topography and is typical in regions near mountain ranges. The response
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of orographic precipitation to climate change depends on several factors. Notably, large-

scale changes in wind speed and direction may alter atmospheric moisture transport, conse-

quently impacting the spatial and temporal distribution of precipitation [18]. In addition,

shifts from snow to rain can lead to alterations in the overall precipitation pattern [19].

2.1.2 Theoretical Basis of the Scaling of Extreme Precipitation

Let us consider a large-scale precipitation event. The conservation of moisture for an in-

finitesimal moist air parcel can be expressed as:

∂q

∂t
+∇ · qv = e− c (2.1)

Here v represents the velocity field, q the specific humidity, e the rate of re-evaporation of

clouds and rain-water, and c the rate of condensation per unit mass.

Let us now consider a saturated air parcel. The Lagrangian description of the net conden-

sation rate needed to maintain the water vapor at saturation can be expressed as:

c = −Dqs
Dt

(2.2)

where qs = qs(p, T ) is the saturation vapor mixing ratio and D(.)
Dt

is the material derivative

operator. The condensation rate required to keep the rising air near saturation is given by

[20]:

c = −ω
dqs
dp

∣∣∣
θ∗e

(2.3)

whereω is the vertical velocity in the pressure coordinate. O’Gorman and Schneider [21] has

shown that ∂qs
∂p

∣∣∣
θ∗e

and with it the condensation and the precipitation rate does not increase

as rapidly with temperature as qs.
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Taking into account the hydrostatic equation given by:

∂p

∂z
= ρg (2.4)

where g is the gravitational acceleration, the precipitation rate which can be assumed pro-

portional to the total rate of condensation within an air column, can be written as:

Pe ∝ −
∫ zT

zS

cρdz =

∫ pT

pS

c
dp

g
(2.5)

where the subscriptsS and T refer to the surface and the top of the troposphere respectively.

We can therefore write:

Pe = ϵ

∫ pT

pS

−ω
∂qs
∂p

∣∣∣
θ∗e

dp

g
(2.6)

where the constant of proportionality ϵ is the precipitation efficiency which accounts for

the microphysical processes that convert the condensates into precipitation and potentially

includes all approximations used to derive Equation 2.6.

If we denote the mass-weighted integral over the troposphere as ⟨.⟩ =
∫ pT
pS

(.)dp
g
and ne-

glect the changes in the precipitation efficiency, the fractional changes inPe is given by [22]:

δPe

Pe

≈
δ⟨ω ∂qs

∂p

∣∣∣
θ∗e

⟩

⟨ω ∂qs
∂p

∣∣∣
θ∗e

⟩
(2.7)

Neglecting the higher order terms, Equation 2.8 can be decomposed as:

δPe

Pe

≈
⟨ωδ(∂qs

∂p

∣∣∣
θ∗e

)⟩

⟨ω ∂qs
∂p

∣∣∣
θ∗e

⟩
+

⟨δ(ω)∂qs
∂p

∣∣∣
θ∗e

⟩

⟨ω ∂qs
∂p

∣∣∣
θ∗e

⟩
(2.8)
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where the terms on the right-hand side refer to the thermodynamic and the dynamic

contribution to the change in extreme precipitation respectively. This scaling relation is as-

sessed using models [23, 21, 20, 24]. It has been shown that considering only the thermody-

namic scaling for precipitation extremes is usually not enough to explain observed changes

in precipitation extremes [21] since the dynamical contribution is a significant source of

uncertainty.[24].

2.1.3 Empirical Precipitation Scaling

The precipitation scaling in equation 2.6 is often assessed using a model where vertical ve-

locity and temperature are explicitly computed. Due to the coarse resolution of the models

typically used in the literature, all the relevant quantities are computed as average values over

large areas. In contrast, observations are obtained from gauge stations which provide point

measurements where local effects are dominant. In addition, taking into account factors

such as initial-condition dependence and model uncertainty, one can expect discrepancies

between scaling derived from models and observed scaling. Observed scaling relationships

are derived by empirically relating observed extremes with temperature without the need

for theoretical models such as the one described in Section 2.1.2. In this respect, a com-

monly used approach involves binning followed by an exponential regression[7, 25]. The

precipitation depth during wet events (defined as days where P exceeds a certain threshold)

is paired with same-day temperature and placed into a certain number of bins according to

temperature. Typically, the bins are allowed to a variable width to allow an equal number of

observations in each bin. The median temperature of each bin is used as its representative

temperature.

The relevant statistics describing both the precipitation extremes and the underlying dis-

tribution (e.g., empirical percentiles,Weibull distributionparameters) are computed for each

7



bin. Assuming that all factors affecting precipitation remain equal, including relative hu-

midity and atmospheric circulation, extreme precipitation which significantly exceeds the

rate of evaporation, is primarily determined by the amount of water vapor present in the

atmosphere. Consequently, it is expected to increase with temperature at the same rate as

atmospheric-moisture content[26]. The change in the moisture-holding capacity of the at-

mosphere is governed by the Clausius-Clapeyron equation:

des
es

=
LvdT

RvT 2
(2.9)

where es is the saturation vapor pressure of water, Lv is the latent heat of vaporization, and

R is the gas constant for water vapor. This rate of increase, known as the CC-scaling, is

approximately 7%/K and varies as a function of temperature [27].

Following the reasoning presented by Trenberth et al. [26], the relation between atmo-

spheric moisture content and thereby extreme precipitation, with temperature can be de-

scribed by an exponential relationship. Therefore, the following regression equation is de-

fined to quantify the response of precipitation extremes to global warming, by relating the

statistical properties of extreme precipitation with temperature:

S(T +∆T ) = S(T )(1 + αS)
∆T (2.10)

where αS ∗ 100% represents the scaling rate.

2.2 Metastatistical Extreme Value Framework

The Metastatistical Extreme Value Distribution (MEVD) [28] is a non-asymptotic extreme

value distribution based on the concept that extreme values emerge from the distribution of
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underlying ordinary events. It therefore makes use of the full available data rather than of a

small sub-sample of its tail, like in the case of the Generalized Extreme value distribution. A

general expression of the MEVD can be derived as follows: Let us consider the cumulative

distributions of the ordinary rainfall depth, denoted as FX(x) = P (X ≤ x). Assuming

independent events generating n realizations of rainfall in a year, the cumulative distribution

of the yearly maximum rainfall, Yn = max{X1, . . . , Xn}, is given by:

Hn(y) = P (Y ≤ y) = P (Xi ≤ y, i = 1, . . . , n) = [FX(y)]
n (2.11)

The MEVD relaxes the traditional assumption of n → ∞ and considers it as a random

variable. By use of the total probability theorem, we can obtain an expression of MEVD by

considering all possible joint realization of the number of events n and of temperature T as

follow:

ζ(y) = P (Y ≤ y) =
∑
n

∫
T

Hn(y|n, t)fN,T (n, t)dT (2.12)

fN,T (n, t) denotes the joint probability distribution of the number of events per year,

N , and the temperature, T . Let fN(n) =
∑

nj∈RN
PN(nj)δ(n − nj) and fT (t) be the

probability density function ofN and T . Assuming thatN and T are independent, we can

write:

f(n, t) = fN(n) · fT (t) = fT (t)
∑

nj∈RN

PN(nj)δ(n− nj) (2.13)

Equation 2.12 can be rewritten as:

ζ(y) =
∑
n

∫
T

Hn(y|n, t)fT (t)(
∑

nj∈RN

PN(nj)δ(n− nj))dt

=

∫
T

fT (t)
∑

nj∈RN

PN(nj)
∑
n

Hn(y|n, t)δ(n− nj)dt

(2.14)
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If N assumes the values RN = {n1, n2, . . . , nM} with equal probability over the analysis

period, we can write

ζMEV P (T )(y) ≈
1

M

M∑
j=1

∫
T

Hnj
(y|nj, t)fT (t)dt

≈ 1

M

M∑
j=1

∫
T

FX|T j
(y|t)njfT (t)dt

(2.15)

where according to the total probability theorem,
∫
T
Hnj

(y|nj, t)fT (t)dt = Hnj
(y) is a

single sample of yearly maxima distribution with j = 1, 2, . . . ,M representing the observa-

tional years, nj is the number of events in the jth year,FX|T (x|t) the conditional probability

distribution of ordinary precipitation given daily temperature.

In subsequent sections, I will refer to this model as MEV P(T) to emphasize its consid-

eration of the dependence of precipitation on temperature, and to distinguish it from the

standardMEV.

2.3 Quantile estimation

Quantile estimations of complex distributions, such as the reformulated MEVD in equa-

tion 2.15 pose computational challenges. These are due to the need to evaluate integrals over

the entire range of possible realizations of temperatureT . As a result, the computation of ex-

act quantiles, which necessitates the determination of inverseCDFs, becomes unfeasible. To

address these complexities and provide a practical solution, sampling-based approximations

which offer an effective way to estimate quantiles without engaging directly with intricate

integral computations are considered.

I assume that we know or have a statistical model of the probability distribution of tem-

perature T and the number of events N , and the conditional probability distribution of
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precipitation on T , from which we can generate, numerically, sample values. I then make

use of the conditional dependence structure between these variables and the definition of

block maxima in equation 2.12 to produce a sample value from the MEVD. An efficient

sampling algorithm is as follows 2.1 In order to estimate the quantile ξp at a given level of

Algorithm 2.1 Sampling procedure from theMEV distribution of Precipitation
1: Take a sample ni from the probability distribution of the number of wet events fN(t)
2: Take a sample ti from the probability distribution of temperature fT (t)
3: Takeni samplesx1, . . . , xni

from the conditional distribution of ordinary precipitation
Fni

(x|T = t) whose parameters are given by c = c(ti) and w = w(ti) in the case of
Weibull Distribution (see section 2.5.2)

4: A single sample of Y is given by yi = max{x1, . . . , xni
}

accuracy represented by a confidence interval, samples Y1, . . . , Yn are drawn from theMEV

distribution according to algorithm 2.1 and ranked in increasing order as Y(1), . . . , Y(n). An

estimator of ξp is given by:

ξp̂ ≡ Y[np] (2.16)

The criteria given by Briggs and Ying [29] to compute the minimum sample size that guar-

antees the required width ϵabs of the empirical confidence interval with a predefined proba-

bility, is summarized as follows.

The event Y(k) ≤ ξp is true when at least k values in the sample are less than ξp. Since

each realization of Y has an independent and identical probability of being smaller than ξp

denoted by Pr(Y ≤ ξp) = p by definition of a quantile; the number Np of values in the

sample less or equal that ξp follows a binomial distribution, i.e.,Np ∼ Binom(n, p). Thus,

Pr (Y(k) ≤ ξp) = Pr (Np ≥ k) =
n∑

i=k

(
n

i

)
pi(1− p)n−i (2.17)

From 2.17, the (1− α)-confidence interval [X(r), X(s)] of the estimator ξp̂ ≡ Y[np] is given
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by:

Pr (Y(r) ≤ ξp ≤ Y(s)) = Pr (r ≤ N ≤ s) =
s−1∑
i=r

(
n

i

)
pi(1− p)n−i > 1− α (2.18)

where n is the required sample size.

The quantiles can then be computed by initially drawing a batch of samples of size nbatch

from theMEVD.The ranks r and s that satisfy the condition given in equation 2.17 are itera-

tively computedby initially setting themto themodeof thebinomial distribution binom(n, p),

and iteratively decrementing r and incrementing s until the condition is met. This proce-

dure is repeated asmore batches of samples are added to the previous ones until the resulting

confidence interval matches the requirement. In practice, a batch size of nbatch = 1000was

arbitrarily chosen. In the case of the simultaneous estimation of multiple quantiles, samples

are drawn in batches until all confidence intervals are narrower than the prescribed width.

2.4 Study Area andDataset

In this thesis, the analysis at the daily scale is focused on data from the Padova and theOxford

Radcliffe observatory, chosen for their multi-centennial records of temperature and precip-

itation observations. The Padova time series consists of 284 years of daily rainfall records

[30] along with 236 years of daily temperature observations (Figure 2.1i). Similarly, the

Oxford dataset provides daily temperature records starting from 1815 and daily precipita-

tion data from 1827 [31] (Figure 2.1ii). Detailed information about these time series can be

found in the respective references. The analysis of these long-term instrumental observations

holds significant value, as underscored by Marani and Zanetti [30]. Such multi-centennial

records of daily precipitation provide direct insights into the statistical characteristics of rain-

fall, specifically in terms of extreme events and shifts in climatic patterns, allowing investiga-
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Figure 2.1: The daily rainfall and temperature observations in Padova (Italy) (i) and Oxford (U.K.) (ii)

tion into the extent to which trends in extremes can be explained by empirical scaling rela-

tionships between precipitation and temperature.

As for the hourly scale analysis, data from various continental US stations archived at the

National Climatic Data Center (NCDC) are used. Building upon previous work by Shaw

et al. [32], these stations have been identified to encompass a range of climatic and moisture

availability conditions, as shown in the annual average total precipitation in Figure 2.2 In ad-

dition to the regions coveredby Shawet al., stations from the southeasternUS, representative

of the humid subtropical climate are also incorporated. Amore detailed summary of the sta-
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Figure 2.2: Map showing the U.S. annual mean total precipitation computed from the CPC dataset (1981 ‐ 2010) and the
location of the weather stations included in the analysis

tions can be found in Table 2.1 Particularly, our methodology excludes rainfall induced by

tropical cyclones for the southeastern station.

Cyclone trajectories extracted from the HURDAT2 database [33] are used to classify in-

stances of cyclonic rainfall, specifically when a cyclone is within a distance of 250 km [34].

Furthermore, it is noteworthy that daily mean temperature is used instead of hourly tem-

perature to derive the scaling of hourly precipitation. As demonstrated in previous studies,

hourly surface temperature, susceptible to fluctuation due to varying radiation intensity, is

more related to boundary layer processes and may not well represent the conditions in the

higher part of the atmosphere. [10, 32, 16]. Daily mean temperature, in contrast, provides a

better representation of the temperature of the air mass associated with precipitation events.

In subsequent analyses, a threshold of 1mm (0.1mm) is used to define daily (hourly) rainfall

events.
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ID Region COOP ID Location Period of analysis

1 Southeast 381544 Charleston, SC US 1948 - 2013
2 311690 Charlotte, NCUS 1948 - 2013
3 414307 Houston, TXUS 1948 - 2013
4 84358 Jacksonville, FL US 1948 - 2013
5 166660 NewOrleans, LA US 1954 - 2014

6 Coastal Northeast 280325 Atlantic City, NJ US 1948 - 1993
7 190770 Boston, MAUS 1948 - 2013
8 193821 Hyannis, MAUS 1948 - 2001
9 305811 New York City, NY US 1948 - 2013

10 Interior NY 300042 Albany, NY US 1948 - 2013
11 301012 Buffalo, NY US 1948 - 2013
12 308383 Syracuse, NY US 1948 - 2013

13 Central Plains 130200 Ames, IA US 1964 - 2013
14 132203 Des Moines, IA US 1948 - 2013
15 134502 Knoxville, IA US 1948 - 2013
16 256255 Omaha, NE US 1948 - 2013

17 Western Plains 250865 Big Springs, NE US 1948 - 2013
18 53005 Fort Collins, COUS 1948 - 2013
19 254455 Kingsley Dam, NE US 1948 - 2013

Table 2.1: U.S. Stations summaries

2.5 Statistical Analysis

2.5.1 Time Series Declustering

As discussed in Section 2.2, the Metastatistical Extreme Value Distribution is based on the

statistical independence assumption among ordinary events. To guarantee this property, a

careful declustering of the time series is essential. Following the methodology outlined by

Marra et al. [35], event separation is carried out by computing one running parameter for

each year of each station. This parameter defines the minimum time interval allowed be-

tween independent events [36]. For this purpose, the serial correlation of the time series is
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computed across time lags up to 30 days. At each time lag, the long-lag noise is determined

by the 90th quantile of the empirical autocorrelations observed for longer lags. The running

parameter is then defined as the specific time lag atwhich the autocorrelation first alignswith

the long-lag noise level. Subsequently, rainfall events occurring within intervals shorter than

the running parameter are grouped into clusters while retaining only the cluster maxima.

These cluster maxima define the independent ordinary events.

2.5.2 Model Fitting

Several studies have used theWeibull distribution tomodel rainfall depth at the daily [28, 37,

34] and the hourly [35] scale, following a global study by Wilson and Toumi [38]. Accord-

ingly, I make the assumption that the conditional distribution of precipitation on tempera-

ture can be modeled as a Weibull distribution whose parameters vary with temperature. In

this thesis, the dependence of the parameters on temperature is defined as a piecewise con-

stant dependence, where one observation of the covariate T is, in turn, associated with spe-

cific values of the parameters estimated by the samples within a predefined temperature bin.

All observations falling in one bin are then assumed to have common characteristics. The

Weibull distribution is fitted to each bin by means of the Probability Weighted Moments

(PWM) method which performs well for small samples and is less sensitive to the presence

of outliers [39].

The goodness-of-fit of a Weibull distribution to data in each bin is assessed using the

Kolmogorov-Smirnov hypothesis test [40]. This nonparametric goodness-of-fit test is used

to compare a sample from a hypothesized distribution - theWeibull distribution in this con-

text.

Finally, I use the relative frequencies of the temperature bins to model the frequency dis-

tribution of temperature T . Similarly, the relative frequency of the sample values of the
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number of wet events per yearN is used to estimate its frequency distribution.

2.5.3 Model Validation

To validate the model and quantify the uncertainty in quantile estimation, a Monte-Carlo-

based cross-validation procedure is carried out. Aside from MEV P(T), the standard MEV

and the GEV are also tested for reference. To this end, the observations on record are split

into yearly blocks, which are reshuffled randomly, thereby preserving the yearly frequency

distribution of the observations. ALcal-year-long calibration sample to which the EVmod-

els are fitted, and a Lval-year-long validation sample to assess the accuracy of the quantiles

derived from the EV models are drawn from the reshuffled data. Lval should be equal to or

greater than the return period of interest so that empirical cumulative frequencies of the an-

nual maxima can be used as references for the exceedance probabilities inferred through the

EV models. The empirical cumulative frequencies are estimated using the Weibull plotting

position formula:

Fi =
i

Lval + 1
(2.19)

where i = 1, . . . , Lval denotes the rank of a yearly maximum yi in the sorted sample of

annual maxima in the validation set in ascending order. The estimates ŷi = ζEV
−1(Fi)

(where ζEV
−1 denotes the inverse cumulative distribution function of the EV distribution

considered) is then compared with yi and the relative error is computed as:

ϵ =
ŷi − yi

yi
(2.20)
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This process is repeated nr times to provide a full statistical description of the error metric.

The empirical return period associated with each quantile is given by:

Tri =
1

1− Fi

(2.21)

Thus, for a given return period Tr, the Fractional Standard error (FSE) can be computed

as the square root of the average across all the Monte Carlo realizations of the squared non-

dimensional error associated with Tr as:

FSE(Tr) = [
1

nr

nr∑
1

ϵ(Tr)
2]

1
2 (2.22)
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3
Results

3.1 Kolmogorov-SmirnovHypothesis Test

First and foremost, I carried out the Kolmogorov-Smirnov hypothesis test to identify an op-

timal number of bins for which the assumption that daily rainfall data observed in a given

temperature interval (bin) are coming from a Weibull distribution is valid. The test is per-

formed using a moving window approach, which allows the sampling of various segments

of the time series while accounting for the interannual variabilities. For each window, the

precipitation data is aggregated into nbins discrete temperature bins. In this manner, I iter-

atively perform the Kolmogorov-Smirnov Hypothesis Test for windows of varying lengths

for different number of bins nbins = 1, . . . , nyears where nyears correspond to the number

of years on record inside the window. For a given nbins, the statistical test is performed at
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Figure 3.1: Scatter plot of the average p‐values resulting from the Kolmogorov‐Smirnov Hypothesis test against the num‐
ber of bins normalized with the number of years in the estimation window.

each bin and the resulting p-values are subsequently averaged across all bins. This procedure

is repeated for window sizes ranging from 20 to 100 years.

Figure 3.1 shows a scatter plot of the average p-values against the normalized nbins de-

fined as nbins/nyears. To avoid overplotting, only a random subset of the complete result

is displayed. We would expect the data to be consistent with the null hypothesis of the test

if a good agreement exists between the empirical precipitation data and the Weibull distri-

bution at each bin. This corresponds to a p-value larger than the significance level alpha.

From the figure, we see that at 95% confidence level, the null hypothesis is rejected in favor

of the alternative hypothesis fornbins/nyears values below0.02. Thismeans that theWeibull

assumption holds for a sufficiently large number of bins where nbins ⪆ 0.2 nyears. In sub-

sequent analyses, unless specified, the number of bins nbins is set to be equal to the number

of years spanned by the estimation windows.
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3.2 Precipitation Scaling Analysis

The scaling relationship was first derived for both Padova and Oxford. The precipitation

and temperature data were paired and categorized into temperature bins, as detailed in Sec-

tion 2.1.3. As illustrated in Figure 3.2, the 90th and the 99th daily precipitation percentiles

generally scale at a lower rate than the CC-scaling rate, depicted by the dashed gray line, in

both Padova and Oxford, except precipitation occurring at temperature below 5°C. Partic-

ularly in Padova, a hook-like structure is evident. The daily precipitation percentiles peak

between 15°C and 20°C then begin to decline. The daily precipitation in Oxford, however,

shows a monotonically increasing trend with temperature.
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Figure 3.2: The 90 th (a) and 99th (b) percentiles of daily precipitation intensity as a function of daily mean temperature in
Padova (Italy) and Oxford (b)

The P versus T relationship was also investigated for JJA and NDJ precipitation. The

outcomes of these analyses are shown inFigure 3.3 andFigure 3.4. An exponential regression

was fitted to the precipitation percentiles. The exponential regression appears to give a very

reasonable fit except for the 99th percentile of JJA precipitation.

Summer and winter precipitation show very distinct characteristics in Padova. While

NDJ precipitation percentiles display an increasing trendwithT , JJA precipitation extremes
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Figure 3.3: The 90 th and 99th percentiles of NDJ and JJA daily precipitation intensity as a function of daily mean temper‐
ature in Padova (Italy)
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Figure 3.4: The 90 th and 99th percentiles of NDJ and JJA daily precipitation intensity as a function of daily mean temper‐
ature in Oxford (U.K.)

show the opposite. The corresponding scaling rates are also shown in the figures.

In the case of Oxford, examining the raw data, we generally observe a negative scaling of

JJA precipitation with temperature at a temperature ranging between 12°C and 17°C. For

temperatures above approximately 17°C, this scaling is positive. These opposite behaviors

cancel out eachother in the exponential regression. On theother hand,weobserve an increas-

ing trend only in the case of the 90th percentile. The 99th percentile seems not to display any

trend as shown by the scaling rate close to zero.
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Thereafter, the precipitation data were re-aggregated into nbins equal to the number of

years on record as discussed in Section 3.1 to assess the relationship between the Weibull

parameters c and w and temperature T . The resulting plots for the Padova case are shown

in semilogarithmic scale in Figure 3.5.

The scale parameter c values typically increase with T until a certain point beyond which

c decreases. This point occurs at a temperature ranging between 16-18°C where the largest

c values are observed. It also seems to correspond to the peak-point temperature observed

earlier in Figure 3.2. The shape parameter w on the other hand, shows a decreasing trend

with temperature.

0 10 20

T [°C]

100

101

102

c
[m

m
/h

r]

(a)

0 10 20

T [°C]

10−1

100

101

w
(b)

Figure 3.5: The Weibull distribution parameters of daily precipitation as a function of daily mean temperature in Padova
(Italy)

This relationship was investigated closely by categorizing the data into NDJ and JJA pre-

cipitation (Figure 3.6). An exponential regression was fitted separately for each season to

both c−T andw−T . Amarked distinction between the two seasons, similar to the one in

Figure 3.3 can also be observed in the corresponding relationship between theWeibull distri-

bution parameters and temperature, particularly for the scale parameter c. The overall shape

of the c−T plot looks very similar to the one in Figure 3.5. We see that the increasing trend in

cwe observed previously is associated with winter precipitation whereas the decreasing part
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Figure 3.6: TheWeibull distribution parameters of NDJ and JJA daily precipitation as a function of daily mean temperature
in Padova (Italy)

corresponds to summer precipitation. The resulting p-values in both seasonsmake it evident

that the (seasonal) c − T relationship can be characterized by the statistically significant in-

creasing exponential relationships in Figure 3.6a. As for the shape parameterw, a significant

relationship is only observed in summer precipitation in which the w values decrease with

temperature.

Figure 3.7 then depicts the dependence of the scale and shape parameters c and w of the

Weibull distribution of daily precipitation on temperature in Oxford. The c seems to be

positively correlated with temperature. Not much can be said aboutw.

As for Padova, the analyses were carried out separately for NDJ and JJA precipitation

(Figure 3.8)At a 95% confidence level, a significant exponential relationship between c andT

can only be seen in the NDJ precipitation. Interestingly, we observe a statistically significant

increasing exponential relationship in c− T for NDJ precipitation and a decreasing one for

JJA precipitation. However, unlike the case of Padova only a small fraction of the variability

in the data can be explained by an exponential relationship, as shown by the R2 values. A

statistically significantw − T relationship is observed only in the JJA precipitation.
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Figure 3.7: The Weibull distribution parameters of daily precipitation as a function of daily mean temperature in Oxford
(U.K.)
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Figure 3.8: TheWeibull distribution parameters of NDJ and JJA daily precipitation as a function of daily mean temperature
in Oxford (U.K.)

3.3 TemporalEvolutionof theRelationship BetweenDaily Precipitation

and Temperature

A moving-window approach with a window length of 30 years was used to investigate the

changes over time in the relationship between daily precipitation distribution and tempera-

ture. The choice of the window size is not trivial; while a larger window is associated with

reduced parameter estimation uncertainties, it concurrently lowers the resolution at which
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temporal changes are discerned due to the smoothing effect on high-frequency fluctuations.

In the context of Padova, the analysis was conducted separately for JJA and NDJ precipita-

tion. The changes over time in the relationship were indirectly estimated through the vari-

ations in the regression parameters of c − T and w − T as long as statistically significant

relationships were established. At each window, an exponential regression was performed

by applying a linear regression on the log-transformed parameter values that correspond to

each temperature bin. The result of the analysis applied to the period between 1805 and

2022 in Padova is given in Figure 3.9. β1 and β0 in Figure 3.9b and Figure 3.9d represent the

linear regression slope and intercept computed from the log-transformed data. The inter-

pretation of their values is straightforward: β1 represents the rate of growth or decay of the

parameter with temperature, whereas eβ0 is the parameter value at T = 0°C . As depicted

in Figure 3.9a and Figure 3.9c, the c − T exponential relationship is statistically significant

for the whole period between 1805 and 2022 for JJA precipitation. For NDJ precipitation,

statistical significance is only observed between 1870 and 1985. On the other hand, there

is often insufficient evidence to suggest a temperature dependence of the shape parameter

w, except for very few instances in JJA precipitation, which displays a periodic recurrence as

seen in Figure 3.9c.

The temporal variation of the regression parameters can be seen in Figure 3.9c and Fig-

ure 3.9d. Notably,β1 andβ0 display opposing trends; whenβ1 increases,β0 decreases. Aside

from the decadal fluctuations, oscillations with periodicities exceeding a century can be ob-

served in both β1 and β0. Upon visual evaluation, an increasing (decreasing) trend in β1 (β0)

can also be seen, particularly for JJA precipitation.

In the case of Oxford, the exponential regression was directly applied to the parameters

of the Weibull distributions that were fitted within each temperature bin for each window

between 1860 and 2022. The data were not categorized into seasons. This is because the
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Figure 3.9: Temporal evolution of the relationship between Weibull distribution parameters of daily precipitation and
temperature in terms of regression parameters in Padova (Italy). The p‐values associated with the regression slopes are
shown in (a) and (c). (b) and (d) show the evolution of the parameters of the regression applied to the scale parameter c

relationshipbetweenWeibull distributionparameters of daily precipitation and temperature

can be described using a singular exponential relation. As illustrated in Figure 3.10a, the

c − T relationship is statistically significant for the majority of the time. An exponential

relationship for w − T on the other hand, started to become statistically significant after

1960. Analogous to Padova, an increasing and decreasing trend is observed for β1 and β0

respectively.
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Figure 3.10: Temporal evolution of the relationship between Weibull distribution parameters of daily precipitation and
temperature in terms of regression parameters in Oxford (U.K.). The p‐values associated with the regression slopes are
shown in (a). (b) shows the evolution of the parameters of the regression applied to the scale parameter c

3.4 Model Validation

Tovalidate themodel and the simulationmethod that I proposed in Section 2.3, I conducted

a thorough comparison of the MEV P(T) with the regular MEV approach and the tradi-

tional GEV method. Firstly, the MEV and GEV distributions were fitted to the Padova

dataset using the Probability Weighted Moment method. Similarly, for the MEV P(T), the

daily precipitation data corresponding to wet events were aggregated in temperature bins

and a Weibull distribution was fitted to each bin. For reference, I proceeded by extracting

the annual maxima yi from the dataset, ranking them, and computing the corresponding
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cumulative frequencies Fi using the Weibull plotting position formula (2.19). Then, the

quantile estimates ŷi = ζEV
−1(Fi) are computed for each EV distribution. In the case of

MEV P(T), quantile estimation is carried out by simulation in which the accuracy is set to

be ϵrel = 0.05. ϵrel corresponds to the pre-specified fraction of the whole (estimated) range

of the quantile defined by the difference between the largest and smallest sampled values.

During the analysis, an average sample size of 12, 500 was required during sampling to es-

timate the largest quantile observed in the Padova dataset at the pre-defined accuracy. The

confidence intervals of the estimated quantileswere estimated bybootstrappingwith replace-

mentM random years from the full record, whereM denotes the number of available years.

The resulting return value plot is shown in Figure 3.11. As illustrated, the quantile estimates

derived from the three methods are very close to each other. The uncertainty is largest in the

GEV estimates and smallest in the standardMEV.
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Figure 3.11: Return value plot of different estimates of the extreme value distribution ζobs(y)

Subsequently, to address uncertainty in the estimation of high-return period quantiles
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with limited data, I carried out a cross-validationMonte Carlo experiment with nr = 1000

realizations. During this procedure, the observational years were reshuffled while preserv-

ing the yearly frequency distribution of the daily events. Then a 30-year-long calibration

and a 100-year-long validation sample were extracted from the reshuffled series. The chosen

length of the validation sample ensures that the value corresponding to the kth percentile

within the sample serves as an approximation of the k-year return period quantile observed

in the sample. To quantify the accuracy of the EV models, the evaluation metrics described

in Section 2.5.3 were computed. (Figure 3.12). Figure 3.12 shows violin plots of the distri-

bution of the relative error of the quantile estimates of each method. The corresponding

FSE are shown in Figure 3.12. Both of these figures indicate that the MEV and the MEV

P(T) exhibit relatively similar performance. They provide quite accurate estimates of the

quantiles in the case of Padova. In the Oxford case, however, both methods tend to under-

estimate quantiles, particularly when the return period considered exceeds the observation

window. Nevertheless, they both demonstrate a significantly reduced variability compared

to the GEV.

I further exploredmodel uncertainty by investigating the proposedmodel’s ability to repli-

cate temporal changes in quantiles as estimated by theMEV.This assessment ismotivated by

the idea thatMEVP(T) estimates should closely align withMEV estimates, given thatMEV

P(T) is just a reformulated MEV. I computed the P0.90 and P0.99 corresponding to the

10 and 100-year return period quantile of precipitation using both the conventional MEV

and theMEV P(T) employing a moving-window approach. I carried out this analysis using

window sizes of both 20 and 30 years, to evaluate the impact of window size on quantile esti-

mation. The results are presented in Figure 3.14a and 3.14b, respectively. It is important to

highlight that the grey shading in thefigures represents the95% empirical confidence interval

which depends on the value of the pre-specified ϵrel. It represents the uncertainty associated
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Figure 3.12: Distribution of the relative errors of different quantile estimates for different return periods
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Figure 3.13: Bar chart of the FSE computed over all the Monte Carlo realizations of the relative error

with the quantile estimation via simulation, which stipulates that samples are drawn from

the “True” distribution. Given the stochastic nature of the method used, the simulation

results show inherent variability as seen in both figures. A close correspondence is evident

between the MEV estimates MEV P(T), particularly for the 90th quantile. The results of

the analysis carried out on theOxford dataset are illustrated in Figure 3.15a and 3.15b. Anal-

ogous to the Padova dataset, the MEV P(T) estimates exhibit pronounced variability due

to the stochastic nature of the method. Nonetheless, a close alignment between MEV and

MEV P(T) estimates is observable.

3.5 Model Prediction

In this Section, the focus is not solely on assessing the predictive performance of the model;

rather, it centers on exploring the potential behavior of precipitation extremes under awarm-

ing climate scenario, assuming a stationary relationship between precipitation distribution

and temperature. To achieve this, I have derived the parameters of the conditional distribu-

tion of precipitation on temperature using data from the period prior to the year 1900 (Fig-

ure 3.16). Subsequently, I have assumed that the local physics is stationary and is captured by
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Figure 3.14: Validation of the proposed model by comparing its estimation of 10‐year and 100‐year daily precipitation
quantiles with that of the regular MEVD on sliding window over the time series recorded in Padova (Italy) between 1900
‐ 2022.
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Figure 3.15: Validation of the proposed model by comparing its estimation of 10‐year and 100‐year daily precipitation
quantiles with that of the regular MEVD on sliding window over the time series recorded in Oxford (U.K.) between 1900
‐ 2022.
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the parameters’ dependence on temperature. Then I use it to compute the 10- and 100-year

return period quantiles using a moving window approach. Within each 30-year window, I

have used the frequency distribution of temperature and the number of wet events per year

of that window. This ensures that the variation of the temperature distribution captures the

signal of global warming. The estimates of the standard MEV applied to the precipitation

data within the 30-year-long window are used as references. The outcome of the analysis

applied to the Padova dataset is shown in Figure 3.17. A contrast between the model pre-
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Figure 3.16: TheWeibull distribution parameters of daily precipitation as a function of daily mean temperature in Padova
(Italy) computed over the calibration period (1774 ‐ 1899)

dictions and the reference value can be immediately noticed. Specifically, the model seems

to predict a slight decline in the values of the 10- and 100-year return period quantiles, in

contrast to the dramatic increase observed throughMEV estimation after the year 1980.

To gain deeper insights into the MEV P(T) prediction, I carried out separate evaluations

for winter (NDJ) and summer (JJA) precipitation. The relationship between the Weibull

distribution parameter and temperature derived using data from the period prior to 1900 for

each season is shown in Figure 3.18. The results of the sliding window analysis are presented

in Figure 3.19. The empirical 10-year and 100-year return period quantiles computed using

the entire dataset are depicted by the gray line in the Figures.
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Figure 3.17: Predicted temporal evolution of 10‐year and 100‐year daily precipitation quantiles from 1940 to 2022 in
Padova (Italy).

In the context of NDJ precipitation, the model is unable to replicate the low-frequency

oscillations present in Figure 3.18a and Figure 3.18b. Although the predictions seem to dis-

play oscillations with the same periodicities, they are seemingly out of phase with the MEV

estimates. Nevertheless, the predictions encapsulate the trend observed in the MEV refer-

ence (compare the quantile estimates at the beginning and the ones at the end of the analysis

period in both Figure 3.19a and Figure 3.19b). Large discrepancies emerge in the case of

JJA precipitation. The model predictions are not able to capture the periodic oscillation in
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Figure 3.18: The Weibull distribution parameters of NDJ and JJA daily precipitation as a function of daily mean tempera‐
ture in Padova (Italy) computed over the calibration period (1774 ‐ 1899)

both quantiles. What is more striking is the opposite trends present in the reference MEV

quantiles and the prediction. These trends are very clear in Figure 3.19c and more subtle in

Figure 3.19d due to the difference in the plotting scale.

The same analysis was conducted on the Oxford dataset. The c − T and w − T values

derived using data from the pre-1900 period that were used in the prediction are given in

Figure 3.20. The moving-window analysis results are shown in and 3.21. As before, the

predictions were directly computed without separating them into seasons. As seen from the

figure, the model’s predictions closely align with the reference values, with the exception

of low-frequency oscillations evident in the reference quantiles. Particularly, the increasing

trend observed in theMEV estimations of the two quantiles is discernible in the predictions.

However, note that the magnitude of the ”error” due to the oscillations is much lower com-

pared to the Padova case.

3.6 Analysis at the hourly scale

Shifting the focus to the hourly scale, the analyses were carried out using the NCDCdataset

as discussed in Section 2.4. Expanding upon the work of [32], the relationship between pre-
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Figure 3.19: Predicted temporal evolution of 10‐year and 100‐year quantiles of NDJ and JJA daily precipitation from
1940 to 2022 in Padova (Italy).

cipitation distribution and temperature was investigated in five distinct regions within the

contiguous United States: the Southeast, Coastal Northeast, Interior NY, Central Plains,

and Western Plains. These regions differ in yearly total precipitation (see Figure 2.2). For

each station in each region, a scaling analysis of precipitation percentiles with temperature

was first carried out. The log-transformed 90th and 99th percentiles of hourly precipitation

intensity are plotted against temperature and categorized by their respective regions in Fig-

ure 3.22. The dashed gray line in the figures, again, represents the reference C-C scaling rate
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Figure 3.20: TheWeibull distribution parameters of daily precipitation as a function of daily mean temperature in Oxford
(U.K.) computed over the calibration period (1774 ‐ 1899)

of 6.8%/K . Shaw et al. [32] carried out a comprehensive analysis of the P versus T rela-

tionship observed in various regions, excluding the Southeast. Summarizing their findings

concerning the 99th percentile, they observed that the 99th precipitation percentiles gener-

ally scale with the CC-scaling rate, except Hyannis, MA. They attributed this discrepancy

to the strong coastal influence specific to Hyannis, compared to the other stations they have

studied. Expanding on their study, I have examined the Southeastern region (Figure 3.22a),

characterized by a humid subtropical climate. Across most stations in this region, precipita-

tion percentiles tend to increase at a similar rate close to the CC-scaling rate until reaching

a peak around 24°C, beyond which it starts to decrease. This decrease is particularly pro-

nounced in Houston, TX.

Following this, I analyzed the relationship between the precipitation distribution and tem-

perature. The hourly precipitation data were grouped in temperature bins within which the

Weibull distribution was fitted. Figure 3.23 shows plots of the log-transformed parameters

against temperaturewith an exponential regression to characterize their relationship for each

station in each respective region. The Weibull distribution parameters display a highly sig-

nificant correlation with temperature. This is evident from the p-values associated with the
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Figure 3.21: Predicted temporal evolution of 10‐Year and 100‐Yeardaily precipitation quantiles from 1940 to 2022 in
Oxford (U.K.).

slope of the regression and the coefficient of determination. These p-values indicate that

there is statistical evidence that the log-transformed scale parameter c increases with temper-

ature. Conversely, the log-transformed shape parameterw tends to decrease as temperature

rises. This is in contrast to the case of daily precipitation, where no statistical significance

was observed. Interestingly, the exponential relationship accounts for a substantial fraction

of the variance in the parameters, as shown by theR2 values which are close to 0.9 in more

than half of the stations analyzed. It is even more intriguing thatR2 is comparatively lower
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in the station where the P versus T relationship deviates from the CC-relation.

3.6.1 By Precipitation Type

Hourly-Scale

The subsequent set of analyses was performed to explore the relationship between precip-

itation and temperature in different precipitation types. As elaborated in Section 2.1.1, a

plethora of methods are available for classifying precipitation events into convective and

stratiform types. In the context of this thesis, I use the occurrence of lightning as a proxy

of convection. However, it is essential to recognize that observed lightning is a sufficient but

not a necessary indicator of convective storm [16]. This consideration must be taken into

account when interpreting the results.

In this part of the analysis, only a subset of stations were studied: Charlotte, NC, Hous-

ton, TX, and NewOrleans, LA. Figure 3.24 illustrates the relationship between hourly pre-

cipitation percentiles and temperature for both convective and non-convective precipitation.

In the case of non-convective precipitation, the scaling rates observed in New Orleans, LA

for bothP0.90 andP0.99 are very close to the CC-scaling rate. In contrast, the rate of increase

for precipitation percentiles in Houston and Charlotte is considerably lower. Particularly,

there is even a hint of reduced precipitation for temperatures exceeding 23°C in Houston.

However, the number of rainfall observations beyond this point is limited and requires pru-

dence in forming conclusions.

For convective precipitation, there is little to no relationshipbetweenP0.90 andT.Anearly

CC-scaling rate is apparent in Charlotte for the 99th percentile. In other cities, particularly

in NewOrleans, the raw P0.99 − T data shows that intense precipitation can occur across a

broad range of temperatures exceeding 15°C.
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Finally, the relationship between the Weibull distribution parameters and temperature

for different precipitation types is illustrated in Figure 3.25. In the case of non-convective

precipitation, both c and w are very likely to increase and decrease respectively with T as

corroborated by p-values near zero. The exponential model demonstrates a robust fit to the

c − T and w − T relationships. However, for convective precipitation, this exponential

relationship only aligns with data in Charlotte. Similar to the case of P versus T , there is no

significant correlation between theWeibull distribution parameters and temperature.
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Figure 3.22: The 99th percentiles of hourly precipitation intensity as a function of daily mean temperature in different
regions of the U.S.
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(d) Central Plains, U.S.
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Figure 3.22: The 99th percentiles of hourly precipitation intensity as a function of daily mean temperature in different
regions of the U.S. (cont.)
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Figure 3.23: The Weibull distribution parameters of hourly precipitation as a function of daily mean temperature in dif‐
ferent regions of the U.S.
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(iv) Central Plains, U.S.
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Figure 3.23: The Weibull distribution parameters of hourly precipitation as a function of daily mean temperature in dif‐
ferent regions of the U.S. (cont.)
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Figure 3.24: The 99th percentiles of hourly precipitation intensity as a function of daily mean temperature for each pre‐
cipitation type in some stations in the U.S
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Figure 3.25: The 99th percentiles of hourly precipitation intensity as a function of daily mean temperature for each pre‐
cipitation type in some stations in the U.S
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4
Discussion

In this thesis, I have investigated the behavior of daily and hourly precipitation extremes

under a warming climate, focusing on the scaling relationships between the parameters of

the probability distribution of precipitation and temperature. The analyses have been con-

ducted across various locations representing different climatic conditions, including, Padova

(Italy), Oxford (U.K.) as well as multiple stations in the Contiguous United States.

4.1 Daily Precipitation Extremes

Regarding the scaling of daily precipitation extremes, my findings indicate that the conven-

tionalClausius-Clapeyron (CC) scaling does not universally apply. Inmyobservations, daily

precipitation extremes show deviations from the CC-scaling relation in Padova and Oxford.
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In particular, a decreasing trend in extreme percentiles with increasing temperatures was ob-

served in Padova, specifically during the summer months. This pattern is consistent with

the characteristics of convective summer precipitation as described by [41]. The decrease

in extreme values is linked to limited available moisture for precipitation, which necessitates

air parcels to ascend to greater altitudes to reach the condensation level. As a result, using

surface temperature as a proxy for condensation temperature tends to overestimate the ac-

tual condensation temperature, contributing to the observed negative slope as highlighted

by Drobinski et al. [41].

Furthermore, my analysis revealed that NDJ precipitation, which often originates from

large-scale frontal systems, shows scaling patterns that align more closely with CC-scaling,

especially in Padova.

In terms of the relationship between the parameters of ordinary event distribution and

temperature T , I observed a significant negative correlation between the scale parameter c

and T in the context of summer precipitation. This suggests that the scale parameter de-

creases as temperatures rise. This relationship will be explored further in Section 4.3. Win-

ter precipitation, on the other hand, showed a correlation that is less conclusive due to high

variability in c. According to Marani and Zanetti [30], the majority of NDJ rainfall events

in Padova stem from Atlantic storms, which are significantly influenced by the phase of the

North Atlantic Oscillation. These dynamic influences could potentially account for a sub-

stantial fraction of the variability in the scale parameter. However, further investigation is

required.

Summer precipitation in Oxford showed a less pronounced negative correlation between

the scale parameter c and temperature T , and a slight positive one in winter. However, the

results were inconclusive due to the high variability in the data.

I also examined the time-variation of the relationship between the ordinary event distri-
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bution parameters and temperature. The results indicate the existence of an exponential

relationship given in Equation 2.10 between the scale parameter c and temperature. The

rate of decay/increase of this relationship is shown to be variable in time. The oscillatory

nature of these variations hints at the effects of large-scale atmospheric circulation.

4.2 Hourly Precipitation Extremes

Regarding hourly precipitation, I found that it generally aligns with the CC-scaling, with

exceptions in some locations, which is consistent with the observations made by Shaw et al.

[32]. Additionally, I identified consistent exponential relationships between the scale param-

eter c and temperature T across most stations, highlighting the robustness of these scaling

patterns. These relationships accounted for a large fraction of the variability in the scale pa-

rameter, with higher R2 values observed in stations that align with the CC scaling relation.

These findings suggest that thermodynamics predominantly influences hourly precipitation

extremes, except in regions with unique characteristics.

In this context, the analysis conducted by Martinez-Villalobos and Neelin [42] becomes

relevant. They asserted that the scale parameter of theGammadistribution (which they used

tomodel the scale-dominated range of daily precipitation fromwhich extremes emerge)is de-

termined by the amplitude ofmoisture convergence fluctuations during rainy periods. Their

research suggested that this scale parameter would exhibit CC-scaling-like behavior if only

the thermodynamic component of change is considered and that this scaling could be ampli-

fied or offset by local variations in convergence.

For reference, the probability density function (pdf) of the gamma distribution can be

expressed as follows:

fΓ(x) ∝ xk−1 exp(−x

θ
) (4.1)
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where θ is the scale parameter, and k is the shape parameter of the gamma distribution. Sim-

ilarly, the pdf of the Weibull distribution used in this thesis can be represented as:

fW (x) ∝ xw−1 exp(−(
x

c
)w) (4.2)

Among the outcomes of this thesis, the role of the shape parameter (w) emerges as a point

of interest. A significant negative correlation was evident in sites that align with CC rela-

tion. While the physical interpretation ofw remains challenging, its importance in shaping

precipitation distribution cannot be overlooked, as discussed in the following section.

Lastly, I investigated the behavior of different precipitation types under warming. No dis-

cernible trend was seen in convective precipitation. In fact, the parameters did not correlate

with temperature, and intense precipitation percentiles were observed to be likely across a

wide range of temperatures. It is important to note that I only analyzed three stations and

the classification method I employed might be inaccurate. Therefore, further investigation

is necessary to ascertain whether this observed behavior is due to systematic errors or if it

reflects a general characteristic of convection.

4.3 InterpretingChanges inOrdinaryEventDistributionParameterswith

Temperature and Their Role in Shaping the Extremes

The objective of this section is to understand the implications of the relationship between

c,w, and temperature on ordinary event distribution and subsequently on the precipitation

extremes. Considering the case of hourly precipitation first, let us focus on the temperature

range between 5°C to 25°C and use the regression model for Des Moines, which exhibited

the highest value among the U.S. stations, as the basis for our analysis.

Initially, when w fixed is kept constant (the average w value is used), as depicted in Fig-
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ure 4.1a, it becomes evident that an increase in the scale parameter due to warming leads to

a stretching of the probability distribution of precipitation. This means that intense hourly

precipitation events become more frequent as temperature increases.

Now, considering the marginal role of w by keeping c constant (Figure 4.1b), the effect

of the decrease in shape parameter becomes very pronounced for extremely rare precipita-

tion (F > 0.99). This signifies an increase in the occurrence of rare precipitation events as

temperature rises andw decreases.

The role of w becomes most apparent when we consider both c and w simultaneously.

The anti-synergistic effect between c andw amplifies the previously observed dynamics.

Therefore, a significant negative correlation between w and T along with a positive one

for c with T can cause an intensification of precipitation of given frequency and increased

frequency of intense precipitation events (depicted in Figure 4.1c), corroborating with ob-

servations made by previous research [3, 1, 5, 4].

In the context of daily precipitation, let us consider the case of JJAprecipitation in Padova.

A significant negative correlation between c and T was observed (contrary to the case in Fig-

ure 4.1a), implying that under the assumption of constant w, intense daily precipitation

events are projected to become less frequent. Although no significant temperature depen-

dence of the shape parameter in the daily scale was observed, its variability still plays an im-

portant role. Figure 4.2 shows a histogram of thew values computed over the whole analysis

period for both JJA and NDJ.

To illustrate a specific point, let us focus on the values of w that deviate by one standard

deviation from themean (wleft =0.87 andwright = 1.41). This survival function of ordinary

JJA precipitation in Padova associated with eachw value is shown in Figure 4.3.

Notice that the frequency of precipitation of a given intensity significantly changes due to

the variability inw. In essence, while a decrease in the frequency of intense daily precipitation
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Figure 4.1: Effect of increasing T on hourly precipitation distribution
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Figure 4.2: Histogram of the shape parameterw computed between 1774 ‐ 2022 in Padova for NDJ and JJA precipitation

is projected ifwwere ignored, the introduction ofw introduces substantial uncertainty into

the prediction of extremes.

4.4 MEV P(T)
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Figure 4.3: Effect of increasing T on daily JJA precipitation distribution in Padova
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tainty, as anticipated from theMEV [28, 37, 35, 43], providing an alternative to the conven-

tional cdf inversion.

Furthermore, my results indicated that theMEVPTmodel slightly outperforms the stan-

dard MEV, particularly in estimating quantiles for high return periods. Whether the differ-

ence in performance between the two is significant needs separate investigation. This poten-

tial advantagemight come from theMEVPT’s use of additional temperature information in

conjunction with precipitation for quantile estimation.

Using this model, I also conducted predictive analyses wherein data from the pre-1900

period were used to calibrate the distribution of precipitation conditional on temperature.

Subsequently, temperature and the number of events per year data from the period after

the year 1900 were used to simulate climate change. The predictions successfully captured

trends in extreme precipitation forOxford andNDJ precipitation in Padova. However, they

showed limitations in capturing oscillations. In JJA precipitation in Padova, contrary to ob-

servations, a decrease was predicted by the model aligning with the JJA precipitation scaling

outcomes. This reinforces the assertion that while thermodynamic factors might explain a

portion of changes in precipitation extremes, dynamic factors dominate daily-scale extremes.
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5
Conclusion

The use of the Metastatistical Extreme Value (MEV) framework offered a novel way to in-

corporate temperature dependence into extreme precipitation analysis, providing basis for a

probabilistic investigation of how extreme precipitation behaves underwarming. The extent

to which thermodynamics explains the changes in daily and hourly precipitation extremes

was examined by focusing on the relations between probability distribution parameters of

ordinary events and temperature across various locations with different climates. TheMEV

shows promise in reducing the uncertainty associated with high return period quantile esti-

mation using small samples in the context of climate change.

The analysis of daily precipitation extremes has demonstrated that attributing the dynam-

ics of extreme daily rainfall under warming solely to thermodynamics as governed by CC-
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scaling can be misleading. Important deviations from CC-scaling were, in fact, observed.

The negative correlation between the scale parameter of the ordinary-event distribution and

temperature, found in summer observations at the relatively large set of study sites consid-

ered here, suggests that precipitation extremes should be expected to decrease as temperature

rises, provided that there is no significant change in the shape parameter. It has been shown,

however, that the shape parameter could play an important role in partially compensating

or offsetting this decrease. Observations, in fact, show that summer precipitation extremes

have increased in the last few decades, demonstrating the influence of other factors, related

to large scale atmospheric circulation. Winter precipitation, on the other hand, exhibited a

more complicated behavior, associated with a high variability in the parameters, potentially

due to factors like the North Atlantic Oscillation. The variability of the probabilistic mod-

els describing ordinary and extreme rainfall emerged as a source of uncertainty in projecting

daily extreme precipitation changes. The time-dependent correlation between precipitation

distribution parameters and temperature suggests that large-scale circulation, alongside ther-

modynamics, plays a role in daily extreme changes. This finding highlights the need for a

multidimensional approach to modeling daily extreme precipitation in a changing climate.

At the hourly scale, important observations have been made by directly relating ordinary-

value distributions of precipitation with temperature, as opposed to the empirical approach

of linking given quantile values with temperature. The scale parameter of the ordinary event

distribution indicated a consistent CC-scaling-like exponential relationship with tempera-

ture, while the shape parameter showed a decreasing trend. The combined effect of these

parameters can lead to intensified and more frequent hourly extreme precipitation events.

This indicates the importance of thermodynamics in controlling hourly precipitation ex-

tremes. Stations that exhibited deviations from theCC-relation showed increased variability

in the parameters, although this variability was less pronounced than that observed at the
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daily scale. This increased variability was attributed to factors extending beyond thermody-

namics, such as large-scale atmospheric circulation. Furthermore, the study of different pre-

cipitation types under warming indicated the need for additional research into the behavior

of convective precipitation under warming.

In conclusion, this thesis contributes to a deeper understanding of the relationship be-

tween temperature and precipitation extremes. The insights gained have implications for

understanding the main drivers of extreme precipitation changes at the daily and hourly

scale, and for improvingmodeling and prediction of extreme precipitation events in a chang-

ing climate. As climate change continues, these findings will provide a useful contribution

to inform adaptation strategies and policy decisions to mitigate the impacts of increasing

precipitation extremes. Further research is needed to include dynamical effects to enhance

extreme rainfall projection, ultimately advancing our ability to address the challenges posed

by a warming world.
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