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Abstract

Resource Description Framework (RDF) plays a central role in the era of the Se-
mantic Web, enabling a structured representation of datasets and their relation-
ships. The complex nature of RDF graph structures significantly influences the
retrieval of datasets, offering a blend of both challenges and possibilities. Delv-
ing deeply into the ACORDAR case study, the work unveils how graph struc-
tures influence dataset retrieval and the organization of data. Furthermore, it
introduces serialization methods within RDF, emphasizing the importance of
Uniform Resource Identifier (URI) and the capabilities of the SPARQL Protocol
and RDF Query Language (SPARQL). Presenting the ACORDAR reproducibil-
ity, the research underscores the significance of metadata in dataset search. Ex-
ploring potential avenues for future research in dataset search, the investigation
integrates graph structures and harnesses emerging technologies from the Se-
mantic Web era.





Sommario

Nelmondo del SemanticWeb, RDF si pone come elemento cardine per lamodel-
lazione precisa dei dati e dei loro legami. L’obiettivo centrale di questo lavoro
è esplorare le dinamiche dei grafi RDF, mettendo in luce le principali problem-
atiche e potenzialità nell’ambito della ricerca di dataset.
Il caso studio di ACORDAR viene esaminato per illustrare l’effetto delle strut-
ture a grafo sull’organizzazione dei dati. Vengono analizzate le tecniche di se-
rializzazione in RDF, sottolineando la centralità di elementi quali gli URI e le
capacità avanzate offerte da SPARQL. Si affronta il tema della riproducibilità di
ACORDAR, mettendo in risalto l’importanza dei metadati nella fase di ricerca
dei dataset. In conclusione, si delineano prospettive future per ottimizzare la
ricerca di dataset, arricchendo l’analisi con informazioni tratte dalle strutture a
grafo e avvalendosi delle tecnologie emergenti.
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1
Introduction

In the period marked by the advent of the Semantic Web, the plenitude of
datasets, especially those organized using RDF, has presented us with a multi-
tude of both challenges and prospects. Efficiently retrieving, exploring, and uti-
lizing these datasets is of great significance. This document investigates these
challengeswith an emphasis on the ACORDAR case study. The primary focus of
this thesis is to investigate the impact of RDF graph structures on the outcomes
of dataset searches.

The opening chapters lay a foundational understanding of the central con-
cepts and technologies pertinent to the topic. They encompass discussions on
dataset retrieval, the influence of graph structures in data organization, theman-
ner in which RDF structures data, the importance of URI, and the potentialities
of SPARQL. Subsequent chapters delve into the ACORDAR system, strategies to
refine dataset retrieval using graph structures, and evaluations of these strate-
gies.

We delve into the influence of RDF graph structures on dataset search out-
comes and investigate whether an inclusive search methodology, encompassing
both data and metadata as opposed to solely relying on metadata, can enhance
the precision and quality of the search results. Our research underscores the
profound influence of metadata on system efficiency. Regardless of integrating
provided metadata with exhaustive data from RDF graphs or merely with the
URIs of select central nodes, the performancemetrics remain notably consistent.
This suggests that it is the metadata, rather than the granularity of data extrac-
tion, that primarily determines the results.
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The document concludes by offering reflections on future research trajec-
tories in this domain. Our investigation highlights the value of graph summa-
rization techniques and semantic embeddings, suggesting avenues for elevating
dataset metadata quality and search relevance. Furthermore, the potential inte-
gration of large language models with graph summarization tools emerges as a
notable direction for enhanced data processing and analysis. Readers will ac-
quire a comprehensive understanding of the challenges and solutions related to
RDF dataset retrieval. The findings andmethodologies detailed could influence
the trajectory of dataset retrieval and exploration within the evolving landscape
of the Semantic Web.

The code pertinent to the experiments undertaken in this thesis can be found
in the associated GitHub repository ¹.

Chapter Overview The work is structured into six distinct chapters.
Chapter 1, sets the stage by outlining the research scope, giving readers a

clear understanding of the topics to be discussed.
Chapter 2 delves into the ”Background”, introducing theDataset Search prob-

lem, the significance of graph structures in data organization, and more techni-
cal aspects such as RDF, URI, and SPARQL queries. It also presents techniques
for managing extensive RDF graphs and the concept of Betweenness Centrality.

The focus shifts in Chapter 3 to ”ACORDAR Reproducibility”, offering a
comprehensive analysis of the challenges encountered during the replication of
ACORDAR.

Chapter 4, titled ”EnhancingDataset Search Performance using Graph Struc-
ture”, discusses strategies devised to improve dataset retrieval, with an empha-
sis on the integration of numerical features for re-ranking and indexingmethods
exploiting nodal centrality.

Chapter 5, titled ”Experimental Evaluation”, presents and discusses the out-
comes of replication attempts and the efficacy of proposed enhancement strate-
gies. It also analyzes the implications on the performance of missing datasets.

Finally, Chapter 6 offers insights on ”Conclusions and Future Work”, sum-
marizing the main discoveries and suggesting potential avenues for future re-
search in the dataset search domain.

¹https://github.com/riccardoforzan/RDFDS
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2
Background

This chapter provides an overview of the foundational concepts and tech-
nologies pertinent to the analysis of the impact of RDF graph structures on
dataset search, with a specific focus on the ACORDAR [11] case study. We delve
into the complexities of dataset search, the significance of graph structures, the
pivotal role of the RDF, and the relevance of stream processing in RDF graph
analysis.

2.1 DATASET SEARCH

The proliferation of datasets in the Semantic Web era, especially those struc-
tured using the RDF, presents challenges and opportunities in search, discov-
ery, and utilization. RDF datasets, rich in information, can be harnessed for
various applications, but their volume and diversity necessitate efficient search
mechanisms. Keyword search is a primary method for querying RDF datasets.
Casanova et al. [2] underscore the complexity of keyword search over RDF
datasets and introduce the concept of fortuitous search, which diversifies an-
swers and enhances discovery. The entity relatedness problem is another chal-
lenge, aiming to understand connections between entities. Ellefi et al. [5] em-
phasizes the importance of RDF dataset profiling, which offers insights into
dataset quality, coverage, and dynamics. Such profiling is crucial for tasks like
entity linking and semantic search. Mehdi Zrhal et al. [22] highlights the sig-
nificance of efficient dataset search in the spatial domain. They propose a geo-
graphic Knowledge Graph to enhance the search process for spatial datasets.
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2.2. GRAPH STRUCTURES FOR ORGANIZING DATA

Metadata Metadata provides structured, descriptive information about datasets.
In the context of RDF datasets, metadata offers insights into the content, struc-
ture, provenance, and other attributes of the data, facilitating efficient search,
discovery, and utilization. The rise of the Linked Open Data (LOD) cloud and
various governmental efforts have led to an exponential increase in the number
of open datasets available on the web. However, the metadata associated with
these datasets is often minimal, heterogeneous, and distributed across various
sources. This makes the task of finding a suitable dataset for specific needs chal-
lenging. Frosterus et al. [7] address this challenge by introducing DataFinland
¹, a semantic portal that employs a distributed content creation model and tools
for annotating and publishing metadata about both RDF and non-RDF datasets
on the web. The system leverages a modified version of the VoID vocabulary
², specifically designed for describing linked RDF datasets, and integrates an
online metadata editor for semantic annotations. Such efforts underscore the
importance of comprehensive metadata in enhancing dataset discovery.

2.2 GRAPH STRUCTURES FOR ORGANIZING DATA

In the context of dataset search and Information Retrieval (IR), the choice
of data representation plays a crucial role in determining the efficiency and ef-
fectiveness of the search process. Traditional tabular databases and document-
centric approaches have been widely used for organizing and managing data.
However, with the expansion of linked data and the Semantic Web, a novel ap-
proach based on graph structures can be exploited. This section delves into the
fundamental aspects of graph structures and their relevance in the context of or-
ganizing data for dataset search. Graph structures, as the name suggests, repre-
sent data as a collection of nodes interconnected by edges. In the context of RDF,
these nodes typically represent entities, while the edges denote relationships or
predicates between these entities. This graph-based representation allows for a
more flexible and semantically rich way of encoding knowledge [4].

¹https://www.ldf.fi/
²https://www.w3.org/TR/void/
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CHAPTER 2. BACKGROUND

The adoption of graph structures for organizing data offers several advan-
tages:

• Semantic Richness: RDF graphs provide amechanism for expressing rich
semantic relationships between entities. This semantic richness enables
more precise and context-aware searches [14].

• Flexibility: Graphs can accommodate evolving data schemas with ease.
As new relationships or properties emerge, they can be seamlessly incor-
porated into the existing graph structure [12].

• Query Efficiency: Graph-based querying languages, such as SPARQL, are
tailored for navigating RDF graphs efficiently. This facilitates expressive
and powerful queries, bridging the gap between the semantic web and big
data [12].

2.3 RESOURCE DESCRIPTION FRAMEWORK

The Semantic Web [9] is an extension of the World Wide Web (WWW) that
aims at making web content not only accessible to humans but also understand-
able by machines. It was envisioned by Tim Berners-Lee, one of the creators
of the World Wide Web, as a way to enrich web data with meaning, context,
and semantics. In essence, the Semantic Web strives to create a web of data that
can be processed and interpreted by computers, enabling more intelligent and
automated interactions. Key elements of the Semantic Web include:

• RDF: RDF serves as the foundational data model for the Semantic Web. It
provides a structured way to describe resources and their relationships on
the web.

• Ontologies: Ontologies are formal knowledge representations that define
the concepts and relationships within a specific domain. They play a cru-
cial role in adding semantic richness to data.

• Linked Data: The Semantic Web encourages the publication of data in a
format that is linked to other related data sources. This creates a web of
interconnecteddata,making it easier to discover andnavigate information.

• SPARQL: SPARQL is a query language designed for querying RDF data.
It enables complex searches and retrievals from Semantic Web datasets.
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2.3. RESOURCE DESCRIPTION FRAMEWORK

Resource Description Framework (RDF) is a data modeling framework that
allows to represent information about resources in a structured and standard-
ized manner. RDF achieves this by using a graph-based approach, where data
is organized into triples:

• Subject: The resource you’re describing

• Predicate: The property or attribute of the resource

• Object: The value or target of that property

For example, consider the triple: ”John (subject) knows (predicate)Mary (ob-
ject).” This triple represents a basic statement about a relationship between two
resources.

2.3.1 SERIALIZATION

Serializing a graph for RDF involves representing structured data in a way
that can be easily shared and processed by computers. Possible formats to seri-
alize a graph for RDF encompass:

• RDF/XML: RDF/XML is the most widely used serialization format for
RDF data. It uses Extensible Markup Language (XML) to represent RDF
triples, where subjects, predicates, and objects are enclosed in XML ele-
ments. While RDF/XML is human-readable, it can be verbose and com-
plex for machines to process.

• Turtle: Turtle is a more human-friendly and compact serialization format
for RDF. It uses simple syntax to represent RDF triples, making it easier to
read and write than RDF/XML. Turtle is often preferred for writing RDF
data by hand or for smaller datasets.

• N-Triples: N-Triples is a minimalistic serialization format for RDF that
represents triples as plain text lines. Each line consists of a subject, predi-
cate, object, and a period. It’s primarily used for machine-to-machine data
exchange and is not as human-readable as Turtle.

• N-Quads: N-Quads is an extension of N-Triples that adds support for
named graphs. Named graphs allow you to associate RDF triples with
a specific context or dataset. N-Quads includes an additional component
to represent the graph name.

• JSON-LD: JSON-LD is a popular RDF serialization format that uses JavaScript
Object Notation (JSON) syntax to represent RDF data. It’s both human-
readable and machine-friendly, making it suitable for web applications
and Application Programming Interface (API). JSON-LD also provides a
way to express context and semantics, making it more flexible than other
formats.

24



CHAPTER 2. BACKGROUND

2.3.2 URI

URI are a fundamental concept in the world of web technologies and play a
crucial role in the RDF. A URI is a string of characters that uniquely identifies
a resource on the internet. These resources can be anything from web pages,
documents, images, to abstract concepts, and more. URIs provide a standard-
ized way to reference and access these resources. URIs must be unique globally,
this means that no two resources should have the same URI. This uniqueness
ensures that resources can be precisely located and distinguished from one an-
other. URIs follow a standardized format, making them machine-readable and
interpretable by web browsers, search engines, and other software.

URIs in RDF In RDF, every resource is identified by a URI. This means that
when you describe something in an RDF triple, such as ”John (subject) knows
(predicate) Mary (object),” both ”John” and ”Mary” would typically be repre-
sented as URIs. These URIs uniquely identify John and Mary, making it clear
which specific individuals or things are being referred to. URIs serve as the glue
that connects resourceswithin RDF graphs. When you havemultiple triples that
share the same URI as their subject or object, it indicates relationships and con-
nections between those resources. For example, if you have several triples with
”John” as the subject, it implies that all these triples are describing the same
individual, John. URIs provide semantic clarity by ensuring that resources are
precisely defined and linked. This is particularly important in the SemanticWeb
context, where the goal is to enable machines to understand and reason about
data. With well-defined URIs, it’s easier to establish the meaning of resources
and their relationships.

Human readable URIs URIs serve as a foundational element in web technolo-
gies, and their primary purpose is to enable machine readability. It’s gener-
ally considered good practice to craft URIs that are not only machine-readable
but also human-readable. This practice enhances the usability and accessibil-
ity of web resources by allowing humans to intuitively infer context from the
URI itself. When a URI is designed to be human-readable, it often incorpo-
rates meaningful words or phrases that bring information about the resource it
identifies. For instance, a URI like ”https://www.example.com/blog/how-to-
create-semantic-uris” is not only understandable to machines but also provides
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2.4. SPARQL

valuable context to a human observer. By taking a quick look at this URI, one
can deduce that it likely points to a blog post discussing the creation of seman-
tic URIs. This dual-purpose approach to URI design promotes a harmonious
relationship between humans and machines. While machines rely on the uni-
form structure of URIs for precise resource identification, humans benefit from
the added clarity and user-friendliness of URIs that convey meaning. It simpli-
fies navigation, assists in search engine optimization, and improves the overall
experience when interacting with web content.

In summary, while the primary role of URIs is to facilitate machine-readable
resource identification, it’s advisable to make them human-readable as well.
This dual readability ensures that bothmachines and humans can effectively en-
gage with web resources, promoting accessibility, understanding, and efficient
data utilization on the internet.

2.4 SPARQL

SPARQL is a powerful query language specifically designed for querying
andmanipulating RDF data. As the SemanticWeb has grown, so too has the vol-
ume of data created, published, and managed using Semantic Web standards,
especially via the RDF. This growth has made efficient processing of vast RDF
datasets a challenge. SPARQL has become an integral tool for researchers and
developers working with RDF datasets, such as the one used in ACORDAR, due
to its ability to express complex queries and extract specific information from
RDF graphs. SPARQL’s versatility extends beyond simple queries. It supports
filtering, aggregation, and even updating RDF data, offering a comprehensive
suite of operations for efficiently handling RDF data.

Furthermore, as more data is made available in RDF format, there’s a grow-
ing need for data analytics tools that go beyond traditional semantic search.
Ferré’swork on ”AnalyticalQueries onVanilla RDFGraphswith aGuidedQuery
Builder Approach” [6] addresses this need. This approach directly answers an-
alytical queries on unmodified RDF graphs by leveraging the computation fea-
tures of SPARQL 1.1. It introduces a query builder that hides the complexities
of SPARQL behind a natural language verbalization, providing intermediate re-
sults and suggestions at each step, making it more user-friendly and intuitive.

These advancements underscore the evolving nature of SPARQLand its adapt-
ability to the challenges posed by the ever-growing Semantic Web.
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CHAPTER 2. BACKGROUND

2.5 STREAM PROCESSING

Stream processing is a crucial approach in the realm of RDF (Resource De-
scription Framework) graph analysis, particularly when considering its poten-
tial applications within dataset search. Stream processing involves the contin-
uous analysis of data as it flows into a system, making it especially valuable
for handling large RDF graphs efficiently. This methodology offers significant
performance advantages compared to traditional methods that involve loading
the entire dataset into a triple store or materializing the graph in memory. One
key benefit of stream processing for RDF graphs lies in its ability to handle data
incrementally. Instead of waiting to load an entire RDF dataset into memory
or into a triple store, stream processing allows you to process incoming data as
it arrives. This not only saves time but also conserves system resources, mak-
ing it more memory-efficient. Since RDF datasets can be massive, loading them
entirely can lead to memory bottlenecks and slow query performance. Stream
processing mitigates these issues by only holding relevant portions of the graph
in memory, reducing the strain on computational resources.

Furthermore, stream processing is well-suited for real-time updates and dy-
namic data sources, which are common scenarios in RDF data. In a real world
context, where dataset searchmay involve continuously changing RDF datasets,
stream processing ensures that your system stays up to date with the latest in-
formation. This dynamic nature aligns with the nature of RDF graphs, making
stream processing a natural choice for maintaining the freshness and accuracy
of your dataset search results. Numerous libraries are available for processing
RDF datasets as streams, and Apache Jena, which is employed in ACORDAR, is
a prime example.

In the processing of RDF datasets, libraries often adhere to stringent error-
handling protocols when confronted with RDF serializations, prevalent in real-
world datasets. These protocols usually entail terminating the stream upon de-
tecting an error. Nonetheless, even in the presence of syntax errors, stream-
based processing of RDF graphs can yield valuable insights. Directly loading
these problematic files into a triple store would typically render the file unan-
alyzable due to errors. An intrinsic challenge when handling RDF files as se-
quences of triples involves the necessity formethods such as regular expressions
or pattern matching. This is because using SPARQL queries isn’t feasible when
processing files as streams, given their demand to materialize the entire graph

27



2.5. STREAM PROCESSING

in memory.
There is a notable tradeoff in RDF dataset processing between processing

speed and query complexity. While streaming analysis of RDF datasets offers
unparalleled speed, it often limits the depth of analysis to more superficial in-
formation. In contrast, the process of ingesting files into a triple store for the
purpose of employing SPARQL queries offers a comprehensive investigative ap-
proach, enabling an in-depth exploration of intricate patterns within the data.
This in-depth method, however, requires more time both to load and to query
the graph, indicating a balance between speed of execution and depth of analyt-
ical examination.

Reservoir Sampling Reservoir sampling is a randomized algorithmic method
aimed at selecting a representative sample from large datasets, especially when
the total number of elements in the dataset is unknown in advance [20]. This
makes reservoir sampling especially useful for data streams, which are inher-
ently dynamic, constantly changing, and typically uncertain in their total vol-
ume. When examining RDF graphs, encompassing entities, literals, properties,
and classes, reservoir sampling can be an effective tool for obtaining a significant
subset from these.

2.5.1 MANAGEMENT OF EXTENSIVE RDF GRAPHS

Managing expansive RDF graphs is challenging due to the significant data
scale they encompass. Storing these datasets requires more resources, as it’s not
only about their large size but also the necessity for efficient indexing and query
capabilities. Furthermore, the computational cost rises when analyzing them,
especially when dealing with complex tasks like SPARQL queries.

Motivated by the complexities and growth of RDF datasets, researchers have
been inspired to develop more flexible and effective methods for evaluating
SPARQLqueries. Onenotable contribution in this field is the ”Scalable Semantic-
Based Distributed Approach for SPARQL Query Evaluation” by Sejdiu et al.
[17]. This approach utilizes a semantic-based partitioning strategy within the
SANSA framework [10], with a focus on horizontal scalability and efficient query
operations, particularly in distributed environments. In prior research, Sejdiu
et al. [16] highlighted these challenges, suggesting an innovative resolution.
Leveraging the distributed in-memory capabilities of Apache Spark, a platform
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recognized for its rapid in-memory data operations, they devised a technique
specifically tailored for computing metrics on vast RDF datasets. Their pro-
posal effectively addresses the challenges posed by the large-scale nature of RDF
datasets, ensuring scalability and efficient processing.

Beyond mere processing capability, in-depth analysis of such extensive RDF
datasets can place a significant computational load, including concerns related
to memory allocation. The task of collecting, preserving, and managing triples
fromanRDFgraph can consume substantial storage and computational resources.
This highlights the need for advanced algorithms and data structures to ensure
accurate and streamlined analysis.

In conclusion, as the scope of the semantic web expands and RDF datasets
grow, the demand for innovative methods and instruments to efficiently handle
these datasets intensifies. These contributions serve as a example of the potential
of distributed in-memory processing in tackling the challenges associated with
analyzing extensive RDF data.

2.6 BETWEENNESS CENTRALITY

Betweenness centrality stands as a significant metric in the field of network
analysis, offering a means to quantify the importance of a node within the in-
tricate web of a graph (see Figure 2.1). This metric precisely measures how of-
ten a particular node takes on the role of a connector or bridge on the shortest
paths connecting other nodes. In the specialized domain of Dataset Search, es-
pecially when dealing with the complex structure of RDF graphs, betweenness
centrality becomes an importantmetric. It identifies nodes that serve as essential
connectors or intermediaries, linking distinct segments of the dataset. Such in-
sights, derived from the calculation of betweenness centrality, hold great value
for dataset search mechanisms. They enable these systems to prioritize or em-
phasize nodes that are inherently central to the dataset’s structure. Additionally,
due to their high connectivity, these nodes often serve as primary gateways for
users searching for specific data. This should enhance the overall efficiency and
accuracy of the IR process.
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Figure 2.1: Betweenness Centrality

Formally, the betweenness centrality of a node 𝑣 is defined as the sum of
the fraction of all-pairs shortest paths that pass through 𝑣. Mathematically, it is
given by the equation:

𝐶𝐵(𝑣) =
∑
𝑠≠𝑣≠𝑡

𝜎𝑠𝑡(𝑣)
𝜎𝑠𝑡

where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 to node 𝑡, and
𝜎𝑠𝑡(𝑣) is the number of those paths that pass through node 𝑣. The sum is taken
over all pairs of nodes 𝑠, 𝑡 in the graph, excluding the node 𝑣 itself. This metric
indicates how effectively a node serves as a channel for facilitating the flow of
information within the network.

2.6.1 APPROXIMATION METHOD

Computing exact betweenness centrality for nodes in large networks is com-
putationally demanding. Tomitigate these challenges, various approximatemeth-
ods have been developed by the community. Among these, the Approximate
Betweenness Centrality Algorithm [3] stands out as, effectively providing es-
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timates of betweenness centrality while significantly reducing computational
demands.

The core concept of this approximation method involves the random selec-
tion of a subset of nodes from the entire graph. The size of this subset is typically
determined by either a user-defined parameter or a predefined sampling rate.
Once this subset is obtained, the algorithm focuses on identifying the shortest
paths connecting these selected nodes. Subsequently, it counts how frequently
each node appears on these identified paths. These raw counts are then adjusted
and normalized to produce an estimate of the node’s betweenness centrality.

It is important to highlight that the accuracy of the results generated by the
approximate betweenness centrality method is closely related to the size of the
sampled subset and the scaling coefficients used. Opting for smaller subsets
alongwith aggressive scaling approachesmay accelerate computation but could
compromise accuracy. Conversely, larger subsets andmore conservative scaling
methods, while ensuring higher precision, may impose greater computational
demands.

In situationswhere dealingwithmassive networksmakes exact betweenness
centrality calculations virtually impossible due to computational constraints,
these approximate strategies prove to be invaluable tools. They effectively ad-
dress a delicate balance between accuracy and computational efficiency, em-
powering network analysts to gain profound insights into the pivotal roles of
nodes within complex networks.

The Approximate Betweenness Centrality Algorithm, implemented inNet-
workX, is based on the work of Brandes [1], but it leverages sampling to make
computation faster.
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3
ACORDAR reproducibility

In this chapter, we focus on replicating the foundational architecture ofACOR-
DAR, an IR system tailored for RDF datasets. Our reproducibility efforts are
organized into four sequential phases, each designed to reconstruct the ACOR-
DAR system’s original functionality.

• Downloading the Collection: Obtaining an accurate representation of the
ACORDAR dataset collection serves as the initial and foundational phase
of our reproduction work.

• Extracting the Data: This phase involves navigating the RDF structures to
extract data, mirroring the methodology in the original system.

• Creating the Index: An index aligned with the design principles of the
original ACORDAR system is created to streamline search operations.

• Searching and Performance Comparison: The final phase encompasses
evaluating the replicated system’s search performance to assess its fidelity
to the original system.
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3.1 ACQUIRING ACORDAR COLLECTION

The first step in the reproducibility work involved acquiring the datasets
necessary for replicating the results obtained in the ACORDAR dataset search
system. We created a Python script to streamline this task, utilizing the popu-
lar Requests ¹ library. This choice was made not only because of the library’s
widespread use but also due to its user-friendly API, robust network connection
handling, and its ability to gracefully handle temporary failures. To guarantee a
seamless data retrieval process, we intentionally avoided implementing parallel
downloads. The main objective of the script was to fetch resources from a list of
URLs specified in a JSON file generously provided by ACORDAR. The server’s
status codes function as signals reflecting the state of the request. To elaborate,
HTTP status codes within the range of 200 to 399 indicate either successful re-
sponses or redirections. A code belonging to the 2xx category indicates that the
request has been received, understood, and confirmed as successful. In contrast,
3xx codes indicate that additional actions are required by the user agent to fulfill
the request, often involving URL redirection.

This stage camewith its own set of challenges. In particular, out of the 34,283
URLs embedded within the datasets, a total of 5,302 URLs failed to yield a valid
HTTP status code, primarily falling within the 400 or 500 error code categories
(refer to Figure 3.1). Such codes typically indicate issues like resource unavail-
ability, server timeouts, or other server-side obstacles. Given these conditions,
a single retrieval attempt was conducted for each link. URLs that did not return
a status code within the 200-399 range were recorded in the metadata.json file,
under the failedURLs list.

Despite encountering server-related errors, a total of 28,981 files were suc-
cessfully downloaded. Among these downloaded files, there were 20 archives
that have the potential to generate one or more files when extracted.

¹https://pypi.org/project/requests/
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Figure 3.1: Downloaded Files

In addition to the dataset acquisition process, it’s important to highlight the
metadata that was provided (by ACORDAR’s creators) within the same JSON
file in which downloadURLswere reported. The following fields were included
as metadata:

• ID: For unique identification and tracking of datasets.

• Title: A descriptor indicating the dataset’s subject matter.

• Description: A concise summary of the dataset’s content.

• Author: Information for assessing dataset provenance.

• Tags: Keywords for easier dataset categorization and retrieval.

Notably, the JSONfile occasionally contained additional field such as ‘Down-
load Date‘. This field could be useful for tracking when the datasets were last
updated or accessed, or it may help in ensuring that you are working with the
correct version of the dataset.

A limitation present in ACORDAR’s JSON metadata is the lack of indicators
for graphs that are serialized in multiple formats but encapsulate identical data.
Addressing this shortcoming could optimize the system’s efficiency, allowing
for the selective download of datasets in preferred formats. This would enhance
both temporal and computational resource management in subsequent phases.
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To optimize the data acquisition process, a structured folder system has been
implemented for each dataset. Within these dedicated folders, one can find not
only the downloaded data files but also a JSON metadata file (metadata.json)
that provides comprehensive information about the dataset.

The accompanying JSON file extends beyond the standard metadata fields
provided by ACORDAR’s initial JSON format, which encompass details such as
title, description, author, and tags. It also incorporates additional information,
such as the source URLs fromwhich the data was retrieved, the filenames of the
downloaded data, and a list of URLs that returned errors during the download.

While some challenges were encountered, the large volume of successfully
downloadedfiles lays a robust foundation for the ensuing steps in the replication
effort.

3.2 EXTRACTING DATA FROM THE DOWNLOADED FILES

The fundamental element for replicating the ACORDAR baseline is the ex-
traction of four primary data elements from the RDF datasets, a precursor for
the next phases of the dataset search system. These elements include:

• Entities: Distinct objects or concepts within the RDF data.

• Classes: Categories to which entities belong.

• Literals: Non-resource data such as text or numbers linked to entities or
properties.

• Properties: Relationships between entities defined through attributes or
links.

To achieve this, the ACORDAR paper utilized Apache Jena ², a powerful
Java framework designed for RDF data manipulation. Apache Jena’s exten-
sive toolkit simplifies RDF data parsing, querying, and manipulation. Drawing
from insights gained from the Search Engine course, the extraction pipeline was
constructed utilizing Python, due to its robust ecosystem tailored for data pro-
cessing pipeline development. This choice presents the advantage of enhanced
code reusability in subsequent phases of the research. The goal of the extraction
pipeline is to systematically segment the data into four separate UTF-8 encoded
files, each representing one of the primary elements: Entities, Classes, Literals,

²https://jena.apache.org/
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and Properties. During this phase, URIs were indexed for Entities, Classes, and
Properties, while Literals were extracted in their raw form.

In the context of datasets with a manageable size, the in-memory method
utilizing RDFLib combined with SPARQL queries was employed to extract the
data fields. For more extensive datasets, a custom streaming mechanism was
devised to guarantee efficient data extraction without compromising data in-
tegrity. We purposefully avoided in-depth extraction and indexing of human-
readable fields like associated labels. This was due to two reasons: the ACOR-
DARpaper’s notmentioning such a process, and the lack of evidence supporting
this method in the codebase. Indexing nodes using their labels leads to dupli-
cation since labels, which are literals, get indexed both individually and again
as node labels. This method serves two critical functions: It addresses poten-
tial encoding discrepancies and ensures consistent textual data handling across
RDF datasets. The UTF-8 encoding selection is a proactive measure to mitigate
potential encoding-related issues.

Optimizing Data Extraction Pipeline for Large Datasets During the initial
development phase, the data extraction process was projected to take about 72
hours. However, the size of some datasets, some surpassing 10GB, posed sig-
nificant challenges. To address this, optimizations were implemented in the
pipeline. RDFLib ³ was chosen for files under 200MB. For larger files, LightRDF⁴
was used. Its streaming approach reduces computational workload and de-
creases processing time. The 200MB threshold was determined through practi-
cal tests, particularly assessingmainmemory usage. This boundary ensures effi-
cient pipeline operation without straining computer resources. Leveraging the
Python Multiprocessing library further sped up the extraction. Datasets were
categorized into discrete tasks, with each viewed as an independent job. A ded-
icated function managed data extraction and storage for each dataset. A pool of
worker processes, equal to the CPU core count, was established. This parallel
processing approach significantly enhanced the pipeline’s overall performance.
By employing this strategy, the data extraction time was reduced from the esti-
mated 72 hours to just 16 hours, underscoring the effectiveness of parallelization
in optimizing the data extraction pipeline.

³https://github.com/RDFLib/rdflib
⁴https://github.com/ozekik/lightrdf
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"id": "1",
"title": "[ 2017 a 2020 ] Cursos da Pós-Graduação ...",
...
"extracted": [
  {
    "file": "curso-sf-dump.ttl",
    "size": 6209230,
    "classesFile": "20230608-181949-curso-sf-dump-ttl-classes.txt",
    "literalsFile": "20230608-181949-curso-sf-dump-ttl-literals.txt",
    "entitiesFile": "20230608-181949-curso-sf-dump-ttl-entities.txt",
    "propertiesFile": "20230608-181949-curso-sf-dump-ttl-properties.txt",
    "connections": 70553,
    "connectedVertices": 15544,
    "averageLiteralsPerVertex": 5.998,
    "extractedWith": "RDFLib"
  },
  ...
],
"unusedFiles": []

Figure 3.2: Example of metadata.json

Collecting Extracted Data: A Shift in Strategy for Sustainable Data Manage-
ment Expanding upon the improvements in data extraction, the next critical
section involved the storage and organization of the extracted data. The initial
approach was to store dataset entities, literals, properties, and classes in tempo-
rary memory locations, with the ultimate aim of consolidating them into JSON
files. However, this method had two significant drawbacks. First, it proved to be
highly memory-intensive, which conflicts with earlier efforts to optimize com-
putational resources during the extraction phase. Secondly, as the dataset sizes
grew, some resulting JSON files expanded to over 5GB, making them impracti-
cal for subsequent processing.
Recognizing these limitations, it became mandatory to reassess the data storage
strategy. The updated strategy moved away from using large, all-in-one JSON
files and instead adopted amore segmented solution. For each processed graph,
four distinct text files were generated, each serving as a dedicated repository for
entities, literals, properties, and classes, respectively. As a further step to ensure
appropriate tracking and management of these text files, the names of the four
aforementioned files are then saved inside the metadata.json file, as reported
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in the Figure 3.2.
This not only resolved the problem of bulky file sizes but also aligned with the
previous improvements made in the data extraction process. As a result, it es-
tablished a more efficient and end-to-end data management strategy.

Data Extraction Challenges and Refinement Process Challengeswere encoun-
tered during the initial stages of the data extraction pipeline, specifically regard-
ing the utility of the downloaded files. To systematically address these issues,
log files were employed to closely monitor the pipeline’s operations. This anal-
ysis revealed that a subset of the downloaded files was unsuitable for subse-
quent data processing stages. The utilization of the magic ⁵ library, a Linux-
based tool with Python bindings, facilitated an in-depth examination of these
files, enabling a comprehensive assessment of their usability within the dataset.
As outcome of the refinement process, two versions of the collection emerged:

• Raw Collection, that contains all files as downloaded

• Refined Collection, that derives from Raw Collection

A visual representation of this dataset refinement process can be seen in Fig-
ure 3.3.

Figure 3.3: Dataset Refinement

⁵https://github.com/ahupp/python-magic
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Dataset Refinement in Detail A Jupyter notebook was employed to encapsu-
late all essential functions for the transformation from Raw Collection to Refined
Collection, aiming to enhance the reproducibility of the research. These functions
encompass:

• Elimination of Hypertext Markup Language (HTML) Files (299 elements):
Utilizing the magic library, a custom function was developed to identify
and remove 299 HTML-labeled files.

• Pruning of Misconfigured JSON Files (45 elements): Some web servers
respondedwithmisleadingHypertext Transfer Protocol (HTTP) 200 codes
while delivering JSON files with errors. Such files were systematically
identified and excluded.

• Correction of UTF-8 BOM Encoding (18 elements): Files with the un-
supported UTF-8 BOM encoding were converted to standard UTF-8 to be
compatible with RDFLib.

• Classification of Files Without Extensions (47 elements): Using heuristic
techniques and the magic library, 47 files lacking extensions were confi-
dently categorized and formatted.

• Conversion to Turtle (TTL) Format (21 elements): A subset of files was
transformed into the TTL format using code heuristics and the magic li-
brary.

• Decompression of Archives (20 files): A range of compressed archives,
including TAR, ZIP, TAR-GZ, and BZ2 formats, were encountered. Spe-
cialized methods enabled their successful unpacking and incorporation
into the dataset.

Thus, the Jupyter notebook plays an integral role in the dataset refinement
process, contributing significantly to the research’s reproducibility.

3.3 INDEXING

Indexing serves as the backbone of ACORDAR’s dataset search mechanism,
supporting the entire IR process. Employing the Lucene framework, ACORDAR
ensures an efficient foundation for both indexing and querying RDF datasets.
This section delineates the indexing strategy employed by ACORDAR, specifi-
cally focusing on the eight indexed fields crucial for comprehensive and accurate
search results. These fields are categorized into two groups: metadata-based
and RDF-based fields, each serving unique roles in dataset identification and
retrieval.
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3.3.1 METADATA-BASED FIELDS

Metadata-based fields encapsulate auxiliary but crucial information about
the dataset, facilitating the recognition of pertinent datasets. These fields in-
clude:

• Title: This field captures the dataset’s title, facilitating dataset identifica-
tion based solely on its name.

• Author: The author field records the names of dataset authors, enabling
users to search for datasets created by specific individuals or groups.

• Description: Containing textual overviews of datasets, this field serves as
a guide for users to comprehend the content of datasets.

• Tags: Tags provide a structured way to categorize datasets, making it eas-
ier for users to discover datasets related to specific topics or themes.

3.3.2 RDF-BASED FIELDS

In contrast, fields rooted in RDF are explicitly crafted to capture and index
the structural components present within RDF datasets. They comprise:

• Entities: This field includes identifiers for entities present in RDF dataseta.
It includes information about the entities present in the RDF data, facili-
tating semantic search and entity-specific queries.

• Literals: The literals field indexes RDF literals, which are data values such
as numbers, dates, and plain text.

• Classes: Capturing RDF classes, this field is instrumental for classifying
datasets and facilitating topic-based searches.

• Properties: This field indexes RDF properties, documenting the relation-
ships between entities and literals within the datasets.

The Indexing Pipeline To replicate the ACORDAR baseline, an in-depth anal-
ysis of the indexing pipeline is crucial. The pipeline operates in a sequence
of steps beginning with the traversal of dataset folders, uniquely identified by
IDs, within the ACORDAR collection. This facilitates data access and ensures
a consistent indexing process. The pipeline initiates its operation by parsing
the metadata.json files, which act as repositories for salient dataset-related at-
tributes such as Title, Author, Description, and Tags. These metadata attributes

41



3.3. INDEXING

offer crucial insights into the datasets’ nature, laying the foundations for the
subsequent phases of indexing. After extracting the metadata attributes, the
pipeline fetches the names of the four text files containing extracted data for
each processed file from the metadata.json file. These documents relate to the
key data elements (entities, properties, literals, and classes) that have been pre-
viously extracted for each file processed in the dataset. The pipeline then reads
these files, employing reservoir sampling with a maximum size constraint of
10,000,000 elements tomitigatememory limitations. The sampled elements pop-
ulate the corresponding fields in a Lucene document, which serves as the back-
bone of the IR system. In the replication efforts, Lucene’s StandardAnalyzer
was employed. This selection aligns with the analyzer used in the ACORDAR-2⁶
codebase. It is presumed that a similar analyzerwas chosen forACORDAR, even
though explicit documentation in the original paper is lacking and the source
code is unavailable.

Index Configuration Within theACORDAR-2 repository, we’ve discovered the
configuration employed for field storage ⁷. Considering the possibility thatACOR-
DARmight have employed a similar configuration, we have opted to implement
the same setup as detailed in ACORDAR-2 for our project. The following expla-
nations detail the chosen configuration:

• Stored: Ensures retention of the field’s original value in the index, crucial
for accessing the field value post-search.

• Tokenized: Flags the field for tokenization before indexing, vital for text
search and matching.

• Store Term Vectors: Enables term vector storage for the field, accelerating
text analyses.

• Store Term Vector Positions: Allows storing termpositionswith term vec-
tors, aiding in phrase querying and term proximity operations.

• Index Options: Set to DOCS_AND_FREQS_AND_POSITIONS to index document
IDs, term frequencies, and positions, facilitating efficient querying and
ranking. This option supports exact phrase and proximity searches, which
are crucial for ranking algorithms like BM25F and ClassicSimilarity. Al-
ternatives like DOCS_AND_FREQS and DOCS provide less indexing detail, suit-
able for different scenarios or algorithms. Specifically, DOCS_AND_FREQS

⁶https://github.com/nju-websoft/ACORDAR-2
⁷https://github.com/nju-websoft/ACORDAR-2/blob/main/Code/sparse/indexing/

DatasetIndexer.java#L295
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omits termpositions, aligningwith algorithms like LMD,while DOCS solely
indexes document IDs, making it lightweight but less suited for algorithms
that leverage term frequencies and positions for scoring.

Undisclosed System Details The ACORDAR research paper lacks compre-
hensive information regarding essential operational aspects, such as tuple dedu-
plication and the handling of large files. This poses a significant obstacle in
achieving an accurate replication of their work.

Upon closely analyzingACORDAR-2 codebase, it becomes apparent that they
have employed a relational database structure. This structure encompasses columns
for subjects, predicates, and objects, which are likely utilized for tuple dedu-
plication. However, the paper itself lacks the necessary level of detail regard-
ing this crucial element, impeding a precise replication process. Furthermore,
the ACORDAR-2 codebase examination reveals that ACORDAR may have been
adopting a strategy of limiting its analysis to the initial 1,000,000 triples within
each RDF file. Nonetheless, this approach remains unaddressedwithin the orig-
inal paper’s discourse, therebywithholding details that replicators need for pre-
cise data ingestion and processing. Providing a more exhaustive clarification
of these techniques would greatly elevate the potential for reproducing ACOR-
DAR’s research with precision.

3.4 SEARCHING

The architecture of the retrieval system culminates in a search process de-
signed to evaluate its performance. Within this context, the search mechanism
of the ACORDAR system leverages the Lucene framework and incorporates four
similarity metrics. These metrics are as follows:

• Term Frequency-Inverse Document Frequency (TF-IDF): Known as
ClassicSimilarity in Lucene.

• BM25F: Extends BM25 for field-specific weighting, implemented as
BM25Similarity in Lucene.

• Language Model with Dirichlet Smoothing (LMD): Utilizes probabilistic
language models with Dirichlet smoothing for unseen terms.

• Fielded Sequential Dependence Model (FSDM): Goes beyond
term matching, emphasizing sequential term relationships.
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Only TF-IDF, BM25F, and LMD are natively supported by Lucene. FSDM
[21], although not a default Lucene similarity, is remarkable for outperforming
other metrics in the ACORDAR system’s experimental evaluations. FSDM can
be particularly useful in scenarios where the structure of documents is impor-
tant, and the relationships between terms can provide additional insights into
their relevance to a query. In ACORDAR-2, this non-standard similarity appears
to have been implemented as a re-ranking model on top of BM25F⁸. It’s possi-
ble that they might have employed a similar implementation from ACORDAR-2
for the original ACORDAR system, but this information remains undisclosed,
mainly due to the unavailability of the source code for ACORDAR.

To comprehensively evaluate performance, three query sets are used:

1. Sourced from the Text Retrieval Conference (TREC).

2. Curated by contributors of the ACORDAR system.

3. ALL QUERIES: A combination of the first two sets.

The evaluation process is broken down into three specific search scopes, each
covering different Lucene document fields:

• Metadata-only search

• Data-only search

• Comprehensive search involving both metadata and data across all eight
Lucene document fields

Incorporation of Stoplists In the context of IR, the incorporation of stoplists
plays a crucial role in removing terms that tend to diminish the importance of
more informative words. Consequently, this has an impact on the efficiency of
retrieval algorithms in discerning relevant documents. The variation in perfor-
mance metrics (with respect to the baseline), especially noticeable when using
the BM25 and LMD similarity algorithms, suggested an investigation of the po-
tential benefits of utilizing stoplists to reduce this gap, so an external stoplist
sourced from Kaggle⁹ was introduced into the experimental configuration. By

⁸https://github.com/nju-websoft/ACORDAR-2/blob/main/Code/sparse/models/
SparseRetrievalModels.java#L241

⁹https://www.kaggle.com/datasets/rowhitswami/stopwords
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employing this stoplist during the tokenization process, frequently occurring yet
low-information words were removed, with the aim of enhancing the system’s
retrieval precision and relevance.

During the examination of the ACORDAR-2 repository, a reference to the
Natural Language Toolkit (NLTK) stoplist was identified. This discovery high-
lighted the possible use of stoplistswithin theACORDARsystem. Consequently,
this finding prompted the integration of the NLTK stoplist into subsequent con-
figurations for comparative analysis.

Analysis of Boosting Techniques During the in-depth analysis of the reposi-
tory (ACORDAR-2), we identified the usage of boosting techniques as a compo-
nent for enhancing IR performance. The boosting process was realized through
the assignment of specific weights to different query fields, and these weights
are summarized in the table presented below. The implementation of boost-
ing strategies remarkably contributed to the system’s performance, achieving
results that closely approximated the baselinemetrics of the original ACORDAR
system.

Table 3.1 displays the boost weights assigned specifically for metadata using
three methods: BM25, TF-IDF, and LMD. It can be observed that the weights for
the fields vary depending on the method used. For instance, both TF-IDF and
LMD assign a full weight (1.0) for the ‘Title‘, suggesting its significance in these
methods.

Table 3.1: Boost Weights for Metadata

Method Title Description Author Tags
BM25 0.5 0.3 0.2 0.2
TF-IDF 1.0 0.6 0.4 0.5
LMD 1.0 0.8 0.9 0.7

In contrast, Table 3.2 demonstrates the boost weights when only considering
data. A noticeable observation is the high weight assigned to the ‘Literal‘ field,
especially when using TF-IDF and LMDmethods where it attains themaximum
value of 1.0. This indicates a possible inclination towards ‘Literal‘ data during
the boosting process when metadata is excluded, that is the field having the
highest chance of containing human readable values.
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Table 3.2: Boost Weights for Data

Method Entity Literal Class Property
BM25 0.1 0.7 0.2 0.2
TF-IDF 0.3 1.0 0.6 0.3
LMD 0.3 1.0 0.1 0.6

However, when combining both metadata and data for boosting, as pre-
sented in Table 3.3, an interesting trend emerges. The weights for metadata
fields, are significantly higher than most of the data-specific fields. Particularly,
the ‘Title‘ fieldmaintains a consistent highweight of 1.0 across all threemethods.
This skewedweighting towardsmetadata in the combined boosting scenario im-
plies that, when additional data (extracted from graphs) are incorporated into
the system, there is a need to deliberately steer the system towards prioritizing
matches on metadata. This is likely because blindly adding more data could
deteriorate overall performance, necessitating a control mechanism in the form
of higher boost weights for metadata. In conclusion, the boosting weights for
the overall configuration are rewarding more matches on metadata, implicitly
admitting that adding data makes the overall performance worse if the system
isn’t directed to deemphasize them.

Table 3.3: Boost Weights for Full Data
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BM25 1.0 0.9 0.9 0.6 0.2 0.3 0.1 0.1
TFIDF 1.0 0.7 0.9 0.9 0.8 0.5 0.1 0.4
LMD 1.0 0.9 0.1 1.0 0.2 0.3 0.2 0.1
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4
Enhancing Dataset Search

Performance using Graph Structure

The effort to replicate the functionality of ACORDAR served as a founda-
tional platform for exploring the impact of RDF graph structures on the im-
provement of dataset search performance. This exploration was driven by the
hypothesis that a more in-depth analysis of RDF graph structures could result
in enhancements in system performance.

The core of this improvement effort can be encapsulated by two fundamental
concepts:

• Feature Engineering for Re-Ranking: Initially, our focus was on extract-
ing numerical features from RDF graphs. These features were designed to
enhance the ranking mechanism of the ACORDAR system by providing
additional metrics for re-ranking. This analytical step aimed to generate a
more relevant set of search results.

• Leveraging Important Nodes in RDF Graph Structure: The second as-
pect of the research delved into the exploration of interconnections within
RDF graph structures. These complex networks feature nodes with dis-
tinct significance, often serving as pivotal connectors or hubs. Our aim
was to discern these influential nodes and integrate them strategically into
the search process.
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4.1. RE-RANKING BASED ON NUMERICAL FEATURES

4.1 RE-RANKING BASED ON NUMERICAL FEATURES

In the context of IR, ranking documents is often conceptualized as a regres-
sion task. The primary objective of this task is to predict a document’s relevance
score with high accuracy, utilizing various features intrinsic to the document
itself. Once these predictive scores are generated, the documents are subse-
quently arranged in descending order based on these scores, thereby highlight-
ing the documentwith the highest score as themost pertinent to the search query
[15].

To improve the ranking process, the data extraction pipeline goes beyond re-
trieving fundamental elements like classes, entities, literals, and properties from
RDF datasets. It also captures a variety of metrics that provide insights into the
structural details of the datasets. These metrics play an important role in the
subsequent re-ranking of documents. Specifically, the following metrics were
observed:

• Class Count: This metric reveals the quantity of classes within the RDF
graph.

• Literal Count: It assesses the number of literal values, such as text strings
or numerical data, in the RDF dataset.

• Entity Count: Representing the fundamental elements in RDF data, this
metric provides insights into the dataset’s size and complexity.

• Property Count: This quantifies the relationships or connections between
entities and literals, assisting in evaluating the dataset’s degree of connec-
tivity and interdependency.

• Total Connection Count: This includes all forms of connections in the
graph, including those among entities, classes, and literals, offering a com-
prehensive perspective on the graph’s connectivity.

• Connected Vertex Count: This metric reflects the level of interconnections
within the graph. A higher value indicates a more intricately linked and
complex dataset.

• Average Literals per Vertex: This metric measures the distribution of lit-
eral values across vertices
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CHAPTER 4. ENHANCING DATASET SEARCH PERFORMANCE USING GRAPH
STRUCTURE

4.1.1 NUMERICAL FEATURE EXTRACTION

To obtain the previously outlined metrics, SPARQL queries were utilized on
RDF graphs loaded via RDFLib. SPARQL queries present a robust and adapt-
able mechanism for exploring relationships and entities foundwithin RDF data.
These queries ease precise retrieval of specific features, including the number of
connection among vertices, number of connected vertices (unique nodes that
are either subjects or non-literal objects in any triple), and the average literals
per vertex.

1 SELECT (count(*) as ?count)
2 WHERE {
3 ?s ?p ?o.
4 FILTER(!IsLiteral(?s))
5 FILTER(!IsLiteral(?o))
6 }

Code 4.1: Example of SPARQLquery to extract the number of connection among
vertices

The SPARQL query in Listing 4.1 serves as an example of how numerical fea-
tures of the graph, particularly the number of connections among vertices, are
extracted. This query targets all triples (?s ?p ?o) within the graph. To ensure
that the subject (?s) and object (?o) represent vertices rather than literals, fil-
ters FILTER(!IsLiteral(?s)) and FILTER(!IsLiteral(?o)) are applied. The
query then counts the number of such triples which gives the total number of
connections among vertices. A different approach became necessarywhen deal-
ing with datasets exceeding the 200MB limit. Instead of using SPARQL queries,
a custom method was integrated into the Python script designed for processing
these larger files. This method uses a streaming approach to process the data
incrementally. For instance, to compute the same metric demonstrated above, a
counter is incremented upon detecting a triple connecting two vertices. It was
crucial to extract the same structural metrics for these larger files files, mirroring
the process used for smaller ones with SPARQL queries. As previously men-
tioned, custom logic was devised to continuously compute and update metrics,
namely class count, literals, entities, properties, total graph connections, con-
nected vertices, and average literals per vertex. This approach guarantees scal-
able analyses despite dataset sizes, ensuring consistentmetric derivation regard-
less of file dimensions.
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4.1.2 NUMERICAL FEATURE UTILIZATION

To discern the correlation between the aforementioned features and the rele-
vance of datasets, the Random Forest Regressor machine learning model was em-
ployed. At its core, this model is an intelligent algorithm designed to discern
patterns and relationships within data, utilizing its insights to predict values
based on prior information.

ACORDAR’s relevance judgments serve as indicators of a dataset’s utility in
relation to specific queries, assigning scores of 1 for partial relevance and 2 for
complete relevance. However, to ensure data reliability, judgments related to
unavailable or non usable datasets were excluded from consideration.

Given this context, it becomes essential to introduce a scoring mechanism
that combines both Lucene’s scores and the model’s predictions. This is encap-
sulated by the formula for the Final Score of a document 𝑑𝑖 :

Final Score(𝑑𝑖) = Normalized Document Score(𝑑𝑖) + RandomForest Score(𝑑𝑖)
2

Where:

• Final Score for a document 𝑑𝑖 represents the average of its Normalized Doc-
ument Score and RandomForest Score

• Both the Normalized Document Score and the RandomForest Score, as well as
the resultant Final Score, lie in the range [0,1].

The Normalized Document Score for a given document 𝑑𝑖 is articulated as:

Normalized Document Score(𝑑𝑖) = Score(𝑑𝑖)
max(Score(𝑑 𝑗) for all documents 𝑑 𝑗) (4.1)

Given Equation 4.1, the normalization procedure adjusts the score attributed
to a document by Lucene relative to the highest score observed across the ten
documents denoted as 𝑑 𝑗 .
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CHAPTER 4. ENHANCING DATASET SEARCH PERFORMANCE USING GRAPH
STRUCTURE

4.2 LEVERAGING IMPORTANT NODES IN GRAPH STRUC-
TURE

The process of identifying and extract important nodes from the RDF graph
structure involved the usage of RDFLib and NetworkX to manipulate and ana-
lyze the graph.

To effectively leverage the graph structure and identify crucial nodes within
it, I employed the RDFLib library, specifically utilizing the rdflib to networkx
graph function. This conversion enabled a streamlined process for subsequent
analysis.

Having the dataset in the form of a NetworkX graph, the betweenness cen-
trality algorithm, as provided by NetworkX was employed. This algorithm cal-
culates betweenness centrality, which effectively signifies a node’s function as a
bridge connecting different parts of the network. A higher value of betweenness
centrality indicates that a node plays an important role in enhancing connectiv-
ity and promoting the flow of information.

Upon computing betweenness centrality for nodes, thesewere then ranked in
descending order of their centrality values. This ranking enabled the extraction
of URIs for the most significant nodes.

To optimize computational resources and ensure feasible processing dura-
tions, a cap was set on the number of extracted nodes: a consistent 20 nodes per
RDF file. Recognizing the computational intensity of precise betweenness cen-
trality computation, an approximate method was employed. Using 100 nodes
as starting points, this approach not only accelerated the computation but also
retained a respectable accuracy level.

In the course of implementing the aforementioned optimizations, certain
limitations in processing time were observed, necessitating the introduction of
specific constraints. To maintain reasonable computing time, two thresholds
were established:

• RDF files necessitating a loading time exceeding 100 seconds via RDFLib
were precluded from subsequent analysis.

• Files that necessitated more than 200 seconds for processing through the
NetworkX betweenness centrality algorithm were omitted.

These thresholds were established upon analysis of running times, ensuring
that only feasible computations were included in the analysis.
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4.2. LEVERAGING IMPORTANT NODES IN GRAPH STRUCTURE

Even with the application of these restrictions and the use of multiprocess-
ing techniques to streamline processing, the total running time for processing all
files exceeded the 10-hour mark. This emphasizes the computational complex-
ity of the task and highlights the need for careful resource management and
optimization throughout the research process.

It is noteworthy that, aswith prior analyses, relevance judgments for unavail-
able or unusable datasets were disregarded. Further examination of the results,
alongwith discussion of the findings, will be provided in the upcoming chapter.
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5
Experimental Evaluation

5.1 REPRODUCED EXPERIMENTS

This section aims to assess the performance of the replicated ACORDAR sys-
tem by utilizing key metrics: NDCG@5, NDCG@10, MAP@5, and MAP@10, as
emphasized in the original study. We aim to comprehend ACORDAR’s behav-
ior by conducting different experiments, and then we will compare our findings
with the results established in the initial research as a reference point.

Baseline Performance Metrics To establish a point of comparison, Table 5.1
summarizes the baseline performance metrics evaluated on ALL QUERIES as
reported in the original ACORDAR study.

Table 5.1: Performance Metrics of ACORDAR across all queries

Model NDCG@5 NDCG@10 MAP@5 MAP@10
TF-IDF 0.5088 0.5452 0.2871 0.3976
TF-IDF[m] 0.4743 0.5019 0.2676 0.3685
TF-IDF[d] 0.1910 0.1963 0.0998 0.1199
BM-25F 0.5538 0.5877 0.3198 0.4358
BM-25F[m] 0.5045 0.5250 0.2859 0.3838
BM-25F[d] 0.2163 0.2196 0.1385 0.1550
LMD 0.5465 0.5805 0.3266 0.4324
LMD[m] 0.4363 0.4573 0.2543 0.3325
LMD[d] 0.2398 0.2523 0.1415 0.1672
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In Table 5.2, which presents the overall results, the following observations
can be made:

1. TF-IDF: The discrepancy between the original and reproduced results is
the smallest among all methods across all metrics. The most notable dif-
ference is -0.0410 for NDCG@10.

2. BM25F: This method demonstrates the greatest divergence in NDCG@5
andNDCG@10, with differences amounting to -0.1781 and -0.1737, respec-
tively.

3. LMD: LMD exhibits the most pronounced deviation across all metrics,
particularly for NDCG@5 and NDCG@10, with differences of -0.2750 and
-0.2823, respectively.

Note: In all the tables of this section, the Difference rows are calculated as
the experimental reproduced value minus the reference value. Positive values
signify that results are better than the baseline, while negative values signify the
opposite.

Table 5.2: Performance comparison using combined metadata and data across
all queries in the raw collection

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4756 0.5042 0.2692 0.3669

Difference -0.0332 -0.0410 -0.0179 -0.0307

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.3757 0.4140 0.2087 0.2793

Difference -0.1781 -0.1737 -0.1111 -0.1565

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.2715 0.2982 0.1549 0.1926

Difference -0.2750 -0.2823 -0.1717 -0.2398
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CHAPTER 5. EXPERIMENTAL EVALUATION

Table 5.3 showcases the results using metadata only. The observations are as
follows:

1. TF-IDF: The discrepancies remain relatively minor. The most significant
difference is noted in NDCG@10, with a value of -0.0279.

2. BM25F: Notably, the deviations are minimal, and in some cases, the re-
produced results marginally outperform the original ones, as seen with
NDCG@5 and MAP@5.

3. LMD: The reproduced results exhibit marginal improvements over the
original results, with themost significant improvement of +0.0175 observed
in NDCG@5.

Table 5.3: Performance comparison usingmetadata only across all queries in the
raw collection

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4599 0.474 0.2583 0.3436

Difference -0.0144 -0.0279 -0.0093 -0.0249

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.5059 0.5222 0.2865 0.3820

Difference +0.0014 -0.0028 +0.0006 -0.0018

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4538 0.4699 0.2679 0.3446

Difference +0.0175 +0.0126 +0.0136 +0.0121
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In Table 5.4, which presents the results based on extracted data only, the fol-
lowing observations are made:

1. TF-IDF: The deviations are more pronounced compared to those in the
metadata results, with the largest difference being -0.0606 for NDCG@5.

2. BM25F: The reproduced results trail notably behind the original ones, par-
ticularly for NDCG@5, which presents a difference of -0.0857.

3. LMD: Similarly to BM25F, a significant gap exists between the original
and reproduced results, with NDCG@5 showing the largest difference of
-0.0901.

Table 5.4: Performance comparison using data only across all queries in the raw
collection

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.1304 0.1384 0.0677 0.0802

Difference -0.0606 -0.0579 -0.0321 -0.0397

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1306 0.1431 0.0747 0.0906

Difference -0.0857 -0.0765 -0.0638 -0.0644

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.1497 0.1655 0.0801 0.0998

Difference -0.0901 -0.0868 -0.0614 -0.0674
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CHAPTER 5. EXPERIMENTAL EVALUATION

The earlier experimental results showed significant differences, leading us
to suspect that there might be issues with incomplete or missing data. These
variations not only affect the accuracy and reliability of our findings but also
make it difficult for others to replicate the experiments. As detailed in Chapter 3,
we improved our collection by addressing compression and file extension issues.
With this refined dataset in hand, we proceed to scrutinize the impact of these
improvements on the discrepancies observed in the results.

In the table that presents the overall results on the refined collection without
big files (files that are larger than 200MB) (Table 5.5), we observe:

1. TF-IDF: The discrepancies are modest. NDCG@10 stands out with a dif-
ference of -0.0410, indicating a slight underperformance in the reproduced
results.

2. BM25F: The differences are more pronounced here. The largest gap is evi-
dent in NDCG@5 at -0.1834, suggesting a significant decline in the quality
of reproduced results for the top 5 documents.

3. LMD: The results reveal substantial variations, with NDCG@10 showcas-
ing a difference of -0.2808, indicating decreased performance in document
rankings.

Table 5.5: Performance comparison using combined metadata and data across
all queries in the refined collection without files that are larger than 200MB

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4751 0.5042 0.2691 0.3667

Difference -0.0337 -0.0410 -0.0180 -0.0309

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.3704 0.4099 0.2051 0.2752

Difference -0.1834 -0.1778 -0.1147 -0.1606

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.2775 0.2997 0.159 0.1952

Difference -0.2690 -0.2808 -0.1676 -0.2372
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In the table that presents results on metadata only on the refined collection
without big files (Table 5.6), we observe:

1. TF-IDF: The differences between the original and reproduced results are
minor. The most prominent variance appears in NDCG@10, which has a
difference of -0.0279, hinting at a modest underperformance in the repro-
duced top 10 document rankings.

2. BM25F: Interestingly, the differences between original and reproduced
are very minimal, with the Reproduced results occasionally performing
slightly better than the Original. For instance, the reproduced result for
NDCG@5 is marginally higher than the Original by +0.0014, although this
difference is so small that it might not be of practical significance.

3. LMD: Unlike the other models, LMD’s reproduced results tend to outper-
form the original ones. The variance in NDCG@5 stands out with a dif-
ference of +0.0175, indicating that the reproduced results provide slightly
better precision across the top 10 documents.

It should be noted that the negative values in the difference rows for BM25F
and LMD imply that the Reproduced results are better than theOriginal in those
instances.

Table 5.6: Performance comparison usingmetadata only across all queries in the
refined collection without files that are larger than 200MB

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4599 0.474 0.2583 0.3436

Difference -0.0144 -0.0279 -0.0093 -0.0249

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.5059 0.5222 0.2865 0.3820

Difference +0.0014 -0.0028 +0.0006 -0.0018

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4538 0.4699 0.2679 0.3446

Difference +0.0175 +0.0126 +0.0136 +0.0121
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Considering the data results for all queries on the refined collection without
accounting for files larger than 200MB (Table 5.7), we can summarize:

1. TF-IDF: The Reproduced results exhibit an evident underperformance rel-
ative to the original scores. The largest discrepancy is seen in NDCG@5
with a difference of -0.0630, pointing to a substantial decline in the effec-
tiveness of the top 5 retrieved documents in the reproduced version.

2. BM25F: The deviations between original and reproduced results are sig-
nificant. The disparity in NDCG@5 stands out with a difference of 0.0900,
emphasizing a decline in the average precision across queries in the Re-
produced results.

3. LMD: For LMD, the differences between the two sets of results are no-
ticeable across all metrics. The NDCG@5 value showcases a difference of
-0.0917, indicating a decline in the ranking effectiveness of retrieved doc-
uments.

Table 5.7: Performance comparison using data only across all queries in the re-
fined collection without files that are larger than 200MB

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.1280 0.1362 0.0667 0.0789

Difference -0.0630 -0.0601 -0.0331 -0.0410

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1263 0.1383 0.0724 0.0880

Difference -0.0900 -0.0813 -0.0661 -0.0670

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.1481 0.1624 0.0799 0.0992

Difference -0.0917 -0.0899 -0.0616 -0.0680
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In our ongoing analysis, we now turn our attention to data that includes files
exceeding 200MB. To effectively process such large files, they were parsed using
a streaming methodology.

Assessing the outcomes for all queries in the Raw Collection, as displayed in
Table 5.8, the observations are as follows:

1. TF-IDF: The reproduced scores exhibit a decline relative to the original
across all metrics, with NDCG@10 showcasing the most pronounced drop
of -0.0460, signaling reduced ranking efficiency for the top 10 documents.

2. BM25F: There’s a noticeable discrepancy between original and reproduced
results. Specifically, the NDCG@10 difference of -0.0914 highlights a de-
cline in precision of the results in the reproduced set.

3. LMD: Deviations between original and reproduced scores are most sig-
nificant here. The variance of -0.3286 in NDCG@5 underscores a marked
decrease in the efficacy of the top 5 results in the reproduced set.

Table 5.8: Performance comparison using combined metadata and data across
all queries in the refined collection

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4747 0.4992 0.2681 0.3635

Difference -0.0341 -0.0460 -0.0190 -0.0341

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.4677 0.4963 0.2644 0.3523

Difference -0.0861 -0.0914 -0.0554 -0.0835

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.2179 0.2409 0.1292 0.1576

Difference -0.3286 -0.3396 -0.1974 -0.2748
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Examining themetadata-only results for the refined collection excluding larger
files, as depicted in Table 5.9, we note:

• TF-IDF: The original consistently (but slightly) outperforms the repro-
duced version across all measured metrics.

• BM25F: Mixed results are observed; NDCG@5 is nearly identical, while
the original has a slight edge in NDCG@10 and MAP@10.

• LMD: Contrarily, the reproduced results excel beyond the original in every
metric.

Table 5.9: Performance comparison usingmetadata only across all queries in the
refined collection

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4599 0.4742 0.2583 0.3440

Difference -0.0144 -0.0277 -0.0093 -0.0245

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.5053 0.5220 0.2862 0.3824

Difference +0.0008 -0.0030 +0.0003 -0.0014

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4544 0.4699 0.2680 0.3443

Difference +0.0181 +0.0126 +0.0137 +0.0118
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Regarding the results focusing only on data within the refined collection
without larger files, as shown in Table 5.10, our findings are:

• TF-IDF: reproduced scores are notably lower with differences spanning
from -0.0553 in MAP@5 to a significant -0.1091 in NDCG@5.

• BM25F: The original consistently ranks higher than the reproduced, with
the peak difference at -0.1035 in NDCG@5.

• LMD: This model exhibits the most prominent disparities of all, partic-
ularly in metrics like NDCG@5 and NDCG@10, showing differences of -
0.1400 and -0.1388, respectively.

Table 5.10: Performance comparison using data only across all queries in the
refined collection

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.0819 0.0937 0.0445 0.0556

Difference -0.1091 -0.1026 -0.0553 -0.0643

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1128 0.1211 0.0669 0.0777

Difference -0.1035 -0.0985 -0.0716 -0.0773

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.0998 0.1135 0.0591 0.0702

Difference -0.1400 -0.1388 -0.0824 -0.0970
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To mitigate the discrepancy observed between the original and reproduced
results, we introduced the previously mentioned Kaggle stoplist. The following
analysis outlines the impact of this adjustment.

Analyzing the cumulative outcomes for all search queries on the RefinedCol-
lection using the Kaggle stoplist (Table 5.11), the observations are:

• TF-IDF: Utilizing the Kaggle stoplist reduced the disparities in results.
The variations now span from -0.0085 in MAP@5 to -0.0272 in NDCG@10.

• BM25F: An evident enhancement in the replicated results is seen, but a
considerable difference still persists, particularly inNDCG@10 andMAP@10
with deviations of -0.0678 and -0.0625 respectively.

• LMD: Despite the introduction of the stoplist, the divergence in LMD re-
mains significant. The NDCG@10 and MAP@10 metrics deviate by 0.3449
and 0.2796 respectively, implying that the stoplist’s contribution to reduc-
ing the gap in this model was minimal.

Table 5.11: Performance comparison using combined metadata and data across
all queries in the refined collection with Kaggle stoplist

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4899 0.5180 0.2786 0.3792

Difference -0.0189 -0.0272 -0.0085 -0.0184

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.4932 0.5199 0.2803 0.3733

Difference -0.0606 -0.0678 -0.0395 -0.0625

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.2162 0.2356 0.1264 0.1528

Difference -0.3303 -0.3449 -0.2002 -0.2796
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From the outcomes achieved by utilizing the Kaggle stoplist on the refined
collection focusing only on metadata (Table 5.12), we infer the following:

• TF-IDF: The stoplist has brought the reproduced results closer to the origi-
nal values, leading tominimal discrepancies. The differences aremarginal,
lying between -0.0033 in MAP@5 to- 0.0082 in MAP@10.

• BM25F: Interestingly, the reproduced results with BM25F have not just ap-
proached the original, but in some metrics have slightly surpassed them.
This is reflected in a negative difference value for NDCG@5 and MAP@5.
The largest difference is a mere -0.0001 in NDCG@10, indicating a very
close match.

• LMD: For the LMD model, the reproduced results after employing the
stoplist are better than the original across allmetrics. The difference ranges
from -0.0134 in NDCG@10 to -0.0189 in NDCG@5.

Table 5.12: Performance comparison using metadata only across all queries in
the refined collection with Kaggle stoplist

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4708 0.4947 0.2643 0.3603

Difference -0.0035 -0.0072 -0.0033 -0.0082

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.5076 0.5249 0.2872 0.3847

Difference +0.0031 -0.0001 +0.0013 +0.0009

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4552 0.4707 0.2689 0.3469

Difference +0.0189 +0.0134 +0.0146 +0.0144
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From the results obtained by employing the Kaggle stoplist on the refined
collection considering only extracted data (Table 5.13), we can derive the follow-
ing observations:

• TF-IDF: Incorporating the Kaggle stoplist seems to have slightly improved
the reproduced results compared to the prior refined version. The dis-
crepancies remain with differences from -0.0535 in MAP@5 to -0.1051 in
NDCG@5.

• BM25F: The discrepancies have reduced as well. While the reproduced
results are still lower than the original, the difference is notably less across
all metrics, ranging from -0.0658 in MAP@5 to -0.0965 in NDCG@5.

• LMD: The application of the Kaggle stoplist has led to improvements in
the reproduced resultswhen compared to the original LMDmetrics. How-
ever, significant discrepancies persist with the largest difference
being -0.1351 in NDCG@10.

Table 5.13: Performance comparison using data only across all queries in the
refined collection with Kaggle stoplist

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.0859 0.0947 0.0463 0.0566

Difference -0.1051 -0.1016 -0.0535 -0.0633

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1198 0.1287 0.0727 0.0836

Difference -0.0965 -0.0909 -0.0658 -0.0714

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.1065 0.1172 0.0648 0.0752

Difference -0.1333 -0.1351 -0.0767 -0.0920
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An in-depth examination of the ACORDAR-2 codebase revealed the utiliza-
tion of the NLTK stoplist during its development. With this new information, it
is plausible to speculate that the original ACORDARmay have also incorporated
the NLTK stoplist into its data processing procedures. Based on this supposi-
tion, we integrated the NLTK stoplist into our analysis to investigate potential
changes in result disparities.

Referring to Table 5.14, which presents the overall results of all queries on
the raw collection post-NLTK stoplist integration:

• TF-IDF: The inclusion of the NLTK stoplist has led to a slight reduction in
the disparity between the original and reproduced results across all met-
rics. The variation ranges from -0.0108 inMAP@5 to -0.0282 in NDCG@10,
suggesting a minor enhancement in similarity.

• BM25F: Post-NLTK stoplist integration, the reproduced results remained
consistently lower than the original results. However, the discrepancies
were comparable to the previous version, ranging from -0.0394 in MAP@5
to -0.0664 in NDCG@10.

• LMD: Despite the addition of the NLTK stoplist, the reproduced LMD re-
sults exhibited notable discrepancies in comparison to the original values.
A significant difference of -0.3439 was observed in NDCG@10.

Table 5.14: Performance comparison using combined metadata and data across
all queries in the refined collection with NLTK stoplist

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4873 0.5170 0.2763 0.3799

Difference -0.0215 -0.0282 -0.0108 -0.0177

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.4940 0.5213 0.2804 0.3741

Difference -0.0598 -0.0664 -0.0394 -0.0617

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.2167 0.2366 0.1268 0.1540

Difference -0.3298 -0.3439 -0.1998 -0.2784
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Upon analyzing the results for the metadata after the incorporation of the
NLTK stoplist, as shown in Table 5.15:

• TF-IDF: The disparities between the original and reproduced results di-
minished, with the highest discrepancy being -0.0090 in NDCG@10.

• BM25F: Interestingly, the reproduced results exceeded the original across
all metrics. The most notable improvement was at +0.0064 in MAP@10.

• LMD: Following the trend set by BM25F, the LMD model also demon-
strated enhancements, with differences extending to +0.0151 in MAP@5.

Table 5.15: Performance comparison using metadata only across all queries in
the refined collection with NLTK stoplist

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4717 0.4929 0.2649 0.3615

Difference -0.0026 -0.0090 -0.0027 -0.0070

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.5108 0.5305 0.2913 0.3902

Difference +0.0063 +0.0055 +0.0054 +0.0064

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4552 0.4715 0.2694 0.3475

Difference +0.0189 +0.0142 +0.0151 +0.0150
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When examining the results derived from the refined collection, focusing
only on extracted data and factoring in the NLTK stoplist (as presented in Table
5.16):

• TF-IDF: There was an increase in the disparity between the original and
reproduced results across all metrics. The largest discrepancy observed
was -0.1059 for NDCG@5.

• BM25F: The discrepancies expanded across allmetrics, with themaximum
divergence being -0.0963 for NDCG@5.

• LMD: In alignmentwith the previous findings, the results displayedgreater
variance relative to the original. Thedifference peaked at -0.1362 forNDCG@10.

Table 5.16: Performance comparison using data only across all queries in the
refined collection with NLTK stoplist

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.0851 0.0955 0.0451 0.0561

Difference -0.1059 -0.1008 -0.0547 -0.0638

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1200 0.1290 0.0725 0.0837

Difference -0.0963 -0.0906 -0.0660 -0.0713

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.1043 0.1161 0.0630 0.0736

Difference -0.1355 -0.1362 -0.0785 -0.0936
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Adetailed analysis of theACORDAR-2 repository unveiled the usage of boost-
ing. Presuming its application in the original ACORDAR, it was incorporated
into the pipeline. The addition of boosting deeply affected all evaluation met-
rics, narrowing the gap between the reproduced results and the baseline.

After examining the outcomes (as displayed in Table 5.17) for all queries
within the refined collection, and taking into account the boosting weights de-
tailed in Table 3.3, we can derive the following observations:

• TF-IDF: The incorporation of boosting resulted in notable discrepancies
between the original and reproduced results. The largest divergence is
observable in NDCG@10 with a difference of -0.0554.

• BM25F: With the application of boosting, the BM25F algorithm exhibited
a more consistent alignment with the original, especially when compared
with the other methods. Specifically, the smallest discrepancy was seen in
MAP@5, measuring at -0.0101.

• LMD: The reproducedLMDalgorithm results, while improvedwith boost-
ing, still displayed a considerable difference from the original. The most
pronounceddeviation is observed inNDCG@10with a difference of -0.0705.

Table 5.17: Performance comparison using combined metadata and data across
all queries in the refined collection with boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4647 0.4898 0.2618 0.3532

Difference -0.0441 -0.0554 -0.0253 -0.0444

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.5396 0.5604 0.3097 0.4142

Difference -0.0142 -0.0273 -0.0101 -0.0216

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.4880 0.5100 0.2876 0.3717

Difference -0.0585 -0.0705 -0.0390 -0.0607
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The results on metadata (see Table 5.18) highlight on the effect of boosting
(using the weights reported in Table 3.1) on the alignment between original and
reproduced results:

• TF-IDF: The inclusion of boosting slightly increased the differences for all
metrics when compared to the original. The largest discrepancy is evident
in NDCG@10 with a difference of -0.0313.

• BM25F: Boosting enhanced the alignment between original and reproduced
results. Particularly, the smallest differencewas observed inMAP@5,which
stands at -0.0017.

• LMD: Interestingly, for this model, the reproduced results outperformed
the original in all metrics. The highest deviation from the original is found
in NDCG@5 with a difference of +0.0202.

Table 5.18: Performance comparison using metadata only across all queries in
the refined collection with boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4525 0.4706 0.2555 0.3393

Difference -0.0218 -0.0313 -0.0121 -0.0292

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.4980 0.5146 0.2842 0.3751

Difference -0.0065 -0.0104 -0.0017 -0.0087

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4565 0.4706 0.2697 0.3443

Difference +0.0202 +0.0133 +0.0154 +0.0118
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The results on data (see Table 5.19) offer insights into the variations observed
due to the application of boosting (using the weights reported in Table 3.2):

• TF-IDF: Boosting brought about notable differences between the original
and reproduced results, especially for NDCG@5 and NDCG@10 with dis-
crepancies of -0.0980 and 0-.0970 respectively. The improvements, how-
ever, might not be substantial enough to consider the boosted results anal-
ogous to the original.

• BM25F: Among all the models, BM25F observed the least variation from
the original when boosting was implemented. Nevertheless, the repro-
duced results are still considerably distant from the original, with theNDCG@10
metric having a difference of -0.0739.

• LMD: The LMDmodel experienced the most pronounced deviation in the
NDCG@10metric with a difference of -0.1101. The application of boosting,
while reducing the gap, still yields reproduced results noticeably different
from the original.

Table 5.19: Performance comparison using data only across all queries in the
refined collection with boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.0930 0.0993 0.0492 0.0598

Difference -0.0980 -0.0970 -0.0506 -0.0601

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1435 0.1457 0.0869 0.0982

Difference -0.0728 -0.0739 -0.0516 -0.0568

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.1383 0.1422 0.0831 0.0946

Difference -0.1015 -0.1101 -0.0584 -0.0726
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Upon inspecting the overall results for all queries on the refined collection,
with the application of a boosting strategy (using weigths reported in Table 3.3)
and Kaggle stoplist (Table 5.20), the following insights can be deduced:

• TF-IDF: The reproduced results fall slightly short of the original figures.
The difference in performance is particularly noticeable in the NDCG@5
and NDCG@10 metrics, with discrepancies of -0.0305 and -0.0405, respec-
tively.

• BM25F: BM25F’s reproduced outcomes are commendably close to the orig-
inal results. Specifically, the disparity in the NDCG@10 metric is just -
0.0244, indicating that the reproduced strategy effectively captures most
of the original BM25F’s performance.

• LMD: The LMD model presents the most pronounced gaps between the
original and reproduced results, particularly in theNDCG@10metric, with
a difference of -0.0675. This larger discrepancy suggests challenges in faith-
fully reproducing the original LMD’s efficiency.

Table 5.20: Performance comparison using combined metadata and data across
all queries in the refined collection with Kaggle stoplist and boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4783 0.5047 0.2687 0.3646

Difference -0.0305 -0.0405 -0.0184 -0.0330

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.5391 0.5633 0.3087 0.4164

Difference -0.0147 -0.0244 -0.0111 -0.0194

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.4852 0.5130 0.2882 0.3768

Difference -0.0613 -0.0675 -0.0384 -0.0556
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Upon examination of the metadata results for all queries on the refined col-
lection, with the application of a boosting strategy (using weigths reported in
Table 3.1) and Kaggle stoplist (refer to Table 5.21), we can draw the following
conclusions:

• TF-IDF: The reproduced results show a modest drop from the original
figures. The metrics like NDCG@5 and NDCG@10 depict a difference of
-0.0131 and -0.0203, respectively.

• BM25F: Remarkably, the reproduced results of the BM25Fmodel are quite
close to the original values. In some cases, such as NDCG@5, the repro-
duced results even surpass the original, albeit by a slim margin. The tiny
differences, like -0.0008 in NDCG@10, illustrate the precision achieved in
the replication process for BM25F in this setup.

• LMD: For the LMD model, the reproduced results approach the origi-
nal values, signifying a competent replication. With a difference of only
+0.0121 in theNDCG@10metric, it is evident that the integration of Kaggle
stoplist and boosting, provides a suitable environment for LMD’s efficient
performance.

Table 5.21: Performance comparison using metadata only across all queries in
the refined collection with Kaggle stoplist and boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4612 0.4816 0.2616 0.3494

Difference -0.0131 -0.0203 -0.0060 -0.0191

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.5076 0.5242 0.2895 0.3844

Difference +0.0031 -0.0008 +0.0036 +0.0006

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4516 0.4694 0.2675 0.3451

Difference +0.0153 +0.0121 +0.0132 +0.0126
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Upon examination of the data results for all queries on the refined collection,
with the application of a boosting strategy (using weights reported in Table 3.2)
and Kaggle stoplist (refer to Table 5.22), we can deduce the following insights:

• TF-IDF: The difference between the original and reproduced results re-
mains substantial, albeit slightly reduced from prior assessments. Specif-
ically, discrepancies in metrics such as NDCG@5 and NDCG@10 amount
to -0.0920 and -0.0906 respectively, pointing to the challenges inherent in
replicating the original TF-IDF approachwithin this dataset configuration.

• BM25F: The BM25F model’s reproduced results show a closer alignment
with the original, even though differences exist. For instance, the varia-
tion in the NDCG@10 metric is -0.0754. The data suggests that, while this
model benefits from the Kaggle stoplist and boosting, there’s still room for
improvement to attain full alignment with the original setup.

• LMD: In the case of the LMD model, the disparity between original and
reproduced outcomes, particularly with a -0.1120 difference in NDCG@10,
indicates notable challenges in the replication process. However, the re-
sults hint at the benefits of integrating Kaggle stoplist and boosting, espe-
cially when compared to previous configurations.

Table 5.22: Performance comparison using data only across all queries in the
refined collection with Kaggle stoplist and boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.0990 0.1057 0.0532 0.0646

Difference -0.0920 -0.0906 -0.0466 -0.0553

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1421 0.1442 0.0856 0.0964

Difference -0.0742 -0.0754 -0.0529 -0.0586

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.1347 0.1403 0.0825 0.0939

Difference -0.1051 -0.1120 -0.0590 -0.0733
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By integrating the NLTK stoplist and the boosting technique inferred from
the ACORDAR-2 baseline, we’ve achieved a synthesis that yielded results more
congruous with the baseline than any other configuration we’ve explored.

Upon inspecting the overall results (Table 5.23) for all queries on the refined
collection while using boosting (using weights reported in Table 3.3), we can
derive the following observations:

• TF-IDF: The gap between the original and the reproduced results has nar-
rowed considerably. Differences in metrics like NDCG@5 and NDCG@10
have been reduced to -0.0275 and -0.0385, respectively. This clearly demon-
strates the effectiveness of the combined approach, especially given the
greater disparities seen in prior setups.

• BM25F: BM25F, under the combined influence of the NLTK stoplist and
boosting, has shown the closest proximity to the original. The difference
in the NDCG@10 metric, for instance, is a mere -0.0209. This combination
almost replicates the efficacy of the original configuration for the BM25F
model.

• LMD: For the LMD model, while the discrepancies between the original
and reproduced results have reduced, they remain relatively significant,
especially with a -0.0624 difference in the NDCG@10 metric. Nonetheless,
the combined approach still presents an enhancement over prior configu-
rations.

Table 5.23: Performance comparison using combined metadata and data across
all queries in the refined collection with NLTK stoplist and boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.5088 0.5452 0.2871 0.3976
Reproduced 0.4813 0.5067 0.2719 0.3686

Difference -0.0275 -0.0385 -0.0152 -0.0290

BM25F
Original 0.5538 0.5877 0.3198 0.4358
Reproduced 0.5450 0.5668 0.3130 0.4205

Difference -0.0088 -0.0209 -0.0068 -0.0153

LMD
Original 0.5465 0.5805 0.3266 0.4324
Reproduced 0.4906 0.5181 0.2905 0.3801

Difference -0.0559 -0.0624 -0.0361 -0.0523
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Upon examination of the metadata results for all queries on the refined col-
lection, with the application of a boosting strategy (using weights reported in
Table 3.1) and NLTK stoplist (refer to Table 5.24), we can draw the following
conclusions:

• TF-IDF: The original results slightly outpace the reproducedversions across
all the evaluated metrics. For metrics such as NDCG@5 and NDCG@10,
the differences are -0.0085 and -0.0168, respectively. These discrepancies,
though small, indicate areaswhere the reproductionmay have varied from
the original.

• BM25F: The reproduced results for BM25F are nearly on par with the orig-
inal, especially in the NDCG@10 metric where the difference is as slight as
+0.0008. This suggests that the reproduced approach manages to capture
most of the efficacy of the original BM25F implementation.

• LMD: The reproduced results for the LMD algorithm surpass the origi-
nal across all metrics. With differences such as +0.0168 in NDCG@5, the
reproduced version seems to offer improvements or variations that might
have led to these enhanced outcomes.

Table 5.24: Performance comparison using metadata only across all queries in
the refined collection with NLTK stoplist and boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.4743 0.5019 0.2676 0.3685
Reproduced 0.4658 0.4851 0.2632 0.3515

Difference -0.0085 -0.0168 -0.0044 -0.0170

BM25F
Original 0.5045 0.5250 0.2859 0.3838
Reproduced 0.5094 0.5258 0.2898 0.3856

Difference +0.0049 +0.0008 +0.0039 +0.0018

LMD
Original 0.4363 0.4573 0.2543 0.3325
Reproduced 0.4531 0.4698 0.2681 0.3452

Difference +0.0168 +0.0125 +0.0138 +0.0127
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Upon inspecting the data results for all queries on the refined collection, with
the application of a boosting strategy (using weights reported in Table 3.2) and
NLTK stoplist (refer to Table 5.25), we can draw the following conclusions:

• TF-IDF: The reproduced results significantly lag behind the original ones.
For metrics like NDCG@5 and NDCG@10, the discrepancies are consider-
able, with differences of -0.0935 and -0.0915, respectively. These discrep-
ancies indicate that the replicated setup for data extraction deviates from
ACORDAR’s original configuration.

• BM25F: While the BM25F algorithm’s reproduced results are also lower
than the original, the gaps are slightly smaller than those observed with
TF-IDF. Specifically, the NDCG@10 metric shows a difference of -0.0757.
This indicates that while the reproduced version still underperforms, it is
closer to the original configuration’s performance compared to TF-IDF.

• LMD: The LMD algorithm shows the largest discrepancies between the
original and reproduced results. With adifference of -0.1110 in theNDCG@10
metric, it’s evident that the reproduced LMD implementation has signifi-
cant room for improvement. This discrepancy underscores the challenge
in reproducing the original setup’s efficacy.

Table 5.25: Performance comparison using data only across all queries in the
refined collection with NLTK stoplist and boosting

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Original 0.1910 0.1963 0.0998 0.1199
Reproduced 0.0975 0.1048 0.0523 0.0633

Difference -0.0935 -0.0915 -0.0475 -0.0566

BM25F
Original 0.2163 0.2196 0.1385 0.1550
Reproduced 0.1408 0.1439 0.0842 0.0954

Difference -0.0755 -0.0757 -0.0543 -0.0596

LMD
Original 0.2398 0.2523 0.1415 0.1672
Reproduced 0.1354 0.1413 0.0821 0.0937

Difference -0.1044 -0.1110 -0.0594 -0.0735
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Table 5.26: Divergence of configurations from the baseline

Configuration %
Raw Collection 7.00
Refined Collection without files over 200 MB 7.09
Refined Collection 7.65
Refined Collection with NLTK stoplist 6.90
Refined Collection with Kaggle stoplist 6.94
Refined Collection with boosting 3.99
Refined Collection with NTLK stoplist and boosting 3.47
Refined Collection with Kaggle stoplist and boosting 3.64

Through this analysis, it is observed that the replication of metadata results
demonstrates a high degree of alignment with the original study. Nonetheless,
greater variability manifests in the outcome concerning the extracted data. This
inconsistency can be due to differences in processing the RDF files. Regrettably,
the reference paper only briefly touches upon this topic.

Table 5.26 provides a comparative look at the divergence percentages from
the baseline across different configurations.

Interestingly, when files are recovered and additional information is added
to the data fields of Lucene’s documents, there is a noticeable decline in perfor-
mance compared to the baseline. This behavior is evident in the run ”Refined
Collection without files over 200 MB”, which exhibits a slightly higher diver-
gence compared to the run ”Raw Collection”. The data demonstrates that con-
figurations employing boosting techniques lead to a significant reduction in dis-
parity when compared to the results of the ACORDAR baseline. The ”Refined
Collection with NTLK stoplist and boosting” achieves the least divergence, at
3.47%. Based on the evidence, we can draw the conclusion that the use of boost-
ing techniques has notably diminished this disparity, effectively narrowing the
gap between the experimental findings and the results presented in the reference
paper.
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5.2 IMPACT OF MISSING DATASETS

In investigating the role of absent datasets on the performance of the repli-
cated dataset search system, an analysis was conducted to determine how the
absence of particular datasets affects the accuracy of search outcomes. This in-
vestigation aimed to identify the factors contributing to deviations from the sys-
tem’s reference performances.

One of the crucial aspects of this analysis was to assess whether there exists
a direct correlation between the number of missing datasets and the subsequent
lack of precision for a given query.

In contrast to the initial assumptions that a greater number of absent datasets
would necessarily lead to a decline in precision, the empirical evidence did not
definitively support this hypothesis.

These findings highlight the intricate nature of how missing datasets influ-
ence search precision within the ACORDAR. The analysis underscores that fac-
tors beyond mere dataset availability play a significant role in shaping search
precision, thus illustrating the complexity of dataset retrieval.

Figure 5.1: Missing Datasets Impact

Analyzing the visual representation of the data in Figure 1, it becomes evi-
dent that the relation between missing datasets and the system’s performance
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is not linear as one might initially presume. If missing datasets had a consid-
erably significant impact on performance, one would anticipate the graphical
representation to showcase a steeper incline when interpolating the data points.
This observation provides additional support for the idea that the quantity of
missing datasets does not exhibit a linear correlation with the degradation in
the system’s precision.

To support the argument that missing datasets have a negligible impact on
overall performance, we conducted an evaluation in which empty datasets (i.e.,
those for which no file was downloaded) were excluded from the relevance
judgements.

Table 5.27: Divergence of configurations from the baseline without considering
empty files

Configuration %
Refined Collection 7.75
Refined Collection with NLTK stoplist 6.93
Refined Collection with Kaggle stoplist 6.99
Refined Collection with boosting 4.12
Refined Collection with NTLK stoplist and boosting 3.51
Refined Collection with Kaggle stoplist and boosting 3.70

Moreover, when examining the results presented in Table 5.27, it becomes
evident that even when empty datasets are excluded from the relevance judge-
ments, the divergence in performance from the complete ground truth remains
minimal. The results indicate that the performance delta, when compared to the
complete ground truth, is less than 0.1%. This minor variance reaffirms that the
presence or absence of specific datasets does not influence the precision of the
ACORDAR’s search mechanism.

By combining the information obtained from both the visual representation
and the data presented in tables, we can infer that there is a complex connection
between the availability of data and the accuracy of search results.
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5.3 RE-RANKING BASED ON NUMERICAL FEATURES

Within the context of enhancing the IR system in ACORDAR, it is essential
to continually evaluate and improve search results. A crucial aspect of this pro-
cess involved re-evaluating the relevance of retrieved datasets. Previous steps
revealed that some datasets, although ranked by the system, were either inac-
cessible or impractical for the intended application. Consequently, there was
needed to revisit the reference results that lead to the establishment of a fresh
baseline.

Table 5.28 provides a performance comparison when using combined meta-
data and data across all queries in the refined collection. It is evident from the
table that the incorporation of re-ranking based on numerical features offers a
consistent improvement in all the ranking metrics.

Table 5.28: Performance comparison using combined metadata and data across
all queries in the refined collection with re ranking based on numerical features

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Reference 0.4752 0.4986 0.2865 0.3759
Re-Ranking 0.5575 0.5416 0.3541 0.4280

Difference +0.0823 +0.0430 +0.0676 +0.0521

BM25F
Reference 0.5282 0.5558 0.3212 0.4266
Re-Ranking 0.6133 0.6020 0.3897 0.4788

Difference +0.0851 +0.0462 +0.0685 +0.0522

LMD
Reference 0.4785 0.5084 0.2989 0.3846
Re-Ranking 0.5495 0.5445 0.3428 0.4194

Difference +0.0710 +0.0361 +0.0439 +0.0348

In Table 5.29, the focus shifts to performance comparisons when only meta-
data is utilized. There is a noticeable enhancement inmetrics when re-ranking is
implemented, underscoring the effectiveness of incorporating graph structural
features into the ranking procedure.
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Table 5.29: Performance comparison using metadata only across all queries in
the refined collection with re-ranking based on numerical features

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Reference 0.4607 0.4768 0.2793 0.3609
Re-Ranking 0.5464 0.5204 0.3481 0.4122

Difference +0.0857 +0.0436 +0.0688 +0.0513

BM25F
Reference 0.4946 0.5103 0.2992 0.3889
Re-Ranking 0.5775 0.5539 0.3665 0.4399

Difference +0.0829 +0.0436 +0.0673 +0.0510

LMD
Reference 0.4259 0.4446 0.2653 0.3366
Re-Ranking 0.5051 0.4851 0.3172 0.3768

Difference +0.0792 +0.0405 +0.0519 +0.0402

Lastly, Table 5.30 presents the results using only the data for the comparisons.
It’s interesting to note that even when only data is utilized, re-ranking leads to
performance improvements, although with a more modest effect compared to
combined data and metadata scenarios.

Table 5.30: Performance comparison using data only across all queries in the
refined collection with re-ranking based on numerical features

NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF
Reference 0.1018 0.1108 0.0573 0.0696
Re-Ranking 0.1418 0.1325 0.0826 0.0898

Difference +0.0400 +0.0217 +0.0253 +0.0202

BM25F
Reference 0.1453 0.1508 0.0902 0.1026
Re-Ranking 0.1712 0.1643 0.1052 0.1145

Difference +0.0259 +0.0135 +0.0150 +0.0119

LMD
Reference 0.1397 0.1481 0.0877 0.1006
Re-Ranking 0.1660 0.1598 0.1019 0.1110

Difference +0.0263 +0.0117 +0.0142 +0.0104
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Table 5.31: Re-Ranking Improvements Evaluation

Configuration Improvement %
Refined Collection 3.88
Refined Collection with NLTK stoplist 3.85
Refined Collection with Kaggle stoplist 3.84
Refined Collection with boosting 4.30
Refined Collection with NTLK stoplist and boosting 4.51
Refined Collection with Kaggle stoplist and boosting 4.51

In a comprehensive analysis, enhancements have been observed across all
metrics, manifesting an approximate increase of 4%when compared to the newly
established reference configuration results. Particularly noteworthy are the im-
provements in the NDCG@5 values for BM25 and LMD retrieval models. The
improving trend holds true even for other configurations, as reported in Table
5.31.

Figure 5.2: Feature Importance

An interesting pattern can be observed in Figure 5.2. It appears that the size is
strongly related to the relevance of a dataset. The observed relationship between
dataset size and relevance may be connected to the manner in which relevance
judgments were produced. Including datasets with substantial collections may
introduce a potential bias in the outcomes, as these extensive datasets might
encompass be relevant (or partially relevant) to a broad spectrum of queries.
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5.4 LEVERAGING IMPORTANT NODES

As mentioned in Chapter 2, the task of extracting salient information from
RDFdatasets offers significant prospects for enhancing the capabilities of dataset
search systems. To this end, the NetworkX library was employed to identify and
retrieve the URI of the most influential nodes within each RDF file for subse-
quent analysis.

To evaluate the advantages of focusing on these central nodes, two experi-
mental configurations were formulated to measure potential improvements.

Facing challenges similar to prior scenarios, the issue of data usability was
addressed by refining the test collection to exclude datasets lacking usable files.
Due to computational limitations, compromises were necessary: files that re-
quired more than 100 seconds for ingestion into RDFLib or exceeded 200 sec-
onds for betweenness centrality computation using the approximate algorithm
were excluded. This time constraint ensured that the computational workload
remained manageable. Consequently, there was a need to establish a new base-
line for future performance comparisons. Building on the foundational work
and adjustments made to the data usability, two primary experiments were con-
ducted to delve deeper into the performance optimization of the system.

Enrichment of Metadata and Data with Node URIs Thefirst experiment aimed
at evaluating the performance of the IR system while leveraging both the com-
prehensive data from the RDF datasets and the top 20 URIs extracted from each
usable file. The objectivewas to investigate whether integrating key nodes could
yield an improvement in system performance.

Selective Use of Top Node URIs and Metadata The second experiment ex-
plored the efficacy of replacing the all the extracted data, comprising Entities,
Classes, Literals, andProperties, with only theURIs of the top 20 nodes extracted
from each usable file. The goal was to determine if the combination of metadata
and chosen URIs could match or surpass the set performance benchmark.
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In the following tables, the results presented are obtained from the system’s
operation without the application of any stoplist and without the implemen-
tation of boosting. The evaluation is conducted using ALL QUERIES. As pre-
viously delineated, the dataset collection was refined, excluding datasets that
contained no usable files.

Note: In the tables below:

• [m] stands for metadata only.

• [d] represents data only.

• [N] signifies the usage of node URIs.

• [m+d] denotes a combination of metadata and data.

• [m+N] denotes a combination of metadata and node URIs.

• [m+d+N] denotes a combination of metadata, data and node URIs.

In Table 5.32, the initial group of rows refers to the baseline results, while the
succeeding group reports the outcomes achieved upon the integration of nodes
as a new document field.

Table 5.32: Enrichment of Metadata and Data with Node URIs

Method NDCG@5 NDCG@10 MAP@5 MAP@10
TF-IDF [m+d] 0.4474 0.4648 0.2865 0.3608
BM25 [m+d] 0.4387 0.4749 0.2805 0.3633
LMD [m+d] 0.2005 0.2272 0.1260 0.1530
TF-IDF [m+d+N] 0.4475 0.4708 0.2868 0.3668
BM25 [m+d+N] 0.4095 0.4446 0.2563 0.3300
LMD [m+d+N] 0.2119 0.2363 0.1284 0.1572

From the performance measures detailed in Table 5.32, several significant
observations can be highlighted:

1. Impact of Node URIs: The integration of node URIs shows varied effects
on the retrieval methods. While it marginally enhances the performance
for the TF-IDF and LMDmethods, the scores for BM25F experience a slight
decline across all metrics.

2. Magnitude of Change: The degree of alteration in scoreswith the addition
of node URIs differs between methods. This variance suggests that the
influence of node URIs on performance is likely method-dependent.
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In Table 5.33, three rows are presented for each similaritymeasure employed:

1. The initial row corresponds to the system’s performance using metadata
exclusively.

2. The subsequent row illustrates the results associated with ACORDAR de-
fault system configuration.

3. The final row reports the system’s results when augmenting the fourmeta-
data fields with node fields.

Table 5.33: Selective Use of Top Node URIs and Metadata

Method NDCG@5 NDCG@10 MAP@5 MAP@10
TF-IDF [m] 0.4247 0.4363 0.2681 0.3371
TF-IDF [m+d] 0.4474 0.4648 0.2865 0.3608
TF-IDF [m+N] 0.4296 0.4447 0.2722 0.3451
BM25 [m] 0.4616 0.4808 0.2961 0.3761
BM25 [m+d] 0.4387 0.4749 0.2805 0.3633
BM25 [m+N] 0.4390 0.4685 0.2730 0.3576
LMD [m] 0.4102 0.4269 0.2702 0.3322
LMD [m+d] 0.2005 0.2272 0.1260 0.1530
LMD [m+N] 0.3913 0.4107 0.2517 0.3113

From Table 5.33 we can observe:

• TF-IDF: Its best performance iswith the combinedmetadata anddata ([m+d]),
with a marginal improvement when node URIs augment the metadata.

• BM25: It excels most when relying solely on metadata ([m]).

• LMD: The method’s best performance is with metadata only, but adding
node URIs ([m+N]) produces results that are similar, unlike the significant
dip seen in the [m+d] setup.
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Within Table 5.34, a noteworthy phenomenon becomes apparent: there is an
average performance variation of roughly 2% when comparing the results ob-
tained from extracted data to those derived from a substantially limited set of
URIs. This disparity might be attributed to the inherent quality or relevance of
data present in nodes with high betweenness centrality. Nodes of this nature
play a crucial role in facilitating the flow of information across the graph, po-
tentially resulting in more precise outcomes. Conversely, the entire RDF graph
might include noise or less relevant data, compromising the integrity of the
search results. While prioritizing nodes with high betweenness centrality can
yield results that are central and pertinent to numerous paths in the graph, it’s
worth noting that it bypass some peripheral yet potentially significant informa-
tion.

Table 5.34: Usage of Nodes versus Extracted Data

Method NDCG@5 NDCG@10 MAP@5 MAP@10
TF-IDF [d] 0.0780 0.0878 0.0483 0.0572
TF-IDF [N] 0.0849 0.0826 0.0417 0.0459
BM25 [d] 0.1056 0.1158 0.0653 0.0759
BM25 [N] 0.0825 0.0840 0.0401 0.0460
LMD [d] 0.0942 0.1091 0.0601 0.0710
LMD [N] 0.0857 0.0868 0.0426 0.0487

The efficiency of the system is significantly influenced by metadata. While
integrating all the extracted data offers marginal improvements, including only
the URIs of the most central nodes yields nearly identical enhancements. This
implies that concentrating on these core nodes might be an approach to achieve
optimal results. Nonetheless, the minimal difference in performance between
using all the extracted data and only the URIs of the central nodes highlights
the critical role of metadata in the system’s efficiency.
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6
Conclusions and Future Work

6.1 GENERAL CONSIDERATIONS ON ACORDAR

During the course of this research, multiple challenges and opportunities
were observed in the ACORDAR framework. The dataset download phase was
markedby several limitations, includingdownload speed caps from some servers
and IP address bans due to high request frequency. A significant overhead was
also notedwhendownloadingmultiple small files, as it necessitated opening nu-
merous HTTP connections. To improve the reproducibility of ACORDAR’s re-
sults, a consolidated approach involving a single compressed file containing the
dataset could be a significant step forward. Furthermore, the time-dependent
nature of some RDF files, which are likely serializations of relational databases,
raises concerns about the stability of provided relevance judgements.
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6.2 REPRODUCED RESULTS

Duplicated Datasets The quality of the collection raises some concerns, given
that numerous datasets (over 200) appear to be duplicates or subsets of others, all
accessing the same URLs. This lack of proper deduplication could be attributed
to the crawling of open data portals. This issue reflects also on other problems,
such as inconsistent relevance judgements for queries across duplicate datasets.
A refined curation process involving syntax validation and file deduplication
is advised to enhance the quality of the collection. Offering a more detailed
JSONfile, which includesmetadata about the collection and theURLs for down-
loading the assets, and possibly indicating various representations of the same
graph, would be beneficial for researchers who utilize the collection.

Deduplication The ACORDAR paper refers to tuple deduplication without
discolosing the specific methodologies employed. Based on the code analysis
of ACORDAR-2, a relational database table was likely used for this task. How-
ever, this approach adds significant computational overhead to the collection
processing. Implementing probabilistic approaches like a Bloom Filter could
potentially offer adequate tuple deduplication while alleviating computational
costs.

Influence of Boosting and Stoplist The introduction of boosting bringsACOR-
DAR’s performance closer to the baseline, although this was not discussed in the
original paper. Moreover, an interesting observation arises from this analyzing
the boostingweights: an inclination towards prioritizingmatches inmetadata as
opposed to data extracted from fields, substantially diminishes the contribution
of the latter. Furthermore, the implementation of the NLTK stoplist successfully
reduced deltas with respect to baseline results. These enhancements, however,
were overlooked in the published paper, and have been inferred by looking the
ACORDAR-2 repository.

90



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Partial Usage of Files In theACORDARpaper, there is an ambiguity surround-
ing the methodology employed for handling files with syntax errors. The paper
does not provide explicit details on how these invalid filesweremanaged during
their research process.

By scrutinizing the ACORDAR-2 repository, a pattern of handling these files
can be inferred. It appears that these files are used in a streaming fashion. When
the parser, specifically the Jena framework, encounters an error within the file
(be it due to a syntax irregularity or any other anomaly) it immediately termi-
nates the parsing process. Thus, only the data preceding the initial error gets
retained and utilized in the study. This implies that any file containing an error
at its inception would be largely overlooked, and a file with an error towards
its end would almost be entirely accepted, with possibly only the latter segment
omitted. Such amethodologymight lead to data being either underrepresented,
depending on the positioning of the error within the file.

Furthermore, another observation from theACORDAR-2 repository suggests
that the streaming process for any file has a predetermined limit. The parser
only processes the initial 1,000,000 triples found within a file ¹, irrespective of
its total length or content beyond this point. This thresholding raises concerns
about the representativeness and comprehensiveness of the dataset. Arbitrarily
truncating files after a specific number of triples might not provide an accurate
representation of the data within. This, indeed, couldmean that certain insights
or patterns present in the omitted segments are disregarded, thereby potentially
deviating the results. It is necessary to highlight that even this practicewas omit-
ted from the paper.

6.3 CONCLUSIONS AND FUTURE WORK

In this section, we present outcomes of our research and outline possible di-
rections for future investigations. The discussion encloses factors like the com-
putational challenges posed by additional data, the effectiveness of graph sum-
marization techniques in enhancingmetadata, and innovative approaches to ex-
tracting features from RDF graphs. We also delve into the potential use of large
language models and semantic embeddings.

¹https://github.com/nju-websoft/ACORDAR-2/blob/main/Code/sparse/until/
GlobalVariances.java#L35
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6.3.1 KEY DISCOVERIES

COMPUTATIONAL COMPLEXITY AND PERFORMANCE IMPACT

Our research has revealed that integrating extra data into the IR system re-
sults in significant computational overhead. This is evident in the expansion
of index dimensions, leading to a decrease in search speed, and a huge exten-
sion of computational time during data extraction stages. Interestingly, we ob-
served only marginal improvements in system efficiency when compared to an
approach exclusively focused on metadata.

GRAPH SUMMARIZATION AND METADATA ENHANCEMENT

Graph summarizationmethods [8, 19], offer promising avenues for enriching
metadata. These methods not only enhance the quality of generated summaries
but also incorporate effective algorithms, providing valuable tools for exploring
and understanding extensive knowledge graphs.

6.3.2 SEMANTIC EMBEDDINGS

Semantic embeddings constitute a specialized field that aims to capture the
inherent semantic relationships between entities. These vector representations
leverage machine learning algorithms to analyze both the graph’s structure and
attribute characteristics. Such embeddings provide a robust computationalmech-
anism capable of revealing semantic connections betweendataset entities, thereby
enhancing the precision and relevance of search results. Two notable method-
ologies within the realm of embeddings are pyRDF2Vec and Literal2Feature,
which will be discussed in detail below.

PYRDF2VEC

pyRDF2Vec [18] is a Python library that utilizes Word2Vec models to cre-
ate embeddings for RDF graphs. This library offers a variety of graph traversal
strategies, making it a versatile tool for different applications.

LITERAL2FEATURE

Literal2Feature [13] represents another innovative approach, focusing on au-
tomated feature extraction from RDF graphs. Using machine learning algo-
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rithms, it identifies key literals and then uses them to generate a descriptive
feature set.

6.3.3 FUTURE DIRECTIONS

AUGMENTING NODE DESCRIPTIONS

Enhancing the richness of node descriptions can be achieved through vari-
ous methods. One promising approach is data augmentation, which can be ex-
ecuted by extending nodes using resources such as API requests, web scraping
techniques, and leveraging open data collections. However, while these aug-
mentations can offer more comprehensive node descriptions, it is crucial to be
aware of the computational and time costs that such methods may entail.

PROSPECTIVE RESEARCH AVENUES AND HARNESSING LARGE LANGUAGE MODELS

A captivating avenue is the integration of graph summarization techniques,
as illustrated by systems like SumMER [19], with Large LanguageModel (LLM).
Such a combination has the potential to craft a hypothetical description of a
dataset’s underlying content, using the summary extracted via graph summa-
rization tools.

OPTIMIZATION STRATEGIES

For handling large RDF datasets, future development could consider the uti-
lization of the Rust programming language for its performance benefits. Specif-
ically, the Rio library ² allows for resilient stream processing of RDF files, ensur-
ing that processing can continue even in the presence of syntactic errors. The
usage of such instrument can optimize the time required for data manipulation.

²https://github.com/oxigraph/rio
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