
Department of Mathematics “Tullio Levi-Civita”

Master’s Degree Course in Computer Science

Master’s Thesis

Model Checking a Temporal Logic

via Program Verification

Supervisor Prof. Paolo Baldan

Co-Supervisor Prof. Roberto Bruni

Candidate Diletta Rigo
ID.2058095

September 22, 2023

Abstract

The thesis explores the possibility of viewing Model Checking as an instance of program verification

in order to allow for the reuse of the vast theory and toolset of Abstract Interpretation in the setting

of Model Checking. Model Checking is a formal verification technique used to analyse the correctness

of software systems, based on a representation of the system as a formal model, such as a finite-state

machine or a transition system, and on a representation of the properties it must satisfy as temporal

logic formulae. On the other hand, Abstract Interpretation is a program analysis method, based on

the idea of extracting properties of programs by (over-)approximating their semantics over a so-called

abstract domain, typically a complete lattice, whose elements represent program properties. The thesis

focuses on ACTL, the universal fragment of the temporal logic CTL, which can describe properties of

executions which are universally quantified. It shows how properties expressed in ACTL can be mapped

into programs written in a suitable programming language, whose semantics consists of counterexamples

to the validity of the formula. Then such a program is analysed by Abstract Interpretation over some

abstract domain, exploiting the idea of local completeness as put forward in some recent work, combining

lower- and under-approximations.

“If you want to make God laugh, tell Him about your plans.”

To second chances.

Acknowledgements

The first thank and my deepest gratitude go to Professor Paolo Baldan and Professor Roberto Bruni,

for guiding me in this thesis work with trust and patience, and for their constant and invaluable feedback.

This journey would not have been possible (and certainly would not have had the same meaning)

without the support of the many people I have been fortunate to have by my side along the way.

Hoping to have conveyed to them in everyday life at least some of the sincere gratitude I feel, I still want

to extend my heartfelt thanks to them.

To mom and dad, for always being there.

To my grandparents, for the light they shed on my path.

To Maria Camilla, Giacomo and Emanuele, for being the best housemates and siblings.

To Alessandra, Corrado and Giovanni, for having me as part of their family.

To Nicolò and Filippo, for the synergy of group work and all the help in tinkering.

To Anna and Silvia, for their sweetness and grace.

To Corollario and Gruppo Giovanissimi, for giving meaning beyond purpose.

To Damiano, the wise man on the mountain I can turn to for advice.

To Giacomo, for the richness of the shared discussions and experiences.

To Nunzio, the older brother I am so grateful I have found.

To Pietro, for proving me every day that love is unbounded.

Contents

Introduction 1

I Background 7

1 Model Checking 9

1.1 General Concepts . 9

1.1.1 Transition Systems . 10

1.1.2 Properties and Temporal Logics . 11

1.2 ACTL . 15

1.2.1 Syntax and Semantics . 16

1.2.2 CEGAR . 16

2 Abstract Interpretation 21

2.1 General concepts . 21

2.1.1 Order theory . 21

2.1.2 Abstract Interpretation . 23

2.1.3 Kleene language . 25

2.2 Local Completeness . 26

2.2.1 Local Completeness Logic . 27

II Model Checking as Program Analysis 31

3 Model Checking as Program Analysis 33

3.1 ACTL Counterexamples . 33

3.2 Concrete Domain . 34

3.3 The mocha language . 35

3.4 ACTL formulae as regular commands . 36

4 Injecting Abstraction 43

4.1 A local completeness-preserving abstraction . 44

4.1.1 Galois Connection . 45

Contents

4.1.2 Abstract Semantics . 47

4.1.3 A general result . 54

4.2 Partition-based abstraction . 54

4.2.1 Galois Connection . 56

4.2.2 Abstract Semantics . 58

4.2.3 Using the local-completeness preserving abstraction 63

4.3 Non partition-based abstraction . 66

4.3.1 Galois Connection . 66

4.3.2 Abstract Semantics . 69

4.4 An outlook on Abstract Interpetation Repair . 77

Conclusion 81

Bibliography 83

Introduction

Software plays a key role in every aspect of our lives, with a continuously increasing massive presence

and heterogeneity; moreover, we witness a growing awareness of its social and environmental impact,

which is demanding requirements for safety and reliability certifications. The growing complexity and size

of software make it necessary to invest more in these aspects: errors can be very expensive in monetary

terms, but also in terms of human lives, so they must be prevented as much as possible in different areas

of application. Early detection is also crucial, as the cost of software failures after mass deployment is

tremendously higher than at preliminary stages.

Notable examples of hardware-related bugs are Intel’s Pentium-II bug in the floating-point division

unit or malicious codes Meltdown [23] and Spectre [22], which exploit critical vulnerabilities in modern

processors that allow programs to steal data. One of the most costly software bug is related to space

travel: the crash of the Ariane-5 rocket due to a number format conversion error, which could have been

avoided at design phase, helped in bringing to public attention the risks associated with the usage of

complex computing systems, resulting in increased support for research devoted to ensure reliability of

safety-critical systems. In particular the automated analysis of the Ariane code [12] was the first example

of large-scale static analysis based on Abstract Interpretation [11].

Formal Verification. The software certification task, which is crucial to ensure the sustainability of

the digital ecosystem, cannot be accomplished with testing alone, but must be performed with rigorous

tools for formal verification, which can provide mathematical proofs of soundness. To quote Dijkstra:

Program testing can be used very effectively to show the presence of bugs but never to show

their absence.

Formal verification is however extraordinarily difficult to perform: we must face intrinsic limitations due

to fundamental negative results (undecidability due to Rice’s theorem) together with complexity and

scalability issues, which prevent applicability to industrial-sized code even when the task is theoretically

feasible; real-world applications require on one hand the ability to handle increasing levels of complexity,

on the other to deal with quantitative and probabilistic aspects and uncertainty.

Abstraction. One method to address the complexity of the problem is through the use of abstraction.

Abstraction involves eliminating or simplifying irrelevant details that are not crucial to solving the

problem or verifying the desired property. Verifying the abstract model is more efficient, however it

1

Introduction

could yield spurious outcomes, i.e. it could indicate the presence of a non-existent error (false negative)

or miss the presence of an actual error (false positive). Therefore, in abstraction we face a tension between

efficiency and precision: a coarser model is simpler to analyse, however it may be uninformative; on the

other hand a richer abstraction could be more precise but too expensive at the computational level.

Luckily, error can be kept one sided: if we over-approximate the system behaviour, we admit false

negatives, i.e. erroneous counterexamples to the validity of a formal specification. Conversely, if we

under-approximate the system by removing irrelevant behaviour, we introduce false positives and we

cannot conclude that the specification is met, but ensure that any error detected in the abstract system

is a true error in the original system. In program verification we typically deal with over-approximations,

which are useful to prove safety properties of programs (avoidance of error states) but could raise false

alarms; on the other side, under-approximations are useful to detect true errors (but could fail to detect

all the errors in the software) and to verify liveness properties, i.e. properties that state that some

desired good behaviour is accomplished. These approaches relate to two theoretical properties of the

abstraction: soundness (correctness of the abstraction implies correctness of the original system) and

completeness (if the abstraction is incorrect, there exists an error in the original system).

Building on the above conditions, the work in the thesis stands at the convergence of two classical for-

mal verification techniques, Model Checking of temporal logic specification and Abstract Interpretation,

and aims to provide new insights from their symbiosis.

Model Checking. Model Checking (MC) is a formal verification technique first introduced in [4] used

to analyse the correctness of systems, based on a representation of the system as a formal model, such

as a finite-state machine or a transition system, and on a representation of the properties it must satisfy

as temporal logic formulae. The main technical challenge is the state-explosion problem: as the number

of state variables in the system increases, the size of the system state space grows exponentially. In

order to tame state explosion, several symbolic or approximated approaches have been considered, such

as Symbolic MC, Abstract MC, and Bounded MC [5, 7, 17]. In particular the driving idea of symbolic

MC is to use symbolic representations to manipulate sets of states and transitions, and then use logical

operations to reason about these sets efficiently.

Model Checking is an example of a technique in which abstraction could be used to simplify the

system: in [18] a seminal Counterexample-Guided Abstraction technique (CEGAR) is introduced in

order to automatise the abstraction generation by iteratively extracting information from false negatives

due to over-approximation. As said, over-approximation is sound for safety properties, i.e. no false

positives are found (if a property is verified in the abstract system, then it holds also for the original

system). This method is also complete, meaning that no false negatives are found, for an important

fragment of ACTL∗, a widely used temporal logic. More precisely, CEGAR is complete for the fragment

of ACTL∗ that admits counterexamples in the form of finite or infinite traces (i.e. finite traces followed

by loops) [18].

2

Introduction

Temporal logics. A temporal logic is a formalism to reason about proposition qualified in terms of

time. In the discrete time case, we focus our attention on the order in which properties hold: the

formalism let us express whether a property holds in the current state, in the next state, in every state

from now on, or if there is some state reachable in the future in which the property will hold. The

logics we will be dealing with are propositional logics to which we add temporal modalities and path

quantifications [26]. Temporal modalities will be used for the expression of both linear-time properties

and branching time properties; linear-time properties consider the system moving along a single path,

while quantifications over paths must be added to describe branching-time properties, which consider

the system moving on all possible paths.

Abstract Interpretation. Another important formal verification technique in static analysis is Ab-

stract Interpretation, which again uses abstract models of program’s behaviour to verify and analyse

properties of the program itself. Abstract Interpretation was first introduced in [2, 3] as a sound-by-

construction method for verification: the problem which has to be addressed for the precision of the

analysis is again the completeness of the Abstract Interpretation, which is closely related to the goal of

deriving the most abstract domain to decide program correctness without raising false alarms. Com-

pleteness intuitively encodes the greatest achievable precision for a program analysis on a given abstract

domain, but unfortunately the most abstract refinement, which comes as solution of a recursive domain

equation [14], as currently known yields an abstract domain that is often way too fine grained: as ob-

served in [21], the completeness refinement may result in a too concrete abstract domain, hence making

the abstract analysis useless, to the point of coinciding with the concrete domain.

In particular, in the setting of Abstract Interpretation, global completeness for (sound by design)

analysis of generic software (and Turing complete languages) has been shown to be hard to realise [21]:

some recent work [32] introduces the weaker concept of local completeness (local in the sense that analysis

is performed with respect to specific initial states) and builds on this idea to eliminate false alarms in

sound analysis: a program logic LCLA, parametric in the abstract domain A, is then introduced to this

goal. The proof system is designed to combine under- and over- approximations in order to simultaneously

check both program correctness and incorrectness. Some effort has been spent in giving bounds to the

number of false-alarms raised, introducing the notion of partial completeness as a weakening of precision

in [30].

Local Completeness and Repair. In [29], the authors introduce a novel approach to domain refine-

ment by leveraging the concept of local completeness proposed in [32]. Refinement, i.e. the process

of adding (or removing) elements to the abstract domain to increase precision (preserving soundness),

can be performed on a rough abstraction in order to add only the necessary information, alternating

analysis and refinement in a forward or backward inspection of the program. This approach introduces

algorithmic techniques that aim to optimally repair any local incomplete abstract analysis by adding el-

ements to the the domain whenever a local completeness proof obligation is violated. In this framework,

the abstract domain is replaced by the pointed-shell, i.e. the most abstract refinement that is locally

3

Introduction

complete. This Abstract Interpretation Repair (AIR) approach shares similarity with the already cited

CEGAR, which is shown to be an instance of AIR ([29, Sec. 6]). This intertwining approach is also

suggested in [25], which shows that a model checker can be formally designed by calculus, by Abstract

Interpretation of a formal trace semantics of the programming language.

Model Checking as Abstract Interpretation

The idea of reusing ideas and techniques from the setting of Abstract Interpretation for making

Model Checking more effective has been explored by several authors. In particular some apply abstrac-

tions technique to the µ-calculus: [9] extends Abstract Interpretation to the analysis of both existential

and universal reactive properties, showing how abstract models may be constructed by symbolic execu-

tion of programs, [13] deals with a generalization of the µ-calculus and identifies a relatively complete

sublogic, [19] presents a novel game-based approach to abstraction-refinement for the full µ-calculus,

while [27] develops a theory of approximation for systems of fixpoint equations in the style of Abstract

Interpretation, showing that up-to techniques can be interpreted as abstractions. Other works relate

more in general to properties transformations: [8] uses simulations parameterised by Galois connections

that relate the lattices of properties of two systems to study property-preserving transformations for

reactive systems, [16] studies the standard means for relating a specification to its refinement and for

relating an implementation to its abstraction using Kripke structures and characterizing the classic tools

of Galois connections in terms of binary simulation relations that possess desirable structural proper-

ties, and [6] introduces a novel logic for the introduction of nondeterministic and concurrent processes

expressed in a process algebra, which allows for compositionality to verify correctness.

This thesis takes a different perspective, which consists in viewing Model Checking directly as an

instance of program verification in order to allow for the reuse of the vast theory and toolset of Abstract

Interpretation in the setting of Model Checking. Given a specification logic, the idea is to map properties

expressed in the logic into programs written in a suitable programming language, whose semantics

consists of counterexamples to the validity of the formula. In particular, we combine under- and over-

approximation based on local completeness.

ACTL. The thesis focuses on ACTL, the universal fragment of the temporal logic CTL, which can

describe properties of paths which are universally quantified. Given a set of basics propositions, prop-

erties φ on states that can be expressed - apart from basic propositions, conjunction and disjunction of

properties - are "for all possible paths, next φ" (AX φ), "for all possible paths, eventually φ" (AF φ), "for

all possible paths, always φ" (AG φ), "for all possible paths, φ1 until φ2" (φ1 AU φ2). Some invariants

expressible in this logic are for example the fact that a system does not reach a deadlock, or that it never

happens that two traffic lights at an intersection are green at the same time.

The first step towards our contribution is the identification of a language, called mocha (for Model

Checking as Abstract Interpretation) over which ACTL formulae can be mapped in a way that for a given

formula φ and system (Σ,_), the semantics of the program associated to φ over the system consists of

4

Introduction

the counterexamples to the validity of the formula (states σ ∈ Σ which do not satisfy the formula φ). The

language, based on Kozen’s Kleene algebra with test [10], consists of a set of basic operators which allow

to extend, filter, disregard computation paths, which can be combined with the usual regular commands

of sequential composition, join (choice command), and Kleene iteration.

Concrete Domain and Semantics. In this framework, the concrete domain must retain enough

information to allow computing counterexamples while executing programs: a concrete state for mocha

is built as a stack of the form ⟨σ, T ⟩ :: S, where σ ∈ Σ represents the current state of the original system,

T ∈ 2Σ represents the set of traversed states, S ∈ (Σ× 2Σ)∗ represents the rest of the stack. We chose to

use finite stacks of this shape for the recursive verification of nested temporal formulae and for preserving

traces, which ACTL formulae refer to. One can imagine that ⟨σ, T ⟩ :: S represents all traces starting

at σ.

The concrete semantics is then defined for the basic expressions p?, loop?, next, post, push, pop, that

let us express ACTL formulae, as follows: p? checks the validity of the proposition p on the current

state σ, loop? checks if the current state σ loops back to one of the states in the current trace T , the

expressions next and post extend the trace by one step in all possible ways, but next does not keep track

of this in the trace T , while post does. The expressions push and pop act on the stack respectively by

extending the current stack to start a new analysis on ⟨σ,∅⟩ and by restoring the previous trace from

the stack. The concrete elements for the computation are sets of stacks, so the collecting semantics is

given as the standard additive lifting of the semantics defined on a single stack.

Programs as regular commands. To each formula φ of ACTL we then assign a program ⌊φ⌋ that

computes counterexamples to φ, i.e. the semantics of the program ⌊φ⌋ starting from a set of states

will filter those states in which φ does not hold. For example, the basic case for a basic proposition is

⌊p⌋ = ¬p?, while for instance a counterexample to AF φ is defined as

⌊AF φ⌋ = ⌊φ⌋; push; (post; ⌊φ⌋)∗; loop?; pop

which means that we find a counterexample to AF φ when φ does not hold in the current state (⌊φ⌋)

and after that there is a maximal trace (loop?) that traverses reachable states that do not satisfy φ (they

are collected using the command (post; ⌊φ⌋)∗).

Injecting Abstraction. We propose three different abstractions that allow for abstract Model Check-

ing. A first abstraction on stacks is complete, and it consists in a transformation of the concrete domain

that can be used together with coarser abstractions: this can be done thanks to a more general result,

which states that the composition of a globally complete and a locally complete abstraction is again lo-

cally complete (with respect to the same element and the same operation) if some commutation relations

hold. This abstraction aims at simplifying the representation of the concrete elements by merging stacks

that share the same current state in the head and the same tail of the stack: informally we could say it

merges pasts relative to compatible histories.

5

Introduction

Then we propose two ways of lifting an abstraction on states (αΣ,Σ, AΣ, γΣ) to an abstraction on

stacks (α,C,A, γ). The first of these two approaches is based on partitions: abstract elements are set of

stacks whose states are equivalence classes of the states in the original concrete system. We show how

the abstraction is induced from the partition, and how partition-based abstractions are compatible with

the previously introduced past-merging abstraction.

The second approach aims at having as abstract elements single abstract stacks, instead of set of

stacks: it is built by merging all the states, all the traces and all the tails of the stacks in a concrete set.

For both approaches we analyse which are the conditions to have completeness for basic expressions

of the language mocha.

A Local Completeness Logic The above approaches are sound, but they can provide false alarms if

they are not complete. The idea is to use the notion of local completeness developed in [32], focusing on a

single execution trace produced by the application of abstract transfer functions on some input of interest.

In particular, we study conditions on Best Correct Approximations of basic expressions (i.e. the smallest

correct abstractions of the basic expressions of the language) and present examples of abstractions by

looking at local conditions, exploiting the proof obligations required in the Local Completeness Logic. In

fact, the proof obligations needed to derive the statements of the logic are local obligations because they

are relative to a specific computation trace. Since logical derivations cannot work with locally incomplete

abstractions when some proof obligation fails, the abstract domains need to be repaired to achieve local

completeness, and the application of the ideas introduced in [29], to use these failing conditions to guide

the identification of effective abstraction refinement techniques, is the natural next step for which this

thesis lays the foundation.

Thesis structure

The first part of the thesis is devoted to recalling the necessary background: Chapter 1 is dedicated

to Model Checking, and we recall some basic notions regarding transition systems and modal temporal

logics, with a specific focus on ACTL and the CEGAR tool. Chapter 2 is devoted to Abstract Interpre-

tation: we recall notions of order theory, Galois connections and closures, then we introduce the Kleene

regular language on which the Local Completeness Logic and the mocha are modeled. In Section 2.2 we

focus on the more recent notion of Local Completeness and introduce the Local Completeness Logic.

The second part of the thesis is the original contribution: in Chapter 3 we introduce the mocha

language and give the translation of ACTL into it, illustrating some computations examples and proving

the relation between ACTL formulae and mocha programs. Chapter 4 is dedicated to the study of ab-

stractions that can be injected onto the concrete domain: in Section 4.1 we study a complete abstraction

and prove a general result about the preservation of local completeness by composition of abstractions;

in Sections 4.2 and 4.3 we present two different ways of lifting an abstraction on states to the domain of

stacks. Finally, in Section 4.4 we present a brief account of AIR for its application to our setting.

6

Part I

Background

7

Chapter 1

Model Checking

1.1 General Concepts

Model checking is an automated formal verification technique that, given a (typically finite-state)

model of a system and a formal property to be verified, systematically checks if the property holds for

(a given state in) that model. Let us try to break this definition down: first of all, Model Checking

is a verification technique that is based on models, that can be defined as descriptions of the system

behaviour in a mathematically rigorous and unambiguous manner. The step of giving a model of a

system is already useful in detecting possible errors and inconsistencies.

The aim is then to verify a formal property, i.e. the specification of the correct behaviour given in

a formal language which allows one to express in a precise and unambiguous way the properties to be

verified. The systematic check is done in the first instance as a brute force exploration of all possible

systems state, thus posing the challenge of exploring bigger and bigger state spaces: with the help of

clever algorithms, data structures and representation, the check can be refined to handle larger state

spaces.

While the model description addresses how the system behaves, the properties prescribe what the

system should or should not do. As said, the model checker examines all relevant system states to check

whether they satisfy the desired property: if a state that violates the property is singled out, the model

checker often provides a counterexample, i.e. an execution path from the initial state to the violating

state, that indicates how the model could reach that undesired state. This information can then be used

for debug and correction of the system and the model.

Models of systems describe their behaviour, and usually are built as finite-state graphs, called transi-

tion systems or Kripke structures, in which the nodes represent the states, which comprise some kind of

information (values of variables, previously executed statements, properties that are true in that state,

...), and edges represent transitions, which describe how the system evolves from one state to another.

Specifications, that should be precise and unambiguous, are usually stated in a property specification

language; we will focus on different kind of temporal logic, a form of modal logic that is appropriate to

specify relevant properties of ICT systems, adding to the traditional propositional logic operators that

9

1.1. General Concepts Chapter 1. Model Checking

refer to the behaviour of systems over time (in particular to the order in which properties are true or

false). In the terms of mathematical logic, Model Checking verifies that the system description is a model

of a temporal logic formula.

1.1.1 Transition Systems

A transition system is an unlabeled, finite, directed graph, where nodes model states, that may or

may not satisfy certain properties in a given set, and the edges represent transitions denoting the state

changes. More precisely, we have:

Definition 1.1 (Transition System). A transition system is a tuple (Σ, I,P,_,⊢) where

• Σ is a finite set of states ranged over by σ;

• I ⊆ Σ is the set of initial states;

• _ ⊆ Σ× Σ is the transition relation;

• P is a (finite) set of basic propositions, ranged over by p, which includes the trivial proposition tt

such that σ ⊢ tt for any σ ∈ Σ and we write ff for ¬tt.

• ⊢⊆ Σ × P is the satisfaction relation, where for σ ∈ Σ and p ∈ P we have either σ ⊢ p or

σ ̸⊢ p ∼= σ ⊢ ¬p.

The behaviour of the transition system is intuitively described as follows: the model starts in some

initial state σ0 ∈ I and evolves according to the transition relation _, which means that if σ ∈ Σ is the

current state then a transition (σ, σ′) ∈ _ originating from σ is selected nondeterministically, then this

selection procedure is repeated.

We write σ_σ′ instead of (σ, σ′) ∈ _, and we write σ_ if there exists σ′ ∈ Σ such that σ_σ′. If

there is no σ′ ∈ Σ such that σ_σ′ we write σ _̸.

In some examples, to ease the notation, if the set of states that identify a property is a singleton we

will denote the state with the property it satisfies.

Remark 1.2. We are dealing with unlabelled transition systems in the sense that we are following

a state-based to the description, as opposed to an action-based formulation. This means that we are

abstracting from actions, and we are only interested in properties of the states, and we can map each

state σ ∈ Σ to the subset Pσ ⊆ P of the properties it satisfies.

On the other hand an action-based approach would abstract from properties of states and refer to

the action labels of the transitions; this approach is necessary to model communication.

Definition 1.3 (Successors, Predecessors). Let σ ∈ Σ. We define the set of direct successors of σ as

Post(s) = {σ′ | σ_σ′}

We define the set of direct predecessors of σ as

Pre(s) = {σ′ | σ′ _σ}

10

Chapter 1. Model Checking 1.1. General Concepts

Definition 1.4 (Star). Given a set X and f : X → X, we define f∗ : X → X on any x ∈ X as

f∗(x) =
⋃︂
n∈N

{fn(x)}

Definition 1.5 (Reachable states). The set of reachable states from σ, where σ ∈ Σ, can be formu-

lated in terms of successors as

σ_∗
= Post∗(σ) = {σ′ | σ_∗ σ′}

where _∗ is the reflexive and transitive closure of the relation _.

Remark 1.6. We remark that there exist many classes of transition systems, suitable for different uses.

A transition system together with the set of atomic proposition and with non-blocking condition (i.e.

there are no dead-end states) is usually called a Kripke Structure [20].

In the following we consider only models in which all states always have an outgoing transition, i.e.

for all σ ∈ Σ there exists σ′ ∈ Σ such that σ_σ′, since dead-end states (i.e. states with no outgoing

transitions) can be encoded by adding to the model a dead state which loops on itself.

Definition 1.7 (Path). A path (or execution) is an infinite sequence of states π = σ0 → σ1 → · · · →

σn → We denote by πi = σi the i-th state of π, by πk the path σk _ · · ·_σk+n _ · · · for k ∈ N.

by π[σ] the path starting at π0 = σ, by π(Σ) = {πi | i ∈ N} the set of states traversed by π.

Definition 1.8 (Model checking problem). [18, Def. 2.2] Given a Kripke structure M with states σ ∈ Σ

and a specification φ in a temporal logic, the Model Checking problem is the problem of finding all

the states σ such that σ |= φ and checking if the initial states are among this.

An explicit state model checker is a program which performs Model Checking directly on a Kripke

structure.

Remark 1.9. Since we only consider finite state models, any infinite sequence π = σ0 _ · · ·_σn _ · · ·

can only traverse a finite number of different states. Let minπ ∈ N denote the smallest index such that

for any k > minπ we have σk = σj for some 0 ≤ j ≤ minπ. It follows that π(Σ) = {πi | i ∈ [0,minπ]} is

determined by the finite prefix σ0 _ · · ·_σminπ
of π and that any (state) property that is required to

hold for all states in π(Σ) can be decided over such finite prefix σ0 _ · · ·_σminπ .

1.1.2 Properties and Temporal Logics

We briefly introduce the properties that are verified with Model Checking, and the main temporal

logics used to specify them.

Safety and liveness Properties. A requirement for a component is a specification of acceptable

or desired sequences of outputs in response to inputs, which should be stated as precisely as possible,

and we may classify requirements into two categories: safety requirements assert that "nothing bad

ever happens", while liveness requirements assert that "something good eventually happens". Such

requirements are specified using a formalism called temporal logic, and the problem of checking whether

a model satisfies its specification expressed in temporal logic is known as Model Checking.

11

1.1. General Concepts Chapter 1. Model Checking

The verification problem consists in checking whether the given implementation meets these require-

ments: a violation of a safety requirement can be a finite execution that illustrates the undesirable

behaviour, i.e. a counterexample. On the other hand no finite execution can demonstrate the violation

of a liveness property: a witness should show a cycle in which the system gets stuck without achieving

the goal.

A typical example of safety property is the mutual exclusion property, i.e. the fact that always at

most one process is in its critical section; another typical safety property is the absence of deadlocks, i.e.

of (reachable) states with no exiting transitions.

Safety properties are requirements of a particular kind: they are invariants, i.e. properties that hold

for all reachable states. The dual concept of invariant property is reachable property : a property is

reachable if it is satisfied by some reachable state of the transition system. It follows that a property φ

of a transition system is an invariant if and only if the negated property ¬φ is not reachable. This idea

is often exploited to verify safety requirements.

An algorithm could easily fulfill a safety property by doing nothing, since doing nothing does not

lead to "bad" states. But this is not the behaviour we look for in a system that should do something.

Thus, safety properties are complemented by liveness properties, i.e. properties that require that some

good behaviour occurs. An example of liveness property is the request that some output corresponds to

an input, or that a request for a resource eventually gets granted.

Linear-time and branching-time Properties. Another axis along which we could classify the prop-

erties we are interested is the linear-time vs. branching-time properties. Linear-time properties specify

the traces that a transition system should exhibit, i.e. it is a requirement on the states traversed by

those traces of the transition system. Linear time properties thus focus on the behaviour of a single exe-

cution path through the state space: in the linear view of time, at each moment in time there is a single

successor moment; in the branching view of time, on the other hand, the structure can be branching,

tree-like: time can split in alternative courses. Thus, branching-time properties focus on considering mul-

tiple possible execution paths or behaviours simultaneously: this is especially useful when dealing with

non-deterministic or concurrent systems, where different executions could lead to different outcomes.

Linear Temporal Logic, for short LTL, is a linear-time modal logic that expresses linear-time prop-

erties, while Computation Tree Logic, for short CTL, is a branching-time modal logic that focuses on

branching-time properties. The expressiveness of these two logics is not comparable, i.e. there are LTL

formulae which cannot be expressed in CTL, and vice versa. Both are subsumed by the branching-time

logic CTL∗, whose expressive power is in turn contained in that of µ-calculus.

Temporal Modalities. Temporal logics such as LTL and CTL are propositional logics to which tem-

poral modalities are added to express properties that allow for the specification of the relative order of

events. Temporal modalities are thus expressions used to describe and reason about properties that

involve time and ordering of events, formally capturing temporal relationships between states or events

12

Chapter 1. Model Checking 1.1. General Concepts

in a system’s behaviour. We briefly describe the most common temporal operators (they are not all

fundamental, since some of them can be derived from the others):

• the next modality, denoted by ⃝ or X, is used to express that a certain condition is true in the

next step along a path;

• the eventually modality, denoted by ♢ or F, is used to express that a certain condition will eventually

become true along a path;

• the always modality, denoted by □ or G, is used to express that a certain condition remains true

for all steps along a path;

• the until modality, denoted by U or U, is used to express that a certain condition holds until another

condition becomes true at some point in the future along a path.

In CTL two other modalities will be added to quantify over paths: the A modality quantifies universally

over paths, while the E modality quantifies existentially over paths, but they are constrained to be

immediately followed by a temporal operator. In CTL∗, a propositional temporal logic that contains

both as subfragments, and that we introduce here following [26], these constraints are removed.

CTL∗. CTL∗ is a propositional modal logic with path quantifiers (A,E), which are interpreted over

states, and temporal operators (X,F,G,U), which are interpreted over paths.

Definition 1.10 (CTL∗ syntax). Given a set of atomic propositions P with p ∈ P, the syntax of CTL∗

is recursively defined as follows:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | A φ | E φ | X φ | F φ | G φ | φ1 U φ2

In particular, we can distinguish two synctactic subsets of CTL∗: state formulae are boolean combi-

nations of atomic propositions and CTL∗ formulae whose outermost operator is a path quantifier, while

path formulae are those whose outermost operator is a temporal operator. The truth value of a state

formula can be asserted over a state in a Kripke structure, while we need a path to determine the truth

value of a path formula.

Not all of these operators are really necessary: it can be shown that the full expressive power of CTL∗

can be obtained by just using X,U and one among A,E. We now describe the semantics for CTL∗.

13

1.1. General Concepts Chapter 1. Model Checking

Definition 1.11 (CTL∗ semantics). Given a Kripke structure (Σ, I,P,_,⊢) let σ ∈ Σ be a state, π be

a path, p ∈ P an atomic proposition, f, g state formulae, φ and ψ CTL∗ formulae, we have:

σ |= p iff σ ⊢ p

σ |= ¬f iff σ |̸= f

σ |= f ∨ g iff σ |= f or σ |= g

σ |= f ∧ g iff σ |= f and σ |= g

σ |= E φ iff there is an infinite path π such that π0 = σ and π |= φ

σ |= A φ iff for every infinite path π such that π0 = σ we have π |= φ

π |= f iff π0 |= f

π |= ¬φ iff π |̸= φ

π |= φ ∨ ψ iff π |= φ or π |= ψ

π |= φ ∧ ψ iff π |= φ and π |= ψ

π |= X φ iff π1 |= φ

π |= F φ iff there exists an i ≥ 0 such that πi |= φ

π |= G φ iff for all j ≥ 0 we have πj |= φ

π |= φ U ψ iff there exists an j ≥ 0 such that πj |= ψ and for all 0 ≤ i < j we have πi |= φ

LTL. LTL is a syntactic fragment of CTL∗ for the description of linear-time properties. LTL formulae

over the set P of atomic propositions can be formed according to the following grammar, in which no

path quantifier is allowed except for a leading A.

Definition 1.12 (LTL syntax). Given a set of atomic propositions P with p ∈ P, let φ range over LTL−

formulae, and build LTL formulae as A φ:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | X φ | F φ | G φ | φ1 U φ2

LTL is the linear-time fragment of CTL∗ because LTL− formulae are interpreted over paths, i.e.

linear sequences of states.

Paths are obtained from a transition system that might be branching: a state may have distinct

direct successor states, so different computations can branch from the same state. The interpretation

of LTL formulae in a state requires that a formula φ in a state s holds if all possible computation that

start in s satisfy φ.

CTL. CTL is a synctactic fragment of temporal logic to describe branching-time properties. In CTL

every path quantifier must immediately be followed by a temporal operator.

Definition 1.13 (CTL syntax). Given a set of atomic propositions P with p ∈ P, the syntax of CTL is

recursively defined as follows:

φ ::= p | ¬φ | φ ∨ ψ | φ1 ∧ φ2 | AX φ | EX φ | AF φ | EF φ | AG φ | EG φ | A φ1 U φ2 | E φ1 U φ2

Every CTL formula, hence every subformula of a CTL formula, is a state formula.

We introduce a little example taken from [15], which we will discuss later with more details in 3.11,

to underline the different expressive power of LTL and ACTL.

14

Chapter 1. Model Checking 1.2. ACTL

Example 1.14. [15, Ex. 1.2] Consider the transition system in Figure 1.1, with P = {tt, a,¬a,ff},

where σ0, σ2 ⊢ a, σ1 ̸⊢ a. We can see that the formulae AFG a and AF AG a are not equivalent: the first

formula holds on this transition system (either the system loops forever in σ0, in which a holds, or, if at

a certain point there is a transition to σ1, then there is a transition to σ2 and the system loops forever

in σ2, in which again a holds), while the second formula does not hold, since σ0 |̸= AG a and the system

could loop in σ0.

σ0 σ1 σ2

Figure 1.1: An example to distinguish AFG and AF AG .

µ-calculus. µ-calculus is a more expressive logic that subsumes CTL∗ and all its synctactic fragments.

µ-calculus is a modal logic describing properties of transition systems, on which we require a countable

set of variables, whose meaning will be set of states; µ-calculus allows for the explicit description of

fixed-point properties by extending a propositional modal logic with the least fixed-point operator µ and

the greatest fixed-point operator ν. Its semantics can be characterised in terms of parity games.

To summarise, we copy here a diagram from [26] that illustrates the basic temporal logic we have

discussed and the ones we will be interested in, pointing out their relations:

µ-calculus

CTL∗

CTL ACTL∗

ACTL LTL

In particular, CEGAR (Sec. 1.2.2) works on ACTL∗, while our focus will be devoted to ACTL.

1.2 ACTL

ACTL formulae are temporal formulae universally quantified over all paths leaving the current state,

thus ACTL is the fragment of CTL in which only the A operator is allowed. Counterexamples to universal

properties are existential, hence a single failure path is sufficient to show that a certain property does not

hold; however the form of counterexamples could be made more complicated by the nesting of properties.

15

1.2. ACTL Chapter 1. Model Checking

1.2.1 Syntax and Semantics

Definition 1.15 (ACTL syntax). Given a set of atomic propositions P with p ∈ P, the syntax of ACTL

is recursively defined as follows:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | AX φ1 | AF φ1 | AG φ1 | φ1 AU φ2

The satisfaction relation is obtained by instantiating the general notion given for CTL in Defini-

tion 1.13.

Definition 1.16. The satisfaction relation for ACTL formulae over states can be defined by structural

induction as follows:

σ |= p iff σ ⊢ p

σ |= ¬p iff σ ⊢ ¬p

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= AX φ1 iff ∀σ_σ′. σ′ |= φ1

σ |= AF φ1 iff ∀σ = σ0 _ · · ·_σn _ · · · . ∃k ∈ N. σk |= φ1

σ |= AG φ1 iff ∀σ = σ0 _ · · ·_σn _ · · · . ∀j ∈ N. σj |= φ1

iff ∀σ_∗ σ′. σ′ |= φ1

σ |= φ1 AU φ2 iff ∀σ = σ0 _ · · ·_σn _ · · · .

∃k ∈ N. (σk |= φ2 and ∀j ∈ [0, k − 1]. σj |= φ1)

Remark 1.17. Note that AF is definable in terms of AU as it can be readily checked that AF φ =

tt AU φ.

1.2.2 CEGAR

Counterexample-Guided Abstraction Refinement, (CEGAR) is a popular abstraction refinement tech-

nique applicable for the verification of temporal logic formulae. In the original paper [18] the framework

is used to verify properties specified in ACTL∗: this framework gives tools to combine an automatic

generation of an initial abstraction, a symbolic Model Checking procedure and an automatic refinement

of the abstraction based on counterexamples, in an iterative way.

Symbolic Model Checking. In Symbolic Model Checking the transition relation of a Kripke structure

is not explicitly constructed, but instead a Boolean function is computed to represent it. Then fixed

point characterizations of temporal operators are applied to the Boolean function rather then to the

Kripke structure. These Boolean functions are represented in a compact and efficient way as ordered

binary decision diagrams, BDDs. The BDDs data structure is particularly popular in Symbolic MC due

to its ability of representing and manipulate large sets of states or complex Boolean formula. A Symbolic

Model Checking algorithm is an algorithm in which variables do not denote single states, but set of states

are represented by Boolean functions.

16

Chapter 1. Model Checking 1.2. ACTL

Definition 1.18 (Binary Decision Diagram). A Binary Decision Diagram is a directed acyclic graph

with two types of vertices: terminal and internal. Terminal vertices have no outgoing edges and are

labelled with a Boolean constant (0 or 1). Internal Vertices are labelled with a variable x ∈ X and

have two outgoing edges: a right one (which represents setting the variable to 1) and a left one (which

represents setting the variable to 0).

In the previous definition, every path from an internal vertex to a terminal vertex contains at most

one vertex for each variable x ∈ X: each vertex u represents a Boolean function f(u), and given a

valuation for X the value of f(u) is obtained by traversing the path starting from u and choosing at

each vertex the left or right edge based on the value assigned in the specific valuation to the variable it

represents. The whole idea of Binary Decision Diagrams is based on Shannon’s expansion formula.

Definition 1.19 (Shannon’s expansion formula). Given a set of k Boolean variables X and a Boolean

formula f over X, which can be represented as f : boolk → bool, we have that the Shannon expansion

of f over the variable x ∈ X is

f ∼= (¬x ∧ f [x ↦→ 0]) ∨ (x ∧ f [x ↦→ 1])

Where f [x ↦→ b] for b = 0, 1 are obtained from f by substituting x with the value b.

The formulae resulting from expanding on the variable x do not refer to x anymore, hence they are

simpler Boolean functions, depending on one less variable. We can apply Shannon’s formula recursively

to simplify Boolean functions, leading to a representation as decision diagrams.

Abstraction. The use of abstraction allows us to tackle the main challenge in Model Checking, that is

state explosion. An existential abstraction is a partitioning of states of a Kripke structure into clusters,

which are treated as new abstract state. The abstraction function may be defined as a surjective function

from states to abstract states, and a new Kripke structure may be induced from the original one and

the abstraction. The abstraction should be appropriate with respect to the specification φ, i.e. if two

concrete states are identified then they must share the same truth value for all subformulae of φ. This

leads to the notion of consistent abstract state (collapsing a set of concrete states into an abstract state

does not lead to contradictions in the properties satisfied by an abstract state).

The initial abstraction function is obtained by identifying those concrete states that cannot be dis-

tinguished by the atomic formulae contained in φ.

The key step of CEGAR is to extract information from spurious counterexample, i.e. false negatives

due to over-approximation. As we said, over-approximation is sound, i.e. if a specification is true in

the abstract model, then it is true also in the concrete design, but it the specification is false, the

counterexample may be the result of some behaviour that was introduced with the approximation, and

is not present in the original model. This method is also complete, meaning that no false negatives are

found, for an important fragment of the ACTL∗ temporal logic: in particular, the CEGAR paper only

refers to safety property and counterexamples which can be represented as finite or infinite linear paths.

17

1.2. ACTL Chapter 1. Model Checking

Remark 1.20. As pointed out in [15], counterexamples are not all expressible as linear paths, some

necessarily have a tree-like, branching structure. The paper gives precise definitions to multi-paths and

linear-paths and identifies a set of templates of ACTL for which a linear-path exists, and it proves that it

is in general NP-hard to produce complete counterpaths. No characterization exists (to our knowledge)

of the biggest fragment of ACTL for which linear counterexamples exist.

Procedure. The main steps of the iterative procedure can be described as follows:

1. given a program P with a corresponding Kripke structure M , generate an initial abstraction h

by analyzing the transition blocks corresponding to the variables of the program. Let ˆ︂M be the

abstract Kripke structure corresponding to h;

2. model-check the abstract structure ˆ︂M :

• if φ holds for ˆ︂M , we can conclude it also holds for M and we are done;

• if instead a counterexample T̂ is found, we must check if it is a real or a spurious counterex-

ample. Since the model is finite, this step can be done by simulating T̂ on the actual model.

If it is an actual counterexample it is reported, else the procedure goes to step 3;

• the abstraction is refined by partitioning a single equivalence class so that after the refinement

the abstract structure ˆ︂M does not admit the spurious counterexample T̂ . After the refinement,

the procedure goes back to step 2.

We discuss an easy example from the original CEGAR paper [18] to show an example of an incomplete

analysis and one of a complete analysis. This example will be reprised in Ex. 4.23 to illustrate our

abstractions techniques.

Example 1.21. [18, Ex. 3.4, 3.7] Consider the transition system in Figure 1.2, which represents a US

traffic light controller.

red green yellow

Figure 1.2: Traffic light example from [18].

We want to prove that the property φ = AG AF red holds using the abstraction function

h : red ↦→ ˆ︂red h : green, yellow ↦→ˆ︂go
The abstract transition system is depicted in Figure 1.3. We can see that the property holds for the

original system, but it does not hold for the abstract system, since there is an infinite abstract trace

(ˆ︂red,ˆ︂go,ˆ︂go, . . .) that invalidates the property: this trace is a spurious counterexample.

We may now consider a variation of this transition system, in which we model also the behaviour of a

car in reaction to the behaviour of the traffic light (the drive state of the car is guarded by the green state

of the traffic light). The two transition systems and their composition are represented in Figure 1.4.

18

Chapter 1. Model Checking 1.2. ACTL

ˆ︂red ˆ︂go

Figure 1.3: Abstract transition system for the traffic light.

red green yellow stop

drive

green

green

rs gs ys

rd gd yd

Figure 1.4: Composite transition system of traffic light and car.

We want to prove that the safety property φ′ = AG (¬rd) is true for the system, and we see that

we can do so by applying the abstraction h defined above to the composite transition system, which is

represented in Figure 1.5, since the state r̂d is unreachable (as is the concrete state rd).

r̂s ĝs

r̂d ĝd

Figure 1.5: Abstract transition system for the composition of traffic light and car.

19

1.2. ACTL Chapter 1. Model Checking

20

Chapter 2

Abstract Interpretation

Abstract Interpretation was first introduced by Patrick and Radhia Cousot in [2, 3] as a sound-by-

construction method for verification in static analysis, which is aimed to discuss properties of programs,

given a model of the program’s behaviour. It is the theory of sound approximation of the semantics

of programs, based on monotonic functions over ordered sets, especially lattices. The core idea of

Abstract Interpretation is to create an abstract domain that captures the essential aspects of a program

behaviour, for example reasoning about the program’s variables and their relationships, while ignoring

details that would make the analysis computationally infeasible. For an analysis of the history of Abstract

Interpretation, see [31].

This technique carries the issue of completeness, which is closely related to the goal of deriving

the most abstract domain to decide program correctness without raising false alarms. Completeness

intuitively encodes the greatest achievable precision for a program analysis on a given abstract domain,

but unfortunately the most abstract refinement, which comes as solution of a recursive domain equation,

as currently known yields an abstract domain that is often way too fine grained.

2.1 General concepts

2.1.1 Order theory

Partial orders are extremely important in several areas of Theoretical Computer Science, especially

in the field of semantics. As pointed out in [24], in Abstract Interpretation partial orders are used

at different levels of the theory to model core notions. First of all, partial orders convey the idea of

approximation: some analysis results may be coarser than some other results, and the order is partial

as sometimes analysis results are incomparable. Secondly, partial orders convey the idea of validating

a specification: we say that a program P satisfies a specification Spec if JP K ⊆ Spec, meaning that the

program behaviours are contained in the set of admissible behaviours. Moreover, partial orders convey

the idea of soundness: we say that an analysis is sound its result is coarser than the actual behaviour.

Thus we briefly introduce the mathematical notions that are necessary to discuss the Abstract Inter-

pretation formalism, namely order and lattice theory.

21

2.1. General concepts Chapter 2. Abstract Interpretation

Definition 2.1 (Partially ordered set). Let X be a non-empty set. We say that (X,≤X) is a partially

ordered set if ≤X⊆ X ×X is a reflexive, antisymmetric and transitive relation, i.e. for all x, y, z ∈ X

• x ≤X x (reflexivity);

• if x ≤X y and y ≤X x then x = y (antisymmetry);

• if x ≤X y and y ≤X z then x ≤X z (transitivity).

Definition 2.2 (Least upper bound). Let (X,≤X) be a partially ordered set and let Z ⊆ X. We say

that z is an upper bound on Z if z′ ≤X z for all z′ ∈ Z. It is a least upper bound of Z, denoted

∨XZ if it is an upper bound on Z and if z is another upper bound on Z then we have z ≤X z.

We may give the dual definition to least upper bound, obtained by reversing the inequalities:

Definition 2.3 (Greatest lower bound). Let (X,≤X) be a partially ordered set and let Z ⊆ X. We say

that z is a lower bound on Z if z ≤X z′ for all z′ ∈ Z. It is a greatest lower bound on Z, denoted

∧XZ, if it is a lower bound on Z and if z is another lower bound on Z then we have z ≤X z.

When the set X is clear from the context, we omit to indicate it and just write ∨,∧. It can be easily

seen that if Z has a least upper bound then it is indeed unique. Dually if Z has a greatest lower bound.

In Abstract Interpretation we usually work in domains in which the existence of upper and lower

bounds is ensured for every possible subset: these domains are called complete lattices.

Definition 2.4 (Complete Lattice). A partially ordered set (X,≤X) is a complete lattice if every

subset of X has both least upper bound and greatest lower bound.

A useful concept for abstract domains is Moore closure, which ensures precision in representation

by guaranteeing that the abstract domain contains all possible program evaluations in a comprehensive

manner and avoids the loss of relevant information. This notion is particularly valuable in the repair of

abstract domains.

Definition 2.5 (Moore closure). Given a complete lattice (X,≤X) and Z ⊆ X the Moore closure of

Z is defined as

M(Z) = {∧XY | Y ⊆ Z}

which means that M(Z) is the least superset of X closed under greatest lower bounds of its subsets.

We provide some concepts related to functions that will be useful in the description of Galois con-

nections, closures, and their properties.

Remark 2.6. Let X be a set, let (Y,≤Y) be a partially ordered set and let f, g : X → Y . We denote

by f ⊑ g the point-wise ordering, i.e.

f ⊑ g ⇔ f(x) ≤Y g(x) ∀x ∈ X

Definition 2.7 (Extensive, reductive, idempotent function). Given a complete lattice (X,≤X) and a

function g : X → X we say that g is extensive if idX ⊑ g, we say that g is reductive if g ⊑ idX , and

we say that it is idempotent if g ◦ g = g.

22

Chapter 2. Abstract Interpretation 2.1. General concepts

Definition 2.8 (Monotone, additive, co-additive function). Given two complete lattices (X,≤X) and

(Y,≤Y), and a function f : X → Y we say that f is monotone if x1 ≤X x2 implies f(x1) ≤Y f(x2).

We say that f is additive if it preserves arbitrary least upper bounds, coadditive if it preserves

arbitrary greatest lower bounds.

2.1.2 Abstract Interpretation

We now give precise definitions to the notion of approximation and abstraction in the framework of

Abstract Interpretation in two different but equivalent ways: we first introduce Galois connections as a

formalism that captures the correspondence between the concrete and the abstract domain by means of

an abstraction map and a concretization map. Galois connections stem from Galois theory, that studies

the solvability of polynomial equations; they have applications in several branches of Mathematics and

they prominently appear in Computer Science as basic tool for Abstract Interpretation.

Then we introduce closure operators, which are maps that are monotone, extensive and idempotent.

In this framework we interpret a closure operator on an ordered algebraic structure of properties of

program state, and the result of applying the closure operator to all the properties of interest on the

program behaviour is the abstract domain.

Definition 2.9 (Galois connection). A Galois connection is a tuple (α,C,A, γ) where

• A,C are complete lattices;

• α : C → A and γ : A→ C are monotone;

• for all c ∈ C and for all a ∈ A we have c ≤C γ(a) if and only if α(c) ≤A a.

A is called the abstract domain, C is called the concrete domain, α is called the abstraction map, γ is

called the concretization map.

A

C

γα

The order on A,C encodes a precision (approximation) relation: smaller means more precise. The

element α(c) is the best approximation of c on A, i.e. it is the smallest abstract element which over-

approximates c: formally, α(c) =
⋀︁
{a | c ≤C γ(a)}.

Definition 2.10 (Expressible element). Let c ∈ C be an element of the concrete domain. We say that

c is expressible in the abstract domain Aα,γ if A(c) = c.

Remark 2.11. If (α,C,A, γ) is a Galois connection, then α is additive, γ is co-additive, and γ(A) ⊆ C

is Moore closed. Moreover, α ◦ γ is reductive, i.e. α ◦ γ ⊑ idA, and γ ◦ α is extensive, i.e. γ ◦ α ⊒ idC .

Definition 2.12 (Galois insertion). A Galois connection (α,C,A, γ) is a Galois insertion if one of the

following equivalent conditions holds:

23

2.1. General concepts Chapter 2. Abstract Interpretation

1. α is surjective;

2. γ is injective;

3. for all a ∈ A we have α(γ(a)) = a

The intuition for Galois insertions is that they eliminate useless abstract values: the fact that α

should be surjective represents the fact that we do not need abstract elements that do not represent any

concrete value; the fact that γ should be injective represents the fact that it would be meaningless to

have two identical abstract values.

Definition 2.13 (Class of Abstract Domains on C). The class of abstract domains on C is given

by

Abs(C) = {Aα,γ | (α,C,A, γ) is a GI}

We note that (Abs(C),⊑) is actually a complete lattice, where A′ ⊑ A means that A′ is a refinement

of A (i.e. it is more precise).

Definition 2.14 (Closure operator). Given a complete lattice (X,≤X) and a function µ : X → X we

say that g is a closure operator if it is monotone, idempotent and extensive.

The fact that the two formulations are equivalent is made explicit by the following well-known propo-

sition, which allows us to equivalently define abstract domains by means of the Galois insertion definition,

or by giving a closure operator.

Proposition 2.15. If Aα,γ ∈ Abs(C) is a Galois insertion then γ ◦ α is a closure operator, and if µ is a

closure operator on C then µ(C)µ,id ∈ Abs(C) is a Galois insertion.

In order to perform calculations in the abstract domain, we need to also define the corresponding

abstract versions of operations in the concrete domain and provide conditions under which abstraction

is a correct approximation of the underlying operation. The best correct approximation of a function f

is the smallest correct abstraction of f .

Definition 2.16 (Correct, complete approximation). Given an abstract domain Aα,γ ∈ Abs(C) and a

function f : C → C, an abstract function f ♯ : A→ A is a correct approximation of f if α ◦ f ⊑ f ♯ ◦α

holds. An abstract function f ♯ : A→ A is a complete approximation of of f if α ◦ f = f ♯ ◦ α holds.

Definition 2.17 (Best correct approximation). Given an abstract domain Aα,γ ∈ Abs(C) and a function

f : C → C, the best correct approximation, for short BCA, fA of f in A is defined as

fA = α ◦ f ◦ γ : A→ A

Definition 2.18 (Completeness). An abstract domain A ∈ Abs(C) is complete for a function f : C →

C, denoted by CA(f), if A ◦ f = A ◦ f ◦A.

24

Chapter 2. Abstract Interpretation 2.1. General concepts

2.1.3 Kleene language

Following [28, 32] we introduce a language of regular commands Reg, based on Kozen’s Kleene

algebra with test [10]. It is parametric on the syntax of basic expressions e ∈ Exp, which provide the

basics command and can be instantiated with different instructions, qualifying the language we are

interested in. In this first part we use it to model a deterministic imperative language to illustrate how

the rules of the Local Completeness Logic work; later we will use it to encode the computation of ACTL

counterexamples.

Definition 2.19 (Language of regular commands). Let Exp be a collection of basic expressions and let

e ∈ Exp. We define a language of regular commands Reg, parametric on Exp, as

Reg ∋ r ::= e | r1; r2 | r1 ⊕ r2 | r∗1

We briefly comment on the meaning of these expressions: the term r1; r2 represents sequential com-

position, the term r1 ⊕ r2 represents non-deterministic choice command, and the term r∗1 represents the

Kleene iteration of r1, which means that r1 can be performed zero or any finite number of times.

Assuming that basic expressions have a concrete semantics (| · |) : Exp → C → C on a complete lattice

C, such that (|e|) is an additive function (this assumption can be done without loss of generality since

the collecting semantics is defined by additive lifting), we can define the semantics of the language of

regular expressions as follows.

Definition 2.20 (Concrete semantics of regular expressions). The concrete semantics of regular expres-

sions J·K : Reg → C → C is inductively defined by

JeKc = (|e|) c

Jr1; r2Kc = Jr2K(Jr1Kc)

Jr1 ⊕ r2Kc = Jr1Kc ∨ Jr2Kc

Jr∗1Kc =
⋁︁{︁

Jr1Kkc | k ∈ N
}︁

Remark 2.21. Observe that, if J·K is additive, then Jr∗1Kc is the least fixed point of the function λx.Jr1Kx∨

c. This could be relevant because the definition as fixed point is computationally easier to handle, but

it is not relevant to our goals.

Building an imperative language We now instantiate the basic expressions as in [32]: the basic

expressions considered are those used in deterministic while programs, namely no-operation instruction,

assignments and Boolean guards.

Definition 2.22 (Syntax of basic expressions for the imperative language). We define the syntax of

basic expressions for the Imp language as

Exp ∋ e ::= skip | x := a | b?

where a is an arithmetic expression on integer values and variables x ∈ Var, while b ranges over Boolean

expressions, including negation.

25

2.2. Local Completeness Chapter 2. Abstract Interpretation

Definition 2.23 (Syntax of basic expressions for the imperative language). We define the semantics of

basic expressions for the Imp language as

(|skip|) p = p

(|x := a|) p = {σ[x ↦→ {|a|}σ] | σ ∈ p}

(|b?|) p = {σ ∈ p | {|b|}σ = tt}

where σ[x ↦→ v] is the store update, {|a|} : Σ → Z is the arithmetic expressions semantics and {|a|} : Σ →

{tt,ff} is the boolean expressions semantics.

Then we can introduce the if-then-else and loop commands as syntactic sugar as follows:

if b then c1 else c2 = (b?; c1)⊕ (b?; c2)

while b do c = (b?; c)∗;¬b?

Definition 2.24 (Syntax of Imp). We define the syntax of Imp commands with the following grammar:

Imp ∋ c ::= skip | x := a | c; c | if b then c1 else c2 | while b do c

In this setting, a program store is σ : V → Z a total function from a finite set of variables V ⊆ Var to

values, and Σ = V → Z is the set of stores on the variables in V . The concrete domain is thus S = 2Σ,

ordered by inclusion.

Definition 2.25 (Abstraction of regular commands). Given an abstract domain Aα,γ ∈ Abs(C), the

abstract semantics of regular expressions J·K♯A : Reg → A→ A is inductively defined by

JeK♯Aa = JeKAa

Jr1; r2K
♯
Aa = Jr2K

♯
A(Jr1K

♯
Aa)

Jr1 ⊕ r2K
♯
Aa = Jr1K

♯
Aa ∨A Jr2K

♯
Aa

Jr∗1K
♯
Aa =

⋁︁
A

{︂
(Jr1K

♯
A)

ka | k ∈ N
}︂

To perform computation we must define BCAs (Def. 2.17) on of basic expressions, i.e. the abstract

counterpart of JeK : Cn → Cn, as JeK♯A : An → An.

2.2 Local Completeness

Issues to global completeness As mentioned, the issue dual to soundness is completeness: the

soundness of an abstract analysis guarantees that all true alarms are caught, but the lack of completeness

results in false alarms being reported too. When false alarms overwhelm true ones, the analysis may

become poorly reliable. In particular in [21] global completeness for sound analysis of generic software

has been shown to be hard to realise in the setting of Abstract Interpretation. In the paper the authors

prove that completeness holds for all programs in a Turing complete programming language only for

trivial abstract domains, namely the identity abstraction (so the abstract semantics coincides with the

concrete semantics) and the top abstractions, that makes all programs equivalent. Moreover the authors

observed that the skip is always trivially complete and composition, conditional and loop statements

26

Chapter 2. Abstract Interpretation 2.2. Local Completeness

preserve the completeness of subprograms, hence the only sources of incompleteness are assignments

and Boolean guards.

The idea is then to introduce a local approach to completeness, focusing on a single execution trace

produced by the applications of abstract transfer functions on some input of interest: local completeness

is defined by modifying Definition 2.18:

Definition 2.26 (Local Completeness). [32, Def. 4.1] An abstract domain A ∈ Abs(C) is locally

complete for a function f : C → C on a value c ∈ C, denoted by CA
c (f), if (A ◦ f)(c) = (A ◦ f ◦A)(c).

Incorrectness Logic Understanding whether a reported alarm corresponds to a true alarm, which

means indirectly understanding whether the approximation is complete, reduces to the challenge of

proving some sort of program incorrectness. In [28] the author introduces a simple logic for program

incorrectness which is, in a sense, the other side of the coin to Hoare’s logic of correctness [1]. These

logics are all based on the concept of Hoare triples, which are triples of the form [p]r[q], in which p, q are

assertions and r is a command. The idea of Hoare logic is that provable triples are those in which if the

assertion p (that is called the precondition) holds before executing r, then assertion q (the postcondition)

holds after the execution of r. In the Local Completeness Logic this idea is relaxed by including the

abstraction.

Local Completeness Logic The main theme discussed in [32] is to combine under- and over- approx-

imations and a novel notion of local completeness to define a program logic whose triples either prove

correctness or incorrectness. In particular a novel inference rule is introduced to derive all and only those

local completeness proofs that are relative to a specific computation trace.

2.2.1 Local Completeness Logic

In [32] the authors define a proof system for program analysis of regular commands that aims at

combining over- and under- approximation: this combination is concretised in the logic by the (relax)

rule. This proof system is parametrised by an abstraction A, whose provable triples ⊢A [p] r [q] guarantee

that

1. q is an under-approximation of JrKp, i.e. q ≤ JrKp;

2. JrK is locally complete for input p and abstraction A, i.e CA
p (r) holds;

3. q and JrKp have the same over-approximation in A, i.e. A(q) = A(JrKp).

LCLA rules. The logical proof system, called Local Completeness Logic on A, for short LCLA,

includes the rules in Table 2.2.1.

Following [32] we briefly explain the key rules in LCLA, namely (transfer) and (relax), and then

explain how these rules let us prove both correctness and incorrectness if there is local completeness.

The rule (transfer) checks that a basic expression e (in the case of the while language a Boolean test or

an assignment) is locally complete on p before inferring the result of computing JeK on p as post-condition.

27

2.2. Local Completeness Chapter 2. Abstract Interpretation

CA
p (e)

⊢A [p] e [JeKp]
(transfer)

p′ ≤ p ≤ A(p′) ⊢A [p′] r [q′] q ≤ q′ ≤ A(q)

⊢A [p′] r [q′]
(relax)

⊢A [p] r1 [w] ⊢A [w] r2 [q]

⊢A [p] r1; r2 [q]
(seq)

⊢A [p] r1 [q1] ⊢A [p] r2 [q2]

⊢A [p] r1 ⊕ r2 [q1 ∨ q2]
(join)

⊢A [p] r [w] ⊢A [p ∨ w] r∗ [q]

⊢A [p] r∗ [q]
(rec)

⊢A [p] r [q] q ≤ A(p)

⊢A [p] r∗ [p ∨ q]
(iterate)

Table 2.1: Basic rules of the Local Completeness Logic.

The consequence rule (relax) is the key rule of LCLA as it allows us to combine over- and under-

approximating reasoning: it allows us to infer a post-condition that defines an under-approximation

q of the exact behaviour and a sound over-approximation A(q) of that exact behaviour. Like in the

consequence rules of incorrectness logic by O’Hearn [28] the logical ordering between pre-conditions

p′ ⇒ p and post-conditions q ⇒ q′ in the premises of (relax) is reversed with respect to the canonical

consequence rule of classical Hoare logic, and this is necessary because the post-conditions q in this logic

are always under-approximations. The key distinction introduced with the (relax) rule is to constrain the

under-approximating post-condition q to also have the same abstraction as the strongest post-conditions,

and this lets us preserve the local completeness, hence guaranteeing that any triple derivable in LCLA

either proves correctness or incorrectness. The validity of the rule (relax) relies on observing that local

completeness is a kind of “abstract convex property,” which means that, if A is locally complete for some

c ∈ C, then A is locally complete for all d ∈ C such that c ≤ d ≤ A(c) holds.

Proving correctness and incorrectness. Recall that, given a correctness specification Spec, the

Abstract Interpretation raises an alarm when γ(JrK♯A)α(p) ̸⊆ Spec. This alarm is false if JrKp ⊆ Spec, and

true otherwise. The three properties of the provable triples of LCLA guarantee that we can distinguish

between true and false alarms, since we fall into one of the following three cases:

• Case 1: if γ(JrK♯A)α(p) ⊆ Spec then the abstraction does not raise any alarm and the program

does not exhibit unwanted behaviours. This holds for any sound (possibly incomplete) Abstract

Interpretation.

• Case 2: if Spec is expressible in A and γ(JrK♯A)α(p) ̸⊆ Spec then by local completeness any provable

triple ⊢A [p] r [q] is such that all the states in q \ Spec ̸= ∅ are true alarms. If the Abstract

Interpretation were not complete we could not distinguish whether the alarms in γ(JrK♯A)α(p)\Spec

are false or not.

• Case 3: if Spec is expressible in A and γ(JrK♯A)α(p) ̸⊆ Spec but some proof obligations of local

completeness necessary in the proof derivations are not met, then the abstraction A is not precise

28

Chapter 2. Abstract Interpretation 2.2. Local Completeness

...
⊢A [{0, 1, 4}] (0 < x?); (x := x− 2) [{−1, 2}]

(seq)

...
⊢A [{0, 1, 4}] (0 ≥ x?); (x := −x)[{0}]

(seq)

⊢A [{0, 1, 4}] ((0 < x?); (x := x− 2))⊕ ((0 ≥ x?); (x := −x)) [{−1, 0, 2}]
(join)

CA
{0,1,4}(0 < x?)

⊢A [{0, 1, 4}] (0 < x?) [{1, 4}]
(trsf)

CA
{1,4}(x := x− 2)

⊢A [{1, 4}] (x := x− 2) [{−1, 2}]
(trsf)

⊢A [{0, 1, 4}] (0 < x?); (x := x− 2) [{−1, 2}]
(seq)

CA
{0,1,4}(x ≥ x?)

⊢A [{0, 1, 4}] (0 ≥ x?) [{0}]
(trsf)

CA
{0}(x := −x)

[{0}] (x := −x) [{0}]
(trsf)

⊢A [{0, 1, 4}] (0 ≥ x?); (x := −x)[{0}]
(seq)

Figure 2.1: Parts of the LCLA proof tree for a simple Imp program.

enough to distinguish true and false alarms for r on p. One could exploit the failed proof obligations

to refine the abstraction enhancing the precision.

We show in the following example a derivation with the Imp language using the Interval abstraction,

which abstracts a set of integers representing it with its convex closure: α(X) = [inf(X), sup(X)].

Example 2.27. [32, Ex. 4.2] Consider the Imp program

r = if (0 < x) then x := x− 2 else x := −x

= ((0 < x?); (x := x− 2))⊕ ((0 ≥ x?); (x := −x))

and the interval abstraction. The transfer function J0 < x?K is not globally complete, but it is on sets

p that satisfy one of the following conditions: p ⊆ Z>0, p ⊆ Z≤0, {0, 1} ⊆ p. In Figure 2.1 show the

derivation tree for the computation of r on input {0, 1, 4}, for which the third condition holds.

29

2.2. Local Completeness Chapter 2. Abstract Interpretation

30

Part II

Model Checking as Program Analysis

31

Chapter 3

Model Checking as Program Analysis

The idea we explore in this thesis work is to view Model Checking as an instance of program verifi-

cation in order to allow for the reuse of the vast theory and toolset of Abstract Interpretation. Given a

specification logic, the idea is to map properties expressed in the logic into programs written in a suitable

programming language, whose semantics consists of counterexamples to the validity of the formula. We

focus on ACTL, the universal fragment of the Computation Tree Logic, in which path properties are

universally quantified.

We show that ACTL formulae can be encoded as regular commands in such a way that there is a

counterexample to a formula if and only if the semantics of the associated regular commands is ⊥. In

order to do so, we identify a language, called mocha (for Model Checking as Abstract Interpretation).

3.1 ACTL Counterexamples

Since we are interested in a Model Checking problem, i.e. in finding counterexamples to ACTL

specifications, we explicitly characterise counterexamples to the validity of ACTL formulae:

σ |̸= p iff σ ⊢ ¬p

σ |̸= ¬p iff σ ⊢ p

σ |̸= φ1 ∧ φ2 iff σ |̸= φ1 or σ |̸= φ2

σ |̸= φ1 ∨ φ2 iff σ |̸= φ1 and σ |̸= φ2

σ |̸= AX φ1 iff ∃σ_σ′.σ′ |̸= φ1

σ |̸= AF φ1 iff ∃σ = σ0 _ · · ·_σn _ · · · .∀k ∈ N.σk |̸= φ1

σ |̸= AG φ1 iff ∃σ_∗ σ′.σ′ |̸= φ1

σ |̸= φ1 AU φ2 iff ∃σ = σ0 _ · · ·_σn _ · · · .

∀k ∈ N.(σk |̸= φ2 or ∃j ∈ [0, k − 1].σj |̸= φ1)

iff ∃σ = σ0 _ · · ·_σn _ · · · .

(∀k ∈ N.σk |̸= φ2) or (∃j ∈ N.σj |̸= φ1 and (∀i ∈ [0, j].σi |̸= φ2))

33

3.2. Concrete Domain Chapter 3. Model Checking as Program Analysis

Remark 3.1. By Remark 1.9 we can further elaborate on the characterization to express them in terms

of finite paths:

σ |̸= AF φ1 iff ∃σ = σ0 _ · · ·_σn _ · · · .∀k ∈ N.σk |̸= φ1

iff ∃σ = σ0 _ · · ·_σn.

(∀k ∈ [0, n].σk |̸= φ1) and (∃i ∈ [0, n].σn _σi)

σ |̸= φ1 AU φ2 iff ∃σ = σ0 _ · · ·_σn _ · · · .

(∀k ∈ N.σk |̸= φ2) or (∃j ∈ N.σj |̸= φ1 and (∀i ∈ [0, j].σi |̸= φ2))

iff ∃σ = σ0 _ · · ·_σn.

((∀k ∈ [0, n].σk |̸= φ2) and (∃i ∈ [0, n].σn _σi))

or ((∃j ∈ [0, n].σj |̸= φ1) and (∀i ∈ [0, j].σi |̸= φ2))

iff ∃σ = σ0 _ · · ·_σn.

(∀k ∈ [0, n].σk |̸= φ2) and (σn |̸= φ1 or ∃i ∈ [0, n].σn _σi)

3.2 Concrete Domain

Given a transition system (Σ, I,_) we construct the concrete domain for the language by means of

stacks that keep track of the current state and the set of traversed states. We use this construction for

two reasons: we need to record paths because some operators need to be checked on full paths, and we

use stacks because operators are nested, and we want to start a new computation when a nested operator

is encountered, and we want to retrieve the previous computation once the nested one is concluded.

Definition 3.2 (Abstract path, stack). An (abstract) path is a pair ⟨σ, T ⟩ ∈ Σ × 2Σ. We denote by

PΣ the set of abstract paths. A stack is a finite sequence of paths, i.e. an element of

StacksΣ = (PΣ)
∗
=
⋃︂
n

(PΣ)
n

An abstract path ⟨σ, T ⟩ is intended to represent abstractly a computation where T ⊆ Σ is the set

of traversed states and σ is the current state. Note that the order of the traversed states and possible

repetitions are abstracted away as they are irrelevant when checking the satisfaction of a formula.

A stack is the representation of a finite set of nested computations. A stack S(n+1) ∈ (PΣ)
n+1 is thus

of the shape

Sn+1 = ⟨σ, T ⟩ :: Sn

with Sn ∈ (PΣ)
n and we say that n is the length of the stack Sn.

Since we consider a collecting semantics, the concrete domain will be the powerset of the class of

stacks. More precisely, since a formula is always evaluated on stacks of the same length we consider only

subsets of stacks with uniform length.

Definition 3.3 (Concrete domain, concrete element). The concrete domain is

C =
⋃︂
n

2(PΣ)n

We will denote with Cn the set of stacks of fixed length n, i.e. Cn = 2(PΣ)n .

34

Chapter 3. Model Checking as Program Analysis 3.3. The mocha language

A concrete element is a finite set of stacks of the same length

cn ∈ Cn cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

where I is a finite set of indices.

Remark 3.4. The bottom element of C (of each Cn) is ∅.

3.3 The mocha language

We define a language which is used for producing counterexamples to ACTL formulae. The language

is based on Kozen’s Kleene algebra with test (Sec. 2.1.3), which consists of the usual regular commands

of sequential composition, join (choice command, which we indicate with ⊔), and Kleene iteration. The

class of basic expression contains operation for manipulating (extending, filtering) abstract paths and

for constructing and deconstructing stacks.

Definition 3.5 (mocha syntax). The syntax of the mocha language can be recursively defined as follows:

r ::= e | r1; r2 | r1 ⊔ r2 | r∗1

e ::= p? | ¬p? | loop? | next | post | push | pop

Definition 3.6 (mocha basic expressions semantics). Let c = ⟨σ, T ⟩ :: S ∈ C. We define the semantics

for basic expressions of the mocha language as follows:

(|p?|) ⟨σ, T ⟩ :: S = {⟨σ, T ⟩ :: S | σ |= p}

(|loop?|) ⟨σ, T ⟩ :: S = {⟨σ, T ⟩ :: S | σ ∈ T}

(|next|) ⟨σ, T ⟩ :: S = {⟨σ′,∅⟩ :: S | σ → σ′}

(|post|) ⟨σ, T ⟩ :: S = {⟨σ′, T ∪ {σ}⟩ :: S | σ → σ′}

(|push|) ⟨σ, T ⟩ :: S = {⟨σ,∅⟩ :: ⟨σ, T ⟩ :: S}

(|pop|) ⟨σ, T ⟩ :: S = {S}

We briefly comment on the behaviour of these basics expressions: the expression p? checks the validity

of the proposition p, the expression loop? checks if the current state loops back to one of the states in

the current trace, the expressions next and post extend the trace by one step in all possible ways, but

next discards the trace T and does not keep track of the extensions, while post does. The expression push

extends the current stack to start a new analysis, while the expression pop restores the previous trace

from the stack.

Then we may define the concrete (collecting) semantics of expressions on sets of stacks of any fixed

length:

JrK : Cn → Cn Jp?K, Jloop?K, JnextK, JpostK : Cn → Cn

JpushK : Cn → C(n+1) JpopK : Cn → C(n−1)

We omit any indication of the length of the stacks on which the functions are acting because the definition

does not depend on it, so let c = {⟨σi, Ti⟩ :: Si | i ∈ I} be a set of stacks of the same length. Then the

35

3.4. ACTL formulae as regular commands Chapter 3. Model Checking as Program Analysis

collecting semantics for basic expressions is the standard additive lifting of the semantics defined on a

single stack:

Jp?K {⟨σi, Ti⟩ :: Si | i ∈ I} = {⟨σi, Ti⟩ :: Si | σi |= p, i ∈ I}

Jloop?K {⟨σi, Ti⟩ :: Si | i ∈ I} = {⟨σi, Ti⟩ :: Si | σi ∈ Ti, i ∈ I}

JnextK {⟨σi, Ti⟩ :: Si | i ∈ I} = {⟨σ′
i,∅⟩ :: Si | σi _σ′

i, i ∈ I}

JpostK {⟨σi, Ti⟩ :: Si | i ∈ I} = {⟨σ′
i, Ti ∪ {σi}⟩ :: Si | σi _σ′

i, i ∈ I}

JpushK {⟨σi, Ti⟩ :: Si | i ∈ I} = {⟨σi,∅⟩ :: ⟨σi, Ti⟩ :: Si | i ∈ I}

JpopK {⟨σi, Ti⟩ :: Si | i ∈ I} = {Si | i ∈ I}

where I is a finite set of natural indices. Observe that, in particular, for all commands we have JeK∅ = ∅.

Definition 3.7 (Regular expression semantics, see Def. 2.20). The semantics of regular expressions is

defined as follows:
Jr1; r2Kc = Jr2K(Jr1Kc)

Jr1 ⊔ r2Kc = Jr1Kc ∨ Jr2Kc

Jr∗1Kc =
⋁︁{︁

Jr1Kkc | k ∈ N
}︁

3.4 ACTL formulae as regular commands

ACTL formulae can be mapped in this language in a way that for a given formula φ and system

(Σ,_), the semantics of the program associated to φ over the system consists of the counterexamples

to the validity of the formula (states σ ∈ Σ which do not satisfy the formula φ).

Definition 3.8 (ACTL counterexamples programs). To each formula φ in ACTL we assign a program

⌊φ⌋ that computes counterexamples to P, inductively defined as follows:

⌊p⌋ = ¬p?

⌊φ1 ∧ φ2⌋ = ⌊φ1⌋ ⊔ ⌊φ2⌋

⌊φ1 ∨ φ2⌋ = ⌊φ1⌋; ⌊φ2⌋

⌊AX φ1⌋ = push; next; ⌊φ1⌋; pop

⌊AF φ1⌋ = ⌊φ1⌋; push; (post; ⌊φ1⌋)∗; loop?; pop

⌊AG φ1⌋ = push; next∗; ⌊φ1⌋; pop

⌊φ1 AU φ2⌋ = ⌊φ2⌋; push; (post; ⌊φ2⌋)∗; (⌊φ1⌋ ⊔ loop?); pop

We briefly comment the above clauses (but just the non obvious cases) assuming that each command

is executed in the state ⟨σ, T ⟩ :: S. As ACTL formulae refer to traces, one can imagine that ⟨σ, T ⟩ :: S

represents all traces starting at σ.

• a counterexample to AX φ1 is when a counterexample to φ1 at one of the states reachable from σ

(as computed by next; ⌊φ1⌋). Here we can safely use next instead of post since there is no need of

checking for loops is done (and the verification is nested inside push and pop). In particular push

and pop are used to guarantee that if a counterexample is found then the output contains the state

that violates Xφ1;

36

Chapter 3. Model Checking as Program Analysis 3.4. ACTL formulae as regular commands

• a counterexample to AF φ1 is when φ1 does not hold in the current state (⌊φ1⌋) and after and

there is a maximal trace (checked with the loop?) that traverses only reachable states that do not

satisfy φ1 (they are collected using the command (post; ⌊φ1⌋)∗);

• a counterexample to AG φ1 is when we can reach (via repeatedly applying next) a state which is a

counterexample to ⌊φ1⌋. Again we can forget about the trace since there is no loop? check);

• a counterexample to φ1 AU φ2 is when φ2 does not hold in the current state (⌊φ2⌋) and by

computing traces where the next reachable state does not satisfy φ2 (via the command (post; ⌊φ2⌋)∗)

we can find a maximal trace (φ1 does not hold or loop?);

It is immediate to check that, as expected, ⌊tt AU φ⌋ = ⌊AF φ⌋ as in fact the formulae tt AU φ and

AF φ are equivalent. This will be used in the following proposition.

Proposition 3.9 (Formula satisfaction as program verification). We have that for all σ ∈ Σ, T ∈ 2Σ,

S ∈ (Σ× 2Σ)∗

σ |= φ ⇔ J⌊φ⌋K {⟨σ, T ⟩ :: S} = ∅

Proof. We prove that:

J⌊φ⌋K {⟨σ, T ⟩ :: S} = {⟨σ, T ⟩ :: S | σ |̸= φ}

We proceed by a routine structural induction on φ. The case AF φ is not discussed as AF is a derived

operator.

(φ = p or φ = ¬p). Trivial by definition.

(φ = φ1 ∧ φ2 or φ = φ1 ∨ φ2). Just use De Morgan.

(φ = AX φ1). We assume the inductive hypothesis:

∀σ, T, S.J⌊φ1⌋K {⟨σ, T ⟩ :: S} = {⟨σ, T ⟩ :: S | σ |̸= φ1}

J⌊AX φ1⌋K {⟨σ, T ⟩ :: S} = Jpush; next; ⌊φ1⌋; popK {⟨σ, T ⟩ :: S}

= Jnext; ⌊φ1⌋; popK {⟨σ,∅⟩ :: ⟨σ, T ⟩ :: S}

= J⌊φ1⌋; popK {⟨σ′,∅⟩ :: ⟨σ, T ⟩ :: S | σ_σ′}

= JpopK {⟨σ′,∅⟩ :: ⟨σ, T ⟩ :: S | σ_σ′, σ′ |̸= φ1}

= {⟨σ, T ⟩ :: S | ∃σ_σ′, σ′ |̸= φ1}

= {⟨σ, T ⟩ :: S | σ |̸= AX φ1}

(φ = AG φ1). We assume the inductive hypothesis:

∀σ, T, S.J⌊φ1⌋K {⟨σ, T ⟩ :: S} = {⟨σ, T ⟩ :: S | σ |̸= φ1}

37

3.4. ACTL formulae as regular commands Chapter 3. Model Checking as Program Analysis

J⌊AG φ1⌋K {⟨σ, T ⟩ :: S} = Jpush; next∗; ⌊φ1⌋; popK {⟨σ, T ⟩ :: S}

= Jnext∗; ⌊φ1⌋; popK {⟨σ,∅⟩ :: ⟨σ, T ⟩ :: S}

= J⌊φ1⌋; popK (Jnext∗K {⟨σ,∅⟩ :: ⟨σ, T ⟩ :: S})

= J⌊φ1⌋; popK
(︂⋁︂

{JnextKn {⟨σ,∅⟩ :: ⟨σ, T ⟩ :: S} | n ∈ N}
)︂

= J⌊φ1⌋; popK

(︄⋃︂
n∈N

{⟨σn,∅⟩ :: ⟨σ, T ⟩ :: S | σ = σ0 _ . . ._σn}

)︄

= JpopK

(︄⋃︂
n∈N

{⟨σn,∅⟩ :: ⟨σ, T ⟩ :: S | σ = σ0 _ . . ._σn, σn |̸= φ1}

)︄

= {⟨σ, T ⟩ :: S | ∃σ = σ0 _ . . ._σn, σn |̸= φ1}

= {⟨σ, T ⟩ :: S | σ |̸= AG φ1}

(φ = φ1 AU φ2). We assume the inductive hypothesis (for i ∈ {1, 2}):

∀σ, T, S.J⌊φ1⌋K {⟨σ, T ⟩ :: S} = {⟨σ, T ⟩ :: S | σ |̸= φi}

J⌊φ1 AU φ2⌋K {⟨σ, T ⟩ :: S}

= J⌊φ2⌋; push; (post; ⌊φ2⌋)∗; (⌊φ1⌋ ⊔ loop?); popK {⟨σ, T ⟩ :: S}

= Jpush; (post; ⌊φ2⌋)∗; (⌊φ1⌋ ⊔ loop?); popK {⟨σ, T ⟩ :: S | σ |̸= φ2}

= J(post; ⌊φ2⌋)∗; (⌊φ1⌋ ⊔ loop?); popK {⟨σ,∅⟩ ⟨σ, T ⟩ :: S | σ |̸= φ2}

= J(⌊φ1⌋ ⊔ loop?); popK (J(post; ⌊φ2⌋)∗K {⟨σ,∅⟩ ⟨σ, T ⟩ :: S | σ |̸= φ2})

= J(⌊φ1⌋ ⊔ loop?); popK
(︂⋁︂

{J(post; ⌊φ2⌋)nK {⟨σ,∅⟩ ⟨σ, T ⟩ :: S | σ |̸= φ2} | n ∈ N}
)︂

= J(⌊φ1⌋ ⊔ loop?); popK

(︄⋃︂
n∈N

{⟨σn, {σ0, . . . , σn−1}⟩ :: ⟨σ, T ⟩ :: S | σ = σ0 _ . . ._σn, ∀i ∈ [0, n] σi |̸= φ2}

)︄

= JpopK

(︄⋃︂
n∈N

{⟨σn, {σ0, . . . , σn−1}⟩ :: ⟨σ, T ⟩ :: S | σ = σ0 _ . . ._σn, ∀i ∈ [0, n] σi |̸= φ2,

(σn |̸= φ1 ∨ ∃i ∈ [0, n− 1] σn = σi)}

)︄
= {⟨σ, T ⟩ :: S | ∃σ = σ0 _ . . ._σn, ∀i ∈ [0, n] σi |̸= φ2, (σn |̸= φ1 ∨ ∃i ∈ {0, . . . , n− 1} .σn = σi)}

= {⟨σ, T ⟩ :: S | σ |̸= φ1 AU φ2}

For the last step observe that finiteness of the transition system plays an essential role. In fact, in

order to falsify φ1 AU φ2 a state σ has to admit a finite trace σ = σ0 _ · · ·σn where φ2 is never satisfied

leading to a state which does not satisfy φ1, or it can admit an infinite trace where φ2 is never satisfied:

since the transition system is finite such an infinite trace must eventually be a cycle (third case).

We discuss a simple example to show how the computation for the verification of properties work in

the concrete domain.

Example 3.10. Consider the transition system in Figure 3.1. Assume we are interested in checking

whether the property φ = AF c holds in the initial states of the system. To do so we need to compute

38

Chapter 3. Model Checking as Program Analysis 3.4. ACTL formulae as regular commands

a b

c

Figure 3.1: An example to show how mocha computation works.

J⌊AF c⌋Kd, where d = {⟨a,∅⟩ , ⟨b,∅⟩} ∈ C1 is the set of initial state of the system, i.e. the concrete

element on which the computation starts. Using Definition 3.8 we can obtain that the mocha program

associated with φ is

⌊φ⌋ = ⌊AF c⌋ = ⌊c⌋; push; (post; ⌊c⌋)∗; loop?; pop

= ¬c?; push; (post;¬c?)∗; loop?; pop

In order to compute its semantics

J⌊AF c⌋K = J{a, b}?; push; (post; {a, b}?)∗; loop?; popK

we perform a step-by-step computation from the initial state d:

• J{a, b}?K {⟨a,∅⟩ , ⟨b,∅⟩} = {⟨a,∅⟩ , ⟨b,∅⟩}

• JpushK {⟨a,∅⟩ , ⟨b,∅⟩} = {⟨a,∅⟩ :: ⟨a,∅⟩ , ⟨b,∅⟩ :: ⟨b,∅⟩} = {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb}

• J(post; {a, b}?)∗K {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} =
⋁︁

n∈N {Jpost; {a, b}?Kn {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb}}

Jpost; {a, b}?K0 {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} = {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb}

Jpost; {a, b}?K1 {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} = {˂ ˂˂˂˂˂⟨c, {a}⟩ :: Sa, ⟨a, {b}⟩ :: Sb}

Jpost; {a, b}?K2 {⟨a, {b}⟩ :: Sb} = {˂ ˂˂˂˂˂˂⟨c, {a, b}⟩ :: Sb} = ∅

J(post; {a, b}?)∗K {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} = {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨a, {b}⟩ :: Sb}

• Jloop?K {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨a, {b}⟩ :: Sb} = ∅

• JpopK∅ = ∅

As expected the computation yields the empty set: since the formula is true for the transition system

no counterexample is found.

We next verify that the properties φ′ = AG c and φ′′ = a AU c do not hold for the system. We need

to compute J⌊AG c⌋Kd and J⌊a AU c⌋Kd, where again d = {⟨a,∅⟩ , ⟨b,∅⟩} ∈ C1. Let us start with φ′: by

Definition 3.8 we have

⌊φ′⌋ = ⌊AG c⌋ = push; next∗; ⌊c⌋; pop

= push; next∗;¬c?; pop

39

3.4. ACTL formulae as regular commands Chapter 3. Model Checking as Program Analysis

Hence to compute the semantics

J⌊AG c⌋K = Jpush; next∗; {a, b}?; popK

we perform a step-by-step computation from d:

• JpushK {⟨a,∅⟩ , ⟨b,∅⟩} = {⟨a,∅⟩ :: ⟨a,∅⟩ , ⟨b,∅⟩ :: ⟨b,∅⟩} = {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb}

• Jnext∗K {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} =
⋁︁

n∈N {JnextKn {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb}}

JnextK0 {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} = {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb}

JnextK1 {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} = {⟨c,∅⟩ :: Sa, ⟨a,∅⟩ :: Sb}

JnextK2 {⟨c,∅⟩ :: Sa, ⟨a,∅⟩ :: Sb} = {⟨c,∅⟩ :: Sa, ⟨c,∅⟩ :: Sb}

Jnext∗K {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb} = {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨c,∅⟩ :: Sa, ⟨a,∅⟩ :: Sb, ⟨c,∅⟩ :: Sb}

• J{a, b}?K {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨c,∅⟩ :: Sa, ⟨a,∅⟩ :: Sb, ⟨c,∅⟩ :: Sb} =

= {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨a,∅⟩ :: Sb}

• JpopK {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨a,∅⟩ :: Sb} = {Sa, Sb} = {⟨a,∅⟩ , ⟨b,∅⟩}

Hence the computation correctly yields the initial state: since the formula is false for the system, the

initial state is a counterexample. Now for the verification of φ′′ = a AU c we can reuse part of the

calculation we have done with φ′ = AF c, since by definition

⌊φ′′⌋ = ⌊a AU c⌋ = ⌊c⌋; push; (post; ⌊c⌋)∗; (⌊a⌋ ⊔ loop?); pop

Since we already now that the Jloop?K branch yields the empty set, it suffices to compute J⌊a⌋K on

{⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨a, {b}⟩ :: Sb}:

• J{b, c}?K {⟨a,∅⟩ :: Sa, ⟨b,∅⟩ :: Sb, ⟨a, {b}⟩ :: Sb} = {⟨b,∅⟩ :: Sb}

• JpopK {⟨b,∅⟩ :: Sb} = {Sb} = {⟨b,∅⟩}

hence the computation correctly yields the initial state for which the property does not hold.

As previously mentioned in Section 1.2.2, not all properties that are not satisfied on a Kripke structure

admit linear counterexamples, i.e. a single path in the structure that witnesses the failure. In particular,

it has been shown that is NP-hard to determine whether a linear counterexample exists or not.

We discuss the following example to show that a counterexample, i.e. a state from which a path that

does not satisfy the property originates, can be found with the language mocha.

Example 3.11. [15, Ex. 1.2] Consider the transition system of Example 1.14 in Figure 3.2, with

P = {tt, a,¬a,ff}, where σ0, σ2 ⊢ a, σ1 ̸⊢ a. We want to check that the property AF AG a does not hold,

and to do so we need to compute J⌊AF AG a⌋Kc1, where c1 = {⟨σ0,∅⟩} ∈ C1 is the initial state of the

system. By definition we have

⌊AF AG a⌋ = ⌊AG a⌋; push; (post; ⌊AG a⌋)∗; loop?; pop

⌊AG a⌋ = push; next∗; ⌊a⌋; pop = push; next∗;¬a?; pop

40

Chapter 3. Model Checking as Program Analysis 3.4. ACTL formulae as regular commands

σ0 σ1 σ2

Figure 3.2: An example to show how mocha let us compute non-linear counterexamples.

So we need to compute the semantics

J⌊AF AG a⌋K = J⌊AG a⌋; push; (post; ⌊AG a⌋)∗; loop?; popK

J⌊AG a⌋K = Jpush; next∗;¬a?; popK

Performing a step-by-step computation from the initial state c1, the first thing we need to do is to

compute J⌊AG a⌋Kc1:

• JpushK {⟨σ0,∅⟩} = {⟨σ0,∅⟩ :: ⟨σ0,∅⟩} = {⟨σ0,∅⟩ :: S0}

• Jnext∗K {⟨σ0,∅⟩ :: S0} =
⋁︁

n∈N {JnextKn {⟨σ0,∅⟩ :: S0}}

JnextK0 {⟨σ0,∅⟩ :: S0} = {⟨σ0,∅⟩ :: S0}

JnextK1 {⟨σ0,∅⟩ :: S0} = {⟨σ0,∅⟩ :: S0, ⟨σ1,∅⟩ :: S0}

JnextK2 {⟨σ0,∅⟩ :: S0, ⟨σ1,∅⟩ :: S0} = {⟨σ0,∅⟩ :: S0, ⟨σ1,∅⟩ :: S0, ⟨σ2,∅⟩ :: S0}

Jnext∗K {⟨σ0,∅⟩ :: S0} = {⟨σ0,∅⟩ :: S0, ⟨σ1,∅⟩ :: S0, ⟨σ2,∅⟩ :: S0}

• J¬a?K {⟨σ0,∅⟩ :: S0, ⟨σ1,∅⟩ :: S0, ⟨σ2,∅⟩ :: S0} = {⟨σ1,∅⟩ :: S0}

• JpopK {⟨σ1,∅⟩ :: S0} = {S0} = {⟨σ0,∅⟩}

Then we have

• JpushK {⟨σ0,∅⟩} = {⟨σ0,∅⟩ :: S0}

• J(post; ⌊AG a⌋)∗K {⟨σ0,∅⟩ :: S0} =
⋁︁

n∈N
{︁
J(post; ⌊AG a⌋Kn {⟨σ0,∅⟩ :: S0}

}︁
J(post; ⌊AG a⌋)K0 {⟨σ0,∅⟩ :: S0} = {⟨σ0,∅⟩ :: S0}

J(post; ⌊AG a⌋)K1 {⟨σ0,∅⟩ :: S0} = {⟨σ0, {σ0}⟩ :: S0, ⟨σ1, {σ0}⟩ :: S0}

J(post; ⌊AG a⌋)∗K {⟨σ0,∅⟩ :: S0} = {⟨σ0,∅⟩ :: S0, ⟨σ0, {σ0}⟩ :: S0, ⟨σ1, {σ0}⟩ :: S0}

• Jloop?K {⟨σ0,∅⟩ :: S0, ⟨σ0, {σ0}⟩ :: S0, ⟨σ1, {σ0}⟩ :: S0} = {⟨σ0, {σ0}⟩ :: S0}

• JpopK {⟨σ0, {σ0}⟩ :: S0} = {S0} = {⟨σ0, {σ0}⟩}

41

3.4. ACTL formulae as regular commands Chapter 3. Model Checking as Program Analysis

42

Chapter 4

Injecting Abstraction

We want to study how to enforce abstractions on this concrete domain starting from abstractions

on the states of the transition system. We first present an abstraction that enables us to simplify the

computations in the concrete domain, by merging traces relative to the same state and the same past

(encoded in the rest of the stack).

We then present two ways of lifting a given abstraction on states to an abstraction on stacks. In

the first way, in which we consider an abstraction that induces a partition of states, we build the stack

domain using the construction given in Chapter 3 starting from the abstract transition system, i.e. the

system in which some states are identified according to the partition.

In the second way we induce a much coarser abstraction by first flattening the set of stacks grouping

together all the current states and all the current traces (and recursively on the rest of the stack) an then

applying the abstraction (that does not need to be a partition) on the obtained two sets (one for states,

one for traces). The result is a coarse abstraction, because we lose all the relations between a state, its

trace and its past encoded in the stack.

Recall that, given a transition system (Σ, I,_), we built the concrete domain as

C =
⋃︂
n∈N

(︁
2PΣ

)︁n
=
⋃︂
n∈N

Cn

and we defined stacks as Sn = ⟨σ, T ⟩ :: S(n−1) for n ≥ 2 where S1 = ⟨σ′, T ′⟩. Hence concrete elements

are set of stacks of fixed length:

Cn ∋ cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

We are interested in particular in studying the abstract semantics of basic expressions to understand

which conditions we should require to achieve completeness (at least for basic expressions). The abstract

semantics of basic expressions is defined as the best correct approximation, i.e.

JeK♯A = JeKA = α ◦ JeK ◦ γ

43

4.1. A local completeness-preserving abstraction Chapter 4. Injecting Abstraction

having the following picture in mind:

A A

C C

γ

JeK♯A

γα

JeK

α

In particular completeness holds by definition if α ◦ JeK = JeK♯A ◦ α.

4.1 A local completeness-preserving abstraction

We show that we can simplify the description of a nested computation, preserving local completeness,

by means of an abstraction that merges the traces relative to the same state. The only command that

makes use of the trace is loop?, which is, in the translation of ACTL into mocha, always paired with

the pop command. For this reason in this section we will consider the composite command loop?; pop in

the proof of completeness of basic commands. This abstraction is globally complete for basic expression,

and we will exploit this fact to us in as an underlying simplification of other abstractions.

The idea that justifies the introduction of this abstraction is that we are interested in keeping the

set of traversed states, i.e. the "past" of the current state of the current (nested) computation only for

checking the existence of a cycle. We noticed that the check for cycles (loop?) is always followed by a

pop command that restores the state the nested computation started from: this led us to consider that a

simplification of the domain was possible, by unifying all the stacks that are compatible in the following

sense. The identification must ensure that the stacks retrieved by the combined command loop?; pop are

all and only those that would actually include a loop: for this reason we need to check not only that the

current state is the same, but also the tail of the stack should coincide to perform the unification. This

abstraction must then be performed from the deepest level of the stack to the top level (in the reverse

order no unification would be possible).

We introduce some auxiliary functions to build in steps the abstraction and the concretization map.

Definition 4.1 (Pop map). Define the pop map as pop : Cn+1 → Cn as

pop(X) = {S | ⟨σ, T ⟩ :: S ∈ X}

The map popn−i(X) eliminates the first n− i elements of the stack.

Definition 4.2 (Merge map). Define the merge map as mi : C
n → Cn as

mi(X) =

{︄
S1 :: ⟨σ, T ⟩ :: S2 |S1 ∈ Cn−i, S2 ∈ Ci−1, S1 :: ⟨σ, T ′⟩ :: S2 ∈ X,

T =
⋃︂{︁

T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(X)
}︁}︄

Definition 4.3 (Abstraction map). The abstraction map for stacks of length n is defined as

αn : Cn → Cn αn = mn ◦ · · · ◦m1

Definition 4.4 (Splitting map). Define the splitting map as si : C
n → Cn as

si(Y) =
{︁
S1 :: ⟨σ, T ′⟩ :: S2 | S1 ∈ Cn−i, S2 ∈ Ci−1, S1 :: ⟨σ, T ⟩ :: S2 ∈ Y, T ⊆ T ′}︁

44

Chapter 4. Injecting Abstraction 4.1. A local completeness-preserving abstraction

Definition 4.5. The concretization map for stacks of length n is defined as

γn : Cn → Cn γn = s1 ◦ · · · ◦ sn

In the following we will indicate αn, γn with the indices to make the computations more explicit, but

we understand that the functions we are actually interested in are α : C → A, γ : A → C defined as:

α =
⨁︂
n∈N

αn γ =
⨁︂
n∈N

γn

Remark 4.6. With a little abuse of notation (since in principle each mi, sj should depend on two indices,

the second being n, the length of the stacks it is operating on) we think of αn, γn as recursively defined

as follows:

α1 = m1 αn = mn ◦αn−1

γ1 = s1 γn = sn ◦γn−1

where, letting b =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂
∈ Cn, we can explicitly compute

αn(b) = mn ◦αn−1(b) = mn ({⟨σi, Ti⟩ :: S′
i | i ∈ I, S′

i ∈ pop(αn−1(b))})

γn(b) = sn ◦γn−1(b) = sn

(︂{︂
⟨σi, Ti⟩ :: S′

i | i ∈ I, S′
i ∈ γn−1

(︂{︂
S
(n−1)
i

}︂)︂}︂)︂
where for the abstraction we need to consider the whole set because we want to unify traces from

different stacks, while for the closure we just need to look at subsets relative to a unique stack. We can

further compute

mn(b) =

⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S

(n−1)
i | i ∈ I

⎫⎪⎬⎪⎭
which will be useful in the following analysis of the local completeness of the basic expressions.

4.1.1 Galois Connection

In order to prove that (αn,C
n,Cn, γn) is a Galois insertion we show that γn ◦αn is a closure operator,

i.e. it is monotone, idempotent and extensive. We show that each si ◦mi is a closure operator, and that

some commutation relations hold.

Definition 4.7 (Commutation of functions). Let X be a set, f, g : X → X. We say that f, g commute

if f ◦ g = g ◦ f .

Proposition 4.8. We have the following commutations relations:

1. si and sj commute for all i, j ∈ N;

2. sj commutes with mi for j > i;

3. si ◦mi and sj ◦mj commute for any i, j ∈ N.

45

4.1. A local completeness-preserving abstraction Chapter 4. Injecting Abstraction

Proof. 1. Without loss of generality, assume j > i. Recall that

si(Y) =
{︁
S1 :: ⟨σ, T ′⟩ :: S2 | S1 ∈ Cn−i, S2 ∈ Ci−1, S1 :: ⟨σ, T ⟩ :: S2 ∈ Y, T ⊆ T ′}︁

Then

sj(si(Y)) =
{︁
S′
1 :: ⟨ρ, V ′⟩ :: S3 :: ⟨σ, T ′⟩ :: S2 | S′

1 ∈ Cn−j , S3 ∈ Cj−i−1, S2 ∈ Ci−1,

S′
1 :: ⟨ρ, V ⟩ :: S3 :: ⟨σ, T ⟩ :: S2 ∈ Y, T ⊆ T ′, V ⊆ V ′} = sj(si(Y))

2. Recall that

mi(X) =
{︂
S1 :: ⟨σ, T ⟩ :: S2 | S1 ∈ Cn−i, S2 ∈ Ci−1, S1 ::

⟨︁
σ, T ′⟩︁ :: S2 ∈ X,T =

⋃︂{︁
T ′′ |

⟨︁
σ, T ′′⟩︁ :: S2 ∈ popn−i(X)

}︁}︂
Then

sj(mi(X)) =
{︂
S′
1 :: ⟨ρ, V ′⟩ :: S3 :: ⟨σ, T ⟩ :: S2 | S′

1 ∈ Cn−j , S3 ∈ Cj−i−1, S2 ∈ Ci−1,

S′
1 :: ⟨ρ, V ⟩ :: S3 :: ⟨σ, T ′⟩ :: S2 ∈ X, V ⊆ V ′, T =

⋃︂{︁
T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(X)

}︁}︂
= mi(sj(X))

3. Without loss of generality assume j > i. Then we may compute si ◦mi as

si(mi(X)) =
{︂
S1 :: ⟨σ, T ′⟩ :: S2 | S1 ∈ Cn−i, S2 ∈ Ci−1,

S1 ::
⟨︂
σ, T̂

⟩︂
:: S2 ∈ X, T ′ ⊆ T =

⋃︂{︁
T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(X)

}︁}︂
Then

sj(mj(si(mi(X)))) =
{︂
S′
1 :: ⟨ρ, V ′⟩ :: S3 :: ⟨σ, T ′⟩ :: S2 | S′

1 ∈ Cn−j , S3 ∈ Cj−i−1, S2 ∈ Ci−1,

S′
1 ::
⟨︂
ρ, V̂

⟩︂
:: S3 ::

⟨︂
σ, T̂

⟩︂
:: S2 ∈ X,

T ′ ⊆ T =
⋃︂{︁

T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(X)
}︁
,

V ′ ⊆ V =
⋃︂{︂

V ′′ | ⟨ρ, V ′′⟩ :: S3 ::
⟨︂
σ, T̂

⟩︂
:: S2 ∈ popn−j(X)

}︂}︂
= si(mi(sj(mj(X))))

These relation are useful because by 2. we have

γn ◦ αn = sn ◦ · · · ◦ s1 ◦mn ◦ . . .m1 = sn ◦mn ◦gn−1 ◦ fn−1 ◦ · · · ◦ s1 ◦m1

while the other properties will be used to prove that γn ◦ αn is a closure operator.

Proposition 4.9. Each si ◦mi is a closure operator.

Proof. (Monotone) We need to show that if X,Y ⊆ Cn, X ⊆ Y , then si(mi(X)) ⊆ si(mi(Y)). We have

that

si(mi(X)) =
{︂
S1 :: ⟨σ, T ′⟩ :: S2 | S1 ∈ Cn−i, S2 ∈ Ci−1,

S1 ::
⟨︂
σ, T̂

⟩︂
:: S2 ∈ X, T ′ ⊆ T =

⋃︂{︁
T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(X)

}︁}︂
46

Chapter 4. Injecting Abstraction 4.1. A local completeness-preserving abstraction

Notice first that

TX =
⋃︂{︁

T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(X)
}︁
⊆
⋃︂{︁

T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(Y)
}︁
= TY

So let S1 :: ⟨σ, T ′⟩ :: S2 ∈ si(mi(X)), then there exists T̂ such that S1 ::
⟨︂
σ, T̂

⟩︂
:: S2 ∈ X, but then

S1 ::
⟨︂
σ, T̂

⟩︂
:: S2 ∈ Y . Moreover, T ′ ⊆ TX ⊆ TY , hence combining these two facts S1 :: ⟨σ, T ′⟩ :: S2 ∈

si(mi(Y)).

(Idempotent) In order to show that (si ◦mi)
2 = si ◦mi we show that mi ◦ si ◦mi = mi, because

then si ◦(mi ◦ si ◦mi) = si ◦mi, which is what we want. From the previous computations of si(mi(X))

and the fact that
⋃︁

T ′⊆T T
′ = T , we have that mi(si(mi(X))) = mi(X).

(Extensive) We need to show that if S1 :: ⟨σ, T ′⟩ :: S2 ∈ X, then S1 :: ⟨σ, T ′⟩ :: S2 ∈ si(mi(X)). But

this follows from the fact that T ′ ⊆ T =
⋃︁{︁

T ′′ | ⟨σ, T ′′⟩ :: S2 ∈ popn−i(X)
}︁
.

Proposition 4.10. The composite map γn ◦ αn is a closure operator.

Proof. (Monotone) The map γn ◦ αn is monotone since it is the composition of monotone maps.

(Idempotent) We have

γn ◦ αn ◦ γn ◦ αn = sn ◦ · · · ◦ s1 ◦mn ◦ . . .m1 ◦ sn ◦ · · · ◦ s1 ◦mn ◦ . . .m1

= sn ◦mn ◦gn−1 ◦ fn−1 ◦ · · · ◦ s1 ◦m1 ◦ sn ◦mn ◦gn−1 ◦ fn−1 ◦ · · · ◦ s1 ◦m1

= (sn ◦mn)
2 ◦ (gn−1 ◦ fn−1)

2 ◦ · · · ◦ (s1 ◦m1)
2

= sn ◦mn ◦gn−1 ◦ fn−1 ◦ · · · ◦ s1 ◦m1

= sn ◦ · · · ◦ s1 ◦mn ◦ . . .m1 = γn ◦ αn

since si ◦mi is idempotent.

(Extensive) It follows from the fact that each si ◦mi is extensive, and by the fact that si ◦mi and

sj ◦mj commute for any i, j.

4.1.2 Abstract Semantics

We now compute the Best Correct Approximations for basic expressions and show that this ab-

straction is globally complete. As mentioned above, in order to prove completeness we check that the

composite command loop?; pop is complete. This is enough because in the translation of ACTL in the

language mocha the only clauses that involve the loop? command are ⌊AF φ⌋ and ⌊ψ AU φ⌋, and in both

cases this check is immediately followed by a pop, and because the only relevant information is if there

exists a loop, since then we are only interested in retrieving the previous element of the stack if the

answer is positive, or to discard the stack if the answer is negative.

47

4.1. A local completeness-preserving abstraction Chapter 4. Injecting Abstraction

Jp?K♯A computation Consider a =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

such that αn(a) = a. Then we have:

Jp?K♯A(a) = (αnJp?Kγn)(a) = (αnJp?Kγn)
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I

}︂)︂
= (αnJp?K) ({⟨σi, T ′

i ⟩ :: S′
i | i ∈ I, T ′

i ⊆ Ti, S
′
i ∈ γn−1 ({Si})})

= αn ({⟨σi, T ′
i ⟩ :: S′

i | σi |= p, i ∈ I, T ′
i ⊆ Ti, S

′
i ∈ γn−1 ({Si})})

=
{︂
⟨σi, Ti⟩ :: S(n−1)

i | σi |= p, i ∈ I
}︂

where the last equality holds because the union of all subsets of a set X is precisely the set X.

Now to prove completeness we must show that αn ◦ Jp?Kn = Jp?K♯nA ◦ αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then:

(αn ◦ Jp?K)(cn) = αn

(︂{︂
⟨σi, Ti⟩ :: S(n−1)

i | σi |= p, i ∈ I
}︂)︂

= mn ({⟨σi, Ti⟩ :: S′
i | σi |= p, i ∈ I, S′

i ∈ pop(αn−1(c))})

=

⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | σi |= p, i ∈ I, S′
i ∈ pop(αn−1(c))

⎫⎪⎬⎪⎭
Jp?K♯A ◦ αn(cn) = Jp?K♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
⎞⎟⎠

=

⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | σi |= p, i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
Thus we can conclude that the domain is globally complete for p?.

Jloop?; popK♯A computation Consider a =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

such that αn(a) = a. Then we

have:

Jloop?; popK♯A(a) = (αnJloop?; popKγn)(a) = (αnJloop?; popKγn)
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I

}︂)︂
= (αnJloop?; popK) ({⟨σi, T ′

i ⟩ :: S′
i | i ∈ I, T ′

i ⊆ Ti, S
′
i ∈ γn−1 ({Si})})

= (αnJpopK) ({⟨σi, T ′
i ⟩ :: S′

i | i ∈ I, σi ∈ T ′
i ⊆ Ti, S

′
i ∈ γn−1 ({Si})})

= αn ({S′
i | i ∈ I, σi ∈ Ti, S

′
i ∈ γn−1 ({Si})})

= {Si | i ∈ I, σi ∈ Ti, i ∈ I}

Now to prove completeness we must show that αn−1 ◦ Jloop?; popKn = Jloop?; popK♯nA ◦ αn.

48

Chapter 4. Injecting Abstraction 4.1. A local completeness-preserving abstraction

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(αn−1 ◦ Jloop?; popK)(cn) = αn−1JpopK
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I, σi ∈ Ti

}︂)︂
= αn−1 ({Si | i ∈ I, σi ∈ Ti})

Jloop?; popK♯A ◦ αn(cn) = Jloop?; popK♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
⎞⎟⎠

= αn−1

⎛⎜⎝
⎧⎪⎨⎪⎩S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn)), σi ∈

⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
⎞⎟⎠

= αn−1 ({Si | i ∈ I, σi ∈ Ti})

where the last equality holds because it is irrelevant to the computation of αn−1 if the unification had

happened before. Thus we can conclude that the domain is globally complete for loop?; pop.

Remark 4.11. For the following operations post, next we study separately the cases a ∈ C1 and a ∈ Cn

to understand the computation more clearly.

JnextK♯A computation, case a ∈ C1 Consider a = {⟨σi, Ti⟩ | i ∈ I} such that α1(a) = a. Then we

have:

JnextK♯A(a) = (α1JnextKγ1)(a) = (α1JnextKγ1) ({⟨σi, Ti⟩ | i ∈ I})

= (α1JnextK) ({⟨σi, T ′
i ⟩ | i ∈ I, T ′

i ⊆ Ti, })

= α1 ({⟨σ′
i,∅⟩ | i ∈ I, σi _σ′

i})

= {⟨σ′
i,∅⟩ | σi _σ′

i, i ∈ I}

Now to prove completeness we must show that α1◦JnextK1 = JnextK♯1A ◦α1. Consider c1 = {⟨σi, Ti⟩ | i ∈ I ⊆ N},

then:

(α1 ◦ JnextK)(c1) = α1 ({⟨σ′
i,∅⟩ | i ∈ I, σi _σ′

i})

= {⟨σ′
i,∅⟩ | i ∈ I, σi _σ′

i}

JnextK♯1A ◦ α1(c1) = Jnext1K♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
h∈I

σh=σi

Th

⟩︄
| i ∈ I

⎫⎪⎬⎪⎭
⎞⎟⎠

= {⟨σ′
i,∅⟩ | i ∈ I, σi _σ′

i}

Thus we can conclude that the domain is globally complete for next.

49

4.1. A local completeness-preserving abstraction Chapter 4. Injecting Abstraction

JnextK♯A computation, case a ∈ Cn Consider a =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

such that αn(a) = a.

Then we have:

JnextK♯A(a) = (αnJnextKγn)(a) = (αnJnextKγn)
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I

}︂)︂
= (αnJnextK) ({⟨σi, T ′

i ⟩ :: S′
i | i ∈ I, T ′

i ⊆ Ti, S
′
i ∈ γn−1 ({Si})})

= αn ({⟨σ′
i,∅⟩ | i ∈ I, σi _σ′

i, S
′
i ∈ γn−1 ({Si})})

= {⟨σ′
i,∅⟩ :: S′′

i | i ∈ I, σi _σ′
i, S

′′
i ∈ pop (αn−1 ({⟨σ′

i,∅⟩ :: Si | i ∈ I, σi _σ′
i}))}

Now to prove completeness we must show that αn ◦ JnextKn = JnextK♯nA ◦ αn. Consider cn ={︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then:

(αn ◦ JnextK)(cn) = αn

⎛⎜⎜⎝
c′n⏟ ⏞⏞ ⏟{︂

⟨σ′
i,∅⟩ :: S(n−1)

i | i ∈ I, σi _σ′
i

}︂⎞⎟⎟⎠
= mn ({⟨σ′

i,∅⟩ :: S′
i | i ∈ I, σi _σ′

i, S
′
i ∈ pop(αn−1(c

′
n))})

= {⟨σ′
i,∅⟩ :: S′

i | i ∈ I, σi _σ′
i, S

′
i ∈ pop(αn−1(c

′
n))}

JnextK♯A ◦ αn(cn) = JnextK♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
⎞⎟⎠

= {⟨σ′
i,∅⟩ :: S′′

i | i ∈ I, σi _σ′
i,

S′′
i ∈ pop (αn−1 ({⟨σ′

i,∅⟩ :: S′
i | i ∈ I, σi _σ′

i, S
′
i ∈ pop(αn−1(cn))}))}

= {⟨σ′
i,∅⟩ :: S′′

i | i ∈ I, σi _σ′
i, S

′′
i ∈ pop(αn−1(c

′
n))}

where we use the fact that if σh = σj and σj _σ′
i then obviously σh _σ′

i. The last passage is justified

from the fact that ultimately the abstraction is applied to the set of stacks after the post has been

computed, and it is of no influence the fact that in the second case S′
i ∈ pop(αn−1(cn)), since if any

unification occurred at that first level, it will happen again in S′′
i ∈ pop(αn−1(c

′
n)) for the same reason

that f σh = σj and σj _σ′
i then obviously σh _σ′

i. Thus we can conclude that the domain is globally

complete for next.

JpostK♯A computation, case a ∈ C1 Consider a = {⟨σi, Ti⟩ | i ∈ I} such that α1(a) = a. Then we

have:

JpostK♯A(a) = (α1JpostKγ1)(a) = (α1JpostKγ1) ({⟨σi, Ti⟩ | i ∈ I})

= (α1JpostK) ({⟨σi, T ′
i ⟩ | i ∈ I, T ′

i ⊆ Ti, })

= α1 ({⟨σ′
i, T

′
i ∪ {σi}⟩ | i ∈ I, T ′

i ⊆ Ti, σi _σ′
i})

=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,
⋃︂
j∈I

σj _σ′
i

Tj ∪ {σj}

⟩︄
| σi _σ′

i, i ∈ I

⎫⎪⎪⎬⎪⎪⎭
50

Chapter 4. Injecting Abstraction 4.1. A local completeness-preserving abstraction

Now to prove completeness we must show that α1◦JpostK1 = JpostK♯1A ◦α1. Consider c1 = {⟨σi, Ti⟩ | i ∈ I ⊆ N},

then:

(α1 ◦ JpostK)(c1) = α1 ({⟨σ′
i, Ti ∪ {σi}⟩ | i ∈ I, σi _σ′

i})

=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,
⋃︂
j∈I

σj _σ′
i

Tj ∪ {σj}

⟩︄
| i ∈ I, σi _σ′

i

⎫⎪⎪⎬⎪⎪⎭
JpostK♯1A ◦ α1(c1) = Jpost1K♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
h∈I

σh=σi

Th

⟩︄
| i ∈ I

⎫⎪⎬⎪⎭
⎞⎟⎠

=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,
⋃︂
j∈I

σj _σ′
i

⎛⎜⎝ ⋃︂
h∈I

σh=σi

Th

⎞⎟⎠ ∪ {σj}

⟩︄
| i ∈ I, σi _σ′

i

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,

⋃︂
h∈I

σh _σ′
i

Th ∪ {σh}

⟩︄
| i ∈ I, σi _σ′

i

⎫⎪⎪⎬⎪⎪⎭
where we use the fact that if σh = σj and σj _σ′

i then obviously σh _σ′
i. Thus we can conclude that

the domain is globally complete for post.

We present a small example to better visualise what the discussed JpostK♯A does.

Example 4.12. Consider the transition system in Figure 4.1, and consider the state c = {⟨c, {a}⟩ , ⟨d, {b}⟩},

we have that α1(c) = c.

a b

c d

e

f g

Figure 4.1: An example to show how JpostK♯A works.

Now

JpostK♯A ◦ α1(c) = JpostK♯A(c) = {⟨e, {a, b, c, d}⟩}

α1 ◦ JpostK(c) = α1 {⟨e, {a, c}⟩ , ⟨e, {b, d}⟩} = {⟨e, {a, b, c, d}⟩}

51

4.1. A local completeness-preserving abstraction Chapter 4. Injecting Abstraction

Then consider the state d = {⟨e, {a, c}⟩ , ⟨e, {b, d}⟩} and apply again the post operation. Then:

JpostK♯A ◦ α1(d) = JpostK♯A({⟨e, {a, b, c, d}⟩}) = {⟨f, {a, b, c, d, e}⟩ , ⟨g, {a, b, c, d, e}⟩}

α1 ◦ JpostK(d) = α1 ({⟨f, {a, c, e}⟩ , ⟨g, {a, c, e}⟩ , ⟨f, {b, d, e}⟩ , ⟨g, {b, d, e}⟩})

= {⟨f, {a, b, c, d, e}⟩ , ⟨g, {a, b, c, d, e}⟩}

JpostK♯A computation, case a ∈ Cn Consider a =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

such that αn(a) = a.

Then we have:

JpostK♯A(a) = (αnJpostKγn)(a) = (αnJpostKγn)
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I

}︂)︂
= (αnJpostK) ({⟨σi, T ′

i ⟩ :: S′
i | i ∈ I, T ′

i ⊆ Ti, S
′
i ∈ γn−1 ({Si})})

= αn ({⟨σ′
i, T

′
i ∪ {σi}⟩ | i ∈ I, T ′

i ⊆ Ti, σi _σ′
i, S

′
i ∈ γn−1 ({Si})})

=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,
⋃︂
j∈I

σj _σ′
i

Tj ∪ {σj}

⟩︄
:: S′′

i | i ∈ I, σi _σ′
i,

S′′
i ∈ pop (αn−1 ({⟨σ′

i, Ti ∪ {σi}⟩ :: Si | i ∈ I, σi _σ′
i}))}

Now to prove completeness we must show that αn ◦ JpostKn = JpostK♯nA ◦ αn. Consider cn ={︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then:

(αn ◦ JpostK)(cn) = αn

⎛⎜⎜⎝
c′n⏟ ⏞⏞ ⏟{︂

⟨σ′
i, Ti ∪ {σi}⟩ :: S(n−1)

i | i ∈ I, σi _σ′
i

}︂⎞⎟⎟⎠
= mn ({⟨σ′

i, Ti ∪ {σi}⟩ :: S′
i | i ∈ I, σi _σ′

i, S
′
i ∈ pop(αn−1(c

′
n))})

=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,
⋃︂
j∈I

σ′
j=σ′

i

Tj ∪ {σj}

⟩︄
:: S′

i | i ∈ I, σi _σ′
i, S

′
i ∈ pop(αn−1(c

′
n))

⎫⎪⎪⎬⎪⎪⎭
JpostK♯A ◦ αn(cn) = JpostK♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
⎞⎟⎠

=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,

⋃︂
h∈I

σh _σ′
i

⎛⎜⎝ ⋃︂
j∈I

σj=σi

Tj

⎞⎟⎠ ∪ {σh}

⟩︄
:: S′′

i | i ∈ I, σi _σ′
i,

S′′
i ∈ pop

⎛⎜⎝αn−1

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σ′
i,
⋃︂
j∈I

σj=σi

Tj ∪ {σj}

⟩︄
:: S′

i | i ∈ I, σi _σ′
i, S

′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
⎞⎟⎠
⎞⎟⎠
⎫⎪⎬⎪⎭

=

⎧⎪⎪⎨⎪⎪⎩
⟨︄
σ′
i,

⋃︂
h∈I

σh _σ′
i

Th ∪ {σh}

⟩︄
:: S′′

i | i ∈ I, σi _σ′
i, S

′′
i ∈ pop(αn−1(c

′
n))

⎫⎪⎪⎬⎪⎪⎭
where we use the fact that if σh = σj and σj _σ′

i then obviously σh _σ′
i. As in the case of JnextK♯A the

last passage is justified from the fact that ultimately the abstraction is applied to the set of stacks after

52

Chapter 4. Injecting Abstraction 4.1. A local completeness-preserving abstraction

the post has been computed, and it is of no influence the fact that in the second case S′
i ∈ pop(αn−1(cn)),

since if any unification occurred at that first level, it will happen again in S′′
i ∈ pop(αn−1(c

′
n)) for the

same reason that f σh = σj and σj _σ′
i then obviously σh _σ′

i. Thus we can conclude that the domain

is globally complete for post.

JpushK♯A computation Consider a =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

such that αn(a) = a. Then we have:

JpushK♯A(a) = (αn+1JpushKγn)(a) = (αnJpushKγn)
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I

}︂)︂
= (αn+1JpushK) ({⟨σi, T ′

i ⟩ :: S′
i | i ∈ I, T ′

i ⊆ Ti, S
′
i ∈ γn−1 ({Si})})

= αn+1 ({⟨σi,∅⟩ :: ⟨σi, T ′
i ⟩ :: S′

i | i ∈ I, T ′
i ⊆ Ti, S

′
i ∈ γn−1 ({Si})})

= {⟨σi,∅⟩ :: ⟨σi, Ti⟩ :: Si | i ∈ I}

Now to prove completeness we must show that αn+1 ◦ JpushKn = JpushK♯nA ◦ αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(αn+1 ◦ JpushK)(cn) = αn+1 ({⟨σi,∅⟩ :: ⟨σi, Ti⟩ :: Si | i ∈ I})

=

⎧⎪⎨⎪⎩⟨σi,∅⟩ ::

⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
JpushK♯A ◦ αn(cn) = JpushK♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
⎞⎟⎠

=

⎧⎪⎨⎪⎩⟨σi,∅⟩ ::

⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(c))

⎫⎪⎬⎪⎭
Thus we can conclude that the domain is globally complete for push.

JpopK♯A computation Consider a =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

such that αn(a) = a. Then we have:

JpopK♯A(a) = (αn−1JpopKγn)(a) = (αnJpushKγn)
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I

}︂)︂
= (αn−1JpopK) ({⟨σi, T ′

i ⟩ :: S′
i | i ∈ I, T ′

i ⊆ Ti, S
′
i ∈ γn−1 ({Si})})

= αn−1 ({S′
i | i ∈ I, S′

i ∈ γn−1 ({Si})})

= {Si | i ∈ I}

Now to prove completeness we must show that αn−1 ◦ JpopKn = JpopK♯nA ◦ αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(αn−1 ◦ JpopK)(cn) = αn−1 ({Si | i ∈ I}) = {S′
i | i ∈ I, S′

i ∈ pop(αn−1(cn))} = αn−1(pop(cn))

JpopK♯A ◦ αn(cn) = JpopK♯A

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
:: S′

i | i ∈ I, S′
i ∈ pop(αn−1(cn))

⎫⎪⎬⎪⎭
⎞⎟⎠

= {S′
i | i ∈ I, S′

i ∈ pop(αn−1(cn))} = αn−1(pop(cn))

Thus we can conclude that the domain is globally complete for pop.

53

4.2. Partition-based abstraction Chapter 4. Injecting Abstraction

4.1.3 A general result

We are interested in this abstraction because it is globally complete on our domain and thanks to

the following result it can be used to simplify calculations in the abstract domains we will present in

the following. In fact, as we formally proved below, under some conditions that will be systematically

satisfied in our setting, it preserves the (local) completeness of other abstractions: this simple but useful

result is, to the best of our knowledge, inedited.

Proposition 4.13 (Preservation of local completeness). Let C be a concrete domain, let A1, A2 ∈

Abs(C), let c ∈ C and op : C → C be an operation on C. Assume the following hold:

1. A1 is locally complete for op on c;

2. A2 is globally complete for op;

3. A2 ◦A1 = A2 ◦A1 ◦A2.

Then A2 ◦A1 is locally complete or op on c.

Proof. We need to show that

(A2 ◦A1 ◦ op ◦A2 ◦A1)(c) = (A2 ◦A1 ◦ op)(c)

We have that

(A2 ◦A1 ◦ op ◦A2 ◦A1)(c)
3.
= (A2 ◦A1 ◦A2 ◦ op ◦A2 ◦A1)(c)

2.
= (A2 ◦A1 ◦A2 ◦ op ◦A1)(c)

3.
= (A2 ◦A1 ◦ op ◦A1)(c)

1.
= (A2 ◦A1 ◦ op)(c)

4.2 Partition-based abstraction

We now consider a first way of lifting a given abstraction on states to an abstraction that acts

on stacks: this lifting considers partitioning abstractions, i.e. abstractions that identify elements of

the concrete domain. The construction of this abstract domain is the same as the construction of the

concrete domain, using the abstracted transition system (i.e. the transition system in which the states

are equivalence classes of states). An abstract element then is a set of abstract stacks.

Definition 4.14 (Equivalence relation). Let X be a non-empty set. We say that ∼⊆ X × X is an

equivalence relation if ∼ is reflexive, symmetric and transitive i.e. for all x, y, z ∈ X

• x ∼ x (reflexivity);

• if x ∼ y then y ∼ x (symmetry);

54

Chapter 4. Injecting Abstraction 4.2. Partition-based abstraction

• if x ∼ y and y ∼ z then x ∼ z (transitivity).

Given x ∈ X, we define the equivalence class of x with respect to ∼ as [x]∼ = {y | y ∼ x}. We define the

quotient ofX with respect to ∼, writtenX/∼ as the set of all equivalence classes: X/∼ = {[x]∼ | x ∈ X}.

The function

π∼ : X → X/∼ π∼ : x ↦→ [x]∼

is called projection.

Definition 4.15 (Partition). Let X be a non-empty set, and let P ⊆ 2X . We say that P is a partition

of X if the following conditions hold:

• ∅ /∈ P;

•
⋃︁

Y ∈P = X;

• for all Y,Z ∈ P we have Y ∩ Z = ∅.

An equivalence relation ∼ on a set X induces a partition on X by means of the equivalence classes:

the collection X/∼ = {[x]∼ | x ∈ X} is a partition. The set X/∼ is the quotient of X with respect to ∼,

and we can think of it as a set in its own right, in which we choose an element to represent its equivalence

class. The converse is also true, i.e. given a partition P we can define the induced equivalence relation

∼P by defining x ∼P y if and only if x, y belong to the same X ∈ P.

In our setting, we start from an abstraction on states that identifies some of those states, thus inducing

an equivalence relation ∼. We want to illustrate how to lift this abstraction to the stacks, and we do so

by first lifting the equivalence to subsets of states.

Definition 4.16 (Collecting projection). Let X be a non-empty set and let ∼ be an equivalence on

X. Given the projection π∼ : X → X/∼ we define the collecting projection π∼ : 2Σ → 2X/∼ as the

additive lifting of π∼ to the powersets as

π∼(Y) = {π∼(x) | x ∈ Y } = {[x]∼ | x ∈ Y }

The intuition of this construction is given by Figure4.2.

X X/∼

2X 2X/∼

π∼

2· 2·

π∼

Figure 4.2: Diagram for projection, collecting projection.

Definition 4.17 (Transition relation between equivalence classes). Given a transition system (Σ, I,_)

with an equivalence relation ∼ on Σ, we define the transition relation on equivalence classes _∼

saying that [σ]∼ _∼[σ
′]∼ if σ_σ′.

55

4.2. Partition-based abstraction Chapter 4. Injecting Abstraction

The previous definition is existential, in the sense that we have a transition between two classes if

there exist at least a transition between any two elements of these classes (as representatives can be

chosen freely in the class).

4.2.1 Galois Connection

In this first way of lifting the abstraction (αΣ,Σ, AΣ, γΣ) where AΣ = Σ/∼, i.e. the abstraction on

states induces a partition, we replicate the same construction we gave for the abstract domain on a new

transition system (Σ/∼, π∼(I),_∼), hence a path in the abstract domain is a pair
⟨︂
[σ]∼, T̃

⟩︂
∈ Σ/∼×2Σ/∼ ,

PΣ/∼ is the set of paths, and stacks are elements of

StacksΣ/∼ =
(︁
PΣ/∼

)︁∗
=
⋃︂
n

(︁
PΣ/∼

)︁n
An abstract stack S̃

n+1 ∈
(︁
PΣ/∼

)︁n+1 is thus of the form

S̃
n+1

=
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

n

where [σ]∼j ∈ Σ/∼ is an abstract state, T̃ j = {[σ′]∼ | σ′ ∈ T ⊆ Σ} ∈ 2Σ/∼ is a set of abstract traversed

state and S̃
n ∈

(︁
PΣ/∼

)︁n.

Then we can define the abstract domain and abstract elements as follows, recalling Definition 3.3.

Definition 4.18 (Abstract domain, abstract element). The abstract domain is

A =
⋃︂
n

2
(PΣ/∼)n

We will denote with An the set of abstract stacks of fixed length n, i.e. An = 2
(PΣ/∼)n .

An abstract element is a finite set of abstract stacks of the same length

an =
{︂⟨︂

[σ]∼j , T̃ j

⟩︂
:: S̃

(n−1)

j | j ∈ J ⊆ N
}︂

where J is a finite set of indices.

We now define the abstraction α and the concretization γ on a single stack by induction on the length

n of the stack, and then we lift it to its collecting version.

Definition 4.19 (Abstraction map). The abstraction map αn is inductively defined as

α1(⟨σ, T ⟩) = ⟨[σ]∼, {[σ′]∼ | σ′ ∈ T}⟩ = ⟨π∼(σ), π∼(T)⟩

αn(⟨σ, T ⟩ :: Sn−1) = α1(⟨σ, T ⟩) :: αn−1(S
n−1)

which gets lifted to αn : Cn → An as

αn

(︂{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂)︂

=
⋃︂
i∈I

{︁
αn

(︁
⟨σi, Ti⟩ :: Sn−1

i

)︁}︁
Definition 4.20 (Concretization map). The concretization map γn is inductively defined as

γ1

(︂⟨︂
[σ]∼, T̃

⟩︂)︂
=
{︂
⟨σ′, T ′⟩ | σ′ ∼ σ, T ′ ⊆ π−1

∼ (T̃), π(T ′) = T̃
}︂

γn

(︂⟨︂
[σ]∼, T̃ :: S̃

(n−1)
⟩︂)︂

=
{︂
⟨σ′, T ′⟩ :: S′ | σ′ ∼ σ, T ′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂

56

Chapter 4. Injecting Abstraction 4.2. Partition-based abstraction

which gets lifted to γn : Cn → An as

γn

(︂{︂⟨︂
[σ]∼j , T̃ j

⟩︂
:: S̃

(n−1)

j | j ∈ J ⊆ N
}︂)︂

=
⋃︂
j∈J

γn

(︂⟨︂
[σ]∼j , T̃ j

⟩︂
:: S̃

(n−1)

j

)︂
Proposition 4.21. The above construction (α,C,A, γ) is a Galois Connection.

Proof. We give the proof by induction on the length n of the stacks, by showing that each γn ◦ αn is a

closure. First let c = {⟨σi, Ti⟩ :: Si | i ∈ I}, then we explicitly compute

αn(c) =

⎧⎪⎨⎪⎩
⟨︄
[σ]∼,

π(Ti)⏟ ⏞⏞ ⏟
{[σ′]∼ | σ′ ∈ Ti}

⟩︄
:: αn−1(Si) | i ∈ I

⎫⎪⎬⎪⎭
(γn ◦ αn)(c) =

{︁
⟨σ′

i, T
′
i ⟩ :: S′

i | i ∈ I, σ′
i ∼ σi, T

′
i ⊆ π−1(π(Ti)), π(T

′
i) = π(Ti), S

′
i ∈ γn−1(αn−1(Si))

}︁
which will be useful in the following.

(n = 1) (Monotone) Let c1, c2 ∈ C1 be such that c1 ≤C c2, where

c1 = {⟨σi, Ti⟩ | i ∈ I} c2 = {⟨σj , Tj⟩ | j ∈ J}

and c1 ≤C c2 means that for all ⟨σ, T ⟩ ∈ c1 we have ⟨σ, T ⟩ ∈ c2. Now by definition

(γ1 ◦ α1)(c1) =
{︁
⟨σ′

i, T
′
i ⟩ | i ∈ I, σ′

i ∼ σi, T
′
i ⊆ π−1(π(Ti)), π(T

′
i) = π(Ti)

}︁
(γ1 ◦ α1)(c2) =

{︁⟨︁
σ′
j , T

′
j

⟩︁
| j ∈ J, σ′

j ∼ σj , T
′
j ⊆ π−1(π(Tj)), π(T

′
j) = π(Tj)

}︁
Now let ⟨σ, T ⟩ ∈ (γ1 ◦ α1)(c1), then there exists i ∈ I such that ⟨σi, Ti⟩ ∈ c1, σ ∼ σi, T ⊆ π−1(π(Ti)),

π(T) = π(Ti). Then, since c1 ≤C c2, we have ⟨σi, Ti⟩ ∈ c2, so there exists j ∈ J such that ⟨σi, Ti⟩ =

⟨σj , Tj⟩ and σ ∼ σj , T ⊆ π−1(π(Tj)), π(T) = π(Tj), hence ⟨σ, T ⟩ ∈ (γ1 ◦ α1)(c2).

(Idempotent) Let c = c1 of the previous computation, then we can explicitly compute (α1◦γ1◦α1)(c)

as:

(α1 ◦ γ1 ◦ α1)(c) =
{︁
⟨[σi]∼, π(T ′

i)⟩ | i ∈ I, σ′
i ∼ σi, T

′
i ⊆ π−1(π(Ti)), π(T

′
i) = π(Ti)

}︁
= {⟨[σ]∼, π(Ti)⟩ | i ∈ I} = α1(c)

since [σ′
i]∼ = [σi]∼ and π(T ′

i) = π(Ti). Then since (α1 ◦γ1 ◦α1)(c) = α1(c), it follows that (γ1 ◦α1)
2(c) =

(γ1 ◦ α1 ◦ γ1 ◦ α1)(c) = (γ1 ◦ α1)(c).

(Extensive) Let ⟨σ, T ⟩ ∈ c, then ⟨σ, T ⟩ ∈ (γ1 ◦α1)(c) since σ ∼ σ and T ⊆ π−1(π(T)) with obviously

π(T) = π(T).

(n− 1 ⇒ n) (Monotone) Let c1, c2 ∈ Cn be such that c1 ≤C c2, where

c1 =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

c2 =
{︂
⟨σj , Tj⟩ :: S(n−1)

j | j ∈ J
}︂

and c1 ≤C c2 means that for all ⟨σ, T ⟩ :: S ∈ c1 we have ⟨σ, T ⟩ :: S ∈ c2. Now by definition

(γn ◦ αn)(c1) =
{︁
⟨σ′

i, T
′
i ⟩ :: S′

i | i ∈ I, σ′
i ∼ σi, T

′
i ⊆ π−1(π(Ti)), π(T

′
i) = π(Ti), S

′
i ∈ γn−1(αn−1(Si))

}︁
(γn ◦ αn)(c2) =

{︁⟨︁
σ′
j , T

′
j

⟩︁
:: S′

j | j ∈ J, σ′
j ∼ σj , T

′
j ⊆ π−1(π(Tj)), π(T

′
j) = π(Tj), S

′
j ∈ γn−1(αn−1(Sj))

}︁
57

4.2. Partition-based abstraction Chapter 4. Injecting Abstraction

Now let ⟨σ, T ⟩ :: S ∈ (γn ◦ αn)(c1), then there exists i ∈ I such that ⟨σi, Ti⟩ :: Si ∈ c1, σ ∼ σi,

T ⊆ π−1(π(Ti)), π(T) = π(Ti) and S ∈ γn−1(αn−1(Si)). Then, since c1 ≤C c2, we have ⟨σi, Ti⟩ :: Si ∈ c2,

so there exists j ∈ J such that ⟨σi, Ti⟩ :: Si = ⟨σj , Tj⟩ :: Sj and σ ∼ σj , T ⊆ π−1(π(Tj)), π(T) = π(Tj),

S ∈ γn−1(αn−1(Sj)), hence ⟨σ, T ⟩ :: S ∈ (γ1 ◦ α1)(c2).

(Idempotent) Let c = c1 of the previous computation, then we can explicitly compute (αn ◦ γn ◦

αn)(c) as:

(αn ◦ γn ◦ αn)(c) =
{︁
⟨[σi]∼, π(T ′

i)⟩ :: αn−1(S
′
i) | i ∈ I, σ′

i ∼ σi, T
′
i ⊆ π−1(π(Ti)),

π(T ′
i) = π(Ti), S

′
i ∈ γn−1(αn−1(Si))}

= {⟨[σ]∼, π(Ti) :: αn−1(Si)⟩ | i ∈ I} = αn(c)

since [σ′
i]∼ = [σi]∼, π(T ′

i) = π(Ti) and αn−1(S
′
i) = αn−1(Si) = (αn−1◦γn−1◦αn−1)(Si) for all S′

i ∈ (γn−1◦

αn−1)(Si) since γn−1 ◦ αn−1 is a closure by inductive hypothesis. Then since (αn ◦ γn ◦ αn)(c) = αn(c),

it follows that (γn ◦ αn)
2(c) = (γn ◦ αn ◦ γn ◦ αn)(c) = (γn ◦ αn)(c).

(Extensive) Let ⟨σ, T ⟩ : S ∈ c, then ⟨σ, T ⟩ :: S ∈ (γn ◦ αn)(c) since σ ∼ σ, T ⊆ π−1(π(T)) with

π(T) = π(T) and S ∈ (γn−1 ◦ αn−1)(S) since γn−1 ◦ αn−1 is a closure by inductive hypothesis.

4.2.2 Abstract Semantics

We now compute the Best Correct Approximations for basic expressions and study under which

conditions on concrete elements we have local completeness. We will see that for the push and pop

operators we actually have global completeness.

Jp?K♯A computation Consider a =
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
(not collecting semantics). Then we have:

Jp?K♯A(a) = (αJp?Kγ)(a) = (αJp?Kγ)
(︂⟨︂

[σ]∼, T̃
⟩︂
:: S̃

(n−1)
)︂

= (αJp?K)
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

= α
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, σ |= p, T ′ ⊆ π−1
∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃

(n−1)
)
}︂)︂

= α
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼ ∩ p, T ′ ⊆ π−1
∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃

(n−1)
)
}︂)︂

=

⎧⎪⎨⎪⎩⊥ if ∀σ′ ∈ [σ]∼ (|p?|) ⟨σ′, T ⟩ = ∅⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
if ∃σ′ ∈ [σ]∼ (|p?|) ⟨σ′, T ⟩ ≠ ∅

For this and all the following abstract operations, the collecting semantics is obtained by just taking

the union of the single computations, i.e.

Jp?K♯A
(︂{︂⟨︂

[σi]∼, T̃ i

⟩︂
:: S̃i | i ∈ I

}︂)︂
=
⋃︂
i∈I

{︂
Jp?K♯A

(︂⟨︂
[σi]∼, T̃ i

⟩︂
:: S̃i

)︂}︂
58

Chapter 4. Injecting Abstraction 4.2. Partition-based abstraction

In order to have local completeness, we must check under which conditions αn ◦ Jp?Kn = Jp?K♯nA ◦ αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(α ◦ Jp?K)(cn) = α
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I, σi |= p

}︂)︂
=
{︂⟨︂

[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I, σi |= p
}︂

(Jp?K♯A ◦ α)(cn) = Jp?K♯A
(︂{︂⟨︂

[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂)︂

=
{︂⟨︂

[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I, ∃σ′ ∼ σ, σ′ |= p
}︂

Hence completeness holds if either σ |= p or for all σ′ ∈ [σ]∼ σ′ |̸= p. In other words, the problem arises

if σ |̸= p and there exists σ′ ∼ σ such that σ′ |= p. To avoid this, our partition ∼ must be a refinement

of the partition {p,¬p}.

Jloop?K♯A computation Consider a =
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
(not collecting semantics). Then we have:

Jp?K♯A(a) = (αJloop?Kγ)(a) = (αJloop?Kγ)
(︂⟨︂

[σ]∼, T̃
⟩︂
:: S̃

(n−1)
)︂

= (αJloop?K)
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

= α
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , σ′ ∈ T ′, S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

=

⎧⎪⎨⎪⎩⊥ if ∀σ′ ∈ [σ]∼, σ
′ /∈ π−1

∼ (T̃)⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
if ∃σ′ ∈ [σ]∼, σ

′ ∈ π−1
∼ (T̃)

In order to have local completeness, we must check under which conditions αn◦Jloop?Kn = Jloop?K♯nA ◦αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(α ◦ Jloop?K)(cn) = α
(︂{︂

⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I, σi ∈ Ti

}︂)︂
=
{︂⟨︂

[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I, σi ∈ Ti

}︂
(Jloop?K♯A ◦ α)(cn) = Jloop?K♯A

(︂{︂⟨︂
[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂)︂

=
{︂⟨︂

[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I, ∃σ′ ∈ [σi]∼, σ
′ ∈ π−1

∼ (Tĩ)
}︂

Hence completeness holds if either σ ∈ T , so there is a loop, or, if there is no loop, i.e. for all σ′ ∈ [σ]∼

we have σ′ /∈ {ρ′ ∈ Σ | ∃ρ ∈ T, ρ′ ∼ ρ}. This means that if σ /∈ T and σ′ ∈ T , it must hold that σ ̸∼ σ′.

JnextK♯A computation Consider a =
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
(not collecting semantics). Then we have:

JnextK♯A(a) = (αJnextKγ)(a) = (αJnextKγ)
(︂⟨︂

[σ]∼, T̃
⟩︂
:: S̃

(n−1)
)︂
=

= (αJnextK)
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

= α
(︂{︂

⟨σ′′,∅⟩ :: S′ | σ′ ∈ [σ]∼, σ
′ _σ′′, S′ ∈ γn−1(S̃

(n−1)
)
}︂)︂

=
{︂
⟨[σ′′]∼,∅⟩ :: S̃(n−1) | ∃σ′ ∈ [σ]∼, σ

′ _σ′′
}︂

59

4.2. Partition-based abstraction Chapter 4. Injecting Abstraction

In order to have local completeness, we must check under which conditions αn ◦ JpostKn = JpostK♯nA ◦αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(α ◦ JnextK)(cn) = α
(︂{︂

⟨σ′
i,∅⟩ :: S(n−1)

i | σi _σ′
i, i ∈ I

}︂)︂
=
{︂
⟨[σ′

i]∼,∅⟩ :: S̃(n−1)

i | σi _σ′
i, i ∈ I

}︂
(JnextK♯A ◦ α)(cn) = JnextK♯A

(︂{︂⟨︂
[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂)︂

=
{︂
⟨[σ′

i]∼,∅⟩ :: S̃(n−1)

i | i ∈ I, ∃σ′′ ∈ [σi]∼, σ
′′ _σ′

i

}︂
where σ′

i is any representative of its class. Hence completeness holds if elements equivalent to σ have

post-images that are equivalent to post-images of σ.

JpostK♯A computation Consider a =
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
(not collecting). Then we have:

JpostK♯A(a) = (αJpostKγ)(a) = (αJpostKγ)
(︂⟨︂

[σ]∼, T̃
⟩︂
:: S̃

(n−1)
)︂
=

= (αJpostK)
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

= α
(︂{︂

⟨σ′′, T ′ ∪ {σ′}⟩ :: S′ | σ′ ∈ [σ]∼, σ
′ _σ′′, T ′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

=
{︂⟨︂

[σ′′]∼, T̃ ∪ {[σ]∼}
⟩︂
:: S̃

(n−1) | ∃σ′ ∈ [σ]∼, σ
′ _σ′′

}︂
In order to have local completeness, we must check under which conditions αn ◦ JpostKn = JpostK♯nA ◦αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(α ◦ JpostK)(cn) = α
(︂{︂

⟨σ′
i, Ti ∪ {σi}⟩ :: S(n−1)

i | σi _σ′
i, i ∈ I

}︂)︂
=
{︂⟨︂

[σ′
i]∼, T̃ i ∪ {[σi]∼}

⟩︂
:: S̃

(n−1)

i | σi _σ′
i, i ∈ I

}︂
(JpostK♯A ◦ α)(cn) = JpostK♯A

(︂{︂⟨︂
[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂)︂

=
{︂⟨︂

[σ′
i]∼, Tĩ ∪ {[σi]∼}

⟩︂
:: S̃

(n−1)

i | i ∈ I, ∃σ′′ ∈ [σi]∼, σ
′′ _σ′

i

}︂
where σ′

i is any representative of its class. Hence, as in the JnextK♯A case, completeness holds if

elements equivalent to σ have post-images that are equivalent to post-images of σ.

JpushK♯A computation Consider a =
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
(not collecting). Then we have:

JpushK♯A(a) = (αJpushKγ)(a) = (αJpostKγ)
(︂⟨︂

[σ]∼, T̃
⟩︂
:: S̃

(n−1)
)︂
=

= (αJpushK)
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

= α
(︂{︂

⟨σ′,∅⟩ :: ⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

= ⟨[σ]∼,∅⟩ ::
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)

60

Chapter 4. Injecting Abstraction 4.2. Partition-based abstraction

Now we show that push is globally complete: consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(α ◦ JpushK)(cn) = α
(︂{︂

⟨σi,∅⟩ :: ⟨σi, Ti⟩ :: S(n−1)
i | i ∈ I

}︂)︂
=
{︂
⟨[σi]∼,∅⟩ ::

⟨︂
[σi]∼, T̃ i

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂

(JpushK♯A ◦ α)(cn) = JpushK♯A
(︂{︂⟨︂

[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂)︂

=
{︂
⟨[σi]∼,∅⟩ ::

⟨︂
[σi]∼, T̃ i

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂

JpopK♯A computation Consider a =
⟨︂
[σ]∼, T̃

⟩︂
:: S̃

(n−1)
(not collecting). Then we have:

JpopK♯A(a) = (αJpopKγ)(a) = (αJpopKγ)
(︂⟨︂

[σ]∼, T̃
⟩︂
:: S̃

(n−1)
)︂
=

= (αJpopK)
(︂{︂

⟨σ′, T ′⟩ :: S′ | σ′ ∈ [σ]∼, T
′ ⊆ π−1

∼ (T̃), π(T ′) = T̃ , S′ ∈ γn−1(S̃
(n−1)

)
}︂)︂

= α
(︂{︂
S′ | S′ ∈ γn−1(S̃

(n−1)
)
}︂)︂

= S̃
(n−1)

Now we show that pop is globally complete: consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I ⊆ N
}︂

, then:

(α ◦ JpopK)(cn) = α
(︂{︂
S
(n−1)
i | i ∈ I

}︂)︂
=
{︂
S̃
(n−1)

i | i ∈ I
}︂

(JpopK♯A ◦ α)(cn) = JpopK♯A
(︂{︂⟨︂

[σi]∼, Tĩ

⟩︂
:: S̃

(n−1)

i | i ∈ I
}︂)︂

=
{︂
S̃
(n−1)

i | i ∈ I
}︂

We now recover two examples mentioned in the previous chapters to show one case in which the

abstract domain we choose is not locally complete for the property we wish to verify, and one case in

which it is.

Example 4.22. Consider again the transition system introduced in example 3.10:

a b

c

and consider the following partition that identifies a and b:

a, b ↦→ {a, b} = [a]∼ c ↦→ {c} = [c]∼

61

4.2. Partition-based abstraction Chapter 4. Injecting Abstraction

The corresponding abstract transition system is as follows:

[a]∼

[c]∼

We notice that this introduces a spurious loop of {a, b} on itself: this introduces a spurious error alarm

in the computation of the already verified true property φ′ = AF c. In particular we may look at the

proof obligation that fails in the derivation tree of the computation. For simplicity, we omit the push

and pop commands from the definition of ⌊AF c⌋, since they are not relevant in this discussion. Thus we

have the derivation depicted in Figure 4.3, where p = {⟨a,∅⟩ , ⟨b,∅⟩}, w = {⟨a, {b}⟩}.

...
⊢A [p] (post; {a, b}?)∗ [p ∪ w]

(rec)

CA
p∪w(loop?)

⊢A [p ∪ w] loop? [∅]
(trsf)

⊢A [{⟨a,∅⟩ , ⟨b,∅⟩}] ((post; {a, b}?)∗; loop?) [∅]
(seq)

Figure 4.3: Proof tree for the property φ′ = AF c for the partition that identifies a, b (Ex. 4.22).

In particular we see that what fails is

CA
{⟨a,∅⟩,⟨b,∅⟩,⟨a,{b}⟩}(loop?)

⊢A [{⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}] loop? [∅]
(transfer)

where the proof obligation CA
{⟨a,∅⟩,⟨b,∅⟩,⟨a,{b}⟩}(loop?) required is

γαJloop?K({⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}) = γαJloop?Kγα({⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩})

which fails because Jloop?K({⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}) = ∅, but

Jloop?Kγα({⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}) = Jloop?Kγ {⟨[a]∼,∅⟩ , ⟨[a]∼, {[a]∼}⟩}

= Jloop?K {⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {a}⟩ , ⟨a, {b}⟩ , ⟨b, {a}⟩ ,

⟨b, {b}⟩ , ⟨a, {a, b}⟩ , ⟨b, {a, b}⟩} ≠ ∅

Example 4.23. Consider again the composite transition system introduced in Example 1.21:

rs gs ys

rd gd yd

62

Chapter 4. Injecting Abstraction 4.2. Partition-based abstraction

[rd]∼ [¬rd]∼

Figure 4.4: Abstract transition system for the traffic light partitioning {rd,¬rd} (Ex. 4.23).

and consider the partition that distinguishes the "bad" state rd from the others, namely Σ/∼ = {[rd]∼, [¬rd]∼}

αΣ : Σ → Σ/∼ α : rd ↦→ [rd]∼ α : σ ↦→ [¬rd]∼ ∀σ ̸= rd

Then the abstract transition system is the one depicted in Figure 4.4. We can see that the abstract

domain can successfully prove that the property φ′ = AG (¬rd) holds: we show the proof obligation for

the property. For simplicity, we omit the push and pop commands from the definition of ⌊AG (¬rd)⌋ since

they are not relevant in the discussion. Thus we have the derivation depicted in Figure 4.5.

CA
{⟨[¬rd]∼,∅⟩}(next)

⊢A [{⟨[¬rd]∼,∅⟩}] next [{⟨[¬rd]∼,∅⟩}]
(trsf)

⊢A [{⟨[¬rd]∼,∅⟩}] next∗ [{⟨[¬rd]∼,∅⟩}]
(it)

CA
{⟨[¬rd]∼,∅⟩}(rd?)

⊢A [{⟨[¬rd]∼,∅⟩}] rd? [∅]
(trsf)

⊢A [{⟨[¬rd]∼,∅⟩}] (next∗; rd?) [∅]
(seq)

Figure 4.5: Proof tree for the property φ′ = AG (¬rd) for the traffic light partitioning {rd,¬rd}.

We see that the two proof obligations CA
{⟨[¬rd]∼,∅⟩}(next) and CA

{⟨[¬rd]∼,∅⟩}(rd?) are satisfied because

the domain satisfies the conditions studied above: the abstract domain is precisely the partition that

distinguishes rd from the rest of states, so both the conditions studied before for the completeness of

next, rd? hold.

4.2.3 Using the local-completeness preserving abstraction

We may exploit the abstraction seen in the previous section to simplify the use of the partition-based

abstractions. In order to exploit Proposition 4.13 we only need to prove that the commutation property

A2 ◦ A1 ◦ A2 = A2 ◦ A1 holds if we let A2 the abstraction that merges pasts (defined in the previous

section) and A1 any partition-based abstraction.

Proposition 4.24. Let A1 be the abstraction of Proposition 4.21 and let A2 be the abstraction of

Proposition 4.10. Then we have A2 ◦A1 ◦A2 = A2 ◦A1.

63

4.2. Partition-based abstraction Chapter 4. Injecting Abstraction

Proof. We prove the commutation relation in the case n = 1. Let us first explicitly describe the two

abstractions: let c = {⟨σi, Ti⟩ | i ∈ I}, then

A2(c) = γ2 ◦ α2(c) = γ2

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︄
σi,

⋃︂
j∈I

σj=σi

Tj

⟩︄
| i ∈ I

⎫⎪⎬⎪⎭
⎞⎟⎠

=

⎧⎪⎨⎪⎩⟨σi, T ′
i ⟩ | i ∈ I, T ′

i ⊆
⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
A1(c) = γ1 ◦ α1(c) = γ1 ({⟨[σi]∼, {[σ′]∼ | σ′ ∈ Ti}⟩ | i ∈ I})

=
{︂⟨︂
σ′
i, T̂ i

⟩︂
| i ∈ I, σ′

i ∼ σi, T̂ i ⊆ π−1 ({[σ′]∼ | σ′ ∈ Ti})
}︂

Then we may compute (A2 ◦A1)(c) and (A2 ◦A1 ◦A2)(c):

(A2 ◦A1)(c) = A2

(︂{︂⟨︂
σ′
i, T̂ i

⟩︂
| i ∈ I, σ′

i ∼ σi, T̂ i ⊆ π−1 ({[σ′]∼ | σ′ ∈ Ti})
}︂)︂

=

⎧⎪⎨⎪⎩⟨σ′
i, T

′
i ⟩ | i ∈ I, σ′

i ∼ σi, T
′
i ⊆

⎛⎜⎝ ⋃︂
j∈I

σj=σi

T̂ j

⎞⎟⎠ , T̂ j ⊆ π−1 ({[σ′]∼ | σ′ ∈ Ti})

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩⟨σ′
i, T

′
i ⟩ | i ∈ I, σ′

i ∼ σi, T
′
i ⊆

⋃︂
j∈I

σj=σi

π−1 ({[σ′]∼ | σ′ ∈ Ti})

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩⟨σ′
i, T

′
i ⟩ | i ∈ I, σ′

i ∼ σi, T
′
i ⊆

⎧⎪⎨⎪⎩σ′ | σ′ ∼ σ, σ ∈
⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

(A2 ◦A1 ◦A2)(c) = (A2 ◦A1)

⎛⎜⎝
⎧⎪⎨⎪⎩⟨σi, T ′

i ⟩ | i ∈ I, T ′
i ⊆

⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
⎞⎟⎠

= A2

⎛⎜⎝
⎧⎪⎨⎪⎩
⟨︂
σ′
i, T̂ i

⟩︂
| i ∈ I, σ′

i ∼ σi, T̂ i ⊆ π−1

⎛⎜⎝
⎧⎪⎨⎪⎩[σ′]∼ | σ′ ∈

⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
⎞⎟⎠
⎫⎪⎬⎪⎭
⎞⎟⎠

=

⎧⎪⎨⎪⎩⟨σ′
i, T

′′
i ⟩ | i ∈ I, σ′

i ∼ σi, T
′′
i ⊆

⎛⎜⎝ ⋃︂
j∈I

σj=σi

T̂ j

⎞⎟⎠ , T̂ i ⊆ π−1

⎛⎜⎝
⎧⎪⎨⎪⎩[σ′]∼ | σ′ ∈

⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
⎞⎟⎠
⎫⎪⎬⎪⎭

=

⎧⎪⎨⎪⎩⟨σ′
i, T

′′
i ⟩ | i ∈ I, σ′

i ∼ σi, T
′′
i ⊆

⋃︂
j∈I

σj=σi

π−1

⎛⎜⎝
⎧⎪⎨⎪⎩[σ′]∼ | σ′ ∈

⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
⎞⎟⎠
⎫⎪⎬⎪⎭

=

⎧⎪⎨⎪⎩⟨σ′
i, T

′′
i ⟩ | i ∈ I, σ′

i ∼ σi, T
′′
i ⊆

⎧⎪⎨⎪⎩σ′ | σ′ ∼ σ, σ ∈
⋃︂
j∈I

σj=σi

Tj

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

So (A2 ◦A1)(c) = (A2 ◦A1 ◦A2)(c), as we wanted.

We present here a small example to show how the use of the past-merging abstraction helps in the

computation.

64

Chapter 4. Injecting Abstraction 4.2. Partition-based abstraction

Example 4.25. Consider again the transition system of Example 4.12:

a b

c d

e

f g

and consider the following partition ∼:

a, b ↦→ [a]∼ = init c ↦→ [c]∼ d ↦→ [d]∼ e ↦→ [e]∼ f, g ↦→ [f]∼ = good

which yields the following abstract transition system:

init

[c]∼ [d]∼

[e]∼

good

Assume we are interested in checking whether the property φ = AF good holds in the initial states of

the system: to do so we need to compute J⌊AF good⌋K♯Ad♯, where d♯ = α({⟨a,∅⟩ , ⟨b,∅⟩}) = {⟨init,∅⟩}.

Using Definition 3.8 we can obtain that the mocha program associated with φ is

⌊φ⌋ = ⌊AF good⌋ = ¬good?; push; (post;¬good?)∗; loop?; pop

The interesting part in this discussion is the computation of the abstract semantics J(post;¬good?)∗K♯A
on JpushK♯A(d

♯) = {⟨init,∅⟩ :: ⟨init,∅⟩} = {⟨init,∅⟩ :: S0}. We have that

J(post;¬good?)∗K♯A({⟨init,∅⟩ :: S0}) =
⋁︂
n∈N

{︂(︂
J(post;¬good?)∗K♯A

)︂n
{⟨init,∅⟩ :: S0}

}︂
Hence (we omit the indication of the ∼ in the class):

•
(︂
J(post;¬good?)∗K♯A

)︂0
{⟨init,∅⟩ :: S0} = {⟨init,∅⟩ :: S0}

•
(︂
J(post;¬good?)∗K♯A

)︂1
{⟨init,∅⟩ :: S0} = {⟨[c], {init}⟩ :: S0, ⟨[d], {init}⟩ :: S0}

•
(︂
J(post;¬good?)∗K♯A

)︂2
{⟨[c], {init}⟩ :: S0, ⟨[d], {init}⟩ :: S0} = {⟨[e], {init, [c], [d]}⟩ :: S0}

•
(︂
J(post;¬good?)∗K♯A

)︂3
{⟨[e], {init, [c], [d]}⟩ :: S0} =

˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂
{⟨good, {init, [c], [d], , [e]}⟩ :: S0} = ∅

65

4.3. Non partition-based abstraction Chapter 4. Injecting Abstraction

4.3 Non partition-based abstraction

We present here a different way to lift Galois connection (αΣ,Σ, AΣ, γΣ) on states to stacks: we

consider an abstraction on states that is not necessarily a partition (e.g. Intervals for the Integers

domain), and we abstract it in a coarse way, in which we lose the correspondence between the states,

their pasts and the stacks. For each level of the stack (inductively) we group together all the current

states and all the traces, and we apply the abstraction to these two sets: thus an abstract element will

be a single stack.

4.3.1 Galois Connection

As mentioned above, the abstraction will be built in two steps, and by induction on the length n of

stacks of the concrete element cn. In the following we indicate with σ♯, ρ♯ ∈ AΣ elements of the abstract

domain of states AΣ, and we indicate by ⊥Σ the bottom element of AΣ. A path in the abstract domain

is a pair
⟨︁
σ♯, ρ♯

⟩︁
, and a stack S♯(n+1) has the form

S♯(n+1) =
⟨︁
σ♯, ρ♯

⟩︁
:: S♯n

In the analysis we will see this abstraction is indeed very coarse grained, we think however it will be

worth to carry out some experiments to see how it performs in practice, and how refinement can help us

improve it.

Definition 4.26 (Abstract domain, abstract element). The abstract domain is

A =
⋃︂
n

An An = (AΣ \ {⊥Σ} ×AΣ) ∪ {⊥}

An abstract element is an abstract stack of some length n:

an =
⟨︁
σ♯, ρ♯

⟩︁
:: S♯n

We now define the abstraction α and the concretization γ by induction on the length n of the stack.

The abstraction is build by means of two auxiliary functions. The first function un is meant to flatten

the stack, by grouping all the states and all the traces pairwise, then the abstraction is performed on the

collected stack, and acts component-wise as the function αΣ of the Galois connection on states.

Definition 4.27 (Auxiliary functions un, αn). The map un is inductively defined as follows:

u1 : C1 → (2Σ × 2Σ) un : Cn → (2Σ × 2Σ)× (2Σ × 2Σ)(n−1)

u1 ({⟨σj , Tj⟩ | j ∈ J}) =

⟨︄⋃︂
j∈J

{σj} ,
⋃︂
j∈J

Tj

⟩︄

un

(︂{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂)︂

=

⟨︄⋃︂
i∈I

{σi} ,
⋃︂
i∈I

Ti

⟩︄
:: un−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

The map αn is inductively defined as follows:

α1 : 2Σ × 2Σ → A1 αn : (2Σ × 2Σ)× (2Σ × 2Σ)(n−1) → An

66

Chapter 4. Injecting Abstraction 4.3. Non partition-based abstraction

α1

⎛⎝⟨︄⋃︂
j∈J

{σj} ,
⋃︂
j∈J

Tj

⟩︄⎞⎠ =

⟨︄
αΣ

⎛⎝⋃︂
j∈J

{σj}

⎞⎠ , αΣ

⎛⎝⋃︂
j∈J

Tj

⎞⎠⟩︄

αn

(︄⟨︄⋃︂
i∈I

{σi} ,
⋃︂
i∈I

Ti

⟩︄
:: un−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄)︄
=

=

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1 ◦ un−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

Definition 4.28 (Abstraction map). The abstraction map αn : Cn → An is defined as αn = αn ◦ un.

Definition 4.29 (Concretization map). The concretization map γn : An → Cn is inductively defined

as

γ1
(︁⟨︁
σ♯, ρ♯

⟩︁)︁
=
{︁
⟨σ, T ⟩ | σ ∈ γΣ(σ

♯), T ⊆ γΣ(ρ
♯)
}︁

γn

(︂⟨︁
σ♯, ρ♯

⟩︁
:: S♯(n−1)

)︂
=
{︂
⟨σ, T ⟩ :: S | σ ∈ γΣ(σ

♯), T ⊆ γΣ(ρ
♯), S ∈ γn−1(S

♯(n−1))
}︂

Proposition 4.30. The above construction (α,C,A, γ) is a Galois Connection.

Proof. We give the proof by induction on the length n of the stacks, by showing that each γn ◦ αn is a

closure. First let c = {⟨σi, Ti⟩ :: Si | i ∈ I}, then we explicitly compute

αn(c) =

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{Si}

)︄

(γn ◦ αn)(c) =

{︄
⟨σ, T ⟩ :: S | σ ∈ γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄
,

T ⊆ γΣ

(︄
αΣ

(︄⋃︂
i∈I

Ti

)︄)︄
, S ∈ γn−1

(︄
αn−1

(︄⋃︂
i∈I

{Si}

)︄)︄}︄

which will be useful in the following.

(n = 1) (Monotone) Let c1, c2 ∈ C1 be such that c1 ≤C c2, where

c1 = {⟨σi, Ti⟩ | i ∈ I} c2 = {⟨σj , Tj⟩ | j ∈ J}

and c1 ≤C c2 means that for all ⟨σ, T ⟩ ∈ c1 we have ⟨σ, T ⟩ ∈ c2. Now by definition

(γ1 ◦ α1)(c1) =

{︄
⟨σ, T ⟩ | σ ∈ γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄
, T ⊆ γΣ

(︄
αΣ

(︄⋃︂
i∈I

Ti

)︄)︄}︄

(γ1 ◦ α1)(c2) =

⎧⎨⎩⟨σ, T ⟩ | σ ∈ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

{σj}

⎞⎠⎞⎠ , T ⊆ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

Tj

⎞⎠⎞⎠⎫⎬⎭
Then, since by hypothesis c1 ≤C c2, we have

⋃︂
i∈I

{σi} ⊆
⋃︂
j∈J

{σj}
⋃︂
i∈I

Ti ⊆
⋃︂
j∈J

Tj

67

4.3. Non partition-based abstraction Chapter 4. Injecting Abstraction

and since by hypothesis γΣ ◦ αΣ is a closure we have

σ ∈ γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄
⊆ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

{σj}

⎞⎠⎞⎠
T ⊆ γΣ

(︄
αΣ

(︄⋃︂
i∈I

Ti

)︄)︄
⊆ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

Tj

⎞⎠⎞⎠

hence if ⟨σ, T ⟩ ∈ (γ1 ◦ α1)(c1) then ⟨σ, T ⟩ ∈ (γ1 ◦ α1)(c2).

(Idempotent) Let c = c1 of the previous computation, then we can explicitly compute (α1◦γ1◦α1)(c)

as:

(α1 ◦ γ1 ◦ α1)(c) =

⟨︄
αΣ

(︄
γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄)︄
, αΣ

(︄
γΣ

(︄
αΣ

(︄⋃︂
i∈I

Ti

)︄)︄)︄⟩︄

=

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
= α1(c)

since by hypothesis γΣ◦αΣ is a closure. Then since (α1◦γ1◦α1)(c) = α1(c), it follows that (γ1◦α1)
2(c) =

(γ1 ◦ α1 ◦ γ1 ◦ α1)(c) = (γ1 ◦ α1)(c).

(Extensive) Let ⟨σ, T ⟩ ∈ c, then ⟨σ, T ⟩ ∈ (γ1 ◦ α1)(c) since σ ∈ γΣ
(︁
αΣ

(︁⋃︁
i∈I {σi}

)︁)︁
and T ⊆

γΣ
(︁
αΣ

(︁⋃︁
i∈I Ti

)︁)︁
since by hypothesis γΣ ◦ αΣ is a closure.

(n− 1 ⇒ n) (Monotone) Let c1, c2 ∈ Cn be such that c1 ≤C c2, where

c1 =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

c2 =
{︂
⟨σj , Tj⟩ :: S(n−1)

j | j ∈ J
}︂

and c1 ≤C c2 means that for all ⟨σ, T ⟩ :: S ∈ c1 we have ⟨σ, T ⟩ :: S ∈ c2. Now by definition

(γn ◦ αn)(c1) =

{︄
⟨σ, T ⟩ :: S | σ ∈ γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄
,

T ⊆ γΣ

(︄
αΣ

(︄⋃︂
i∈I

Ti

)︄)︄
, S ∈ γn−1

(︄
αn−1

(︄⋃︂
i∈I

{Si}

)︄)︄}︄

(γn ◦ αn)(c2) =

⎧⎨⎩⟨σ, T ⟩ :: S | σ ∈ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

{σj}

⎞⎠⎞⎠ ,

T ⊆ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

Tj

⎞⎠⎞⎠ , S ∈ γn−1

⎛⎝αn−1

⎛⎝⋃︂
j∈J

{Sj}

⎞⎠⎞⎠⎫⎬⎭
Then, since by hypothesis c1 ≤C c2, we have

⋃︂
i∈I

{σi} ⊆
⋃︂
j∈J

{σj}
⋃︂
i∈I

Ti ⊆
⋃︂
j∈J

Tj
⋃︂
i∈I

{Si} ⊆
⋃︂
j∈J

{Sj}

68

Chapter 4. Injecting Abstraction 4.3. Non partition-based abstraction

and since by hypothesis γΣ ◦ αΣ is a closure, and by inductive hypothesis γn−1 ◦ αn−1 is also a closure

we have

σ ∈ γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄
⊆ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

{σj}

⎞⎠⎞⎠
T ⊆ γΣ

(︄
αΣ

(︄⋃︂
i∈I

Ti

)︄)︄
⊆ γΣ

⎛⎝αΣ

⎛⎝⋃︂
j∈J

Tj

⎞⎠⎞⎠
S ∈ γn−1

(︄
αn−1

(︄⋃︂
i∈I

{Si}

)︄)︄
⊆ γn−1

⎛⎝αn−1

⎛⎝⋃︂
j∈J

{Sj}

⎞⎠⎞⎠

hence if ⟨σ, T ⟩ : S ∈ (γn ◦ αn)(c1) then ⟨σ, T ⟩ :: S ∈ (γn ◦ αn)(c2).

(Idempotent) Let c = c1 of the previous computation, then we can explicitly compute (αn ◦ γn ◦

αn)(c) as:

(αn ◦ γn ◦ αn)(c) =

⟨︄
αΣ

(︄
γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄)︄
, αΣ

(︄
γΣ

(︄
αΣ

(︄⋃︂
i∈I

Ti

)︄)︄)︄⟩︄

:: αn−1

(︄
γn−1

(︄
αn−1

(︄⋃︂
i∈I

{Si}

)︄)︄)︄

=

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{Si}

)︄
= αn(c)

since by hypothesis γΣ ◦ αΣ is a closure and by inductive hypothesis γn−1 ◦ αn−1 is also a closure. Then

since (αn ◦ γn ◦ αn)(c) = αn(c), it follows that (γn ◦ αn)
2(c) = (γn ◦ αn ◦ γn ◦ αn)(c) = (γn ◦ αn)(c).

(Extensive) Let ⟨σ, T ⟩ :: S ∈ c, then ⟨σ, T ⟩ :: S ∈ (γn ◦ αn)(c) since σ ∈ γΣ
(︁
αΣ

(︁⋃︁
i∈I {σi}

)︁)︁
and

T ⊆ γΣ
(︁
αΣ

(︁⋃︁
i∈I Ti

)︁)︁
since by hypothesis γΣ ◦ αΣ is a closure, and S ∈ γn−1

(︁
αn−1

(︁⋃︁
i∈I {Si}

)︁)︁
since

by inductive hypothesis γn−1 ◦ αn−1 is also a closure.

4.3.2 Abstract Semantics

We now compute the Best Correct Approximations for basic expressions and study under which

conditions on concrete elements we have local completeness. We will see that for the push and pop

operators we actually have global completeness.

69

4.3. Non partition-based abstraction Chapter 4. Injecting Abstraction

Jp?K♯nA computation Consider an =
⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1). Then we have:

Jp?K♯nA (a) = (αnJp?Knγn)(a) = (αnunJp?Knγn)
(︂⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1)

)︂
=

= (αnunJp?Kn)
(︂{︂

⟨σ, T ⟩ :: S | σ ∈ γΣ(σ
♯), T ⊆ γΣ(ρ

♯), S ∈ γn−1(S
♯(n−1))

}︂)︂
= αnun

(︂{︂
⟨σ, T ⟩ :: S | σ ∈ γΣ(σ

♯), σ |= p, T ⊆ γΣ(ρ
♯), S ∈ γn−1(S

♯(n−1))
}︂)︂

= αnun

(︂{︂
⟨σ, T ⟩ :: S | σ ∈ γΣ(σ

♯) ∩ p, T ⊆ γΣ(ρ
♯), S ∈ γn−1(S

♯(n−1))
}︂)︂

= αn

(︂⟨︁
γΣ(σ

♯) ∩ p, γΣ(ρ
♯)
⟩︁
:: un−1

(︂
γn−1

(︂
S♯(n−1)

)︂)︂)︂
=
⟨︁
αΣ

(︁
γΣ(σ

♯) ∩ p
)︁
, αΣγΣ(ρ

♯)
⟩︁
:: αn−1un−1

(︂
γn−1

(︂
S♯(n−1)

)︂)︂
=
⟨︁
αΣ

(︁
γΣ(σ

♯) ∩ p
)︁
, αΣγΣ(ρ

♯)
⟩︁
:: αn−1γn−1

(︂
S♯(n−1)

)︂
In order to have local completeness, we must check under which conditions αn ◦ Jp?Kn = Jp?K♯nA ◦ αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then

(αn ◦ Jp?Kn) cn = αn ({⟨σi, Ti⟩ :: Si | σi |= p, i ∈ I})

= αn ◦ un ({⟨σi, Ti⟩ :: Si | σi |= p, i ∈ I})

= αn

⎛⎝⟨︄(︄⋃︂
i∈I

{σi}

)︄
∩ p,

⋃︂
i∈I,σi|=p

Ti

⟩︄
:: un−1

⎛⎝ ⋃︂
i∈I,σi|=p

{︂
S
(n−1)
i

}︂⎞⎠⎞⎠
=

⟨︄
αΣ

(︄(︄⋃︂
i∈I

{σi}

)︄
∩ p

)︄
, αΣ

⎛⎝ ⋃︂
i∈I,σi|=p

Ti

⎞⎠⟩︄ :: αn−1 ◦ un−1

⎛⎝ ⋃︂
i∈I,σi|=p

{︂
S
(n−1)
i

}︂⎞⎠
(Jp?K♯nA ◦ αn)cn = Jp?K♯nA

(︄⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1 ◦ un−1

(︄⋃︂
i∈I

{︁
Sn−1
i

}︁)︄)︄

=

⟨︄
αΣ

(︄
γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄
∩ p

)︄
, αΣγΣαΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1γn−1αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

=

⟨︄
αΣ

(︄
γΣ

(︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄)︄
∩ p

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

Hence the issues to address to achieve local completeness are:

1. αΣ

(︁
γΣ
(︁
αΣ

(︁⋃︁
i∈I {σi}

)︁)︁
∩ p
)︁ ?
= αΣ

(︁(︁⋃︁
i∈I {σi}

)︁
∩ p
)︁

2. αΣ

(︂⋃︁
i∈I,σi|=p Ti

)︂
?
= αΣ

(︁⋃︁
i∈I Ti

)︁
3. αn−1

(︂⋃︁
i∈I,σi|=p

{︂
S
(n−1)
i

}︂)︂
= αn−1

(︂⋃︁
i∈I

{︂
S
(n−1)
i

}︂)︂
where 1. holds if p is expressible in the domain AΣ, since αγα = α, but in general 2. and 3. are not

true: the problem is that the abstraction with the union eliminates every relation between the current

state and its trace.

70

Chapter 4. Injecting Abstraction 4.3. Non partition-based abstraction

γ
(︁
σ♯
)︁

γ
(︁
ρ♯
)︁

T

T

σ

σ′

Figure 4.6: Visual representation for the Jloop?K♯A.

Jloop?K♯nA computation Consider an =
⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1). Then we have:

Jloop?K♯nA (a) = (αnJloop?Knγn)(a) = (αnunJp?nKγn)
(︂⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1)

)︂
=

= (αnunJloop?Kn)
(︂{︂

⟨σ, T ⟩ :: S | σ ∈ γΣ(σ
♯), T ⊆ γΣ(ρ

♯), S ∈ γn−1(S
♯(n−1))

}︂)︂
= αnun

(︂{︂
⟨σ, T ⟩ :: S | σ ∈ γΣ(σ

♯), σ ∈ T, T ⊆ γΣ(ρ
♯), S ∈ γn−1(S

♯(n−1))
}︂)︂

= αn

(︁⟨︁
γΣ(σ

♯) ∩ γΣ(ρ♯), γΣ(ρ♯)
⟩︁)︁

:: αn−1γn−1

(︂
S♯(n−1)

)︂
=
⟨︁
αΣ

(︁
γΣ(σ

♯) ∩ γΣ(ρ♯)
)︁
, αΣγΣ(ρ

♯)
⟩︁
:: αn−1γn−1

(︂
S♯(n−1)

)︂
Figure 4.6 illustrates the intuition behind the fact that the resulting abstract state is αΣ

(︁
γΣ(σ

♯) ∩ γΣ(ρ♯)
)︁
.

In order to have local completeness, we must check under which conditions αn ◦Jloop?Kn = Jloop?K♯nA ◦

αn. Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then

(αn ◦ Jloop?Kn) cn = αn ({⟨σi, Ti⟩ :: Si | σi ∈ Ti, i ∈ I})

= αn ◦ un ({⟨σi, Ti⟩ :: Si | σi ∈ Ti, i ∈ I})

= αn

⎛⎝⟨︄ ⋃︂
i∈I,σi∈Ti

{σi} ,
⋃︂

i∈I,σi∈Ti

Ti

⟩︄
:: un−1

⎛⎝ ⋃︂
i∈I,σi∈Ti

{︂
S
(n−1)
i

}︂⎞⎠⎞⎠
=

⟨︄
αΣ

⎛⎝ ⋃︂
i∈I,σi∈Ti

{σi}

⎞⎠ , αΣ

⎛⎝ ⋃︂
i∈I,σi∈Ti

Ti

⎞⎠⟩︄ :: αn−1

⎛⎝ ⋃︂
i∈I,σi∈Ti

{︂
S
(n−1)
i

}︂⎞⎠
(Jloop?K♯nA ◦ αn)cn = Jloop?K♯nA

(︄⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1 ◦ un−1

(︄⋃︂
i∈I

{︁
Sn−1
i

}︁)︄)︄

=

⟨︄
αΣ

(︄
γΣαΣ

(︄⋃︂
i∈I

{σi}

)︄
∩ γΣαΣ

(︄⋃︂
i∈I

Ti

)︄)︄
, αΣγΣαΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄

:: αn−1γn−1αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

=

⟨︄
αΣ

(︄
γΣαΣ

(︄⋃︂
i∈I

{σi}

)︄
∩ γΣαΣ

(︄⋃︂
i∈I

Ti

)︄)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

71

4.3. Non partition-based abstraction Chapter 4. Injecting Abstraction

hence the issues to address to achieve local completeness are

1. αΣ

(︁
γΣαΣ

(︁⋃︁
i∈I {σi}

)︁
∩ γΣαΣ

(︁⋃︁
i∈I Ti

)︁)︁ ?
= αΣ

(︂⋃︁
i∈I,σi∈Ti

{σi}
)︂

2. αΣ

(︁⋃︁
i∈I Ti

)︁ ?
= αΣ

(︂⋃︁
i∈I,σi∈Ti

Ti

)︂
3. αn−1

(︂⋃︁
i∈I

{︂
S
(n−1)
i

}︂)︂
?
= αn−1

(︂⋃︁
i∈I,σi∈Ti

{︂
S
(n−1)
i

}︂)︂
where in general 2. and 3. are not true. The condition 1. makes explicit the fact that already by

performing the union we could add a loop that is not there in the concrete, and this gets worsened by

using the abstraction on top of that.

JnextK♯nA computation Consider an =
⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1). Then we have:

JnextK♯nA (a) = (αnJnextKnγn)(a) = (αnunJnextKnγn)
(︂⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1)

)︂
=

= (αnunJnextKn)
(︂{︂

⟨σ, T ⟩ :: S | σ ∈ γΣ(σ
♯), T ⊆ γΣ(ρ

♯), S ∈ γn−1(S
♯(n−1))

}︂)︂
= αnun

(︂{︂
⟨σ′,∅⟩ :: S | σ ∈ γΣ(σ

♯), σ_σ′, S ∈ γn−1(S
♯(n−1))

}︂)︂

= α1

⎛⎜⎜⎝
⟨︄ ⋃︂

σ∈γΣ(σ♯)

σ _σ′

{σ′} ,∅

⟩︄⎞⎟⎟⎠ :: αn−1γn−1

(︂
S♯(n−1)

)︂

=

⟨︄
αΣ

⎛⎜⎜⎝ ⋃︂
σ∈γΣ(σ♯)

σ _σ′

{σ′}

⎞⎟⎟⎠ ,⊥

⟩︄
:: αn−1γn−1

(︂
S♯(n−1)

)︂

In order to have local completeness, we must check under which conditions αn ◦ JnextKn = JnextK♯nA ◦αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then

(αn ◦ JnextKn) cn = αn ({⟨σ′
i,∅⟩ :: Si | σi _σ′

i, i ∈ I})

= αn ◦ un ({⟨σ′
i,∅⟩ :: Si | σi _σ′

i, i ∈ I})

= αn

⎛⎜⎜⎝
⟨︄ ⋃︂

i∈I

σi _σ′
i

{σ′
i} ,∅

⟩︄
:: un−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄⎞⎟⎟⎠

=

⟨︄
αΣ

⎛⎜⎜⎝ ⋃︂
i∈I

σi _σ′
i

{σ′
i}

⎞⎟⎟⎠ ,⊥

⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

(JnextK♯nA ◦ αn)cn = JnextK♯nA

(︄⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︁
Sn−1
i

}︁)︄)︄

=

⟨︄
αΣ

⎛⎜⎜⎝ ⋃︂
σ∈γΣαΣ(

⋃︁
i∈I{σi})

σ _σ′

{σ′}

⎞⎟⎟⎠ ,⊥

⟩︄
:: αn−1

(︄⋃︂
i∈I

{︁
Sn−1
i

}︁)︄

72

Chapter 4. Injecting Abstraction 4.3. Non partition-based abstraction

Hence the issue to address to achieve local completeness is just

αΣ

⎛⎜⎜⎝ ⋃︂
i∈I

σi _σ′
i

{σ′
i}

⎞⎟⎟⎠ ?
= αΣ

⎛⎜⎜⎝ ⋃︂
σ∈γΣαΣ(

⋃︁
i∈I{σi})

σ _σ′

{σ′}

⎞⎟⎟⎠
which in this case relies heavily on the effect of the abstraction αΣ other than that of the unification:

in the left-hand side we only abstract on the proper successors of the states of the concrete, while on the

right-hand side we abstract on the successors of all the elements that belong to the closure of the union

of the concrete states.

JpostK♯nA computation Consider an =
⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1). Then we have:

JpostK♯nA (a) = (αnJpostKnγn)(a) = (αnunJpostKnγn)
(︂⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1)

)︂
=

= (αnunJpostKn)
(︂{︂

⟨σ, T ⟩ :: S | σ ∈ γΣ(σ
♯), T ⊆ γΣ(ρ

♯), S ∈ γn−1(S
♯(n−1))

}︂)︂
= αnun

(︂{︂
⟨σ′, T ∪ {σ}⟩ :: S | σ ∈ γΣ(σ

♯), σ_σ′, T ⊆ γΣ(ρ
♯), S ∈ γn−1(S

♯(n−1))
}︂)︂

= α1

⎛⎝⟨︄ ⋃︂
σ∈γΣ(σ♯),σ _σ′

{σ′} , γΣ(ρ♯) ∪ γΣ(σ♯)

⟩︄⎞⎠ :: αn−1γn−1

(︂
S♯(n−1)

)︂

=

⟨︄
αΣ

⎛⎝ ⋃︂
σ∈γΣ(σ♯),σ _σ′

{σ′}

⎞⎠ , αΣ

(︁
γΣ(σ

♯) ∪ γΣ(ρ♯)
)︁⟩︄

:: αn−1γn−1

(︂
S♯(n−1)

)︂

In order to have local completeness, we must check under which conditions αn ◦ JpostKn = JpostK♯nA ◦αn.

Consider cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then

(αn ◦ JpostKn) cn = αn ({⟨σ′
i, Ti ∪ {σi}⟩ :: Si | σi _σ′

i, i ∈ I})

= αn ◦ un ({⟨σ′
i, Ti ∪ {σi}⟩ :: Si | σi _σ′

i, i ∈ I})

= αn

⎛⎝⟨︄ ⋃︂
i∈I,σi _σ′

i

{σ′
i} ,
⋃︂
i∈I

Ti ∪ {σi}

⟩︄
:: un−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄⎞⎠
=

⟨︄
αΣ

⎛⎝ ⋃︂
i∈I,σi _σ′

i

{σ′
i}

⎞⎠ , αΣ

(︄⋃︂
i∈I

Ti ∪ {σi}

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

(JpostK♯nA ◦ αn)cn = JpostK♯nA

(︄⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︁
Sn−1
i

}︁)︄)︄

=

⟨︄
αΣ

⎛⎜⎜⎝ ⋃︂
σ∈γΣαΣ(

⋃︁
i∈I{σi})

σ _σ′

{σ′}

⎞⎟⎟⎠ , αΣ

(︄
γΣαΣ

(︄⋃︂
i∈I

{σi}

)︄
∪ γΣαΣ

(︄⋃︂
i∈I

Ti

)︄)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︁
Sn−1
i

}︁)︄

Hence the issues to address to achieve local completeness are

1. αΣ

(︃⋃︁
i∈I

σi _σ′
i

{σ′
i}
)︃

?
= αΣ

(︃⋃︁
σ∈γΣαΣ(

⋃︁
i∈I{σi})

σ _σ′
{σ′}

)︃
2. αΣ

(︁⋃︁
i∈I Ti ∪ {σi}

)︁ ?
= αΣ

(︁
γΣαΣ

(︁⋃︁
i∈I {σi}

)︁
∪ γΣαΣ

(︁⋃︁
i∈I Ti

)︁)︁
We can see that the condition 1. on the state is the same as that of JnextK♯A, and that condition 2.,

that refers to traces, depends more on the closure of the abstraction on states than on the unification.

73

4.3. Non partition-based abstraction Chapter 4. Injecting Abstraction

JpushK♯A computation Consider an =
⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1). Then we have:

JpushK♯A(an) = (αnJpushKnγn)(an) = (αnunJpushKγ)
(︂⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1)

)︂
=

= (αn+1un+1JpushK)
(︂{︂

⟨σ, T ⟩ :: S | σ ∈ γΣ(σ
♯), T ⊆ γΣ(ρ

♯), S ∈ γn−1(S
♯(n−1))

}︂)︂
= αn+1un+1

(︂{︂
⟨σ,∅⟩ :: ⟨σ, T ⟩ :: S | σ ∈ γΣ(σ

♯), T ⊆ γΣ(ρ
♯), S ∈ γn−1(S

♯(n−1))
}︂)︂

= α2

(︁⟨︁
γΣ(σ

♯),∅
⟩︁
::
⟨︁
γΣ(σ

♯), γΣ(ρ
♯)
⟩︁)︁

:: αn−1γn−1(S
♯(n−1))

=
⟨︁
αΣγΣ(σ

♯),⊥Σ

⟩︁
::
⟨︁
αΣγΣ(σ

♯), αΣγΣ(ρ
♯)
⟩︁
:: αn−1γn−1(S

♯(n−1))

Then global completeness always holds, since αn+1 ◦ JpushKn = JpushK♯nA ◦ αn always holds. Consider

cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then

(αn+1 ◦ JpushKn)cn = αn+1un+1 ({⟨σi,∅⟩ :: ⟨σi, Ti⟩} :: Si | i ∈ I)

= αn+1

(︄⟨︄⋃︂
i∈I

{σi} ,∅

⟩︄
::

⟨︄⋃︂
i∈I

{σi} ,
⋃︂
i∈I

Ti

⟩︄
:: un−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄)︄

=

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
,⊥Σ

⟩︄
::

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

(JpushK♯nA ◦ αn)cn = JpushK♯nA

(︄⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄)︄

=

⟨︄
αΣγΣαΣ

(︄⋃︂
i∈I

{σi}

)︄
,⊥Σ

⟩︄
::

⟨︄
αΣγΣαΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣγΣαΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄

:: αn−1γn−1αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

=

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
,⊥Σ

⟩︄
::

⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

JpopK♯A computation Consider an =
⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1). Then we have:

JpopK♯A(an) = (αn−1JpopKγ)(an) = (αn−1un−1JpopKγ)
(︂⟨︁
σ♯, T ♯

⟩︁
:: S♯(n−1)

)︂
=

= (αn−1un−1JpopK)
(︂{︂

⟨σ, T ⟩ :: S | σ ∈ γΣ(σ
♯), T ⊆ γΣ(ρ

♯), S ∈ γn−1(S
♯(n−1))

}︂)︂
= αn−1un−1

(︂{︂
S | S ∈ γn−1(S

♯(n−1))
}︂)︂

= αn−1un−1γn−1(S
♯)

= αn−1γn−1(S
♯)

74

Chapter 4. Injecting Abstraction 4.3. Non partition-based abstraction

a b

Figure 4.7: A simple example using the non-partition based abstraction (Ex. 4.31).

Then global completeness always holds, since αn−1 ◦ JpopKn = JpopK♯nA ◦ αn always holds. Consider

cn =
{︂
⟨σi, Ti⟩ :: S(n−1)

i | i ∈ I
}︂

, then

(αn−1 ◦ JpopKn)cn = αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

(JpopK♯nA ◦ αn)cn = JpopK♯nA

(︄⟨︄
αΣ

(︄⋃︂
i∈I

{σi}

)︄
, αΣ

(︄⋃︂
i∈I

Ti

)︄⟩︄
:: αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄)︄

= αn−1γn−1αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

= αn−1

(︄⋃︂
i∈I

{︂
S
(n−1)
i

}︂)︄

We introduce now a simple example in which αΣ = id to show that this kind of abstraction heavily

loses information, even when the underlying abstraction on states is the identity.

Example 4.31. Consider the transition system of Figure 4.7 with αΣ = id. We can see that the abstract

domain can successfully prove that the property φ = AF a holds: we show the relevant parts of the proof

derivation for the property in Figure 4.8 (where we have set S = ⟨b,∅⟩). Using Definition 3.8 we can

obtain that the mocha program associated with φ is

⌊φ⌋ = ⌊AF a⌋ = ⌊a⌋; push; (post; ⌊a⌋)∗; loop?; pop

= ¬a?; push; (post;¬a?)∗; loop?; pop

We can see that the four proof obligations CA
{⟨a,∅⟩,⟨b,∅⟩}(¬a?), CA

∅(loop?), CA
{⟨b,∅⟩::S}(post) and

CA
{⟨a,{b}⟩::S}(a?) are satisfied because the domain satisfies the conditions studied for the local complete-

ness (in all of these cases, the tail of the stack poses no issue): the conditions for a? are easily checked

since a is indeed expressible in AΣ = Σ and the condition on loop? is vacuously true on the empty set.

The condition on post is to be read as

CA
{⟨b,∅⟩::S}(post) ⇔ (A ◦ JpostK ◦A)({⟨b,∅⟩ :: S}) = (A ◦ JpostK)({⟨b,∅⟩ :: S})

which holds, since we have A({⟨b,∅⟩ :: S}) = {⟨b,∅⟩ :: S}, i.e. this set is representable in the abstract

domain.

We notice that, however, this simple abstraction is not globally complete. Let c = {⟨a,∅⟩ , ⟨b,∅⟩}

be the set of initial states and consider for example c′ = JpostK(c) = {⟨a, {b}⟩ , ⟨b, {a}⟩}. Then we have

75

4.3. Non partition-based abstraction Chapter 4. Injecting Abstraction

CA
{⟨a,∅⟩,⟨b,∅⟩}(¬a?)

⊢A [{⟨a,∅⟩ , ⟨b,∅⟩}] ¬a? [{⟨b,∅⟩}]
(trsf)

...
⊢A [{⟨b,∅⟩}] (push; (post;¬a?)∗; loop?; pop) [∅]

(seq)

⊢A [{⟨a,∅⟩ , ⟨b,∅⟩}] (¬a?; push; (post;¬a?)∗; loop?; pop) [∅]
(seq)

...
⊢A [{⟨b,∅⟩ :: S}] (post; a?)∗ [∅]

(it)

CA
∅(loop?)

⊢A [∅] loop? [∅]
(trsf)

⊢A [{⟨b,∅⟩ :: S}] (post; a?)∗; loop? [∅]
(seq)

CA
{⟨b,∅⟩::S}(post)

⊢A [{⟨b,∅⟩ :: S}] post [{⟨a, {b}⟩ :: S}]
(trsf)

CA
{⟨a,{b}⟩::S}(a?)

⊢A [{⟨a, {b}⟩ :: S}] a? [∅]
(trsf)

⊢A [{⟨b,∅⟩ :: S}] (post; a?) [∅] ∅ ⊆ A({⟨b,∅⟩ :: S})
(seq)

⊢A [{⟨b,∅⟩ :: S}] (post; a?)∗ [∅]
(it)

Figure 4.8: Parts of the proof tree for the property φ = AF a for the simple non-partition based example

(Ex. 4.31).

α(c′) = ⟨{a, b} , {a, b}⟩ and we can see that the loop? command is not complete on c′:

(Jloop?K♯A ◦ α)(c′) = Jloop?K♯A(⟨{a, b} , {a, b}⟩) = ⟨{a, b} , {a, b}⟩

(α ◦ Jloop?K)(c′) = α(∅) = ⊥

We reprise an example discussed before to compare the result of this abstraction with the one intro-

duced in Section 4.2, on which we will later show a small example of repair (Ex. 4.38).

Example 4.32. Consider again the transition system discussed in Examples 3.10 and 4.22:

a b

c

and consider the following abstraction αΣ, that let us distinguish b, c but identifies a with b:

αΣ({b}) = b αΣ({a, b}) = ab αΣ({c}) = c

with αΣ(∅) = ⊥, αΣ({a, c}) = {b, c} = {a, b, c} = ⊤. Hence the Hasse diagram of the abstract domain

lattice is represented in Figure 4.9 This abstraction introduces the same spurious loop of {a, b} on itself,

which introduces a spurious error alarm in the computation of φ′ = AF c. The proof obligation that fails

in the derivation tree is the same as Example 4.22:

CA
{⟨a,∅⟩,⟨b,∅⟩,⟨a,{b}⟩}(loop?)

⊢A [{⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}] loop? [∅]
(transfer)

76

Chapter 4. Injecting Abstraction 4.4. An outlook on Abstract Interpetation Repair

⊤

ab

b c

⊥

Figure 4.9: Hasse diagram for the non-partitioning abstraction αΣ (Ex. 4.32).

and we can compute

Jloop?K({⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}) = ∅

Jloop?Kγα({⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}) = Jloop?Kγ(⟨ab,b⟩)

= Jloop?K {⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩ , ⟨b, {b}⟩} ≠ ∅

4.4 An outlook on Abstract Interpetation Repair

One of the problems addressed in [29] is, roughly speaking, that of deriving the most abstract domain

which allows one to decide program correctness without raising false alarms. A key notion is that of a

complete abstract domain, which, however, is intrinsically a global notion: i.e. it aims at ensuring the

absence of false alarms for all possible inputs. A complete abstract domain for a given transfer function

f can be obtained by constructing the complete shell with respect to f , which makes the abstract

domain complete for f on all possible inputs. This typically results in a domain which is very close to

the concrete domain. The idea introduced with Abstract Interpretation Repair is to focus on a single

execution produced by the transfer function on some input of interest.

Repair. Whenever the current abstract domain is not precise enough to prevent false-alarms, AIR can

be used to optimally refine the domain locally to the inputs of interest to remove these false-alarms.

The general scenario involves a composite transfer function f = fn ◦ · · · ◦ f1 which models the sequential

composition of f1, . . . , fn : C → C, a concrete input c and a correctness specification a for which the aim

is to decide if f(c) ≤ a or not. In Abstract Interpretation we select an abstract domain A such that a is

expressible in A and then we perform the check of the validity in the abstract domain, namely we check

that f ♯Aα(c) ≤A a holds, where f ♯A = fAn ◦ · · · ◦ fA1 and each fAi is the best correct approximation of fi in

A, i.e. fAi = α ◦ fi ◦ γ.

If the specification is verified in the abstract domain we can conclude by soundness that it is also

verified in the concrete domain; on the other hand if it is not verified, if f ♯ ◦ α(c) = α ◦ f(c), then from

f ♯Aα(c) ̸≤A a we can conclude that the specification is not verified in the concrete domain.

77

4.4. An outlook on Abstract Interpetation Repair Chapter 4. Injecting Abstraction

Definition 4.33 (Domain Refinements). [29, Sec. 3] Given A ∈ Abs(C) and N ⊆ C, we define the

least refinement of A including the new elements in N as

A⊞N = M(γA(A) ∪N)

where M denotes the Moore closure (Def. 2.5)

Remark 4.34 (Pointed refinement). A special case happens when refinement happens adding only one

new element, i.e. N = {z}, and in this case we write Az = A ⊞ {z} and we have Az(c) = z ∧ A(c) if

c ≤ z, Az(c) = c otherwise. The Az is the pointed refinement of A.

That of pointed refinement is a core notion, since we want to repair to achieve completeness by adding

the minimum number of new abstract points. The minimal refinement would be the exact shell, that

may not exists ([29, Ex. 4.6]), so we turn our focus on pointed refinements. In particular [29, Lemma

4.7] illustrates which pointed refinements may achieve local completeness. Then the authors introduce

the novel definition of pointed shell refinement on abstract domains.

Definition 4.35 (Pointed Shells). [29, Def. 4.8] Let f : C → C be monotone, A ∈ Abs(C) and c ∈ C.

The pointed locally complete shell (pointed shell for short) of A in c exists when

max
(︁{︁
x ∈ C | x ≤ A(c), CAx

c (f)
}︁)︁

= {u}

and, in such a case, the pointed shell is Au ∈ Abs(C).

Then [29, Th. 4.9] shows how to construct the pointed shell, when it exists.

Definition 4.36 (Local completeness set). [29, Def. 4.3] Let f : C → C, A ∈ Abs(C) and c ∈ C. The

local completeness set LA
c,f ⊆ C is defined as

LA
c,f = {x ∈ C | x ≤ A(c), f(x) ≤ Af(c)}

Theorem 4.37. [29, Th. 4.9] Let f : C → C, A ∈ Abs(C), c ∈ C and let u =
⋁︁

LA
c,f . If f is monotone

then CAu
c (f) if and only if Au is the pointed shell of A for f on c, and if f is additive then CAu

c (f) if

and only if (f(c) ≤ u⇒ f(u) ≤ u).

The theorem implies that for an additive function f (such as, for example, the collecting semantics),

and a new concrete element u =
⋁︁
LA
c,f , the pointed shell of A exists when either f(c) ̸≤ u or f(u) ≤ u,

and in that case Au is precisely the pointed shell.

Forward Repair. The forward repair strategy works by processing the local completeness proof obli-

gations regarding each fi that combined ensure the completeness of the composite transfer function f .

Let ck = (fk−1 ◦ . . . f1)(c) and c1 = c, then the equality f ♯AA(c) = A(f(c)) comes as consequence of the

n local completeness proof obligations

∀k ∈ [1, n] (A ◦ fk)(ck) = (A ◦ fk ◦A)(ck)

These proof obligations are processed in increasing order, and as soon as the smallest index k such that

the proof obligation is violated is found, the domain A gets repaired with the pointed shell Au and the

78

Chapter 4. Injecting Abstraction 4.4. An outlook on Abstract Interpetation Repair

analysis starts again on the new domain. The element added is u = ∨LA
ck,fk

, exploiting Theorem 4.37,

when it exists, else ck is added.

Forward repair stops when the obtained domain is precise enough to prove the correctness of the

specification or such that all the local completeness requirements are met. The worst case happens when

the specification is not correct, because all local completeness equations must be processed and all ck

must be computed.

A comment on backward repair. Forward repair is not the only possible approach: in the article the

authors introduce also a backward repair strategy, which focuses on weakest liberal preconditions (instead

of strongest postconditions ck, as the forward procedure does). The two strategies compute the pointed

shells for different concrete elements, resulting in general in different refined domains. While the forward

repair strategy is easier to formulate, since it is evident its link with the underlying Local Completeness

Logic, the backward repair has some prominent strengths: it mainly operates on the abstract domain

and not on concrete elements, and successive repairs can be don along the existing abstract computation

(so there is no need to redo the abstract interpretation, as in the case of the forward repair).

Example 4.38. Consider the abstraction introduced in Example 4.32, and consider the proof obligation

that fails because CA
{⟨a,∅⟩,⟨b,∅⟩,⟨a,{b}⟩}(loop?) does not hold. If we were to perform the repair on this

domain, the element we need to add to A1 is, letting c′ = {⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}:

u =
⋁︂

LA
c,Jloop?K =

⋁︂{︁
x ∈ C1 | x ≤ γα(c′), loop?(x) ≤ γαJloop?K(c′)

}︁
=
⋃︂
X ⊆ Σ× 2Σ | X ⊆ {⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩ , ⟨b, {b}⟩} , Jloop?K(X) = ∅

= {⟨a,∅⟩ , ⟨b,∅⟩ , ⟨a, {b}⟩}

Notice that this refinement happens on the stack domain, not on the underlying domain of states.

79

4.4. An outlook on Abstract Interpetation Repair Chapter 4. Injecting Abstraction

80

Conclusion

We devised a framework that lets us encode the problem of Model Checking ACTL formulae on finite

transition systems as programs in a novel core language, called mocha (Model Checking as Abstract

Interpretation). The encoding of an ACTL formula φ is realised in a way that the semantics of the

program ⌊φ⌋ computed on a state σ is the empty set if and only if the property holds on that state.

If this is not the case, i.e. the property does not hold, the state is returned as counterexample. More

generally, when ⌊φ⌋ is executed on a set of states V it returns exactly the subset of states {σ ∈ V | σ |̸= φ}

for which φ does not hold. The language actually operates on a domain of stacks of finite length, to

allow for recursive verification of nested formulae and to maintain an abstracted version of the traversed

path in the form of set of traversed states.

This encoding allows one to view Model Checking as an instance of program verification in order

to allow for the reuse of the vast theory and toolset of Abstract Interpretation. The thesis focuses on

ACTL, the universal fragment of the temporal logic CTL, which admits existential counterexamples.

The idea of encoding the Model Checking problem in a program verification task was inspired by the

novel approach to an algorithmic way of refining abstract domains to achieve local, instead of global,

completeness introduced in [29]. Hence, after building a concrete setup for the computation of coun-

terexamples different abstractions are introduced which are to be intended in the framework of Local

Completeness Logic [32].

We discuss two possible ways of lifting abstractions of the states to abstractions on the stacks. The

first technique applies to partition-based abstractions (equivalences on the set of states). This is in line

to what is done in the CEGAR approach. The second abstraction applies to general abstractions on the

power set of states.

We also consider a "basic" abstraction which can be actually shown to be complete for the fragment

of the mocha language used for encoding ACTL. Thanks to a simple but effective result about the

possibility of combining complete and locally complete abstractions preserving local completeness, this

can be possibly used in combination with partition abstraction.

Development directions. The work in this thesis opens the way to a number of future developments

both on the theoretical and practical side. The thesis focuses on ACTL, the fragment of CTL∗ where only

universal quantification on paths is admitted and temporal operators are always paired with quantifica-

tions. A very natural direction of further research thus consists in trying to deal with wider fragments of

the logic. The first natural candidate would be ACTL∗, where the second restriction mentioned above is

81

Conclusion

lifted, i.e. (universal) quantifications and temporal operators can be used independently. The study of

ACTL∗ could open the way of framing CEGAR as an instance of this technique. Moreover, the semantics

could be enriched to generate counterexamples that are linear traces or trees for the selected states, i.e.

to not only find the states in which the property does not hold, but also to extract the reason why it

fails. As it happens in the CEGAR approach this could be useful in designing the repair (see below).

Note that this would properly generalise CEGAR, which can only deal with linear counterexamples.

One could consider the implementation of the technique, taking into account problems related to the

efficient representation of abstract domains and operations. This could allow experimenting with the

different ways of lifting the abstraction and including the usage of the repair by Abstract Interpretation.

82

Bibliography

[1] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun. ACM 12.10

(1969), pp. 576–580. doi: 10.1145/363235.363259.

[2] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints”. In: Conference Record of

the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California,

USA, January 1977. Ed. by Robert M. Graham, Michael A. Harrison, and Ravi Sethi. ACM, 1977,

pp. 238–252. doi: 10.1145/512950.512973.

[3] Patrick Cousot and Radhia Cousot. “Systematic Design of Program Analysis Frameworks”. In:

Conference Record of the Sixth Annual ACM Symposium on Principles of Programming Languages,

San Antonio, Texas, USA, January 1979. Ed. by Alfred V. Aho, Stephen N. Zilles, and Barry K.

Rosen. ACM Press, 1979, pp. 269–282. doi: 10.1145/567752.567778.

[4] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. “Automatic Verification of Finite State

Concurrent Systems Using Temporal Logic Specifications: A Practical Approach”. In: Conference

Record of the Tenth Annual ACM Symposium on Principles of Programming Languages, Austin,

Texas, USA, January 1983. Ed. by John R. Wright et al. ACM Press, 1983, pp. 117–126. doi:

10.1145/567067.567080.

[5] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”. In: IEEE Trans.

Computers 35.8 (1986), pp. 677–691. doi: 10.1109/TC.1986.1676819.

[6] Kim Guldstrand Larsen and Bent Thomsen. “A Modal Process Logic”. In: Proceedings of the Third

Annual Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8,

1988. IEEE Computer Society, 1988, pp. 203–210. doi: 10.1109/LICS.1988.5119.

[7] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model Checking and Abstraction”. In:

ACM Trans. Program. Lang. Syst. 16.5 (1994), pp. 1512–1542. doi: 10.1145/186025.186051.

[8] Claire Loiseaux et al. “Property Preserving Abstractions for the Verification of Concurrent Sys-

tems”. In: Formal Methods Syst. Des. 6.1 (1995), pp. 11–44. doi: 10.1007/BF01384313.

[9] Dennis Dams, Rob Gerth, and Orna Grumberg. “Abstract Interpretation of Reactive Systems”. In:

ACM Trans. Program. Lang. Syst. 19.2 (1997), pp. 253–291. doi: 10.1145/244795.244800.

[10] Dexter Kozen. “Kleene Algebra with Tests”. In: ACM Trans. Program. Lang. Syst. 19.3 (1997),

pp. 427–443. doi: 10.1145/256167.256195.

83

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567067.567080
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/BF01384313
https://doi.org/10.1145/244795.244800
https://doi.org/10.1145/256167.256195

Bibliography Bibliography

[11] Gérard Le Lann. “An analysis of the Ariane 5 flight 501 failure-a system engineering perspective”.

In: 1997 Workshop on Engineering of Computer-Based Systems (ECBS ’97), March 24-28, 1997,

Monterey, CA, USA. IEEE Computer Society, 1997, pp. 339–246. doi: 10.1109/ECBS.1997.

581900.

[12] Ph. Lacan et al. “ARIANE 5 - The Software Reliability Verification Process”. In: DASIA 98 - Data

Systems in Aerospace. Ed. by B. Kaldeich-Schürmann. Vol. 422. ESA Special Publication. July

1998, p. 201.

[13] Patrick Cousot and Radhia Cousot. “Temporal Abstract Interpretation”. In: POPL 2000, Proceed-

ings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Boston, Massachusetts, USA, January 19-21, 2000. Ed. by Mark N. Wegman and Thomas W.

Reps. ACM, 2000, pp. 12–25. doi: 10.1145/325694.325699.

[14] Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. “Making abstract interpretations

complete”. In: J. ACM 47.2 (2000), pp. 361–416. doi: 10.1145/333979.333989.

[15] Francesco Buccafurri et al. “On ACTL Formulas Having Linear Counterexamples”. In: J. Comput.

Syst. Sci. 62.3 (2001), pp. 463–515. doi: 10.1006/jcss.2000.1734.

[16] David Schmidt. “Binary Relations for Abstraction and Refinement”. In: (Jan. 2001).

[17] Armin Biere et al. “Bounded model checking”. In: Adv. Comput. 58 (2003), pp. 117–148. doi:

10.1016/S0065-2458(03)58003-2.

[18] Edmund M. Clarke et al. “Counterexample-guided abstraction refinement for symbolic model check-

ing”. In: J. ACM 50.5 (2003), pp. 752–794. doi: 10.1145/876638.876643.

[19] Orna Grumberg et al. “When not losing is better than winning: Abstraction and refinement for the

full mu-calculus”. In: Inf. Comput. 205.8 (2007), pp. 1130–1148. doi: 10.1016/j.ic.2006.10.009.

[20] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008. isbn: 978-

0-262-02649-9.

[21] Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. “Analyzing Program Analyses”.

In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. Ed. by Sriram K. Raja-

mani and David Walker. ACM, 2015, pp. 261–273. doi: 10.1145/2676726.2676987.

[22] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: CoRR abs/1801.01203

(2018). arXiv: 1801.01203.

[23] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: 27th USENIX Security

Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. Ed. by William

Enck and Adrienne Porter Felt. USENIX Association, 2018, pp. 973–990.

[24] Antoine Miné. Static Inference of Numeric Invariants by Abstract Interpretation. Course Notes,

Université Pierre et Marie Curie, Paris. 2018.

84

https://doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1145/325694.325699
https://doi.org/10.1145/333979.333989
https://doi.org/10.1006/jcss.2000.1734
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1145/876638.876643
https://doi.org/10.1016/j.ic.2006.10.009
https://doi.org/10.1145/2676726.2676987
https://arxiv.org/abs/1801.01203

Bibliography Bibliography

[25] Patrick Cousot. “Calculational Design of a Regular Model Checker by Abstract Interpretation”.

In: Theoretical Aspects of Computing - ICTAC 2019 - 16th International Colloquium, Hammamet,

Tunisia, October 31 - November 4, 2019, Proceedings. Ed. by Robert M. Hierons and Mohamed

Mosbah. Vol. 11884. Lecture Notes in Computer Science. Springer, 2019, pp. 3–21. doi: 10.1007/

978-3-030-32505-3_1.

[26] Igor Konnov. “Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (eds):

Handbook of model checking - Springer International Publishing AG, Cham, Switzerland, 2018”.

In: Formal Aspects Comput. 31.4 (2019), pp. 455–456. doi: 10.1007/s00165-019-00486-z.

[27] Paolo Baldan, Barbara König, and Tommaso Padoan. “Abstraction, Up-To Techniques and Games

for Systems of Fixpoint Equations”. In: 31st International Conference on Concurrency Theory,

CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference). Ed. by Igor Konnov

and Laura Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020,

25:1–25:20. doi: 10.4230/LIPIcs.CONCUR.2020.25.

[28] Peter W. O’Hearn. “Incorrectness logic”. In: Proc. ACM Program. Lang. 4.POPL (2020), 10:1–

10:32. doi: 10.1145/3371078.

[29] Roberto Bruni et al. “Abstract interpretation repair”. In: PLDI ’22: 43rd ACM SIGPLAN In-

ternational Conference on Programming Language Design and Implementation, San Diego, CA,

USA, June 13 - 17, 2022. Ed. by Ranjit Jhala and Isil Dillig. ACM, 2022, pp. 426–441. doi:

10.1145/3519939.3523453.

[30] Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. “Partial (In)Completeness in ab-

stract interpretation: limiting the imprecision in program analysis”. In: Proc. ACM Program. Lang.

6.POPL (2022), pp. 1–31. doi: 10.1145/3498721.

[31] Roberto Giacobazzi and Francesco Ranzato. “History of Abstract Interpretation”. In: IEEE Ann.

Hist. Comput. 44.2 (2022), pp. 33–43. doi: 10.1109/MAHC.2021.3133136.

[32] Roberto Bruni et al. “A Correctness and Incorrectness Program Logic”. In: J. ACM 70.2 (2023),

15:1–15:45. doi: 10.1145/3582267.

85

https://doi.org/10.1007/978-3-030-32505-3_1
https://doi.org/10.1007/978-3-030-32505-3_1
https://doi.org/10.1007/s00165-019-00486-z
https://doi.org/10.4230/LIPIcs.CONCUR.2020.25
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3498721
https://doi.org/10.1109/MAHC.2021.3133136
https://doi.org/10.1145/3582267

	Introduction
	I Background
	Model Checking
	General Concepts
	Transition Systems
	Properties and Temporal Logics

	ACTL
	Syntax and Semantics
	CEGAR

	Abstract Interpretation
	General concepts
	Order theory
	Abstract Interpretation
	Kleene language

	Local Completeness
	Local Completeness Logic

	II Model Checking as Program Analysis
	Model Checking as Program Analysis
	ACTL Counterexamples
	Concrete Domain
	The mocha language
	ACTL formulae as regular commands

	Injecting Abstraction
	A local completeness-preserving abstraction
	Galois Connection
	Abstract Semantics
	A general result

	Partition-based abstraction
	Galois Connection
	Abstract Semantics
	Using the local-completeness preserving abstraction

	Non partition-based abstraction
	Galois Connection
	Abstract Semantics

	An outlook on Abstract Interpetation Repair

	Conclusion
	Bibliography

