
University of Padova

Department of Information Engineering

Master’s Degree in
Computer Engineering - Robotics and AI

Visual Anomaly Detection on circular
plastic parts using Generative

Adversarial Networks

Supervisor: Master candidate:
Prof. Alberto Pretto Nicola Rizzetto

Co-Supervisors: 2052417

Alberto Gottardi

Nicola Carlon

IT+Robotics

Academic Year 2022/2023
18 October 2023

Abstract

In recent years, automated quality control systems have been establi-

shed as the main method for anomaly detection, term which refers to

the process of identifying and flagging any abnormality in the condi-

tion of the given components. Given their efficiency, many new me-

thods were developed, mainly exploiting Computer Vision algorithms,

but they have their limitations. In a similar way, many studies were

applied on Neural Networks and Machine Learning algorithms, with

the development of Convolutional Neural Networks, Transformers and

Generative Adversarial Networks (GANs). The objective of this the-

sis is to develop an automated quality control system exploiting the

generative and adversarial qualities of the current state-of-the-art me-

thods based on Neural Networks. The main tool used for this task is

the capability of the GANs to learn how a flawless input should look,

so that the pipeline can identify inputs with anomalies. The developed

solution was tested on a real world problem, aiming to identify cracks

and anomalies in plastic motor covers.

ii

Contents

1 Introduction 1

1.1 Anomaly Detection . 2

1.2 Proposed approach . 4

1.3 Real world application . 5

2 Anomaly Detection 7

2.1 Problem Statement . 7

2.2 Evaluation Metrics . 8

2.3 Traditional Methods . 10

2.3.1 Statistical Analysis . 10

2.3.2 Streaming Data . 11

2.3.3 Computer Vision . 11

2.4 Artificial Intelligence . 13

2.4.1 Machine Learning Methods 13

2.4.2 Deep Learning Methods 13

3 Theoretical Background 17

3.1 Generative Networks . 17

3.1.1 Autoencoders . 17

3.1.2 Variational Autoencoders 18

3.1.3 Generative Adversarial Networks (GAN) 19

3.1.4 Adversarial Autoencoders 20

3.2 State-of-the-Art . 21

3.2.1 AnoGAN . 22

3.2.2 EGBAD (Efficient GAN-Based Anomaly Detection) 22

3.2.3 GANomaly . 23

3.2.4 Skip-GANomaly . 24

iii

iv CONTENTS

4 Proposed Method 27

4.1 Hardware and Software configuration 27

4.2 Dataset management . 28

4.3 Image preprocessing . 29

4.3.1 Image cropping . 29

4.3.2 Image unwarping . 31

4.3.3 Image 4-split . 32

4.3.4 Image filtering . 32

4.4 Model training . 34

5 Experimental Setup 39

5.1 Parameters . 39

5.2 Skip-GANomaly . 40

5.2.1 Cropped image . 41

5.2.2 4-split . 41

5.2.3 Unwarping . 42

5.3 GANomaly . 49

5.3.1 Splitting . 50

5.3.2 Learning rate . 50

5.3.3 Triple loss weights . 51

5.3.4 Layer depth . 52

5.4 Results summary . 53

6 Conclusions 57

Bibliografia 59

Chapter 1

Introduction

Quality control is an indispensable aspect of industrial operations, encompassing

a spectrum of techniques and methodologies aimed at ensuring the consistent

production of high-quality products. Many companies have a human operator

perform quality control, manually examining each component. This is a repeti-

tive and stressful task for the operator, with the addition of slowing down the

production. For this reason many studies have gone on automated quality control

systems, which are usually faster and more accurate than a human operator. The

automated quality control systems can exploit Computer Vision, for example by

processing the image of the component and identify darker areas which may be

relative to a crack, or Machine Learning, by training the model to separate com-

pliant and anomalous samples. The modern industrial landscape is characterized

by heightened consumer expectations, stringent regulations, and intense global

competition. In this context, maintaining high-quality products is paramount

for industrial success. Industrial quality control, as a systematic and proactive

approach, plays a pivotal role in achieving and sustaining product excellence.

Also, industrial processes are becoming increasingly complex, relying on intricate

machinery and systems for efficient operation, reasons why anomalies down the

production line can cost a lot to the company, causing equipment failures or safety

hazards. Thus, a fast and accurate quality control system can be very profitable,

by reducing the wrongly compliant components and keeping the same pace as

the production line. There is also a big difference in detecting anomalies at the

beginning or at the end of a production line: for example, a company produces

multiple parts and assembles them in one final component: detecting anomalies

on the single parts is the most expensive way, because it needs a separate system

for each part, but guarantees a correct assembly and a compliant final component;

1

2 Chapter 1. Introduction

detecting anomalies on the final component costs less and guarantees a compliant

final component, but has a higher chance of risk, especially during the assembly

part, where some anomalous parts may break and can cause safety hazards.

Consequently, the development of effective anomaly detection methods has gar-

nered substantial attention in recent years, exploiting both computer vision al-

gorithms and machine and deep learning techniques.

1.1 Anomaly Detection

The detection of anomalies in a system is a problem found in various fields such as

data mining [20], cybersecurity [18], fraud detection [19], and quality control [21].

It involves identifying patterns or instances that deviate significantly from the

expected behavior within a dataset or system. These deviations are often referred

to as anomalies, outliers, novelties, or exceptions. The detection of anomalies is

a critical component of data-driven systems, as it helps identify issues, threats,

or opportunities that might otherwise go unnoticed in large datasets or complex

systems. The choice of technique and approach depends on the specific problem

domain, data characteristics, and the level of tolerance for false positives and

false negatives.

A practical example already cited is about cybersecurity, for the detection of

cyber attacks [18]. In this case the available data is the network activity between

computers, so it is dependent on the connection between users. The approach

discussed in the paper uses a Machine Learning model called Isolation Forest,

explained in Section 2.4.1, that exploit differences from the majority of data

points. This is a typology of the problem that does not tolerate false negatives,

because if it fails to detect a cyber attack the affected company may suffer huge

losses or shutdown of their internet services.

Another practical example is financial fraud detection [19], with available data

that varies from credit card fraud, insurance fraud to money laundering. Between

the proposed methods in the paper stand out the Hidden Markov Models, a

typology of stochastic processes that can express more complex processes than

traditional Markov models. Explained briefly, Hidden Markov Models exploit

Markov chains, a mathematical model that represents a system where transitions

between states occur based on certain probabilities, and the future state depends

only on its current state. The difference with traditional Markov models is the

use of both hidden states, that are states not directly observable and represent

1.1 Anomaly Detection 3

the underlying processes that generate the observed data based on the state

probability distribution, and observable outcomes, data points generated from

the hidden state as depicted in the scheme at Figure 1.1 [19].

Figure 1.1: Scheme of an Hidden Markov Model.

The paper proposes a credit card fraud detection system where normal tran-

sactions of an individual are used to train an HMM for each cardholder, and

subsequently incoming transactions are compared with their respective models,

and any transaction not accepted by the HMM with sufficiently high probability

is considered fraudulent. This typology of system must be careful with both false

positives, where an individual may have their credit card blocked from the bank

without reason, and false negatives, failing to detect an actual fraud.

The case discussed in this thesis falls in the quality control category, where a

company produces circular plastic motor covers and seals them on motors. The

sealing phase is where anomalies may form through cracks or deformations, and

the proposed solution has to identify them. This type of system must have a low

tolerance for false negatives, since a non-detected cracked motor cover can deve-

lop in a equipment failure for the motor and possible safety hazard, while also

being careful in not having too much false positives, discarding many actually

compliant covers.

The solution was discussed and studied in collaboration with IT+Robotics, a

company situated in Padua that produces hardware and software solutions for

Industrial Robotics, Computer Vision and 3D Quality Control.

4 Chapter 1. Introduction

1.2 Proposed approach

A fundamental component for anomaly detection is hardware accuracy, so that

the software can work with the best possible input. An example of this is a came-

ra that takes photos of the components to analyze, which should be as invariant

as possible to different lighting conditions, object movements and distance from

the component.

On the other hand, the software must offer an accurate detection of defective

components, highlighting the location of the anomalies if possible, and also en-

suring a fast processing time, so as not to slow down the production.

As already introduced, within recent years many methods for quality control have

been discovered, mainly using Computer Vision algorithms or Deep Learning mo-

dels. Since Computer Vision focuses on image processing, it relies on handcrafted

optical features, a method that tends to be more domain-specific [22]. Machine

and Deep Learning models, on the other hand, can learn which are the important

features, and can easily be trained on another dataset if the task changes.

However, these models have some drawbacks, such as dependence on image re-

solution and requiring a lot more computational power and training time than

traditional models. Another difficulty is the lack of behavior interpretability,

given the numerous layers and parameters of a Deep Learning model, while tra-

ditional models have explicitly defined features.

These are the reasons why many techniques have been improved or replaced

with newer Machine Learning and Deep Learning models, which need a substan-

tial number of images of anomalous and non-anomalous components, in order to

train and learn the difference between the two classes of components.

This thesis focuses on giving a solution to a real-world anomaly detection problem

based on the latest Deep Learning models, that exploit an input reconstruction

capability.

The main reason behind the choice of a Deep Learning model instead of a tra-

ditional one is the capability of learning end-to-end mappings from raw data

to classification or scores without the need for complex preprocessing or feature

extraction pipelines. This also comes with the challenge of needing a lot of com-

putational power and large labeled datasets, and while the first problem can be

mitigated through modern GPU hardware accelerators, finding anomalous sam-

ples for quality control can be a problem, but the solution will be explained in

Chapter 3.

1.3 Real world application 5

1.3 Real world application

As already introduced in Section 1.1, the proposed solution is going to be applied

to an already existing quality control pipeline. The system is composed of a ma-

chine that seals circular plastic covers on electric motors, heating up and pressing

said plastic covers on the motors, where it may happen that the machine presses

a cover that is not heated enough and cracks it. A camera is placed on top of

the line and it is programmed to capture one image for each processed cover, and

then the anomaly detection system has to evaluate if the current component is

defective or not.

The solution has to evaluate each component in less than a second, and is de-

manded to identify all defective covers.

The biggest challenge on this task is that the class of anomalous components

is not defined precisely: cracks and deformations can occur in an unpredictable

number and shapes, and on the other hand the anomaly can be so small and

undetectable that the component is deemed as compliant. Keeping in mind that

a compliant cover is illustrated in Figure 1.2a, which has no cracks and deforma-

tions but at best some scratches, some examples of this problem are explained

as follows: on Figure 1.2b we have very obvious and numerous anomalies, while

also 1.2c is part of anomalous samples, with a much less notable crack. The am-

biguity of the definition of anomalous samples can be explained through Figure

1.2d, where the small gray patch can both signify a chipping (then anomalous)

or just dirt (compliant).

The dataset used for the training of the model is also very unbalanced, becau-

se in this type of industrial applications occur much more compliant components

than anomalous ones, with less than 10% of the dataset made up of anomalies.

The ground truth of the dataset is also difficult to establish, because for this type

of anomaly detection there are no true labels, just estimated ones through other

softwares or human operators. In this case, IT+Robotics has already developed

an anomaly detection system in the past, which was used to obtain the ground

truth for the dataset, together with further analysis on the most difficult compo-

nents that even this method had problems classify.

Although the already developed method has a good accuracy, which was helpful

for the ground truth, it was decided to try a Deep Learning approach, especially

using generation and reconstruction techniques, to identify even the most difficult

anomalies.

6 Chapter 1. Introduction

(a) A non anomalous cover (b) A cover that has many anomalies

(c) A cover that has a crack difficult to
identify

(d) A cover that has a bruise which can
mean a chipping or just dirt

Figure 1.2: Example of compliant (a) and anomalous (b,c,d) covers

After the given introductions to the problem and solution, the thesis will be

explained in the following structure: Chapter 2 gives a theoretical background

on the latest Deep Learning models; Chapter 3 discusses the experimental setup,

preprocessing and training of the model; Chapter 4 presents the results of the

best obtained models, on both validation and test phases; Chapter 5 will finally

suggest some future work on how to improve the current solutions.

Chapter 2

Anomaly Detection

This chapter will explain the main details about the problem of Anomaly De-

tection and the state-of-the-art solutions using both Computer Vision and Deep

Learning.

2.1 Problem Statement

Anomaly detection pertains to the task of discerning unwanted samples in a large

dataset or system, these referred to as anomalies. The nature of these sample

can be various as such:

• Point Anomalies: individual data points that differ significantly from the

majority of the dataset, such as a defective component in a production line;

• Contextual Anomalies: samples that are context-specific and depend on

the surrounding data, such as analyzing the temperature in a city (30°C
is a high temperature, but it is considered normal if the city is in summer

times);

• Collective Anomalies: these anomalies involve a group of data points that

exhibit anomalous behavior when considered together but may not be ano-

malous individually.

Independently from their nature, anomalies are rarely explicitly marked, fact

that can make difficult to obtain labeled data, where in many real-world scenarios

can be expensive, time-consuming, or even impossible. This also usually leads to

a substantial imbalance in the dataset, where the number of anomalous samples

is often very limited w.r.t. the normal samples, fact that can be debilitating if the

7

8 Chapter 2. Anomaly Detection

solution uses a Machine or Deep Learning model. This can lead to models biased

towards normal instances and result in higher false negatives, where anomalies

are missed.

Given the low number of testing anomalies, an important role is filled by the

feature engineering, where selecting the right feature or representation for the

data is crucial for an effective detection and efficiency, especially in the case of

high dimensional data. This is also important if the solution has to operate in

dynamic environments, where the concept of what constitutes an anomaly can

change over time (anomalies that were once rare may become more common or

vice versa). Models must adapt or be robust to those changes, reason why feature

engineering is important.

The chosen model must also be robust to noisy data or data with missing values,

which can make it difficult to distinguish true anomalies from normal data. In

the real world application discussed in this thesis this is a very frequent problem,

where, as illustrated before, a small patch of dirt can be confused for a chipping

or, worse, a very narrow crack is deemed as a scratch. But on the other hand, if

our solution is too complex it becomes difficult to understand why these samples

where mislabeled, due to the many parameters.

Another important point is the correct selection of the threshold that separates

normal and anomalous samples, which is often subjective and can impact the

detection performance. This threshold is usually extracted from the model results,

obtained through particular metrics for anomaly detection, such as the F1-Score

or the ROC curve.

2.2 Evaluation Metrics

The most common way to evaluate a solution for Anomaly Detection in general is

through the calculation of Precision and Recall, which are bound to the definitions

of: False positive, or rejection of a true null hypothesis (e.g.: a normal cover

was identified as anomalous); and False negative, or non-rejection of a false null

hypothesis (example: a cracked cover was not identified).

With these concepts in mind, Precision is defined as the ratio between True

positives and total positives (fraction of relevant instances among the retrieved

instances), while Recall is the ratio between True positives and the sum of True

positives and false negatives (fraction of relevant instances that were retrieved),

definitions explained schematically in Figure 2.1 [25].

2.2 Evaluation Metrics 9

Figure 2.1: Schematic way to explain Precision and Recall

Precision and Recall are then used in different scores that express the different

capabilities of the model, where the most important are:

• F1-Score: widely used performance metric in machine learning, particularly

in binary classification tasks. It expresses the balance between Precision and

Recall, and is particularly valuable when dealing with imbalanced datasets:

F1 =
2 · Precision ·Recall

Precision+Recall
(2.1)

• ROC Curve (Receiver Operating Characteristic Curve): a graphical repre-

sentation that illustrates the performance of a binary classification model

across different threshold settings, as seen in Figure 2.2 [24]. It is parti-

cularly valuable for assessing a model’s ability to discriminate between the

positive and negative classes. The ROC curve is created by plotting the true

positive rate against false positive rate at various threshold values, where a

straight line represents the performance of a random classifier;

• AUC-ROC Curve (Area Under the ROC Curve): a scalar value that quanti-

fies the overall performance of a binary classification model by summarizing

the ROC curve. It represents the area under the ROC curve and ranges from

0 to 1, where 0.5 represent a random classifier and 1 a perfect discrimination

between the positive and negative classes.

10 Chapter 2. Anomaly Detection

Figure 2.2: Graph of the ROC curve.

2.3 Traditional Methods

This section will explain the main idea behind some methods that exploit tra-

ditional algorithms such as statistical analysis, streaming data and computer

vision.

2.3.1 Statistical Analysis

Anomalies can be exploited studying the statistical distribution of normal sam-

ples and identifying those samples who differ too much from others. One useful

metric is the Z-score, that measures how many standard deviations a data point

is away from the mean of the dataset. A high absolute Z-score indicates an extre-

me deviation from the mean, suggesting an anomaly. This method is very useful

if the dataset follows a Gaussian distribution [6], otherwise there is a modified

Z-score that uses the median and the median absolute deviation (MAD) instead

of the mean and standard deviation, which is a robust measure of dispersion.

More complex methods estimate the probability density function of the data [7],

where points in low-density regions are considered anomalies, or may need data

expressed in time series in order to use moving averages, exponential smoothing,

or autoregressive models. These methods are effective for detecting anomalies in

temporal data, such as network traffic, sensor readings, or financial data.

Another way can be exploiting the relation between variables, as done in Mul-

tivariate Statistical Analysis [8]. This technique uses Mahalanobis distance or

Hotelling’s T 2 distribution, very useful for high-dimensional data and scenarios

where anomalies involve relationships between multiple variables, such as fraud

detection or industrial process monitoring.

2.3 Traditional Methods 11

2.3.2 Streaming Data

Streaming data is data that is continuously generated over time, so the algorithm

must adapt to dynamic environments and run automatically and unsupervised,

with predictions that must be made online. A useful value for Streaming Data

problems is the Moving Average [9], a calculation used to analyze/smooth data

by creating a new series of averages from subsets of the data points, most likely

the n latest data points. The Moving Average is calculated for every data point,

and then the algorithm determines an expected value and calculates the standard

deviation using the latest n samples. If the Moving Average is in the range of

expval + std and expval − std the sample is considered normal.

Overall, the previous method works well only if the data has small changes or

uniformly changes over time, while if it has bigger differences, like seasonal data,

it is better to use Exponential Moving Average [10]. The main feature of this

method is that the algorithm gives more weight and significance to recent data,

decaying the less recent samples.

2.3.3 Computer Vision

When the solution has to deal with images and videos, the main way is to use

Computer Vision algorithms, with methods that vary from direct pixel processing

to object detection.

A method that directly processes pixels can use: Gaussian Mixtures [11], which

models the distribution of pixel values in a scene using a mixture of Gaussian

distributions, and it labels pixels as anomalies if they significantly deviate from

the modeled background distribution; Temporal Difference [12], that compares

the current frame with the previous one to detect changes, so that pixels that

show substantial differences are marked as anomalies.

More complex models may use Segmentation [13], which still directly processes

pixels but it tries to classify each pixel in a different class, effectively trying to

separate the image into different regions. Segmentation can be Semantic Segmen-

tation, which assigns a label to every pixel in the image to indicate what object or

category it belongs to, useful for scene understanding (an anomaly can be found

if an unexpected class appears in the image), or Instance Segmentation, which

combines segmentation and object detection to distinguish individual object in-

stances, which is very useful for object tracking (an anomaly can be found when

an unexpected instance appears).

12 Chapter 2. Anomaly Detection

Finally, the most complex models use Object Detection, with the state-of-the-art

algorithm being the Viola-Jones algorithm [14], that uses Haar features. These

particular features are rectangular filters that are used to compute the difference

between the sum of pixel values in adjacent rectangular regions of an image, thus

being able to capture basic patterns of light and dark areas in an image. The

Haar-like features are defined by their position, size and shape, which can be two,

three or four-rectangular, as illustrated in Figure 2.3 [14].

Figure 2.3: Different types of Haar features and how they are applied.

These features are applied to subregions of an image in a sliding window

fashion to scan the entire image, and combined in a cascaded structure form a

robust object detection system.

The Viola-Jones algorithm combines Haar features and a machine learning tech-

nique called Adaboost to obtain a fast and efficient model for Object Detection.

The algorithm first chooses a small set of Haar features based on their discri-

minative power, then Adaboost selects the best features and obtains many weak

classifiers, giving more importance to samples that are difficult to classify. The al-

gorithm then organizes the classifiers into a cascade structure, in order to quickly

reject regions that do not contain the object, obtaining a final strong classifier.

The trained cascade is applied to an image using a sliding window approach,

where at each window position the cascade checks the region with a series of

classifiers. If a region passes all stages, it is considered a positive detection, and

the object is located.

The Viola-Jones algorithm is known for its speed and efficiency, and has been wi-

dely used in applications like face recognition in digital cameras and pedestrian

detection in autonomous vehicles.

2.4 Artificial Intelligence 13

2.4 Artificial Intelligence

This section will explain the main idea behind some methods for anomaly detec-

tion that use Machine and Deep Learning.

2.4.1 Machine Learning Methods

When the problem to be faced has a substantial amount of labeled samples and

the anomalies are well defined the main way is to use a model trained under

Supervised Training, such as Support Vector Machines [27], which maps samples

in order to maximize the distance between samples of different labels.

If the labeled samples are scarce or unavailable then Unsupervised Learning mo-

dels mainly organize data into clusters, which are set of samples that have similar

samples close to each other and different samples far from each other. Models that

use clusters are K-Means Clustering [28], which computes the optimal amount of

clusters to separate the data in, or DBSCAN (Density-Based Spatial Clustering

of Applications with Noise) [29], which is very robust to noise and its cluster have

arbitrary shape.

Another method is the Isolation Forest [15], where its key point is to isolate ano-

malies by leveraging the observation that anomalies are typically few and different

from the majority of the data points. The algorithm starts by randomly selec-

ting a feature and then randomly selects a split value between the minimum and

maximum values of that feature, and splits the dataset into two subsets based on

said selected feature and value. The split process is recursively iterated until all

data points are fully isolated, and the anomaly score of a data point is how many

partitions it took to isolate the sample. However, this method always assumes

the separability of data points, and struggles with imbalanced datasets.

2.4.2 Deep Learning Methods

Many methods with Deep Neural Networks were discovered in the recent years,

given their capability of adaptation without needing fully detailed samples.

Since Anomaly Detection usually deals with images, one of the most effective net-

works applied to the problem are the Convolutional Neural Networks (CNN) [26],

which are a type of artificial neural network designed specifically for processing

structured grid-like data, such as images or data with a grid-like topology. They

are characterized by their ability to automatically learn hierarchical features from

14 Chapter 2. Anomaly Detection

the input data, making them particularly suited for tasks where spatial relation-

ships and patterns are important.

These networks are characterized by some key elements:

• Convolutional Layers: the core of CNN. These are learnable filters (or ker-

nels) that are applied to small regions of the input data, as illustrated in

Figure 2.4 [23]. Convolution operations involve element-wise multiplication

of the filter with the input data, followed by summation, to produce feature

maps. These kernels are used in each convolutional layer to capture diffe-

rent features in the data, such as edges, textures, or more complex patterns.

This pattern recognition capability is very useful for object classification,

especially in anomaly detection;

• Pooling Layers: layers used to downsample the spatial dimensions of feature

maps while retaining essential information, for example taking only the

maximum value from a small region of the feature map. Pooling reduces

the computational burden, decreases the risk of overfitting, and makes the

network more robust to translation variations;

• Activation functions: non-linear functions applied to feature maps, usually

after the convolution and pooling, which helps to learn complex relation-

ships within the data. The most common function used is ReLU (Rectified

Linear Unit), which does not change positive values but transforms to zero

negative values;

• Fully Connected (or Dense) Layers: layers that connect all neurons from the

previous layer to the current layer, often used for making final predictions,

like classifying objects in an image.

Figure 2.4: Example of Convolutional Neural Network and the use of convolution.

2.4 Artificial Intelligence 15

Another type of network is the Recurrent Neural Network (RNN) [30], desi-

gned for processing sequences of data. These networks have connections that loop

back on themselves, allowing them to maintain a form of memory. At each step,

the RNN maintains and updates a hidden state that summarizes the information

it has seen so far, where the final hidden state contains information about the

entire sequence and is used for various tasks, such as classification or prediction.

This ability to capture sequential information makes RNNs well-suited for tasks

like natural language processing, speech recognition and time series analysis.

The latest Deep Learning models regarding context-understanding are the Tran-

sformers [16], known for their ability to handle long-range dependencies in se-

quences efficiently, thanks to the self-attention mechanism, illustrated in Figure

2.5 [17]. This mechanism allows each position in the input sequence to focus on

other positions, capturing relationships and dependencies between words or ele-

ments in the sequence, regardless of their distance from each other. Self-attention

is computed using three components: queries, keys, and values. The attention

scores are calculated by measuring the similarity between queries and keys and

are then used to weight the values. These sets of queries, keys and values are

often used in parallel to capture different types of dependencies. Since they do

not capture the order or position of elements in a sequence, positional encoding

is added to the input embeddings, and to avoid the vanishing gradient problem

they also implement skip connections as in Residual Networks, which are special

connections that skip one or more layers to pass the information on further layers.

Figure 2.5: Structure of a transformer.

16 Chapter 2. Anomaly Detection

Transformers had a profound impact on the field of deep learning, particu-

larly in NLP, capturing complex relationships between elements, and have led to

significant advances in various natural language understanding tasks. However,

they need a very large amount of data, that may not be available in some case,

reason why they were discarded for this solution.

Other Deep Learning methods exploit the generation and reconstruction capabi-

lities of neural networks, such as Autoencoders or GANs, but will be explained

in detail on chapter 3.

Chapter 3

Theoretical Background

This chapter will give a quick theoretical background about Autoencoders and

Generative Adversarial Networks, which are the baseline for the proposed so-

lution. The second part of the chapter will explain the main idea behind the

state-of-the-art method studied for the development of the proposed solution.

3.1 Generative Networks

In the latest years a new typology of Neural Networks have been discovered: a

variant that can reconstruct and generate input samples. This section will explain

briefly the idea behind the most common types of Generative Networks.

3.1.1 Autoencoders

Autoencoders are a class of Neural Networks used in Unsupervised Learning

modalities, and are particularly useful for dimensionality reduction tasks, feature

learning and similar data generation. Their main structure consists of an Encoder

and a Decoder, which work together to learn a compact representation of input

data, as seen in Figure 3.1 [31].

Figure 3.1: Structure of an Autoencoder.

17

18 Chapter 3. Theoretical Background

The Encoder, is the first block of the network, which takes the input data

and maps it into a lower-dimensional latent space representation through several

layers of neurons that progressively reduce the input’s dimensionality. Each layer

extracts higher-level features from the input data, creating a hierarchical repre-

sentation.

The compressed data, or encoding, is then passed to the Decoder, which and

attempts to reconstruct the original input data. It has the same structure as the

Encoder, but with layers of increasing dimensionality instead of decreasing, until

reaching the original data dimension. This structure forces the network to learn

the most important features of the input data, effectively ”encoding” the input

and ”decoding” the representation from the latent space. The performance of the

model is evaluated through the difference between real input and reconstructed

input, usually through Mean Square Error (MSE) loss or Binary Cross-entropy

loss.

As introduced before, the training is unsupervised because it doesn’t require la-

beled data; the model learns to extract useful features purely from the input

distribution.

One recurrent problem of this architecture is the high tendency to overfitting,

where the model would just learn the identity matrix as latent vector, which en-

sures a low loss. This can be avoided by constraining the latent vector on having

a much lower dimensionality w.r.t. the input and by adding noise to the input,

making almost impossible to learn the identity matrix.

Given their reconstruction capabilities, Autoencoders are very useful for Anoma-

ly Detection tasks [32], where they can be used to detect anomalies or outliers

in data by reconstructing input data and identifying data points with high re-

construction errors, reason why they are a fundamental piece in our solution’s

pipeline.

3.1.2 Variational Autoencoders

The basic concept of Autoencoder can be extended with a probabilistic approach

to obtain a wider generative capability. In addition to the data representation

learning, Variational Autoencoders can generate new data samples that resemble

the input dataset, by modeling the latent space as a probability distribution,

allowing for greater flexibility and control over the generated data. The structure

is the same as an Autoencoder, with some differences:

3.1 Generative Networks 19

• The Encoder does not output a single point in the latent space, but ra-

ther the parameters of a probability distribution, typically the mean and

variance of a Gaussian distribution;

• The sampling from the learned distribution is not done directly, instead a

separate noise variable is sampled from a standard Gaussian distribution,

and then this noise is combined with the learned mean and variance from

the encoder to obtain a sample from the latent space, allowing the model

to be trained using gradient-based optimization;

• The latent space is modeled as a multivariate Gaussian distribution with a

mean and variance determined by the encoder’s output, while the Decoder

has the same function as in a normal Autoencoder;

In addition to the usual reconstruction loss, another component is added to en-

force that the learned distribution resembles as close as possible a Gaussian di-

stribution, known as the Kullback-Leibler divergence, which ensures a smooth

and continous latent space.

Variational Autoencoder are an overall improvement of classic Autoencoders, and

are to be preferred in cases where we have complex data distribution or need to

generate similar data, but still output rather blurry samples.

3.1.3 Generative Adversarial Networks (GAN)

GANs are a class of machine learning models that were introduced by Ian Good-

fellow and his colleagues in 2014 [4]. Their main advantage w.r.t. Autoencoders

is the capability to capture the multi-modality of the latent space distribution,

which is not possible using a standardized Gaussian distribution.

They consist of two neural networks, the Generator and the Discriminator, which

are trained simultaneously through a competitive process. The Generator takes

random noise or a seed as input and attempts to generate data samples that

resemble the training data, where the initial output is always random or low qua-

lity data. The Discriminator is responsible for distinguishing between real data

from the training set and fake data generated by the generator, assigning high

probabilities to real data and low probabilities to fake data.

Keeping in mind how the two networks work, the training procedure of a GAN

involves a competitive process between the Generator and the Discriminator:

20 Chapter 3. Theoretical Background

• The Discriminator takes in input both training data and the output data

from the Generator, labeling with probabilities each sample;

• After each evaluation, the Generator modifies its network to improve its

performance by generating fake data that looks closer to the real data,

aiming to ”fool” the Discriminator;

• The Discriminator, on the other hand, adapts to better distinguish real

from fake data.

This process, better illustrated in Figure 3.2 [4], is iterated an arbitrary number

of epochs with both networks getting better at their task. The loss used for

this model is an adversarial loss, that measures how well the discriminator can

distinguish real from fake data. The generator tries to minimize this loss, while

the discriminator aims to maximize it. The network reaches convergence when

the generator produces data that is so realistic that the discriminator cannot

distinguish it from real data. At this point the network can be used to generate

data similar to the real one, to be used for the chosen task.

Figure 3.2: At first G (green line) is fixed, and the discriminative distribution (blue dashed line) is
trained, having room for improvement. On the second step we obtain D*, the optimal
discriminator that separates real data distribution (black line) from G. At the third
step, D is fixed and G is trained, pushing its distribution towards the real data one.
After many steps, G approximates well the real distribution so D cannot distinguish
generated samples from real data.

GANs have revolutionized the field of generative modeling and have the po-

tential to create highly realistic and diverse synthetic data. However, training

GANs can be challenging and may require careful hyperparameter tuning and

monitoring to achieve desirable results.

3.1.4 Adversarial Autoencoders

Adversarial Autoencoders combine elements of Autoencoders and GANs. Their

structure is the same as a Variational Autoencoder, with the latent space follo-

wing a multivariate Gaussian distribution, with the addition of a discriminator

3.2 State-of-the-Art 21

network, similar to the GANs. The Discriminator has to distinguish from sam-

ples taken from the true latent space distribution and the ones from the encoded

distribution. Basically, Adversarial Autoencoders are a GAN with a Variational

Autoencoder as Generator, as illustrated in Figure 3.3 [33]. The training pro-

cess is adversarial, as done in a GAN, where the Generator aims to reconstruct

(and not generate from noise) the input data, and the Discriminator aims to se-

parate reconstructed data from real data, until the Generator reconstructs data

realistically enough to match the assumed latent space distribution.

Figure 3.3: Structure of an Adversarial Autoencoder.

Adversarial Autoencoders combine the benefits of autoencoders, which are

excellent at data compression and feature extraction, with the adversarial trai-

ning from GANs, which enables the generation of realistic and diverse data. For

this reason they excell in denoising, new data generation and anomaly detection,

and are a fundamental component for our solution. Given the proper introduc-

tion to the theory behind generative networks, the next section will explain the

latest state-of-the-art methods for Anomaly Detection, among which is present

the network used in our solution.

3.2 State-of-the-Art

This section will explain the main idea behind the state-of-the-art methods re-

garding Anomaly Detection using generative networks. These methods exploit

GANs and Autoencoders in different manners to achieve a higher accuracy or a

faster inference time.

22 Chapter 3. Theoretical Background

3.2.1 AnoGAN

This method uses a standard GAN, trained only on positive non-anomalous sam-

ples, in order to make the generator learn well the distribution of normal samples.

Given that, when an anomalous image is encoded its reconstruction will be non-

anomalous, since it does not know the distribution of anomalous samples. In this

way, the difference between the input and the reconstructed image will highlight

the anomalies. The two steps of training and detecting anomalies are summarized

in Figure 3.4 [3].

Figure 3.4: Pipeline of the AnoGAN method.

The performance on the training model is determined through two types

of loss functions: a residual loss, which measures the dissimilarity between

the query sample and the generated sample in the input domain space; and a

discriminator loss, which can be either the result of the sigmoid cross-entropy

of the generated image fed to the discriminator, or a feature matching loss using

features extracted from a discriminator layer, in order to check if the generated

samples has similar features to the input one (as done in the latest release of the

paper).

Overall, AnoGAN was one of the first methods to implement GANs for ANomaly

Detection, introducing a new mapping scheme from latent space to input data

space and using said scheme to define an anomaly score. But this anomaly score

is difficult to interpret, since it is not in the probability range, and the network

requires a non negligible number of optimization steps at each new input, reason

why it is not suitable for real-time application as the problem discussed in this

thesis.

3.2.2 EGBAD (Efficient GAN-Based Anomaly Detection)

EGBAD [1] extends the GAN framework using a pipeline called BiGAN, which

adds an Encoder to the GAN that learns the inverse of the Generator, in order

to learn the mapping from latent space to data and vice versa. Another change

3.2 State-of-the-Art 23

to the GAN pipeline is that the network takes in input pairs of data, composed

of a data sample and an auxiliary component, which may be a class label or data

from other modalities (feature derived from conditional GANs).

The addition of an Encoder was done to overcome the problems of AnoGAN,

since it is now able to inverse map the data and no longer need to optimize at

each input to compute the anomaly score.

3.2.3 GANomaly

The first Deep Learning model used in the proposed solution is based on GA-

Nomaly [2], which aims to improve the previous works while incorporating their

main ideas. As in AnoGAN, the generator network is trained on normal samples

to learn their normal latent space. The structure is like a normal GAN, with a

generator and a discriminator, but the difference lies in the former.

The generator network consists of three elements in series: an Encoder, a De-

coder and a final Encoder, with the two Encoders having the same architecture.

The first couple of block work as a normal Autoencoder, encoding the input and

reconstructing it (outputting always normal samples, since it does not know the

latent space of anomalous samples), and the final Encoder at the end of the ge-

nerator structure helps, during the training phase, to learn to encode the images

in order to have the best possible representation of the input that could lead to

its reconstruction.

The Discriminator works as in a standard adversarial training, discerning between

real and generated data. The whole pipeline can be seen in Figure 3.5 [2].

Figure 3.5: Pipeline of the GANomaly method.

24 Chapter 3. Theoretical Background

The other main contribution of GANomaly is the introduction of the gene-

rator loss as the sum of three losses, while the discriminator loss remains the

standard one. The generator loss is composed of three components:

• adversarial loss: Takes inspiration from the feature matching loss of Ano-

GAN. Checks if the generated sample and the real one have similar features,

using features taken from a discriminator layer;

• contextual loss: Loss that permits to the generator to learn contextual

information about the input data through the L1 norm between the input

data and the reconstructed data;

• encoder loss: Loss used to let the generator learn how to best encode a

normal image through the difference of the encoding of the generator and

the encoding of the final Encoder.

The resulting generator loss will be the weighted sum of these three losses,

with the weights as adjustable parameters. The use of three losses is done to op-

timize the individual sub-networks of feature matching, reconstruction capability

and latent space distribution. The combination of these three losses allows to

better adjust the network to the problem through the weights (if the images are

simple to reconstruct it may be useful to focus more on the latent vector). The

paper also suggests a more interpretable way of computing the anomaly score,

by also calculating it for every sample and in the end applying feature scaling to

have the scores within the probability range.

Since an Encoder is learned during training, a big optimization process as in

AnoGAN is not needed, and also the use of an Autoencoder makes the learning

process faster. The final anomaly score is also easier to interpret w.r.t. the pre-

vious works (but it is difficult to compare the results with the previous models),

and the new contextual loss can be used to localize the anomaly in the input. The

addition of the new losses allows to detect anomalies both in the image space and

in the latent space, but the results may not match: a higher anomaly score, that’s

computed only in the latent space, can be associated with a generated sample

with a low contextual loss value and thus very similar to the input.

3.2.4 Skip-GANomaly

The structure of GANomaly can be improved by introducing elements present

in the most recent networks, such as the Recurrent Neural Networks. Skip-

3.2 State-of-the-Art 25

GANomaly explains this in the paper [5], and was the last Deep Learning model

used in the proposed solution as improvement to GANomaly. The pipeline has

the same principle as GANomaly, with some minor changes:

• The Autoencoder in the Generator network adopts skip connections bet-

ween the Encoder layers and the Decoder layers, which contain Convolutio-

nal, BatchNorm layers and a modified version of the ReLU called LeakyRe-

LU. This use of skip connections provides substantial advantages via direct

information transfer between the layers, preserving both local and global

information, and hence yielding better reconstruction;

• The Discriminator, besides working as classificator, is also used as featu-

re extractor, such that latent representations of the input image and the

reconstructed image are computed;

• The generator loss is the weighted sum of three losses as in GANomaly,

but the encoder loss is substituted by the latent loss, which works the same

way but instead uses the latent representations of the Autoencoder and the

Discriminator.

The modified pipeline is illustrated in Figure 3.6 [5].

Figure 3.6: Pipeline of the Skip-GANomaly method.

As seen in the results of the paper, the introduction of skip connections

enables a much stronger reconstruction capability of the network, reason why

this pipeline was selected for our task. Another reason is the removal of one

Encoder, which makes the network lighter and permits a faster training time.

The choice of this model was dictated by the much faster inference time w.r.t.

26 Chapter 3. Theoretical Background

the previously discussed methods and the ability to ”shift” the attention of the

network in the desired sub-network (features, reconstruction or latent space).

These advantages are present also using GANomaly, but this model has also the

capability to better carry the information from the earliest layers to the latest

ones, given the skip connections.

After having fully explained the structure behind the network used, the next

section will explain the full pipeline of the proposed method for this anomaly

detection task, from input feature engineering to network training. The networks

trained for the tests are both GANomaly and Skip-GANomaly, to better compare

their performances.

Chapter 4

Proposed Method

In this chapter will be explained the hardware and software used for our pro-

posed method, and then the whole pipeline. The chosen model, GANomaly or

Skip-GANomaly, takes in input images that cannot be the raw images coming

from the quality control system, due to size and complexity, and therefore need

a preprocessing. The image has to keep only the important parts, discussed in

Section 4.3.1, and be optimized, as seen in Section 4.3.2 and 4.3.4. These prepro-

cessed images are used as input for the model for training and testing, discussed

in Section 4.4.

4.1 Hardware and Software configuration

The hardware employed for this solution is composed of a computer running on

Ubuntu 20.04.6, equipped with a 12 GB NVIDIA RTX A2000 GPU used for the

model training. All the pipelines, based on GANomaly and Skip-GANomaly, we-

re developed on Python through the PyTorch framework, known for its flexibility

and dynamic nature. This framework allows us to quickly build and modify a

Neural Network and accelerate the training process, for example using the Auto-

grad library to automatically compute gradients of tensors w.r.t. other tensors.

Other libraries used were:

• OpenCV 4.7.0, a very useful computer vision and image processing library

designed to provide a wide range of tools and functions for tasks related to

computer vision and image analysis;

• NumPy 1.24.1, fundamental for numerical and scientific computing, where

it provides support for large, multi-dimensional arrays and matrices, along

27

28 Chapter 4. Proposed Method

with a collection of mathematical functions to operate on these arrays;

• Pandas 1.5.3, library built on top of NumPy designed for data manipula-

tion and analysis, providing easy-to-use data structures and functions for

working with structured data, making it a powerful tool;

• Scikit-learn 1.2.1, which provides a set of tools for machine learning and

data mining, as built-in functions for the metrics of Anomaly Detection.

4.2 Dataset management

The company made available a dataset of images that were processed by the pre-

vious anomaly detection system, where all the components in the images come

from a real-world production line. The process of identifying anomalies with this

system can be seen in Figure 4.1. Together with an examination by hand of

all processed samples (to avoid having mislabeled images) we obtained a reliable

ground truth to use in the training of the model, with a total of 1586 normal

samples and 84 anomalous samples, which are not much, but we will use some

data augmentation techniques explained in Section 4.3. We can also see that the

dataset is highly unbalanced, but our model exploits this imbalance to strengthen

the understanding of the normal samples distribution and identify the few ano-

malous ones. The dataset was then splitted into a training set of 1270/0 samples

(compliant/defective), a validation set of 158/42 samples and a test set of still

158/42 samples, without counting the data augmentation techniques.

(a) A sample with a crack on the left
side.

(b) The system returns the disk with
the highlighted anomaly.

Figure 4.1: Example of processed image using the previous system.

4.3 Image preprocessing 29

4.3 Image preprocessing

This section will explain the general feature engineering applied to the origi-

nal images, and then the different types of preprocessing tested. The processed

images are used as input for the Deep Learning model, which is GANomaly or

Skip-GANomaly.

4.3.1 Image cropping

The original images taken from the company pipeline are a 2591x1944 three-

channel matrix, and cannot be used for the chosen Deep Learning model due to

their large size. The first step is grayscaling the image, since the disk and the

cracks are all in black and white. An important fact is that the image is not limi-

ted to the circular part we are interested, but also includes a part of the electric

motor, which can be removed without drawbacks. However, the removal opera-

tion must be done carefully, in order to preserve all the disk and cut out as much

electric motor as possible. A cut too shallow still keeps many unwanted features

from the electric motor, which are not related to the presence of an anomaly and

are therefore harmful, but on the other hand a cut too aggressive removes parts

of the disk that in the worst case contain an anomaly, so it must be avoided. For

this reason it was decided to use a Computer Vision tool to detect circles in the

image, known as the Hough Transform. This technique is particularly useful to

detect lines and other simple geometrical shapes, and it does so by representing

points in an image as mathematical entities in a parameter space (in our case

as center of a circle (x,y) and its radius r) rather than in the image space itself.

After applying an initial edge detection with classic techniques (e.g. Canny),

for each edge point found in the edge-detected image the algorithm creates an

accumulator matrix where each cell corresponds to a potential center of a circle

(x,y) and its radius (r). For every combination of (x,y,r), if the current edge

point is consistent (the gradient direction at (x,y) is compared to the expected

gradient direction of a circle with radius r) the corresponding cell in the accu-

mulator matrix is incremented (has a ”vote”). After accumulating votes in the

accumulator matrix, the cells with most votes (relative to a (x,y,r) triplet) are

the detected circles, as illustrated in Figure 4.2a (the full image cannot be shown

as the original samples are protected by an NDA).

30 Chapter 4. Proposed Method

(a) Example of circle detection on a
sample.

(b) Sample after cropping and obscu-
ring the central part.

Figure 4.2: Example of use of the Hough Transform and cropping.

The Hough Transform is a very reliable tool for simple shape detection, but

is computationally expensive, especially if the input image size is rather large.

Another problem of the Hough Transform is the tuning of parameters to avoid

multiple detections of the same circle or circles of sizes that do not interest us, but

since we are looking for a single circle and roughly know its size we can threshold

the results and easily obtain the correct detection. Given the obtained center of

the circle and its radius we can crop out the motor parts.

Another part not useful for us (and could make the training more difficult) is the

central hollow part of the disk, which is the part of the motor where the disk is

placed and is not correlated to the presence of an anomaly or not. To solve the

problem we can still use the Hough Transform to also detect the inner circle of

the disk and draw a filled black circle where the hollow part is, as done in Figure

4.2b. The difference of the hollow part in different samples can be a problem,

because, as illustrated in Figure 4.3, they have different colors and features, as

scratches and lighting, reason why obsuring it is so important.

(a) A sample with a white hollow part
and some scratches.

(b) A sample with a black hollow part,
very different from the left one.

Figure 4.3: Example of different hollow parts in the samples.

4.3 Image preprocessing 31

4.3.2 Image unwarping

The obtained cropped images contain the strictly necessary features for the mo-

del, and therefore can be used for the training. But the obtained image has a

dimension of 1200x1200, still too big for GANomaly and Skip-GANomaly, and an

excessive compression of the image may cancel out small cracks and deformations

in the image. After running different tests, it was found that the largest possible

image that can be processed by the model is a 512x512, which is a significant

compression and may remove important features. For this reason it was decided

to avoid compressing the image and instead extract and use only the parts of

the disk. Very little of the image is useful (it has a lot of obscured parts), and

therefore the method used to extract the parts of the disk is an unwarping tool,

which takes the disk and transforms it from a circular shape to a rectangular

shape, optimizing the images by keeping only the useful parts. This transforms

the image from a 1200x1200 to a 256x3833, as illustrated in Figure 4.4, which

can be directly used to train the model or split into pieces to both have more

samples and improve the learning process.

(a) Original sample.

(b) Sample processed with the unwarping tool.

Figure 4.4: Sample transformed from circular shape to rectangular shape.

The splitting process consists in dividing the whole strip by width in non-

overlapping different pieces with dimensions more suitable for the model (e.g.

splitting in 2 results in pieces of size 256x1792, splitting in 4 results in pieces of

size 256x1024 and so on), where the labels of the patches were assigned by hand

using the ground truth of the whole image.

32 Chapter 4. Proposed Method

This technique introduces a need to check not only the performance on the single

patches but also on the whole image, because splitting in many pieces results in

a high accuracy on the single patches, but it is enough to mislabel one patch to

mislabel the whole image, so it must be done with caution. In this thesis we

tested a splitting in 2,4,8,16 and a special case of 27 pieces, where each piece is a

256x256 image and the next image has half overlap with the previous image (to

avoid the case where a crack is between two patches). In Figure 4.5 can be seen

how an image is splitted according to the split-27, taking the image in Figure 4.4

as example.

Figure 4.5: Sample splitted into 27 pieces with a half overlap between patches.

4.3.3 Image 4-split

Another technique that was briefly used was the 4-split, which was used before the

discovery of the unwarping tool. This technique takes the cropped image, divides

it into 4 parts (upper-left quadrant, upper-right quadrant, lower-left quadrant

and lower-right quadrant) and rotates each piece to make it look like it is the

top-left one, as shown in Figure 4.6. It is an effective way to increase the number

of samples and avoid aggressive compressions of the image, since the obtained

pieces are 600x600 matrices and can be compressed to 512x512 without major

data loss. The main reason why it was discarded is that it still keeps the central

part, while the unwarping tool only uses the disk parts.

4.3.4 Image filtering

Another step in the preprocessing phase is the filtering of the image before passing

it to the network. This is done to facilitate the learning process of the network

via reducing the number of features of the input by keeping the most relevant

ones.

The most common and non-invasive method of filtering is using a edge-enhancing

4.3 Image preprocessing 33

Figure 4.6: Sample processed with the 4-split.

filter, such as Bilateral filter, used in Figure 4.8a, which keeps intact the edges

and smooths all the other parts. Enhancing the edges is a way to highlight better

the cracks on the disk, while smoothing out the parts that may be dirt or scrat-

ches.

A more invasive type of filtering used is a modified version of thresholding, in

which all the pixels with intensity above a certain threshold were put to the ma-

ximum intensity (pure white). This was done to erase dirt and scratches, leaving

only the cracks, as illustrated in Figure 4.8b.

The strongest type of filtering that was used is the region growing algorithm.

This method starts from some points called seeds (in our case the points with

lowest intensity) that form the initial region, and from these points it iteratively

checks the neighboring points, and if they are similar enough they are added to

the region. The process is iterated until each point of the regions is processed.

These regions are then ”printed” into a full white image, resulting in just pu-

re black points (cracks/deformities) and pure white points (normal parts of the

disk). For the same reason of the thresholding, it was done to remove dirt and

scratches from the disk, and the difference of impact on the image w.r.t. the

previous filterings can be seen in Figure 4.8c.

However, these filterings were later discarded, mainly because these are Compu-

ter Vision tools that could conflict with the learning of the model and because the

34 Chapter 4. Proposed Method

resulting images lack features present in the original images that can be useful

for the network. Other reasons are: the aggressiveness of the thresholding and

region growing risks to erase parts or all the anomalies in an image (as can be

seen in Figure 4.7); the dependence on the image intensity and on the current ty-

pology of anomaly (if in the future the anomalies become more gray this filtering

completely erases them); the smoothing on the other hand is not general enough

for this type of images (a certain tuning of the filter works for some images and

not for others), so it was decided to avoid filtering the images.

Figure 4.7: Example of a small crack that gets erased by both thresholding and region growing.

Instead it was used another type of preprocessing to improve the unwarping:

since the unwarping is not 100% accurate, some useless parts still remain in the

image (represented by the black parts on the upper and lower part of the patches).

Since they could make the training process more difficult by introducing features

not correlated to the presence of an anomaly it was developed an algorithm that

erases these black parts, in order to keep only the disk. The algorithm scans the

patches row by row, and if a row has an average intensity below a fixed threshold

it gets set to 0. After the scan the algorithm keeps only the rows of the image

with an average value above zero, as shown in Figure 4.8d.

4.4 Model training

The preprocessed input image (cropped, unwarped and with the black parts re-

moved) is used as input for the chosen network, in this case being GANomaly [2]

or Skip-Ganomaly [5]. The process of the image is done according to the scheme

in Figure 4.10. Originally the network was trained and tested on the following

datasets:

4.4 Model training 35

(a) Patch filtered with the Bila-
teral filter.

(b) Patch filtered with the thre-
sholding.

(c) Patch filtered with the Re-
gion growing algorithm.

(d) Patch without the upper
and lower black parts.

Figure 4.8: A single patch processed with all the tested filterings.

• CIFAR-10 [5]: This dataset is made from 10 different classes of objects,

respectively airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and

trucks. Experiments for this dataset had the one versus the rest approach,

where one class between the available was labelled as anomalous, yielding

ten different anomaly cases;

• University Baggage Dataset (UBA) [5]: This in-house dataset comprises

dual energy X-ray security image patches extracted via a 64x64 overlapping

sliding window approach. The dataset contains 3 abnormal sub-classes:

knife, gun and gun component;

• Full Firearm vs Operational Benign (FFOB) [5]: this dataset comprises

both expertly concealed firearm (threat/anomaly) items and operational

benign (non-threat/normal) imagery from commercial X-ray security scree-

ning operations (baggage/parcels).

36 Chapter 4. Proposed Method

Figure 4.9: Images from the CIFAR-10, UBA and FFOB datasets.

As seen in Figure 4.9 [5], the tested datasets had a very different typology of

anomalies w.r.t. to our problem, where in some cases a defective component is

almost identical to a compliant one. For this reason some parts of the network

were changed to better fit the problem.

For example, the input tensor originally accepted only square inputs (e.g. 256x256

images), but it was modified to accept all kinds of tridimensional matrices. But

a non-square input is not ideal for the Discriminator, because in the original

network the Discriminator takes in input the reconstructed image and returns a

scalar, which represents the predicted class. Since it mainly operates with square

operators such as the convolution, a non square input leads to returning a vec-

tor instead of a scalar, with size depending on the difference between width and

height of the input (e.g., if the input is the whole unwarped image the Discrimi-

nator returns a vector of 57 components). This problem is easily fixed by putting

a Fully Connected layer at the end of the network, in order to return a scalar.

Another small change is using the number of splittings as batch size (e.g., splitting

in 8 pieces results in a batch size of 8), because the hardware could not handle

many high dimensional input for batch (like a series of whole unwarped images)

and for a better organization of the network, since it gets trained by processing

all the patches of a single image at once. In this way the network not only learns

4.4 Model training 37

how to classify the single patches but it may also learn a correlation between

the patches in the batch, since they all come from the same image. In order to

visually keep track of the learning process, the model also saves in a folder the

training samples and their reconstructed version.

Figure 4.10: Scheme that explains how the main pipeline returns the anomaly score of an image.

At the end of each epoch the model is tested on the validation set (158 nor-

mals/42 anomalies), which is composed of also anomalous samples, returns the

AUC of the ROC, explained in Section 2.2, and saves in a folder both the original

validation samples and the reconstructed ones, in order to have a better under-

standing of how the network operates. If the AUC is better than the previous

epochs the model saves the weights on a folder, so it does not need an early stop-

ping function (a function that stops the training after k epochs if the model is not

getting better). At the end of the training (1270 normals) the model is tested on

the test set (158 normals/42 anomalies), which was never considered until now,

and saves on a folder each batch named with the highest anomaly score of the

batch. This last operation represents the classification of the whole image (the

batch represents an image and all its patches, the highest score of the batch is

the final score of the whole image), where the batches with at least an anomaly

and the normal batches are saved in different folders. An important fact is that

the original network normalizes the obtained scores on the used dataset, but this

was removed due to the fact that this assumes that the dataset has always at

least one anomalous sample (if not, the normal sample with the highest anomaly

score gets set to 1 and thus always above the anomaly threshold).

To better interpret these images and their score it was developed a simple al-

38 Chapter 4. Proposed Method

gorithm, separate from the pipeline, that reads the scores of the images in the

two folders and estimates the best threshold to separate normal and anomalous

samples. This algorithm allows us to have another performance metric of the

model, directly measuring the accuracy of the classified images.

In order to simulate the model function in a real-world production line, it was de-

veloped a separate pipeline to test the inference time. The network is not trained,

but is only used for testing by loading the desired weights of the network. Instead

of using the preprocessed dataset and training, this pipeline takes in input from

the original image from the quality control system. The image is preprocessed by

cropping, unwarping and removing the black parts and is passed to the model,

which returns the anomaly score and saves the image in a folder with the anomaly

score as its name. This pipeline is useful to understand the inference time of the

model, and to keep it under one second.

Chapter 5

Experimental Setup

In this chapter will be explained the different parameters that have been tuned

on the models, and then will be discussed their performances with different pre-

processings and tunings. It will then follow a brief examination of the results

and the inference times on the test phase. As cited on Sections 3.2.3 and 3.2.4,

GANomaly was the first tested model and Skip-GANomaly the latest model.

5.1 Parameters

The parameters discussed in this section are present in both GANomaly and Skip-

GANomaly, since they share a very similar structure. The parameters tuned in

the tests are:

• Learning rate (lr): weight assigned to gradient-based optimization func-

tions that determines how much the resulting gradient affects the change in

the weights of the network. A learning rate too high may induce a zig-zag

behavior, wasting time near a minimum point, and on the other hand a lear-

ning rate too low may slow down the learning process until never reaching

convergence, so it must be tuned carefully;

• Triple loss weights (wadv, wcon, wlat): the weights of the combined loss

discussed in 3.2.3 and 3.2.4. The tuning of these parameters permits to

shift the attention of the network to reconstruction, feature matching or

latent space;

• Reconstruction loss and normalization: a typology of loss function and

choice of normalizing the input. The original networks used an L1 loss on

the comparison between reconstructed input and original input, but it was

39

40 Chapter 5. Experimental Setup

decided to also try an L2 loss and test if not normalizing the input led to a

better reconstruction;

• Reconstruction error: while in GANomaly the anomaly score is the square

difference of the latent vector of the generator and the latent vector of

the final Encoder, in Skip-GANomaly the score is calculated through the

weighted sum of the reconstruction error and the latent space error, with

the sum of the weights amounting to 1. This proportion can be adjusted to

focus more on the reconstruction or the latent vector (e.g. a reconstruction

error weight of 0.9 indicates a latent error weight of 0.1);

• Extra layers: the structure allows the addition of an arbitrary number of

extra layers at the beginning of the Generator Encoder, and to add the

same number at the end of the Decoder. These layers are composed of a

Convolutional Layer with the output processed by batch normalization and

ReLU. However, since the addition of extra layers not only slows down the

network but has proven to slightly worsen the performance it was decided

to keep it at 0;

• Layer depth (ngf/ndf): the layers of the network have a width x width x

depth size, so that every element of the width x width matrix is represented

by a vector of depth length. This parameter can be adjusted if the network

needs to learn few features, by reducing it, or more features by increasing

it;

• Latent vector size (nz): the size of the latent vector is crucial for learning

the distribution of the normal data in the latent space, just as for the layer

depth;

• Splitting: number of splittings applied to the unwarped image, if the un-

warping was adopted.

After the given introduction to the tunable parameters, the next sections will

discuss the results obtained on both models with different configurations.

5.2 Skip-GANomaly

In this section will be discussed the results obtained with the Skip-GANomaly

model using different settings for the input images, preprocessing and parameters.

5.2 Skip-GANomaly 41

The default configuration of the network is [reconstruction error: 0.9; Loss: L1;

Normalize: True; nz: 100; ngf/ndf : 64; learning rate: 0.001; wadv: 1; wcon:

50; wlat: 1], and all tests were performed on 30 epochs.

5.2.1 Cropped image

The first typology of test was done using the cropped image compressed to a

512x512 matrix, without any further preprocessing. The training and testing of

the model took a total of 3.5 hours, using the standard dataset as explained in 4.2.

The optimal configuration of the network is the default one with the learning rate

set at 1e-06, obtaining the results expressed in AUC of the ROC curve illustrated

in Table 5.1.

Input

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

Cropped image 0.518 0.518 0.508 0.508

Table 5.1: Table with the AUC performance using the cropped images as input.

The obtained performances are quite low, almost similar to a random classi-

fier. For this reason, it was decided to explore other solutions.

5.2.2 4-split

As cited in Section 4.3.3, a more optimal way to process the input w.r.t. the

cropped image is the 4-split technique. In this way, the compression of the image

is much less aggressive, being 600x600 and 512x512 very similar in size. The

dataset used is 4 times larger than before, with the training set composed of 5080

normal samples, and the validation and test set composed of 632 normals and

168 anomalies each. The training and testing of the model took 3.5 hours using

the default configuration with the learning rate set to 1e-06, and obtained the

results in Table 5.2.

Preprocessing

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

4-split 0.393 0.440 0.396 0.421

Table 5.2: Table with the AUC performance using the 4-split preprocessing.

42 Chapter 5. Experimental Setup

The obtained results prove that, even with less aggressive compressions and

more samples, keeping parts of the image other than the disk affect negatively

the learning process, reason why all the other tests use the unwarping tool.

5.2.3 Unwarping

In the tests discussed in this subsection all the trials use images preprocessed by

the cropping, unwarping and black parts removal. The objective of this subsection

is therefore focus on the single parameters, introduced in Section 5.1, and find

the optimal value.

Image filtering

The first test that was done using the unwarping tool comprehended also the

filtering of the images, which were later discarded as explained in 4.3.4. These

tests were performed only on the splitting in 27 patches, because initially it was

decided to use only this type of splitting. When the study of the solution explored

other numbers of patches, filtering the images was a procedure that was already

discarded, reason why it was tested with only one typology. The training of the

model was performed in a total of 6 hours, with configuration of the network

parameters [reconstruction error: 0.9; Loss: L1; Normalize: True; nz: 100;

ngf/ndf : 64; split: 27; learning rate: 1e-06; wadv: 1; wcon: 50; wlat: 1] and

a dataset composed of a training set of 34290 normals and validation/test sets

composed of 4266 normals and 1134 anomalies.

Filtering

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

Bilateral filter 0.476 0.492 0.486 0.553

Thresholding 0.671 0.633 0.633 0.664

Region gro-

wing
0.681 0.764 0.722 0.660

Table 5.3: Table with the AUC performance on different image filterings.

From Table 5.3 can be seen that the region growing algorithm has the best

performance, but is still relatively low w.r.t. the results in the next subsections.

5.2 Skip-GANomaly 43

Splitting

Since the network uses unwarped input, the most important part is finding the

optimal number of splittings, to balance the accuracy on the single patches and

the accuracy on the total image. As introduced in Section 4.3.2, the splittings

tested were 2,4,8,16 and 27. The training of the model was performed in a total

of 4 hours for all variants except the splitting in 27 patches, which took 6 hours.

This is due to the fact that the batches were computationally heavier, since the

patches are overlapping and therefore the total dimension is larger than the other

splittings. The configuration of the network parameters is [reconstruction error:

0.9; Loss: L1; Normalize: True; nz: 100; ngf/ndf : 64; learning rate: 1e-06;

wadv: 1; wcon: 50; wlat: 1].

Splittings

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

1 0.692 0.692 0.740 0.740

2 0.661 0.615 0.698 0.684

4 0.735 0.648 0.793 0.757

8 0.723 0.624 0.697 0.634

16 0.744 0.652 0.704 0.587

27 0.752 0.553 0.645 0.506

Table 5.4: Table with the AUC performance on different splittings.

1 2 4 8 16 27

Number of patches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on patches

Train

Test

1 2 4 8 16 27

Number of patches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on images

Train

Test

Figure 5.1: Plots of the AUC of different splittings configurations.

44 Chapter 5. Experimental Setup

As seen in Table 5.4 and Figure 5.1, the optimal splitting number is 4, which

had the highest and most balanced performance between patches and image, after

the split=1, which has been proven not to be a bad configuration. It must be

noted how the split=1 means passing the whole unwarped strip as input, which is

equal to passing the whole cropped image. The difference is that the unwarpings

of split 1 are composed exclusively of parts of the disk, while the cropped image

has many unnecessary parts, and in Table 5.4 can be seen the improvement in

performance w.r.t. Table 5.1.

Learning rate

The learning rate can determine if the model reaches convergence or gets stuck

in a local minimum, reason why it is important to evaluate the optimal rate of

the network. The training of the model took 4 hours, using the configuration

[reconstruction error: 0.9; Loss: L1; Normalize: True; nz: 100; ngf/ndf : 64;

split: 4; wadv: 1; wcon: 50; wlat: 1]. An important fact is the use of the split 4,

meaning that the dataset is quadrupled and organized as for the 4-split.

Learning rate

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

0.001 0.685 0.574 0.658 0.627

0.0001 0.365 0.483 0.415 0.423

1e-05 0.529 0.586 0.507 0.539

5e-06 0.520 0.548 0.533 0.497

1e-06 0.735 0.648 0.793 0.757

5e-07 0.7665 0.670 0.674 0.631

1e-07 0.629 0.588 0.513 0.527

Table 5.5: Table with the AUC performance on different learning rates.

From Table 5.5 can be determined that the optimal learning rate is 1e-06,

even if 5e-07 performed better on the training set.

Layer depth

In order to correctly compress and decompress the information of the input di-

stribution, the layer depth must be adequate for the problem. The training of the

model variants took a total time that is dependent on the layer depth, and can be

5.2 Skip-GANomaly 45

ngf/ndf
Training
Patches
AUC-ROC

Training
Images
AUC-ROC

Test
Patches
AUC-ROC

Test
Images
AUC-
ROC

Training
Time (h)

1 0.413 0.536 0.407 0.525 0.5
2 0.633 0.578 0.694 0.604 0.5
4 0.761 0.733 0.701 0.581 1
8 0.472 0.519 0.398 0.440 2
16 0.481 0.498 0.484 0.563 3
32 0.804 0.731 0.765 0.743 3.5
48 0.671 0.642 0.653 0.605 4
64 0.735 0.648 0.793 0.757 4
80 0.495 0.498 0.478 0.506 5
96 0.530 0.557 0.447 0.447 6

Table 5.6: Table with the AUC performance on different layer depths.

seen in Table 5.2. The configuration of the network parameters is [reconstruction

error: 0.9; Loss: L1; Normalize: True; nz: 100; split: 4; learning rate: 1e-06;

wadv: 1; wcon: 50; wlat: 1].

12 4 8 16 32 48 64 80 96

ngf/ndf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on patches

Train

Test

12 4 8 16 32 48 64 80 96

ngf/ndf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on images

Train

Test

Figure 5.2: Plots of the AUC of different layer depths.

As can be seen in Table 5.6 and Figure 5.2, the best performances are on the

configurations using a layer depth of 32 and 64. Since 64 performed better on the

test set, it was decided to use that for future tests.

46 Chapter 5. Experimental Setup

Latent vector size

The size of the latent vector is crucial for the learning of the distribution of the

normal samples, and while a small vector may force the network to learn fewer

features than the needed number, an unnecessarily large vector does not restrict

enough the network to make it learn the important features. The training and

testing of the model variants took around 4 hours, with the lightest model taking

3.5 hours and the heaviest taking 5 hours. The configuration of the network

parameters is [reconstruction error: 0.9; Loss: L1; Normalize: True; ngf/ndf :

64; split: 4; learning rate: 1e-06; wadv: 1; wcon: 50; wlat: 1].

nz

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

1 0.606 0.702 0.686 0.688

5 0.647 0.612 0.593 0.577

10 0.459 0.516 0.404 0.401

25 0.449 0.488 0.412 0.489

50 0.437 0.467 0.511 0.468

100 0.735 0.648 0.793 0.757

150 0.469 0.546 0.481 0.452

Table 5.7: Table with the AUC performance on different latent vector sizes.

1 5 10 25 50 100 150

nz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on patches

Train

Test

1 5 10 25 50 100 150

nz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on images

Train

Test

Figure 5.3: Plots of the AUC of different latent vector sizes.

As seen in Table 5.7 and Figure 5.3, the default configuration with size 100

had the best performance, together with 1. This can be explained by the rather

5.2 Skip-GANomaly 47

simple distribution of the normal samples, being very similar to one another, but

with 100 the model can capture small features that may be crucial to identify

anomalous samples.

Triple loss weights

The weights of the triple loss are between the most important parameters, since

they can redirect the network attention where needed. Instead of tuning just the

weights, it was decided to also change the reconstruction error according to the

tested weight. The tests all took 4 hours each, since the change of the weights

does not have computational complexity relevance, with configuration [Loss: L1;

Normalize: True; nz: 100; ngf/ndf : 64; split: 4; learning rate: 1e-06; wadv: 1;

wcon: 50; wlat: 1].

For the reconstruction weight, it was decided to use the default reconstruction

error 0.9, in order to focus on the reconstruction part.

wadv wcon wlat

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test

Patches

AUC-ROC

Test Images

AUC-ROC

1 1 1 0.728 0.656 0.702 0.608

1 2 1 0.555 0.612 0.522 0.533

1 5 1 0.474 0.492 0.494 0.471

1 10 1 0.469 0.540 0.476 0.511

1 50 1 0.735 0.648 0.793 0.757

Table 5.8: Table with the AUC performance on different reconstruction weights.

From Table 5.8 can be seen that the default configuration with weight=50

was the best-performing model, even though the model with all weights set to 1

performed equally well on the training.

The second weight tested was the adversarial weight, responsible for the realistic

reconstruction of the samples. Since the weights for the reconstruction and latent

space are equal, it was decided to use a reconstruction error of 0.5, in order to

have an anomaly score that equally depends on reconstruction and latent space.

48 Chapter 5. Experimental Setup

wadv wcon wlat

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test

Patches

AUC-ROC

Test Images

AUC-ROC

1 1 1 0.742 0.658 0.718 0.633

2 1 1 0.480 0.487 0.510 0.520

5 1 1 0.444 0.477 0.450 0.472

10 1 1 0.417 0.423 0.507 0.520

50 1 1 0.376 0.450 0.409 0.426

Table 5.9: Table with the AUC performance on different adversarial weights.

Table 5.9 indicates that with all the weights equal the model has a better

performance, by balancing latent space and reconstruction.

The last weight tested is relative to the latent space, and thus the reconstruction

error is set to 0.1 to entirely focus on the latent vector.

wadv wcon wlat

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test

Patches

AUC-ROC

Test Images

AUC-ROC

1 1 1 0.766 0.705 0.681 0.619

1 1 2 0.415 0.471 0.344 0.395

1 1 5 0.553 0.569 0.613 0.568

1 1 10 0.444 0.516 0.474 0.509

1 1 50 0.438 0.422 0.461 0.501

Table 5.10: Table with the AUC performance on different latent weights.

From Table 5.10 can be seen that the network did not perform well focusing

only on the latent space, reason why it was decided to continue with the configu-

ration [reconstruction error: 0.9; wadv: 1; wcon: 50; wlat: 1]. This demonstrates

how, for this particular problem, the network performs better when focusing on

input reconstruction.

Loss and normalization

In order to improve the accuracy of the reconstructed inputs, it was decided to

test different losses from the default configuration, even by not normalizing the

input. The training of the model took 4 hours, with configuration [reconstruction

5.3 GANomaly 49

error: 0.9; nz: 100; ngf/ndf : 64; split: 4; learning rate: 1e-06; wadv: 1; wcon:

50; wlat: 1]

Loss Normalize

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test

Patches

AUC-ROC

Testing

Images

AUC-ROC

L1 True 0.735 0.648 0.793 0.757

L1 False 0.756 0.645 0.756 0.764

L2 True 0.620 0.551 0.682 0.612

L2 False 0.619 0.571 0.698 0.631

Table 5.11: Table with the AUC performance on different losses and input normalization.

Table 5.11 shows how the default configuration, and in particular the L1 loss,

performed better. The non-normalization of the input is a high-risk technique,

since the values on the tensors are not bound between 0 and 1. In the early

stages of the training, this leads to very high reconstruction losses, because the

Generator is not trained enough to reconstruct input-similar data. If the network

is not able to recover quickly it can lead to divergence, with the generation of

white noise as fake data. However, if the network recovers the reconstruction

losses are lower, especially using the L2 norm. The square of the error amplifies

little differences between real and fake data, and the network is able to recreate

more accurate samples. The use of the L2 loss and non-normalization has proven

to be more effective than normalizing, even if by a slight improvement.

5.3 GANomaly

In this section will be discussed the results obtained with the GANomaly mo-

del, which was the initial model before it was substituted with Skip-GANomaly.

Following the same principles of testing used on Skip-GANomaly, it was deci-

ded to do a confrontation analysis of the results of the two networks. All the

tests discussed in this section were performed on 30 epochs and by processing

the images only with cropping, unwarping and black parts removal, with default

configuration [reconstruction error: 0.9; Loss: L1; Normalize: True; nz: 100;

ngf/ndf : 64; learning rate: 1e-06; wadv: 1; wcon: 50; wlat: 1].

50 Chapter 5. Experimental Setup

5.3.1 Splitting

The training of the model variants took the same time as for Skip-GANomaly,

using the default GANomaly configuration.

Splittings

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

1 0.704 0.704 0.731 0.731

2 0.838 0.864 0.872 0.873

4 0.812 0.782 0.832 0.791

8 0.823 0.866 0.838 0.784

16 0.880 0.842 0.908 0.806

27 0.874 0.780 0.832 0.854

Table 5.12: Table with the AUC performance on different splittings.

1 2 4 8 16 27

Number of patches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on patches

Train

Test

1 2 4 8 16 27

NUmber of patches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on images

Train

Test

Figure 5.4: Plots of the AUC of different splittings configurations.

Differently from Skip-GANomaly, Table 5.12 and Figure 5.4 illustrate that

the best-performing splitting is done with 2 patches. Even though the split=27

performed almost as well, taking into account the time of training split=2 is still

to be preferred w.r.t. split=27. Examining the results on both networks, the

overlapping of the patches has proven to be not effective enough.

5.3.2 Learning rate

The tests were performed using the default GANomaly configuration and the

dataset was obtained with split=2, with a training set of 2540 normals and

5.3 GANomaly 51

validation/test set of 316 normals and 84 anomalies.

Learning

rate

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test Patches

AUC-ROC

Test Images

AUC-ROC

1e-05 0.817 0.761 0.773 0.733

5e-06 0.880 0.865 0.783 0.762

1e-06 0.838 0.864 0.872 0.873

5e-07 0.824 0.802 0.858 0.846

1e-07 0.873 0.868 0.839 0.814

Table 5.13: Table with the AUC performance on different learning rates.

From Table 5.13 can be seen that the optimal learning rate is 1e-06, even if

5e-06 and 1e-07 performed better in the training.

5.3.3 Triple loss weights

The testing of the weights of the triple loss on GANomaly was performed by

changing only the weights, differently from Skip-GANomaly, since the anomaly

score is calculated from a square difference of latent representations. The tests

were performed over 4 hours, using the default configuration and split 2.

wadv wcon wlat

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test

Patches

AUC-ROC

Test Images

AUC-ROC

1 1 1 0.746 0.756 0.808 0.808

1 5 1 0.818 0.792 0.852 0.868

1 10 1 0.850 0.819 0.871 0.851

1 50 1 0.838 0.864 0.872 0.873

5 1 1 0.733 0.722 0.732 0.747

10 1 1 0.805 0.841 0.846 0.806

50 1 1 0.741 0.759 0.809 0.798

1 1 5 0.807 0.763 0.789 0.812

1 1 10 0.852 0.819 0.792 0.803

1 1 50 0.839 0.851 0.886 0.856

Table 5.14: Table with the AUC performance on different weights of the triple loss.

52 Chapter 5. Experimental Setup

Table 5.14 illustrates that the combination (1,1,50) performed better on the

patches w.r.t. the default (1,50,1), but a higher performance on the whole ima-

ges is to be preferred. The good performance of a more latent space-focused

configuration was to be expected, since GANomaly is more oriented toward a

correct understanding of the sample distribution, but nonetheless, it fits better

this problem with a focus on reconstruction.

5.3.4 Layer depth

The tests were performed using the default configuration and the dataset from

split 2, with a time of training illustrated in Table 5.13.

ngf/ndf

Training

Patches

AUC-ROC

Training

Images

AUC-ROC

Test

Patches

AUC-ROC

Testing

Images

AUC-ROC

Training

Time (h)

2 0.776 0.728 0.786 0.709 1

8 0.664 0.634 0.669 0.678 2

16 0.841 0.839 0.851 0.835 3

32 0.855 0.832 0.812 0.816 4

64 0.838 0.864 0.872 0.873 4

96 0.756 0.817 0.719 0.716 6

Table 5.15: Table with the AUC performance on different layer depths.

2 8 16 32 64 96

ngf/ndf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on patches

Train

Test

2 8 16 32 64 96

ngf/ndf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

AUC-ROC on images

Train

Test

Figure 5.5: Plots of the AUC of different layer depths.

The default configuration is the best performing, even if in Table 5.15 and

Figure 5.5 is shown that a depth=16 is slightly worse but trains in less time. A

5.4 Results summary 53

higher depth value, as seen in both GANomaly and Skip-GANomaly, does not

lead to a better performance, as the layer can memorize more features and more

likely end up overfitting.

5.4 Results summary

In this section will be discussed the most meaningful results and the inference

time of both GANomaly and Skip-GANomaly. To sum up the results obtained,

the most important tests were the ones performed on the splittings, respectively

in Table 5.2 and 5.10, since they were responsible for balancing patches AUC

and whole image AUC. The most effective preprocessing pipeline is the one used

for most of the tests, composed of cropping, unwarping and black parts removal,

while using only the cropped image or filtering did not lead to a good performance.

In Table 5.14 can be seen the best-performing models for GANomaly and Skip-

GANomaly, together with the accuracy tested using the algorithm described in

Section 4.4. GANomaly managed to reach an AUC of 0.873 in the images on the

test set, outperforming Skip-GANomaly by respectively a 0.08 and 0.12 value in

the patches and whole images.

It also illustrates the inference time tested with the separate pipeline that takes

in input the whole image, preprocesses it and classifies it. The results in this

field are not reassuring, since both networks employ far more than one second

to process an image. In order to lighten the preprocessing part, it was briefly

tested a compression of the image before applying the Hough Transform, since it

is the computationally heaviest part of the preprocessing, but the inference time

decreased by 1-2 seconds in the most aggressive compressions.

Model Splits

Training

Patches

AUC-

ROC

Training

Images

AUC-

ROC

Test

Patches

AUC-

ROC

Test

Images

AUC-

ROC

Accuracy

(%)

Inference

Time

(s)

Skip-

GANomaly
4 0.735 0.648 0.793 0.757 75.3 6.2

GANomaly 2 0.838 0.864 0.872 0.873 81.0 7.0

Table 5.16: Table with the best performing models.

Regarding the difference in performance between GANomaly and Skip-GANomaly,

it can be seen in Figure 5.6 how each network reconstructs an example anoma-

54 Chapter 5. Experimental Setup

lous sample. Even though the model has not been trained on anomalous samples,

Skip-GANomaly reconstruction is almost identical to the original sample, reason

why it had difficulties in distinguishing normal and anomalous samples, since it

heavily relies on the difference between real and fake data. On the other hand,

the reconstruction of GANomaly is blurred and lacks details especially in the

cracks, meaning that the network could not efficiently reconstruct the anomalous

input, thus leading to a better classification.

(a) Original image.

(b) Image reconstructed with Skip-GANomaly.

(c) Image reconstructed with GANomaly.

Figure 5.6: Example of an anomalous image reconstructed by the two models.

As a final consideration, Figure 5.7 illustrates some of the most difficult ano-

malous samples to classify. Most of these disks have very little damage, and could

not be correctly classified by the networks without heavily compromising the clas-

sification of normal samples (by excessively lowering the threshold). This is also

due to the fact that a good number of compliant samples present scratches that

take a big area of the disk, or are subject to a lower luminosity than the majority

of the dataset, both cases that complicate the task of separating anomalous and

compliant samples.

5.4 Results summary 55

Figure 5.7: Four samples that were misclassified even by the best-performing models.

56

Chapter 6

Conclusions

In this thesis it was studied the different techniques that, in the latest years, were

developed in the field of input reconstruction and generation applied to anomaly

detection system. The problem to be faced was a real world production line of

circular plastic covers that may present cracks and deformation on their surface,

to be detected by the proposed solution. Starting from the basic knowledge of

Autoencoders and GANs, the study moved on to the current state-of-the-art me-

thods, until deciding to use GANomaly and Skip-GANomaly, due to their ability

to reconstruct input and learn the normal sample distribution via latent space.

The images of the plastic parts were processed by different kinds of preproces-

sings and data augmentation techniques, to better fit the network. The chosen

preprocessing optimizes each image by using only the parts of the plastic disks,

by transforming it from a circular shape to a rectangular shape and dividing the

rectangle in patches. The various tests performed were aimed to find the most

effective and balanced number of patches, weights of the particular loss of these

networks and other tunings of various parameters.

The overall results show that the best configuration was obtained using GANo-

maly, with an AUC on the test images of 0.873 and accuracy of 81%. Therefore,

the study provided that the use of generative networks and careful data augmen-

tation can lead to good results even in the anomaly detection field applied to real

world pipelines, where the class of anomalies is not well defined and thus difficult

to separate from normal data.

The proposed solution is however open to improvements and more extensive te-

sting: an interesting tool to be added to the network would be the addition of

bounding boxes where the model identifies an anomaly, to better locate cracks

and understand how the network works. Another important point is highlighting

57

58 Chapter 6. Conclusions

that GANomaly, still being less complex than Skip-GANomaly, performed bet-

ter, meaning that a simpler network could potentially fit better the problem.

Therefore are suggested tests on the other less complex state-of-the-art methods,

which may correctly classify even the most difficult samples previously illustrated

in Figure 5.2. On the other hand, if in the future the dataset will have substan-

tially more samples, the problem could be understood better by exploiting the

attention mechanisms of the Transformers, discussed in Section 2.4.2.

Bibliography

[1] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, Gaurav Manek and Vi-

jay Ramaseshan Chandrasekhar, Efficient GAN-Based Anomaly Detection,

2019.

[2] Samet Akcay, Amir Atapour-Abarghouei and Toby P. Breckon, GANomaly:

Semi-Supervised Anomaly Detection via Adversarial Training, 2018.

[3] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-

Erfurth and Georg Langs, Unsupervised Anomaly Detection with Generative

Adversarial Networks to Guide Marker Discovery, 2017.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio, Generative

Adversarial Networks, 2014.

[5] Samet Akçay, Amir Atapour-Abarghouei and Toby P. Breckon, Skip-

GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder

Anomaly Detection, 2019.

[6] Zhang, W., Ouyang, L., Zhou, C. and Li L., Unsupervised Anomaly Detection

via Variational Auto-Encoder for Seasonal KPIs in Web Applications, 2019.

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu, A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise, 1996.

[8] Jianfeng Ma, Yuzhe Tang and Qin Liu, Anomaly Detection in the Cloud:

Challenges and Opportunities, 2016.

[9] Keogh, E., Lincoln, P. and Wei L., Real-time Anomaly Detection in

Streaming Data, 2008.

59

60 BIBLIOGRAPHY

[10] Michael Mathioudakis and George Katsikas, Online Anomaly Detection in

Time-Series Data via EMA-CUSUM Control Charts, 2010.

[11] Kai-Wen Cheng, Yie-Tarng Chen andWen-Hsien Fang, Video anomaly detec-

tion and localization using hierarchical feature representation and Gaussian

process regression, 2015.

[12] Mahmoud Afifi and Marco F. Duarte, UCSD Anomaly Detection Dataset

and Benchmark, 2019.

[13] Ahmed Selim, Mohamed M. Abdelsamea and Mohamed S. M. S. El-Rabaie,

Semantic Segmentation-Based Anomaly Detection in Surveillance Videos,

2019.

[14] Paul Viola and Michael Jones, Rapid Object Detection using a Boosted

Cascade of Simple Features, 2001.

[15] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, Isolation Forest, 2008.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin, Attention is All You

Need, 2017.

[17] https://towardsdatascience.com/transformers-89034557de14

[18] Md Amran Siddiqui, Jack W. Stokes, Christian Seifert, Evan Argyle, Ro-

bert McCann, Joshua Neil and Justin Carroll, Detecting Cyber Attacks using

Anomaly Detection with Explanations and Expert Feedback, 2019.

[19] Waleed Hilal, S. Andrew Gadsden and John Yawney, Financial Fraud: A

Review of Anomaly Detection Techniques and Recent Advances, 2021.

[20] Shikha Agrawal and Jitendra Agrawal, Survey on Anomaly Detection using

Data Mining Techniques, 2015.

[21] Justus Zipfel, Felix Verworner, Marco Fischer, Uwe Wieland , Mathias Kraus

and Patrick Zschech, Anomaly detection for industrial quality assurance: A

comparative evaluation of unsupervised deep learning models, 2022.

[22] Niall O’ Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli,

Gustavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan and Joseph

Walsh. Deep Learning vs Traditional Computer Vision. 2019.

BIBLIOGRAPHY 61

[23] https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way/

[24] https://en.wikipedia.org/wiki/Receiver operating characteristic

[25] https://towardsdatascience.com/whats-the-deal-with-accuracy-precision-

recall-and-f1-f5d8b4db1021

[26] Keiron O’Shea and Ryan Nash, An Introduction to Convolutional Neural

Networks, 2015.

[27] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J. and Williamson

R. C., One-Class SVMs for Document Classification, 2000.

[28] I. Ullah, S. Lee and N. Ahmad, A Novel Anomaly Detection Scheme Based

on k-means Clustering Algorithm, 2016.

[29] G. Gao, M. Li, A. W.-C. Liew, M. Wu, and Z. Zhao, Density-Based

Clustering over an Evolving Data Stream with Noise, 2015.

[30] Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P. and Shroff

G., LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection, 2016.

[31] Dor Bank, Noam Koenigstein and Raja Giryes, Autoencoders, 2020.

[32] Malhotra Pankaj et al., Anomaly Detection in Host Logs Using Bidirectional

Recurrent Neural Networks, 2015.

[33] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow and

Brendan Frey, Adversarial Autoencoders, 2016.

	Introduction
	Anomaly Detection
	Proposed approach
	Real world application

	Anomaly Detection
	Problem Statement
	Evaluation Metrics
	Traditional Methods
	Statistical Analysis
	Streaming Data
	Computer Vision

	Artificial Intelligence
	Machine Learning Methods
	Deep Learning Methods

	Theoretical Background
	Generative Networks
	Autoencoders
	Variational Autoencoders
	Generative Adversarial Networks (GAN)
	Adversarial Autoencoders

	State-of-the-Art
	AnoGAN
	EGBAD (Efficient GAN-Based Anomaly Detection)
	GANomaly
	Skip-GANomaly

	Proposed Method
	Hardware and Software configuration
	Dataset management
	Image preprocessing
	Image cropping
	Image unwarping
	Image 4-split
	Image filtering

	Model training

	Experimental Setup
	Parameters
	Skip-GANomaly
	Cropped image
	4-split
	Unwarping

	GANomaly
	Splitting
	Learning rate
	Triple loss weights
	Layer depth

	Results summary

	Conclusions
	Bibliografia

