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Introduction

Your friend wants to guess the graph automorphism you are looking at, which
means guessing where each vertex is mapped to. You want to help them by
giving some hints, that is telling the image of some vertices. What is the
minimum amount of hints you have to give in order for them to be sure to
guess correctly? Of course, this depends on the graph we are considering,
but your friend knows it, as it is your favourite graph. Can it depend on the
automorphism? Are there lucky automorphisms that take fewer hints than
others to be guessed? The answer to these last questions is no, in fact, if
hinting the image of a set of vertices uniquely determines the automorphism
σ1, then, applying σ2σ

−1
1 to the hints, we get a set of hints that uniquely

determines the automorphism σ2, so σ2 cannot take more hints than σ1.
This also shows that if hinting the image of a set of vertices allows your
friend to guess an automorphism, then the same set of vertices can be used
to hint any automorphism. We can conclude that our first question is the
same question as “What is the minimal size of a set of vertices of the graph
such that if you hint the image of those vertices your friend can always guess
the automorphism?”.

In this thesis, we will tackle this question, after its formal definition, in
the particular case of Kneser graphs. In this case, it turns out that the
number we are looking for is the same as the base size b(n, k) of the action
of the symmetric group Sym(n) on the k-subsets of an n-set, at least when
n > 2k.

The quantity b(n, k) is ⌈log2 n⌉ for n = 2k, it becomes
⌈

2(n−1)
k+1

⌉

when n

is sufficiently large, and in general it is the minimum ℓ such that

∑

π partition of n

π=(1c1 ,2c2 ,...,ncn )

(−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!











∑

η partition of k

η=(1b1 ,2b2 ,...,kbk )

k
∏

j=1

(

cj
bj

)











ℓ

is not zero, of course. We just need to prove this last formula now, which is
the main goal of this thesis.
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Chapter 1

Preliminaries

Given a graph Γ, we let Aut(Γ) be its automorphism group.

Definition 1.1. A set of vertices S is a determining set of a graph Γ if
every automorphism of Γ is uniquely determined by its action on S. This
means that, for any two automorphisms σ1, σ2 ∈ Aut(Γ), if for each s ∈ S
we have σ1(s) = σ2(s), then σ1 = σ2.

Definition 1.2. The determining number of Γ is the minimum cardinal-
ity of a determining set of Γ.

Note that every graph has a determining set, and thus a determining
number, because the set of all vertices is a determining set. It is also clear
that any set containing all but one vertex is a determining set.

For any subset S of vertices of Γ

Stab(S) = {g ∈ Aut(Γ) | g(v) = v, ∀v ∈ S}.

Note that Stab(S) =
⋂

v∈S Stab(v). This is the pointwise stabilizer of S.

Proposition 1.1. Let S be a subset of the vertices of the graph Γ. Then S
is a determining set for Γ if and only if Stab(S) = {1}.

Proof. If S is a determining set, then whenever σ ∈ Aut(Γ) fixes each s ∈ S,
g = 1. Thus Stab(S) = {1}. Conversely if Stab(S) = {1} and g, h ∈ Aut(Γ)
so that g(s) = h(s) for all s ∈ S then h−1g(s) = s for all s ∈ S =⇒ h−1g =
1 =⇒ g = h. Therefore, S is a determining set.

We study the determining number of Kneser graphs.

Definition 1.3. A Kneser graph Kn:k is the graph having vertex set the
collection of all k-subsets of {1, . . . , n} where two distinct k-subsets are de-
clared to be adjacent if and only if they are disjoint.
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If n < 2k, then Kn:k is the empty set on
(

n

k

)

vertices, and its determining
number is

(

n

k

)

−1 since every subset containing all but one vertex is determin-
ing, conversely given a subset S of the vertices not containing two vertices,
the automorphism that only swaps them would be in Stab(S), so S is not a
determining set.

If n = 2k, then Kn:k is the disjoint union of
(

n

k

)

/2 edges, as every k-subset
is only disjoint from its complementary. A determining set S of Kn:k must
contain at least one vertex from every edge, otherwise the automorphism
swapping an edge disjoint from S would fix S. On the other hand, a set
containing exactly one vertex per edge is determining, since an automorphism
maps edges into edges, thus the determining number for K2k:k is

(

2k
k

)

/2.
From now on we only study the case n > 2k.

We will prove in Chapter 2 that, in this case, the automorphism group of
Kn:k is isomorphic to the symmetric group Sym(n). This will come as a
corollary to the Erdős-Ko-Rado theorem.

We now define the base size for the action of a group on a set. In particular
we will focus on the action of Sym(n) on the k-subsets of {1, . . . , n}.

Definition 1.4. LetG be a permutation group on Ω. For Λ = {ω1, . . . , ωk} ⊆
Ω, we write G(Λ) for the pointwise stabilizer of Λ in G. If G(Λ) = {1}, then
we say that Λ is a base.

Definition 1.5. The size of a smallest possible base is known as the base

size of the action of G on Ω.

It is customary to denote the base size by b(G) or (more precisely) by
bΩ(G).

Let us now focus on the natural action of the symmetric group Sym(n)
on the collection of all the k-subsets of {1, . . . , n}, that is

g · {a1, . . . , ak} = {g(a1), . . . , g(ak)}

for every g ∈ Sym(n) and every {a1, . . . , ak} k-subset of {1, . . . , n}. We
denote the base size of this action with b(n, k). Note that fixing a k-subset
is the same as fixing its complementary. This immediately gives b(n, k) =
b(n, n− k).

The automorphism group of Kn:k is the symmetric group Sym(n) in its
action on k-subsets, as we will show in Corollary 2.2.1, hence, using Propo-
sition 1.1, we deduce that the determining number of Kn:k is the base size
b(n, k).

In what follows we will study the determining number of Kn:k through
the study of b(n, k).
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There are many partial results on b(n, k), see [1, 2, 3, 5]. For instance,
Halasi [5, Theorem 3.2] has proved that

b(n, k) =

⌈

2(n− 1)

k + 1

⌉

, (1.1)

when n ≥ ⌊k(k+1)/2⌋+1. Strictly speaking, this formula for b(n, k) is proved
in [5] when n ≥ k2 and has been improved in [2] to n ≥ ⌊k(k + 1)/2⌋ + 1.
This result has been improved further in [1, 2, 5], but currently there is no
explicit formula for b(n, k), valid for every value of n and k.

Using the principle of inclusion-exclusion, we prove in Chapter 3 an im-
plicit formula for b(n, k) in terms of integer partitions of n, see (3.13).

A result similar to ours was very recently determined independently by
Coen del Valle and Colva Roney-Dougal [7], their proof is remarkably differ-
ent from ours.
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Chapter 2

The Erdős-Ko-Rado theorem

Theorem 2.1 (Erdős-Ko-Rado). Suppose that A is a family of distinct k-
subsets of an n-set X with n > 2k and that each two subsets in A share at

least one element. Then

|A| ≤

(

n− 1

k − 1

)

and the equality holds if and only if A consists of all the k-subsets containing
a particular element.

The idea of the following proof is by Katona [6], we will present it as it
was taught during a course on Algebraic Combinatorics held by Professor
Pablo Spiga at the Galilean School of Higher Education of Padua in 2022.

Proof. We define a cyclic order on X as an ordering on the elements of
X := {x1, x2, . . . , xn} with x1 ≤ x2 ≤ · · · ≤ xn ≤ x1. Any permutation on
X which is an n-cycle gives rise to a cyclic order and conversely, any cyclic
order on X gives rise to a permutation which is an n-cycle.

We double count the elements of the family

S := {(A,C) | A ∈ A, C cyclic order, A interval in C},

where an interval of a cyclic order C is a subset of X consisting of consecutive
elements according to C. Given A ∈ A, we have k!(n−k)! choices for C with
the property that (A,C) ∈ S. In fact, we may order the elements in A in k!
ways and then we can order the elements of X \A in (n− k)! ways. Observe
that here we are using k < n. Therefore

|S| = |A|k!(n− k)!.

Now, we have (n−1)! cyclic orders on X. We claim that, given a cyclic order
C, there are at most k elements of A that are intervals of C. In fact let C

11
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be the cyclic order x1 ≤ x2 ≤ · · · ≤ xn ≤ x1. Suppose A := {x1, . . . , xk} ∈ A
is an interval of C. For every B ∈ A which is an interval of C, and B ̸= A,
B must intersect A, so there must be an i ∈ {1, . . . , k − 1} such that either
xi /∈ B and xi+1 ∈ B, or vice versa. For every i ∈ {1, . . . , k − 1} there is
exactly one interval B1 of C such that xi /∈ B1 and xi+1 ∈ B1, and exactly one
interval B2 such that xi ∈ B2 and xi+1 /∈ B2, and since 2k < n, B1 ∩B2 = ∅,
so at most one of the two is in A. Therefore, apart from A, there can be at
most k − 1 elements of A that are intervals of C. Therefore

|S| ≤ k(n− 1)!.

We deduce

|A| ≤
k(n− 1)!

k!(n− k)!
=

(

n− 1

k − 1

)

.

We now suppose that |A| =
(

n−1
k−1

)

. We have to show that A consists of
all the k-subsets containing some fixed point.

Suppose that there are two elements x and y such that every k-subset
containing x but not y belongs to A. We show that with this additional
hypothesis, A consists of all the k-subsets containing x. Let K be a k-subset
not containing x. Since 2k < n, there is a k-subset L containing x but not
y disjoint from K. Thus K /∈ A. Therefore, every set in A contains x,
and by considering the cardinality every such set lies in S. So, if A is a
counterexample to the Erdős-Ko-Rado theorem, then for every x and y there
is a k-subset not in A containing x but not y.

We claim that there are two k-subsetsK, K ′ intersecting in k−1 elements,
such thatK is in A andK ′ is not. This is true because we can transition from
a given k-subset in A to a given k-subset not in A changing one element at a
time, so there must be a point in the transition where we go from a k-subset
K in A to a k-subset K ′ not in A changing only one element.

Let K and K ′ be as above. Label the points in K \ K ′ and K ′ \ K as
0 and k respectively. Assuming that A is a counterexample to the Erdős-
Ko-Rado theorem, and using what we have shown, choose K ′′ /∈ A with
0 ∈ K ′′ and k /∈ K ′′. Let K ∩K ′′ = {0, . . . , t− 1} with t < k. Then number
the remaining points of K as t, . . . , k − 1, and the remaining points of K ′′

as n − k + t, . . . , n − 1. Number the remaining points with the remaining
elements of the integers mod n.
Since we are assuming |A| =

(

n−1
k−1

)

it must hold true that |S| = k(n−1)!, and
in particular for every cyclic order C of X there must be exactly k intervals
of C that are elements of A.
As we numbered the elements of X as the integers mod n, consider the
natural cyclic order 0 ≤ 1 ≤ · · · ≤ n− 1 ≤ 0. We will denote the intervals of
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this cyclic order as [a, b] = {a, a+1, . . . , b}, where the numbers are intended
mod n. The interval K = [0, k − 1] is in A, so for every i ∈ {0, 1, . . . , k − 2}
exactly one between [i − k + 1, i] and [i + 1, i + k] must be in A. We know
that K ′ = [1, k] is not in in A so [1− k, 0] must be in A. Now by induction
[i − k + 1, i] ∈ A for every i ∈ {0, . . . , k − 2}, in fact if [i − k + 1, i] ∈ A
for a given i ∈ {0, . . . , k − 3}, then [i − k + 2, i + 1] ∈ A, as one between
[i− k + 2, i+ 1] and [i+ 2, i+ k + 1] must be in A but the latter is disjoint
from [i− k+1, i]. This leads to a contradiction because for i = t− 1 ≤ k− 2
we know that K ′′ = [t− k, t− 1] /∈ A.

The first part of the theorem, i.e. A ≤
(

n−1
k−1

)

, holds even in the case n =
2k. We can see this by partitioning the k-subsets in couples of complementary
subsets: it is clear that it is necessary and sufficient to take at most one
element from every couple to create a family A such that each two subsets
in A intersect, and there are exactly

(

2k−1
k−1

)

=
(

2k
k

)

/2 couples. From this,

we also see that in this case we cannot conclude that if A =
(

n−1
k−1

)

then A
consists of all the k-subsets containing a particular element. For example,
for X = {1, 2, 3, 4} and k = 2, each two of the sets {1, 2}, {2, 3} and {1, 3}
intersect, and

(

4−1
2−1

)

= 3, but there is no element shared by all three.
An independent set on a graph is a subset of the vertices such that no two

vertices in the subset are adjacent. In a Kneser graph Kn:k, an independent
set is a subset A of its vertices such that every two vertices of A must
intersect, thus it satisfies the Erdős-Ko-Rado hypothesis. So we can rewrite
the Erdős-Ko-Rado theorem in the following form:

Theorem 2.2 (Erdős-Ko-Rado on Kneser graphs). The maximum size for an

independent set on a Kneser graph Kn:k with n > 2k is
(

n−1
k−1

)

. Furthermore,

an independent set of size
(

n−1
k−1

)

consists of the k-subsets of {1, 2, . . . , n}
containing a particular point.

Corollary 2.2.1. If n > 2k, then the automorphism group of Kn:k is iso-

morphic to the symmetric group Sym(n).

Proof. Let X denote Kn:k and X(i) denote the set of all the k-subsets con-
taining the point i, for all i = 1, . . . , n. Let σ be an automorphism of Kn:k.
Observe that X(i) is an independent set since any two of its elements inter-
sect in i. Now, σ maps independent sets in independent sets, so σ(X(i)) is
an independent set of X of size

(

n−1
k−1

)

, thus by Theorem 2.2 it is of the form
X(j) for some j = 1, . . . , n. This induces a permutation gσ on 1, . . . , n, in
fact since X(i1) ̸= X(i2) for i1 ̸= i2, then σ(X(i1)) ̸= σ(X(i2)), or σ would
not be an automorphism. If σ is not the identity then gσ is not the identity,
in fact if A = {a1, a2, . . . , ak} ⊆ {1, . . . , n} is not fixed by σ, say a1 /∈ σ(A),
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then X(a1) ̸= σ(X(a1)), so gσ is not 1Sym(n). Now we just need to check that
every g ∈ Sym(n) is gσ for some σ, but this is easy since if σg is the automor-
phism of Kn:k induced by g, then σg(X(i)) = X(g(i)) for every i = 1, . . . , n,
so g = gσg

.

Remark. We constructed an isomorphism between Sym(n) and Aut(Kn:k),
which maps g ∈ Sym(n) into σg, which is the action of g on the vertices of
Kn:k, as we saw that gσg

= g. We can thus conclude that the automorphism
group of Kn:k is the symmetric group Sym(n) in its action of k-subsets.



Chapter 3

The Formula

Let n,k and ℓ be positive integers with 1 ≤ k ≤ n/2. We let

F =

(

{1, . . . , n}

k

)

be the collection of all k-subsets of {1, . . . , n} and we let F ℓ be the collection
of all ℓ-tuples of k-subsets of {1, . . . , n}. In particular,

|F ℓ| =

(

n

k

)ℓ

.

In what follows, when we refer to subsets of {1, . . . , n} being fixed by a
permutation we mean setwise fixed, instead when we refer to a tuple being
fixed by a permutation we mean pointwise. In particular a tuple of subsets
of {1, . . . , n} is fixed by a permutation if each subset in the tuple is setwise
fixed.

For each g ∈ Sym(n), we let

Fg = {α ∈ F | g · α = α}

be the collection of all k-subsets of {1, . . . , n} fixed by g. Therefore, the
cartesian product F ℓ

g is the collection of all ℓ-tuples of k-subsets of {1, . . . , n}
which are fixed by g, that is the ℓ-tuples of k-subsets such that each k-subset
in the ℓ-tuple is fixed by g. We can also see this as an action of Sym(n) on
F ℓ, this way F ℓ

g = {β ∈ F ℓ | g ·β = β}. For instance, for each 1 ≤ i < j ≤ n,
F(i j) is the collection of all k-subsets of {1, . . . , n} fixed by the transposition
swapping i and j. Moreover, we let

Hℓ = {β ∈ F ℓ | if g · β = β, then g = 1}

15
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denote the collection of all ℓ-tuples of k-subsets of {1, . . . , n} which are only
fixed by the identity, and hℓ := |Hℓ|.
Since each element of F ℓ is either fixed by some non-identity element of
Sym(n) or is only fixed by the identity, exclusively, we have

F ℓ \Hℓ =
⋃

g∈Sym(n)\{1}

F ℓ
g .

Observe that

hℓ = 0 if and only if ℓ < b(n, k). (3.1)

In fact, by definition of b(n, k), there exists an ℓ-tuple of k-subsets which is
only fixed by the identity if and only if ℓ ≥ b(n, k).

We want to show that

F ℓ \Hℓ =
⋃

1≤i<j≤n

F ℓ
(i j). (3.2)

For this, we need to prove that if an element of F ℓ is fixed by some non-
identity permutation g, then it is also fixed by a transposition. We can use
the following.

Lemma 3.1. Given a non-identity permutation g ∈ Sym(n) there exists a

transposition τ such that for every S ⊆ {1, . . . , n} fixed by g, S is also fixed

by τ .

Proof. Let (a1 a2 . . . ai) be one of the cycles of the decomposition of g in
disjoint cycles of order at least two. We can assume i ≥ 2 because g is not
the identity. Then S ∩ {a1, . . . , ai} is either ∅ or {a1, . . . , ai}. In fact, let’s
suppose that aj ∈ S. Then since S is fixed by g and g(aj) = aj+1 then aj+1

must be in S too (we intend the indices mod i) and so {a1, . . . , ai} ⊆ S.
Similarly if aj /∈ S then {a1, . . . , ai} ∩ S = ∅ because S fixed by g implies S
fixed by g, where S := {1, . . . , n} \ S.
Then a1 and a2 are either both in S or both not in S, so the transposition
(a1 a2) fixes S, since it only swaps two elements in S or outside S.

So if each k-subset of an ℓ-tuple is fixed by g then there exists a trans-
position τ that also fixes each of them, so τ fixes the ℓ-tuple, and thus we
have (3.2).

Now, let
(

{1,...,n}
2

)

denote the set of all 2-subsets of {1, . . . , n}. From (3.2),
using inclusion-exclusion, we obtain

(

n

k

)ℓ

= |F ℓ| = hℓ +
∑

∅≠Γ⊆({1,...,n}
2

)

(−1)|Γ|−1

∣

∣

∣

∣

∣

∣

⋂

{i,j}∈Γ

F ℓ
(i j)

∣

∣

∣

∣

∣

∣

. (3.3)
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Now, given a subset ∅ ≠ Γ ⊆
(

{1,...,n}
2

)

, we write

F ℓ
Γ :=

⋂

{i,j}∈Γ

F ℓ
(i j)

and, with a slight abuse of terminology, we let F ℓ
∅ := F ℓ. With this notation,

from (3.3), we get

hℓ =
∑

Γ⊆({1,...,n}
2

)

(−1)|Γ||F ℓ
Γ|. (3.4)

In what follows, we identify Γ ⊆
(

{1,...,n}
2

)

with a graph on {1, . . . , n}
having edge set Γ. In particular, we borrow some notation from graph theory.

Given Γ ⊆
(

{1,...,n}
2

)

, we let π(Γ) be the partition of n where the parts
are the cardinalities of the connected components of Γ. In other words, let
X1, X2, . . . , Xt be the connected components of Γ ordered with |X1| ≥ |X2| ≥
· · · ≥ |Xt|. Then

π(Γ) := (|X1|, |X2|, . . . , |Xt|).

We now make two important remarks. First:

Lemma 3.2. Let Γ be a graph having vertex set {1, . . . , n} and having con-

nected components X1, X2, . . . , Xt. Then

⟨(i j) | {i, j} ∈ Γ⟩ = Sym(X1)× Sym(X2)× · · · × Sym(Xt).

Proof. For each i ∈ {1, . . . , t}, let Γi be the restriction of Γ to Xi, that is the
graph on Xi with edge set Γ ∩

(

Xi

2

)

.
As Xi∩Xj = ∅ for i ̸= j and as every edge in Γ is in Γi for some i, we deduce

⟨(i j) | {i, j} ∈ Γ⟩ = ⟨(i j) | {i, j} ∈ Γ1⟩ × · · · × ⟨(i j) | {i, j} ∈ Γt⟩. (3.5)

Now we just need to prove that if Γ is connected then

⟨(i j) | {i, j} ∈ Γ⟩ = Sym(n),

indeed applying this in (3.5) to every connected component we get the thesis.
We prove this by induction on n.

Base case: n = 1. The group generated by the empty set is just 1 =
Sym(1).

Inductive case: n ≥ 2. We take a leaf of a spanning tree of Γ, suppose
without loss of generality that it is the vertex n and let Γ̃ be the restriction
of Γ to {1, . . . , n− 1}. By inductive hypothesis, we know that

⟨(i j) | {i, j} ∈ Γ̃⟩ = Sym(n− 1)



18 CHAPTER 3. THE FORMULA

since Γ̃ is connected. As Γ is connected, there is an edge {i, n} for some
i ∈ {1, . . . , n− 1}, so

Sym(n) ≥ ⟨(i j) | {i, j} ∈ Γ⟩ ≥ ⟨Sym(n− 1), (i, n)⟩ = Sym(n).

In other words, the group generated by the transpositions corresponding
to elements in Γ is a direct product of symmetric groups.

Second: given ∅ ≠ Γ ⊆
(

{1,...,n}
2

)

, an ℓ-tuple of k-subsets of {1, . . . , n} is
fixed by every transposition corresponding to elements in Γ if and only if it
is fixed by every element of ⟨(i j) | {i, j} ∈ Γ⟩, in other words

F ℓ
Γ :=

⋂

{i,j}∈Γ

F ℓ
(i j) =

⋂

g∈⟨(i j)|{i,j}∈Γ⟩

F ℓ
g . (3.6)

In fact if g and h fix an ℓ-tuple then so do g−1 and gh.
By Lemma 3.2 we know that ⟨(i j) | {i, j} ∈ Γ⟩ only depends on π(Γ) up to
isomorphisms, so we can show the following.

Lemma 3.3. For every Γ1,Γ2 ⊆
(

{1,...,n}
2

)

with π(Γ1) = π(Γ2) we have |F
ℓ
Γ1
| =

|F ℓ
Γ2
|.

Proof. Let X1, X2, . . . , Xt be the connected components of Γ1 and similarly
let Y1, Y2, . . . , Yt be the connected components of Γ2, both ordered by car-
dinality. Let g ∈ Sym(n) be a permutation such that g(Xi) = Yi for all
i = 1, . . . , t, it exists because π(Γ1) = π(Γ2). Given β ∈ F ℓ

Γ1
, we know that

h · β = β for all h in ⟨(i j) | {i, j} ∈ Γ1⟩ by (3.6). Moreover we know that
gSym(Xi)g

−1 = Sym(Yi), and so by Lemma 3.2 we get

g⟨(i j) | {i, j} ∈ Γ1⟩g
−1 = ⟨(i j) | {i, j} ∈ Γ2⟩.

Now for every h ∈ ⟨(i j) | {i, j} ∈ Γ1⟩ we have

ghg−1 · (g · β) = ghg−1g · β = g · (h · β) = g · β,

that means g · β ∈ F ℓ
Γ2

by (3.6).
Similarly we can show that g−1·γ ∈ F ℓ

Γ1
for every γ ∈ F ℓ

Γ2
, and this shows that

there is a bijection between F ℓ
Γ1

and F ℓ
Γ2
, and in particular |F ℓ

Γ1
| = |F ℓ

Γ2
|.

Since the cardinality of these sets depends only on a partition, for each
partition π of n, we let f ℓ

π be the cardinality of |F ℓ
Γ|, where Γ is an arbitrary

graph with π = π(Γ).
Fix π a partition of n. We write π in “exponential” notation, that is,

π = (1c1 , 2c2 , . . . , ncn) where ci denotes the number of parts in π equal to i.
We now want to show the following
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Lemma 3.4. Given a partition π = (1c1 , 2c2 , . . . , ncn) of n it holds

∑

Γ⊆({1,...,n}
2

)
π(Γ)=π

(−1)|Γ| = (−1)n−
∑n

i=1
ci

n
∏n

i=1 i
cici!

. (3.7)

Proof. First, we show (3.7) in the special case π = (10, 20, . . . , n1), that is,
the trivial partition consisting of one part of size n, and then we will deduce
the general case from that. In particular, we want to show

∑

Γ⊆({1,...,n}
2

)
π(Γ)=(n)

(−1)|Γ| = (−1)n−1(n− 1)!.

This equality has a combinatorial interpretation: Among all connected graphs
on n labelled vertices, the difference between the number of those with an
even number of edges and those with an odd number of edges is (−1)n−1(n−
1)!.

We will show this by induction on n, with base case n = 1: the only
graph on 1 vertex has an even number of edges, and (−1)00! = 1. Assume
now the thesis to be true for n− 1.

Let pn and dn be the number of connected graphs on n labelled vertices
with an even number of edges and with an odd number of edges, respectively.

Let Pn and Dn be the number of graphs on n labelled vertices with an
even number of edges and with an odd number of edges, respectively. In fact

Pn =

(
(

n

2

)

0

)

+

(
(

n

2

)

2

)

+ . . .

Dn =

(
(

n

2

)

1

)

+

(
(

n

2

)

3

)

+ . . .

We can count the number of disconnected graphs with an even (odd)
number of edges on n labelled vertices in two ways: on one hand it is Pn−pn
(respectively Dn − dn), on the other hand, we can count the number of
rooted disconnected graphs with an even (odd) number of edges on n labelled
vertices (rooted means with an highlighted vertex, the root) and then divide
this number by n, as a graph can be rooted in n different ways.

To count the number of rooted disconnected graphs, we first choose the
connected component containing the root: for every possible cardinality i =
1, . . . , n − 1 we can choose the connected component in

(

n

i

)

ways, inside of
which we have i ways to choose the root.



20 CHAPTER 3. THE FORMULA

If we want the graph to have an even number of edges then either both
the connected component of the root and the rest have an even number of
edges, or they have both an odd number of edges.

If we want the graph to have an odd number of edges then either the
connected component of the root has an even number of edges and the rest
have an odd number of edges, or vice versa. Therefore, we have

Pn − pn =
1

n

n−1
∑

i=1

i

(

n

i

)

(piPn−i + diDn−i) (3.8)

Dn − dn =
1

n

n−1
∑

i=1

i

(

n

i

)

(piDn−i + diPn−i). (3.9)

Taking (3.9)-(3.8) we get

pn − dn +Dn − Pn =
1

n

n−1
∑

i=1

i

(

n

i

)

(Dn−i − Pn−i)(pi − di). (3.10)

From the Binomial theorem, we have

m
∑

k=0

(−1)k
(

m

k

)

= 0 ∀m > 0.

This implies Dn − Pn = 0 whenever
(

n

2

)

> 0, that is, for every n ≥ 2. For
n = 1, D1 − P1 = −1, since the only graph on 1 vertex has an even number
of edges. So (3.10) becomes

pn − dn =
1

n
(n− 1)n(−1)(pn−1 − dn−1) = (−1)n−1(n− 1)!

where the last equality follows by our inductive hypothesis.
Now that we have concluded the special case we need to deduce the

general case. Given π = (1c1 , . . . , ncn), the number of ways that the set
{1, . . . , n} can be partitioned into π is

n!
∏n

i=1 ci!(i!)
ci
.

Now, given a specific partition P of {1, . . . , n} realizing π, the sum among
all graphs Γ with connected components P is

∑

Γ⊆({1,...,n}
2

)
with conn. comp.s

P

(−1)|Γ| =
∏

S∈P

∑

γ⊆(S
2
)

π(γ)=S

(−1)|γ| =
∏

S∈P

(−1)|S|−1(|S| − 1)! =
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=
n
∏

i=1

(−1)(i−1)ci(i− 1)!ci = (−1)n−
∑n

i=1
ci

n
∏

i=1

(i− 1)!ci .

So in conclusion

∑

Γ⊆({1,...,n}
2

)
π(Γ)=π

(−1)|Γ| =
n!

∏n

i=1 ci!(i!)
ci
(−1)n−

∑n
i=1

ci

n
∏

i=1

(i− 1)!ci =

= (−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!

.

Using Lemma 3.4 in (3.4), we get

hℓ =
∑

π partition of n

π=(1c1 ,2c2 ,...,ncn )

(−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!

f ℓ
π. (3.11)

Lemma 3.5. Given an integer partition π = (1c1 , . . . , ncn), we have

f ℓ
π =











∑

η partition of k

η=(1b1 ,2b2 ,...,kbk )

k
∏

j=1

(

cj
bj

)











ℓ

. (3.12)

Proof. Given Γ ⊆
(

{1,...,n}
2

)

satisfying π(Γ) = π and with connected compo-
nents X1, . . . , Xt, we want to calculate how many elements of F ℓ are fixed
by ⟨(i j) | {i, j} ∈ Γ⟩. This is the number of k-subsets of {1, . . . , n} that are
fixed by ⟨(i j) | {i, j} ∈ Γ⟩, raised to the ℓ, since in order for an element of
F ℓ to be fixed, each of its k-subsets has to be fixed.

To calculate this number, we first notice that in order for a k-subset S
to be fixed, either Xi ⊆ S or Xi ∩ S = ∅. For |Xi| = 1 this is trivial. For
|Xi| ≥ 2 we already showed in Lemma 3.1 that if S is fixed by a cycle of
order at least 2, then either all the elements of the cycle are in S or none of
them are. If Xi = {a1, . . . , as} then

(a1, . . . , as) ∈ Sym(Xi) ≤ Sym(X1)× · · · × Sym(Xt) = ⟨(i j) | {i, j} ∈ Γ⟩.

So Xi ⊆ S or Xi ⊆ S for every i = 1 . . . , t. This condition is also sufficient
for a k-subset to be fixed by ⟨(i j) | {i, j} ∈ Γ⟩, since this is a direct product
of the symmetric groups of the Xis, so its action on S is only to internally
shuffle the Xis which are completely inside of S.
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Thus the number we are looking for is the number of ways we can create
a set of order k combining different Xis, so, using the exponential notation

f ℓ
π = |F ℓ

Γ| =











∑

η partition of k

η=(1b1 ,2b2 ,...,kbk )

k
∏

j=1

(

cj
bj

)











ℓ

.

Finally, from (3.11) and (3.12), we find the beautiful equality

hℓ =
∑

π partition of n

π=(1c1 ,2c2 ,...,ncn )

(−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!











∑

η partition of k

η=(1b1 ,2b2 ,...,kbk )

k
∏

j=1

(

cj
bj

)











ℓ

.

(3.13)

From (3.1) it follows that to find b(n, k) it is sufficient to calculate hℓ

using this formula for increasing values of ℓ until we get a non-zero value:
b(n, k) is the smallest positive integer ℓ such that hℓ ̸= 0.
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Results

We have implemented this formula in a computer and we are reporting in
Table 4.1 the values of b(n, k), for every k ≤ 14. We hope that these values
can be of some help to shed some light on b(n, k) when k is large.

Observe that in Table 4.1, for a given k ≤ 14, we are reporting only the
values of b(n, k) when n ≤ ⌊k(k+ 1)/2⌋, because when n ≥ ⌊k(k+ 1)/2⌋+ 1
we may simply use (1.1) to compute b(n, k). In particular, when k = 1, we
have ⌊k(k + 1)/2⌋ = 1 ≤ 2k and hence b(n, k) = ⌈2(n − 1)/2⌉ = n − 1,
for every n ≥ 2. When k = 2, we have ⌊k(k + 1)/2⌋ = 3 ≤ 2k and hence
b(n, k) = ⌈2(n− 1)/3⌉, for every n ≥ 4. For this reason, in Table 4.1, we are
only including the values of k ≥ 3.

Furthermore, for n = 2k, b(n, k) is not the determining number of the
Kneser Graph Kn:k, as we discussed in Chapter 1, but we can still study
its value with our formula, and in this case Z. Halasi in [5] showed that
b(n, n/2) = ⌈log2 n⌉.

n\k 3 4 5 6 7 8 9 10 11 12 13 14
6 3
7 -
8 - 3
9 - 4
10 - 4 4
11 - - 4
12 - - 4 4
13 - - 5 4
14 - - 5 5 4
15 - - 5 5 4
16 - - - 5 5 4
17 - - - 5 5 5

23
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18 - - - 6 5 5 5
19 - - - 6 5 5 5
20 - - - 6 6 5 5 5
21 - - - 6 6 5 5 5
22 - - - - 6 6 5 5 5
23 - - - - 6 6 6 5 5
24 - - - - 6 6 6 5 5 5
25 - - - - 7 6 6 6 5 5
26 - - - - 7 6 6 6 5 5 5
27 - - - - 7 7 6 6 6 5 5
28 - - - - 7 7 6 6 6 6 5 5
29 - - - - - 7 7 6 6 6 6 5
30 - - - - - 7 7 6 6 6 6 6
31 - - - - - 7 7 7 6 6 6 6
32 - - - - - 8 7 7 6 6 6 6
33 - - - - - 8 7 7 7 6 6 6
34 - - - - - 8 8 7 7 6 6 6
35 - - - - - 8 8 7 7 7 6 6
36 - - - - - 8 8 7 7 7 6 6
37 - - - - - - 8 8 7 7 7 6
38 - - - - - - 8 8 7 7 7 6
39 - - - - - - 8 8 8 7 7 7
40 - - - - - - 9 8 8 7 7 7
41 - - - - - - 9 8 8 8 7 7
42 - - - - - - 9 8 8 8 7 7
43 - - - - - - 9 9 8 8 7 7
44 - - - - - - 9 9 8 8 8 7
45 - - - - - - 9 9 8 8 8 7
46 - - - - - - - 9 9 8 8 8
47 - - - - - - - 9 9 8 8 8
48 - - - - - - - 9 9 9 8 8
49 - - - - - - - 9 9 9 8 8
50 - - - - - - - 10 9 9 8 8
51 - - - - - - - 10 9 9 9 8
52 - - - - - - - 10 9 9 9 8
53 - - - - - - - 10 10 9 9 8
54 - - - - - - - 10 10 9 9 9
55 - - - - - - - 10 10 9 9 9
56 - - - - - - - - 10 10 9 9
57 - - - - - - - - 10 10 9 9
58 - - - - - - - - 10 10 9 9
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59 - - - - - - - - 10 10 10 9
60 - - - - - - - - 11 10 10 9
61 - - - - - - - - 11 10 10 9
62 - - - - - - - - 11 10 10 10
63 - - - - - - - - 11 11 10 10
64 - - - - - - - - 11 11 10 10
65 - - - - - - - - 11 11 10 10
66 - - - - - - - - 11 11 10 10
67 - - - - - - - - - 11 11 10
68 - - - - - - - - - 11 11 10
69 - - - - - - - - - 11 11 10
70 - - - - - - - - - 11 11 11
71 - - - - - - - - - 12 11 11
72 - - - - - - - - - 12 11 11
73 - - - - - - - - - 12 11 11
74 - - - - - - - - - 12 11 11
75 - - - - - - - - - 12 12 11
76 - - - - - - - - - 12 12 11
77 - - - - - - - - - 12 12 11
78 - - - - - - - - - 12 12 11
79 - - - - - - - - - - 12 12
80 - - - - - - - - - - 12 12
81 - - - - - - - - - - 12 12
82 - - - - - - - - - - 12 12
83 - - - - - - - - - - 12 12
84 - - - - - - - - - - 13 12
85 - - - - - - - - - - 13 12
86 - - - - - - - - - - 13 12
87 - - - - - - - - - - 13 12
88 - - - - - - - - - - 13 13
89 - - - - - - - - - - 13 13
90 - - - - - - - - - - 13 13
91 - - - - - - - - - - 13 13
92 - - - - - - - - - - - 13
93 - - - - - - - - - - - 13
94 - - - - - - - - - - - 13
95 - - - - - - - - - - - 13
96 - - - - - - - - - - - 13
97 - - - - - - - - - - - 14
98 - - - - - - - - - - - 14
99 - - - - - - - - - - - 14
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100 - - - - - - - - - - - 14
101 - - - - - - - - - - - 14
102 - - - - - - - - - - - 14
103 - - - - - - - - - - - 14
104 - - - - - - - - - - - 14
105 - - - - - - - - - - - 14

Table 4.1: Some values for b(n, k)

It appears, as intuition would suggest, that for every k and n1 > n2 ≥ 2k
it holds b(n1, k) ≥ b(n2, k), and also that for every n and k1 < k2 ≤ n/2 it
holds b(n, k1) ≥ b(n, k− 2). These properties are in fact true and are proved
in [5].

Another proof that b(n, 1) = n− 1

Our formula can be used to find again the known result b(n, 1) = n − 1, as
follows.
First of all, note that with k = 1 and ℓ ≥ 1 the formula (3.13) becomes

hℓ =
∑

π partition of n

π=(1c1 ,2c2 ,...,ncn )

(−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!

cℓ1 := hℓ(n), (4.1)

as the only partition of 1 is (1b1 , . . . , kbk) = (11). The notation hℓ(n) with n
specified and ℓ ≥ 1 will be useful later.
We will prove b(n, 1) = n−1 by induction on n. First, we prove the following
Lemma.

Lemma 4.1. For n ≥ 2 it holds

h0(n) :=
∑

π partition of n

π=(1c1 ,2c2 ,...,ncn )

(−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!

= 0.

(Note that this is a definition for h0(n), since hℓ(n) from above was defined
for ℓ ≥ 1)

Proof. By Lemma 3.4, we get

h0(n) =
∑

π part. of n

∑

Γ⊆({1,...,n}
2

)
π(Γ)=π

(−1)|Γ| =
∑

Γ⊆({1,...,n}
2

)

(−1)|Γ|.
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We conclude by the binomial theorem, as
(

n

2

)

≥ 1 and

∑

Γ⊆({1,...,n}
2

)

(−1)|Γ| =

(n
2
)

∑

k=0

(−1)k
(
(

n

2

)

k

)

= 0.

We now proceed with the proof by induction that hℓ(n) = 0 for 1 ≤ ℓ <
n− 1 and hn−1(n) ̸= 0.

Base case: n = 2. The partitions of 2 in exponential notation are (2, 0)
are (0, 1), so (4.1) becomes

hℓ(2) = (−1)2−2 2!

12 · 2! · 20 · 0!
2ℓ + (−1)2−1 2!

10 · 0! · 21 · 1!
0ℓ = 2ℓ,

which is non-zero for ℓ = 1.
Inductive case: let now assume that hℓ(n − 1) = 0 for 1 ≤ ℓ < n − 2

and hn−2(n − 1) ̸= 0. We want to show hℓ(n) = 0 for 1 ≤ ℓ < n − 1 and
hn−1(n) ̸= 0. The induction is based on the fact that we can obtain the
partitions of n from the partitions of n − 1 simply adding a component of
cardinality 1 (increasing b1 by 1, where µ = (1b1 , . . . , (n− 1)bn−1) is a generic
partition of n − 1), in this way we obtain every partition of n with c1 ̸= 0,
but partitions of n with c1 = 0 don’t count in hℓ(n), since cℓ1 = 0. With this
idea, we calculate hℓ(n).

hℓ(n) =
∑

π partition of n

π=(1c1 ,2c2 ,...,ncn )

(−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!

cℓ1

=
∑

π partition of n

π=(1c1 ,2c2 ,...,ncn )
c1 ̸=0

(−1)n−
∑n

i=1
ci

n!
∏n

i=1 i
cici!

cℓ1

=
∑

µ partition of n−1

µ=(1b1 ,2b2 ,...,(n−1)bn−1 )

(−1)n−(b1+1)−
∑n−1

i=2
bi

n(n− 1)!

(b1 + 1)
∏n−1

i=1 ibibi!
(b1 + 1)ℓ

= n ·
∑

µ partition of n−1

µ=(1b1 ,2b2 ,...,(n−1)bn−1 )

(−1)n−1−
∑n−1

i=1
bi

(n− 1)!
∏n−1

i=1 ibibi!
(b1 + 1)ℓ−1,

but

(b1 + 1)ℓ−1 = 1 +
ℓ−1
∑

i=1

(

ℓ− 1

i

)

bi1,
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so

hℓ(n) = n ·

(

h0(n− 1) +
ℓ−1
∑

i=1

(

ℓ− 1

i

)

hi(n− 1)

)

. (4.2)

Now, h0(n − 1) = 0 by Lemma 4.1, and hi(n − 1) = 0 for 1 ≤ i < n − 2,
so hℓ(n) = 0 for ℓ − 1 < n − 2, but hn−1(n) ̸= 0 since hn−2(n − 1) ̸= 0,
concluding.

We also showed that hn−1(n) = n!, as h1(2) = 21 = 2! and for every
n ≥ 3 equality (4.2) yields hn−1(n) = n · hn−2(n − 1). This makes sense, as
the number of (n − 1)-tuples of 1-subsets of {1, . . . , n} which are only fixed
by the identity are exactly the (n − 1)-tuples of distinct 1-subsets, which,
considering the different orderings, there are n! of.
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