

 J. ICT Res. Appl., Vol. 17, No. 2, 2023, 151-166 151

Received June 8th, 2022, 1st Revision September 13th, 2022, 2nd Revision October 23rd, 2022, 3rd Revision May
11th, 2023, Accepted for publication May 15th, 2023.
Copyright © 2023 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2023.17.2.2

Enhanced Relative Comparison of Traditional Sorting

Approaches towards Optimization of New Hybrid Two-in-

One (OHTO) Novel Sorting Technique

Rajeshwari B S1,*, C.B. Yogeesha2, M. Vaishnavi3, Yashita P. Jain3,

B.V. Ramyashree3 & Arpith Kumar3

1Department of CSE, B.M.S College of Engineering, Bull Temple Road, Basavanagudi,

Bengaluru 560 019, India
2Collaboration Technology Group, Cisco Systems India Private Limited, SEZ, Cessana

Business Park, Marathahalli, Sarjapur, ORR, Kaadubesanahalli, Bengaluru 560 103,

India
3Department of CSE, B.M.S College of Engineering, Bull Temple Road, Basavanagudi,

Bengaluru 560 019, India

*E-mail: rajeshwari.cse@bmsce.ac.in,

Abstract. In the world of computer technology, sorting is an operation on a data

set that involves ordering it in an increasing or decreasing fashion according to

some linear relationship among the data items. With the rise in the generation of

big data, the concept of big numbers has come into existence. When the number

of records to be sorted is limited to thousands, traditional sorting approaches can

be used; in such cases, complexities in their execution time can be ignored.

However, in the case of big data, where processing times for billions or trillions

of records are very long, time complexity is very significant. Therefore, an

optimized sorting technique with efficient time complexity is very much required.

Hence, in this paper an optimized sorting technique is proposed, named Optimized

Hybrid Two-in-One Novel Sorting Technique (OHTO, a mixed approach of the

Insertion Sort technique and the Bubble Sort technique. The proposed sorting

technique uses the procedure of both Bubble Sort and Insertion Sort, resulting in

fewer comparisons, fewer data movements, fewer data insertions, and less time

complexity for any given input data set compared to existing sorting techniques.

Keywords: algorithm design technique; bubble sort; hybrid sorting; insertion sort;

optimization; sorting; time complexity.

1 Introduction

Sorting plays an important role in organizing the elements of a data set in a

particular order, most often in numerical or lexicographical order, to facilitate

further analysis whose procedures may require sorted input. Over the years,

sorting algorithms have emerged as an integral part of computing as it reduces

the complexity of problems, thus providing a great way of preprocessing data.

Despite the existence of a plethora of sorting techniques, newer algorithms keep

152 Rajeshwari B S, et al.

getting introduced, as work is going on continually to find better ones with more

efficiency and optimization. The efficiency of any algorithm mainly depends on

the number of data items being processed. One must appropriately choose the

algorithms such that no high overhead is caused; at the same time, it is necessary

to keep the time complexity minimal for the chosen data set. It has been observed

that handling space complexity is not a challenge with memory becoming

cheaper, whereas optimizing time complexity is significant.

There are numerous ways in which algorithms can be designed to achieve sorted

order for given input data elements. The standard way of studying a technique

and analyzing its efficiency is understanding the number of comparisons and time

taken among the data items to decide their order. This must be followed by data

exchanges, if necessary, to place the elements in the right position. This exchange

is a costly operation, and the total number of exchanges is also important for

evaluating the overall efficiency of the algorithm.

Hence, the above discussed factors must be taken into consideration in writing

easy-to-use code and implement and debug it to attract the programmer

population. The proposed sorting approach considers various parameters: data

comparisons and exchanges, data movements, number of insertions, and time

complexity to show that the proposed technique is efficient compared to existing

sorting techniques. Such comparisons have been made for data sets of size 10,

100, 1,000 and 10,000.

The rest of this paper is organized as follows. Section 2 provides a glimpse of

some related research work that has been done in the past. Section 3 briefly

discusses the standard algorithms that form the basis of the idea presented in this

paper. It further elaborates on the implementation of the proposed OHTO sorting

technique with illustrative diagrams and the pseudocode. A comparison of the

three algorithms, Insertion Sort, Bubble Sort and OHTO, is presented towards the

end of Section 4 with the help of tables and charts. Section 5 is reserved for the

conclusion.

2 Literature Review

Work around sorting algorithms has been going on since as early as the 1950s. A

chronological inception of an abundance of standard sorting algorithms has taken

place over the years, each of which is unique in its own ways. Based on the

features, these algorithms are implemented in different suitable applications.

Despite the existence of these algorithms, sorting larger arrays or databases

optimally or quickly is still an open research problem.

Sorting Approaches towards OHTO Novel Sorting Technique 153

Sorting algorithms are very much required in the software world for various types

of analysis purposes. After referring to various papers the pros and cons of

different sorting algorithms when performed individually can be known. By

modifying the existing sorting algorithm or when two or more algorithms are

combined to form a new algorithm, they perform better and are more efficiently

than the individual existing algorithms.

The performance characteristics of different sorting techniques and types, their

pros and cons, along with a comparative analysis have been proposed by Purvi

Prajapati [1]. It was concluded that sorting is a specific problem as the efficiency

of an algorithm depends on various parameters or factors. Considering time

complexity as a factor, six sorting algorithms (Bubble Sort, Insertion Sort,

Selection Sort, Counting Sort, Radix Sort and Bucket Sort) were compared by

Sandeep Kaur Gill [2]. The range and the distribution of values were considered

to see which algorithms would perform well in a given scenario. The algorithms

were categorized as comparison and non-comparison sorting algorithms. It was

concluded that the former must be preferred over the latter when the size of the

dataset is small, and the latter must be preferred otherwise. Based on the pattern

of the data fed into an input array – a random array, an ascending/descending

order array, or an array containing the same elements – the best algorithm

selection technique was implemented by Shubham Rustagi [3]. The algorithms

considered were Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Selection

Sort, Heap Sort.

The optimized selection sort algorithm (OSSA) developed by Sultanullah Jadoon

[4] was proved to be more efficient and faster than Selection Sort and Insertion

Sort. OSSA (O (n^2)) is a stable, in-placed, and easily understandable algorithm.

The SA sorting algorithm (O(n^2)) for large amounts of sorted and/or unsorted

data was proposed by Mohammad Shabaz [5]. This algorithm was proved to

perform better than individual algorithms such as Insertion Sort, Selection Sort,

Merge Sort, Quick Sort, Heap Sort, Shell Sort, etc. in terms of memory required

for sorting and execution time. The Selection Sort and Bubble Sort algorithms

were improved by Jehad Alnihoud [6], under the name of Enhanced Selection

Sort (ESS) and Enhanced Bubble Sort (EBS), respectively. ESS made the existing

Selection Sort algorithm faster and more stable by performing fewer sort

operations, although its time complexity was (O(n^2)). To sort n elements, EBS

performed O(n log n) operations when compared to the Bubble Sort algorithm

(O(n^2)). Input Sort was proposed by Anshu Mishra [7], typically for cases when

elements of a stream from a file are to be sorted. This algorithm has a time

complexity of O(n log n).

Considering efficiency as a major factor for sorting, a hybrid sorting algorithm –

an enhanced version of Insertion Sort algorithm – was proposed by Tarundeep

154 Rajeshwari B S, et al.

Singh Sodhi [8]. It has varying complexity and is characterized by being efficient

for huge lists, requiring a reduced number of comparisons. The Shell Sort

algorithm was developed by Pooja K. Chhatwani [9] to improve the original

Insertion Sort algorithm to efficiently allow the comparison and exchange of

elements that are far apart. A bidirectional Insertion Sort was also introduced, as

an optimization and enhancement of Insertion Sort. This worked efficiently for

both big and small lists. An optimized Bubble Sort algorithm was proposed by

Ramesh M Patelia [10], which reduced the number of pass iterations by half when

compared to the original algorithm. The V-Re-Fr (VRF) Sorting algorithm, which

is based on Bubble Sort algorithm, was proposed by Sunny Sharma [11] to

improve functionality and reduce algorithm complexity. A left-right sort

algorithm was proposed by Shashank Singh [12] and compared with three other

algorithms – namely Insertion, Bubble and Selection Sort – based on CPU time,

number of swaps, and number of comparisons. The proposed algorithm took

fewer comparisons than all three original algorithms, whereas the number of

swaps was found to be always the same as for Bubble Sort and Insertion Sort, for

all length of input values.

Many ongoing research and studies take into account aspects of their own to come

up with new ideas that could be applied in sorting arrays or databases [13]. This

can be optimization of existing algorithms, ideas like inculcation of dynamic

memory allocation, or the usage of unique data structures [14,15]. Hence, based

on detailed survey on related work on sorting techniques, a new optimized sorting

technique named Optimized Hybrid Two-in-One Novel Sorting Technique

(OHTO) is proposed here. The proposed OHTO sorting technique is optimized

in terms of data comparison, data movement, number of exchanges, number of

insertions, and time complexity evaluation. The proposed approach is explained

in the following section.

3 Proposed Optimized Hybrid Two-in-One Novel Sorting

Technique (OHTO) Technique

3.1 Overview of Composed Algorithms

Insertion Sort is a simple sorting algorithm that is relatively efficient for small

lists and mostly sorted lists and is often used as part of more sophisticated

algorithms. It works by taking elements from a list one by one and inserting them

in their correct position into a sorted list. In arrays, the new list and the remaining

elements can share the array’s space, but insertion is computationally expensive,

requiring shifting over all the consecutive elements by one. This algorithm has a

quadratic running time O(n^2) in the worst case. In average cases, it is also

quadratic, which makes Insertion Sort impractical for sorting large arrays.

Sorting Approaches towards OHTO Novel Sorting Technique 155

Bubble Sort is another simple sorting algorithm. The algorithm starts at the

beginning of the data set, compares the first two elements, and swaps elements if

the first is greater than the second. It continues doing this for each pair of adjacent

elements to the end of the data set. Again, apply Bubble sort technique from first

location. In each iteration, one element occupies its correct position and finally

gets sorted array. This algorithm’s average time and worst-case performance is

O(n^2), so it is rarely used to sort large, unordered data sets. Bubble Sort can be

used to sort a small number of data items, where its asymptotic inefficiency is not

a large penalty.

3.2 Optimized Hybrid Two-in-One Novel Sorting Technique

(OHTO) Technique

In the proposed technique, the array or database is first split into two halves.

Bubble Sort is applied on these halves. Insertion Sort is performed as the next

step, wherein elements from the second half are the key elements that are inserted

into the first half following the rules of Insertion Sort. What makes this approach

more efficient is that unlike in normal Insertion Sort, two elements are inserted

in every iteration or pass. This is useful as the halves are already sorted and hence

the presented technique can take advantage of the fact that the pair of keys that

are to be inserted will be sorted in a particular way, just as the first half of the

array or database will be.

3.2.1 Illustrative Example Demonstrating OHTO Sorting

Technique Towards Various Cases

Consider the following input chunk of data elements:

30 40 10 50 100 60 5 20 45 4 70

Divide the array into two halves:

30 40 10 50 100 60 5 20 45 4 70

Apply Bubble Sort to the two halves:

10 30 40 50 100 4 5 20 45 60 70

Apply Insertion Sort on the elements of the second halve to be inserted into the

first halve.

156 Rajeshwari B S, et al.

CASE 1: Inserting both keys before a specific element in the first half of the

sorted halve

Insert both keys before a specific element in the first half of the sorted halve by

moving each element by two positions towards the right:

10 30 40 50 100 4 5 20 45 60 70

10 30 40 50 100 4 5 20 45 60 70

 After insertion of KEY 1 and KEY 2:

4 5 10 30 40 50 100 20 45 60 70

Increment J by 2 targeting towards insertion of the next two elements in the sorted

second halve into first sorted halve.

CASE 2: Inserting both keys at different positions in the first half of the

sorted halve

4 5 10 30 40 50 100 20 45 60 70

J

 KEY 2 KEY 1

J

 KEY

1
 KEY

2

Sorting Approaches towards OHTO Novel Sorting Technique 157

Compare KEY 2 value 45 with the elements in the first sorted halve and move

data elements greater than KEY 2 two positions towards the right. Insert KEY 2

value 45 in the correct position in the first sorted halve:

4 5 10 30 40 50 100 20 45 60 70

Compare KEY 1 value 20 with the elements in the first sorted halve and move

data elements greater than KEY 1 one position towards the right. Insert KEY 1

value 20 in the correct position in the first sorted halve:

4 5 10 30 40 45 100 50 100 60 70

4 5 10 20 30 40 45 50 100 60 70

Increment J by 2 targeting towards insertion of the next two elements in the sorted

second halve into the first sorted halve.

CASE 3: Both keys in the second sorted halve to be inserted after a specific

element into the first sorted halve

Compare KEY 2 value 70 with the elements in the first sorted part and move data

elements greater than KEY 2 two positions towards the right. Both keys 60 and

4 5 10 30 40 45 100 50 100 60 70

4 5 10 20 30 40 45 50 100 60 70

J

 KEY 1 KEY 2

158 Rajeshwari B S, et al.

70 are greater than 50 but less than 100. Insert both keys after element 50 in the

first sorted halve.

4 5 10 20 30 40 45 50 100 60 70

4 5 10 20 30 40 45 50 60 70 100

 Final sorted array:

4 5 10 20 30 40 45 50 60 70 100

3.2.2 OHTO Algorithm

The steps of the proposed OHTO algorithm design are as follows:

OHTO (A[] , n)

Input: Unsorted Array: A[1..n], Number of Elements: n
Output: Sorted Array A[1..n] with

➢ Reduced number of Comparisons

➢ Reduced number of Data Exchanges

➢ Reduced number of Data Movements

➢ Reduced number of Data Insertions

1. Divide an input array A into two halves: (A[1…n/2]), (A[n/2+1...n])

2. Bubble_Sort (A[1…n/2],n/2)

3. Bubble_Sort (A[n/2+1...n],n/2)

4. for j ← (n/2+1) to n // Apply Insertion Sort technique on second halve elements to

 be inserted into the first halve

5. A[j]  key1

6. A[j+1]  key2

7. i ← j-1

8. if(key1 < A[i] && key2 < A[i]))

9. while (i<=1 && (key1 < A[i] && key2 < A[i])) // Case 1: Insert both key

 elements before a specific element in the sorted array.

10. A[i]→ A[i+2] // Move the ith element two positions to the right.

11. ii-1

12. if(key1 < A[i] && key2 < A[i])

13. A[i] key1

14. A[i+1]  key2

15. jj+2 // Jump j by two positions to the right.

Sorting Approaches towards OHTO Novel Sorting Technique 159

16. endif

17. break

18. end while

19. endif

20. else

21. if(key2 < A[i]) // Case 2: Insert both key elements at a specific element in the

 sorted array.

22. while(i<=1 && (key2 < A[i]))

23. A[i+2]key2 // Move the ith element two positions to the right.

24. ii-1

25. end while

26. A[i+1]key2

27. while(i<=1 && (key1 < A[i]))

28. A[i+1]key1

29. ii-1

30. end while

31. A[i+1]key1

32. jj+2

33. endif

34. else

35. while(i<=1 && (key2 < A[i])) // Case 3: Insert both key elements after

 a specific element the sorted array.

36. A[i+2]A[i] // Move the ith element two positions to the right.

37. ii-1

38. if(key2 < A[i]) && key1>A[i-1])

39. A[i+1]key2

40. A[i+2]key1

41. jj+2

42. break

43. end if

44. end while

45. end for

46. end

4 OHTO Sorting Technique: Results and Discussion

The proposed sorting approach considers various parameters: data comparisons,

number of exchanges, number of insertions, and time complexity to show

proposed technique’s efficiency compared to existing sorting techniques. Such

comparisons have been made for data sets of size 10, 100, 1,000, and >10,000,

where the order of the dataset was random.

The below tables and charts show the comparison of the three algorithms based

on four parameters.

1. Number of Comparisons

The number of comparisons carried out by the proposed OHTO sorting technique

is shown in Table 1.

160 Rajeshwari B S, et al.

Table 1 Comparison on number of comparisons.

 Sorting Technique

No. of Data Elements

Bubble

Sort
Insertion Sort OHTO Sort

10 45 25 24
100 4950 2572 2500

1,000 4,99,500 2,50,131 1,25,250
> 10,000 49,995,000 25,150,175 25,000,000

Figure 1 depicts the comparison of the three sorting techniques on the basis of the

total number of data element comparisons carried out throughout the sorting

process. It can be seen that the Bubble Sort algorithm always makes the highest

number of comparisons. In most cases, the proposed algorithm makes nearly the

same number of comparisons as Insertion Sort, whereas this number is almost

doubled in the case of Bubble Sort. Thus, the proposed technique is over 50%

more efficient than Bubble Sort in this aspect and slightly better than Insertion

Sort as well.

Figure 1 Number of comparisons of data elements.

2. Number of Movements (considering 1 swap ⇔ 2 movements)

The number of data movements carried out by the proposed OHTO sorting

technique is shown in Table 2.

4
5

4
9

5
0

4
9

9
5

0
0 4

9
.9

9
5

.0
0

0

2
5

2
5

7
2

2
5

0
1

3
1

2
5

.1
5

0
.1

7
5

2
4

2
5

0
0

1
2

5
2

5
0

2
5
.0

0
0

.0
0
0

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000

N
u

m
b

er
 o

f
C

o
m

p
a
ri

so
n

s

N--> Number of Data Elements

Number of Comparisons

Sorting Approaches towards OHTO Novel Sorting Technique 161

Table 2 Comparison on number of data movements.

 Sorting Technique

No. of Data Elements

Bubble

Sort
Insertion Sort OHTO Sort

10 90 25 24
100 9900 2572 2500

1,000 9,99,000 2,50,131 1,25,250
> 10,000 99,990,000 25,150,175 25,000,000

Figure 2 shows the number of data movements that occur when the different

algorithms are implemented. Data movement is a rather costly operation, and the

aim should always be to keep it minimal. In this regard, Bubble Sort stands at the

top, as the algorithm is designed in such a way that one swap – which amounts to

two data movements – occurs at every step. Hence, the number of movements is

very high. This is not the case with Insertion Sort. The number of movements is

relatively much smaller, the same as for the proposed technique. The average

difference in this number is nearly 74% for Bubble Sort and the proposed sort

techniques. The similarity between Insertion Sort and the OHTO sorting

technique in this respect is because of the same underlying principle/idea of

insertion of elements. Still, the proposed technique proved to achieve a smaller

number of movements in some cases, as shown in the chart graph.

Figure 2 Number of movements of data elements.

3. Number of Data Insertions

The number of insertions carried out by the proposed OHTO sorting technique is

shown in Table 3.

9
0

9
9

0
0

9
9

9
0

0
0 9

9
.9

9
0

.0
0

0

2
5

2
5

7
2

2
5

0
1

3
1

2
5

.1
5

0
.1

7
5

2
4

2
5

0
0

1
2

5
2

5
0

2
5

.0
0

0
.0

0
0

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000

N
u

m
b

er
 o

f
D

a
ta

 M
o

v
em

en
ts

N--> Number of Data Elements

Number of Data Movements

Bubble Sort

Insertion Sort

Proposed

approach

162 Rajeshwari B S, et al.

Table 3 Comparison on number of data insertions.

Sorting Technique

No. of Data Elements

Bubble

Sort
Insertion Sort OHTO Sort

10 NA 9 4
100 NA 99 50

1,000 NA 999 500
> 10,000 NA 9999 5000

Figure 3 demonstrates the relationship between the number of insertions and the

size of the input data set for Insertion Sort and the proposed OHTO sort technique.

With an increase in input size, the number of insertions increases linearly in both

cases. However, the proposed technique implements sorting by performing

approximately 49% less insertions when compared to Insertion Sort. This is also

a parameter that contributes to efficiency, so the proposed algorithm successfully

reduces the number considerably. This is owing to the fact that the two halves of

the input data set are bubble sorted in the beginning. This affects the later stages

of the algorithm significantly.

Figure 3 Number of insertions of data elements.

4. Execution Time (in Milliseconds)
The time complexity comparison amongst the three sorting algorithms is shown

in Table 4, while the actual time taken by the proposed OHTO sorting technique

to sort n data elements is shown in Table 5.

9

9
9

9
9

9

9
9

9
9

4

5
0

5
0

0

5
0

0
0

1

10

100

1000

10000

10 100 1000 10000

N
u

m
b

e
r
 o

f
In

se
r
ti

o
n

s

N--> Number of Data Elements

Number of Insertions

Insertion Sort

Proposed

Technique

Sorting Approaches towards OHTO Novel Sorting Technique 163

We perform Bubble Sort once on each half of the dataset, after which Insertion

Sort is performed by choosing the pivot element from the second sorted data

element. Therefore, the time complexity = 2*(Time-Taken for Bubble Sort on

one half of the set) + Insertion Sort using the sorted dataset.

1. Best case: 2* Ω(n/2) + Ω (n) = Ω (n)

2. Average case: 2* θ((n/2)^2) + θ(n) = θ(n)

3. Worst case: 2*O((n/2)^2) + O(n) = O(n)

The number of comparisons made, in contrast to the procedures of Bubble Sort

and Insertion Sort, is smaller for the OHTO algorithm. Insertion Sort is usually

used for smaller data sets, whereas OHTO is applicable for large and small data

sets. Hence, in such cases the OHTO algorithm would be preferable.

Table 4 Comparison of time complexity.

 Sorting Technique

Time Complexity

Bubble

Sort
Insertion Sort OHTO Sort

Best case (Ω) n n^2 n

Average case (θ) n^2 n^2 n
Worst Case (O) n^2 n^2 n

Table 5 Comparison of time (milliseconds).

 Sorting Technique

No. of Data Elements

Bubble

Sort
Insertion Sort OHTO Sort

100 4662 2663 1666
1,000 343,789 366,322 215,824

 > 10,000 30,825 60,656 9,033

Figure 4 illustrates the effectiveness of the proposed algorithm in obtaining

quicker results by comparing the time of execution of the three algorithms. For

data sets of all sizes, it can be seen that the proposed OHTO sorting technique

executes faster, thus yielding results in less time when compared to the other two

techniques. Another key observation that can be made is that with an increase in

input size, i.e., as we proceed towards the right side in the chart above, it can be

noted that execution time increases for Insertion Sort but remains the shortest for

proposed OHTO sorting technique. In total, the new proposed OHTO sorting

technique achieves sorting faster, thus, serving its main purpose.

164 Rajeshwari B S, et al.

Figure 4 Execution time of algorithms.

5 Conclusion

This paper presented a novel sort algorithm that is a hybrid of the Bubble Sort

and Insertion Sort algorithms to sort a given data set. The proposed OHTO sorting

technique uses the procedure of the Bubble Sort technique followed by the

insertion of the elements of the second sorted half of the data set into the first half

by following the Insertion Sort protocol. If the given array is completely unsorted,

the OHTO algorithm may not perform much better than other sorting algorithms

with more data movements. Hence, this is a disadvantage when the data set is

completely unsorted and after performing Bubble Sort on each half of the dataset,

the consecutive elements that are supposed to be in the final sorted array are not

present in the same half of the dataset. However, the proposed OHTO sorting

technique has the advantages of requiring fewer comparisons, fewer data

insertions, and less time to sort any given large data set.

References

[1] Prajapati, P., Bhatt, N. & Bhatt, N., Performance Comparison of Different

Sorting Algorithms, International Journal of Latest Technology in

Engineering, Management & Applied Science, 6(6), pp. 39-41, ISSN

2278-2540, 2017.

4
6
6
2

3
4
3
.7

8
9

3
0
8
2
5
,2

8

2
6
6
3

3
6
6
.3

2
2

6
0
6
5
6

1
6
6
6

2
1
5
.8

2
4

9
0
3
2
,8

1
6

1

10

100

1000

10000

100000

1000000

100 1000 10000

E
x
ec

u
ti

o
n

 T
im

e
in

 M
il

li
se

c
o

n
d

s

N--> Number of Data Elements

Time Analysis

Sorting Approaches towards OHTO Novel Sorting Technique 165

[2] Gill, S.K., Singh, V.P., Sharma, P. & Kumar, D., A Comparative Study of

Various Sorting Algorithms, International Journal of Advanced Studies of

Scientific Research, 4(1), pp. 367-372, 2019.

[3] Rustagi, S. & Yadav, T., A Comparative Study of Various Sorting

Algorithms Optimized Sorting Process, International Journal of

Technology & Management, 4(1), pp. 52-56, ISSN: 2454-8421, 2018.

[4] Jadoon, S., Solehria, S.F. & Qayum, M., Optimized Selection Sort

Algorithm is Faster than Insertion Sort Algorithm: A Comparative Study,

International Journal of Electrical and Computer Sciences, 11(2), pp. 18-

23, 2011.

[5] Shabaz, M. & Kumar, A., SA Sorting: A Novel Sorting Technique for

Large-Scale Data, Research Article ID 3027578, pp. 1-7, 2019. DOI: DOI:

10.115 5/2019/3027578.

[6] Alnihoud, J. & Mansi, R., An Enhancement of Major Sorting Algorithms,

The International Arab Journal of Information Technology, 7(1), pp. 55-

62, 2010.

[7] Mishra, A. & Goyal, G., An Optimized Input Sorting Algorithm, Global

Journal of Computer Science and Technology: Network, Web & Security,

16(1), ISSN: 0975-4172, 2016.

[8] Sodhi, T.S., Kaur, S. & Kaur, S., Enhanced Insertion Sort Algorithm,

International Journal of Computer Applications, 64(21), pp. 35-39, 2013.

[9] Chhatwani, P.K., Insertion Sort with its Enhancement, International

Journal of Computer Science and Mobile Computing, 3(3), pp. 801-806,

2014.

[10] Patelia, R.M., Vyas, S.D. & Vyas, P.S., An Analysis and Design of

Optimized Bubble Sort Algorithm, International Journal of Research in

Information Technology, 3(1), pp. 65-68, 2015.

[11] Sharma, S., Kumar, V., Singh, P. & Singh, A., A Novel Algorithm for

Optimized Sorting, International Journal of Scientific Research in Science,

Engineering and Technology, 2(2), pp. 1072-1076, ISSN: 2395-1990,

2016.

[12] Singh, S., Singh, R.S. & Mandoria, H.L., Left-Right Sort: A Novel Sorting

Algorithm and Comparison with Insertion Sort, Bubble Sort and Selection

Sort, International Journal of Engineering & Scientific Research, 3(10), pp.

47-59, ISSN: 2347-6532, 2015.

[13] Yogeesha, C.B., Pujeri, R.V. & Veena, R.S., Randomized Algorithms: On

the Improvement of Searching Techniques Using Probabilistic Linear

Linked Skip Lists, International Conference on Advances in Computing -

ICAdC http://link.springer.com/chapter/10.1007/978-81-322-0740-519,

pp. 147-153.

[14] Rajeshwari, B S, Singh, N., Ibaduddin, M.S., Singhal, I. & Sree Vidya, B

S., A Novel Efficient Selection Sort Technique for the Larger Dataset, GIS

Science Journal, 8(8), pp. 257-266, 2021.

166 Rajeshwari B S, et al.

[15] Pujeri, R.V. & Yogeesha, CB., A Relative Study of Genetic Algorithms and

Hopfield Neural Network to Optimize Shortest Path Routing Algorithms

for Finding Drilling Holes on the Printed Circuit Board-PCB, Journal of

Adv Research in Dynamical and Control Systems, 15(Special Issue), pp.

801-808, Dec 2017.

