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Abstract
Due to sea level rise, tidal flooding is now common in low-lying coastal systems around the world. Yet, the contribution of 
tidal flooding to non-point source nutrient loads and their impact on the quality of adjacent waters remains poorly constrained. 
Here, we quantified dissolved nutrient loading and Enterococcus abundance during annual autumnal king tides (i.e., perigean 
spring tides), between 2017 and 2021, in a sub-watershed of the lower Chesapeake Bay. To calculate nutrient loading from 
tidal flooding, we used geospatial inundation depths from a street-level hydrodynamic model to estimate floodwater volumes 
during each of the five sampling events and the difference between nutrient concentrations in floodwater and pre-flood 
measurements. Results showed that dissolved nutrient concentrations were higher in floodwaters than in estuarine waters and 
resulted in dissolved nitrogen and phosphorus loads that reached 58.4 ×  103 kg and 14.4 ×  103 kg, respectively. We compared 
our load estimates to the tributary-specific total and land-based federal allocations (i.e., total maximum daily loads (TMDL)) 
for total nitrogen (TN) and total phosphorus (TP). Even the more conservative calculations indicate that inputs of dissolved 
nutrients during a single tidal flooding event can exceed 100% of the annual load allocation. Additionally, more than 80% 
of the floodwater samples collected each year showed Enterococcus abundance that exceeded the threshold for recreational 
water use in Virginia (104 MPN 100  ml−1). Failing to account for non-point source loading of nutrients and contaminants 
from tidal flooding as sea level rises could result in worsening eutrophication and deterioration of coastal economies and 
the health of coastal communities around the world.

Keywords Water quality · Tidal flooding · Sea level rise · Nutrients · Eutrophication · Citizen science

Introduction

Coastal ecosystems are under pressure from multiple human-
induced stressors including hydrologic and land use changes, 
eutrophication, and warming water and air temperatures (Day 
Jr et al. 2012; Lotze et al. 2006; Paerl et al. 2006a). In the USA 
and around the globe, one of the most significant problems 

in coastal waterways is the continued input of anthropogenic 
nutrients, including dissolved inorganic nitrogen and phos-
phorus from food production and processing (Pinckney et al. 
2001; Smith 2003; Seitzinger et al. 2002; Scavia and Bricker 
2006). These nutrients can be introduced via point source dis-
charges and non-point sources including forested, agricultural, 
commercial, residential, and urban runoff (Sabo et al. 2022). 
Despite years of targeted nutrient reduction programs, primar-
ily aimed at point source discharges, non-point source nutrient 
inputs remain difficult to control. These are largely due to 
increases in human populations in coastal areas and conse-
quent increases in fertilizer use to support agriculture (Swaney 
et al. 2012) to feed those growing populations (Seitzinger 
et al. 2002). Excess nutrient inputs contribute to eutrophica-
tion, the increase in intensity and frequency of harmful algal 
blooms, and the expansion of “dead zones” where oxygen is 
depleted (Kemp et al. 2005; Rabalais et al. 2009).

The capacity for storms and storm-related flooding 
and runoff to transport pollutants to coastal estuaries and 
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waterways has been recognized for decades (Magenis 1988; 
Hale et al. 2015; Wu et al. 2016; Paerl et al. 2006b), and the 
relationship between land use and non-point source nutrient 
loading has been examined for agricultural, urban, forested, 
and wetland landscapes (Basnyat et al. 1999; Paerl et al. 
2006a, b; Swaney et al. 2012; Selbig 2016; Wu et al. 2016). 
However, in coastal areas, tidal flooding (even when the 
skies are blue) presents a potentially different mechanism 
for delivering nutrients to adjacent estuaries (Macías-Tapia 
et al. 2021; Weissman and Tully 2020). Unlike stormwater 
runoff, the flow is not unidirectional; rather, coastal waters 
advance and inundate the landscape during high tide and 
then retreat as the tide ebbs. The residence time of water on 
the landscape is longer, during which time floodwater can 
both mobilize and react with material accumulated on the 
landscape before returning to the estuary as the tide recedes. 
Additionally, previous studies have shown how interactions 
between floodwater and groundwater can modify the input 
of dissolved organic matter and inorganic nitrogen and 
phosphorus to the estuary (Wilson and Morris 2012; Santos 
et al. 2021). Given increases in the intensity, frequency, and 
magnitude of tidal flooding events over the last few decades 
due to sea level rise (Nicholls and Cazenave 2010; Spanger-
Siegfried et al. 2014; Neumann et al. 2015; Ezer 2018),  
these inputs are likely to increase in the future as sea level 
continues to rise.

The impacts of coastal flooding on human health in urban 
areas have been well documented in many parts of the world 
(Hajat et al. 2005; Fernandez et al. 2015; Rui et al. 2018). 
However, as with nutrient loading, most studies are focused 
on storms and storm-induced flooding. Macías-Tapia et al. 
(2021) found that during a “blue sky” tidal flooding event 
in the Lafayette River watershed, a lower Chesapeake Bay 
sub-tributary, more than 90% of floodwater samples col-
lected exceeded Virginia’s recreational standard for Ente-
rococcus abundance (104 MPN/100 ml; MPN indicates the 
most probable number), a fecal matter indicator. An increas-
ing proportion of the population is interacting directly with 
flood waters as coastal flooding becomes more common, 
exacerbating human health concerns associated with flood-
water contact (Neumann et al. 2015; Tellman et al. 2021). 
Furthermore, multiple studies have shown that flooding 
disproportionately affects low-income communities that 
are unable to relocate or pay for measures to reduce their 
flood risk (Maantay and Maroko 2009; Collins et al. 2018; 
Chakraborty et al. 2020).

Quantifying nutrient loading from tidal flooding is 
complicated. It requires knowing the inundation volume, 
considering the local hydrology, and knowing the differ-
ence between the nutrient concentrations in the estuary 
prior to flooding the landscape and collected floodwa-
ter samples. To develop models that can be applied at a 

watershed level, samples need to be representative of dif-
ferent land uses and flooding conditions. This requires 
multiple sampling events over many years. Here, we com-
pare nutrient concentrations from floodwater samples 
collected during a perigean spring tide flooding event 
(a.k.a., king tides) held each autumn between 2017 and 
2021. The goal of this study was to quantify the variability 
in dissolved nutrients and Enterococcus loading due to 
tidal flooding in the Lafayette River, a residential sub-
watershed of the lower Chesapeake Bay. If the magnitude 
of these loads is higher than recommended limits, they can 
exert significant threats to the health of local waterways 
and the health of those residing in impacted areas.

Methods

To quantify nutrient loads resulting from tidal flooding, it 
is necessary to quantify three parameters: nutrient concen-
trations in floodwaters, nutrient concentrations in estuarine 
waters prior to their encroachment onto the adjacent land, 
and floodwater volume. Because of the high variability of 
nutrient concentrations in floodwaters, we required a large 
number of samples to provide statistically robust estimates 
of these nutrient loads. So, to measure nutrient and bacterial 
concentrations in floodwaters, we coordinated annual citizen 
science sampling campaigns (named “Measure the Muck”) 
during perigean spring tides (king tides) in each year from 
2017 to 2021. These campaigns were enabled by a larger cit-
izen science event (Catch the King Tide) organized by local 
media outlets in the Hampton Roads region of southeastern 
Virginia aimed at building public awareness about coastal 
flooding due to sea level rise. This event was made possible 
by the development of a phone application (Sea Level Rise) 
by a local non-profit group (Wetlands Watch) that provided 
a platform for citizens to collect data on water levels during 
tidal flooding events (Loftis et al. 2019).

Study Site

The Lafayette River is a sub-tributary of the lower Chesa-
peake Bay, and its watershed is largely residential and limited 
to the city of Norfolk, VA (Fig. 1). This city has one of the 
highest rates of relative sea level rise in the USA (Spanger-
Siegfried et al. 2014), due to multiple factors including 
eustatic sea level rise, land subsidence, and changes in the 
strength of the Gulf Stream (Ezer and Corlett 2012; Ezer 
et al. 2013). This has resulted in a dramatic increase in the 
number of hours in which tidal flooding inundates the city 
each year over the last few decades (Ezer 2018).
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Floodwater Sampling

The Measure the Muck (MTM) campaigns leveraged a 
citizen science program (Catch the King Tide) aimed at 
determining the extent of floodwaters during perigean 
spring tides annually from 2017 to 2021. Volunteers for 
the MTM sampling were recruited primarily from the Nor-
folk Public Schools and Old Dominion University (ODU). 
Prior to the Catch the King Tide event, volunteers were 
trained on how to use the Sea Level Rise phone applica-
tion to record data and how to collect floodwater samples. 
On the day of the King Tide/MTM event, volunteers were 
armed with kits containing sampling supplies and sent to 
areas known to flood as described in Macias-Tapia et al. 
(2021). Once in a flooded area, volunteers mapped the 
extent of floodwaters using the phone application and col-
lected metadata and samples near or just after high tide in 
floodwaters < 0.2 m deep. Detailed instructions were given 
during training sessions, and new or younger volunteers 
were accompanied by more experienced participants (e.g., 
staff or graduate students from ODU). While we had over 
50 volunteers during the first three events, the number of 
volunteers dropped by more than half in 2020 and 2021 
due to the COVID-19 pandemic. Despite differences in 
the number of volunteers, the number of samples collected 
was higher in the pandemic years (Table 1). This might 
had been due to the increasing experience on the organ-
izers and volunteers. The fewest samples were collected in 
2019 (n = 146), when flooding was limited in extent, and 
the greatest number of samples (n = 196) was collected 
in 2021 when the extent of flooding was greatest. During 
2017, 2018, and 2020, 176, 164, and 180 samples were 
collected, respectively. Due to accessibility, most of the 
samples were collected along the southern shore of the 

estuary where there was more flooding on public property 
(Fig. 1). For all the years, samples were collected from the 
mouth to the upper part of the Lafayette River.

To collect samples, the sampler donned reusable Play-
tex cleaning gloves and submerged the sample bottle (acid 
cleaned Nalgene™ polycarbonate bottles) into the floodwater 
to rinse and then fill. After collection, each sample was placed 
inside the provided coolers with ice packs. The sampling team 
recorded the sample number (each sample bottle issued was 
pre-labeled with a unique sample identifier), the GPS coordi-
nates of the location the sample was collected, and a descrip-
tion of the sample site in both the Sea Level Rise application 
and on log sheets provided to the sampling team. After collec-
tion, samples were transported to a laboratory at ODU within 
1 h of sample collection. Once in the laboratory, samples 
were processed for water quality analysis. Details on process-
ing and analyses are provided below. Sample processing was 
supervised and accomplished by trained graduate students and 
university staff. However, as part of the public engagement 
component of the project, a subset of volunteers was trained 
to help with sample filtration, organizing samples, measuring 
salinity with a refractometer, and labeling sample tubes.

Fig. 1  Map of the study site. 
Locations for the Chesapeake 
Bay Program and the time 
series dataset are represented 
by the two red hollow squares. 
The map also shows floodwater 
samples collected by volunteers 
during MTM events in 2017, 
2018, 2019, 2020, and 2021. 
Each of the different colors and 
shapes represents a different 
year. The map also shows the 
location of 124 Old Dominion 
University (ODU) as a reference 
for sample transportation

Table 1  Number of volunteers and floodwater samples collected for the 
different years in which the Measure the Muck (MTM) event took place

MTM-ID Date Volunteer 
number

Nutrient 
samples 
collected

Enterococcus 
samples 
collected

MTM17 11/05/2017 55 176 40
MTM18 10/27/2018 57 164 40
MTM19 10/27/2019 63 146 40
MTM20 10/18/2020 25 180 40
MTM21 11/26/2021 24 196 40
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During each MTM campaign (i.e., 2017 to 2021), 40 sam-
ples were collected to determine Enterococcus abundance 
in floodwater. Samples were collected into sterile glass bot-
tles, placed in a cooler with ice, and returned to the labora-
tory. Sample analyses were initiated within 24 h of their 
collection.

Estuarine Sampling

Prior to flooding events, samples were collected from the 
Lafayette River so that floodwater nutrient concentrations 
could be corrected for ambient nutrient concentrations. 
For the rest of the document, the term “baseline” is used 
to refer to conditions in the estuary prior to tidal flooding. 
In order to capture the spatial and temporal variability of 
the biochemical parameters previous to each flooding event, 
three types of baseline data were used in this study (Table 2). 
The temporal and spatial differences among baseline datasets 
are expected to create different responses when compared 
with values from floodwater samples. The four baselines 
were (1) data from a time series site in the Lafayette River 
(time series), (2) long-term data from a Chesapeake Bay 
Program monthly water quality monitoring station in the 
Lafayette River (CBP), (3) CBP data collected just prior 
to each flooding event (CBP-year), and (4) data collected 
during cruise transects along the Lafayette River mainstem 
made in the days prior to the onset of tidal flooding  
(transect).

For the time series baseline, between 2017 and 2021, 
nutrient concentrations at the Lafayette River time series 
station were measured almost daily throughout the summer 
and early fall (Table 2). Samples were collected using a 
custom-made pump profiling system comprised of a Mas-
terflex L/S 25 peristaltic pump and platinum-cured sili-
cone tubing marked at 25-cm intervals with electrical tape. 
The submerged end of the tubing had a weight attached 
to keep it vertical while sampling. At the sampling end of 

the tubing, a 0.2-µm Whatman polycap filter was inserted 
into the sample stream to collect filtrate to measure dis-
solved constituents. Samples were filtered directly into 
sterile Falcon® tubes, placed into a cooler with ice packs 
for transport to the laboratory (< 1 h), and stored frozen 
(− 4 °C) until analysis (see below). Near-surface samples 
(< 1 m depth) were collected in this way at two stations 
in the Lafayette River (Fig. 1), one near the headwaters 
and the other near the mouth. While samples were col-
lected throughout the summer at these stations, only data 
from late summer and fall were used to provide in-estuary 
nutrient estimates for this study. The number of samples 
available per year varied with 117, 51, 102, 27, and 39, 
from 2017 to 2021, respectively (Table 2).

Long-term data for nutrient concentrations in the Lafayette 
River are available through the Chesapeake Bay Program. These 
data are publicly available (Chesapeake Bay Program Water 
Quality Data Hub 2021). Nutrient samples have been collected 
at stations near the mouth and head of the estuary since 1988 
(Fig. 1). Sampling frequency has varied over the years at these 
sites. In this study, we used data from 1998 to 2018 when data 
collection was consistent at both stations within the Lafayette 
River (Table 2), and we used only concentrations measured in 
surface water samples collected above the pycnocline. From 
this dataset, we produced climatologies for DIN, DON, and 
 PO4

3− for the months of October and November, the months in 
which the king tide sampling events were conducted between 
2017 and 2021. This data is hereafter referred to as Chesapeake 
Bay Program (CBP) data. Because nutrient concentrations can 
vary over short timescales in this system (e.g., Morse et al. 
2014), in addition to comparing floodwater and average baseline  
concentrations, we made comparisons between floodwater 
concentrations and the most closely paired in-estuary nutrient 
concentration measurement made as part of the Chesapeake  
Bay Program monitoring for each year of Measure the Muck 
(CBP-year). The number of values available from CBP and 
CBP-year was 87 and 1 for all years, respectively (Table 2).

Table 2  Sampling details for baseline sampling. The data collected 
include the following: (1) during cruise transects (transect), (2) from 
the Lafayette River time series station (time series), (3) average of 
monthly data from October or November from the Chesapeake Bay 
Program (CBP) monitoring in the Lafayette River (CBP), and (4) data 

collected from the CBP water quality monitoring station in the Lafay-
ette River just prior to the king tide in each year of Measure the Muck 
(CBP-year). N/A indicates that no data is available for that baseline 
and year. n is the number of samples available in each baseline dataset

Year MTM date Baseline sampling

Transect Time series CBP CBP-year

2017 Nov 5 N/A Aug 01 to Sep 10 (n = 117) Oct/Nov 1998 to 2021 (n = 87) Oct 18 (n = 1)
2018 Oct 27 N/A Sep 01 to Sep 30 (n = 51) Oct/Nov 1998 to 2021 (n = 87) Oct 17 (n = 1)
2019 Oct 27 Oct 24 (n = 84) Sep 04 to Oct 08 (n = 102) Oct/Nov 1998 to 2021 (n = 87) Oct 29 (n = 1)
2020 Oct 18 Oct 12 (n = 39) Sep 02 to Oct 07 (n = 27) Oct/Nov 1998 to 2021 (n = 87) Oct 14 (n = 1)
2021 Nov 26 Oct 28 (n = 27) Oct 05 to Nov 29 (n = 39) Oct/Nov 1998 to 2021 (n = 87) Nov 11 (n = 1)
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Samples for the boat transect baseline were collected dur-
ing 2019, 2020, and 2021, from cruise transects from the 
mouth to the head of the Lafayette River (Fig. 1). The num-
ber of samples collected varied each year from 27 in 2021 
to 84 in 2019 and 2020 with n = 39 (Table 2). Samples were 
collected several days before the peak of the perigean spring 
tide prior to the onset of flooding (Fig. 1). An identical pump 
profiling system as that used at the time series site was used 
to collect near-surface water samples while on the boat. As 
for the time series site sampling, a 0.2-µm Whatman polycap 
filter was affixed to the sampling end of the tubing, and nutri-
ent samples were filtered directly into sterile Falcon® tubes, 
stored in a cooler with ice, and transported to the laboratory 
where they were frozen until analysis.

Sample Processing and Analysis

Once floodwater samples were returned to the laboratory, 
they were filtered under low vacuum pressure (< 5 in Hg) 
through Advantec GF75 filters (pore size of ~ 0.3 µm). The 
filtrate was collected into sterile Falcon® tubes and stored 
in a − 4 °C freezer until analysis. Dissolved ammonium 
 (NH4

+), nitrite  (NO2
−), nitrite + nitrate  (NOx), total dissolved 

nitrogen (TDN), and phosphate  (PO4
3−) concentrations 

were measured as described in Macias-Tapia et al. (2021). 
Briefly,  NO2

−,  NOx, and  PO4
3− were measured using colori-

metric methods on an Astoria Pacific nutrient autoanalyzer 
according to the manufacturer’s specifications (Hansen and 
Koroleff 1999). Ammonium concentrations were measured 
using the phenol hypochlorite method (Solorzano 1969). To 
measure TDN concentrations, samples were pre-treated with 
potassium persulfate to oxidize all of the dissolved nitrogen 
to nitrate and then measured as described above. The oxida-
tion was done during a 30-min liquid cycle in an autoclave 
at 120 °C. Dissolved inorganic N (DIN) was calculated as 
the sum of  NH4

+ and  NOx concentrations. Dissolved organic 
N (DON) concentrations were calculated as the difference 
between TDN and DIN concentrations. For each analyte, 
the detection limit (DL) was calculated as three times the 
standard deviation of the lowest point of the standard curve 
(i.e., 3*σ, n > 3). We assigned the calculated DL to sam-
ples that showed concentrations lower than that. The same 
chemical and numerical analyses were used to measure dis-
solved nutrient concentrations in floodwater and estuarine 
baseline samples.

Enterococcus abundance was measured using Enterol-
ert® kits (IDEXX Laboratories, Inc.) following the manu-
facturer’s specifications. Briefly, this method calculates the 
most probable number (MPN) of Enterococci bacteria based 
on a statistical probability analysis of the number of blocks 
that activate the fluorescent indicator (Ramoutar 2020). 
Blanks of autoclaved pure water were used to account for 

contamination during analysis. Results for Enterococcus 
abundance in floodwater were compared with standards 
established by the US Environmental Protection Agency 
(EPA) and the Virginia Department of Health (VDH) for 
safe recreational use. Virginia adopted the federal standard 
of 104 MPN  ml−1 as the limit for Enterococcus abundance in 
natural waters deemed safe for recreational use (EPA 2010).

Statistical Analysis

For both floodwater and baseline datasets, we calculated 
the arithmetic means and standard deviations (SD) and the 
medians for each parameter. Before performing any statisti-
cal comparisons between floodwater and baseline concen-
trations of analytes, we used the Kolmogorov–Smirnov test 
to check for normality in the different datasets. For most of 
the datasets (excluding 2017), dissolved nutrient concentra-
tions were not normally distributed. Therefore, for consist-
ency, we used non-parametric statistics for all comparisons 
between floodwater and in-estuary concentrations for all 
analytes measured in all years. This necessitated a reanalysis 
of the 2017 data but does not invalidate the earlier conclu-
sions (Macias-Tapia et al. 2021). To evaluate the differences 
between floodwater and baseline estuarine conditions, we 
used the one-tailed Mann–Whitney rank test. For our study, 
the alternate hypothesis  (HA) was that the concentrations 
of samples in the floodwater group were higher than in the 
group of samples collected in the estuary prior to flooding. 
If p < 0.05, we accept  HA.

To evaluate the variables that controlled the differences in 
water quality parameters (i.e., dissolved nutrients concentra-
tions and Enterococcus abundance) between floodwater and 
estuarine pre-flooding water, we (1) analyzed the correla-
tion between the longitude at which the floodwater sample 
was collected (as a proxy of distance from the mouth of the 
estuary) and the magnitude of the different water quality 
parameters and (2) and evaluated the effect of land cover-
age data from which each sample was collected. For the 
longitudinal analysis, we used the stats.linregress function, 
from the SciPy library in Python, to calculate if the linear 
regression model was significant. When p < 0.05 for the 
linear regression, we calculated a corresponding R2 value. 
For land coverage analysis, we used data from the Virginia 
Geographic Information Network (VGIN) for the Lafayette 
River watershed. To group the samples at the land coverage 
in which they were collected, we used a spatial join function 
in ArcMap™. We used the stats.mannwhitneyu function in 
Python to perform a non-parametric signed-rank test to com-
pare the magnitude of the water quality parameters among 
land coverage groups. When the p-val < 0.05, the differences 
were considered significant.
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Hydrodynamic Model Calculations 
for the Inundation Volume per Tidal Flooding Event

A more detailed procedure for tidal flooding inundation vol-
umes can be found in Macias-Tapia et al. (2021). Briefly, 
geospatial inundation depths from a street-level hydrody-
namic model, driven in a one-way nested configuration fed 
by water levels predicted using the Semi-implicit Cross-
scale Hydroscience Integrated System Model (SCHISM) 
hydrodynamic model, were used as high-resolution rasters of 
flood prior to fall king tide events from 2017 to 2021 (Loftis 
et al. 2018, 2019). These inundation depths were used to 
estimate the tidal flooding inundation volume per event from 
GIS raster outputs (Danielson et al. 2016). Volumes for the 
2017 event are from Macias-Tapia et al. (2021).

Nutrient Loading Calculation

Nutrient loads during tidal flooding events were calculated 
using a similar approach to that described in Macias-Tapia 
et al. (2021). Briefly, we took the differences in dissolved 
nutrient concentrations between floodwater and baseline 
samples and multiplied them by the volume of floodwater 
inundating the perimeter of the Lafayette River. Differences 
in nutrient concentrations between floodwater and baseline 
estuarine conditions were only calculated when statistically 
significant. We compared floodwater nutrient concentrations 
with baseline estuarine concentrations from (1) transect, (2) 
time series, (3) CBP, and (4) CBP-year (Table 2). The mini-
mum nutrient load from flooding was calculated as the dif-
ference between the floodwater concentration mean and the 
estuarine baseline concentration plus one SD. The central 
input scenario for each analyte was calculated as the differ-
ence between the median floodwater and median in-estuary 
nutrient concentrations. The maximum load was calculated 
as the difference between the mean floodwater concentration 
plus one SD and the mean baseline estuarine concentration 
minus one SD. To account for error in the calculation of 
floodwater volume, loading was calculated using the average 
inundation volume calculated each year plus or minus the 
model’s uncertainty for that given year.

Sample Size Validation

Differences in the standard deviations (ΔSD) for each 
water quality parameter measured were calculated using a 
randomized sub-sampling method of the entire dataset to 
determine the approximate number of samples needed to 
accurately estimate the mean floodwater concentration for 
each analyte (Krebs 2014). For this calculation, we used the 
following formula:

where “SDn(i)” is the standard deviation (SD) of “n(i),” an 
accumulated number of random sub-samples of the dataset, 
and “SDn(i)+10” is the SD of “n(i)” plus ten random sub-
samples of the dataset. The calculation was repeated until 
the maximum number of samples available per analyte in 
each year was reached. We repeated the randomized sub-
sampling of the dataset process 8 times for each year and 
water quality parameter and calculated an average ΔSD 
value from this. The optimum sample number to capture 
the floodwater concentration variability accurately for each 
analyte was determined as the sample number at which ΔSD 
approached zero and remained constant (Krebs 2014).

Results

Interannual Variability in Floodwater Sampling 
and Inundation Volumes

The extent of flooding varied between years (Table 3). 
Floodwater inundation volumes from the model predictions 
for the 2017 to 2021 MTM events fell within a narrow range 
from 3.54 to 4.55 ×  107  m3, respectively. Model uncertainty 
changed, based on the meteorological uncertainty of the 
hydrodynamic model input assumptions, ranging from 3.8 to 
4.8%. Using this uncertainty, the standard deviation (± SD) 
for the inundation model ranged from 0.14 to 0.18 ×  107  m3.

Nutrient Concentrations

Mean dissolved inorganic nitrogen (DIN) concentrations 
in floodwaters were lowest in 2017, 9.0 ± 11.3 µmol  l−1 
(µM), and highest in 2021, 18.6 ± 5.0 µM (Table 4). Aver-
age dissolved organic nitrogen (DON) concentrations in 
floodwater were between 60 and 100 µM in 2018–2021, 
but in 2017, concentrations were lower, 27.5 ± 25.5 µM. 

(1)ΔSD = SD
n(i) − SD

n(i) + 10

Table 3  Metrics for the different years in which the Measure the Muck 
(MTM) event took place. Floodwater inundation, height above mean 
higher high water (MHHW), and volumes are shown for each year. The 
standard deviation (± SD) of the inundation volume is also shown

MTM-ID Height of 
floodwater above 
MHHW (m)

Inundation 
volume 
 (m3 ×  107)

SD of inundation 
volume  (m3 ×  107)

MTM-17 0.459 3.94 0.16
MTM-18 0.369 3.66 0.16
MTM-19 0.339 3.54 0.14
MTM-20 0.409 3.69 0.14
MTM-21 0.639 4.55 0.18
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Table 4  Dissolved nutrient concentrations (µM) in floodwater and estuarine samples collected prior to flooding over the 5-year study period. Also shown is the number of samples collected (n). 
The minimum (Min), maximum (Max), and mean concentrations for each dataset along with the standard deviation (SD) of the mean, the median concentration, and the p-value (p-val) from 
the one-tailed Mann–Whitney U rank test comparing nutrient concentrations in the floodwater with those in the various types of baseline estuarine data are shown. If p < 0.05, we accepted  HA 
(x > y, i.e., floodwater > estuarine concentrations). Values where p < 0.05 are highlighted in red. In-estuary concentrations are in bold font

Year Analyte Sample n Min Max Mean SD Median p-val

2017 DIN Floodwater 164 0.85 138.6 9.0 11.3 7.3
Transect N/A N/A N/A N/A N/A N/A N/A
Time Series 39 0.23 39.6 8.4 8.8 5.5 0.088
CBP 87 0.71 41.8 16.5 9.0 17.4 0.999
CBP-2017 1 N/A N/A 18.6 N/A 18.6 0.999

DON Floodwater 139 0.22 140.1 27.5 25.5 26.9
Transect N/A N/A N/A N/A N/A N/A N/A
Time Series 35 28.8 61.4 44.4 6.5 45.1 0.999
CBP 87 7.2 56.1 19.2 5.7 18.3 0.222
CBP-2017 1 N/A N/A 18.7 N/A 18.7 8.3E-05

PO4
−3 Floodwater 176 0.47 127.1 2.7 9.7 1.5

Transect N/A N/A N/A N/A N/A N/A N/A
Time Series 39 0.42 4.1 2.2 0.9 2.5 0.972
CBP 85 0.13 2.5 1.2 0.6 1.3 8.8E-08
CBP-2017 1 N/A N/A 1.8 N/A 1.8 1.2E-02

2018 DIN Floodwater 162 0.42 324.7 12.6 27.6 8.5
Transect N/A N/A N/A N/A N/A N/A N/A
Time Series 17 0.14 36.2 7.3 9.1 6.1 0.026
CBP 87 0.71 41.8 16.5 9.0 17.4 0.999
CBP-2018 1 N/A N/A 19.8 N/A 19.8 0.999

DON Floodwater 156 16.3 142.1 71.4 18.2 70.5
Transect N/A N/A N/A N/A N/A N/A N/A
Time Series N/A N/A N/A N/A N/A N/A N/A
CBP 87 7.2 56.1 19.2 5.7 18.3 2.0E-37
CBP-2018 2 17.7 17.7 17.7 0.05 17.7 2.4E-27

PO4
−3 Floodwater 164 0.10 29.9 2.2 3.6 1.3

Transect N/A N/A N/A N/A N/A N/A N/A
Time Series 17 1.7 3.6 2.3 0.45 2.3 0.999
CBP 85 0.13 2.5 1.2 0.61 1.3 0.142
CBP-2018 2 1.6 1.7 1.7 0.25 1.7 6.1E-03

2019 DIN Floodwater 127 4.7 22.1 11.9 3.3 11.9
Transect 28 13.2 18.6 16.3 1.7 16.9 0.999
Time Series 34 1.6 21.7 8.0 4.1 7.2 8.5E-08
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Year Analyte Sample n Min Max Mean SD Median p-val

CBP 87 0.71 41.8 16.5 9.0 17.4 0.999
CBP-2019 1 N/A N/A 12.6 N/A 12.6 0.999

DON Floodwater 106 18.7 127.5 61.6 20.8 59.3
Transect 28 26.2 101.2 81.3 10.6 81.1 0.999
Time Series 12 53.1 85.7 64.9 10.4 66.2 0.816
CBP 87 7.21 56.1 19.2 5.7 18.3 6.8E-32
CBP-2019 1 N/A N/A 14.4 N/A 14.4 4.0E-19

PO4
−3 Floodwater 146 0.19 25.0 6.4 3.7 5.7

Transect 28 4.6 10.7 6.9 1.7 7.3 0.996
Time Series 34 1.7 6.2 3.7 1.25 3.6 8.1E-09
CBP 85 0.13 2.5 1.2 0.61 1.3 4.0E-36
CBP-2019 1 N/A N/A 1.1 N/A 1.1 1.1E-25

2020 DIN Floodwater 180 0.49 79.3 10.0 7.5 9.2
Transect 13 4.0 11.4 7.6 2.4 7.3 0.026
Time Series 9 1.2 17.7 7.8 5.7 7.1 0.214
CBP 87 0.7 41.8 16.5 9.0 17.4 0.999
CBP-2020 1 N/A N/A 13.4 N/A 13.4 0.999

DON Floodwater 179 58.9 157.7 96.0 14.1 93.1
Transect 13 72.1 91.0 83.2 5.7 86.2 5.1E-05
Time Series 9 22.5 63.0 42.1 13.0 39.7 2.2E-07
CBP 87 7.2 56.1 19.2 5.7 18.3 3.1E-40
CBP-2020 1 N/A N/A 16.2 N/A 16.2 4.0E-31

PO4
−3 Floodwater 180 0.17 4.5 1.3 0.58 1.2

Transect 13 1.4 2.1 1.7 0.19 1.7 0.999
Time Series 20 1.6 6.7 3.7 1.7 3.0 0.999
CBP 85 0.13 2.5 1.2 0.6 1.3 0.999
CBP-2020 1 N/A N/A 0.96 N/A 1.0 3.9E-15

2021 DIN Floodwater 196 9.4 48.5 18.6 5.0 17.9
Transect 9 1.9 17.6 11.8 5.4 14.0 1.3E-04
Time Series 13 5.1 18.2 12.4 3.4 12.4 1.9E-06
CBP 87 0.71 41.8 16.5 9.0 17.4 4.4E-02
CBP-2021 1 N/A N/A 11.8 N/A 11.8 2.4E-33

DON Floodwater 196 49.5 224.2 100.5 25.8 93.6
Transect 9 72.7 86.5 78.2 4.5 77.5 5.8E-04
Time Series N/A N/A N/A N/A N/A N/A N/A
CBP 87 7.2 56.1 19.2 5.7 18.3 2.3E-41
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Floodwater  PO4
3− concentrations were highest in 2019, 

6.4 ± 3.7 µM, and lowest in 2020 (1.3 ± 0.6 µM). Con-
centrations in 2017, 2018, and 2021 had similar means 
but were highly variable 2.7 ± 9.7, 2.2 ± 3.6, and 
2.7 ± 2.7 µM, respectively.

For the cruise transects (2019–2021), DIN concentrations 
were highest in 2019 (16.3 ± 1.7 µM) and lowest in 2020 
(7.6 ± 2.4 µM), while mean DON concentrations were simi-
lar in all years (78.2–83.2 µM) (Table 4). Mean  PO4

3− con-
centrations observed during cruise transects were signifi-
cantly higher in 2019 (6.9 ± 1.7 µM) than during the other 
2 years (1.7 ± 0.2 µM in 2020 and 1.2 ± 0.4 in 2021).

At the Lafayette River time series site, DIN concentra-
tions ranged from 7.3 ± 9.1 µM, in 2018, to 12.4 ± 3.4 µM, 
in 2021 (Table 4). DON data were only available for 2017, 
2019, and 2020 when mean concentrations were 44.4 ± 6.5, 
64.9 ± 10.4, and 42.1 ± 13.0  µM, respectively. Mean 
 PO4

3− concentrations were similar in all years ranging from 
1.2 ± 0.2 µM in 2021 to 3.7 ± 1.2 µM in 2019.

From the Chesapeake Bay Program (CBP) data 
(1998–2021), the mean October/November concentrations 
for DIN, DON, and  PO4

3− were 16.5 ± 9.0, 19.2 ± 5.7, and 
1.2 ± 0.6 µM, respectively (Table 4). However, dissolved 
nutrient concentrations measured at the CBP water quality 
station in the Lafayette River in days prior to MTM events 
in each year (CBP-year) were variable. DIN ranged from 
11.8 to 19.8 µM, DON concentrations ranged from 14.4 to 
18.7 µM between 2017 and 2021, and  PO4

3− concentrations 
ranged from 0.96 to 1.8 µM.

Comparisons Between Floodwater and Baseline 
Dissolved Nutrient Concentrations

Although not normally distributed, dissolved nutrient con-
centrations in 2017 were closer to a normal distribution. 
This allowed Macias-Tapia et al. (2021) to calculate a sin-
gle baseline value and perform a paired analysis between 
estuarine and floodwater concentrations. However, results 
for samples collected from 2018 to 2021 were farther from 
a normal distribution, which required the usage of a differ-
ent statistical approach. For consistency, we reanalyzed the 
2017 data using the same non-parametric unpaired statistical 
analysis necessary for the analysis of the 2018 to 2021 data. 
This yielded different results for DIN loading for 2017 than 
those previously reported in Macias-Tapia et al. (2021) but 
does not invalidate those results.

Out of the 52 comparisons for dissolved nutrient con-
centrations and baselines from 2017 to 2021, 58% resulted 
in floodwater being higher (Table  4). The percentage 
changes depending on the year, analyte, and baseline con-
sidered. In general, floodwater nutrient concentrations 
were higher than the CBP climatologies and the CBP 
measurement made prior to the floodwater sampling at Ta
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the long-term monitoring station in the Lafayette River 
(Table 4). On the other hand, dissolved nutrient concen-
trations in floodwater were usually lower when compared 
with cruise transect and time series data from the Lafay-
ette River prior to flooding. For all sampling years, the 
maximum DIN, DON, and  PO4

3− concentrations in flood-
waters were generally much higher than the average and 
maximum baseline concentrations measured during boat 
transects, at the time series site, and as part of the CBP 
monitoring program. The only exceptions were DIN con-
centrations in 2019 and  PO4

3− concentrations in 2020.
In 2017, DIN concentrations in floodwater samples 

were not statistically higher than any of the baseline data-
sets when compared using non-parametric statistical tests 
(Table 4). DON and  PO4

3− concentrations in floodwaters 
were significantly higher than those measured as part of the 
CBP water quality monitoring program in October 2017 
prior to the MTM event that year (CBP-2017). Floodwater 
 PO4

3− concentrations were also significantly higher than 
the October–November CBP climatology. In 2018, there 
were significant differences between DIN concentrations 
in floodwaters and those measured at the Lafayette River 
time series data. Floodwater DON concentrations were sig-
nificantly higher than both the CBP climatologies and the 
CBP measurements made in October 2018 (CBP-2018). 
For  PO4

3−, the floodwater concentrations were significantly 
higher than the CBP measurements made in the days prior to 
the king tide in 2018 (CBP-2018). In 2019, DIN concentra-
tions in floodwater samples were significantly higher than 
those measured at the Lafayette River time series site, and 
floodwater DON concentrations were significantly higher 
than CBP climatologies and measurements made just prior 
to the 2019 MTM sampling (CBP and CBP-2019). In con-
trast,  PO4

3− concentrations in floodwaters during 2019 were 
significantly greater than all of the baseline measurements 
except for those made during the cruise transect. In 2020, 
floodwater DIN concentrations were significantly greater 
than those measured on the cruise transect prior to MTM 
sampling. For DON, floodwater concentrations were sig-
nificantly higher than concentrations reported for all four 
baseline datasets. However,  PO4

3− floodwater concentra-
tions were only greater than the CBP-2020 concentrations. 
In 2021, floodwater concentrations of DIN, DON, and 
 PO4

3− were significantly higher than all of the baseline data-
sets available that year.

Loading Calculations

Differences Between Floodwater and Estuarine  
Nutrient Concentrations

Excess nutrient concentrations were observed in floodwa-
ters relative to baseline estuarine samples during all years 

(Table S1). The magnitude of the excess nutrient concentra-
tion varied between years, depending on the baseline estua-
rine data and the model used to make the calculation. The 
range of excess floodwater nutrient concentrations was esti-
mated using conservative, moderate, and extreme scenarios.

In 2017, DIN differences were not calculated because 
concentrations in floodwater samples were not statisti-
cally higher than any of the concentrations observed in any 
of the types of baseline estuarine data available (i.e., no 
excess floodwater DIN). Excess DON concentrations were 
observed in floodwaters relative to the CBP samples col-
lected from a station in the Lafayette River prior to the MTM 
sampling event (CBP-2017) and ranged from 8.2 to 34.3 µM, 
and excess  PO4

3− concentrations in floodwater ranged from 
below detection (BD) to 11.8 µM using CBP climatology 
data as the baseline estuarine nutrient concentrations. In 
2018, excess DIN concentrations in floodwaters were BD 
to 42.0 µM using the Lafayette River time series data as the 
baseline estuarine condition, excess DON concentrations 
ranged from 32.8 to 76.2 µM, using the CBP-2018 data and 
the CBP climatology as the baseline estuarine condition, 
respectively, and excess  PO4

3− concentrations in floodwa-
ters ranged from BD to 4.4 µM using the CBP-2018 data as 
the estuarine baseline concentration. In 2019, excess DIN 
concentrations in floodwaters ranged from below detection 
to 11.4 µM using the Lafayette River time series data as the 
baseline estuarine concentration, excess DON concentra-
tions in floodwaters ranged from 36.7 to 69.0 µM using the 
CBP climatologies as the baseline estuarine concentrations, 
and excess  PO4

3− concentrations in floodwaters ranged 
from 1.4 to 9.4 µM, using the Lafayette River time series 
and the CBP climatologies, respectively. In 2020, excess 
DIN concentrations ranged from 0.1 to 12.4  µM using 
cruise transect data as the estuarine baseline, excess DON 
in floodwaters ranged from 6.9 to 96.7 µM, using the boat 
transect and CBP climatologies as baseline estuarine data, 
and excess  PO4

3− concentrations in floodwater ranged from 
0.2 to 0.9 µM, using the CBP-2020 data as the baseline. 
In 2021, excess DIN concentrations in floodwaters ranged 
from below detection to 17.3 µM, using the CBP climatolo-
gies and the boat transect datasets, respectively, excess DON 
concentrations in floodwaters ranged from 16.1 to 112.8 µM, 
using the boat transect and the CBP climatologies, respec-
tively, and excess  PO4

3− concentrations in floodwater ranged 
from 0.4 to 4.7 µM, when using the boat transect and CBP 
climatologies, respectively.

Nutrient Loading to the Watershed

Input calculations were similar when considering differ-
ent inundation volumes, but they varied widely depend-
ing on the baseline and the scenario used to calculate the 
excess nutrients in floodwaters (Table 4). In 2017, net DON 



Estuaries and Coasts 

1 3

inputs ranged from 4.5 to 18.9 ×  103 kg N, and  PO4
3− inputs 

ranged from 0.3 to 14.4 ×  103 kg P (Table 5). In 2018, DIN 
loads during the king tide ranged from 1.3 to 23.2 ×  103 kg 
N, and DON loads ranged from 25.6 to 42.1 ×  103 kg N, 
while  PO4

3− loads ranged from 0.7 to 5.1 ×  103 kg P. In 
2019, DIN loads ranged from 2.4 to 5.8 ×  103 kg N, DON 
inputs ranged from 18.8 to 35.4 ×  103 kg N, and  PO4

3− loads 
ranged from 1.6 to 10.7 ×  103 kg P. In 2020, DIN inputs 
ranged from 0.03 to 6.1 ×  103 kg N, DON inputs ranged from 
3.4 to 48.0 ×  103 kg N, and  PO4

3− loads ranged from 0.4 
to 1.0 ×  103 kg P, respectively. During 2021, DIN, DON, 
and  PO4

3− inputs ranged from 0.2 to 9.0 ×  103 kg N, 8.3 to 
58.4 ×  103 kg N, and 0.5 to 5.4 ×  103 kg P, respectively.

Enterococcus Abundance in Floodwater

Enterococcus abundance in floodwaters ranged from 30 to 
24,000 MPN 100  ml−1 over the 5 years (Fig. 2 and Table S2). 

The latter (24,000 MPN) is the upper limit of detection for 
the method used. For 2017, 2018, and 2021, 18, 17, and 8% 
of the samples, respectively, were above the upper detection 
limit for the method. Floodwater samples collected during 
our multi-year campaign showed that fecal contamination in 
floodwater samples consistently exceeded the threshold (104 
MPN 100  ml−1) for recreational waters in Virginia (Fig. 2). 
In any given year in which samples were collected, > 80% of 
samples collected were above this threshold.

The abundance of Enterococcus did not correlate with the 
extent of flooding (Table S3). Enterococcus abundance was 
highest in 2018 when flooding was modest (0.37 m above 
MHHW) and intermediate in 2021, when the highest water 
levels were recorded (0.64 m above MHHW). Enterococ-
cus abundances in 2018 were significantly higher than those 
observed in any other year. Enterococcus abundances during 
2017 and 2021 were statistically similar to each other and 
statistically higher than abundances on samples collected 

Table 5  Net input of dissolved 
nutrients (in ×  103 kg N or P 
 year−1) during annual king 
tide tidal flooding events. 
Baseline indicates the pre-
flooding in-estuary condition 
used to make the calculation 
(see Table 4). For the different 
nutrient loading scenarios, 
we considered a conservative 
scenario where the mean 
baseline estuarine concentration 
(BL) plus 1 standard deviation 
(1SD) was subtracted from the 
mean floodwater concentration 
(FW), a moderate scenario 
where the median BL 
concentration (BL med) was 
subtracted from the median 
FW (FW med) concentration, 
and an extreme scenario 
where the mean BL − 1SD was 
subtracted from the FW + 1SD. 
To calculate a total load, we 
considered the error in our 
floodwater volume estimate 
and multiplied the estimated 
floodwater concentrations 
by either the mean estimated 
floodwater volume minus 
1SD (Vol low) or the mean 
floodwater volume plus 1SD. 
BD indicates that loading for 
that calculation was below 
detection

Year Analyte Baseline Nutrient loading scenario

Conservative Moderate Extreme

(FW) − (BL + 1SD) FW med − BL med (FW + 1SD) − (BL − 1SD)

Vol low Vol high Vol low Vol high Vol low Vol high

2017 DIN All BD BD BD BD BD BD
DON CBP-2017 4.8 4.8 4.5 4.5 18.9 18.9
PO4

3− CBP 1.1 1.1 0.3 0.3 14.4 14.4
CBP-2017 1.1 1.1 BD BD 12.9 12.9

2018 DIN Time series BD BD 1.3 1.3 23.1 23.2
DON CBP 25.6 25.7 28.7 28.8 42.0 42.1

CBP-2018 29.6 29.7 29.1 29.2 39.6 39.7
PO4

3− CBP-2018 0.7 0.7 BD BD 5.1 5.1
2019 DIN Time series BD BD 2.4 2.4 5.8 5.8

DON CBP 18.8 18.9 21.0 21.1 35.3 35.4
CBP-2019 24.2 24.3 23.0 23.1 34.8 34.9

PO4
3− Time series 1.6 1.6 2.3 2.3 8.6 8.6

CBP 5.1 5.1 5.0 5.0 10.7 10.7
CBP-2019 6.0 6.0 5.2 5.2 10.2 10.2

2020 DIN Transect 0.03 0.03 0.9 0.9 6.1 6.1
DON Transect 3.5 3.5 3.4 3.4 16.1 16.2

Time series 20.2 20.3 26.4 26.5 40.1 40.2
CBP 35.2 39.6 38.1 38.2 46.5 46.6
CBP-2020 39.6 39.6 38.1 38.2 46.5 46.6

PO4
3− CBP-2020 0.4 0.4 0.3 0.3 1.0 1.0

2021 DIN Transect 0.7 0.7 2.0 2.0 8.9 9.0
Time series 1.4 1.4 2.8 2.8 7.6 7.6
CBP BD BD 0.2 0.2 8.3 8.4
CBP-2021 3.5 3.6 3.2 3.2 6.1 6.1

DON Transect 9.1 9.2 8.3 8.3 27.1 27.2
CBP 38.9 39.1 38.8 39.0 58.1 58.4
CBP-2021 43.2 43.4 39.7 39.9 56.5 56.8

PO4
3− Transect 1.2 1.2 0.5 0.5 5.2 5.2

Time series 1.5 1.5 0.6 0.6 4.9 4.9
CBP 0.9 0.9 0.6 0.6 5.4 5.4
CBP-2021 1.9 1.9 0.8 0.8 4.9 4.9
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during 2019 and 2020. Results from 2020 were only statisti-
cally higher than those from 2019.

Sample Size Validation

For most of our sample size validation analyses of flood-
water, we found that the change in the standard devia-
tion for dissolved nutrients (ΔSD =  SDn(i) −  SDn(i)+10) 
decreased and reached or approached zero with the addi-
tion of more samples to the analysis in most years (Fig. 3). 
For DIN, there was more variability in the ΔSD during 
2017, 2018, and 2020, but when the sample size was large, 
the ΔSD reached or approached zero in all years (Fig. 3a). 
During 2019 and 2021, the values for DIN-ΔSD remained 
low even at small sample sizes. For DON, the ΔSD for 
concentrations measured in floodwater also decreased 
as sample size increased in all years but 2021 (Fig. 3b). 

For  PO4
3−, ΔSD values were low and remained constant 

through the analysis for most years except 2017 (Fig. 3c). 
Fewer samples were collected to measure Enterococcus 
abundance (40 per year), and not surprisingly, the ΔSD did 
not reach zero in any year. However, the ΔSD did decrease 
as the sample number included in the analyses increased.

Controls on Floodwater Water Quality

There were little to no differences between the longitudinal 
position in which floodwater samples were collected and the 
magnitude of the different water quality parameters measured 
(Fig. 4A–T). For floodwater DIN concentrations, there was 
only correlated with longitude in 2017, 2018, and 2021 (R2 
values ~ 0.02, 0.11, and 0.04, respectively) (Fig. 4A–E). DON 
concentrations were correlated with longitude only during 
2019 and 2020 (R2 values < 0.1, p < 6.8 ×  10−3) (Fig. 4F–J). 

Fig. 2  Relationship between Enterococcus abundance (in MPN 
100   ml−1) and the extent that water levels exceeded MHHW. Here, 
the standard deviation of each group is represented by the whiskers, 
while the orange line within each box represents the median. The year 
and number of samples collected is shown on top of each bar. The 

green dotted line represents the threshold (104 MPN 100   ml−1) for 
issuing advisories for recreational waters in Virginia. The gray area 
represents the abundance above the upper limit of detection for the 
method

Fig. 3  Changes in the difference 
between standard deviations 
(ΔSD =  SDn(i) minus  SDn(i)+10), 
where “n(i)” is a subsampling 
of the total samples collected 
starting from 10. The calculation 
was repeated until the maximum 
number of samples collected 
in a given year was reached. 
Colors refer to samples collected 
during different tidal flooding 
campaigns, MTM 2017 to 2021. 
Panels are for a DIN, b DON, 
and c  PO4

3− concentrations
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In keeping with DON and DIN,  PO4
3− concentrations showed 

a weak correlation with longitude in only 2 of the 5 years 
(2018 and 2019; R2 < 0.1, p < 1.8 ×  10−2) (Fig. 4K–O). No 
significant correlation was ever observed between Enterococ-
cus abundance and sample longitude (Fig. 4P–T).

There was no consistency on the statistical differences 
among land coverage categories for the different sampling 
years and dissolved inorganic nutrients measured (Fig. 5 
and Table S4). For example, floodwater DIN concentra-
tions collected on impervious surfaces were significantly 
greater than those collected on samples above wetlands 
from 2017 to 2019, but not for those collected on 2020 or 
2021. Furthermore, floodwater DIN concentrations col-
lected on impervious surfaces were significantly greater 
than those from samples surrounded by turfgrass and trees 

only in 2017 to 2018, respectively. Similar inconsisten-
cies in the results were found when comparing floodwater 
concentrations of DON and  PO4

3− among the land cover-
age categories in which samples were collected.

Discussion

Although there have been studies that point to the rela-
tionship between tidal f looding and estuarine water 
quality (Kiaghadi and Rifai 2019; Smith et al. 2021), 
this is the first time that the abundance of fecal mat-
ter indicators and nutrient loading from tidal flooding 
events has been quantified in such extensive campaigns, 
both spatially and temporally. We conducted an inaugural 

Fig. 4  Scatterplot of the longitude in which the floodwater samples 
were collected and the magnitude of floodwater: DIN (A–E), DON 
(F–J),  PO4

3− (K–O), and Enterococcus abundance (P–T). p-val 

shows the result of the linear regression analysis. When p-val < 0.05, 
the fit of the model (red solid line) and the R2 value are shown
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experiment in 2017 as part of a citizen science project 
aimed at building public awareness of the effects of sea 
level rise (Macias-Tapia et al. 2021). This work demon-
strated the profound effects of tidal flooding on nutrient 
and fecal material loading to a sub-estuary of the lower 
Chesapeake Bay, during a perigean spring tide (king tide) 
flooding event in 2017. Here, we report results describ-
ing nutrient loading and fecal material contamination 
during autumnal king tides spanning 5 years, over which 
weather conditions and the extent of flooding varied. 
This work demonstrated that both dissolved nutrients 
introduced to the estuary during tidal flooding events and 
the abundance of fecal indicators are beyond local regula-
tions designed to protect water quality and human health 
(Fig. 2 and Table 5). Given the increasing frequency and 
intensity of tidal flooding events in many coastal areas 
around the world due to sea level rise, these loads need 
to be considered when setting future restoration targets 
and measures for protecting human health (Nicholls and 

Cazenave 2010; Spanger-Siegfried et al. 2014; Neumann 
et al. 2015; Ezer 2018).

Tidal Flooding Events as Significant Non‑point 
Sources of Dissolved Nutrients

Results from this study demonstrated that dissolved nutrient 
concentrations were higher in floodwaters than in estuarine 
waters prior to flooding (Table 4); however, the magnitude 
of that difference varied between years and was highly 
dependent on the baseline dataset used to make the com-
parison. The heterogeneity in the results was likely the result 
of temporal and spatial variability in estuarine conditions 
over seasonal, tidal, and diurnal cycles (Morse et al. 2014). 
Despite this variability in the differences between flood-
water and estuarine concentrations, estimates of dissolved 
nutrient loads during tidal flooding events in all 5 years rep-
resented a substantial nutrient load to the estuary (Table 6). 
We compared our load estimates to the total maximum daily 

Fig. 5  Whisker plot of dissolved nutrient concentrations at floodwa-
ter samples collected under a given land coverage category (Fig.  1) 
during multiple MTM campaigns. The SD of each group is repre-

sented by the whiskers, the orange line within each box represents 
the median, and circles represent those points beyond the end of the 
whiskers
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loads (TMDL) for total nitrogen (TN) and total phosphorus 
(TP) established by US Environmental Protection Agency 
for TN and TP for the Lafayette River (7.95 ×  104 and 
5.37 ×  103 kg  year−1, respectively) (EPA 2010). The EPA 
has set tributary-specific TMDLs for the entire Chesapeake 
Bay, and these regulations include separate allocations for 
land-based inputs (e.g., non-point sources such as runoff), 
point sources including commercial and wastewater dis-
charges, and atmospheric inputs. Given the extensive spa-
tial extension of tidal flooding, we considered our nutrient 
load estimates from tidal flooding a non-point source of dis-
solved nutrients and compared them to load allocations for 
land-based inputs of TN and TP (880 and 58.1 kg  year−1, 
respectively). We did not measure particulate N in flood-
water because of the sampling methods employed but found 
that the total dissolved N (TDN = DIN + DON) load from 

floodwater inputs always exceeded the annual land-based 
load allocation for TN established in the Lafayette River 
TMDL (Table 6). Our estimates suggest that DIN and DON 
loads from tidal flooding ranged from 9.5 to 226% of the 
total load allocation using conservative to extreme scenarios. 
In the case of phosphorus (P), we also did not measure the 
particulate fraction, but our results indicate that loads of dis-
solved inorganic P (DIP) delivered during a single flooding 
event introduced more P than 100% of the allowable land-
based TP load allocations in the Lafayette River TMDL, 
independent of the scenario considered (Table 6). Our esti-
mates suggest that tidal flooding could introduce 5.1 to over 
100% of the total allowable load using both conservative 
and moderate loading scenarios, but more than 200% when 
considering the extreme scenario.

Table 6  Percentage (%) of the 
calculated nutrient load (for 
DIN, DON,  PO4

3−) from tidal 
flooding from the different 
loading scenarios in Table 5 
relative to the Lafayette River 
TMDL load allocation for 
land-based inputs (land) and 
the total load allocation (total). 
BD indicates that the floodwater 
concentration was lower than 
the baseline concentration and 
so no load could be calculated

Year Variable Baseline Nutrient loading scenario

Conservative Moderate Extreme

Land Total Land Total Land Total

2017 DIN All BD BD BD BD BD BD
DON CBP-2017 545 13.3 511 12.5 2260 55.1
PO4

3− CBP 1718 18.6 468 5.1 22,500 243
CBP-2017 1718 18.6 BD BD 20,312 219

2018 DIN Time series BD BD 147 3.6 2635 64.3
DON CBP 2907 70.9 3259 79.5 4781 116
PO4

3− CBP-2018 3362 82.0 3305 80.6 4509 110
CBP-2018 1093 11.8 BD BD 7968 86.2

2019 DIN Time series BD BD 272 6.6 658 16.1
DON CBP 2135 52.1 2385 58.2 4020 98.1

CBP-2019 2748 67.0 2612 63.7 3964 96.7
PO4

3− Time series 2500 27.0 3593 38.9 13,437 145
CBP 7968 86.2 7812 84.5 16,718 180
CBP-2019 9375 101 8125 87.9 15,937 172.4

2020 DIN Transect 3.4 0.1 102 2.5 692 16.9
DON Transect 397 9.7 386 9.4 1840 44.9

Time series 2294 56.0 2998 73.1 4566 111
CBP 3998 97.5 4202 102 5451 133
CBP-2020 4486 109 4338 105 5292 129

PO4
3− CBP-2020 625 6.8 468 5.1 1562 16.9

2021 DIN Transect 79.5 1.9 227 5.5 1022 24.9
Time series 159 3.9 318 7.8 863 21.1
CBP BD BD 22.7 0.6 954 23.3
CBP-2021 397 9.7 363 8.9 692 16.9

DON Transect 1033 25.2 942 23.0 3089 75.4
CBP 4418 107 4429 108 6633 161
CBP-2021 4906 119 4531 110 6451 157

PO4
3− Transect 1875 20.3 781 8.5 8125 87.9

Time series 2343 25.4 937 10.1 7656 82.8
CBP 1406 15.2 937 10.1 8437 91.3
CBP-2021 2968 32.1 1250 13.5 7656 82.8
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Even at the more conservative end of the estimations, 
results from this study show that tidal flooding is a signifi-
cant source of DIN, DON, and DIP to coastal waterways 
(Table 6). The estimates of dissolved nutrients load during 
tidal flooding events varied up to an order of magnitude by 
year and baseline used for the calculation. In terms of inor-
ganic nutrients, DIN and DIP, which were large components 
of the loading we observed, are thought to be more bio-
available to marine microbes than organic N or P (Mousing 
et al. 2018). Primary production in the Lafayette River, like 
much of the lower Chesapeake Bay, is thought to be mainly 
limited by N, and areas in which phytoplankton communi-
ties are limited by neither N nor P have decreased during 
the last decades (Zhang et al. 2021). Dissolved inorganic 
nutrients added during tidal flooding events could represent 
another source of nutrients for algal blooms, allowing them 
to be sustained longer and distributed to other parts of the 
estuarine system. Prior work has demonstrated that dissolved 
nutrients concentrations play a major role in algal bloom 
origination and proliferation in the Lafayette River (Morse 
et al. 2011, 2013, 2014; Mulholland et al. 2018) and can pro-
mote toxic strains of cyanobacterial blooms more than non-
toxic strains (Davis et al. 2010). Furthermore, our results 
indicate that the percentage of P loads during a single tidal 
flooding event, relative to the TMDLs, is higher than those 
for N (Table 6). This stoichiometric imbalance affects phy-
toplankton community growth rates, species composition, 
and nutritional quality (Arrigo 2005; Burson et al. 2016).

Previous studies have shown that some bloom-forming  
algal species are mixotrophs (e.g., Margalefidinium pol-
ykrikoides) and could also benefit from DON inputs  
(Mulholland et al. 2018). We did not measure dissolved 
organic P (DOP), but previous studies have pointed to higher 
DOP uptake rates by phytoplankton when DON is introduced 
(Fitzsimons et al. 2020). Additionally, there are other poten-
tial contaminants that could be introduced to estuaries as a 
result of tidal flooding that play a role in the water quality of 
coastal systems. These include other nutrients, like Mg, Na, 
and S (Hofmann et al. 2021), heavy metals (Rakib et al. 2022; 

Wu et al. 2020; Price et al. 2019), microplastics (Dodson 
et al. 2020), and contaminants of emerging increasing con-
cern, including pharmaceuticals and personal care products 
(Kroon et al. 2020). Future studies should assess how these 
inputs may be changing as a result of increases in tidal flood-
ing and their influence on human health. Failing to account 
for increased non-point source loading of nutrients and con-
taminants due to increases in tidal flooding could result in 
further deterioration of the systems we are trying to restore.

Controls on the Magnitude of Nutrient Loadings 
from Tidal Flooding

We initially hypothesized that nutrient loading from tidal 
flooding would correlate with the extent of inundation dur-
ing flood tides. However, results from our multi-year analy-
ses show that there were no significant correlations between 
the floodwater volume and the nutrient load delivered during 
the five annual events included in this study (Fig. 6). Further 
analysis showed that there was no correlation between nutri-
ent or Enterococcus concentrations with the distance from 
the mouth of the estuary at which the floodwater sample 
was collected (Fig. 4) or with the land coverage character-
izing the sampling point (Fig. 5). In terms of land coverage, 
the Lafayette River watershed is highly residential (Fig. S1). 
This makes the distribution of these properties very homo-
geneous among floodwater samples and probably hides the 
effect of land use categories on dissolved nutrient concentra-
tions. Multiple studies have shown that there is a relation-
ship between land use and nutrient runoff (Tu 2011), with 
agricultural and urban areas delivering the largest nutrient 
loads and exerting the most water quality impacts (e.g., 
Cheng et al. 2022). However, these studies integrated land 
use over a much larger area than our small sub-watershed 
and that floodwater nutrient loads may need to be similarly 
integrated over larger spatial scales. Future studies should 
consider sampling multiple watersheds wherein the overall 
land use and land cover are more distinct (e.g., agriculture 
vs industrial).

Fig. 6  Correlation between 
floodwater height relative to 
MHHW and dissolved nutrient 
load. Panels show data for a 
DIN-N, b DON-N, and c DIP-P. 
R2 and p-values for each cor-
relation analysis are shown
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Weather conditions and landscape prehistory before and 
during flooding can also modify the magnitude of nutri-
ent inputs. For example, precipitation and runoff prior to 
flooding can remove materials from the landscape (Selbig 
2016), which will attenuate nutrient inputs during subse-
quent flooding. Sampling for this study was focused only 
around perigean-spring tides occurring during the fall sea-
son. This resulted in homogeneous weather conditions dur-
ing the 5 years of our sampling campaign. Future studies 
are needed to quantitatively assess the temporal variability 
of nutrient inputs during tidal flooding with respect to the 
immediate prehistory of the landscape.

Apart from the critically high nutrient inputs associated 
with tidal flooding events, relative to establish restoration 
limits, results from our study indicate that there are hotspots 
where concentrations of dissolved nutrients were orders of 
magnitude higher than estuarine concentrations measured 
prior to flooding (Table 3). In all years, outlier concentra-
tions were found in samples collected at or near public parks. 
Several studies indicate that in green areas located in or near 
cities, the presence of pets can elevate N and P concentra-
tions (John et al. 2020; Paradeis et al. 2013; De Frenne et al. 
2022). Our study suggests that interactions between flood-
waters and green areas designated for pets were hotspots 
for nutrient loading. Other hotspots that might have con-
tributed disproportionately to nutrient loading from tidal 
flooding included sites near a stormwater retention pond and 
residential areas with a large areal proportion of impervious 
surfaces. A recent study found that the design and age of 
stormwater retention ponds can modify their ability to retain 
nitrogen (Gold et al. 2017). Other studies suggest that run-
off from residential and urban areas contributes substantial 
loads of DIN, DON, and DIP to connected waterways (Toor 
et al. 2017; Lian et al. 2019; Jani et al. 2020). Our work 

indicates that identifying and targeting hotspots of nutrient 
inputs from flooding events will be critical for prioritizing 
management actions aimed at minimizing nutrient loading 
from tidal flooding.

Enterococcus Abundance in Floodwater

Floodwater samples collected during our multi-year cam-
paign showed consistently elevated Enterococcus abun-
dances in floodwater samples, with values well above the 
threshold for safe recreational use of water (104 MPN 
100  ml−1) (Fig. S2). Ezer (2018) found an increase in the 
number of hours per year in which the water level in the 
city of Norfolk is 0.53 m above the mean higher high water 
(MHHW). This is worrisome as humans and animals are 
in intentional and unintentional contact with floodwaters 
putting their health at risk (Iversen et al. 2004). Therefore, 
identifying the sources of fecal contamination and hot-
spots where these contaminants accumulate is critical for 
the health and resilience of urban areas that experience 
recurrent tidal flooding. Hart et al. (2020) pointed to the 
interaction between floodwater and stormwater infrastruc-
ture (Hart et al. 2020), while data-driven models built with 
high frequency sampling indicated that the most important 
variables to predict fecal indicator bacteria were tide, solar 
irradiation, water temperature, significant wave height, and 
offshore wind speed (Searcy and Boehm 2021).

Our multi-year analysis indicated that there was no sta-
tistical correlation between the abundance of Enterococcus 
and the extent of flooding (Table S3). Other factors, like 
land coverage and use, can influence the abundance of fecal 
indicators in the water. Such factors include runoff from 
high- and low-density residential areas, such as those found 
in the Lafayette River watershed (Tiefenthaler et al. 2011), 

Fig. 7  Box and whisker plots show the variability in a DIN, b  PO4.3−, 
and c DON concentrations between sampling years. The standard 
deviation of each group is represented by the whiskers, while the 
orange line within each box represents the median. Letters on top 

of each whisker represent the statistical agreement (p > 0.05) among 
years using the Mann–Whitney U test. All the results of the statistical 
analysis are available in Table S5
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and water in contact with drain systems (Haile et al. 1999; 
Aryal et al. 2021). Future studies should include a higher 
number of samples that represent all of the affected areas 
and a more conclusive land use characterization system. 
Furthermore, samples representing pre-flooding conditions 
should be considered, similar to the analysis done with the 
dissolved nutrients in this study.

Variability Analysis: Successful Floodwater 
Characterization with a Citizen Science Approach

Capturing the variability of dissolved nutrient concentrations 
in floodwater is important for quantifying nutrient loads at a 
watershed level. This becomes more relevant when consider-
ing the highly variable biogeochemistry of estuarine systems, 
like the Lafayette River (Morse et al. 2014) that are affected 
by multiple biotic (Mulholland et al. 2009, 2018) and abiotic 
factors (Morse et al. 2011, 2013). Although further analysis 
suggests that the number of samples collected and sampling 
events performed were not enough to capture the variability 
of the system as a whole (Fig. 7), our results demonstrate that 
citizen science sampling at a watershed scale can provide 
enough data to accurately quantify nutrient loading from indi-
vidual tidal flooding events by evaluating the variability in 
SD (i.e., ΔSD) when increasing the number of random flood-
water samples collected. Although citizen science projects 
have proven to be cost-effective ways to gather data (Tulloch 
et al. 2013; Ferri et al. 2020), organizing and training vol-
unteers to collect floodwater sampling takes monetary and 
human resources (Alfonso et al. 2022). This study can advise 
future work by providing an estimate of how many samples 
are needed to produce statistically robust estimates of nutri-
ent loading due to tidal flooding. Our results confirmed that 
a large sample size (> 100 samples) is needed to fully cap-
ture the variability in all of the targeted analytes at the scale 
of the Lafayette River watershed (Fig. 3) and robustly esti-
mate nutrient loading from tidal flooding (Tables 3, 4, and 
5). Future studies are needed to constrain the variability in 
nutrient loads due to other factors that might contribute to 
variability in excess nutrients in floodwaters (e.g., variability 
in landscape condition just prior to flooding, time since last 
rainfall, seasonality) so that we can better estimate nutrient 
loading from tidal flooding and reduce these loads.

Conclusions

Sea level is rising, leading to an increase in tidal flooding 
in low-lying coastal communities like our study site (Ezer 
2018). Despite widespread recognition of this trend and the 
economical effects it has, little is known about nutrient loads 
delivered during tidal flooding and its impact on the water 

quality. In this study, we quantified nutrient loading to a 
lower Chesapeake Bay sub-tributary, during king tides from 
2017 to 2021. We leveraged a citizen science campaign to 
collect a sufficient number of samples at high tide. We found 
the following:

• DIN, DON, and  PO4
3− concentrations were higher in 

floodwaters than in estuarine waters, but the magnitude 
of this difference was highly dependent on the baseline 
estuarine dataset used as a reference.

• Loads of DIN, DON, and  PO4
3− from singular flood-

ing events can contribute more than 100% of the annual 
tributary-specific total and land-based federal allocations 
(i.e., total maximum daily loads (TMDL)) for total nitro-
gen (TN) and total phosphorus (TP). It is important to 
notice that the magnitude of the estimated load varied 
up to an order of magnitude depending on the year and 
pre-flooding conditions considered.

• Enterococcus abundances in floodwater usually exceeded 
the threshold for recreational water use in Virginia (104 
MPN 100  ml−1) during the 5 years of sampling.

• Results from our temporally and spatially extensive sam-
pling campaigns showed that there were no significant 
correlations between Enterococcus abundance or dis-
solved N and P concentrations in floodwater and (1) the 
inundation volume in a single event, (2) the distance from 
the mouth of the estuary at which the floodwater sample 
was collected, or (3) the land coverage characterizing the 
sampling point.

• Our analysis of the variability of dissolved nutrient con-
centrations in floodwater indicates that > 100 samples 
are needed to produce statistically robust estimates of 
nutrient loading due to tidal flooding. Using our citizen 
science approach, we met that goal.

Results from this study indicate that tidal flooding con-
tributes a substantial nutrient load to the aquatic systems 
we are trying to restore. This load needs to be included in 
management and policy decisions aimed at managing non-
point loads of nutrients. Additionally, our results indicate 
that floodwater events represent a risk for human health due 
to high abundance of fecal indicators. Measures should be 
taken to control this or to inform people of the risk.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12237- 023- 01245-3.
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