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We investigate the relativistic scattering of three identical scalar bosons interacting via pair-wise
interactions. Extending techniques from the nonrelativistic three-body scattering theory, we provide a
detailed and general prescription for solving and analytically continuing integral equations describing the
three-body reactions. We use these techniques to study a system with zero angular momenta described by a
single scattering length leading to a bound state in a two-body subchannel. We obtain bound-state-particle
and three-particle amplitudes in the previously unexplored kinematical regime; in particular, for real
energies below elastic thresholds and complex energies in the physical and unphysical Riemann sheets. We
extract positions of three-particle bound-states that agree with previous finite-volume studies, providing
further evidence for the consistency of the relativistic finite-volume three-body quantization conditions. We
also determine previously unobserved virtual bound states in this theory. Finally, we find numerical
evidence of the breakdown of the two-body finite-volume formalism in the vicinity of the left-hand cuts and
argue for the generalization of the existing formalism.

DOI: 10.1103/PhysRevD.108.034016

I. INTRODUCTION

The need for a nonperturbative and relativistic frame-
work to describe the dynamics of three-hadron systems is
pressing and encompasses a broad class of hadronic and
nuclear physics subfields, ranging from the lattice quantum
chromodynamics (QCD) computations to experimental
searches for the spectrum of strong interactions. The
majority of QCD states are unstable resonances that reveal
themselves in reactions with final products consisting of
three and more particles [1–4]. Among the most notable
examples are the lightest excitation of the proton, Roper
resonance N�ð1440Þ, a hybrid-meson candidate π1ð1600Þ,
the charmed-molecule candidate χc1ð3872Þ, and its cousin,
the recently discovered tetraquark candidate Tþ

ccð3872Þ
[5–14]. Systematic analysis of these states requires under-
standing the complicated final state interactions and build-
ing robust multibody reaction amplitudes that satisfy the
grounding principles of quantum mechanics, such as
unitarity and analyticity. These two principles are essential
when determining resonances manifesting as pole singu-
larities in the scattering amplitudes.

The major challenge for accessing scattering observables
via lattice QCD is the necessary truncation of the space-
time. By making the volume finite, one can not define
asymptotic states and consequently directly determine
reaction amplitudes.1 However, it is possible to construct
an exact, nonperturbative relation between finite- and
infinite-volume observables as was first presented by
Lüscher [16–18] for a system composed of two scalar
bosons. His formalism, and its generalizations to arbitrarily
complex two-body systems [19–23], have resulted in a rich
field of lattice QCD studies of scattering systems [24–40].2
We note that these formulations are correct when applied to
processes occurring with energies above the two-particle
threshold. They may break down below that energy, an
issue we discuss further in the text.
Similarly to the two-body sector, one may obtain

relations that restrict infinite-volume scattering observables
involving three-particle states based on finite-volume (FV)
quantities. The first relativistic formulation relating the FV
spectrum and the purely hadronic three-particle scattering

*dawids@uw.edu
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1In principle, one could define wave packets in a finite volume
and approximately access scattering amplitudes in a finite volume
[15], but this would require real-time correlations that are not
currently accessible using standard lattice QCD techniques.

2See Ref. [41] for a recent review.
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amplitude was derived in Refs. [42–44]. A key outcome of
this work is that in a finite volume, one places constraints on
an infinite-volume object known as the three-bodyKmatrix.
It is a generally unknown, real function of kinematic
variables that describes the short-distance three-body inter-
actions and is related to physical scattering amplitudes
via a set of integral equations. This formalism was origi-
nally developed by assuming all particles to be identical
scalar bosons that do not couple to two-particle states.
These restraints have been slowly lifted in Refs. [45–49].
Moreover, alternative and equivalent forms of the formalism
were proposed in parallel [50–57]. Their distinguishing
features are technical, and all of them are equivalent versions
of the same underlying mathematical structure satisfying
conditions imposed by the S-matrix unitarity [58–61]. The
first implementation of the formalism in lattice QCD studies
focused on determining the three-body K matrix from FV
spectra for maximal isospin 3π [62–68], 3K [68,69], and
mixed ππK systems [70]. The first study to take all the steps
from the analysis of the lattice QCD correlations to physical
scattering amplitude was presented in Ref. [71].3

Although part of the limitation of studying increasingly
rich three-body systems is computational, the primary
challenge is more formal. One of the essential unresolved
obstacles is a proper understanding of the relationship
between the three-body K matrix and the physical scatter-
ing amplitude. It requires solving a system of integral
equations in terms of purely on-shell dynamical inputs.
These objects have kinematic and dynamical singularities,
which result in amplitudes of a complicated analytic
structure. For this reason, FV formalism must be accom-
panied by a set amplitude analysis techniques, some of
which we attempt to develop in this work.
Namely, we propose and describe a procedure of analytic

continuation of the three-body integral equations presented
in Ref. [43]. It is an extension of the work described in
Ref. [73], where the authors carried out the first steps
toward their solution using a simple toy model as an
example. Although our method of defining the amplitude in
the complex energy plane is general, we present it in the
context of the same theory to showcase a digestible instance
of its application.
Specifically, we consider a three-body scattering process

where the two-particle subsystem develops an S-wave
bound state (dimer), labeled as b. We study the scattering
in the Swave in the total, three-particle angular momentum
J, and for simplicity, fix the three-body K matrix to zero.4

Using the Lehmann, Symanzik, and Zimmermann reduc-
tion formula, this simplified theory can be used not only for

studying 3φ ↔ 3φ scattering, where φ is a generic label for
a scalar boson of mass m but also φþ b ↔ φþ b
and φþ b ↔ 3φ.
This same theory was previously investigated using the

finite-volume formalism [74]. By obtaining energies below
the three-particle threshold, s3φ ≡ ð3mÞ2, these energies can
be associated with those of a two-particle system composed
of φþ b and mapped to infinite-volume amplitudes using
the Lüscher formalism. The results there include a deter-
mination of Mφb, the φþ b ↔ φþ b amplitude for ener-
gies below s3φ but also below the φb threshold, sφb ≡
ðmb þmÞ2, where mb is the mass of the dimer. Below this
threshold, one obtains strong evidence for the three-particle
bound states. It is important to note that in this same
kinematic region, one does not expect the Lüscher formal-
ism to be generally applicable [75], and, as a result, the
amplitude presented in Ref. [74] may suffer of systematic
errors below sφb.
Study of Ref. [73] followed the Nyström method [76,77]

to establish a systematically improvable, numerical pro-
cedure for solving the three-body integral equations. It
found a perfect agreement between the obtainedMφb with
the finite-volume results of Ref. [74] for energies in the
range sφb ≤ s ≤ s3φ. One of the novel aspects of our work
is that we investigate the integral equations and their
solutions for energies below sφb, as well as in the complex
energy plane, including the nearest unphysical Riemann
sheet. Such an extension is far from obvious, as the partial-
wave projected equations suffer from singularities that
complicate the analytic properties of the final amplitude.
For instance, these can result in the unphysical left-hand
cuts below the φb threshold that obscure the presence of the
bound-state poles. As discussed further in the text, we reach
the correct solution by implementing techniques such as
integration contour deformation and redefinition of the
integration kernels through the addition of proper disconti-
nuity functions. To our best knowledge, we provide the first
complete method for circumventing these left-hand cuts.
We achieve great agreement with the three-body bound

states found in Ref. [74]. Moreover, we numerically com-
pute the dimer-spectator and three-body amplitudes (on the
first and second Riemann sheets), pole positions of virtual
states, and corresponding momentum-dependent residues.
This computation constitutes a nontrivial verification of the
consistency of the three-body, finite-volume quantization
condition and the associated infinite-volume integral equa-
tions. However, we also witness the tension between our
and the FV result for the φb amplitude below the dimer-
particle threshold. We interpret this as evidence of the
Lüscher formalism breaking down in the presence of the
nearest u-channel cut associated with the partial-wave
projection of one-particle exchange (OPE) amplitude.
This OPE cut is also a key source of complication for
solving the three-body integral equations for arbitrary
kinematics, and we discuss this in great detail.

3For a calculation of three-particle systems in a toy model,
lattice φ4 theory, see Ref. [72].

4Although they do not introduce new singularities, higher
partial waves require additional consideration. Inclusion of a
nonzero K matrix is straightforward after first solving the
vanishing K matrix case.
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Before presenting our strategy for solving the desired
integral equation, it is worth briefly summarizing the key
literature on the topic. The analytical structure of the
relativistic three-body amplitudes was an area of substantial
research within the S-matrix theory literature in the 1960s
[78–80] but also in the modern three-body approaches [55].
Energy- and momentum-space contour deformations in the
three-body integral equations have been employed as a
solution tool necessary for reaching the unphysical energy
domain [81–87]. The first analysis of the OPE cuts in the
nonrelativistic three-body system was performed by Rubin,
Sugar, and Tiktopoulos in 1966 [81]. It was considerably
expanded by Brayshaw in 1968 [83,88]. In 1978, Glöckle
performed an analytic continuation of the nonrelativistic,
homogeneous Fadeev equation to describe poles of the
three-neutron 1S0 interaction [84]. He presented a pro-
cedure for avoiding the poles/cuts of the nonrelativistic
OPE propagator via complex momentum contour defor-
mation. It allowed him to trace trajectories of the S-matrix
poles with evolving strength of the separable Yamaguchi
potential, used as a model for two-body interactions
between nucleons. His work inspired various authors,
the most recent example including Ref. [89]. In this work,
we closely follow the ideas of Brayshaw and Glöckle.5

Recent efforts to compute three-body, relativistic ampli-
tudes include those presented in Refs. [87,92], where the
authors studied the a1ð1260Þ → 3π resonance channel.
We organized this work in the following way. First, in

Sec. II, we summarize the formalism of interest; in
particular, we list the building blocks of the relativistic
three-body scattering equations. In Sec. III, we analyze
their analytic properties and provide numerical examples.
Next, in Sec. IV, we discuss the analytic properties of the
three-particle scattering amplitudes and describe their
continuation to the complex plane of the total energy of
the system, including the unphysical Riemann sheets.
Section V starts with an outline of the solution procedure.
We refer the readers interested in a practical implementa-
tion of the integral equations to this part of our work. Then,
we present numerical results for the Mφb for a wide range
of kinematical variables. In the same section, we present
positions of the three-body bound states. Furthermore,
we discuss the discrepancy of that finite-volume study
with theMφb amplitude below the sφb threshold due to the
neglected left-hand cut. It is worth emphasizing that
although the content presented in Sec. II and partly in
Sec. III is a review, many of the techniques outlined in
Sec. IV and the results in Sec. V are for the first time

presented in this work. Finally, in Sec. VI, we provide
a summary of our findings. Some of the more pedagogical
and technical aspects of the discussion are relegated to
Appendices A, B, and C. In particular, Appendix C
contains concrete numerical routines applicable in studies
of general three-body scattering reactions.

II. RELATIVISTIC THREE-BODY EQUATION

To ensure the self-sufficiency of this work, we review the
equations presented in Refs. [43,73] for describing the on-
shell scattering amplitude of three identical spinless bosons
of mass m. The 3φ → 3φ scattering occurs with the c.m.
energy E. The corresponding total invariant mass squared
is s ¼ E2. In the initial and final three-body state we choose
a particle that we call an initial/final spectator. Their
momenta are denoted by k and p, respectively. The other
two hadrons, associated with the given spectator, form a
pair. Their state is projected to a definite angular momen-
tum, and here, we restrict ourselves to the S-wave case only.
The scattering process is described by the three-body

amplitudeM3, which is defined to be symmetric under the
interchange of individual particles in the initial and final
states. In this work, we consider the unsymmetrized version

labeled Mðu;uÞ
3 , which can be understood to describe a

quasi-two-body spectator-pair reaction. The fully symmet-

ric M3 is obtained by summing Mðu;uÞ
3 over the nine

choices of possible spectator momenta. The Mðu;uÞ
3 ampli-

tude can be written in terms of two other amplitudes,

Mðu;uÞ
3 ðp; kÞ ¼ Dðu;uÞðp; kÞ þMðu;uÞ

df;3 ðp; kÞ: ð1Þ

The first term of Eq. (1), Dðu;uÞ, depicted in Fig. 1, includes
all pair-wise interactions in the absence of a pure three-
body interaction. It is often referred to as the ladder

amplitude. The second term, amplitude Mðu;uÞ
df;3 , includes

all contributions that arise in the presence of a short-range
three-body interaction. The short-distance dynamics is
encoded in the relativistic three-body K matrix, Kdf;3.
Although this separation between long- and short-range
three-body interactions is scheme dependent, Kdf;3 is

defined to assure that the resultant Mðu;uÞ
3 is scheme

FIG. 1. Diagrammatic representation of ladder equation for the
D amplitude defined in Eq. (2). Black circles represent the on-
shell 2 → 2 amplitude M2, introduced below that equation.
Slanted lines represent amplitudes for one particle exchange,
given by Eq. (5). As made evident in Eq. (2), the building blocks
of the integral equation are on their mass shell.

5For parallel efforts in studying analytic properties of ampli-
tudes in the context of Dyson-Schwinger equations and three-
point functions, we point the reader to Refs. [86] and [90],
respectively. An alternative relativistic description of three-boson
bound states, known as Bethe-Salpeter-Fadeev equations, is
described in Ref. [91] and references therein.
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independent. In this work we assume that the three-body K

matrix is zero, which leads to Mðu;uÞ
df;3 ¼ 0. Having deter-

mined Dðu;uÞ, one can include a nonzero Kdf;3 contribution

by solving equation for Mðu;uÞ
df;3 .

A. Ladder amplitude

The ladder amplitude is defined by the integral equation,

Dðu;uÞðp; kÞ ¼ −M2ðpÞGðp; kÞM2ðkÞ

−M2ðpÞ
Z

dq
ð2πÞ32ωq

Gðp; qÞDðu;uÞðq; kÞ:

ð2Þ
In general, M2 is a diagonal matrix in the pair’s angular
momentum space. Here we truncated it just to the S-wave
element. It represents 2 → 2 scattering amplitude describ-
ing interactions among two particles in the initial and final
pair. Their invariant mass squared, σp, is fixed by the
momentum of the spectator,

σp ¼ ð ffiffiffi
s

p
− ωpÞ2 − p2; ð3Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and p ¼ jpj is the momentum

magnitude. Two-body invariant mass squared can be used
to express the c.m. spectator’s momentum,

p ¼ λ1=2ðs; σp;m2Þ
2

ffiffiffi
s

p ; ð4Þ

where λðx; y; zÞ is the triangle function, λðx; y; zÞ ¼ x2þ
y2 þ z2 − 2xy − 2yx − 2zx. The exchange propagator G,
which describes the long-range interactions between the
intermediate pair and spectator, is defined by

Gðp; kÞ ¼ Hðp; kÞ
b2pk −m2 þ iϵ

; ð5Þ

where b2pk ¼ ð ffiffiffi
s

p
− ωp − ωkÞ2 − ðpþ kÞ2, and Hðp; kÞ is

a cutoff function necessary to ensure finitude of the integral
in Eq. (2). In this work, we consider two classes of cutoff
functions. The first is the smooth cutoff function presented
in Ref. [43], which we write explicitly in Sec. III. The
second is a hard cutoff function that is equal to 1 up to a
maximum magnitude of the momentum, which we label
as qmax.
Instead of considering the unsymmetrized ladder ampli-

tude Dðu;uÞ, it is beneficial to define the amputated
amplitude dðp; kÞ,6

Dðu;uÞðp; kÞ ¼ M2ðpÞdðp; kÞM2ðkÞ: ð6Þ

in which one removes singularities in p and k associated
with the M2. The amputated ladder amplitude satisfies an
analogous integral equation,

dðp; kÞ ¼ −Gðp; kÞ

−
Z

dq
ð2πÞ32ωq

Gðp; qÞM2ðqÞdðq; kÞ: ð7Þ

It still depends on M2, which now enters the integral
equation kernel. In the presence of a two-body bound state,
M2 has a physical pole. Reference [73] showed how to
deal with such a singularity appearing in the integral
equation when one considers physical energies E.
Just as in Ref. [73], in addition to assuming that the two-

body subsystem is well described by the l ¼ 0 partial wave
only, we also employ the partial wave projection in the total
angular momentum, J, as defined in Eq. (10) of Ref. [73],
and we only consider the J ¼ 0 scattering process. We
denote the resultant amplitude with a subscript S, and it
satisfies

dSðp; kÞ ¼ −GSðp; kÞ

−
Zqmax

0

dqq2

ð2πÞ2ωq
GSðp; qÞM2ðqÞdSðq; kÞ; ð8Þ

where we have introduced the S-wave projection of the
OPE,

GSðp; kÞ ¼
Z1
−1

dx
Hðp; kÞ

zðp; kÞ þ iϵ − 2pkx
;

¼ −
Hðp; kÞ
4pk

log

�
zðp; kÞ þ iϵ − 2pk
zðp; kÞ þ iϵþ 2pk

�
; ð9Þ

with zðp; kÞ ¼ ð ffiffiffi
s

p
− ωk − ωpÞ2 − k2 − p2 −m2 and x

being the cosine of the scattering angle between final
and initial spectators momenta. As described above, the
upper bound of the integral in Eq. (8), which we label as
qmax, is fixed by the maximum value of q for which the
cutoff function H has support. In our case, it is
qmax ¼ ðs −m2Þ=2 ffiffiffi

s
p

. It is useful to combine objects
under the integral under one name, and define the inte-
gration kernel,

Kðp; qÞ ¼ q2

ð2πÞ2ωq
GSðp; qÞM2ðqÞ: ð10Þ

With this, we can rewrite Eq. (8) as

dSðp; kÞ ¼ −GSðp; kÞ −
Zqmax

0

dqKðp; qÞdSðq; kÞ: ð11Þ6For notation’s simplicity, we drop the upper ðu; uÞ label in d,
remembering that it is an unsymmetrized object.
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In the remainder of this work, we consider this form of the
ladder equation. Once one has obtained a numerical
solution for dS using Eq. (8), it is possible to determine
the S-wave projection of Dðu;uÞ using Eq. (6),

Dðu;uÞ
S ðp; kÞ ¼ M2ðpÞdSðp; kÞM2ðkÞ: ð12Þ

Partial-wave projection of the exchange propagator
replaces the pole singularity in q with logarithmic branch
cuts in q. Since these cuts play an important role in the
process of the analytic continuation of Eq. (8), we delay
their discussion to Sec. III. We just remark that having a
nonzero value of iϵ is necessary to define the integral
equation in Eq. (7); it follows from the u-channel pole shift
in the OPE propagator, Eq. (5), before the partial wave
projection. In principle, the solution of the ladder equation
is first obtained for finite ϵ, and then the ϵ → 0 limit is
taken. However, if the total invariant mass squared s is
complex, in practice we can set ϵ ¼ 0 before solving for dS.
In doing so, one has to remember that the iϵ prescription
defines a direction from which singularities of OPE are
passed through by the integration contour in the first line of
Eq. (9). Finally, this equation only holds when all orbital
angular momenta have been set to zero. However, for any
other amplitude with nonzero values of J and the external
pair’s angular momenta, the pole structure of the OPE
amplitude is the same. After partial-wave projection, the
simple logarithm above would be replaced with a linear
combination of Legendre functions of the second kind and
nonsingular functions. Given that the Legendre functions
have the same singular points as the logarithm, the method
for analytic continuation presented in this work applies to
any partial wave.

B. Bound-state-spectator scattering

We focus on a representative example of three-body
scattering by considering a system where the two-body
subsystem can become bound. Although a toy model, it is a
case of physical significance. Application of the relativistic
three-body formalism to this system has hinted at emergent
discrete scaling invariance [73,74], an underlying charac-
teristic of Efimov systems [93,94]. We will explore this
aspect of the model in the upcoming article, focusing here
on the extension of results of Ref. [73] to complex energy
plane and verification of the finite-volume formalism.
In this model, the two-body amplitude M2 has a real

pole in variable σq, below the two-particle threshold,
σq ¼ ð2mÞ2. We introduce this bound state by representing
the on-shell, S-wave amplitude,

M2ðqÞ ¼
1

K−1
2 ðqÞ − iρðqÞ ; ð13Þ

in the leading order (LO) effective range expansion (ERE).
Namely, we take K2ðqÞ ¼ −ð16π ffiffiffiffiffi

σq
p Þa, where a is the

two-body scattering length and ρðqÞ is the two-body phase
space for identical particles,

iρðqÞ ¼ −
1

32π
ffiffiffiffiffi
σq

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − σq

q
: ð14Þ

For a > 0, the system acquires a pole below the threshold
in the first σq Riemann sheet. It corresponds to an
imaginary relative momentum of the two-particle subsys-
tem equal to iκ ¼ i

a. The total invariant mass squared of the
bound state is then

m2
b ≡ σb ¼ 4ðm2 − κ2Þ: ð15Þ

It corresponds to a relative bound-state-spectator momen-
tum in the total c.m. frame,

qb ¼
λ1=2ðs; σb; m2Þ

2
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffis − sφb

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðmb −mÞ2

p
2

ffiffiffi
s

p : ð16Þ

Finally, one finds that residue of M2 at the pole is −g2,
where g is the b → 2φ coupling given by

g ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

ffiffiffiffiffi
σb

p
κ

q
: ð17Þ

As discussed in Ref. [73] in detail, continuing external
momenta of Dðu;uÞ to the value qb leads to factorization of
the poles associated with the external two-body bound
states. The residuum at the double-pole becomes propor-
tional to the S-wave spectator-bound-state scattering ampli-
tude MφbðsÞ. The three-body amputated ladder amplitude
is related to the φb through

MφbðsÞ ¼ g2 lim
p;k→qb

dSðp; kÞ: ð18Þ

We note that by continuing to other values of external
momenta, one can also obtain three-to-three, 3φ → 3φ, or
two-to-three,φb→3φ, amplitudes. Reference [73] explained
how to evaluate these amplitudes for energies along the real
axis above the bound-state-spectator threshold.
Between the φb and 3φ thresholds, similarly to M2

in Eq. (13), the Mφb amplitude can be parametrized in the
K-matrix form,

MφbðsÞ ¼
1

K−1
φbðsÞ − iρφbðsÞ

; ð19Þ

where ρφb is the phase space between the bound state and
the spectator,

ρφbðsÞ ¼
qb

8π
ffiffiffi
s

p : ð20Þ

The bound-state-spectator K matrix,KφbðsÞ is real between
the φb and 3φ thresholds but can potentially acquire an
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imaginary part below sφb. Using Eq. (19), one defines the
φb phase shift,

qb cot δφb ¼ 8π
ffiffiffi
s

p
K−1

φbðsÞ ¼ 8π
ffiffiffi
s

p
M−1

φbðsÞ þ iqb: ð21Þ

In Sec. V, we use Eq. (21) to define the analytic continu-
ation of the two-body K matrix below the φb threshold.

C. Three-body bound and virtual states

Three-body bound states manifest themselves as poles
on the real axis below the sφb threshold. Close to the pole,
denoted by sb, the amplitude factorizes,

dSðp; kÞ ¼ −
ζðpÞζ�ðkÞ
s − sb

þ…; ð22Þ

where ζ is called the vertex function and constitutes the
momentum-dependent residue of the pole. From Eq. (12), it

is evident that if dS has a pole in s, thenD
ðu;uÞ
S must as well.

Writing the residue of the latter as −ΓðpÞΓ�ðkÞ, one finds
that these satisfy

ΓðpÞ ¼ ζðpÞM2ðpÞ: ð23Þ

This residue can be understood as the coupling between the
three-body bound-state and the 3φ scattering states. We
note that, by definition, ΓðpÞ describes a scattering process
that has not been symmetrized with respect to the choice of
external pairs, but we keep the (u) label implicit. The vertex
function of the Mφb amplitude is defined as

Γφb ¼ gζðqbÞ: ð24Þ

Inserting Eq. (22) into Eq. (11) leads to the homo-
geneous ladder equation for the residue,

ζðpÞ ¼ −
Zqmax

0

dqKðp; qÞζðqÞ: ð25Þ

This equation is satisfied at the three-body bound-state
invariant mass squared s ¼ sb. As a result, one might use it
to solve for the bound-state location. Assuming nonzero ζ,
it only has a solution if the following determinant condition
is satisfied:

det½1þ K� ¼ 0; ð26Þ

where the determinant is calculated in the ðp; qÞ momen-
tum space. In other words, Eq. (26) serves as a quantization
condition for the three-body bound state.
To determine the residue itself, one solves the general-

ized eigenvalue problem,

ηðsbÞζðpÞ ¼ −
Zqmax

0

dqKðp; qÞζðqÞ; ð27Þ

where one treats s as the external parameter evaluated at
sb. For ηðsbÞ ¼ 1, Eq. (27) coincides with Eq. (25), and
the corresponding eigenvector, ζ, is the sought vertex
function [84]. Numerically, one solves the homogeneous
equation similarly to the inhomogeneous one, i.e., by
discretizing the momenta ðp; qÞ, solving the eigenvalue
problem, and finding the value of η closest to 1. We note it
is also possible to find the position of the three-body
bound-state pole and its residue by solving the inhomo-
geneous ladder equation for dSðp; kÞ, Eq. (8), for a range
of energies and searching for the pole explicitly in the
complex-valued amplitude.
To study virtual states or resonance poles, one needs to

continue the amplitude in Eq. (18) to the unphysical
Riemann sheet, which is continuously connected to the
first one through the unitarity cut. For the system under
study, the relevant branch cut is due to the φb threshold.
Using Eq. (19), we can analytically continue the amplitude
to the second sheet,

MII
φbðsÞ ¼

MφbðsÞ
1þ 2iρφbðsÞMφbðsÞ

: ð28Þ

From this, it is easy to see that resonance or virtual state
poles are found by using the condition

1þ 2iρφbðsÞMφbðsÞ ¼ 0: ð29Þ

If one is interested exclusively in the virtual states, then
the knowledge of Mφb on the first sheet below the sφb
threshold is sufficient for their determination.

III. ANALYTIC PROPERTIES OF THE
INTEGRATION KERNEL

Having recollected all the components of the integral
equation and reviewing strategies for determining the three-
body bound-state poles, we proceed to discuss the analytic
properties (singularity structure) of the ladder equation and
its integration kernel.
We restrict our attention to the integral equation as

expressed inEq. (11), i.e., in terms of the spectatormomenta.
Alternatively, one can write it using the external pairs’
invariant masses. The resulting amplitudes in momentum-
space, dSðp; kÞ, and invariant space, dSðσp; σkÞ, are equiv-
alent, but two forms of the integral equation can offer
different types of insight into the analytic structure of the
integration kernel. We discuss this in Appendix A.
In the following paragraphs, we outline the singularities

of the components of Eq. (11). It contains three objects: the
OPE term, GS, the kernel, K, and the subsequent solution,
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dS. The kernel depends on GS, the two-body amplitude
M2, and the Jacobian. Below we discuss each one of these.
The properties of dS emerge from those of GS and the
integration of the kernel. We discuss them separately
in Sec. IV.
Each object depends on the invariant mass squared s and

two of the spectator momenta ðq; kÞ. In general, their
analytic properties in one variable, e.g., placement of pole
and branch-point singularities in the complex q plane,
depends on the values of the other two, ðk; sÞ. As these
kinematic parameters change, e.g., s → s0, singularities can
approach and cross the real q axis in the integration interval
½0; qmax�. Such a crossing signals the emergence of singu-
larities of MφbðsÞ in the complex s plane. To evaluate the
amplitude at the new value of total invariant mass, s0, one
must understand the nature of the resulting s-plane singu-
larity and whether it can be avoided. If possible, it is
accomplished by analytic continuation, which is equivalent
to the q-plane integration path deformation. In Appendix B,
we provide a basic, pedagogical introduction to these
concepts and a collection of helpful references.
Because all functions entering the kernel are symmetric

under a parity transformation q → −q, for each complex
singularity at point q, there is a corresponding “copy” at
−q. It is easy to see in the Jacobian, which contains the
single-particle energy, ωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
. It has two imagi-

nary branch points starting at q ¼ �im. We orient the
associated branch cuts along the imaginary axis, and they
go to �i∞, respectively.

A. Singularities of the two-body amplitude

The two-body amplitude, M2ðqÞ, has three pairs of
branch points, associated with the momentum dependence
of ρðqÞ. Since it depends on q through σq, it must have the
same branch cuts as the energy ωq, which enters Eq. (3).
Moreover, from Eq. (14), we see it is singular when
Reσq < 0 and Reσq > 4m2 and Imσq ¼ 0. These condi-
tions define the unphysical left-hand cut and the right-hand
cut required by unitarity, respectively. They translate into
s-dependent or “movable” branch points in the q plane:

right-hand cut at σq ¼ 4m2

⇔ qr;� ¼ λ1=2ðs; 4m2; m2Þ
2

ffiffiffi
s

p

¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s −m2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − ð3mÞ2
p
2

ffiffiffi
s

p
�

ð30Þ

and

left-hand cut at σq ¼ 0

⇔ ql;� ¼ λ1=2ðs; 0; m2Þ
2

ffiffiffi
s

p ¼ �
�
s −m2

2
ffiffiffi
s

p
�
: ð31Þ

For the real total invariant mass, m2 < s < ð3mÞ2, the
cuts starting at qr;� are aligned with the imaginary axis and
go to �i∞, respectively. The cuts starting at ql;� are
aligned with the real axis and go to �∞, respectively. For
complex s, assuming principal definition of the square root,
they are curved and described by complicated equations
relating Imq and Req. The presence of the qr;� branch point
is required by the unitarity ofM2. The occurrence ofql;� is a
feature of the particular model we study. One can remove the
associated unphysical cut by dispersing the M2 amplitude
and ensuring its analyticity, as typically done in the so-called
Finite-Volume Unitarity (FVU) approach [50,87].
We note that ql;� and qr;� are expressed in terms of λ1=2,

which is a function of swith cuts in that variable. Both points
have an inverse square root singularity at s ¼ 0, which we
ignore, as we do not consider s < m2 in this work. In
addition, qr;� has two branch points at real s ¼ m2 and at the
three-body threshold s ¼ s3φ ¼ ð3mÞ2. Commonly one
makes corresponding cuts of λ1=2 to run between these
two points or have them go to −∞ and þ∞, respectively.
Choosing the latter option makes the qr;� points evolve
smoothly when changing between positive and negative
values of Ims for Res < s3φ. Choosing the former option
leads to a switch Imqr;þ ↔ Imqr;− when changing the sign
of Ims, while the real parts of qr;� are symmetric under a
complex conjugation of s. It is a general property of the
spectator’s momentum defined at a fixed value of the
corresponding pair’s invariant mass, Eq. (4). We use this
definition. Regardless of this choice, the two resulting
branch points of M2 remain “parity copies” of each other
in the q plane. From the point of view of analytic continu-
ation of thedS amplitude, we try to determine the presence of
the branch points that could potentially cross the integration
path. Thus, thanks to the parity symmetry property ofM2, it
is not ultimately important whether we label these branch
points ql;þ or ql;−. We show all singularities of the Jacobian
and the two-body amplitude in Fig. 2 for two examplevalues
of s and scattering length ma ¼ 2.
As mentioned in the previous section, M2 develops a

pole at �qb. Similarly to the branch points, it depends on
the total invariant mass via the triangle function. For
complex values of s, momentum qb has a cut between
ð ffiffiffiffiffi

σb
p −mÞ2 and sφb. When crossed, Imqb → −Imqb, while
Reqb remains unchanged. Thus, under complex conjuga-
tion of s, two parity copies of qb transform into each other.

B. Cutoff function and potential essential singularity

The most interesting contributions to the singularity
structure of the integration kernel come from the S-wave
OPE amplitude, Eq. (9). Before we discuss its logarithmic
part, let us first analyze the analytic properties of the cutoff
function Hðp; qÞ, included in GS. Here, we explore two
types of regularization. One is the smooth cutoff defined in
Ref. [43], Hðp; qÞ ¼ Jðσp=4m2ÞJðσq=4m2Þ, where
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JðxÞ ¼

8>>><
>>>:

0; x ≤ 0

exp

�
−
1

x
exp

�
−

1

1 − x

��
; 0 < x ≤ 1

1; 1 < x

: ð32Þ

This function equals unity in the physical region σq > 4m2

and smoothly transitions to zero at σq ¼ 0. The other choice
is the hard cutoffHðp;qÞ¼θðpÞθðqmax−pÞθðqÞθðqmax−qÞ.
Both functions are originally defined for real values of

momenta. Since, in the process of analytic continuation, we
will perform integration over complex variables, they have
to be generalized to the complex plane—possibly without
introducing additional singularities. Restriction of the
integration range is implemented by requiring that the
complex-momentum integration contour C has fixed end
points, q ¼ 0 and q ¼ qmax. For the hard cutoff, we take
Hðp; qÞ ¼ 1 in the whole complex plane, which is the
unique analytic extension of the constant function. For the
smooth cutoff, we extend

JðxÞ → JðzÞ ¼ exp

�
−
1

z
exp

�
−

1

1 − z

��
ð33Þ

for all complex z, removing conditions that make J
constant for certain values of its argument. This function
is analytic everywhere except for z ¼ 0 and z ¼ 1, for
which it develops essential singularities. In the language of
the complex momentum variables, those essential singu-
larities coincide with branch points of M2, ql;�, and qr;�,

respectively. We note that, since qr;� ¼ 0 for s ¼ s3φ,
one cannot use the smooth cutoff when performing
analytic continuation above the three-particle threshold,
as the collision of the essential singularities with the
integration end point could induce an unphysical right-
hand cut structure of the dS amplitude. It points to a
serious tension between finite- and infinite-volume coun-
terparts of the formalism: one requires a smooth cutoff of
the form (32) in the rigorous derivation of the three-body
quantization condition; however, it cannot be used when
identifying properties of resonances. In the bound-state-
spectator system, we avoid this problem by considering
Res < s3φ. In Sec. V, we present results for both the
smooth and hard cutoff cases.

C. Logarithmic singularities of the OPE amplitude

Apart from the potential singularities associated with the
regularizing functions, the S-wave OPE amplitude has
logarithmic discontinuities that can manifest themselves
both in the kernel and the inhomogeneous term of the
ladder equation. The analytic representation of the cuts is
obtained most simply from the integral representation of
the GS, i.e., the first line of Eq. (9). They are produced
when the pole of the propagator crosses the integration path
in the x variable,

zðp; kÞ þ iϵþ 2pkx ¼ 0: ð34Þ

Solving the above condition yields an explicit parametri-
zation of the cuts,

FIG. 2. Plot of the imaginary part of q2M2ðqÞ=ð2πÞ2ωq in units of m, for ma ¼ 2 and (left) s=m2 ¼ 7, (right) s=m2 ¼ 7 − i, with the
singularity structure highlighted. Branch cuts are represented by black lines, while branch points by colored points. We explicitly label
the upper half-plane copies. Branch points of ωq are shown in red, branch points qr;� in orange, and branch points ql;� in blue. Two
copies of the pole singularity are depicted with green points.
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pcut;�ðs; k; xÞ ¼
1

2βx

�
kxðβ1 þ iϵÞ

�
ffiffiffiffiffi
β0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ1 þ iϵÞ2 − 4m2βx

q �
; ð35Þ

where the “�” sign refers to two parity copies of the cut and
the parameter x ∈ ½−1; 1�. Here, we defined a function of s
and k,

βx ≡ βxðs; kÞ ¼ ð ffiffiffi
s

p
− ωkÞ2 − x2k2: ð36Þ

We note that β�1ðs; kÞ ¼ σk. Equation (35) is the master
formula describing the analytic structure of the OPE
amplitude for arbitrary kinematics, and has been previously
studied under different guises both in the nonrelativistic
[83–85] and relativistic [55,87,92] three-body approaches.
Considered as a function of s and k, it has an analytic
structure of its own with various square-root branch points.7

It is beyond the scope of this work to explain them all;
instead, we focus on those features of the OPE singularities
that affect the determination of the MφbðsÞ amplitude and
the three-body bound-state and virtual-state poles.

In the following expressions, we set ϵ ¼ 0 unless
explicitly stated otherwise. A cut runs between the two
associated branch points, whose positions are obtained by
setting x ¼ �1, e.g.,

p� ¼ pcut;þðs; k;�1Þ ¼ λ1=2ðs; σ�; m2Þ
2

ffiffiffi
s

p ; ð37Þ

where σ� is a function of s and k, describes the position
of the branch points in the σp plane, and is derived in
Appendix A. The other two branch points are −p�. The
above expressions hold universally for real and complex
values of s and k.
Finally, we note two key properties of GS that are useful

in an upcoming discussion of the OPE cuts in various
variables, namely,

GSðp; k; sÞ ¼ G�
Sðp�; k�; s�Þ;

GSðp; k; sÞ ¼ GSðk; p; sÞ; ð38Þ
where we wrote the s dependence explicitly. For example,
we see that cuts in k for fixed ðp; sÞ are given by the
equations analogous to the ones derived in this subsection.

D. Illustrative example of the OPE cuts

An example illustration of the OPE cuts is presented
in Fig. 3. We focus on two cases of practical interest, i.e.,
real-valued external pair invariant masses, σk ¼ σb and
σk ¼ 2m2. Of the two choices, the former corresponds to
ourMφbðsÞ calculation, while the latter is considered, e.g.,
when solving for the bound-state pole positions and vertex
functions in the homogeneous equation, Eq. (25). As we

FIG. 3. Contour plot of the imaginary part of GSðq; kÞ in the complex q plane, in units of 1=m2. Here, we chose the hard cut-off, total
invariant mass s=m2 ¼ 8 − i, and p corresponding to a fixed σk: (left) σk ¼ σb, where ma ¼ 6, and (right) σk ¼ 2m2. The singularity
structure is highlighted: branch cuts are represented by black lines and branch points by colored points. We explicitly label the positive-
parity copies. Branch points �pþ are shown in blue, and branch points �p− are in red.

7For example, due to the analytic properties of the triangle
function, for various differing values of s and k, points pþ and p−
in Eq. (37) can transform into each other or their parity copies. An
unambiguous definition of p� requires specification of the cut
structure of the pcut;þ function, e.g., resulting from the condition
σ2k − 4m2βx < 0. As discussed below Eq. (31), it does not affect
the problem of analytic continuation.
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can see, for some values of kinematic parameters, the cuts
cross the real q axis, requiring deformation of the real
integration interval ½0; qmax�, as discussed in the subsequent
section. Additionally, as shown in Fig. 4, an unusual
structure, known as the circular cut,8 emerges when the
(real-valued) s decreases from the physical value below the
point s∘ given in Eq. (45). Both copies of the OPE branch
cut assume the shape of two short lines attached to a
semicircle. For decreasing s < sφb, they become connected
along the imaginary q axis. Points� pþ approach and
touch the origin of the complex plane and then “bounce”
back, moving away from the q ¼ 0 point along the
imaginary axis as the circular cut grows.
Assuming values of s and σk are real we determine

positions where the circle coincides with complex plane
axes. The real one is passed at

qc1 ¼
λ1=2ðs; σc1; m2Þ

2
ffiffiffi
s

p : ð39Þ

Since the cut consists of two parity copies that are “glued”
together when Ims ¼ 0, the imaginary axis is not crossed

by the cut, but approached as Ims → 0, the semicircle
starting at

qc2 ¼
λ1=2ðs; σc2; m2Þ

2
ffiffiffi
s

p : ð40Þ

The two-body invariant masses σc1 and σc2 are derived in
Appendix A and both depend on variables s and k. As usual,
points qc1 and qc2 have their corresponding parity copies.
Knowledge of the functional formof these points is useful for
determining the appropriate integration contour that leaves
the neighborhood of the q ¼ 0 point without crossing any
cuts. This is discussed in Appendix C, where we also derive
their generalization for complex values of s and σk.
Opening of the circular cut is shown in the bottom panel of

Fig. 4, where the Ims ¼ −10−2, and k ¼ qb case is pre-
sented. An equivalent branch cut structure is obtained for
purely real s but nonzero, positive ϵ. For Ims > 0, the
analytic structure of GS is obtained by a reflection of
the Ims < 0 cuts with respect to the real q axis. Indeed,
the complex conjugation of s leads to reflection p → p�
in the argument of GS as can be seen from Eq. (38), and the
following transformation,

GSðp; k; s�Þ → GSðp;Rek − iImk; s�Þ
¼ G�

Sðp�; ðRek − iImkÞ�; sÞ;
¼ G�

Sðp�; k; sÞ; ð41Þ

FIG. 4. Cut structure of the imaginary part of the OPE, ImGSðq; kÞ, in the complex momentum q plane, in units of 1=m2. We set
σk ¼ σb forma ¼ 6 and use the hard cutoff. Total invariant mass changes from Res=m2 ¼ 8.5 (most right panel) to Res=m2 ¼ 8.1 (most
left panel). We present two example values of Ims=m2. The top panels exhibit the emergence of the circular cut, which encloses the
origin of the complex plane. On the left panel, we highlight the positions of the qc1 and qc2 points. For nonzero Ims (bottom panels), the
circular cut “opens.” This creates a slit through which the q ¼ 0 point can be accessed by the integration contour.

8Name “circular” can be misleading as the branch cut does not
necessarily form a perfect circle for all values of s and k. We
handle the cut under the approximation that it is a circle and not
an ellipse because for considered kinematics the difference is
negligible.
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where, in the first transformation, we used the property of the
spectator’s momentum, Imk → −Imk, under complex con-
jugation of the total invariantmass, s → s�, which holds for k
defined for a fixed σk and s ≤ ð ffiffiffiffiffi

σk
p þmÞ2.

As seen on the right panel of Fig. 3, the circular cut is not
present for all values of σk. We present an example position
of the OPE amplitude cuts for σk ¼ 2m2.
Finally, as a side remark, let us observe that the position

of the OPE branch cuts is arbitrary and can be chosen in
various ways leading to a different definition of GS. It can
be introduced by considering contour deformation in the x
variable in Eq. (9). An integration path starting at x ¼ −1
and ending at x ¼ 1 but going into the complex x plane
gives the same branch points but a different cut structure of
the OPE amplitude. It might allow one to “open” the
circular cut for those values of ðs; kÞ for which it is “closed”
when the regular ½−1; 1� integration interval is chosen to
define GS. Although it is useful, we do not explore this
procedure further.

IV. ANALYTIC CONTINUATION OF THE
AMPLITUDE

The original ladder equation, Eq. (11), is defined in
the physical kinematical region. In the model of the bound-
state-spectator scattering, it is given by the condition
s ≥ sφb. In this case, all the variables describing the
amplitude: external momenta ðp; kÞ, total invariant mass
squared s, and the integration variable q are real. The
solution of the integral equation for these energies is
explored in Ref. [73]. After the discussion of the previous
sections, we are ready to extend the results of this work by
studying energies below the φb threshold and complex
values of the total invariantmass s. As predicted inRef. [74],
one expects the presence of the three-body bound states
there, and verification of this result is one of our aims.
The Mφb amplitude is obtained from dSðp; kÞ by

continuing the external momenta to the relative φb
momentum qb. Let us observe that for real s < sφb, this
point becomes purely imaginary. Thus, the analytic con-
tinuation of dSðp; kÞ in s naturally forces one to continue
dSðp; kÞ in the momentum arguments as well. Amplitude
dSðp; kÞ becomes a multivariable complex function that
develops singularities in each of the three arguments
(p; k; s); with their presence in one variable usually depend-
ing on the values of the other two. Therefore, one should
not study the formation of the pole in s independently from
the analytic behavior of dS in the ðp; kÞ variables. For this
reason, we devote an entire section to the analysis of the
analytic properties of dS.
To simplify our discussion, we narrow our interest mostly

to the Mφb amplitude. However, the methods described
below apply to more general cases. They were originally
described by Brayshaw in Refs. [83,88]. We simplify and
modify some aspects of his discussion, as explained in

Sec. IV C. In particular, we have to extend Brayshaw’s
method to incorporate the two-body bound-state case, which
leads to the appearance of the circular cut. It is done
following the work of Glöckle in Ref. [84]. When appro-
priate, we present additional extensions of Brayshaw’s and
Glöckle’s methods that are necessary for the system
under study.

A. Overview of singularities of the
bound-state-spectator amplitude

Before turning to the analysis of the integral equation, it
is useful to discuss the expected analytic structure of the
solution and its origin. The amplitude MφbðsÞ inherits its
singularities from the two terms on the right-hand side of
Eq. (11). First, it has explicit singularities of GSðqb; qbÞ.
Second, it has singularities of the integral term, considered
here as a function of s. These can be either explicit or
emerge from the collision of the s-dependent singularities
of the integrand in the complex q plane with the integration
contour, as summarized in Appendix B.
From Eq. (9), evaluated at identical external momenta,

p; k ¼ qb, we find that the function GSðqb; qbÞ has a cut in
the complex s variable that connects two branch points,

sL1 ¼
ðm2 − σbÞ2

m2
ð42Þ

and

sL2 ¼ m2 þ 2σb: ð43Þ

We refer to this as the “short” OPE cut. As explained in
Ref. [55], for certain values of external momenta it can
occur in the physical region, i.e., when it is allowed for a
pair to decay, and then corresponds to the real particle
exchange. However, in our model, these two points are
found below the sφb threshold. We note that for σb ¼ 4m2,
they both coincide with the 3φ threshold. The “short” cut is
the only singularity contributed by the inhomogeneous
term to the Mφb amplitude.
Considering the second term of the integral equation, the

right-hand cut structure ofMφbðsÞ is fixed by the presence
of the pole in M2 at q ¼ qb. Namely, as implied by
Eq. (16), for real s < sφb, both copies of the pole are
located on the imaginary q axis. In the limit s → sφb, they
approach the origin of the complex momentum plane and
collide with the lower limit of the integration. It leads to the
emergence of the unitarity cut of Mφb at sφb. For increas-
ing s, both copies of the pole travel along the real axis in
opposite directions. We note that branch points qr;� follow
this behavior, colliding with q ¼ 0 point at s ¼ s3φ. It
results in the logarithmic branch point of the amplitude,
corresponding to the opening of the three-body channel.
For increasing s > s3φ, points qr;� continue their motion
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along the real axis in opposite directions, with the cut
running between them.
In addition to these structures, the second term of the

equation develops unphysical singularities below sφb when
the s-dependent cuts of OPE collide with the integration
interval. Setting p ¼ 0 in Eq. (34), and solving for s yields

s∘ ¼ ðmþ 2ωkÞ2 ð44Þ

or, equivalently,

s∘ ¼
ðm2 − σkÞ2

m2
: ð45Þ

It is the condition for the branch points p� to coincide with
the origin of the complex plane for fixed values of ðs; kÞ. At
this value, the integral equation solution develops a branch
point and an associated cut in the upper-half complex s
plane (and its complex-conjugate copy in the lower half). It
is given by the conditions Impþ ¼ 0 and Repþ > 0, which
describe the collision of the OPE q plane cuts with the
integration interval and translate into an involved relation-
ship between the real and imaginary part of the total
invariant mass. For k ¼ qb, it describes half of a rotated
parabolalike shape. We note that for σk ¼ σb, Eqs. (45) and
(42) become identical. The presence of the s plane cut
can be understood as corresponding to two possible ways
in which the deformed integration contour circumvents
q-plane cut of dSðq; kÞ that was inherited from the
inhomogeneous term of the equation. It can be passed
either from the left or the right, the difference equal to the
integral of the integration kernel Kðp; qÞ with discontinuity
of GSðq; kÞ along the cut.
Moreover, the second term of the ladder equation has an

explicit singularity implied by the presence of the circular
branch cut. The circular cut enters the integrand through the
amplitude dSðq; kÞ evaluated at k ¼ qb since it inherits it
from the first term of the integral equation. It leads to the
left-hand discontinuity of Mφb along the real s axis since
the cuts of dSðq; kÞ in the q complex plane are reflected

with the complex conjugation of s, as explained by
Eq. (41). This discontinuity starts at s∘, meaning there
are four cuts in total emerging out of this point, all having
different origins. It is an atypical feature of the three-body
integral equations we solve. They were derived without
considering the analyticity of the resulting amplitudes,
which in turn happen to have complicated unphysical
singularities below the threshold [55,56].
We present and summarize the analytic structure ofMφb

in Fig. 5. We note it can also develop three-body poles on
the real axis, where the left-hand cuts are present. Nothing
can be inferred about their positions beforehand, and the
integral equation has to be solved to identify their presence.
They might necessitate the rotation of the cuts obscuring
the bound-state physics to the complex plane. From this
point of view, it is advantageous to consider Eq. (45) as a
condition for σk evaluated at fixed s. The circular cut
disappears when

σk ≤ mðmþ ffiffiffi
s

p Þ: ð46Þ
In particular, for σk ≤ 2m2 the circular cut does not occur for
any s > m2, which is the lowest value of the total invariant
masswe consider. Thus,when σb ≤ 2m2, or correspondingly
ma ≤

ffiffiffi
2

p
, the left-hand cuts of theMφb amplitude travel far

to the left. Then, sincewe expect the bound states to lie close
to the sφb threshold, the poles should not overlap with the
cuts, simplifying the extraction of their positions. Evaluation
of the dSðp; kÞ amplitude both for σk ¼ σb and σk ¼ 2m2 at
different values of a is a natural way to verify that the cut
rotationprocedure does not introducenumerically significant
systematic errors and leads to correct bound-state pole
positions. It is shown in Sec. V.

B. Extrapolation of the integral equation

Let us consider dSðp; kÞ as a function of p for fixed s and
k. As already noted, the integral equation, Eq. (11),
contains two terms, the inhomogeneous one, which con-
sists of the OPE amplitude GS, and the homogeneous one,

FIG. 5. First-sheet singularity structure of MφbðsÞ for ma ¼ 6. Branch points discussed in the text are presented as orange points,
while associated cuts are shown as black lines. In particular: (a) unitarity cut starts at sφb and goes to the right, (b) the “short” OPE cut is
placed between sL1 and sL2, (c) cuts associated with the condition Impþ ¼ 0 start at sL1 and take rotated parabolalike shape, (d) cut
associated with the presence of the circular cut starts at sL1 and goes to the left. To uncover the three-body bound-state pole positions,
one has to continue the amplitude from region 1 to region 2 and rotate the cut aligned with the real axis to the complex plane. Here, we do
not indicate the position of a potential three-body bound-state pole that resides anywhere below sφb.
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which is an integral of the kernel Kðp; qÞdSðq; kÞ over the
intermediate spectator’s momentum, q. Let us assume that
dSðp; kÞ is known for real values of the outgoing momen-
tum, p ∈ ½0; qmax�. One can use this knowledge in the
homogeneous term of the equation, where the integration
over q is performed in the same interval, to obtain dSðp; kÞ
at other values of p. Indeed, the right-hand side of the
equation depends on p through GSðp; kÞ in the first term
and Kðp; qÞ in the second one. Since these functions are
known analytically, it is possible to extrapolate dSðp; kÞ

from the real axis to the complex p plane simply by using a
complex value of the left-hand momentum argument in
both terms.
However, not all complex values of p are accessible

with this method. In particular, we are interested in extrapo-
lating the amplitude to the point p ¼ qb. The extrapolation
region and its potential extensions are determined from
the singularity structure of the integral equation. Using the
result of Eq. (35) inside Eq. (9), we rewrite the ladder
equation as

dSðp; kÞ ¼ −
Z1
−1

dx
Hðp; kÞ

4βxðs; kÞ½p − pcut;þðs; k; xÞ�½p − pcut;−ðs; k; xÞ�

−
Zqmax

0

dqq2

ð2πÞ2ωq

Z1
−1

dx
Hðp; qÞM2ðqÞ

4βxðs; qÞ½p − pcut;þðs; q; xÞ�½p − pcut;−ðs; q; xÞ�
dSðq; kÞ: ð47Þ

It allows us to clearly identify the singularities of
dSðp; kÞ in the p variable. The amplitude dSðp; kÞ depends
on the momentum p through its explicit presence in the
cutoff function Hðp; qÞ and the denominators of the two
terms of the ladder equation. They are singular when p
coincides with poles at pcut;�. In the first term, at fixed k,
the collision points constitute a cut parametrized by x, as
described in Sec. III. This explicit singularity is inherited by
dSðp; kÞ on the left-hand side of the ladder equation.

In the second term, the OPE poles occur for all values
of x ∈ ½−1; 1� and q ∈ ½0; qmax�. It is useful to consider
them from two points of view: as cuts parametrized
by x, emerging for all different values of q, or, equiv-
alently, as cuts parametrized by q, emerging for all
possible values of x; see the right panel of Fig. 6.
These curves cover a region in the complex p plane in
which the extrapolated solution dSðp; kÞ is not analytic.
Following Glöckle, we call this area a domain of

FIG. 6. Left: cuts (black lines) of the inhomogeneous term of the ladder equation,GSðp; kÞ, for s=m2 ¼ 8.96 and two different choices
of external momentum k: one corresponding to fixed σk ¼ σb ≈ 3.984m2 (ma ¼ 16), and one to fixed σk ¼ σ0 ¼ 3.934m2. Threshold
energy is sφb=m2 ≈ 8.977, while s∘=m2 ≈ 8.906. For both values of σk the cut does not cross the integration interval (yellow line).
However, for σk ¼ σb it coincides with the point p ¼ qb. Right: domain of nonanalyticity, R̄ (shaded area), of the homogeneous term of
the ladder equation for s=m2 ¼ 8.96 and q ∈ ½0; qmax�. Curves corresponding to fixed values of x are shown in black, while curves
corresponding to fixed values of q are shown in blue. For the considered value of s, we find the point p ¼ qb outside of the R̄.

ANALYTIC CONTINUATION OF THE RELATIVISTIC THREE- … PHYS. REV. D 108, 034016 (2023)

034016-13

0.2~------~-------~ 

~ 
lx l =0.2 

0.1~ 0.1 

0. f--------------------------O===========l 0. -------------------------O=========l 

-0.1~ l -0.1 

e...__j___.e 
lqtml=0.15 

I -0.2~--~~--- I I -0.2 L__ __ __ 

-0.2 - 0.1 0. 0.1 0.2 -0.2 -0.1 0. 0.1 0.2 

Re(p/m) Re(p/ m) 



nonanalyticity and denote it by R̄.9 The rest of the
complex plane is called domain of analyticity and is
denoted by R. In the following discussion, we do not
consider the presence of the branch cut singularities of ωq

and M2 in the homogeneous term. Since for real s,
Imq�;r > qb, and we are interested in continuing p → qb,
we can ignore the regions Imp; Imq ≤ Imq�;r. In other
words, for the kinematics of interest, they are far from the
path of integration and the complex p region of interest.
In Fig. 6, we present an example position of these

structures for a fixed total invariant mass sφb > s > s∘ and
momentum k corresponding to a fixed σk < 4m2. This
particular choice of kinematical variables produces a
relatively simple set of singularities of dSðp; kÞ. Let us
consider first the σk ¼ σ0 case, for which the nonanalytic
regions neither cross the integration interval nor contain the
extrapolation point of interest p ¼ qb. As noted in the
introduction, the numerical solution of the ladder equation
is obtained using the Nyström method, i.e., via discretiza-
tion of the momenta and solution of the resulting matrix
equation as explained in Appendix C. It requires fixing the
value of argument k and evaluation of two remaining
momentum variables, p and q, on the real integration
contour C. Since the integration path (yellow line) is not
crossed by any singularity, we can safely evaluate p there
and achieve the desired solution. Once dSðp; kÞ is known
on the real axis, one can extend it to those complex values
of p, which lie outside of R̄ (shaded area).
As can be seen from the ladder equation itself, the

domain of nonanalyticity does not depend on the variable k.
Thus, we reach similar conclusions in the second illustrated
case, σk ¼ σb (equivalently k ¼ qb), with one exception.
For this value of the incoming spectator’s momentum, the
cut of the inhomogeneous term coincides with the p ¼ qb,
as can be seen on the left panel of Fig. 6. Its presence
does not prevent one from solving the equation, as it
does not cross the integration interval. It corresponds to a
cut of the amplitude dSðp ¼ qb; k ¼ qbÞ in the complex s
plane, inherited from the inhomogeneous term in the ladder
equation. This is the explicit cut of GSðqb; qbÞ discussed in
Sec. IVA, running between sL1 and sL2. From the complex
p plane point of view, the emergence of the s-plane cut is
understood by studying the behavior of the p plane cut of
GSðp; qbÞ for small nonzero values of Ims. Adding a small
positive/negative imaginary part to s moves the cut to the
left/right of the p ¼ qb point, leading to a discontinuity in
dSðp ¼ qb; qbÞ along the real s axis.

C. Continuation to the domain of nonanalyticity

From the above examples, we observe there exists an
area of the complex p plane that is not immediately
accessible via straightforward extrapolation. Although in
the cases discussed above, the desired extrapolation point
p ¼ qb lies outside of the R̄ region, it might travel to the
domain of nonanalyticity for other values of s. We discuss
such a case in the following subsection. It is, therefore,
useful to study the continuation of our solution into this
region. There are two ways of extending the solution
dSðp; kÞ from R to the domain of nonanalyticity, R̄.

1. Modification of the kernel (Brayshaw’s method)

In the first one, one includes the discontinuity of
GSðp; qÞ in the kernel of the homogeneous part of the
ladder equation. Namely, following Brayshaw, we redefine
the ladder equation in the following way:

dSðp; kÞ ¼ −GSðp; kÞ −
Zqmax

0

dq K̄ðp; qÞdSðq; kÞ; ð48Þ

where

K̄ðp; qÞ ¼ q2

ð2πÞ2ωq
GSðp; qÞM2ðqÞ; if p ∈ R; ð49Þ

¼ q2

ð2πÞ2ωq
½GSðp;qÞþΔðp;qÞθðq−qcutÞ�M2ðqÞ; if p∈R̄:

ð50Þ

Here we defined the discontinuity of the OPE amplitude,

Δðp; qÞ ¼ −ð2πiÞHðp; qÞ
4pq

; ð51Þ

and a momentum qcut for which the first constant-
momentum cut of the integration kernel (blue lines in
the right panel of Fig. 6) crosses the external extrapolation
momentum p. It is given by the condition

p ¼ pþðs; qcut; xÞ ð52Þ

for some x ∈ ½−1; 1�.
The modified kernel, K̄ðp; qÞ, is defined to be smooth

for all values within the integration region. Because the
discontinuity in the kernel was the origin of the area of
nonanalyticity, it should not be too surprising that Eq. (48)
constitutes the analytic continuation of dSðp; kÞ to p ∈ R̄
except for points whereΔðp; qÞ is singular in this region. In
particular, we note the explicit essential singularity of the
smooth cutoff function Hðp; qÞ belongs to the domain of
nonanalyticity for s ≤ sφb.

9In the language of Brayshaw [83], it is called R̄ðW; z ¼ −1Þ,
where in our relativistic notation, W ¼ ffiffiffi

s
p

− 3m and z ¼ x.
Brayshaw observes that for real q, the constant-z curves, CðW; zÞ,
can be ordered by the value of z, and the CðW;−1Þ is the
boundary of region that contains all of them. The relativistic
ladder equation exhibits analogous property.
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In the equations above, we simplified the original
method of Ref. [83]. There, see Eqs. (37) to (41), the
author changes the order of the q and x integration in
the nonrelativistic analog of our Eq. (47) and considers
the continuation of the inhomogeneous term through the
fixed-x curves similar to the ones presented in the right
panel of Fig. 6. In other words, instead of adding dis-
continuity to the function Z (a nonrelativistic analog of GS)
along cuts understood as curves parametrized by x for fixed
q, he adds it along lines corresponding to fixed x and
parametrized by q. It allows for a clear geometric inter-
pretation of the analytic continuation procedure since those
curves are boundaries of the regions to which we continue
the amplitude.
However, this procedure leads to an expression for

discontinuity that contains the integral of the ladder
equation solution X (a nonrelativistic analog of our dS)
evaluated along fixed-x curves; see Eq. (39) therein. It
makes the solution of the integral equation through the
numerical Nyström technique more difficult.
In our work, we use the original order of integration and

the fact that one can perform the integration over x
analytically since dS is independent of the scattering
angle. These two ways of defining appropriate disconti-
nuities and analytic continuation are mathematically
equivalent. However, our method is not completely
free of difficulties. The trade-off is that one loses the
simple geometric interpretation of Brayshaw and
has to solve Eq. (52) for the value of qcut. We note that
for purely imaginary p, it can be obtained by setting
x ¼ 0, leading to

qcut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2k − 4m2ð ffiffiffi

s
p

− ωkÞ2
q

2ð ffiffiffi
s

p
− ωkÞ

: ð53Þ

For a general complex value of p, the simplest way to
determine qcut is by solving Eq. (52) numerically. We
come back to this issue in Sec. IV D when it becomes
relevant for total invariant mass s < sL1.

2. Contour deformation (à la Glöckle)

The alternative way of continuing the solution to R̄ is via
the deformation of the integration contour. It is a method
employed by Glöckle in Ref. [84]. After the analysis of the
previous paragraphs, in principle, the solution of the ladder
equation is known not only for real p but also for all
p ∈ R. Thus, one can generalize the integration path from
the interval ½0; qmax� to a complex curve C ⊂ R that starts at
q ¼ 0 and ends at qmax. The contour deformation must
itself be continuous, i.e., it cannot cross any singularities of
the integration kernel. Because the region R̄, defined by
pole positions, pcut;�ðs; q; xÞ, becomes different when
parametrized by q ∈ C, the contour deformation leads to

a new domain of nonanalyticity, which we denote R̄C. We
show an example of this behavior in Fig. 7.
This way, one may continue dSðp; kÞ to all p ∈ R̄ ∩ RC,

by defining the analytic continuation of dSðp; kÞ as
the solution of the ladder integral equation with the
deformed contour C. We note that the contour deformation
procedure in general does not allow one to uncover the
whole R̄ region with a single contour C. For instance,
evaluating Eq. (35) at x ¼ 0 and zero momentum, we find
that the boundary of every RC crosses a purely imaginary
point,

pcut;�ðs; q ¼ 0; x ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p

− 3mÞð ffiffiffi
s

p þmÞ
p

2
: ð54Þ

Several regions RC might be needed to cover its
vicinity. Moreover, the deformed integration path should
not cross the new region of nonanalyticity. Otherwise, it
does not define the analytic continuation of the amplitude,
and one can not achieve the solution via the Nyström
method, where both p and q must be evaluated on the
integration contour. In addition to that, C should not cross
singularities of the product Hðp; qÞM2ðqÞ and those
singularities of dSðq; kÞ which are inherited from the
inhomogeneous term of the equation. We call contours
that satisfy these constraints self-consistent.

FIG. 7. Domains of nonanalyticity of the solution dSðp; kÞ for
different choices of the complex integration path. We use s=m2 ¼
8.96 and three different integration contours: the original interval
½0; qmax� (yellow), contour C1 described by parametrization
γðtÞ ¼ qmaxðtþ 0.3itðt − 1ÞÞ, t ∈ ½0; 1� (orange), contour C2
described by parametrization γðtÞ ¼ qmaxðtþ 0.9itðt − 1ÞÞ, t ∈
½0; 1� (green). We highlight corresponding domains of non-
analyticity. Their boundaries cross the imaginary axis at point p0.
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D. Analytic continuation in the presence
of the circular cut

In the above examples, the cut of the inhomogeneous
part of the ladder equation does not cross the original
integration path. This situation changes when one fixes
k ¼ qb and extends s below the point s∘ or sufficiently deep
into the complex plane, as exemplified in Fig. 4. The OPE
amplitude develops a cut that coincides with the real p axis.
In this case, since dSðp; kÞ inherits this singularity, and thus
it propagates to dSðq; kÞ in the homogeneous term, the
integration contour deformation is no longer optional but
required. We note that both Refs. [83] and [84], which we
have followed so far, do not discuss this possibility.
As discussed in Sec. IVA, when the OPE cut crosses the

integration interval, the resulting amplitude Mφb develops
discontinuity in the s variable. By deforming the integration
contour, we analytically continue the amplitude from
region 1 to regions 2 and 3 through cuts denoted by (c)
in Fig. 5. As already noted, the integration contour can be
deformed to circumvent the OPE cut in the complex p
plane, either from the right or left. One determines the
integration path by fixing Ims=m2 ¼ �δ, where δ > 0 is a
small number, and steadily changing Re s from sφb below
s∘. When the OPE amplitude branch cuts are positioned
deep in the complex plane, the integration can be performed
over the real axis. For decreasing Re s, the singularities
approach and finally cross the real axis wrapping around
the origin of the complex plane. The integration contour is
deformed according to their trajectory.

In Fig. 8, we present singularities of the ladder equation
and examples of appropriate contours for continuation
below the Re s ¼ s∘ point. We present two cases, for which
Ims=m2 ¼ 0 (left panel) and Ims=m2 < 0 (right panel). For
the zero imaginary part of s, the contour must pass through
the lower-half copy of point qc2, defined in Eq. (40). For the
nonzero imaginary part of s, the circle “opens” and a
contour is no longer constrained by this condition. The
integration path C chosen to avoid cuts of the inhomo-
geneous term must also avoid the corresponding domain of
nonanalyticity R̄C. Presented contours allow for continuing
the Mφb from regions 1 to 2 in Fig. 5 through the lower-
half copy of cut (c).
By reflecting the presented singularities with respect to

the Rep axis, one obtains the singularity structure of the
equation for positive values of Ims=m2. Thus, by analogy,
to analytically continue the amplitude from regions 1 to 3,
one has to use a deformed integration path that is a complex
conjugation of the one presented in Fig. 8.
From the perspective of the complex p plane, the

presence of the unphysical left-hand cut ofMφbðsÞ starting
at s∘ is a consequence of property (41) and the resulting
discrepancy between the two choices of contours for
Ims ≤ 0 and Ims > 0 case. It might disable one from
identifying the bound-state pole positions and residues
below s∘ as they may overlap with the left-hand cut of the
solution. To access the real axis below s∘, one has to
continue the amplitude from the lower half-plane through
the cut to the upper half-plane. Equivalently, one can say

FIG. 8. Singularities of both terms of the ladder equation for s=m2 ¼ 8.86 (left) and s=m2 ¼ 8.86 − 0.05i (right). We set the external
momentum to k ¼ qb forma ¼ 16. In this case, the threshold energy is sφb=m2 ≈ 8.977, while s∘=m2 ≈ 8.906. Black lines represent cuts
of the inhomogeneous term, GSðp; kÞ. The cut crosses the original integration interval (yellow), and it must be deformed (orange line).
Here, we chose a piecewise linear contour C. The green dot represents the point p ¼ qb. The domain of nonanalyticity, R̄C, of the
homogeneous term corresponding to the orange integration contour is shown as an orange area. The integration contour was chosen such
that they do not cross. For Ims ¼ 0 point p ¼ qb is found on the boundary of R̄. For Ims < 0 it is outside of the domain of non-
analyticity for appropriate contour, while for Ims > 0 it belongs to R̄C.
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that the left-hand s-plane cut has to be rotated away from
the real axis.
However, we note no smooth contour deformation

allows for the analytic continuation across the ReðsÞ ≤
s∘ line. When we increase Ims from negative to positive
values, the circular cut closes (at Ims ¼ 0) and then opens
in a manner that makes the integration contour C cross the
OPE cuts in the complex p plane twice, see the right panel
of Fig. 9. It is not possible to use the Cauchy theorem in the
usual manner to define a contour that avoids the singular-
ities of the OPE and, at the same time, is a smooth
deformation of the original contour C.

1. Analytic continuation across the ReðsÞ axis
Nevertheless, the behavior of the OPE cuts suggests a

natural way to extend the solution from negative to positive
values of Ims. We define the analytic continuation of
dSðp; qbÞ from Ims ≤ 0 to Ims > 0 in the following way.
For Ims ¼ 0, we fix an appropriate contour C0 that passes
through the lower-half copy of qc2 and is self-consistent. In
principle, solution dSðp; qbÞ for p ∈ C0 is defined using
prescriptions of the previous sections and of Appendix C.
For small Ims > 0, the cuts of the inhomogeneous term are
crossed twice by this contour. We call two intersection
points pi1 and pi2 and define C0 as the piece of the contour
C0 starting at pi1 and ending at pi2. The inhomogeneous
part of the ladder equation, which has one momentum fixed
at qb, has a discontinuity along the contour C0 at these two
points. We can remove it by adding the OPE discontinuity
to this part whenever the p momentum is evaluated

between them. It implies the evaluation of the OPE
amplitude on the second sheet associated with the OPE
cuts whenever p ∈ C0.
The kernel appearing in the homogeneous term of the

equation,Kðp; qÞ, is evaluated with momenta p and q, both
of which are in C0, and does not have a discontinuity in this
region. With this in mind, for p ∈ C0 and Ims > 0, we
define d0Sðp; qbÞ as
d0Sðp; qbÞ ¼ −½GSðp; qbÞ þ Δðp; qbÞθðp ∈ C0Þ�

−
Z
C0

dqKðp; qÞd0Sðq; qbÞ: ð55Þ

Here, θðp ∈ C0Þ is a function equal to 1 for p ∈ C0 and to 0
otherwise. Integration over q is performed along the
contour C0 starting at q ¼ 0 and ending at qmax. The above
integral equation differs from the original one, Eq. (11),
by the discontinuity added in the inhomogeneous part.
However, since C0 shrinks to zero when Ims → 0þ, we see
that in this limit, inhomogeneous parts of both equations
become identical. Thus d0Sðq; kÞ in the homogeneous term
does not have discontinuities along q ∈ C0, and one can
safely use this integration contour. This procedure is
schematically illustrated in Fig. 9. It can be represented as
“diving” with the contour C0 into the second sheet of OPE
and emerging outside the area enclosed by the “circle.”

2. Extrapolation to the bound-state pole

As usual, in the solution attempt, one has to make sure
that the contour used in Eq. (55) does not cross the

FIG. 9. ImGSðq; kÞ, in the complex momentum plane for s=m2 ¼ 8.6� 0.05i and k ¼ qb (ma ¼ 16). A hard cutoff is used and the
amplitude is given in units of 1=m2. Negative Ims is presented on the left panel, and positive on the right. Example contour for negative
Ims cannot be continuously deformed to work for Ims > 0 due to reflection of the cuts, therefore we continue it through the second
Riemann sheet. It is presented as the disappearance and reappearance of the contour crossing the cuts on the right panel.
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corresponding domain of nonanalyticity, R̄C0 . Finally, after
computing dSðp; kÞ for p ∈ C0 one must determine whether
the extrapolation momentum p ¼ qb ∈ R̄C0 or not. In fact,
from symmetry of the OPE, GSðp; kÞ ¼ GSðk; pÞ, we see
that the point p ¼ qb is crossed by the cuts of Kðp; qÞ for
q ¼ pi1 and q ¼ pi2, and thus belongs to R̄C0 . Therefore,
to continue solution d0Sðp; kÞ from p ∈ C0 to p ¼ qb, we
have to employ the prescription of Brayshaw, Eq. (48).
We write

d0Sðqb;qbÞ¼−GSðqb;qbÞ−
Z
C0

dqK̄ðqb;qÞd0Sðq;qbÞ: ð56Þ

The Δðp; kÞ piece in the inhomogeneous term disappeared
since qb ∉ C0 and the θ function becomes zero.
We observe that for q ∈ C0 the constant-momentum cuts

of Kðqb; qÞ have a more complicated shape. Moreover,
with qmoving along C0 they evolve very differently than in
the simple q ∈ ½0; qmax� case presented in Fig. 6. In general,
it is difficult to follow their evolution analytically and find a
solution to a condition equivalent to Eq. (52). Fortunately,
from the symmetry of GS, we know they cross the p ¼ qb
point exactly twice, at q ¼ pi1;2, and thus the θðq − qcutÞ in
K̄ term has to be replaced by θðq ∈ C0Þ. The modified
integration kernel becomes

K̄ðp ¼ qb; qÞ ¼
q2

ð2πÞ2ωq
ðGSðp ¼ qb; qÞ

þ Δðp; qÞθðq ∈ C0ÞÞM2ðqÞ: ð57Þ

This way discontinuity Δðp; qÞ is added to the integration
kernel for those values of q for which p is found on its
second sheet. Together, Eqs. (55) and (56) allow one to
continue the solution dSðp; qbÞ from Ims ≤ 0 to Ims > 0
and extrapolate it to p ¼ qb. It concludes our discussion

of the analytic continuation of MφbðsÞ below the φb
threshold.

E. Continuation above the two- and
three-particle thresholds

The above discussion can be applied to the ladder
equation evaluated above the φb and 3φ thresholds. One
has to study singularities of the inhomogeneous and
homogeneous terms and decide whether contour deforma-
tion is required to continue the amplitude to the complex
energy plane. The main difference to our previous consid-
erations is that one can no longer ignore the singularities of
M2ðqÞ in the kernel. In particular, the two-body right-hand
cut in the s variable has its source in the collision of the qb
bound-state with the origin of the integration contour.
Similarly, the three-body right-hand cut emerges when
the q�;r branch cuts coincide with the q ¼ 0 point. We note
that points qb; q�;r do not depend on the p variable but still
depend on s. When considering s > s3φ, they are found on
the real axis: one copy on the positive and the other on the
negative half. In the case of q�;r points, we orient the cut to
run between them when Ims ¼ 0. When Ims ≠ 0, two cuts
are given by the condition σk > 4m2.
When s becomes complex, both qb and q�;r cross the

real q axis. Contour deformation that follows the pole
allows one to probe the second sheet of the solution in the s
variable. When the contour is deformed between the qb and
qþ;r points above the 3φ threshold, one may probe the
second sheet associated with the three-body open channel.
We note that in the s > s3φ case, we must not use the
unmodified smooth cutoff prescription due to the essential
singularities that coincide with q�;r, as discussed in Sec. III.
From symmetry under exchange p ↔ k in GSðp; kÞ, we

can rewrite the homogeneous term of the ladder equation,
Eq. (47), as

−
Zqmax

0

dqq2

ð2πÞ2ωq

Z1
−1

dx
Hðp; qÞM2ðqÞ

4βxðs; pÞ½q − pcut;þðs; p; xÞ�½q − pcut;−ðs; p; xÞ�
dSðq; kÞ; ð58Þ

i.e., in a form where one ought to look for singularities
of the integrand in the complex q plane for p ∈ C.
Note that since both q; p ∈ C in the Nyström method,
this is equivalent to our previous analysis in terms of p.
In the analytically continued solution, the integration
contour should avoid the poles in q and singularities of
Hðp; qÞM2ðqÞ.
We show an example behavior and integration contour

for the case Res > sφb and nonzero Ims in Fig. 10. We
consider the case with the M2ðqÞ containing the two-body
bound state pole and explore the k ¼ qb case. The cuts are
relatively far from the real axis; however, for s > sφb and

Ims decreasing from positive to negative values, the bound-
state pole crosses the integration path (green arrow). The
contour is deformed to C to access the second sheet of the
solution in the complex s plane. Increasing s above sφ
point, qþ;r crosses the real integration path as well. We note
that the pole is positioned far from the domain of non-
analyticity, and extrapolation of external momenta to this
value does not pose any problem. In this work, we are
mostly interested in bound-state physics and do not con-
sider this case further. One finds application of similar ideas
to the three-body physics in Refs. [87,92]. Finally, we note
that the analytic continuation through the right-hand cut of
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MφbðsÞ can be achieved either via the contour deformation
or by using the explicit expression, Eq. (28), derived from
the S-matrix unitarity.

V. INTEGRAL EQUATION SOLUTION

In this section, we present numerical solutions of the
inhomogeneous and homogeneous ladder equation,
Eqs. (11) and (25). The results for s ≤ sφb and for complex
s are obtained using methods described in the preceding
section. Before discussing the outcome of our calculation, it
is worthwhile to summarize the major steps of the solution
method:

(i) Definition of the kinematics: One specifies the total
invariant mass s and external momenta p, k for
which one wants to compute the ladder amplitude
dSðp; kÞ or the vertex function ΓðpÞ.

(ii) Complex analysis of the equation: One performs
the analysis of the structure of singularities of the
inhomogeneous and homogeneous terms of the in-
tegral equation. Both are considered functions of p
for fixed s and k. Their singularities in the complex p
plane are inherited by dSðp; kÞ.

(iii) Definition of the integration contour: If, for a fixed
p, the singularities of the integrand cross the real q
axis one continuously deforms the integration con-
tour to C. The contour must start at q ¼ 0 and ends at

q ¼ qmax. Moreover, C must avoid all of the singu-
larities identified in the previous step: both the cuts
of the inhomogeneous term and the domain of
nonanalyticity R̄C.

(iv) Numerical implementation: One evaluates momenta
p, q on the integration path C. The Nyström method
is applied by discretizing them along the contour and
solving the resulting algebraic equation numerically.

(v) Analytic continuation in p: Once the solution of the
algebraic problem is known, one extrapolates it from
p ∈ C to the desired p point, as chosen in step i. If
p ∈ R̄C one continues the solution by applying
Brayshaw’s method.

The first step is self-explanatory. One needs to specify
what set of kinematical variables is relevant/interesting for
the physical system under study. Here, our main interest
lies in the amplitude MφbðsÞ. We wish to identify the
presence of the three-body bound states and test the
amplitudes obtained using the relativistic FV formalism,
Ref. [74]. Therefore, we fix p ¼ k ¼ qb (equivalently
σp ¼ σk ¼ σb) and study s < sφb. Following Ref. [74],
we consider casesma ¼ 2, 6, 16, which describe two-body
bound states of decreasing binding energy. We note that the
same poles appear in coupled amplitudes, e.g., in M3φðsÞ.
We verify that by computing dSðp; kÞ for momenta
corresponding to fixed σp ¼ σk ¼ 2m2 ≠ σb. In this case,
the singularity structure of the amplitude simplifies as the
left-hand cuts are pushed deeper below the φb threshold.
The second step of the procedure outlined above is

essentially equivalent to the discussion of Sec. III. It is
required to understand whether and how to avoid the
singularities of the OPE and integral equation kernel and
properly define analytically continued solutions.
In the third step, after identifying all relevant singular-

ities in the p variable, one needs to define a self-consistent
integration contour. This was discussed in Sec. IV. The
numerical procedure is based on the discretization of the
integral equation and the solution of the resulting algebraic
equation. The row and column indices of the kernel matrix
correspond to p and q. Thus, after discretization, both of
them are evaluated on the same integration contour C. The
corresponding domain of nonanalyticity, R̄C changes as C is
deformed, and the two cannot cross each other. This would
invalidate the application of the Cauchy theorem and the
analytic continuation of the solution.
The fourth step of the procedure requires a numerical

implementation of the contour-deformed integral equation.
If, for a given choice of ðp; kÞ and s the cuts of the OPE are
absent from the real integration axis, and p belongs to the
domain of analyticity of dSðp; kÞ, one can adapt the
numerical solution method from Ref. [73]. Namely, one
discretizes the real momentum interval in the integral
equation as no contour deformation is required. Extension
of the numerical methods to the contour-deformed integral
equation is described in detail in Appendix C. In particular,

FIG. 10. Singularities of both terms of the ladder equation for
s=m2 ¼ 8.9 − 0.05i. The external momentum is set to k ¼ qb for
ma ¼ 6. The threshold energy is s=m2 ¼ sφb ≈ 8.833. Black
lines represent cuts of the inhomogeneous term, GSðp ¼ q; kÞ.
Pole is represented as a green dot. Singularities of the homo-
geneous term are shown as shaded areas. TheM2ðqÞ branch cuts
are highlighted with purple points. Associated cuts are shown as
gray dashed lines. Contour C is given by parametrization
γðtÞ ¼ qmaxðtþ 0.5itðt − 1ÞÞ, t ∈ ½0; 1�.
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we present an effective discretization method and define
example self-consistent contours appropriate for the analytic
continuation along the cut for s < sL1.
Finally, similarly to the procedure presented in Ref. [73],

the final solution dSðp; kÞ, obtained for p ∈ C has to be
extrapolated to the kinematic point of interest, e.g., p ¼ qb
in the case of the φb amplitude. This point does not have to
belong to C. However, if it belongs to R̄C one must
analytically continue the solution to the domain of non-
analyticity. Once the integration contour C is established,
the simplest approach is to apply Brayshaw’s procedure,
potentially with modifications described in Sec. IV C.

A. Results

We now turn to the presentation of the solutions of the
ladder equation. We first discuss theMφbðsÞ amplitude for
real s < sφb and the analytic continuation of the bound-
state-spectator Kφb matrix below the threshold. We com-
pare our findings with the FV calculation of Ref. [74] and
identify the positions of the trimers. Second, we present the
solution for the dSðp; kÞ amplitude at σp ¼ σk ¼ 2m2 and
verify the unaltered presence of the three-body bound-state
pole. Next, we present theMφb amplitude in the complex s
plane on the first and second Riemann sheets. We discuss
the rotation of the s < sL1 cut and identify the positions of

the virtual-state poles. Next, we solve the homogeneous
ladder equation and discuss the resulting three-body vertex
functions ΓðpÞ. We comment on the cutoff dependence of
our results by presenting plots for various regularization
choices when appropriate.

1. Amplitudes on the real axis

We compute MφbðsÞ for the scattering lengths ma ¼ 2,
6, 16. To evaluate the amplitude slightly above the real axis,
we apply the continuation through the left-hand cut starting
at sL1, as explained in Sec. IV D. We perform it to uncover
possible bound-state poles on the real axis, below this
point. We employ the smooth cutoff scheme defined in
Eq. (32) and the GL method described in Appendix C.
Typically, we use momentum meshes of size N ¼ 500.

We carefully study the convergence of the result in the
mesh size and find our solutions are stable under large
variations of N. A more detailed analysis of the systematic
effects of the integral equation solutions is presented in
Appendix C. We note that below the bound-state-spectator
threshold, the system is no longer constrained by the usual
S matrix unitarity. Therefore, we do not offer a unitarity-
based test of the quality of our solution, used in Ref. [73].
We show the results for the bound-state–spectator

amplitude in Fig. 11. The top-left panel corresponds to

FIG. 11. Solution for the φb scattering amplitude evaluated as function of ReðsÞ < sφb slightly above the real axis, s ¼ ReðsÞ þ iδ,
where δ ¼ 10−5. We set the scattering length to ma ¼ 2, 6, 16. The figure shows the real (red) and imaginary (blue) parts of the
scattering amplitude. Dashed lines indicate the positions of the branch points, while orange vertical lines highlight the position of the
trimer poles found in the FV calculation [74]. The amplitude is obtained using the N ¼ 500 Gauss-Legendre quadrature method
described in Appendix C.
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the ma ¼ 2 case, which describes a deep two-body bound
state ofmassmb ¼

ffiffiffi
3

p
m. Corresponding threshold is placed

at sφb=m2 ≈ 7.4641, while the “short” OPE cut branch
points take integer values, sL1=m2 ¼ 4 and sL2=m2 ¼ 7.
We find a three-body bound-state pole at sb=m2 ≈ 7.253. In
Ref. [74], the authors found the trimer energy to be
E=m ¼ 2.693, which corresponds to the same value of s.
Therefore, we find an excellent agreement with that inde-
pendent study which, as explained in the introduction, was
performedusing the finite-volume formalism in the same toy
model. We present their result as the orange vertical line.
Moreover, in Ref. [73], the MφbðsÞ amplitude was

computed as a solution of the same integral equation but
for energies above sφb, for which no contour deformation
was needed. In that work, the next-to-LO effective-range
expansion,

qb cot δφb ¼ −
1

b0
þ 1

2
r0q2b; ð59Þ

was fitted to the outcome leading to parameters mb0 ≈ 6.4
and mr0 ≈ 2.3. It implies the prediction for the trimer
energy s=m2 ≈ 7.284, which is just 0.4% from the correct
result, and provides a numerical justification for the ERE
approximation. It is an expected agreement since the trimer
appears above the nearest left-hand branch point, sL2, thus
within the ERE radius of convergence.
Analytic continuation of the qb cot δφb below the thresh-

old is shown in Fig. 12. We present it as a function of q2b
rather than the total invariant mass s so it can be easily
compared to Fig. 7 of Ref. [74]. For the ma ¼ 2 (left
panel), the 3φ threshold corresponds to ðq3φ=mÞ2 ≈ 0.361,
which is the highest value included in the plot, while the
bound-state-spectator threshold is placed at qb ¼ 0.
Momenta associated with the branch points of the OPE
amplitude are ðqL1=mÞ2 ≈ −0.75 and ðqL2=mÞ2 ≈ −0.107.

The condition q cot δφb ¼ −jqbj=m corresponds to the
trimer’s pole position in the qb variable. We see that the real
part of the q cot δφb crosses the −jqbj=m line in two places:
first at ðq1=mÞ2 ≈ −0.049 and then at ðq2=mÞ2 ≈ −0.311.
The first point corresponds to the already described three-
body bound state at s=m2 ≈ 7.4641. For the second point,
however, Imðqb cot δφbÞ ≠ 0, due to the presence of “short”
OPE cut below the threshold. There is no trimer corre-
sponding to this point.
Furthermore, let us observe that the finite-volume result

starts diverging from our analytic solution for points below
ðqL2=mÞ2. It is expected since the occurrence of the OPE
left-hand cut was not included in the two-body quantization
condition used to analyze the FV energies. It leads to a
power-law volume dependence effects unaccounted for by
the formalism employed in Ref. [74]. Our result is an
explicit numerical confirmation that the presence of the
left-hand cuts invalidates the standard two-body quantiza-
tion condition, a problem recently pointed out in Ref. [95]
in the context of actual lattice QCD results for the
H-dibaryon channel. In Ref. [75], the authors presented
the first attempt to address it theoretically.
We proceed with a discussion of the ma ¼ 6 case. The

two-body bound state becomes considerably more shallow,
with a mass of mb ≈ 1.972m. The OPE cut runs from
sL1=m2 ¼ 8.346 to sL2=m2 ¼ 8.778. Interestingly, the pole
of the amplitude overlaps with the cut of the inhomogeneous
term in the ladder equation. We find it at sb=m2 ≈ 8.5357.
Fitting the ERE to the physical amplitude, Ref. [73] found a
scattering length mb0 ≈ −3.6 (with r0 set to zero). It
corresponds to the bound-state pole at s=m2 ≈ 8.486, which
is 0.6% away from our result obtained by calculating the
amplitude below the sφb threshold.We observe that the ERE
expansion yields a value deviating from the correct result by
avalue an order ofmagnitudeworse than in thema ¼ 2 case.

FIG. 12. Function qb cot δφb as a function of q2b for fixed values of ma. The black line corresponds to the function −jqb=mj. The gray
line in the middle panel corresponds to the þjqb=mj line. Orange points were obtained in the FV computation. We highlight the OPE
amplitude branch points with vertical, dashed lines.
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In the central panel of Fig. 12, we present the qb cot δφb
for the ma ¼ 6 case. The 3φ threshold and the OPE branch
points are shown, respectively, at ðq3φ=mÞ2 ≈ 0.037,
ðqL1=mÞ2 ≈ −0.108, and ðqL2=mÞ2 ≈ −0.012. The real part
of the qb cot δφb crosses the −jqbj=m line in two places,
ðq1=mÞ2 ≈ −0.015 and ðq2=mÞ2 ≈ −0.066. Again we see
that for ðq1=mÞ2, the imaginary part has a finite value
whereas, for ðq2=mÞ2, it is zero (see the insets in the central
panel of Fig. 12), thus leading to a trimer state. Zero in
Imðqb cotφbÞ can be understood by inspecting Eq. (21).
Whenever, Mφb has a pole, the imaginary part of K−1

disappears, since iqb is real. This behavior is not affected by
the presence of the cut. It is interesting to find that the finite
volume calculation correctly predicted this pole despite
neglecting the cut structure of the OPE. We believe this is
caused by the enhancement of the amplitude Mφb in the
vicinity of the trimer pole which makes the cut presence a
negligible effect. It would be interesting to see how
well the FV quantization condition would perform in the
region ðqb=mÞ2 ∈ ½−0.6;−0.1� for which there is no data
available.
Finally, we discuss thema ¼ 16 case, for which the two-

body bound state becomes very shallow, with a mass
mb ≈ 1.9961m. We show the obtained amplitude on the
bottom panel of Fig. 11. The short cut goes between
sL1=m2 ≈ 8.9065 and sL2=m2 ≈ 8.9686. The threshold is

located sφb=m2 ¼ 8.9766. We find a clear indication of the
three-body pole at sb=m2 ≈ 8.7829. This result agrees well
with the value s=m2 ≈ 8.7829 found for the same scattering
length in Ref. [74].

Reference [74] also found a second, shallow trimer at
position s=m2 ≈ 8.9759. We, too, observe this pole, at
sb=m2 ¼ 8.9763, which is a 4.5 × 10−3% deviation from
the finite-volume result. This subpercent agreement is
emphasized in the bottom panel of Fig. 11. Let us note,
however, that for energies near the φb threshold, a small
deviation in the values of total invariant masses squared
might be equivalent to a large relative deviation between
values of the corresponding binding energies. In the case of
the shallow trimer, we find it to be of the order 40%. We
suspect the difference to be caused by the vicinity of the left-
hand cut’s branch point; however,we note it does not seem to
affect other trimer poles as determined from the FVmethod.
This discrepancy shall be investigated further in the future.
Near the φb threshold, we fit the amplitude using the

ERE expansion and obtain mb0 ¼ 149.17, r0 ¼ 38.73.
This leads to an approximate prediction of the shallow
bound state’s location of sb=m2 ≈ 8.9763. It is again within
10−4% the value we obtained in our calculation, corre-
sponding to a large discrepancy in the binding energy. As
one would expect, the ERE cannot predict the first (deeper)
trimer since it breaks down before reaching this pole due to
the presence of the OPE short branch cut.

FIG. 13. Amputated ladder amplitude, dSðsÞ as a function of s ¼ Resþ iδ, for the spectator momenta ðp; kÞ set by fixing the invariant
σp;k ¼ 2m2. Three values of two-body scattering length ma ¼ 2, 6, 16 are displayed. The extent of the ReðsÞ axis is kept the same as of
Fig. 11 for comparison and δ ¼ 10−5. The amplitude was obtained for the smooth cutoff function and the GL method with N ¼ 500
using the real integration path.
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For a more direct comparison with the finite-volume
results, we point the reader to the qb cot δφb plot for am ¼
16 shown on the right panel of Fig. 12. The short OPE
branch points and the 3φ threshold are at q2L1=m

2 ≈
−0.016, q2L2=m

2 ≈ −0.002 and q23φ=m
2 ≈ 0.005, respec-

tively. The two trimers correspond to q2=m2 ≈ −6.31 ×
10−5 and q2=m2 ¼ −0.043. Again, we observe that the FV
results do not reproduce the amplitude for momenta
between the short OPE cut branch points. As in the case
for am ¼ 2 and am ¼ 6, the two methods agree in the
vicinity of the trimer poles.
Furthermore, to verify our determination of the three-

body bound-state poles, we performed an additional
computation, in which dSðp; kÞ was obtained for external
momenta corresponding to fixed σp ¼ σk ¼ 2m2. We
remind the reader that for this value the ladder equation
is solved without contour deformations, i.e., using a
straight line in the q variable as an integration path. In
this case, the left-hand cuts of dS in the s variable move far
below the near vicinity of the φb threshold. However, the
poles corresponding to physical states should still be visible
at the same positions, potentially with different correspond-
ing residues. We present the result of this test in Fig. 13.
One can see excellent agreement both with the FV study
and the values obtained from Mφb (with the potential
exception of the shallow trimer in the ma ¼ 16 case). We
note that for ma ¼ 6, the short OPE cut no longer overlaps

with the bound-state position, and it is possible to observe
the pole presence clearly.
Finally, we repeat these calculations using a hard-cut-off

prescription. We do not present the plots for this case since
they do not offer any new insight into the behavior of the
amplitudes. However, we provide positions of the bound-
state poles for both the smooth and the hard cutoff
regularizations in Table I.

2. The complex plane amplitudes

Now we discuss an extension of our result to the
complex s plane. In principle, the solution method is the
same as for the amplitude evaluated slightly above the real
axis. For the increasing imaginary value of s, one needs to
deform the integration contour according to the motion of
the singularities of the integration kernel. As explained in
Sec. IV, continuous change from Ims ≤ 0 to Ims > 0 may
result in a discontinuity in the integration, e.g., related to
the reflection of the cuts of the OPE amplitude. It manifests
as a left-hand cut of the amplitude Mφb starting at s∘.
Following the prescription described in Sec. IV D, this cut
can be rotated into the complex plane.
The amplitudeMφb in the complex s plane for ma ¼ 16

is presented in Fig. 14. It was obtained using the GL
method with a mesh of N ¼ 250 nodes and the smooth
cutoff choice in the OPE amplitude definition. In addition
to the two poles already identified in the previous

TABLE I. Positions of the bound and virtual states for different values of ma and two choices of the UV
regularization. Values of the φb threshold are listed for comparison.

sb=m2 sv=m2

ma sφb=m2 Smooth Hard Smooth Hard

2 7.4641 7.2530 6.8497 7.0007
6 8.8329 8.5357 8.3860 8.8158 8.8257
16 8.9766 8.7828, 8.9763 8.6900, 8.9755

FIG. 14. AmplitudeMφbðsÞ as a function of the complex total invariant mass squared forma ¼ 16. We observe the emergence of two
trimer poles and the cut structure announced in Sec. IVA. Panels (a) and (b) present real and imaginary parts, respectively. The left-hand
cut, starting at s∘, is aligned with the real axis. We present the integration contour corresponding to such a choice in panel (c). This panel
presents the imaginary part of the OPE amplitude, m2ImGðq; qbÞ, with its cuts highlighted by the black lines. It corresponds to the
kinematic point s=m2 ¼ 8.65þ 0.1i highlighted on panels (a) and (b). At this point, the amplitude has value Mφb ¼ 3021þ 746.6i.
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paragraphs, we observe additional singularities. The fixed,
“short” OPE cut from the inhomogeneous part of the
equation is aligned with the real axis, running between
sL1 and sL2 branch points. If needed, one can continue the
amplitude through that cut by the deformation of the
integration contour in the x variable in Eq. (9), as described
at the end of Sec. III.
Moreover, in Figs. 14(a) and 14(b), we see a left-hand cut

starting at s∘, placed on the real axis. Figure 14(c) presents the
corresponding integration contour circumventing the OPE
cut from the top. The resulting cut structure agrees with the
description of Sec. IVA. We note that the parabolalike cuts
cannot be seen on the presented plots, as these are the cuts
through which we continued the amplitude down to the
smaller values ofRe s, i.e., from region 1 to regions 2 and 3 of
the complex s plane, as shown in Fig. 5.
For comparison, in Fig. 15, we present a result of

continuing the lower-half amplitude through the left-hand
cut. The rotation of the cut is performed according to the

prescription of Sec. IV D. It ensures the unphysical
singularity does not coincide with the trimer pole. In
Fig. 15(c), we present a corresponding integration contour
that allows for the analytic continuation through that cut for
an example value of s=m2 ¼ 8.65þ 0.1i.
Having determined the amplitude in the complex s plane,

one may analytically continue it to the unphysical Riemann
sheet of the right-hand cut starting at the φb threshold. It
can be done straightforwardly by using unitarity and
Eq. (28) or by appropriately deforming the integration
contour to avoid the M2 dimer pole, as explained in
Sec. IV E. Having computed the amplitude on the second
sheet, we now seek the virtual states.
An example plot of the second-sheet amplitudeMII

φb can
be seen in Fig. 16. There, we plot the amplitude forma ¼ 6
near the bound-state pole (left panel) and virtual-state pole
(right panel). The virtual state can be also identified on the
central panel of Fig. 12 as the point where the amplitude
crossesþjqb=mj line. This happens at ðqv=mÞ2¼−0.0016.

FIG. 15. Same as Fig. 14 but with the left-hand cut starting at s∘ rotated away from the real axis. We achieve it by using the integration
contour presented in panel (c). At the point s=m2 ¼ 8.65þ 0.1i the amplitude has value Mφb ¼ 2284þ 4106i.

FIG. 16. Imaginary part of the φbðsÞ amplitude for ma ¼ 6 and the smooth cutoff choice. The left panel shows the amplitude on the
first Riemann sheet, Mφb, in the vicinity of the “short” OPE cut and the trimer pole. The right panel presents the second-sheet
amplitude, MII

φb, in the vicinity of the φb threshold and the virtual-state pole. We highlight the cuts with black lines.
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Considering pole trajectories as functions of a, it is
possible to identify every bound-state pole on the physical
Riemann sheet as a virtual state that crossed the threshold
and “escaped” the unphysical Riemann sheet through the
unitarity cut. As we increase the two-body scattering
length, a, we find the virtual state moves to the right,
closer to the threshold sφb and the virtual state of the ma ¼
6 system becomes the second, shallow bound state found in
the ma ¼ 16 case.
The positions of the identified virtual states are provided

in Table I for both the smooth and hard cut-off functions.
We look for those poles in the region sL2 ≤ s ≤ sφb by
solving Eq. (29). We do not see any virtual states below the
branch point sL2–an indication that they escape the second
Riemann sheet through the “short” OPE cut to further
sheets of the scattering amplitude. Using the smooth
regularization prescription, we find only one virtual state—
in thema ¼ 6 case. For the hard cutoff, there is an additional
state in the ma ¼ 2 case, right above the sL2=m2 ¼ 7 point.
In both cases, we do not find virtual states for ma ¼ 16.
Moreover, we do not see evidence of nearby resonances for
these values of the scattering lengths.

3. Three-body bound-state vertex functions

Here we discuss the solutions of the homogeneous ladder
equation that we use to compute residues of the amplitude
at the three-body bound-state poles. In Eq. (22), the residue
is given by ζðpÞζ�ðkÞ, and in Eq. (23) it is related to the
residue of DSðp; kÞ, ΓðpÞΓ�ðkÞ. The vertex factor of the
Mφb amplitude is defined in Eq. (24).
We calculate the vertex factors corresponding to the φb-

to-trimer state for three different two-body scattering
lengths, ma ¼ 2, 6, 16. We use Eq. (25). We set the
external spectator momenta at the two-body bound state
pole, p ¼ qb, and look for solutions of the eigenvalue
equation at the trimer pole s ¼ sb, tabulated in Table I.
Since setting p ¼ qb makes singularities of the kernel cross
the integration path, as discussed in Sec. IV, it is necessary
to use a self-consistent, deformed contour C. As a result, we
obtain vertex factor ζðpÞ for complex momenta p ∈ C.
Knowledge of this function along the contour allows for
extrapolation to p ¼ qb. Note that values of ζ obtained this
way are determined up to a multiplicative constant. Before
the extrapolation, we fix the normalization of the vertex

function by computing the value of the residue of the ladder
amplitude dSðp0; p0Þ at s ¼ sb and some p0 ∈ C. It is done
by performing a simple linear fit to the 1=ReðdSÞ function
at this kinematic point. Resulting values of jζðqbÞj2 and
jΓφbj2 are provided in Table II.
We also solve the homogeneous equation for the

vertex function ΓðkÞ considered as a function of arbitrary
spectator momentum k. Inspecting the kernel of the
homogeneous equation, we find that the OPE cut does
not intersect the integration interval q ¼ ½0; qmax� if the
desired external spectator momentum is real, k ∈ ½0; qmax�,
and we set the total invariant mass to sb for the three
considered values of ma. Thus, in this case, no contour
deformation is needed to solve the homogeneous equa-
tion. The solutions are shown in Fig. 17 for the two-body
scattering length, ma ¼ 16, along with two choices of the
UV regularization scheme. These vertex factors describe
the coupling between the trimer and the three-particle
state. The coupling becomes maximum when the spectator
momentum k ≈ 0. It decreases exponentially as the spec-
tator momentum increases.
It is consistent with the expectation from the non-

relativistic (NR) result in the unitary limit (a → ∞), which
was derived analytically in Ref. [96] and reproduced
numerically in Ref. [97]. In Fig. 17, we present a fit of
our numerical result to the analytic form,

jΓNRðkÞj2 ¼ jcjjAj2 256π
5=2

31=4
m2κ2NR

k2ðκ2NR þ 3k2=4Þ

×
sin2ðs0 sinh−1ð

ffiffiffi
3

p
k=2κNRÞÞ

sinh2ðπs0=2Þ
: ð60Þ

Here, κNR is fixed by the energy of the system,ffiffiffi
s

p ¼ 3m − κ2NR. In the unitary limit, two of the other
parameters are fixed to be s0 ¼ 1.00624 and jcj ¼ 96.351,
while A is expected to be close to 1 in the unitary limit.
Given that the results presented here lie sufficiently far

from the unitary limit, we leave s0 as a free parameter. We
observe that modifying the definition of κNR to be

ffiffiffi
s

p ¼ffiffiffiffiffiffiffisφb
p − κ2NR leads to a better description of jΓðkÞj2 for these
scattering lengths. Although this modification is no more
than an empirical observation, it is reasonable given that for
a finite scattering length, there are two thresholds, sφb and

TABLE II. Three-body vertex factors for the φb-to-trimer state for two cutoff choices and scattering lengths
ma ¼ 2, 6, and 16.

jζðqbÞj2 jΓφbj2=m2

ma Smooth Hard Smooth Hard

2 0.923 2.289 321.4 797.1
6 6.257 7.945 826.9 1050
16 12.60, 0.1532 14.16, 0.4000 632.1, 7.686 710.2, 20.07
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ð3mÞ2. The closest one to the trimer is sφb, which could
explain why the Γ should be more sensitive to this
threshold. In the unitary limit these two thresholds, of
course, collapse onto each other.
By fitting s0 and A in the small k=m ∈ ½0; 0.2� region,

one can find qualitative similarities between the numerical
results presented in Fig. 17 and this functional form. The fit
parameters are listed in Table III. The similarities are more
striking for small values of k. As expected, this functional
form fails to describe the whole range of momenta.

VI. CONCLUSIONS

In this work, we discussed an analytic continuation of the
bound-state-spectator amplitude, Mφb, below the threshold
and to the complex energies, generalizing the study of
Ref. [73]. The amplitude is obtained from the relativistic
three-bodyon-shell integral equation, considered in the ladder
approximation and the S partial wave only. The solution of
the equation is reduced to the dimer-particle amplitude via
the Lehmann, Symanzik, and Zimmermann formula for the
bound-state systems and studied as the function of a single
complex variable, the total invariant mass s.
The three-body reaction amplitudes exhibit a more

complicated analytic structure than their two-body equiv-
alents. The additional complications are related to the

contribution of the long-range, physical one-particle
exchanges to the overall interaction. To understand this
aspect of the model, we analyzed the analytical structure
of the ladder equation in the kinematical region relevant to
the study of bound-state physics. We found that the three-
body equations are characterized by singularities that cross
the integration interval forcing the deformation of the
integration path into the complex plane. In particular, the
logarithmic discontinuities of the OPE amplitude can form
into a circular cut for a range of energies below the φb
threshold.
We explained how to analytically continue the integral

equation via the combination of the contour deformation
and explicit inclusion of the kernel discontinuities. As we
explained, one can not use arbitrary integration paths and
has to ensure a self-consistent choice, which defines the
smooth continuation of the ladder amplitude to the domain
of analyticity. To that end, we defined suitable integration
contours that circumvent the relevant cuts and proposed a
general scheme of the solution procedure. We presented a
method to rotate unphysical left-hand cuts that allows one
to extract the trimer pole positions and their residues.
The discussion of analytic properties was supplemented
by a description of numerical methods for solving the
problem of interest. They rely on the replacement of the
integral equation of interest with an algebraic system of N
equations. In addition to providing particular numerical
routines, we discuss systematic effects and potential
improvements of our techniques. We find that the computa-
tional procedures we use yield stable and reliable results for
relatively small values of N.
Finally, we presented solutions for the ladder amplitude,

dS, and the dimer-particle amplitude Mφb for three cases,
ma ¼ 2, 6, 16 and found agreement with the finite-volume
results of Ref. [74] and the LO effective-range expansion of
Ref. [73]. We identified the three-body bound state poles at

FIG. 17. Vertex functions modulus squared jΓðkÞj2 is plotted as a function of spectator momentum k for two-body scattering length
ma ¼ 16. Two different UV regularization schemes are used. SC and HC denote smooth cutoff and hard cutoff, respectively. The black
dashed line corresponds to the fit performed using jΓNRðkÞj2 predictions.

TABLE III. Fit parameters for the NR vertex factors, Eq. (60),
for ma ¼ 16.

UV regularization Trimer position sb=m2 jAj2 s0

Smooth cutoff (SC) 8.7828 (deep) 2.68 1.37
8.9763 (shallow) 6.75 0.98

Hard cutoff (HC) 8.6900 (deep) 2.32 1.32
8.9756 (shallow) 4.93 1.14
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energies predicted by the finite volume formalism, together
with associated trimer-to-φb couplings. We discussed the
continuation of the φb amplitude to the complex energy
plane and the unphysical sheet through the two-body
unitarity cut to investigate the presence of the virtual-state
poles.
Nevertheless, our formal and numerical framework

allows for a relatively simple application in future lattice
QCD computations that will involve genuine resonances.
Presented methods can be implemented in the procedure of
analytic continuation through the three-body threshold cut
to the Riemann sheets where the three-body resonances
reside. It is possible to extend our analysis to systems where
the two-body bound-state subchannel is resonant instead
and to higher partial waves. Although technically more
complex, these cases are characterized by the same loga-
rithmic cuts of the OPE amplitude and the analysis of
Secs. III and IV remains unaltered. Continued studies in
this direction will enable the extraction of the three-body
resonances from the lattice QCD.
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APPENDIX A: LADDER EQUATION IN TERMS
OF LORENTZ INVARIANTS

In this work, we presented the ladder equation using the
momentum representation, i.e., considering the spectators’
momenta, ðp; kÞ as kinematic arguments describing the
S-wave scattering process. Equivalently, one may analyze it
using the final and initial invariant mass squared of pairs,
σp, σk. In practical applications, we find that the momen-
tum representation proves more useful in the study of
analytic continuation. It is because the OPE cuts take a
simpler shape in this form. They wrap around the origin of
the complex q plane and have associated parity copies
allowing for less problematic choices of the deformed
integration contours. On the other hand, the invariants-
space OPE cuts follow the movable upper integration limit
and have a more complicated, fishing-hook-like shape.
However, in some cases, the invariant-space equations

are simpler to manipulate. One such case is a derivation of
the positions of the OPE branch points. Ultimately, it is
desirable to have two representations since one can prove

more useful than the other in analyses concerned with
different physical systems and the LQCD data. In particu-
lar, bound-state and resonance poles occur in M2 at fixed
values of the two-body invariant mass, making it an
intuitively better variable to consider. Moreover, the var-
iables σp, σk are Lorentz invariants and do not change for
different values of the total invariant mass s in contrary to
momenta ðp; kÞ. In this appendix, we concisely present the
invariants representation of the ladder equation focusing on
the analytical structure of the building blocks of the
equation.
The S-wave projected ladder equation, Eq. (8), is written

in terms of Lorentz invariants, σp, σk, as

dSðσp; σkÞ ¼ −GSðσp; σkÞ

−
Zqmax

0

dσq Kðσp; σqÞdSðσq; σkÞ: ðA1Þ

Variable σq is the invariant mass squared of the intermedi-
ate pair in the OPE process. The integration kernel is

Kðσp; σqÞ ¼
1

2π
GSðσp; σqÞτðs; σqÞM2ðσqÞ; ðA2Þ

where the implicit s dependence is assumed. The integration
is performed in the interval ½0; σmax�, where σmax¼
ð ffiffiffi

s
p

−mÞ2. It corresponds to q ¼ 0, while σq ¼ 0 corre-
sponds to q ¼ qmax in the integral of Eq. (8).
The integration kernel contains three objects. The three-

body phase space is

τðσqÞ ¼
λ1=2ðs; σq; m2Þ

8πs
: ðA3Þ

It has an explicit pole at s ¼ 0 and the branch points at
στ1 ¼ ð ffiffiffi

s
p

−mÞ2 and στ2 ¼ ð ffiffiffi
s

p þmÞ2. We orient both
associated cuts to the right. In particular, for real s, this
results in a single branch cut running between the two
branch points. We note that the upper integration limit
coincides with the former branch point. The two-body
amplitude is given in Eq. (13) as a function of σq. As can be
seen, it has a left-hand cut at σq ¼ 0 and a right-hand cut at
σq ¼ 4m2 required by the unitarity. It also develops a pole
on the first complex sheet at σb. The M2 amplitude can be
rewritten in a “propagator” form that makes the presence of
the pole explicit,

M2ðσqÞ ¼
RðσqÞ

σq − σb − iϵb
; ðA4Þ

where the residue

RðσqÞ ¼ −ð32πÞ2σqðK−1
2 þ iρÞ: ðA5Þ
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InEq. (A4),we included infinitesimal iϵb in the denominator
(different than the iϵ in the OPE amplitude) to shift the
pole position above the real σq axis. It is necessary when
solving for the physical amplitude, as discussed in Ref. [73],
and is equivalent to the integration contour deformation.

For s ¼ sφb, the upper limit of the integration coincides with
the pole, leading to the unitarity branch point in the ladder
solution dSðσp; σkÞ. For Res < sφb, the integration interval
does not coincide with the singularities of M2.
The S-wave projection of the OPE amplitude is

GSðσp; σkÞ ¼ −
sHðσp; σkÞ

λ1=2ðs; σp;m2Þλ1=2ðs; σk; m2Þ log
�
zðσp; σkÞ − λ1=2ðs; σp;m2Þλ1=2ðs; σk; m2Þ
zðσp; σkÞ þ λ1=2ðs; σp;m2Þλ1=2ðs; σk; m2Þ

�
; ðA6Þ

where the zðσp; σkÞ function is defined as

zðσp; σkÞ ¼ 2sðσk þ iϵÞ − ðsþ σk −m2Þðsþm2 − σpÞ:
ðA7Þ

This representation follows from Eq. (9), where one
expresses the external spectator’s momenta through
the relation given in Eq. (4). The function Hðσp0 ; σpÞ is the
smooth/hard regularization scheme, as described in the
paragraph containing Eq. (32). In Fig. 18, we present
GSðσp; σqÞ as a function of real-valued σq, choosing the
smooth cutoff, defined in Eq. (32).

The OPE amplitude, Eq. (A6), considered as a function
of σp for fixed s and σk, has two logarithmic branch points
connected with a cut. Its parametrization is obtained from
the condition,

zðσp; σkÞ þ xλ1=2ðs; σp;m2Þλ1=2ðs; σk; m2Þ ¼ 0; ðA8Þ

which is an equation satisfied by the pole positions of the
integrand in the right-hand side of Eq. (9). Solving for σp
yields

σcut;�ðs; σk; xÞ ¼ ðsþm2Þ þ 2sσkðsþ σk −m2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx2λðs; σk; m2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2Bx − σkB1

p
Bx

; ðA9Þ

where the function

Bx ≡ Bxðs; σkÞ ¼ ðx2 − 1Þλðs; σk; m2Þ − 4sσk: ðA10Þ

We have set ϵ ¼ 0. The above formula is analogous to the
momentum-space parametrization of Eq. (35). Equa-
tion (A9) is symmetric with respect to x → −x change;
thus, we can take x in the [0, 1] interval. Two solutions
labeled “�” do not describe two “parity copies” of the cut,
but two smoothly connected halves of the same cut
attached to a different branch point. We call the branch

points σ�, and obtain them from the above parametriza-
tion by setting x ¼ 1,

σ� ¼ σcut;�ðs; σk; 1Þ ¼
1

2
ðs − σk þ 3m2Þ

� 16πρðσkÞλ1=2ðs; σk; m2Þ: ðA11Þ

The expression for σ� has singularities in σk and s since
the second term of Eq. (A11) contains both the triangle
function and two-body phase space. They have practical
consequences for the implementation of the integral

FIG. 18. The OPE amplitudeGSðσp; σq þ iδÞ in units of 1=m2, evaluated slightly above the real σq axis. The kinematic parameters are
s=m2 ¼ 8.3 and σp ¼ σb for ma ¼ 16. Infinitesimal δ ¼ 10−4. Singularities described in the text and defined in Eqs. (A11), (A15),
(A19) are highlighted with dashed lines.
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equation solution. For example, the ordering between
Reσ� (i.e., which point is on the left and which on the
right in the complex plane) depends on the relative value
of Ims and Imσk. It affects the choice of the integration
contour; considering only real, positive values of σk <
4m2 and Res < sφb, the λ1=2 has a cut in s below
ð ffiffiffiffiffi

σk
p þmÞ2. For s → s�, the real parts of branch points
transform into each other, Reσ− ↔ Reσþ.
Similarly to the momentum-representation OPE ampli-

tude, for Ims ¼ 0, the branch cut wraps around the real σp
axis, resulting in the circular cut, as seen in Fig. 19. It
occurs when s is decreased below the value of s given in
Eq. (45), at which the branch point σþ collides with
σmax ¼ ð ffiffiffi

s
p

−mÞ2. The cut encloses the upper integration
limit σmax. For a nonzero imaginary part of s or σk (or
nonzero ϵ), the circle “opens.”

One finds the point where the cut passes the real axis by
looking for the solution of condition (A8) with a vanishing
imaginary part. We can rewrite it as

zðσp; σkÞ
λ1=2ðs; σp;m2Þλ1=2ðs; σk; m2Þ þ x ¼ 0: ðA12Þ

Using the fact that x is purely real, the crossing in the real
axis satisfies

Im½zðσp; σkÞðλ1=2ðs; σp;m2Þλ1=2ðs; σk; m2ÞÞ�� ¼ 0: ðA13Þ

Assuming real s < ð ffiffiffiffiffi
σk

p þmÞ2, σp < σmax and σk, we
simplify it to

Rezðσp; σkÞ ¼ 0; ðA14Þ

by noticing that the λ1=2ðs; σp;m2Þλ1=2ðs; σk; m2Þ factor is
purely imaginary. Thus, we find that the circular cut crosses
the real σp axis at

FIG. 19. Cut structure of the imaginary part of the OPE, ImGSðσq; σkÞ, in the complex σq plane for typical value of kinematical
variables. We use hard cutoff and plot the amplitude in units of 1=m2. We set ma ¼ 16 and consider Res < sφb. Two-body invariant
mass, σk ¼ σb ≈ 3.984m2. The red circle corresponds to σ− and the blue to the σþ branch point. The OPE cut (black curve) runs between
these two points. We indicate the upper integration limit σmax ¼ ð ffiffiffi

s
p

−mÞ2 by a yellow point. It is enclosed by the cut and contour
deformation is required. We present four cases: (a) Purely real kinematical parameters, for which the cut takes a shape of a circle crossed
by a line. (b) Purely real kinematical parameters, with s closer to sφb ≈ 8.976m2, for which the cut moves the right and shrinks. (c) The
nonzero, positive imaginary part of s, for which the cut opens, moves upward and resembles a fishing hook. (d) Same as previously, but
for larger Re s, the structure shrinks and σþ approaches σmax. In particular, when σk ¼ mðmþ ffiffiffi

s
p Þ, the OPE branch point coincides with

the upper integration limit.
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σc1 ¼
ðs −m2Þðsþm2 − σkÞ

ðs −m2 þ σkÞ
: ðA15Þ

For complex s, as Ims → 0, the cut approaches the real σp
axis at another point, which we call σc2. Referring to
Fig. 19(a) for illustration, it is the point where the line and
the circle cross each other. To express it in terms of s and
σk, we write σp ¼ σc2 þ iδ, where iδ is a positive,
infinitesimal imaginary part. It constitutes a parametriza-
tion of the line tangent to the cut near the real σp axis.
Again, we start from the condition (A13). For real
s < ð ffiffiffiffiffi

σk
p þmÞ2, this becomes

δðsþ σk −m2ÞImλ1=2ðs; σp;m2Þ
þ ð2sσk − ðsþ σk −m2Þðsþm2 − σc2ÞÞ
× Reλ1=2ðs; σp;m2Þ ¼ 0; ðA16Þ

where this time λ1=2ðs; σp;m2Þ has in general nonzero real
and imaginary parts. We expand the triangle function
around δ ¼ 0,

λ1=2ðs; σp;m2Þ ¼ λ1=2ðs; σc2; m2Þ

−
iδðm2 þ s − σc2Þ
λ1=2ðs; σc2; m2Þ þOðδ2Þ; ðA17Þ

which, assuming λ1=2ðs; σc2; m2Þ is purely imaginary,
leads to

2sð−2m4 þm2ð2sþ σkÞ þ σkðσc2 − sÞÞ ¼ OðδÞ: ðA18Þ

Neglecting terms of order δ, the solution of the equation
becomes

σc2 ¼
ðm2 − sÞð2m2 − σpÞ

σp
: ðA19Þ

We note that σc1; σc2 correspond to qc1 and qc2 given in
Eqs. (39), (40) The generalized values, q0c1;2, provided in
Appendix C, correspond to the points where the OPE
branch cut, considered in the complex σq plane, crosses a
line Imð ffiffiffi

s
p

−mÞ2 ¼ const. Control over the functional
form of those points is essential when preparing the
deformed integration contour, which enters the closed
circle for Ims ¼ 0 through the σc2 or qc2.

APPENDIX B: SHORT INTRODUCTION TO
ANALYTIC CONTINUATION

This appendix should serve as a pedagogical summary
of concepts used in Sec. IV, where we discuss an analytic
continuation of the ladder equation. It is based on
Refs. [98–101] which may be consulted for more details.

To understand our treatment of the integral equation, it is
beneficial to consider a simpler case of an analytic
continuation of a complex integral. We define a generic

IðzÞ ¼
Z

Cðw1;w2Þ

fðw; zÞdw; ðB1Þ

where the integrand fðw; zÞ is a complex function of
argument w and depends on a complex parameter z.
Integration is performed over a path Cðw1; w2Þ which starts
at w1 ¼ w1ðzÞ and ends at w2 ¼ w2ðzÞ. As indicated, these
two points can also depend on z. The homogeneous term of
the ladder equation, Eq. (11), has an analogous form;
however, we do not know the equivalent of fðw; zÞ before-
hand, since dS is an unknown of the integral equation.
If we know the analytic structure of fðw; zÞ, then we can

infer the analytic structure of IðzÞ. In general, singularities
of IðzÞ appear for those values of z for which (i) fðw; zÞ has
explicit, w-independent singularities in z; (ii) z-dependent
singularity in w coincides with the lower limit of integra-
tion, w1; (iii) z-dependent singularity in w coincides with
the upper limit of integration, w2; (iv) two movable
singularities of fðw; zÞ, pinch the integration contour;
and (v) movable singularities of fðw; zÞ require contour
deformation to complex infinity. We note it is sufficient to
know singularities of fðw; zÞ to establish singularities of
IðzÞ and not the value of fðw; zÞ at every point of the
complex plane.
We illustrate this with a typical example of a real integral,

IðxÞ ¼
Z

1

−1

dw
w − x

; ðB2Þ

where the integration variable lies on the real axis between
w1 ¼ −1 and w2 ¼ þ1. For x outside of the integration
range, we can easily evaluate the integral and obtain

IðxÞ ¼ log

�
x − 1

xþ 1

�
; x ∈ ð−∞;−1Þ ∪ ð1;∞Þ: ðB3Þ

The integral is not defined for x ∈ ½w1; w2� due to the pole
singularity at w ¼ x. However, having the explicit func-
tional form, given in Eq. (B3), it is possible to assign a
meaning to this function in this range. Namely, we promote
the real IðxÞ to a function IðzÞ of a complex variable z
which is equal to x on the real axis. Due to the multivalued
nature of the complex logarithm, IðzÞ has two branch
points, at w1 and w2, and two associated cuts. These can be
chosen arbitrarily, corresponding to different definitions of
the function on the first Riemann sheet. For example, we
can align both cuts with the real axis and orient them to the
right, which results in a single branch cut in the interval
½w1; w2�. For this choice, the function is undefined on this
short segment of the real axis, which is clear since the
original integral in (B2) was ill-defined there.
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However, the cuts can be oriented in other directions,
e.g., to cover ð−∞;−1Þ ∪ ð1;∞Þ, such that the function has
a well-defined value IðxÞ for −1 < x < 1. To establish a
relation between the complex function IðzÞ with its cuts
moved away from ½−1;þ1� and the original defining
integral, we can promote it to a complex integral along
a general complex contour Cð−1;þ1Þ. The chosen inte-
gration path determines the cut structure of the resulting
IðzÞ. The pole of the integrand leads to singularity only if it
coincides with the integration path; thus, if the integration
contour avoids the interval ½−1;þ1�, then the integral is
well defined there. The function varies continuously as we
cross the ½−1;þ1� interval vertically and becomes equal to
its value on the nearest Riemann sheet of the “principal”
definition, according to the Cauchy theorem, see Fig. 20.
It is easy to see that in the example of Eq. (B2), we

encounter cases (ii) and (iii). The x-dependent pole of
fðw; xÞ ¼ 1=ðw − xÞ coincides with w1 and w2, resulting in
the two branch points of the logarithm at these points.
These branch points have a fixed position that cannot be
altered by contour deformation, as every deformed path
must begin and end at the same locations. Consequently,
the shape of the new branch cut is determined by the
deformed integration path.

In addition to illustrating branch cuts emergence, the
above example suggests how a contour deformation allows
one to extend the definition of IðzÞ to a point z0 where it
was originally ill defined. In other words, contour defor-
mation defines the analytic continuation of IðzÞ to a new
region of the complex plane. This fact is well known in the
general S-matrix theory [99] and has been widely used in
the phenomenological studies of the scattering processes,
e.g., see Refs. [102–104].

In Secs. III and IV, we explain how singularities of the
solution dSðp; kÞ, considered as a function of s emerge
from conditions (i)–(v) applied to the integration kernel
Kðp; qÞ and the unknown function dSðq; kÞ. For example,
K contains the two-body amplitude M2 that exhibits an
s-dependent, complex pole, q ¼ qb. Collision of qb with
the lower integration end point, q ¼ 0, leads to the unitarity
branch point at s ¼ sφb [condition (ii)]. Collision of the
OPE branch point pþ with q ¼ 0 leads to a branch point at
s ¼ ðm2 − σkÞ2=m2 [condition (ii)]. Moreover, the final
amplitude inherits an explicit “short” cut from the OPE
amplitude in the inhomogeneous term, considered as a
function of s for fixed ðp; kÞ [condition (i)].
To summarize, although we do not know the solution

dSðp; kÞ the defining integral equation can be used to infer

FIG. 20. Left: imaginary part of the integral IðxÞ in Eq. (B2), defined as a complex function. Right: corresponding integration path
Cð−1;þ1Þ. Continuation of the function to the real interval ½−1;þ1� requires contour deformation. Function (b) is given there by the
function (a) evaluated on the Riemann sheet connected to the bottom half-plane.
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singularities of the amplitude even without solving it.
Moreover, the ladder amplitude can be analytically con-
tinued to the kinematic regions of interest via the contour
deformation.

APPENDIX C: NUMERICAL METHODS

In this section, we describe numerical methods that
were used to obtain analytically continued solutions
presented in Sec. V. Similarly to Ref. [73] we employ
the Nyström method [76,77], i.e., we discretize momen-
tum variables and rewrite the problem as an algebraic
equation. The methods presented below are applicable in
more general studies of the three-body integral equations.
They are relatively well-known but we describe them here
to increase the reader’s ease in reproducing the results
presented in this study.

1. Definition of the deformed contour

For reader’s convenience, below we reproduce the
partial-wave projected, amputated ladder equation, Eq. (8),

dSðp; kÞ ¼ −GSðp; kÞ −
Zqmax

0

dqKðp; qÞdSðq; kÞ; ðC1Þ

where the integration kernel, Kðp; qÞ is defined in Eq. (10).
We indicated the finite range of the integration with the
upper limit qmax, which is defined by the cutoff function,
Eq. (32). The motion of the OPE cuts in the complex p and
q planes necessitates contour deformation in Eq. (C1) for a
large range of values of s and p. In the following, we
consider values of kinematic variables ðp; k; sÞ for which
the real-q axis is crossed by a cut. To compute the solution,
we deform the integration path

Zqmax

0

dq →
Z
C
¼

Z
1

0

dt γ0ðtÞ: ðC2Þ

The complex contour C is defined by a parametrization
q ¼ γðtÞ where real parameter t ∈ ½0; 1�. For a given set
of kinematic variables, the curve has fixed end points,
γð0Þ ¼ 0, and γð1Þ ¼ qmax. The integral equation becomes

dSðp; kÞ ¼ −GSðp; kÞ −
Z

1

0

dt γ0ðtÞKðp; γðtÞÞdSðγðtÞ; kÞ:

ðC3Þ

The Nyström method is applied to the ladder equation in
the above form.
We note that every self-consistent contour that avoids

singularities of the OPE and the integration kernel is a
legitimate choice. In practice, the contour used in the
solution routine must evolve with values of s, k, and the

scattering length a, since the position of the OPE cuts
depends on these parameters. Due to the complicated
shapes of the cuts we employ contours defined in a
piecewise linear manner, which allows for more control
than explicitly given, fixed functions. A contour is defined
by a set of nþ 1 nodes fqigi∈½0;n�, which connect lines
constituting the integration path. The ith line is defined as

γiðtÞ ¼
�
qiþ1 − qi
tiþ1 − ti

�
tþ tiþ1qi − tiqiþ1

tiþ1 − ti
; ðC4Þ

where t∈ ½ti; tiþ1�, i¼ 0;1;…;n−1, and t0 ¼ 0 < t1 < …
< tn−1 < tn ¼ 1. Two example sets of nodes for two
different cases of ImðsÞ are given in Table IV. They are
suitable for k ¼ qb, and a relatively large range of complex
s and positive a. Example contours created using these
nodes are shown in Fig. 9. Note that for Ims > 0 the GS
amplitude is evaluated on the second sheet between points
q2 and q3. One can use contours that have a different
number of nodes depending on the shape of the cut and
other practical considerations.
We note that points qc1 and qc2, derived in Eqs. (39), (40)

are used in the definition of both contours. They roughly
describe the size of the “circle” and thus are useful in
devising an integration path that avoids the OPE amplitude
cuts. Although we are satisfied with this prescription, one
can also generalize those points to a case when σk and s are
complex. This describes the “open” circle scenario. The
generalized points are called q0c1 and q0c2. They are derived
from the condition Im½zðp; kÞ=2pk� ¼ 0. Below, we show
an example derivation of q0c1; the other point is obtained
analogously. First, we observe that the above condition
implies

Imzðp; kÞRek� þ Rezðp; kÞIm½k�� ¼ 0; ðC5Þ

since p ¼ q0c1 is real. (For qc2 we assume purely imaginary
p ¼ q0c2.) We observe that

TABLE IV. Example nodes defining piecewise linear contour C
for positive and negative values of ImðsÞ. Momentum qc2 is
defined in Eq. (40) and momentum p� in Eq. (37). Both are
evaluated at σk ¼ σb. Moreover, x0 ¼ jReðzðqc2; qbÞ=2qc2qbÞj.
Node ImðsÞ ≤ 0 ImðsÞ > 0

q0 0 0
q1 − 2

3
ffiffi
2

p ð1þ iÞjqc2j − 2

3
ffiffi
2

p ð1þ iÞjqc2j
q2 1

2
Reðpþ − p−Þ − jqc2ji −pcut;þðs; qb;−x0Þ

q3 2
3
ð1 − 2iÞjqc2j pcut;þðs; qb; x0Þ

q4 3
2
jqc2j 2

3
ð1 − 2iÞjqc2j

q5 qmax
3
2
jqc2j

q6 qmax
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zðp; kÞ ¼ σk − 2ð ffiffiffi
s

p
− ωkÞωp: ðC6Þ

Thus,

Imzðp; kÞ ¼ Imσk − 2ωpIm½ ffiffiffi
s

p
− ωk�; ðC7Þ

Rezðp; kÞ ¼ Reσk − 2ωpRe½
ffiffiffi
s

p
− ωk�: ðC8Þ

This leads to a linear equation for ωp, which can be
solved as

ωp ¼ 1

2

Im½σkk��
Im½ð ffiffiffi

s
p

− ωkÞk��
: ðC9Þ

Thus position where the OPE cut crosses the real axis is

q0c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
Im½σkk��

Im½ð ffiffiffi
s

p
− ωkÞk��

�
2

−m2

s
: ðC10Þ

Similarly, we can obtain a point where it crosses the
imaginary axis,

q0c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
Re½σkk��

Re½ð ffiffiffi
s

p
− ωkÞk��

�
2

−m2

s
: ðC11Þ

Reflection of these points with respect to the origin of the
complex momentum plane gives the remaining crossover
points of the OPE. We note that for real s, qc1 ¼ q0c1, but
qc2 ≠ q0c2, since qc2 is not a point of crossover.
In certain cases, we find that “smoothing” the integration

contour leads to a better numerical convergence of the

amplitudes. Derivative γ0ðtÞ in Eq. (C1) is discontinuous for
the piecewise linear path, which might prevent one from
using certain types of quadratures when discretizing the
integral equation. To smooth out the γðtÞ function around
points qi ¼ γðtiÞ one may, for example, perform an
interpolation of the contour using cardinal Hermite splines
[105]. To achieve continuity of γ00ðtÞ we use the fifth order
polynomials, defined as

2
66666666664

p1ðtÞ
p2ðtÞ
p3ðtÞ
p4ðtÞ
p5ðtÞ
p6ðtÞ

3
77777777775
¼

2
66666666664

1 0 0 −10 15 −6
0 0 0 10 −15 6

0 1 0 −6 8 −3
0 0 0 −4 7 −3
0 0 1=2 −3=2 þ3=2 −1
0 0 0 1=2 −1 1=2

3
77777777775

2
66666666664

1

t

t2

t3

t4

t5

3
77777777775
:

ðC12Þ

The integration contour is given by

γiðtÞ ¼ p1ðyiÞqi þ p2ðyiÞqiþ1 þ p3ðyiÞq0i ðC13Þ

þp4ðyiÞq0iþ1 þ p5ðyiÞq00i þ p6ðyiÞq00iþ1; ðC14Þ

for t∈½ti;tiþ1� and i¼0;1;…;n−1. Here yi ¼ðt− tiÞ=
ðtiþ1− tiÞ. The first and second tangents are defined as

q0i ¼ α

�
qiþ1 − qi
tiþ1 − ti

þ qi − qi−1
ti − ti−1

�
; ðC15Þ

FIG. 21. Example interpolation of the piecewise linear contour with a smooth one for various values of parameter α. Black lines
represent cuts of GSðqb; qÞ for ma ¼ 16. Left panel: s=m2 ¼ 8.6þ 0.05i. Right panel: s=m2 ¼ 8.6 − 0.05i.
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q00i ¼ α

�
q0iþ1 − q0i
tiþ1 − ti

þ q0i − q0i−1
ti − ti−1

�
: ðC16Þ

For i ¼ 0 we use only the first and for i ¼ n second term in
(C15), and define q000 ¼ q00n ¼ 0. Real parameter α defines
the “tension” of the interpolating curve. For α ¼ 0 one
obtains the piecewise linear contour. An example of smooth
contours is given in Fig. 21.

2. Discretization of spectator momenta

To apply Nyström method to the Eq. (C3), at fixed s
and k, one has to fix the integration contour C, and evaluate
the p variable on C, i.e., rewrite p ¼ γðuÞ, u ∈ ½0; 1�.
One then discretizes both real variables, t and u, to rewrite
the integral equation as a matrix one. In the simplest
numerical approach, we use a uniform mesh of N þ 1
points: pi ¼ γðuiÞ and qi ¼ γðtiÞ, where i ∈ f0;…; Ng and
ti ¼ ui ¼ i=N. Thus, each linear path of a contour contains
the number of discrete points proportional to its length.
This represents a simple extension of the “brute force”
method from Ref. [73]. The integral is replaced with a sum,

di ¼ −Gi −
XN−1

j¼0

Kijdj; ðC17Þ

where

di ¼ dSðγðuiÞ; pÞ; ðC18Þ

Gi ¼ GSðγðuiÞ; pÞ; ðC19Þ

KijðsÞ ¼ ½γðtjþ1Þ − γðtjÞ�KðγðuiÞ; γðtjÞÞ: ðC20Þ

We used bold font to indicate that dS, GS, and kernel K
became vectors and a matrix in the discrete ðui; tjÞ space. In
Eq. (C20), we employed the simplest rectangular rule with
a forward derivative. One can also apply other methods
(e.g., trapezoidal, Simpson, etc.) and use the exact value of
γ0ðtÞ at a discrete point tj. The solution of the algebraic
equation is

dðsolÞi ¼ −
XN−1

j¼0

½1þ K�−1ij Gj: ðC21Þ

Assuming we know dðsolÞ, the final amplitude is obtained
by extrapolating the solution to the momentum of interest,
e.g., p ¼ qb,

MφbðsÞ ¼ −g2GSðqb; qbÞ

− g2
XN−1

j¼0

½γðtjþ1Þ − γðtjÞ�Kðqb; γðtjÞÞdðsolÞj :

ðC22Þ

The conceptually simple rectangular rule is an elementary
numerical technique that yields improving results with
larger N. However, its convergence with the matrix sizes
is relatively slow and can be accelerated with alternative,
more sophisticated discretization techniques. For instance,
one can useGaussian quadratures [106,107], or spline-based
method [73,108,109]. We find that Gauus-Chebyshev and
Gauss-Legendre (GL) quadratures can be easily employed
and offer a great improvement in the convergence of the
solutions. Conceptually, implementation of a Gauss quad-
rature is achieved by replacing

Z
1

0

dt gðtÞ ¼
XN−1

n¼0

wigðtiÞ; ðC23Þ

for a function gðtÞ. Here, ti and wi are precomputed mesh
points and corresponding weights, respectively. In practice,
this amounts to the replacement of Eq. (C20) with

KijðsÞ ¼
1

2
wjγ

0ðt0jÞKðγðu0iÞ; γðt0jÞÞ: ðC24Þ

Since theGauus-Chebyshev andGL quadratures are defined
for the integration interval t ∈ ½−1; 1�, we map linearly
½−1; 1� → ½0; 1�, hence the 1=2 factor in the equation above.
Primed variables are obtained from the Gauss points tj as
t0j ¼ ð1þ tjÞ=2. In our C++ implementation of the ladder
equation, we use available GL quadratures (weights and
points) from Ref. [110]. The solution in the GL method is
still given by Eq. (C21) while extrapolation p → qb and
Mφb is achieved through

MφbðsÞ ¼ −g2GSðqb; qbÞ

−
1

2
g2

XN−1

j¼0

wiγ
0ðt0jÞKðqb; γðt0jÞÞdðsolÞj : ðC25Þ

Discretization procedures described in this subsection
are also applied to the homogeneous version of the ladder
equation, Eq. (25). Position of the three-body bound state
pole in s is obtained either from the determinant condition,
Eq. (26) or identification of zeros of 1=ReðdSðp; pÞÞ for
some choice of external momenta. In both cases, we
accomplish it numerically by using the secant method with
precision Δs ¼ 10−12.

3. Analysis of the systematic effects

In Ref. [73], the authors studied systematic effects of the
numerical approaches by considering two limits: matrix
size N going to infinity, and the two-body pole position
shift, iϵ, going to zero. Here, we do not deal with poles
coinciding with the integration contour, which usually
cause numerical instabilities. Thus, the analysis of system-
atic effects is greatly simplified and the precision of the
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solutions is improved compared to the previously studied,
more demanding case.
We find that the GL method leads to a fast convergence

of the results when smooth integration contours are used.
Typically, a mesh of N ≈ 100 points is sufficient to obtain
results that cease to depend on the matrix size within
desired precision. Piecewise linear contours may cause
unwanted oscillations of dðsolÞ considered as a function
of N. In this case, the GL method amplitudes still
converge faster than the one obtained from the BF results,
but it is harder to analyze them systematically. We find,
the BF method always leads to a smooth controllable
dependence of the N-dependent amplitudes, regardless of
the type of contour. However, it requires the implementa-
tion of extrapolation to continuum, N → ∞. Practically,
this means one has to calculate the amplitude dðsolÞ using a
set of few matrix sizes, usually of the order N ≈ 103, and
then fit the result with the polynomial formula,

dðsolÞðNÞ ¼ Aþ B
N
; ðC26Þ

where the asymptote A ¼ dðsolÞð∞Þ is taken as the con-
tinuum result [73]. Higher orders of 1=N can be included
to improve convergence. From this perspective, the GL
method is much more effective, since it allows one to use a
single, relatively small value of N to obtain the desired
outcome with high confidence. We note, that convergence
of the BF method can be improved via different means,
e.g., Richardson extrapolation [77]; however, we do not
implement any acceleration techniques in this work.
The analysis of the numerical uncertainty of dðsolÞ and its

extrapolations can be performed as described in Chapter 4

of Ref. [77]. Since the estimated error of our results is
satisfactorily small, we use simpler, rough estimates. We
note that the convergence of the results typically depends
on the distance between the singularities of the kernel and
the integration path. For instance, three-body pole positions
are obtained from the ladder equation at external momenta
p0; p for which the OPE cuts are far from the integration
range. In the GL method, this leads to a relative difference
of the order 10−4% between the N ¼ 15 and N ¼ 1000
results, and virtually no difference between N ¼ 50 and
N ¼ 1000 values. Thus, for the bound-state pole posi-
tions, we take the finite-N GL result with the error given
by the precision of the root-finding algorithm, which we
set to Δs ¼ 10−12. We find that the extrapolated BF result
converges to the GL one when large matrices are used for
the fit.
In Fig. 22, we show convergence of the binding

energy of the ground-state timer, E1 ¼ ffiffiffiffiffiffiffisφb
p − ffiffiffiffiffi

sb
p

, with
matrix size N. The bottom left panel shows the relative
difference ΔE1¼100×jE1;BFðNminÞ−E1;GLj=E1;GL, where
E1;BFðNminÞ is the extrapolated BF result obtained from
fitting the Eq. (C26) in the interval ½Nmin; 1000�. We see
that, as the larger matrices are used in the fit, the
extrapolated BF result converges to the GL one, reaching
an acceptable relative difference of 10−2% at Nmin ≈ 500.
Since the BF method requires computation at several values
of N to achieve this level of agreement, we point to a
significant advantage of the GL over the BF method.
When the OPE cuts approach the origin of the complex

q plane and enclose the lower limit of the integration,
the convergence of the results becomes slower. The GL
method amplitudes exhibit oscillatory behavior with N and

FIG. 22. Mesh size dependence of the binding energy of the deepest three-body bound state, E1, obtained from the BF and GL
methods. On the top-left panel, we present convergence for two cases, ma ¼ 16, and ma ¼ 104. On the bottom-left panel, we show the
corresponding value of the relative error, ΔE1 as a function of the Nmin, as described in the text. On the right panel, we present a contour
used to obtain these results, with an example of Gaussian nodes forN ¼ 15. The depicted function is ImGðp; qÞ for σp ¼ 2m2, with cuts
represented by black lines. It is given in units of 1=m2. The smooth cutoff was used.
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do not stabilize entirely at any finite value of the matrix
size. However, despite this behavior, they still converge
very quickly with oscillations damped by orders of mag-
nitude within a relatively small range of N. Due to the
oscillations, one cannot easily extrapolate the GL values,
e.g., by using a version of Eq. (C26). Instead, for a given
value of s, k, one computes dðsolÞ at a few close values of N,
and takes their average as the final result, with the largest
difference between the two of used values as an error
estimate. Applying this procedure to different values of
complex s reveals that, for sufficiently large N, the error
estimate is much smaller than 10−2%, allowing one to use a
finite-N result as a sufficient approximation of the con-
tinuum one.
For illustration, in Fig. 23 we present example results for

the amplitude Mφb computed at s=m2 ¼ 8.7 − 0.1i and
ma ¼ 16. In the top left panel, for N < 100 we see large
oscillations of the GL amplitude, which are quickly
damped and hardly noticeable for larger values of N.
The bottom panel shows the “quality measure” of the
solution, ΔMφb ¼ 100 × jðMφbðNminÞ −MφbÞ=Mφbj,
for both methods. We assume that the “correct solution,”

Mφb, is well approximated by an average of GL results
obtained for N ¼ 950; 955;…; 1000. For the BF method,
the MφbðNminÞ is the extrapolated result obtained from
fitting Eq. (C26) in the interval ½Nmin; 1000�. For the GL
method MφbðNminÞ is an average of three values of the
amplitude computed at matrix sizes N ¼ Nmin; Nmin þ 5,
and Nmin þ 10. We see that the GL method offers a
reduction of such defined error by several orders of
magnitude compared to the BF approach at a given matrix
size. The actual improvement depends on the value of s and
the contour smoothness parameter α.
In this study, we consider a subpercent precision of our

results as entirely satisfactory. Such uncertainty is much
smaller than anticipated errors from the lattice data that
would enter our integral equations through the inclusion of
nonzero Kdf;3. In most applications, we choose to use the
GL method with matrix size N ¼ 500, which should result
in a relative error of at most 10−2%. As discussed above,
when the OPE cuts are far from the integration contour, like
in the case of σp ¼ σk ¼ 2m2 which we used to extract
bound-state pole positions, the error is expected to be many
orders of magnitude smaller.
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