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Supplementary Tables 

Supplementary Table 1 The performance comparison of different methods on the benchmark dataset. 

Model Accuracy Precision Recall F1 score AUC AUPR 
Galeano’s method1 0.827 0.899 0.736 0.811 0.926 0.903 

Wang’s method2 0.752 0.872 0.466 0.608 0.748 0.889 
Our method 0.883 0.904 0.802 0.851 0.956 0.946 

 
 

Supplementary Table 2 The performance of GCAP in predicting the serious clinical outcomes’ class 
of adverse reactions to drugs. 

Class Accuracy Precision Recall F1 score AUC AUPR 
DE 0.872 0.812 0.646 0.720 0.917 0.806 
LT 0.803 0.744 0.628 0.682 0.859 0.733 
HO 0.821 0.813 0.761 0.786 0.896 0.849 
DS 0.896 0.791 0.629 0.701 0.932 0.769 
CA 0.992 0.95 0.377 0.54 0.953 0.529 
RI 0.991 0.909 0.203 0.332 0.948 0.431 
OT 0.899 0.781 0.508 0.615 0.916 0.688 

Average 0.896 0.829 0.536 0.625 0.917 0.687 

 
 

Supplementary Table 3 Performance comparison of GCAP with different dropout rate. 
Dropout Task 1 Task 2 

AUC AUPR Average AUC Average APR 
0 0.937 0.922 0.871 0.601 
0.1 0.947 0.936 0.901 0.654 
0.2 0.950 0.938 0.909 0.678 
0.3 0.957 0.947 0.918 0.689 
0.4 0.952 0.945 0.912 0.661 
0.5 0.946 0.944 0.896 0.659 

 
 
 
 
 



Supplementary Table 4 Performance comparison of GCAP with different loss weight 𝛼𝛼. 
𝛼𝛼 Task 1 Task 2 

AUC AUPR Average AUC Average APR 
0.01 0.953 0.944 0.805 0.454 
0.1 0.954 0.945 0.882 0.601 
1 0.957 0.947 0.918 0.689 
10 0.951 0.940 0.906 0.669 
100 0.939 0.925 0.901 0.656 

 
 
Supplementary Table 5 Performance comparison of GCAP with different learning rate. 

Learning rate Task 1 Task 2 
AUC AUPR Average AUC Average APR 

0.00001 0.955 0.945 0.901 0.648 
0.00005 0.957 0.947 0.918 0.689 
0.0001 0.950 0.940 0.910 0.685 
0.0005 0.955 0.946 0.906 0.680 
0.001 0.954 0.945 0.902 0.668 
0.005 0.820 0.767 0.602 0.242 

 
 
Supplementary Table 6 Performance comparison of GCAP with different CNN layer. 

CNN layer Task 1 Task 2 
AUC AUPR Average AUC Average APR 

1 0.947 0.945 0.906 0.673 
2 0.957 0.947 0.907 0.675 
3 0.950 0.940 0.913 0.682 
4 0.955 0.946 0.914 0.680 
5 0.957 0.947 0.918 0.689 
6 0.957 0.947 0.916 0.676 
7 0.956 0.947 0.914 0.680 

 
 
Supplementary Table 7 Performance comparison of GCAP with different GNN layer. 

GNN layer Task 1 Task 2 
AUC AUPR Average AUC Average APR 

1 0.955 0.946 0.917 0.680 
2 0.956 0.947 0.917 0.681 
3 0.957 0.947 0.918 0.689 
4 0.955 0.944 0.916 0.682 
5 0.954 0.945 0.911 0.679 
6 0.943 0.932 0.879 0.614 

 



Supplementary Table 8 Performance comparison of GCAP with different multi-heads. 
Attention head Task 1 Task 2 

AUC AUPR Average AUC Average APR 
2 0.955 0.948 0.912 0.670 
4 0.957 0.947 0.915 0.675 
8 0.956 0.947 0.916 0.678 
16 0.957 0.946 0.916 0.679 
32 0.957 0.947 0.918 0.689 
64 0.957 0.948 0.914 0.689 

 
 
Supplementary Table 9 Performance comparison of CGAP with six alternative versions 
through 10-fold cross-validation. 

Remove module Task 1 Task 2 
AUC AUPR Average AUC Average APR 

MRCNN 0.952 0.942 0.909 0.688 
MGA 0.956 0.946 0.912 0.673 
MRCNN and MGA 0.950 0.943 0.904 0.665 
Fusion 0.950 0.940 0.910 0.675 
𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 0.955 0.946 0.906 0.680 
𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  0.953 0.943 0.908 0.684 
𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 0.954 0.944 0.905 0.667 
𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and 
𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

0.923 0.914 0.872 0.651 

 
 
Supplementary Table 10 The severe association prediction scores and labels of confusional 
state (CS) when predicting the drugs of Oxycodone and its analogs. 

Drug name SMILES sequence Label Prediction score 
Hydromorphone CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3

C(=O)CC4 
1 0.845 

Naltrexone C1CC1CN2CCC34C5C(=O)CCC3(C2CC6=C4
C(=C(C=C6)O)O5)O 

1 0.879 

Oxycodone CN1CCC23C4C(=O)CCC2(C1CC5=C3C(=C(C
=C5)OC)O4)O 

1 0.883 

Oxycodone 
hydrochloride 

CN1CCC23C4C(=O)CCC2(C1CC5=C3C(=C(C
=C5)OC)O4)O.Cl 

1 0.967 

Oxymorphone CN1CCC23C4C(=O)CCC2(C1CC5=C3C(=C(C
=C5)O)O4)O 

0 0.172 

 
 
 
 
 



Supplementary Table 11 The severity class prediction labels of confusional state (CS) when 
predicting the drugs of Oxycodone and its analogs. 

Drug name Label 
OT CA DS HO LT LF DE 

Hydromorphone 0 0 0 0 0 0 1 
Naltrexone 0 0 0 0 1 0 0 
Oxycodone 0 0 0 0 1 0 0 
Oxycodone 
hydrochloride 

0 0 0 1 0 0 1 

Oxymorphone 0 0 0 0 0 0 0 

 
 
Supplementary Table 12 The severity class prediction scores of confusional state (CS) when 
predicting the drugs of Oxycodone and its analogs. 

Drug name Prediction score 
DE LF LT HO DS CA OT 

Hydromorphone 0.142 0.351 0.505 0.116 0.003 0.001 0.005 
Naltrexone 0.028 0.028 0.905 0.065 0 0 0.014 
Oxycodone 0.095 0.234 0.833 0.066 0 0.001 0.003 
Oxycodone 
hydrochloride 

0.031 0.685 0.259 0.595 0 0.003 0.001 

Oxymorphone 0.079 0.131 0.598 0.052 0.02 0.02 0.003 

 
Supplementary Table 13 Impact of drug target features on predictive performance of GCAP. 

Feature type Task 1 Task 2 
AUC AUPR Average AUC Average APR 

Original features 0.944 0.942 0.906 0.669 
Original features + Drug target features 0.947 0.945 0.911 0.675 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Notes 

Supplementary Note 1: The detailed description of the data processing procedure. 
We initially extract the known interactions between all drugs and the Preferred Terms (PTs) of 
ADRs from ADReCS database. ADReCS follows a similar hierarchical structure as MedDRA 
and WHO-ART, consisting of four levels: System Organ Class (SOC), High-Level Group Term 
(HLGT), High-Level Term (HLT), and Preferred Term (PT). Each ADR term in ADReCS is 
assigned to this hierarchical tree, with increasing specificity from SOC to PT, where the PT 
represents a unique and unambiguous single ADR concept. To avoid redundancies in side effect 
terms, we specifically focus on the PT side effect terms in our analysis. This selection ensures 
that we capture specific and distinct ADR concepts. After performing the necessary data 
filtering steps, we obtain 467,854 drug-ADR interactions involving 2,377 drugs and 12,051 
ADRs from ADReCS database. Next, we collect all serious ADR reports from the FAERS 
database, covering the period from the third quarter of 2014 to the first quarter of 2022. By 
matching the 'Primaryid' in each file from FAERS and removing incomplete records, we obtain 
a dataset of 6,873,533 serious ADR records. We then identify drugs and ADRs that co-occur in 
both ADReCS and FAERS databases and employ statistical methods to assess whether the 
interactions between these drugs and ADRs result in serious clinical outcomes. This analysis 
reveals 255,968 drug-ADR interactions that appear in the serious ADR records from FAERS. 
To determine the seriousness of clinical outcomes for these drug-ADR interactions, we apply 
the Proportional Reporting Rate (PRR) approach. Based on the PRR values, we assign 
seriousness labels to the drug-ADR interactions, classifying them as positive samples. 
Interactions related to drugs and ADRs present in ADReCS but not in FAERS are considered 
as negative samples. Following these operations, we obtain a final dataset comprising 189,779 
drug-ADR interactions involving 1,175 drugs and 4,265 ADRs. To maintain the high quality of 
the constructed dataset, we apply a filtering criterion that considers the number of drugs 
associated with each ADR in ADReCS. Specifically, we select ADRs that are associated with 
more than 50 drugs, resulting in a benchmark dataset of 141,752 drug-ADR interactions. This 
dataset covers 1,073 drugs and 893 ADRs, ensuring a comprehensive and high-quality 
foundation for our analysis. Overall, the described process allows us to establish a robust dataset 
for studying drug-ADR interactions and their potential impact on serious clinical outcomes. 
 

Supplementary Note 2: Some state-of-the-art methods for three drug-related tasks. 
TGSA3: A non-end-to-end drug response prediction method based on deep learning. TGSA is 
composed of two major steps: twin Graph neural networks for Drug Response Prediction 
(TGDRP) and a Similarity Augmentation (SA) module. TGDRP learns drug features and cell 
line features through two identical graph neural networks respectively. SA utilizes GNNs to 
smooth the representations of similar cell lines/drugs. In this work, we add a fully connected 
layer to extract features from the ADR seriousness vectors of drugs and then accumulate it with 
the output of GNNdrug module in TGDRP. 
 
BIG picture4: A drug response prediction method based on the bipartite graph. The bipartite 
graph is formed in two steps, selecting the most sensitive and most resistant cell lines for each 
drug and using known drug-cell line interaction to connect the drugs and the selected cell lines. 



To obtain drug features, BIG picture learns node features on bipartite graphs through a 
heterogeneous graph convolution network (H-GCN). To obtain embeddings of the cell, BIG 
picture uses an independent multi-layer perceptron (MLP) module to extract features from gene 
expression data of cell lines. In our work, we add a fully connected layer to extract features 
from the ADR seriousness vectors of drugs and then accumulate it with the output of H-GCN 
module in BIG picture. 
 
DeepTTA5: An end-to-end drug response prediction method based on a transformer encoder 
module. In DeepTTA, drugs firstly are divided into some substructure sequence vectors by 
ESPF. Then, these vectors are fed into the transformer encoder to get representations of the 
drugs. DeepTTA learns cell line features through an MLP module. In our work, we add a fully 
connected layer to extract features from the ADR seriousness vectors of drugs and then 
accumulate it with the output of the transformer encoder module in DeepTTA. 
 
MUFFIN6: A deep learning-based feature fusion framework for binary-class, multi-class and 
multi-label drug-drug interaction prediction. It can effectively integrate the features extracted 
from the drug's molecular structure and knowledge graph. Here, we only evaluate the multi-
class drug-drug interaction predictive performance of the model. We add a fully connected layer 
to extract features from the ADR seriousness vectors of drugs and let it be spliced with the other 
four feature vectors in the original paper and enter the classification module. 
 
KGNN7: An end-to-end framework that explores drugs’ topological structures in knowledge 
graph for potential drug-drug interaction prediction. By extending the receptive field of each 
entity in knowledge graph, KGNN is able to capture high-order relations between drug pairs. 
In our work, we add a fully connected layer to extract features from ADR seriousness vectors 
of drugs and then concatenate it with the latent representations of drugs output by the second 
step in KGNN layer to construct new representations of drugs. 
 
TransE8: A knowledge graph representation method for learning low-dimensional embeddings 
of entities, which is often used as a baseline method for drug-drug interaction prediction. TransE 
interprets relationships between entities as translation vectors between head and tail entities on 
the low-dimensional embedding vector space. In our work, we add a fully connected layer to 
extract features from ADR seriousness vectors of drugs and then concatenate it with the latent 
representations of drugs output by TransE to construct new representations of drugs. 
 
MGPred9: A deep learning framework to predict the side effect frequencies of drugs by 
integrating chemical structure similarity, known drug-side effect frequency scores, side effect 
semantic similarity, and pre-trained word vector representations. The core of the model is to 
construct a drug-side effect bipartite graph and learn the feature representations of the node in 
the graph from the node’s direct neighbors based on the attention mechanism. In our work, we 
use ADR seriousness vectors of drugs instead of drug fingerprint-based vectors. 
 
SDPred10: An end-to-end method based on multiple similarities and shares the advantages of 
both the matrix decomposition methods and deep learning methods and do not entirely 



dependent on the known relationships between drugs and side effects. In our work, we calculate 
a new type of similarity for drugs based on the ADR seriousness vectors and extend the drug 
similarity types in SDPred to 11. 
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