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Systematizing Confidence in Open Research and Evidence (SCORE)

SCORE Collaboration1

Abstract
Assessing the credibility of research claims is a central, continuous, and laborious part of the
scientific process. Credibility assessment strategies range from expert judgment to aggregating
existing evidence to systematic replication efforts. Such assessments can require substantial
time and effort. Research progress could be accelerated if there were rapid, scalable, accurate
credibility indicators to guide attention and resource allocation for further assessment. The
SCORE program is creating and validating algorithms to provide confidence scores for research
claims at scale. To investigate the viability of scalable tools, teams are creating: a database of
claims from papers in the social and behavioral sciences; expert and machine generated
estimates of credibility; and, evidence of reproducibility, robustness, and replicability to validate
the estimates. Beyond the primary research objective, the data and artifacts generated from this
program will be openly shared and provide an unprecedented opportunity to examine research
credibility and evidence.
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A primary activity of science is evaluating the credibility of claims--assertions reported as
findings from the evaluation of evidence. Researchers create evidence and make claims about
what that evidence means. Others assess those claims to determine their credibility including
evaluating reliability, validity, generalizability, and applicability. Assessment occurs by journal
reviewers during the peer review process; by readers deciding whether claims should inform
their judgment; by researchers trying to replicate, extend, confirm, or challenge prior claims; by
funders deciding what is worth further investment; and by practitioners and policymakers
determining whether the claims should inform policy or practice.

Assessing confidence in research claims is important and resource intensive. A reader must
read and think about a paper to assess confidence in its claims using their expert judgment. A
researcher expends substantial effort planning, conducting, and reporting follow up research to
assess the credibility of prior claims. Rarely is a single follow up investigation sufficient.
Research may go on for years challenging, debating, and refining claims. Sometimes it is
difficult or impossible to obtain additional evidence; A decision must be made with what is
already available.

The “Systematizing Confidence in Open Research and Evidence” (SCORE) program has an
aspirational objective to develop and validate methods to assess the credibility of research
claims at scale with much greater speed and much lower cost than is possible at present.
Imagine it takes a year to achieve 95% accuracy in assessing the credibility of a claim by
conducting replication and generalizability studies, a month to achieve 85% accuracy by
conducting reproduction and robustness tests of the same claim, and a few hours to achieve
80% accuracy by consulting a group of experts to review the readily available evidence. Could
we create automated methods to achieve similar accuracy as experts in a few minutes or a few
seconds? If that were possible, readers, researchers, reviewers, funders, and policymakers
could use the rapid assessments to direct their attention for more laborious assessment and
improve allocation of resources to examine claims that are important but relatively uncertain.

There is accumulating evidence that such a service is needed and possible to achieve. In the
social and behavioral sciences, replication efforts have indicated that the literature is not as
replicable as might be expected (Camerer et al., 2016, 2018; Cova et al., 2018; Ebersole et al.,
2016, 2020; Klein et al., 2014, 2018; Open Science Collaboration, 2015). For example, Nosek
and colleagues (2021) aggregated 307 replication attempts of published findings in psychology
and observed that 64% reported statistically significant evidence in the same direction as the
original studies, with effect sizes 68% as large as the original studies. Investigations of
robustness and reproducibility of claims suggest that some published evidence is highly
contingent on specific analytic decisions, or even irreproducible (Botvinik-Nezer et al., 2020;
Silberzahn et al., 2018; Simonsohn et al., 2020). These investigations indicate that the credibility
of published claims is more uncertain than expected.

Multiple studies indicate that people can anticipate which findings are likely to replicate after
reading the original paper or even just reviewing a subset of information about the finding and
supporting evidence (Camerer et al., 2016, 2018; Dreber et al., 2015; Forsell et al., 2019; Wintle
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et al., 2021). Human judgments were correlated with successful replication using prediction
markets (r = 0.52), surveys (r = 0.48), and structured elicitations (r = 0.75; see Nosek et al.,
2021 for a review). This suggests that relatively accurate credibility assessments are achievable
with an order (or orders) of magnitude lower resource investment than conducting replication or
reproduction studies.

Finally, three studies provide initial evidence that machine learning methods may provide a
scalable solution that could match, or perhaps even exceed, the capabilities of human judgment
(Altmejd et al., 2019; Pawel & Held, 2020; Y. Yang et al., 2020). Each machine learning
investigation used a distinct approach drawing on narrative text of the original paper, information
about original designs and replication sample sizes, or other contextual information about the
original finding. These promising findings provide a basis for SCORE’s primary goal to
investigate scalable methods of assessing credibility of claims in the social-behavioral sciences.

SCORE began in February 2019 and the main activities will conclude in May 2022. This paper
introduces the program structure, activities, and expected outcomes of the program, including
data and artifacts that will be made available to the research community for further investigation.

Program Scope and Structure

SCORE is a large-scale collaboration involving eight primary research teams and more than a
thousand contributing researchers. The teams are organized into three technical areas (TAs) -
TA1, TA2, and TA3 - and a Testing and Evaluation (T&E) group that evaluates the TAs and
program effectiveness. The primary research teams have clearly specified roles, distinct areas
of expertise, and shared objectives organized around a common set of articles constituting the
shared Common Task Framework (CTF). The research teams work with the shared CTF dataset
in a coordinated way to advance the SCORE program’s goals (see Figure 1).

The CTF consists of approximately 30,000 articles from 2009-2018, representing 62 journals
from the following disciplines: Criminology, Economics and Finance, Education, Health,
Management, Marketing and Organizational Behavior, Political Science, Psychology, Public
Administration, and Sociology (see Supplement Table 1). From the CTF, a stratified random
sample of 3,000 papers was selected for additional investigation and enhancement, called the
annotation set. Stratification ensured that the annotation set had approximately equal
representation of papers per year per journal. From the annotation set, a stratified random
sample of 600 papers was then sampled for additional investigation such as conducting
reproduction or replication studies, called the evidence set. Stratification again ensured
approximately equal sampling of papers per year per journal. This sampling was done without
regard to the feasibility of any particular empirical attempt, with the understanding that not all
claims will receive a completed empirical study result. This design is intended to be adaptive to
the resource-intensiveness of different activities for assessing credibility while also maximizing
the generalizability of the findings to the social-behavioral sciences.
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The purpose of the team structure and shared set of papers is to investigate the credibility of
claims from the social-behavioral sciences and test methods for efficiently assessing that
credibility. To do this, the project is organized in modular stages with specific responsibilities for
each team.

TA1, the Center for Open Science (COS), is responsible for enhancing the CTF database and
extracting claims for the annotation set to be evaluated by the other teams. In the completed
half of the program, this meant extracting 3,000 individual claims, one from each paper. TA2
teams from KeyW/Jacobs Corporation and University of Melbourne used human evaluators to
provide confidence scores predicting the reproducibility or replicability of the 3,000 research
claims in the annotation set. These teams competed with each other to provide the most
accurate scores. Three TA3 teams from Pennsylvania State University (PSU), TwoSix Labs,
LLC, and University of Southern California (USC) used machine learning methods to develop
algorithms that assign confidence scores just like the human evaluators.

Figure 1. Relationships between research teams comprising the three technical areas (TAs) of
the SCORE program.

While TA2 and TA3 teams generated scores for these 3,000 claims, TA1 privately created a
stratified random sample of 600 of those papers to create the evidence set. Some claims from
the evidence set were subjected to reproduction and replication studies. TA2 and TA3 teams
were left unaware of which claims were selected for the evidence set to avoid any complications
of altering strategy to focus on specific claims. The reproduction and replication outcomes
provide a ground truth benchmark for evaluating accuracy of the confidence scores generated
by humans, a process managed by the Testing and Evaluation (T&E) teams. Algorithms are
evaluated primarily on their ability to predict the human credibility assessments across all 3,000
claims, and assessed for explainability of the generated confidence scores. Which claims were
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selected for replication or reproduction studies, and the outcomes of those studies were held
back from TA2 and TA3 teams until their credibility scores are committed and completed.

Entering the second half of the program, the breadth and depth of the project is expanding with
TA1 sampling additional claims from the CTF, extracting a single claim per paper for another
900 papers, and systematically extracting a complete “bushel” of claims from 200 of the initial
600 papers in the evidence set. The complete set of bushel claims is meant to represent all of
the claims that could have been selected from the paper in the first half of the program, rather
than simply the one claim that was selected. The Melbourne TA2 team is expanding the task of
the human evaluators to evaluate all of the bushel claims and to assess those papers on
multiple indicators of credibility. TA3 teams are extending their strategies for improving algorithm
performance. And, finally, TA1 is expanding the scope of assessing reproduction, robustness,
and replicability for the evidence set of 600 papers.

What Makes SCORE Unique

SCORE is inclusive of a substantial portion of the social-behavioral sciences to facilitate
generalizability and investigation of heterogeneity in credibility and replicability across
subdisciplines and methodologies. Also, with a standard identification process of discrete claims
across papers, the SCORE program facilitates broad inclusion of outcome types, comparison of
those outcomes across papers, and a variety of verification attempts including reproduction,
robustness, and replication tests.

Another virtue of the SCORE program is that it includes many distinct efforts on the same large
dataset, facilitating the opportunity for comparative analysis. For example, the most enriched
papers from the evidence set will have structured claim extraction from the paper, metadata
about the paper from external databases (e.g., citation rates, presence of open data), human
credibility scores from multiple sources, machine credibility scores from multiple sources, and
evidence on reproducibility, robustness, and replicability of one or multiple claims.

Finally, at the conclusion of the program, SCORE data will be accessible to others for research.
Additional users of SCORE data may themselves enhance the dataset and other artifacts
creating a generative, virtuous cycle of data enrichment fostering new investigations that
provide further enrichment.

Defining and Extracting Scientific Claims
The TA1 team annotates the papers randomly sampled into the annotation set. In the completed
part of the project, this meant identifying a single relevant claim from each paper, by tagging
related information in an article. In SCORE terminology, this claim represents a specific,
concrete finding that is supported by a statistically significant test result, or at least by evidence
that would be amenable to a statistical hypothesis test even if the authors did not adopt
significance testing. This is not the only way to identify a claim, but this working definition
provides clarity between teams, sufficient flexibility to cover a wide range of research
applications, and is sufficient constraint to define criteria for evaluating confidence and
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assessing replicability and reproducibility. Table 1 shows a glossary of SCORE’s working
definitions.

Table 1: A glossary of key terms as they are used for the SCORE program

Paper A single academic article that makes quantitative claims based on specific
social scientific data. SCORE does not address papers that are exclusively
based on qualitative research, simulations, theory, or commentary.

Common Task
Framework (CTF)

The set of approximately 30,000 papers that constitutes the sampling frame for
SCORE. It includes papers from 62 social science journals published between
2009 and 2018.

Annotation Set A stratified random sample from the CTF of approximately 3,000 papers that
are annotated to identify at least one claim trace per paper.

Evidence Set A stratified random sample of approximately 600 papers from the annotation
set. These papers could be selected for an empirical attempt to find further
evidence for or against a claim.

Claim A specific assertion reported as a finding in a paper. Most papers make more
than one claim, and claims in a paper can be related or independent of one
another.

Claim Trace A claim in a paper is identified by annotating and labeling short excerpts from
the main text or tables/graphs from the paper. Together these annotations let a
reader ‘trace’ from a general statement in the abstract to a more specific claim
to the quantitative information such as a specific inferential test or estimate that
is given as evidence for that claim.

Confidence Score A prediction about the replicability of a claim, expressed as a numerical value
on a scale from “not confident” to “very confident.” Confidence scores are about
a single claim which may or may not generalize to confidence in other claims
from the same paper.

Inferential Test A statistical calculation that supports an inference about a single effect and
provides information about both the spread and central tendency of that effect.
When testing statistical significance, a single inferential test is associated with a
single p value.  Additionally, with regression modeling, inferential tests may be
associated with a single parameter, or with an entire model if model comparison
tests are conducted.

Bushel Claim A set of claim traces from a single paper representing as many of the
independent claim traces that the authors present as possible. Each claim trace
must be linked to a finding reported in the abstract, and must be supported by
quantitative evidence presented in the main text.

Empirical Study A single empirical attempt conducted by a research team to provide additional
evidence about a claim. These attempts can include conducting a replication,
reproduction, or other empirical activity that speaks to the credibility of that
claim.

Replication Testing the reliability of a prior finding with new data expected to be theoretically
equivalent by comparing the outcome of an inferential test as reported in a
paper with the equivalent inferential test as calculated in the new dataset.
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Reproduction Testing the reliability of a prior finding with the same data and same analysis
strategy by comparing the outcome of an inferential test as reported in a paper
with a re-calculation of that inferential test from the original data.

Robustness Testing the reliability of a prior finding with the same data and different analysis
strategy by conducting alternative tests on the original data.

Generalizability Testing the reliability of a prior finding in a new dataset in a way that differs from
the original study but is expected to produce similar results.

Table 2: A single claim trace of a paper is composed of four levels.

Claim 1 The title of the paper.

Claim 2 A statement from the paper’s abstract that reflects an empirical research finding.

Claim 3 A hypothesis, prediction, or finding statement presented somewhere in the main
text of the paper, relating to the finding reported in Claim 2.

Claim 4 A result supported by specific statistical information in the article that supports
Claim 3, alongside the authors’ interpretation of that information.

Figure 2. Model of a bushel claim set for a single paper. Each line represents a distinct bushel
claim trace. Two examples of single-trace claims that could have been extracted are in blue and
red.

The output of the annotation process is a “claim trace” that maps a finding reported in the
abstract to a specific hypothesis or finding from the main text, to a particular set of quantitative
evidence that supports the reported finding. When only one claim trace is identified, the process
does not guarantee that the claim trace selected necessarily includes the paper’s “most
important” or “most central” claim. Pretesting revealed that this kind of decision is neither
objective nor obvious for many papers. Instead, as a proxy for a lower bound on importance, a
claim must be directly related to a statement made in the paper’s abstract. This criterion avoids

Claim 1 
(title) 

Claim 2 
(abstract) 

Claim 3 
(finding/hypothesis) 

Claim4 
(evidence) 
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selecting tangential findings unrelated to the summarized purpose of the paper. The claim trace
indicates a series of levels leading down to the specific focal result as described in Table 2.

Selecting a single finding creates a tractable and comparable way for independent teams to
work with a paper, and it has clear limitations for interpreting the results. Papers often include
more than one finding in the abstract, and research findings are often supported by multiple
pieces of evidence. In the current phase of work, we have expanded claim extraction for some
papers in the evidence set by adding a second bushel approach that relaxes these
requirements. In the bushel approach, we identify as many unique claims as possible by tracing
from a finding in the abstract to statistical evidence in the paper. In addition, we relax the
definitions of evidence to allow tagging of multiple inferential tests and other types of
quantitative evidence. Figure 2 illustrates a bushel of claims from a paper and two single-trace
claims that could be extracted.

Expert Assessment
The second major technical area (TA2) elicits predictions, called confidence scores, from human
readers about replicability of extracted claims. TA2 included two independent teams, repliCATS
and Replication Markets, to examine the viability and accuracy of distinct forecasting strategies.

repliCATS - Structured elicitations

The repliCATS (Collaborative Assessments for Trustworthy Science) project uses a structured
elicitation process--the IDEA protocol--to complete group evaluations of research claims. IDEA
stands for: Investigate, Discuss, Estimate, and Aggregate (Figure 3). IDEA is a modified form of
the Delphi protocol, with the major differences being that IDEA encourages interaction between
participants and does not require behavioural consensus. Interaction between participants
occurs in online comments, sometimes supplemented with face-to-face discussions. In the first
half of the program, repliCATS assessments focused on predicting the likely replicability of
research claims. In the remainder of the program, the scope of assessments is expanding to
also include other judgements of research credibility, e.g., transparency, robustness, validity and
generalizability.

In repliCATS, experts work in small groups, using a custom built cloud-based elicitation platform
(Fraser et al., 2021; Pearson et al., 2021). Individual experts first make their own private
estimate of whether or not the identified claim will replicate and document their reasons
(Investigate). After lodging their initial estimates, individuals receive feedback about their group
members’ judgements and reasoning, and can compare their own judgements. Groups are
encouraged to interrogate differences of opinion and share relevant information (Discuss).
Following discussion, each individual provides a second private assessment (Estimate).
Mathematical aggregation of individual estimates removes the need for group members to reach
a consensus (Aggregate).
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Figure 3. Overview of the IDEA protocol, as adopted in the repliCATS project

The repliCATS project has several preregistered aggregation models (https://osf.io/m6gdp/).
Described in detail by Hanea and colleagues (2021), the aggregation models fall into three
categories: (1) linear combinations of best estimates, transformed best estimates (Satopää et
al., 2014) and distributions (Cooke et al., 2021); (2) Bayesian approaches, one of which
incorporates characteristics of a claim directly from the paper, such as sample size and effect
size; and (3) weighted linear combinations of best estimates, mainly by potential proxies for
good forecasting performance, such as demonstrated breadth of reasoning, engagement in the
task, openness to changing opinion and informativeness of judgments (Mellers, Stone,
Atanasov, et al., 2015; Mellers, Stone, Murray, et al., 2015). The third category of models is the
largest.

The structured elicitation protocol and deliberate inclusion of text responses on the repliCATS
platform will create a rich qualitative database, with experts documenting the reasoning behind
their predictions and judgements. Justifications commonly focus on design issues, sample size,
and  papers’ overall clarity and logical structure.

Replication markets

Replication Markets extends work showing that markets of domain experts can accurately
estimate the replicability of findings in the social and behavioral sciences (Camerer et al., 2016,
2018; Dreber et al., 2015; Ebersole et al., 2020; Forsell et al., 2018; Klein et al., 2018; Gordon
et al., 2021). In many contexts (K.-Y. Chen et al., 2003; Forsythe et al., 1992, 1999), markets
appear to provide better estimates than any individual, especially in complex combinatorial
prediction markets (Y. Chen & Pennock, 2010) where individuals make systematic errors (Wang
et al., 2011).

However, where those markets forecast replicability of 18-40 similar claims at a time, all of
which would be tested, SCORE forecasted 3,000 highly diverse claims in about a year, with only
a small fraction to be resolved by experiment. We elicited forecasts in 10 monthly rounds of

Round 1 Discussion Round 2 Group Aggregate 
Read paper & research Round 1 estimates & Review discussion Mathematically aggregate 
claim reasoning revealed Round 2 estimates into a 

Participants make private, single assessment of the 
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~300 claims, using a decision market mechanism to preserve proper incentives given the low
resolution rate (Figure 4).

Each round of claims had one week for surveys followed by two weeks of markets. In markets,
forecasters traded ‘Yes’ and ‘No’ shares on binary replication questions. ‘Yes’ shares pay 1 point
if the replication yields a statistically significant finding in the direction of the original claim.
Otherwise ‘No’ shares pay 1 point. Surveys directly solicited chances on replications. A total
prize pool was split (~⅔) to the prediction markets, and (~⅓) to the survey. Market prizes are
paid when replication outcomes become available.  Survey prizes were paid each round after
the markets closed, using surrogate scores (Liu et al., 2020).

Surrogate scoring scores a forecast based solely on reported forecasts across claims made by
other forecasters. It exploits the unknown statistical correlation of forecasts. Under certain
conditions and with enough claims and forecasts, a forecaster’s expected surrogate score
reflects their true (unknown) forecast accuracy, and surrogate scoring incentivizes truthful
forecasting. For instance, in expectation a forecaster’s surrogate score equals their true
(unknown) Brier score. Thus, surrogate scoring allows us to provide immediate, potentially
noisy, feedback on forecast accuracy before replication outcomes become available. Once the
outcomes are available, we will evaluate forecasting performance according to reregistered
tests (Pfeiffer et al., 2020). Replication markets and surrogate scoring were also used to
forecast the overall SCORE replication rate by field and publication year (Gordon et al., 2020).

Figure 4. Overview of the Replication Markets workflow.

Machine Assessment
The third technical area (TA3) uses the same dataset of extracted claims to generate confidence
scores using machine learning and other algorithmic approaches. The three teams -- PSU,
TwoSix, USC -- use different approaches for generating confidence scores.

PSU

Researchers at Pennsylvania State University, in collaboration with others at Texas A&M
University, Old Dominion University, and Rutgers University use synthetic prediction markets for
scoring the replicability of claims. As with the human Replication Market team, a research claim
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All ~300 claims in this Round are placed in a common market; 
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the claim's original p-value, and forecasters trade as much as 
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Rest 
A replication markets "Round" has ~300 claims, three weeks of forecasting, and a rest of usually 1 week. 
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is treated as a binary option in which the price of the option of a claim at market close can be
interpreted as an indicator of confidence in its replicability. Within this framework, artificial
agents, or trader-bots, are endowed with initial cash and may choose to purchase options of a
given claim. Bots are trained using an evolutionary algorithm and data from existing replication
studies (e.g., Open Science Collaboration, 2015) and expert assessments provided by TA2.
Trade logs provide explanatory power.

In the prototype, asset prices for claims were determined by a logarithmic market scoring rule.
Artificial agents were endowed with purchase logic defined using a sigmoid transformation of a
convex semi-algebraic set defined in feature space (Nakshatri et al., 2021). The team’s feature
extraction and representation (FEXRep) framework extracted 42 bibliometric, bibliographic,
statistical and semantic features from each paper (Lanka et al., 2021; Modukuri et al., 2021; Wu
et al., 2021, 2020). The team is expanding feature extraction capabilities to support evaluation
of bushel claims, incorporating more claim-level features and information about the relationships
amongst multiple claims in a paper. The next phase will include hybrid market experiments
wherein human traders will participate alongside artificial agents.

PSU’s synthetic market approach is inspired by the success of prediction markets in estimating
reproducibility of scientific research and motivated by their shortcomings. Prediction markets
require the coordinated, sustained effort of collections of human experts limiting their feasibility
to scale. They rely on the availability of well-defined and verifiable outcomes which are
determined after market close. Synthetic prediction markets can be deployed rapidly and at
scale. They can be updated continuously as new information becomes available with periodic,
offline human input. Agents can have comprehensive access to prior scholarship far beyond the
capacities of an individual researcher. The group has dedicated effort to developing a
comparable baseline (“Red Team”) led by Texas A&M University and leveraging state of the art
approaches for interpretable representation learning developed within DARPA’s XAI program
(Du et al., 2021, 2018; F. Yang et al., 2018).

TwoSix

The A+ system developed by Two Six Technologies is a method for understanding replicability
given only a journal article, illustrated in Figure 5. The A+ system contains three major
computational components: semantic parsing, feature extraction, and replication prediction.

Semantic parsing. After extracting text from the PDF using Automator, A+ represents the
overall semantic context of each section.  This is similar to prior annotation work (K.-Y. Chen et
al., 2003; Dasigi et al., 2017; Huber & Carenini, 2019). Modifying the annotation scheme better
matched the problem of information extraction for replication prediction. The discourse class for
each sentence is inferred and then averaging of the outputs to obtain the final class.

Information extraction. The unstructured prose of scientific documents includes key features
for assessing replicability, such as sample sizes, populations, conditions, experimental
variables, methods, materials, exclusion criteria, and participant compensation. Much of this

https://www.zotero.org/google-docs/?broken=oNCNTw
https://www.zotero.org/google-docs/?broken=dCONcy
https://www.zotero.org/google-docs/?broken=dCONcy
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information is available as concise spans of text in the document: “twenty-four” may be a
sample size; “undergraduates” may be a population description; “reaction time” may be a
dependent variable. Consequently, we are not interested in extracting and classifying relations
at this phase of analyses; rather, the information extractor is optimized to classify individual
spans within the text with context-sensitive labels (e.g., sample count and characteristics,
experimental variables, methods), to create a dataset of 620 annotated examples. The model
also processes the resulting classified spans to opportunistically extract domain-specific
numerical and Boolean features. For example, the sample and exclusion counts are expected to
be integers, so it attempts to coerce “one hundred and ninety - seven” and “Eight” to integers.
Similarly, the model uses a lexicon-based approach to populate Boolean features indicating
whether participants' genders, age, race, religion, and community are specified, what the
recruitment pool is (e.g., AMT, universities), and how they are compensated (e.g., course credit,
monetary). Because statistical tests are more structured than these features, specific Python
regular expressions are applied to identify 25 different statistical tests and values including p, R,
R2, d, F-tests, T-tests, mean, median, standard deviation, confidence intervals, odds ratios, and
non-significance.

Figure 5. Illustration of the A+ pipeline. Manuscripts are first tagged based on semantic analysis
and then specific aspects of information are extracted from tagged portions of the manuscript’s
body. The article's structure and extracted information serve as features for a confidence score
prediction model.

After extracting individual spans and subgraphs, it is assembled into a global graph called the
argument structure. As implied by its name, the argument structure expresses the premises,
evidence, and observations in a scientific article, ultimately in support of its conclusions. The
system generates the argument structure by iterating over the sequence of text segments and
semantic tags to create a structured set of nodes representing the article. Upon encountering a
transition in semantic tags, such as a new Methodology section after a Discussion section, the
system instantiates a new Study node and adds the appropriate features.

Replication prediction. The graph-based layout of the argument structure allows the system to
assess independent replicability concerns in a context-sensitive, explainable fashion. For
example, a sample size of 24 for a study node may impact the judgment of that study's
replicability, but it does not necessarily impact the replicability judgment of another study in the
paper. Each node in the directed argument structure graph is connected directly or indirectly to
the node representing the scientific article. The argument structure is a fully-connected graph
that supports graph and pattern matching, confidence propagation, and feature extraction to
judge and explain replicability.
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University of Southern California

The MACROSCORE system developed by the University of Southern California is a knowledge
fusion system that captures a holistic view of the factors important for reproducible and
replicable research. The approach mimics the complex judgments that human reviewers make
when assessing research. The first pipeline relies on "micro"-features: those that are based on
information extracted from papers pertaining to the parameters of the study (e.g., study design,
sample population, preregistration, open data). Potential detractors to scientific validity, such as
conflicts of interest, are also extracted. MACROSCORE uses an adaptation of SciBERT, a
pre-trained language model created using millions of scientific papers, to identify entities such
as experimental parameters, open science indicators, and claim information.

The second pipeline in MACROSCORE is the "macro"-feature pipeline that captures the
broader scientific context of a paper. Determining the impact and contributions of a scientific
work is a difficult and subjective task. MACROSCORE collects the citations and references
within a particular scientific discipline, forming a network connecting the scientific articles and
their authors. Metrics of network structure, including in-degree (incoming citations to the work),
out-degree (references to other works), authority score (citations by important works), and hub
score (citing important work) assess the scientific work.

The heart of the MACROSCORE system is a knowledge graph that represents the data from
micro and macro pipelines. The knowledge graph represents the core concepts of the scientific
discipline: scholarly works, scientific claims, scholars, organizations, and publication venues.
MACROSCORE uses an ontology from the popular knowledge graph Wikidata to include each
scientific article, the journal where it was published, its authors and editors, and the affiliations of
each, and all citations and references. MACROSCORE has extended the ontology on Wikidata
to incorporate claim information and derived features from four high-level classes: validity of
inference, study design, reporting and transparency, and scientific network. Together, these
features create a comprehensive profile of the paper and its connection to other works.

The final component of the MACROSCORE system is a suite of predictive algorithms that
operate on the features from each pipeline and the knowledge graph. MACROSCORE uses a
probabilistic graphical model using the probabilistic soft logic (PSL) framework. This model
includes dependencies between different features defined in the knowledge graph specified as
logical rules, such as "small sample sizes and small effect sizes indicate poor replicability."
Using training data, the PSL framework learned the importance of each rule and its associated
features. For a given judgment made by the MACROSCORE system, the PSL model will
provide a set of explanatory statements, and an analysis of the top features contributing to the
assessment.

Empirical evidence for credibility assessment
Independent empirical assessments provide the basis for evaluating the confidence scores
generated by humans and algorithms to predict credibility of claims. Table 4 presents
approaches to empirical assessment of credibility roughly ordered from the bottom being the
least effortful but providing the least information about a phenomenon to the top being the most



14

effortful and providing the most information. In general, lower categories in Table 5 correspond
with assessments of the original design and original data for a narrow test of whether the
original report found what it reported to have found, and higher categories correspond with more
laborious assessments involving obtaining new designs and data for a broader test of whether
the original claim is supported by new evidence. These are not the only ways to assess
credibility. For example, a finding could be reproducible, robust, replicable, generalizable, and
invalid if the interpretation is incorrect. Nevertheless, these assessments are tractable and
verifiable indicators that are related to other aspects of credibility.

As TA1, COS bears responsibility for coordinating a large network of social-behavioral
researchers to contribute empirical evidence assessing the credibility of claims. The team draws
on the stratified random sample of 600 claims comprising the evidence set and matches their
topics and methodologies to researchers with appropriate resources and expertise to conduct
an empirical assessment. The focus of the first half of the SCORE program was on conducting
replication and reproduction studies. The remainder of the program expands the scope of
empirical evidence to include all of the forms presented in Table 3.

Table 3. Forms of empirical credibility assessment

Generalizable Original claim supported across diverse samples,
treatments, outcomes, and settings

Replicable Original claim supported with independent evidence

Robust Original claim supported with diverse treatments of
original data

Outcome Reproducible Original claim supported with original analysis of
original data

Process Reproducible Possible to assess outcome reproducibility of
original claim

Internally consistent Reporting of original claim does not have
detectable errors

A reproduction refers to applying the original analysis strategy to the original data to test
whether the same result recurs. A reproduction could fail due to process reproducibility
because, for example, the original data are not available, making it impossible to conduct the
analysis again. This does not disconfirm the finding, but it is a credibility risk in that the finding
cannot be confirmed or disconfirmed. A reproduction could also fail due to outcome
reproducibility because, for example, applying the analysis described in the original paper does
not produce the finding associated with it. This can occur because of errors in reporting,
ambiguity in description of analyses, or factors in the data analysis pipeline.
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A replication refers to testing the original claim with different data. That data could be
pre-existing, such as re-testing the relationship between variables in a subsequent wave of a
panel study, or could be newly generated with a study design to test the same research
question. Whether based on existing or new data, the determination of whether a new test is a
replication of a prior claim is a theoretical commitment that the inevitable differences between
the original and replication study are irrelevant for testing the original claim (Nosek & Errington,
2020).

To provide evidence that is both appropriate to testing individual claims and standard enough to
evaluate SCORE teams’ prediction methods across disciplines, we designed a process that
balances specific requirements that all projects must adhere to with ongoing evaluation and
feedback by subject area experts. For example, all replications are prepared using a standard
template that is reviewed by 2-3 independent researchers, and the resolution of design changes
suggested by reviewers is managed by an editor. Authors of the original finding are invited to
review or submit a commentary on the design. The review process is intended to improve the
quality of the replication designs so that they are effective, good-faith tests of the original claim.
The template and review process also provide an occasion to explicitly document differences
between original and replication studies and assessments of any heterogeneity in beliefs about
whether they are consequential for the replication design. Following approval, the design and
analysis plan is preregistered on the Open Science Framework (OSF). Research teams conduct
their studies and then report outcomes following a standard protocol and provide all research
materials, data, and code so that the replication studies will be themselves reproducible and,
eventually, accessible to others to the extent ethically possible. The reproduction workflow has a
similar emphasis on documentation and transparency with a lighter review process emphasizing
adherence to the standardized protocol for reproducing original findings.

As singular attempts to reproduce or replicate original claims, these empirical efforts will not
provide definitive evidence about their credibility (Open Science Collaboration, 2015) -- they add
to the body of evidence about that claim which includes the original paper and any other
evidence in the literature. However, prior evidence that both humans and algorithms can predict
the outcomes of these reproductions and replications provides a basis for treating them as
ground truth for the purposes of the program. More importantly, the generated dataset of original
and novel statistical evidence, reproduction and replication outcomes, along with the expanded
set of empirical credibility indicators from internal consistency (e.g., statcheck), robustness (e.g.,
multiverse or many-analyst investigations), or generalizability tests will provide a rich network of
evidence to investigate convergence and heterogeneity of these credibility indicators.

Evaluating Expert and Machine Success
There is no definitive criterion for deciding whether a finding is successfully replicated or
reproduced (Nosek et al., 2021), but pragmatic, defensible, and widely applicable benchmarks
are needed to evaluate the outcomes of the SCORE program. The role of the MITRE Test &
Evaluation (T&E) team in SCORE is to evaluate the relative match between predicted and
actual confidence in each claim using the outcomes from the TA1 empirical results and the
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human-generated confidence scores from TA2. T&E focuses on evaluating the accuracy of
human-generated confidence scores relative to replication outcomes and the accuracy of
algorithm-generated confidence scores relative to the most accurate human-generated scores.

T&E’s evaluation of TA2’s aggregated human confidence scores against TA1 binary replication
outcomes is operationalized through various metrics. Primary emphasis is given to a modified
area under the curve (AUC) (aka “signal detection”) metric, which can be interpreted as the
“meta-probability” of TA2 assigning a higher confidence score to a claim that does indeed
replicate than to a claim that fails to replicate -- for any given randomly sampled pair of such
cases (Pepe, 2003; Steyvers et al., 2014). Supplementary metrics include proper scoring rules
(Brier, 1950), measures of calibration (Arkes et al., 1995), and measures of association between
TA2 confidence scores and replication p-values (where smaller p-values indicate higher levels of
replication study support for the original study claim).

To evaluate algorithm accuracy in predicting human confidence scores, the root mean squared
error (RMSE) is used as one of two primary outcome metrics. Additionally, Kendall’s tau-b, a
nonparametric measure of monotonic association (Gibbons & Fielden, 1993) is used to assess
accuracy in discriminating among claims with greater or lesser amounts of replication support.
Finally, we use measures of calibration as a supplementary metric (e.g., regression of TA2
scores on TA3 scores, where intercept and slope deviating from 0 and 1, respectively, would be
evidence of miscalibration).

RAND researchers will pilot the use of TA3 tools to assess their applicability with users in the
policy community. While few studies have an explicit emphasis on the reproducibility of scientific
claims, matters of generalization and reliability weigh heavily on the development and
assessment of policy interventions. Two applications of particular interest include the ability to
characterize findings from large bodies of literature that form the initial basis of information from
which further studies are drawn, and in the role of adjudicating load-bearing claims that may be
sources of contention among policy making stakeholders.

We do not have outcomes to report for SCORE yet. However, interim analysis of performance of
expert and machine teams indicates viability of the approach sufficient to obtain approval from
DARPA to enter the second phase of the program. A full report of outcomes will follow
conclusion of the program and consolidation of all available credibility evidence.

Potential Outcomes, Findings, and Artifacts
The primary research objective for SCORE is to create accurate, scalable, automated
algorithms to signal confidence in research claims. If the program outcomes meet this
aspirational objective, there are a variety of potential use cases. Researchers might use scores
to identify potential weaknesses in their claims and provide more detail or support. Journal
editors and conference organizers might use the scores to prioritize selection of reviewers with
expertise in areas that the algorithms flagged as low confidence. Funders and researchers
designing proposals might use the scores to identify potentially important findings that have not
yet achieved high confidence. The scores could guide policymakers’ information search and
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allocation of effort to obtain additional evidence or expert judgment when the algorithms flag
uncertainty.

Even the most optimistic assessments of the potential of such scores would not defer
reasoning, decision-making, judgment, and action to machines. Uncritical use of algorithms can
perpetuate biases in how we evaluate claims, or reflect inappropriate generalizations about
what signals indicate that a paper is credible (Buolamwini & Gebru, 2018; Caliskan et al., 2017;
Larson et al., 2016). Effective automated technologies can be a tool to complement these
human and social processes in the assessment, prioritization, and application of research. They
can also provide researchers with tools for rapid and iterative assessments of credibility. At
scale, as an iterative feedback mechanism, they may help foster culture and behavioral
changes that increase the overall credibility of research.

SCORE represents a unique opportunity to explore a challenge that is paramount to modern
AI--How can we combine the best of both human and machine reasoning? Explainability of
results in machine learning is always challenging, but it is made more so by the nuance inherent
in human writing and scientific expression beyond the more tractable reporting of statistical
information. With multiple algorithm strategies using enriched extracted information from papers
and human judgment and replication outcomes as validation measures, SCORE may facilitate
significant progress on this problem.

Even if the primary objective is not realized, SCORE will advance a variety of research
questions about the credibility and assessment of scholarly research, and generate research
artifacts that can support dozens or hundreds of investigations. These artifacts will include:

1. Annotation Set: A stratified random sample of 3,000 papers with a claim trace from the
abstract to a statistical inference in the paper from a stratified random sample of about
30,000 papers from >60 journals from the social-behavioral sciences from 2009 to 2018
with metadata enhancements such as open science badges, links to open access
versions of articles, and code availability statements;

2. Confidence scores: Expert and machine ratings of the confidence in Annotation Set
claims along with substantial metadata and qualitative assessments about the papers
and basis for confidence ratings;

3. Evidence set: A stratified random sample of 600 papers from the Annotation set that
additionally assess statistical errors in the papers, process and outcome reproducibility,
robustness, and/or replicability;

4. Enhanced bushel set: After 200 of the 600 papers undergo further enhancement by
extracting a full bushel of claims tracing from the abstract to statistical inferences in the
paper, experts and machines will provide scores and other assessments of all claims,
and some additional reproduction, robustness, and replication evidence will be
accumulated for multiple claims in those papers;

5. Process data and artifacts from project execution: Substantial data and documentation
about the process of conducting this work and the many additional artifacts that are
created along the way, sufficient to extend the artifacts and make it a living body of
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research. Cumulatively, SCORE is the most in-depth examination of credibility of
research claims in the social and behavioral sciences ever conducted.

All of the data and materials from SCORE that can be shared without violating publisher
intellectual property rights or human participant protections will be made publicly accessible
after the program is completed. There are many possible research questions that will be
possible to advance with these data by interested researchers. Some of the questions that the
SCORE team is already investigating include: What is the strength of evidence in original
claims? How do experts and machines evaluate the credibility of claims and how does this vary
by discipline, time, topic, and methodology? What are observed reproducibility, robustness, and
replicability rates in the sample and how do they likewise vary? How well do humans and
machines predict replicability, robustness, and reproducibility? How are credibility indicators
related to one another?

Conclusion
SCORE has aspirational objectives to advance scalable tools for credibility assessment, and will
generate substantial research artifacts to support scholarly research on human and machine
judgment, replicability and reproducibility, and the nature of research claims. This is made
possible by SCORE’s greatest asset -- the participation of hundreds of researchers across the
social and behavioral sciences contributing to claim extraction, credibility assessment, and
reproducibility, robustness, and replication studies. This team science project is generating data
that would not otherwise be possible (Uhlmann et al., 2019), and will open doors to many novel
investigations to assess and enhance research credibility. If nothing else, the program may
provide a case example of the potential for team science in tackling many of the most important
challenges in social and behavioral research.
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