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ABSTRACT 

 

ATTENTION AND TASK ENGAGEMENT DURING AUTOMATED DRIVING 

 

James Richard Unverricht 

Old Dominion University, 2023 

Director: Dr. Yusuke Yamani 

 

Many young drivers suffer fatal crashes each year in the United States at a rate 

approximately three times greater than more experienced drivers. Automated driving systems 

may serve to mitigate young drivers high crash rates but remain underexplored in research. This 

dissertation project examined the effects of levels of automation and interestingness of auditory 

clips on latent hazard anticipation in young drivers during simulated driving. Participants drove a 

vehicle at varying levels of vehicle automation (SAE Level 0, 2, or 3) in simulated scenarios, 

each containing a latent hazard event during which a boring, neutral, or interesting auditory clip 

was played. After completing all scenarios, participants completed an auditory stimuli 

recognition test and a questionnaire measuring the drivers’ calibration of their LHA 

performance. Results demonstrated that those in the L3 condition anticipated significantly fewer 

hazards than those in the L0 condition, corroborating previous research (Samuels et al., 2020). 

However, those in the L3 condition were also significantly poorer at anticipating latent hazards 

than those in the L2 condition, suggesting the importance of instruction on a drivers’ attentional 

allocation policy. A tradeoff was found between latent hazard anticipation and auditory 

recognition scores indicating the allocation of limited attentional resources as predicted by the 

Yamani and Horrey (2018) model. Interestingness of auditory stimuli had little to no effect on 

latent hazard anticipation. In general, automation may improve the multitasking ability of a 

young driver piloting L2 automation, but this benefit is lost for drivers of L3 automation. Instead, 



 
 

 
 

young drivers piloting L3 automation may anticipate latent hazards at rates as low as those 

observed in newly licensed drivers, and may be completely unaware of their failure to anticipate 

such hazards. The current research illustrates the criticality of user guidance when handling 

automated driving systems and serves as one step towards understanding the complex 

relationship between human drivers and automated systems.  
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CHAPTER I 

 

INTRODUCTION 

  

Recent technological development has made automation technology ubiquitous in 

everyday tasks and allowed for the design and operation of human-machine systems in a myriad 

of professional domains such as agriculture (Jha et al., 2019), airport security (Korbelak et al., 

2018), and firefighting (Pritzl et al., 2021). One such domain is surface transportation where a 

range of vehicle automation has been conceptualized (SAE, 2021) with some automated features 

being commercialized in developed countries such as the U.S., Germany, and Australia. 

(Cicchino, 2016; Lee & Hess, 2020). Automated driving system (ADS) refers to a set of 

automated technologies that partially or fully replace drivers’ vehicle control abilities including 

longitudinal and lateral control of the vehicle with or without human intervention depending on 

levels of automation (SAE, 2021). Despite its popularity and prospect of fundamentally changing 

road transportation in the future (Yang & Fisher, 2021), the psychological mechanisms that 

regulate intricate interactions between a human driver and ADS are yet unknown and under-

explored in the literature.  

Previous researchers proposed that human operators possess a limited pool of attentional 

resources that can be mobilized to different human information processors to support their task 

performance (Kahneman, 1973; Norman & Bobrow, 1975). In the context of automated driving, 

Yamani and Horrey (2018) expanded the unitary capacity theory (Kahneman, 1973) to integrate 

levels of automation, proposing that automation frees attentional resources for the amount 

corresponding to the level of automation, which can be reallocated to support other concurrent 
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tasks. Thus, the model predicts that drivers could allocate more of their attention towards the 

driving task when supported by a greater level of automation. To test this hypothesis, Samuel 

and colleagues (2020) asked drivers to navigate a series of safety-critical scenarios in a driving 

simulator and found that the participants failed to glance at a critical visual area that can contain 

an unmaterialized, or latent, hazard more frequently when they drove the vehicle with higher 

levels of automation. The results were unexpected and underscore necessity for further 

experimentation. For example, it is possible that drivers with higher levels of ADS allocated their 

attention to a driving-unrelated task such as mind-wandering and neglected to attend to the 

forward roadway.  

As Samuel and colleagues (2020) studied, latent hazard anticipation (LHA) represents a 

driver’s ability to detect a latent hazard that exists in a driving scene and has not yet materialized. 

Successful LHA requires all three levels of situation awareness that are resource-dependent (e.g., 

Yamani et al., 2021; Endsley, 1995). That is, drivers must perceive surrounding vehicles and 

road geometry in their immediate road environment, comprehend what the perceived items 

mean, and project how the road environment evolves over time. For example, a driver could 

perceive the presence of a crosswalk and a van parked near the crosswalk, comprehend that the 

crosswalk means a pedestrian may pass there, and anticipate that a pedestrian may appear from 

behind the parked van as they approach the crosswalk. The literature indicates that LHA 

performance tends to be poor in young drivers with limited driving experiences (Unverricht et 

al., 2018a), suggesting that LHA tasks are resource-limited (Yamani et al., 2021).  

The purpose of this dissertation is to examine how different levels of automation affects a 

drivers’ LHA performance in a driving simulator. To explore how spare resources are mobilized 

during automated driving, we will ask drivers to listen to an auditory clip with its interestingness 
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manipulated mirroring Horrey and colleagues’ (2017) study while they are driving through a 

simulated scenario containing a latent hazard. Additionally, as an exploratory purpose, I will 

measure driver calibration to explore if any discrepancy between drivers’ subjective and 

objective performance scores exists as a function of LOA (Horrey et al., 2015; Roberts et al., 

2016; Unverricht et al., 2020).  
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CHAPTER II 

 

LITERATURE REVIEW 

 

Young Drivers 

Although fatal crash rates among passenger vehicle drivers have been decreasing 

partially due to better vehicle safety technology and changes in driver attitudes (National Safety 

Council, 2020), the number of deaths per year and costs of those deaths are staggering. For 

example, in 2019, over 36,000 people died in motor vehicle crashes costing a total of $242 

billion dollars (IIHS, 2021). Young drivers aged 16 – 19 are over-represented in fatal crashes, 

suffering crash rates three times greater than that of drivers aged 20 and older (IIHS, 2021). 

Immaturity and risk-taking are two factors theorized to be responsible for young drivers’ high 

crash rates (Curry et al., 2015). However, McKnight & McKnight (2003) demonstrated cognitive 

factors such as poor search behavior and insufficient attention as stronger predictors of young 

drivers’ crash rates rather than risk-taking behaviors or immaturity. Specifically, out of 2,128 

police reports of non-fatal crashes including young drivers, 23% were attributed to deficiencies 

in attention, 43.6% were attributed to deficiencies in drivers’ visual search behaviors, and 20.8% 

were attributed to deficiencies in speed adjustment relative to the environment. One implication 

from this finding is that young drivers are not helpless until they mature but that they can 

potentially decrease their crash rates through improving specific perceptual-cognitive skills.  

Latent Hazard Anticipation 

One perceptual-cognitive skill that is critical for young drivers’ safety is hazard 

anticipation (Pradhan et al., 2005; Fisher et al., 2006; McKenna et al., 2006; Unverricht et al., 
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2018; Yamani et al., 2016). Hazard anticipation requires the driver to perceive, comprehend, and 

anticipate hazards on the roadway. Recent work suggests that even untrained college students are 

poor at anticipating hazards (Krishnan et al., 2019; Yahoodik & Yamani, 2021), showing that the 

lack of latent hazard anticipation skills is a pervasive issue among young drivers. Latent hazards 

are imminent hazards that have not yet materialized on the roadway (Unverricht et al., 2018). For 

example, imagine a driver arriving at a T-intersection moderated by a stop sign with heavy 

foliage blocking the left-hand side. From this position, the foliage prevents the driver from 

viewing any potential vehicles that may materialize as they perform a right-hand turn. In this 

example, it is the drivers’ anticipation of a potential vehicle traveling behind the foliage that 

represents their ability to successfully anticipate a latent hazard.  

Latent hazard anticipation is often measured by tracking a drivers’ eye glances during a 

latent hazard event. Each latent hazard scenario contains the pre-determined target zone 

containing a latent hazard and the launch zone representing a spatial area within which the driver 

must glance toward the target zone.  A driver’s glance is classified as a success if the driver in 

the launch zone glances toward the target zone and a failure otherwise (Pradhan et al., 2005; 

Figure 1).  
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Figure 1 

Latent hazard anticipation example.  

 

Note. The blue square represents the launch zone where the driver would need to visually 

observe the red circle or target zone to avoid a potential hazard (Unverricht et al., 2018a). 

 

 

Novice drivers have demonstrated poorer latent hazard anticipation performance than 

more experienced drivers (Garay-Vega et al., 2007; Pradhan et al., 2005). For example, in a 

seminal study (Pradhan et al., 2005), participants were placed into a driving simulator and 

exposed to 16 different LHA events. Their results showed that novice drivers anticipated latent 

hazards in around half as many events as expert drivers. In another experiment, researchers 

tested novice, experienced, and commercial drivers’ ability to anticipate latent hazards. They 

found novice drivers were the poorest at anticipating latent hazards (Crundall et al., 2012). 

Additionally, taxi drivers were better than all other groups at anticipating hazards, a finding 

indicating that LHA improves with experience and knowledge rather than a decrease in risky 

driving behaviors caused by age.  

From a practical perspective, studying LHA has the potential to mitigate young driver’s 

crash rates through training and design. For example, researchers developed the Risk Awareness 
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and Perception Training (RAPT) program that has shown to improve young drivers’ ability to 

anticipate hazards (Pollatsek et al., 2006; Pradhan et al., 2006a; 2009; Yahoodik & Yamani, 

2021; for a review of several hazard anticipation training programs see Unverricht et al., 2018a). 

RAPT’s effect on LHA performance has been validated both in a driving simulator and in the 

field (Pradhan et al., 2006b; Taylor et al., 2011). Additionally, trained participants have shown 

retention of their improved LHA performance up to eight months (Taylor et al., 2011). 

Additionally, a large-scale on-road evaluation study showed that male teen drivers who received 

RAPT training not only showed an improvement to their LHA skills, but also showed a 24% 

decrease in crash rates over 12 months post-training compared to non-trained drivers (Thomas et 

al., 2016). Although the effect of training on LHA is well developed and documented, how 

design solutions such as automated driving systems and LHA interact remain relatively 

unexplored.  

How the implementation of ADS may affect LHA can be described using two theoretical 

models, Wicken’s human-information processing (HIP; Wickens, 2002) and Yamani and 

Horrey’s (2018) model of human-automation interaction. The HIP model posits a series of 

information processing stages such as perception, comprehension, decision-making, response 

selection, and response execution, each requiring attentional resources. Attentional resources are 

a psychological construct that supports information-processing stages of a human conceptualized 

as a limited-capacity information processor (Gopher & Donchin, 1986; Kahneman, 1973; Moray, 

1967; Wickens, 2002). Attentional resources can be considered analogous to a fuel that 

information processing requires. However, the amount of attention that an individual has is 

theorized to be limited (Moray, 1967), requiring the individual to selectively allocate attention to 

tasks, a process itself that is thought to require attentional resources (Norman & Shallice, 1986; 
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Schumacher et al., 2001). For drivers performing latent hazard anticipation, each individual stage 

of anticipation (e.g., perception, comprehension, and projection) requires sufficient attentional 

resources to be able to ultimately produce road awareness and safe driving behaviors. Yamani 

and Horrey’s (2018) model of human-automation interaction provide a taxonomy for 

understanding how different levels of automation could impact a driver’s attention allocation in 

the driving environment (Figure 2). The model states that as the level of automation increases at 

a stage of information processing, a corresponding amount of attentional resources of the driver 

is freed and reduces workload. Then, the combined performance of both the human and machine 

feed into the system performance, monitored by the human via feedback. Both the monitoring of 

performance and factors such as experience and task engagement influence the attentional 

allocation strategy of the driver. The model describes how a driver can allocate their attention 

across different processing stages or tasks, be they automated tasks, driving related tasks, or 

driving unrelated tasks. The Yamani and Horrey (2018) model predicts three potential outcomes 

of using automation with driving: the driver can allocate the additional resources to monitoring 

the automation, the driver can allocate the additional attentional resources to driving critical tasks 

such as HA, or the driver could allocate those attentional resources towards non-driving related 

tasks. For young drivers, automation provides the potential to improve their LHA if they 

effectively allocate the freed attentional resources towards that driving-related task. 

  



9 
 

 
 

Figure 2 

Yamani and Horrey’s (2018) model of human-automation interaction.  

 

 

 

Automated Vehicles and Automation 

Automated vehicles refer to vehicles equipped with technologies that support from SAE 

levels 1-4 while autonomous vehicles refer to those at SAE level 5 (SAE, 2021). Lower levels of 

automation (L1 and L2) automate specific functions of the driving task such as speed or lateral 

control and require the driver to supervise and take over the automation when needed. Higher 

levels of automation, such as L3, allow the drivers to disengage from the driving task, only 

responsible for acting when prompted by the vehicle. The highest levels of automation, such as 

L4, and the autonomous level of L5, do not require a driver to take over control of the vehicle 

and is analogous to a “driver-less taxi” (SAE, 2021).  
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Automation refers to when a machine either completely or partially subsumes a function or 

role that was previously performed by a human (Bainbridge, 1983). For AV’s, this means the 

automation can be responsible for executing driving tasks such as detecting potential forward 

collisions, maintaining speed, and keeping the vehicle in the center of the lane. Parasuraman and 

colleagues (2000) mapped automation across the human-information processing spectrum (e.g. 

HIP model), information acquisition, information analysis, decision-making, and response 

execution. In addition, the authors presented levels of automation (LOA) to describe how a 

vehicle could be variably automated across the information-processing stages but also within 

each stage. For example, automation can be high at the perception stage but low at the response 

execution stage. In relation to ADS, by activating cruise control (CC), the driver no longer needs 

to press the break or acceleration pedal to maintain their current speed. But, if the need to 

decelerate or accelerate were to arise, the driver would need to take control. Autopilot, on the 

other hand, partially takes the responsibility for perception, analysis, decision-making, and 

response execution, with the condition that the driver supersede the machine if it were to fail. CC 

represents a L1 automated driving system and Tesla’s Autopilot represents a L2 automated 

driving system (SAE, 2021). For both systems, the driver remains responsible for the safety of 

the vehicle, but the automation serves as support systems to improve the drivers’ performance. In 

this context, automation can improve performance through reducing drivers’ workload 

(Parasuraman & Riley, 1997; De Winter et al., 2014), freeing attentional resources for situation 

awareness (Parasuraman et al., 2000; De Winter et al., 2014) and potentially LHA (Yamani et 

al., 2018). However, one strong take-away from Parasuraman and colleagues (2000) is that 

applying automation to a system does not simply supplant human behavior but holds the 

potential to change that behavior.  



11 
 

 
 

High levels of automation may turn the driver from an experienced operator into an 

inexperienced monitor of automation (Casner et al., 2016; Hancock et al., 2020; Parasuraman et 

al., 2000), of which humans have shown to be poor at supervising (Parasuraman & Riley, 1997). 

Changing a driver from an active participant to an inactive supervisor may lead to cognitive 

underload (Young & Stanton, 2002) or passive fatigue (Saxby et al., 2013) causing drivers to 

engage in non-driving related tasks (NDRTs) to circumvent (Carsten et al., 2012). In addition, 

higher levels of automation in motor vehicles can lead to degradation in drivers’ situation 

awareness and cause the driver to become “out of the loop” (OOTL; Cunningham et al., 2015). 

The OOTL problem occurs when automation causes a driver to be removed from one or two 

primary loops (Louw et al., 2015). The first is the physical control loop, where a driver may find 

difficulty physically controlling the vehicle after a take-over request. Recent work has implicated 

that a drivers’ ability to safely take-over control of a vehicle when prompted by the automation is 

depreciated by factors such as unnoticed mode transitions, loss of awareness of the system state, 

high trust and complacency scores, and passive monitoring causing a failure to visually sample 

safety critical such as crosswalks at intersections (Merat et al., 2019; Seppelt & Victor, 2016). 

Additionally, engaging in NDRTs and having the amount of time leading a take-over request be 

less than 10 seconds can significantly impair a drivers’ ability to safely take-over control of the 

vehicle (Eriksson & Stanton, 2017; Wan & Wu, 2018). The other loop that can cause a driver to 

be OOTL is the situation awareness loop, where a driver can be removed through either visual or 

cognitive resources being allocated away from the driving task and the road environment. 

Latent Hazard Anticipation and Automated Vehicles 

Yamani and Horrey (2018) predicts that drivers piloting a vehicle at L2 automation 

should be able to allocate their attention to the driving related tasks better than drivers at L0. 
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Drivers in the L2 condition would theoretically have a larger excess of attentional resources that 

can be used to support information-processing stages on the driving task. If drivers allocate these 

additional attentional resources towards LHA, then drivers’ LHA performance should increase.  

However, although high LOA should improve LHA performance, high LOA has shown 

to either negatively affect LHA performance or hold no affect at all (Ebadi et al., 2021; Samuel 

et al., 2020). For example, one study demonstrated that drivers anticipated fewer hazards as the 

level of automation within an AV increased from L0 – L3, with L0 – L2 showing no significant 

difference (Samuel et al., 2020). Another study found those in the L2 automated condition 

anticipated 29% fewer hazards than those in the L0 manual condition (Ebadi et al., 2021). 

Finally, in Hatfield and colleagues (2019), drivers were given a latent hazard anticipation 

training program and then had to drive through multiple virtual scenarios, in either L0 or L2 

conditions. They found those in L2 made fewer fixations towards the forward roadway than 

those in L0.  Even though drivers supported by L2 ADS should be able to anticipate more 

hazards, they are repeatedly found to anticipate fewer.  

One explanation for drivers’ poor LHA performance within an automated AV is the 

drivers’ attention allocation strategy. As stated in Yamani and Horrey (2018), a driver may 

allocate their attention toward the driving task, toward a driving-related task, or toward a NDRT. 

In general, drivers spend less time anticipating hazards while interacting with a NDRT in both 

L0 (Ebadi et al., 2019; He & Donmez, 2018; 2020) and L2 automated vehicles (He et al., 2021a). 

Additionally, while piloting a L2 automated system and interacting with a secondary visual-

manual task, both novices and experts spent significantly less time viewing anticipatory cues, 

indicating the allocation of their visual attention is directed towards the NDRT regardless of 

experience (He et al., 2021a). The negative effect engaging in NDRTs has on anticipating 



13 
 

 
 

hazards is found even when using an auditory-verbal secondary task (Ebadi et al., 2019). This is 

not to say that driving performance cannot be improved if attention is allocated towards driving 

related tasks. For example, automation improved drivers’ time to collision judgements and brake 

reaction time when drivers allocated their excess attentional resources towards those driving 

related tasks (Lodinger et al., 2019). There is even some evidence that automation can improve 

drivers’ visual scanning of anticipatory cues if they allocate their attention towards that driving 

related task (He et al., 2021b). One factor that can influence a driver’s attention allocation 

strategy is task engagement (Yamani & Horrey, 2018).  

Interestingness and Task Engagement   

Task engagement can be defined variably as it refers to either the subjective state of the 

individual or as it refers to the properties of the task. For example, Matthews and colleagues 

(2002) defined task engagement as “a complex of energy, motivation, and concentration”, a 

definition inherent to the subjective state of the individual. In contrast, a more commonly used 

model of task engagement describes engagement as the properties of a task that can promote or 

hinder engagement across four different stages, point of engagement, engagement, 

disengagement, and reengagement (O’Brien & Toms, 2008). For example, a task which is 

interactive, novel, and aesthetically pleasing would be inherently more engaging than a task that 

is passive, familiar, and repulsive. O’Brien and Toms’ model of engagement promotes that 

engagement is facilitated through both the properties of the object and the top-down goals and 

perceptions of the individual.  

Engaging in NDRTs can be promoted through highly engaging secondary tasks more 

than boring or neutral engaging secondary tasks (Dula et al., 2011; Gibson et al., 2016; Horrey et 

al., 2009; 2017; Klauer et al., 2015). For example, one study performed a meta-analysis of 
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experiments investigating the effect of secondary task engagement on crash risk and found that 

visual-manual tasks (e.g., texting) incurred the highest crash risk, potentially due to the increased 

engagement intrinsic to these tasks (Klauer et al., 2015). However, this is not to say that tasks 

must be visual-manual to be highly engaging or that all visual-manual tasks are engaging. 

Another study (Dula et al., 2011) assigned drivers to one of three conditions, no phone call, 

emotional phone call, or mundane phone call, all while driving in a simulated environment. 

Although the mundane phone call group conducted more dangerous driving behaviors than the 

no call group, the emotional call group engaged in significantly more dangerous driving 

behaviors than both the no call and mundane call (Dula et al., 2011). These results indicate that 

higher levels of engagement can promote worse distracted driving behaviors, even if they are not 

visual-manual tasks. 

One factor that can increase a task’s engagement is how interesting that task is perceived. 

Horrey and colleagues (2017) manipulated the interestingness of news articles to manipulate a 

drivers’ engagement in an auditory secondary task. They found increased driving variability in 

lane keeping and speed control for both audio conditions in comparison to a baseline no audio 

condition, but the interesting audio condition performed significantly slower on the critical 

braking task than the boring audio condition. Yet, drivers’ physiological, performance, and 

subjective data indicated that interesting audio stimuli required fewer cognitive resources to 

process than boring audio stimuli. This mirrors another study that found increased learning when 

reading an interesting text compared to a boring text, even though less attention was allocated to 

the interesting verse (Shirey & Reynolds, 1988). Currently, it is unclear how increasing 

engagement in a task through interestingness could influence a drivers’ ability to process various 

streams of information and anticipate road hazard.   
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The process of regulating one’s attention in the presence of multiple possible tasks is 

theorized to be a complex task requiring strategy and attentional resources (Norman & Shallice, 

1986; Schumacher et al., 2001). A drivers’ perception of their environment can influence how a 

driver decides their attention allocation strategy. For example, one study explored how drivers 

strategized their engagement in a secondary task while piloting either manual or partially 

automated vehicles. Factors such as perceived event rate and urgency level of the hazard highly 

affected a driver’s attention allocation policy (Lin et al., 2019). Specifically, if a hazard was 

expected to occur more frequently, and those hazards expected to be of a higher risk, the driver 

would spend more time allocating attention to scan the environment and anticipating those 

hazards. In addition, when the hazard was deemed urgent, drivers would disengage from their 

secondary task but when the hazard was deemed less urgent, drivers would instead engage in 

task-switching. Drivers’ propensity to engage in task-switching under low urgency is also 

demonstrated in another study that found drivers would complete a secondary texting task even 

after receiving a TOR from the automated vehicle (Wandtner et al., 2018). The drivers had eight 

seconds to respond and the response to the TOR did not require an immediate maneuver, 

lowering the urgency of the hazard. The perceived nature of hazards from the environment seems 

to be a critical component to how drivers allocate their attention in a partially automated vehicle, 

as predicted by Yamani and Horrey (2018). To determine one’s level of risk within the driving 

environment, a driver must understand the relationship between themselves and their 

environment.  More specifically, they must calibrate their own abilities to the demands and 

challenges of a dynamic driving environment.  
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Calibration 

Calibration can be defined as the difference between an objective measure of an ability or 

skill and its subjective appraisal (Horrey et al., 2015; Roberts et al., 2016; Unverricht et al., 

2018b; 2020). Ideally, there would be no difference between one’s subjective self-appraisal and 

the objective measure of their ability or skill of interest. In such a case, one would have perfect 

calibration where their appraisal of their own performance perfectly matches with the actual 

performance. Imperfect calibration would occur when one overestimates or underestimates their 

performance. For example, if someone were to perform poorly on an exam and receive a 60%, 

yet they believe they received a much higher 80%, that individual would be overestimating their 

performance on that exam. Conversely, if that student instead performed well on an exam and 

received an 80%, but they believe they received a 60% on the exam, they would be 

underestimating their abilities. Both underestimation and overestimation of driving abilities can 

disrupt safe driving (Deery, 1999; Kuiken & Twisk, 2001).  

Calibration is often studied under the field of self-appraising research. Individuals can be 

poor at self-appraising their own abilities (Dunning et al., 2004; Stajkovic, & Luthans, 1998; 

Woodman & Hardy, 2003). In general, individuals are more likely to overestimate their own 

abilities when compared to their peers. This overestimation has been coined optimism bias and 

self-enhancement bias by researchers in domains such as medicine and sports (Zell & Krizan, 

2014).  

Within the domain of surface transportation, evidence consistently shows that drivers 

overestimate their own abilities (Amado et al., 2014; Deery, 1999; Freund et al., 2005; Horswill 

et al., 2004; Svenson, 1981; Roberts et al., 2016; Unverricht et al., 2018b; 2020). For example, 

95% of drivers in one study rated their own abilities to be better than their actual performance 
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(Amado et al., 2014). Another study recruited 152 older drivers and found that 65% rated 

themselves as better than their peers (Freund et al., 2005). Young drivers overestimate their 

driving abilities even more than older experienced drivers (De Craen et al., 2011; Horswill et al., 

2004; Horrey et al., 2015). A longitudinal study found that young drivers’ calibration did not 

improve after their first two years of driving, indicating that even with two years of experience 

they still overestimated their abilities (De Craen, 2010). Young drivers’ overestimation of their 

driving skills is especially dangerous as it is expected to be positively correlated with young 

driver crash risk (Gregersen, 1996; Mathews & Moran, 1986).  

The Task Compatibility and Interface Model (TACM; Figure 3) explains how drivers 

adjust their behaviors to balance their driving demands with their self-assessed abilities (de 

Craen, 2010; Fuller, 2005; Horrey et al., 2015). Specifically, if the demands of the driving task 

are less than the drivers’ capabilities, then the driver will maintain control. However, if the 

demands of the driving task exceed that of the drivers’ capability, then the driver will likely lose 

control resulting in either a collision or a lucky escape (Fuller, 2005). TACM assumes a demand 

regulation theory that postulates that a driver has an internalized optimal relationship between 

capability and task-demands and will adjust their behaviors to achieve and maintain this 

relationship. Therefore, if a driver feels that the primary driving task is far beneath their capacity, 

and they would be able to add in a secondary task without losing control, such as texting or 

another NDRT. But, if the road environment demands careful vehicle control, such as being 

novel or obscured by rain, snow, or other types of distractors on road, the driver might adaptively 

slow the vehicle and lower the radio to minimize any extra demands to maintain the balance of 

capability and demands. For a driver to execute a safe and successful drive, they must be able to 

regulate their task demands with their own abilities and have an accurate estimate of both. Poor 
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calibration can result in adopting task-demands that exceed capabilities, increasing the drivers’ 

crash risk (Deery, 1999). Automation, while providing an avenue to improve safety by reducing 

task demands below the driver’s capability, also provides an avenue to mis-represent task 

demands allowing the driver to allocate attention away from safety critical tasks like anticipating 

hazards and towards non-driving related tasks. 

 

 

Figure 3 

The Task-Capability Interface Model (de Craen, 2010). 
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The Driver Calibration Framework (DCF; Horrey et al., 2015) was proposed building on 

models such as TACM’s demand regulation (Fuller, 2005), Wicken’s HIP model (Wickens et al., 

2015), and the LENS model for information selection and application (Brunswik, 1955). A main 

component of the DCF is that a drivers’ perspective of their current performance and the state of 

the world is impacted by the flow of information that they process from selection, processing, 

integration, to response selection and execution (Figure 4). Feedback from this process feeds 

back into the drivers’ perceptions of both their current performance and the state of the world, 

indicating feedback as a critical element for good calibration. Drivers who are overconfident in 

their abilities may be more likely to engage in distracted driving (Lesch & Hancock, 2004). 

Drivers who are overconfident in their abilities are less adaptive to task demands than well 

calibrated drivers (de Craen, 2007). Moreover, a driver that is unaware of the performance 

decrements caused by a distraction can be less likely to disengage from a secondary task while 

driving (Horrey et al., 2017).  
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Figure 4 

The Driver Calibration Framework with the added automation component (Horrey et al., 2015). 

 

 

  

Self-monitoring, the assessment of one’s own performance or ability (Snyder, 1979), is 

theorized to be a central executive process, one that can elicit a high cognitive load (requiring 

working memory space and attentional capacity) on the individual (Donders, 2002). In this case, 

calibration can be considered as the ability to monitor and accurately perceive self-performance 

and the effects of that performance against an expected outcome. For LHA, calibration is the 

difference between their perception of correctly anticipating a latent hazard and their objective 

performance for correctly anticipating a latent hazard.  Meaning, a driver who is well calibrated 

to their LHA performance is more accurate in determining whether or not they correctly 

anticipated a hazard. Automation holds the potential to “free up” attentional resources, which the 

driver can allocate to their self-monitoring process and theoretically increase the accuracy of 
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their own estimated performance. However, other factors such as a highly demanding task and 

increased driving demands can pull attention away from the estimation process, preventing the 

driver from being accurately calibrated. Currently, it is unknown exactly how LOA would affect 

a drivers’ ability to calibrate their own LHA performance. 
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CHAPTER III 

 

 CURRENT STUDY AND HYPOTHESES 

 

Currently, it is unknown how the interestingness of a secondary stimuli affects a driver’s 

LHA and their calibration of their LHA performance while piloting a partially automated 

vehicle. Samuel and colleagues (2020) found higher levels of automation reduced LHA 

performance, suggesting that this effect may have been caused by drivers allocating their 

attention away from the driving task. Horrey and colleagues (2017) found interesting auditory 

stimuli impaired drivers’ brake reaction time more than boring auditory stimuli, and drivers 

reported interesting stimuli more engaging. However, the interesting stimuli required fewer 

cognitive resources to process than boring stimuli as measured by physiological, performance, 

and subjective data. Therefore, drivers in the high automated and interesting auditory stimuli 

condition are expected to have the greatest available attentional resources. This project aims to 

examine whether drivers will allocate those resources towards LHA as predicted by the Yamani 

and Horrey (2018) model and how LOA and task engagement may affect LHA performance.  

Hypothesis 1. Drivers piloting higher levels of automation would anticipate a greater 

proportion of latent hazards than those piloting lower levels of automation. More specifically, 

drivers with the interesting auditory stimuli and in the highest level of automation condition (L3) 

would anticipate the greatest proportions of latent hazards.  

Hypothesis 2. Drivers in the L3 condition would anticipate a greater proportion of latent 

hazards compared to those in the L2 and L0 conditions.  
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Hypothesis 3. Drivers in the interesting auditory stimulus condition are expected to 

anticipate a greater proportion of latent hazards compared to those in the boring auditory 

stimulus condition. 

Hypothesis 4. Drivers piloting the L3 automated vehicle will recognize more auditory 

stimuli than those piloting L2 or L0 vehicles. Specifically, drivers in the L3 automation and the 

interesting stimuli condition would recognize the greatest proportion of auditory stimuli. 

Hypothesis 5. Drivers in the L3 condition would recognize the greatest proportion of 

auditory stimuli compared to those in the L2 and L0 conditions.  

Hypothesis 6. Drivers would recognize interesting auditory stimuli more correctly than 

those of boring stimuli. 
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CHAPTER IV 

 

METHOD 

 

Design 

This study employed a 3 x 3 mixed-factor design with Level of Automation (L0, L2, & L3) as a 

between-subject factor and Interestingness (boring, neutral, & interesting) as a within-subject 

factor.  

Independent Variables 

Level of Automation 

For the L3 and L2 condition, the lateral control and longitudinal velocity of the vehicle 

was controlled by the simulated automated driving system. Drivers in the L3 condition were 

instructed to monitor the automation which is controlling the vehicle. Drivers in the L2 condition 

were instructed to monitor the automation and their driving environment. Participants in both 

conditions were instructed to be prepared to take over control of the vehicle if necessary. For the 

L0 condition, drivers manually controlled the vehicle. L0 drivers were instructed to monitor their 

driving environment and control the vehicle.  

Interestingness of Auditory Stimuli 

Auditory stimuli consisted of news stories that varied in being either boring, neutral, or 

interesting. The stimuli were generated and validated in a previous work (Horrey et al., 2017). 

The current work used a selected set of 9 audio clips representing three interesting, three boring, 

and three neutral clips out of the total of 73 original stimuli recorded. To ensure that the 

difference between interesting and boring audio clips remained stable for this study’s population, 
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a pilot study was conducted. Thirty-nine undergraduate students rated a set of 39 auditory stimuli 

for their level of engagement on a slider from -7 (boring) to 7 (interesting) in Qualtrics. The 

stimuli were the same news sources that were used in Horrey and colleagues (2017). All clips 

were presented to each participant in a random order. The pre-selected highly interesting audio 

stimuli (M = 2.27, SD = 2.51) were rated as more interesting than pre-selected boring stimuli (M 

= -1.62, SD = 2.40), t(38) = -10.091; p < .001, validating the previous study using the 

undergraduate student population at Old Dominion University. Neutral stimuli were presented 

that were neither interesting nor boring, (M = 0.01, SD = 0.04).  

Dependent Variables 

Latent Hazard Anticipation 

LHA was operationalized as glances towards a pre-determined target zone from a pre-

determined launch zone (Pradhan et al., 2005). The target zone is a pre-determined location 

where a hazard may materialize. The launch zone is a pre-determined location where the driver 

should glance towards the target zone. Only glances towards the target zone while in the launch 

zone will be marked as a successful anticipatory glance (Figure 1). To compute a LHA score, 

gaze locations were manually coded by the researcher from eye tracking videos to analyze 

anticipatory glances as either 1 (successful) or 0 (unsuccessful). Previous studies have used and 

validated this measure (for a review see Unverricht et al., 2018a). 

Recognition of Auditory Stimuli 

To measure retention of auditory stimuli, a procedure following that found in Horrey and 

colleagues (2017) was followed. Participants were presented with transcripts of all 9 auditory 

stimuli they had heard with an additional 9 unheard news stories that served as distractors 

(Appendix A). Participants were asked “Please read the following transcripts and indicate 
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whether or not you heard each passage during the experiment by clicking yes or no.” Then, 

participants were exposed to one of the transcripts, in a randomized order, until they completed 

all 18 transcripts. The total percentage of correctly identified stimuli and correctly rejected 

distractors served as the measure for recognition of auditory stimuli.  

Driver Calibration 

Calibration score was calculated using the normalized difference scores method (Roberts 

et al., 2016; Unverricht et al., 2018b; 2020). This method required two steps. First, normalizing 

the objective and subjective scores using the following formula: 100 x (score – min(score) / 

max(score) – min(score)). Second, calculating the difference score from the previously 

normalized scores. For LHA, scores were first normalized using the formula listed above. Then, 

the normalized objective performance (proportion of trials with a successful anticipation) was 

subtracted from the normalized subjective performance as measured through the calibration 

questionnaire. Therefore, the following formula was used to calculate the difference score: 

calibration = normalized subjective LHA score – normalized objective LHA score. If drivers 

overestimated their LHA performance, then their calibration score was positive. If instead drivers 

underestimated their LHA performance, then their calibration scores were negative. The better 

calibrated a driver was, the closer their subjective performance was to their objective 

performance and the closer their calibration score was to zero.  

Participants 

Forty-two young drivers were recruited from the community of Old Dominion 

University. Each participant was randomly assigned to one of the three conditions, the L0, L2 or 

L3 conditions. Fourteen participants were assigned to the L0 manual driving condition (nine 

males, mean age = 19 years, SD = 1.18, mean months since licensure = 26.74, SD = 9.44), 14 
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participants were assigned to the L2 partially automated condition (seven males, mean age = 

19.64, SD = 1.01, mean months since licensure = 26.57, SD = 6.60), and 14 participants were 

assigned to the L3 automated condition (six males, mean age = 19, SD = .88, mean months since 

licensure = 25.80, SD = 10.73). To participate in this study, all drivers must have held a valid 

drivers’ license, had normal or corrected-to-normal visual acuity, been a native English speaker, 

and had no hearing disability or any other reason that they may not have been able to 

comprehend the auditory stimuli. Additionally, drivers were selected from ages 18 to 21. They 

received either research credits or paid compensation for their participation. Compensation was 

paid at the rate of $10 for the first hour and $5 for every half hour completed thereafter, with a 

potential total of $20 per session.  

Apparatus and Materials 

Driving Simulator 

The RDS – 1000 driving simulator (Real-time Technologies, Inc.) is a high-fidelity single 

seat quarter cab design that will be used in this experiment (Figure 5). The simulator was 

equipped with a steering subsystem, brake and acceleration pedals, and a fully customizable 

touch-screen center stack and a dashboard. In addition, the simulator had a 5.1 surround sound 

speaker for simulating environmental noise and presenting the auditory stimuli for the in-vehicle 

task. Three 65” screens presented the simulated roadway environment and provided a horizontal 

field of view at 205 and a vertical field of view at 38. This simulator supported automated 

driving capabilities. 
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Figure 5 

The RDS – 1000 driving simulator (Real-time Technologies, Inc.) driving simulator. 

  

 

 

Eye Tracker 

To record participant’s eye movements, a head-mounted Pupil Core Mobile Eye tracker 

was used (Pupil Labs). The eye tracker simultaneously records the external scene while tracking 

the users’ eye movements at a sample rate of 200 Hz using an infrared light. Using Pupil Capture 

software, the eye image and scene image are interleaved producing a crosshair indicating the 

driver’s gaze on the scene image.  
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Briefing Instructional Pamphlet 

To ensure that all participants have sufficient knowledge to engage in the process of 

anticipating hazards, they read a three-page instruction (Appendix B). The instruction manual 

outlined what a latent hazard is and provided an example of a precursor of a latent hazard. In 

addition, the instruction sheet gave the participant a brief overview of the simulated automated 

driving system (ADS). Specifically, it instructed the participant that the ADS can modulate, 

control, and maintain speed, lane deviation, but cannot anticipate latent hazards as well as how 

take-over requests (TORs) are issued, and how to take over when a TOR is issued.  

Auditory Stimuli 

The audio clips used in this study contain content of news stories either collected or 

generated by Horrey and colleagues (2017; Appendix A). The 9 selected stimuli represent the 

most interesting (M = 4.62, SD = .54), boring (M = -3.87, SD = .41), and neutral stimuli (M = 

.01, SD = .11). The interesting set of audio clips scored higher than the boring set across three 

metrics, length of audio clip in seconds (Interesting, M = 36.00 seconds, SD = 5.29; Boring, M = 

23.00 seconds, SD = 6.00), objective difficulty as measured by the Flesch-Kincaid scale 

(Interesting, M = 24.12, SD = 13.94, Boring, M = 17.93, SD = 5.28), and word count (Interesting, 

M = 99.00, SD = 15.09, Boring, M = 69.33, SD = 10.69). 

Simulator Sickness Questionnaires 

Participants were screened for their susceptibility to simulator sickness using two 

questionnaires, the Motion Sickness Susceptibility Questionnaire (MSSQ; Appendix C, Golding, 

1998) and the Simulator Sickness Questionnaire (SSQ; Appendix D, Kennedy et al., 1993). If 

participants scored above a 19 on the MSSQ, then they were not eligible to participate in this 

study because of their high-risk for simulator sickness. No participants scored above a 19.  
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Calibration Questionnaire 

To measure a drivers’ calibration of their own performance, four questions were asked. 

Specifically, participants were asked to rate their performance on a ruler Likert scale from 1 

(poor) to 10 (excellent) across four metrics depending on their assignment to the L0, L2, or the 

L3 condition (Appendix E). 

Driving History Questionnaires 

Before the participant was dismissed, they filled out a driving history questionnaire 

which collected their demographics and driving history (Appendix F).  

NASA-TLX 

To explore drivers’ workload, the NASA-TLX was given (Hart & Staveland, 1988). The 

NASA-TLX is a subjective measure of an individual’s workload across several components, 

temporal, physical, and mental demand, performance, effort, and frustration. These components 

are measured through six single-item questions such as “how hard did you have to work to 

accomplish your level of performance?” and “how mentally demanding was the task?”. 

Participants can respond by marking a line on a twenty-point ruler scale ranging from low to 

high or good to poor for one catch item (Performance). The NASA-TLX has demonstrated high 

convergent, concurrent, and internal validity (Rubio et al., 2004). Additionally, the questionnaire 

has demonstrated high test/re-test reliability (Hart & Staveland, 1988).  

Driving Scenarios 

 Nine latent hazard scenarios were created based on previous research (Samuel et al., 

2020; Yahoodik & Yamani, 2021). Each scenario included one latent hazard event, was 

approximately 6,000 ft in length, and took approximately 4 minutes to complete. The onset of 

each auditory stimulus occurred before the participant entered the launch zone and the end was 
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after the latent hazard event. Specifically, the vehicle traveled through a spatial trigger at a pre-

determined location in the simulation, triggering the auditory clip to start playing. Following the 

onset of the auditory stimulus, the vehicle continued to travel before approaching the latent 

hazard event. After passing through the launch zone of the latent hazard event, the auditory 

stimulus continued to play until it reached the end of the clip. To account for order effects, the 

order of the 9 scenarios and the combination of the scenario and the auditory stimuli were 

randomized. 
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Potential Pedestrian at Crosswalk Hidden due to Truck 

 The participant is on a 4-lane road (two in each direction) and passes a traffic sign 

indicating a pedestrian crosswalk ahead (Figure 6). A truck and car are parked before the 

crosswalk, obscuring the drivers view of a potential pedestrian who might be waiting to cross. 

The participant should look at the area of the crosswalk immediately in front of the truck as they 

approach the crosswalk.  

 

 

Figure 6 

Potential pedestrian at crosswalk hidden due to truck. 
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Adjacent Truck Intersection 

 The participant is on a 4-lane road (two in each direction) and driving straight with side 

streets on the right and left (Figure 7). A truck is parked in the left lane at a four-way 

intersection, preventing the driver from seeing any vehicles that may be about to pass in front of 

them. The participant should look towards the area in immediately in front of the truck as they 

approach the intersection.  

 

 

Figure 7 

Adjacent truck intersection.  
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Hedge and Crosswalk 

 The participant travels on a 2-lane road and approaches a stop sign-controlled intersection 

(Figure 8). After a full stop, thick hedges block any pedestrians or vehicles that may be about to 

pass in front of them. The participant should look towards the area immediately in front of the 

hedges before they drive past the stop sign.  

 

 

Figure 8 

Hedge and crosswalk. 
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Multiple Lane Intersection with Bus 

 The participant is on a 4-lane road and approaches a signal-controlled intersection (Figure 

9). A bus is to their right, stationary in the left-hand lane, obscuring any vehicles that may pass in 

front of them into the intersection. The participant should look towards the area immediately in 

front of the bus on their right as the approach the intersection. 

 

 

Figure 9 

Multiple-lane intersection with bus. 
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T-Intersection 

 The participant is on a 2-lane road with one travel lane in either direction (Figure 10). As 

they approach a T-intersection, trees obscure any oncoming vehicles from the right road. The 

participant should look towards the entryway of the right lane immediately in front of the trees.  

 

 

Figure 10 

T-intersection. 
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Midblock Crosswalk 

 The participant is on a 2-lane road and in a school zone (Figure 11). At the apex of the 

winding roads, vegetation obscures the left entrance to a crosswalk. Participant should look 

towards the hedges.  

 

 

Figure 11 

Midblock Crosswalk. 
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Potential Parked Car Entering the Right Traffic Lane 

 The participant is on a 4-lane road and is traveling on the right most lane (Figure 12). A 

fleet of cars are parked on the right side of the lane. To prevent a rear-end collision, the 

participant should look towards the line of parked cars as they approach.  

 

 

Figure 12 

Potential parked car entering the right traffic lane. 
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Potential Traffic Blocked by Urban Objects 

 The participant is on a 4-lane road and is approaching a stop sign controlled intersection 

with the intersecting road not controlled by a stop sign (Figure 13). Multiple trash bins and a 

truck prevents the participant from seeing any oncoming traffic on the right. The participant 

should look towards the back edge of the truck as they enter the intersection.  

 

 

Figure 13 

Potential traffic blocked by urban objects. 
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Left Hand Turn Within Intersection 

 The participant is on a 4-lane road and is approaching a stop light-controlled intersection 

with a row of trucks waiting for the lead truck to turn left (Figure 14). The row of trucks prevents 

the participant from seeing any oncoming traffic from the left of the trucks. The participant 

should look towards the area in front of the trucks.  

 

 

Figure 14 

Left-hand turn within intersection. 
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Driving Task 

For the main driving task, all participants were instructed to follow the rules of the road 

and the posted sign limits. Participants were instructed via the briefing instructional pamphlet 

(Appendix B) on latent hazard anticipation and that the ADS would control all lateral and 

longitudinal facets of driving and it is the participant’s responsibility to take over control of the 

vehicle if the ADS fails. Additionally, participants in the L2 condition were asked to constantly 

monitor both the driving environment and the ADS per SAE standards for L2 systems (SAE, 

2021). Drivers in the L3 condition were asked to monitor the automation. Both automated 

conditions (L2 & L3) were asked to be prepared to take-over control of the vehicle if it requires. 

All participants were instructed that they were responsible for the safety of the vehicle, and 

should they drive in a manner that negatively affects the safety of the vehicle, they will have to 

repeat the drive.” 

Auditory Task 

Participants were exposed to auditory stimuli that was either interesting (high 

engagement), neutral (medium engagement), or boring (low engagement). Participants were 

instructed that they were required to take a recognition test of the auditory clips at the end of the 

experiment. 

Procedure 

Participants read an informed consent sheet and indicated their participation if they 

agreed, followed by the filling out the MSSQ. If they scored lower than 19 on the MSSQ, 

participants continued the experiment by completing the SSQ. Then, participants were randomly 

assigned to one of three groups, L0, L2, or L3. All groups then read the briefing instruction 

manual and were prompted to ask a question, if any, to the experimenter. All participants then 
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completed a practice drive. For those in L0, they manually drove the vehicle during the practice 

drive. For those in L2 and L3, the ADS controlled all lateral and longitudinal movements during 

the practice drive. During both the L2 and L3 practice drives, the vehicle performed a TOR 

requiring the driver to take control of the vehicle. After the practice drive, participants were 

outfitted with a head-mounted eye tracker and calibrated using the standard nine-point 

calibration system. For experimental drives, all drivers drove through nine simulated driving 

scenarios (3 containing interesting audio clips, 3 containing neutral audio clips, and 3 containing 

boring audio clips), in a randomized order, while having their eyes tracked. After each drive, the 

participant completed the NASA-TLX. After completing all experimental drives, the drivers 

filled out a post-simulator sickness questionnaire, calibration questionnaire, auditory stimuli 

recognition test, demographics questionnaire, and a driving history questionnaire.  
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CHAPTER V 

 

RESULTS 

 

Data Treatment 

Histograms were generated to visually assess if the variables were normally distributed. 

Although the normality assumption is important in statistical analysis, ANOVA is considered 

robust to deviations from normality (Maxwell & Delaney, 2004, pp. 112). Levene’s tests were 

performed to verify that the assumption of homogeneity of variance was met. The results 

indicated that none of the reported ANOVAs violated the homogeneity of variance assumption. 

To assess the assumption of sphericity, Mauchly’s test was conducted to ensure that the 

differences in variances between all possible pairs of within-subject conditions were equal. For 

the majority of analyses, there were no violations to the assumption of sphericity. However, the 

exploratory analyses on participant’s workload and the effects of Processing Depth on LHA 

violated the assumption of sphericity. A Greenhouse-Geisser correction was used to account for 

the violation in the sphericity assumption found in both exploratory analyses. Bonferroni 

corrections were used to account for the inflated family-wise error rate that occurs from 

performing multiple comparisons and reduce the likelihood of committing an inflated Type I 

error by dividing the alpha by the number of comparisons.  

Two exploratory analyses were conducted on workload and calibration of latent hazard 

anticipation performance. First, workload was explored as a manipulation check. Specifically, it 

was to ensure that those in the manual condition indicated a higher workload than those in the 

automated conditions. To explore participants’ workload, NASA-TLX scores were analyzed in a 



44 
 

 
 

3  3 mixed ANOVA with LOA (L0, L2, vs L3) serving as a between-subjects factor and 

Interestingness (Interesting, Boring, vs Neutral) as a within-subjects factor. Second, driver 

calibration was calculated using the metric used in Unverricht et al. (2018) because calibration of 

one’s own performance is an important aspect of both the Yamani and Horrey (2018) model of 

human-automation interaction. To explore drivers’ calibration of their LHA performance a one-

way ANOVA was conducted with LOA (L0, L2, vs L3) as a between-subjects variable.  

Additionally, I have extended the analysis of LHA by assessing potential effects of 

processing depth. Processing depth was calculated by performing a median split on the 

participants’ LHA scores into two groups based on their scores on the auditory recognition test 

(high recognition vs. low recognition). To explore the added factor of processing depth, a 2  3  

3 mixed ANOVA with processing depth (High vs Low) and LOA (L0, L2, vs L3) as between-

subjects factors and Interestingness (Interesting, Boring, vs Neutral) as a within-subjects factor. 

Latent Hazard Anticipation 

  A 3  3 mixed ANOVA on LHA was conducted with LOA (L0, L2 vs L3) as a between 

subjects-factor and Interestingness (boring, neutral, vs. interesting) as a within-subjects factor. 

The results indicated a significant main effect of LOA, F(2, 39) = 17.59, p = .02, ηG
2 = .27. Post-

hoc t-tests revealed that drivers in the L3 condition anticipated significantly fewer hazards than 

those in L0 condition, mean difference = .33, 95% CI = [.19, .47], independent-samples t(26) = 

4.86, p < .001, and those in L2 condition, mean difference = .39, 95% CI = [.24, .53], 

independent-samples t(26) = 5.35, p < .001. However, drivers in the L0 and L2 conditions 

performed similarly, independent-samples t(26) = .77, p = .44. Note that the difference between 

L2 and L3 is roughly 40 percentage points, showing the effect of the manipulation on their LHA 

performance (see Figure 15).   
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Figure 15  

Mean proportion of latent hazard anticipated by LOA.  

 

Note. Error bars represent between-subject 95% confidence intervals. 

 

 

Additionally, the results indicated a significant main effect of Interestingness, F(2, 78) = 

3.67, p = .02, ηG
2 = .05. Post-hoc t-tests indicated that the drivers correctly anticipated 

significantly more latent hazards while listening to neutral auditory stimuli than boring auditory 

stimuli, mean difference = .14, 95% CI = [.027, .058], paired-samples t(41) = 2.50, p = .01. 

Differences in latent hazard anticipation scores between the neutral and interesting auditory 

stimuli were not statistically reliable, paired-samples t(41) = 2.09, p = .04. The latent hazard 

anticipation performance were similar between interesting and boring auditory stimuli, paired-

samples t(41) = .14, p = .88 (see Figure 16). No significant interaction effect was observed, F(4, 

78) = 1.58, p = .18 , ηG
2 = .04. 
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Figure 16 

Mean proportion of LHA by Interestingness.  

 

Note. Error bars represent within-subject 95% confidence intervals. 

 

 

Exploratory Analysis of Depth of Auditory Processing on LHA 

 A 2  3  3 mixed ANOVA on LHA was conducted as an exploratory analysis with LOA 

(L0, L2 vs L3) and Processing Depth (Low, High) as between subjects-factors and 

Interestingness (boring, neutral, vs. interesting) as a within-subjects factor. Both main effects 

found in the prior 3  3 mixed ANOVA on LHA remained significant, Interestingness F(2, 72) = 

3.87, p = .02, ηG
2 = .05, LOA F(2, 36) = 14.80, p < .001, ηG

2 = .26. However, the main effect of 

Processing Depth was not significant, F(1, 36) = .76, p = .38. No interactions were significant, 

all ps > .11.  
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Auditory Recognition Score 

A 3  3 mixed ANOVA on participants’ auditory recognition scores was conducted with 

LOA (L0, L2 vs L3) as a between subjects-factor and Interestingness (boring, neutral, vs. 

interesting) as a within-subjects factor. The results indicated a significant main effect of LOA, 

F(2, 39) = 4.15, p < .023, ηG
2 = .11. Post-hoc t-tests revealed that drivers in the L0 (manual) 

condition scored significantly lower on the auditory recognition task than those in the L3 

(automated) condition, mean difference = .14, 95% CI = [-.24, -.04], independent-samples t(26) 

= 2.93, p = .006. Although those in the L2 condition scored roughly 6 points higher than those in 

L0 and 8 points lower than those in the L3 condition, scores in the L2 condition were not 

significantly different from those in the L0 condition, independent-samples t(26) = 1.24, p = .22, 

and those in the L3 condition, independent-samples t(26) = 1.65, p = .10. Figure 17 illustrates the 

mean auditory recognition scores by LOA. The main effect of Interestingness and the interaction 

effect was not significant, both ps > .36.   
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Figure 17 

Mean Auditory Recognition scores by LOA.  

 

Note: Error bars represent between-subject 95% confidence intervals. 

 

 

Exploratory Analysis of Workload: NASA-TLX 

 To explore the effect of LOA and Interestingness on participants’ subjective workload, a 

3  3 mixed ANOVA with LOA (L0, L2 vs L3) as a between subjects-factor and Interestingness 

(boring, neutral, vs. interesting) as a within-subjects factor was used to analyze NASA-TLX 

scores. The analysis showed the main effect of LOA was significant, F(2, 39) = 9.34, p < .001, 

ηG
2 = .30. Post-hoc t-tests revealed that drivers in the L0 condition reported significantly higher 

levels of subjective workload than those in the L2 condition, mean difference = 15.46, 95% CI = 

[4.91, 26.00], independent-samples t(26) = 3.01, p = .005, and those in the L3 (automated) 
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condition, mean difference = 18.82, 95% CI = [11.40, 26.25], independent-samples t(26) = 6.53, 

p < .001. Drivers piloting L2 and L3 automation reported similar levels of workload, 

independent-samples t(26) = .66, p = .50. (see Figure 18). The remaining effects were not 

reliable, both ps > .59.  

 

 

Figure 18 

Mean NASA-TLX scores by LOA.  

 

Note: Error bars represent 95% confidence intervals of group means. 

 

 

Exploratory Analysis of Driver Calibration 

 To explore the effect of LOA on drivers’ calibration of their LHA performance, a one-

way ANOVA with LOA (L0, L2 vs L3) as a between-subjects factor was conducted. The main 

effect was significant, F(2, 39) = 11.09, p < .001, ηG
2= .36. Drivers in the L3 (automated) 
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condition were significantly over-calibrated to their LHA ability than those in the L0 (manual) 

condition, mean difference = .53, 95% CI = .80, .27], independent-samples t(26) = 4.15, p < 

.001, and those in the L2 (partially automated) condition, mean difference = .46, 95% CI = [.19, 

.72], independent-samples t(26) = 3.60, p = .001. However, differences on the calibration scores 

between the L0 and L2 conditions were not significant, independent-samples t(26) = .66, p = .51. 

Additionally, calibration scores of drivers in the L3 condition were significantly different from 

zero, mean = .47, 95% CI = [.25, .69], one-sample t(13) = 4.65, p < .001, indicating that drivers 

in the L3 condition were overcalibrated on their ability to anticipate latent hazard. On contrary, 

drivers in the L0 condition and in the L2 condition were not significantly different from zero, 

one-sample t(13) = .81, p = .43 for the L0 condition, one-sample t(13) = .12, p = .90 for the L2 

condition, indicating that drivers in both the L0 and L2 condition were well-calibrated to their 

LHA performance.  Figure 19 shows the mean calibration score by LOA.  
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Figure 19 

Mean calibration LHA performance scores by LOA.  

 
Note: Error bars represent between-subject 95% confidence intervals. 
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CHAPTER VI 

 

DISCUSSION 

 

This experiment aimed to expand on Samuel et al.'s (2020) study by examining the 

impact of LOA and Interestingness of a secondary auditory stimuli on young drivers' latent 

hazard anticipation, attention allocation, and calibration of their LHA performance. 

Theoretically, participants piloting an automated vehicle and processing engaging auditory 

stimuli should have had the greatest available attentional resources to deploy towards improving 

their LHA. Yet, it was drivers in the L0 (manual) and L2 (partially automated) groups that 

anticipated a greater proportion of latent hazards than those in the L3 group. This result is 

striking because the operational capabilities of the simulated automated driving system were 

identical between those of the L2 and L3 conditions. The only difference between the conditions 

was the presence of a particular instruction indicating that the drivers in the L2 condition had to 

monitor the road and the vehicle (e.g., YOU are driving) while those in L3 were instructed to 

monitor the automated vehicle (e.g., VEHICLE is driving). Both conditions were instructed that 

drivers may need to take over the control of the vehicle if the ADS cannot handle a given driving 

situation. This result partially corroborates with findings reported by Samuel and colleagues 

(2020), which employed the same manipulation in a high-fidelity driving simulator. Their 

participants in the L3 (automated) condition anticipated fewer hazards than those in L0. 

However, unlike this study, their data did not indicate reliable differences between the L2 and L3 

conditions on LHA. In this study, both strikingly and alarmingly, drivers in the L3 condition 

performed very poorly compared to those in the L2 condition on latent hazard detection. 
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Furthermore, both interesting and boring stimuli impaired drivers’ LHA, failing to demonstrate 

an effect of task engagement on LHA. The ensuing sections discuss these findings and other 

pertinent results in relation to prior research and hypotheses. 

Auditory Recognition Test 

 To measure the drivers’ engagement with the auditory stimuli, an auditory recognition 

test was given after all experimental drives. Yamani and Horrey’s (2018) model predicts that 

higher LOA would promote greater availability of attentional resources which could be 

mobilized to improve performance on a secondary task. In the current study, the secondary task 

is the recognition and processing of auditory news clips with varying levels of interestingness 

(e.g., Horrey et al., 2017) presented during the section of each scenario where a latent hazard was 

present. Additionally, it was hypothesized that “interesting” stimuli would require less 

attentional resources to process and be more engaging than “boring” stimuli, as found in Horrey 

and colleagues (2017). Additionally, drivers in the interesting condition should thus more 

effectively process and recognize the stimuli than those in the boring condition. Similarly, 

drivers in the higher LOA were expected to recognize the greatest proportion of interesting 

stimuli over both those in lower LOA and boring or neutral stimuli because more attentional 

resources would be available in drivers in the higher LOA. Our results did not support this 

hypothesis. Our results only showed a main effect of LOA on auditory recognition scores. That 

is, as LOA increased, so did performance on the auditory recognition test. Specifically, those in 

the L3 condition scored significantly higher than those in the L0 condition. Surprisingly, 

although those in the L3 condition scored almost 8% better than those in the L2 condition, there 

was no significant difference between them. Those in the L2 condition were not significantly 

different at anticipating latent hazards as those in the L0 condition and were not significantly 
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different at processing the news clips as those in the L3 condition. This finding suggests that the 

L2 vehicle automation may maintain driving-related performance (e.g., latent hazard 

anticipation) and improve performance on the secondary auditory task. This multitasking benefit 

is no longer present in the L3 condition as the LHA performance declines (see below for a more 

detailed analysis of the main effect of LOA on LHA). This benefit is unsurprising as it mirrors 

that which was predicted in the Yamani and Horrey model, but it does highlight that those in the 

L3 condition could have done the same but neglected to anticipate latent hazards. What is 

surprising is that interesting stimuli were not any more or less discernable than boring or neutral 

stimuli. The auditory recognition test may not have been sufficiently discriminating. Participants 

in Horrey and Colleagues (2017) were asked to discriminate 65 stimuli, containing boring or 

interesting content, and an additional set of five distractors. In this current study, drivers were 

asked to discriminate nine stimuli (three interesting, three boring, three neutral) and a set of nine 

distractors. Perhaps the differences required to attend to and process the different number of 

stimuli may have reduced the sensitivity of the test. For example, there may have been key terms 

from the news clips (e.g., tree nursery or Scheenberger) that made passages more salient to 

recognize, even without deeper processing.  

Latent Hazard Anticipation 

 Previous research has demonstrated that automation can improve a drivers’ performance 

by means such as reducing drivers’ workload (Parasuraman & Riley, 1997; De Winter et al., 

2014), or freeing attentional resources for situation awareness (Endsley, 1995; Parasuraman et 

al., 2000; De Winter et al., 2014). However, automation can also impair a driver by changing 

them from an active participant to an inactive supervisor leading to cognitive underload (Young 

& Stanton, 2002) or passive fatigue (Saxby et al., 2013) causing drivers to engage in non-driving 
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related tasks (Carsten et al., 2012). Therefore, one goal of this study was to investigate the effect 

automation and interestingness of secondary stimuli had on a driver’s LHA. Yamani and 

Horrey’s (2018) model suggests that as driving tasks are automated, corresponding amounts of 

attentional resources, “freed” by the automation, are made available towards performing another 

task. In this case, theoretically, those attentional resources could have been allocated towards 

anticipating latent hazards, listening to or processing the auditory stimuli, or elsewhere towards a 

non-driving related task such as mind wandering. To improve driving performance, drivers 

should first allocate as many attentional resources as necessary towards the primary driving task, 

such as anticipating hazards, then allocate any remaining resources towards the secondary task. 

However, not all tasks are the same, and Horrey et al. (2017) demonstrated that interesting tasks 

are easier to process but may be more engaging, resulting in the misallocation of attentional 

resources. Ideally, higher levels of automation should result in the higher anticipation of latent 

hazards and interesting stimuli should be less distracting than boring stimuli. Yet, the results did 

not support this hypothesis. Both LOA and interestingness influenced LHA, but the effects did 

not interact.  

 As noted earlier, Samuel et al. (2020) found that drivers in the L3 condition performed 

worse than drivers in the L0. Furthermore, drivers in the L0 and L2 conditions showed no 

significant differences. Our study replicated and extended their findings where we showed 

drivers’ latent hazard anticipation sharply declined in the L3 condition, significantly, compared 

to the L0 and even the L2 conditions. It is important to note that the only experimental difference 

between the L2 and L3 condition was the instruction. Both conditions received the identical 

briefing about LHA and were instructed that the ADS was incapable of performing LHA. 

Drivers in both conditions were also instructed to monitor their ADS and to be prepared to take 
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over control of the vehicle at any time if necessary. But they differed as those in the L2 condition 

were instructed to monitor the forward roadway while those in the L3 condition were not 

explicitly instructed to monitor the forward roadway. This instruction may have led to those in 

the L3 condition disengaging from anticipating latent hazards and instead allocating an excess 

amount of their available attentional resources towards the auditory stimuli. Through this 

instruction, drivers may have changed from an active participant to a passive monitor, which can 

cause them to engage in non-driving related tasks (Carsten et al., 2012), or become “out of the 

loop” (OOTL; Cunningham et al., 2015). The removal of the physical control loop can cause a 

driver to engage in passive monitoring, such as failing to visually scan safety critical areas such 

as crosswalks at intersections (Merat et al., 2019; Seppelt & Victor, 2016). The difference in 

LHA between the L3 and L2 condition could be a product of L3 drivers being OOTL.  

 Horrey et al., (2017) demonstrated that interesting stimuli are both more engaging and 

easier to process. As a secondary task, interesting stimuli were expected to be the least 

distracting from the primary task of LHA because of the low mental demand required for 

processing the information. In contrast, the boring stimuli were expected to be the most 

distracting from the primary task of LHA because of the high mental demand required for 

processing the information. However, our findings did not mirror our expectations. There was 

little difference between the interesting and boring conditions on LHA. Both the interesting and 

boring conditions decreased drivers’ anticipation of latent hazards in comparison to neutral 

stimuli. It is important to note that this effect occurred independent of the LOA manipulation, 

regardless of the availability of attentional resources.  

Two mechanisms may explain these results. The first mechanism is task engagement. 

One aspect of interesting stimuli is, although easier to process, it can be more engaging. More 
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engaging stimuli can be easier to sustain engagement, harder to disengage, and easier to reengage 

with (O’Brien & Toms, 2008). When drivers were listening to the interesting auditory stimuli, 

they may have allocated more attentional resources than necessary to this non-driving related 

task. By over-engaging with the interesting stimuli, they may have misallocated resources that 

were necessary for LHA.  

The second mechanism is task difficulty. Boring stimuli are both more difficult to process 

and less engaging. A task with low engagement can be difficult to sustain engagement, easier to 

disengage, and harder to reengage with (O’Brien & Toms, 2008). In this study, participants were 

instructed in a way to provide equal priorities for each task. The instruction was to ensure that 

they had a negative consequence for neglecting either the driving or secondary task. For the 

secondary task, they were instructed they would need to take a recognition test on the news clips 

they heard during their drives. This goal may have resulted in the drivers actively attending to 

the boring stimuli to improve their scores after the drives were complete. In this event, the boring 

stimuli would be demanding and may have unintentionally served a similar role as the interesting 

stimuli, attracting valuable attentional resources necessary for LHA. Again, this effect is 

independent from the total amount of available resources, noted through the lack of an 

interaction between LOA and Interestingness. Drivers’ may have over-engaged in the boring 

stimuli, not because it was engaging, but to ensure performance after the run due to the stimuli’s 

inherent difficulty and the upcoming recognition test. 

It is possible that task engagement alone is not sufficient to explain why there were no 

differences between the effects of interesting and boring stimuli on LHA. Arousal can be 

described as an individual’s state of physiological activity (Broadbent, 1971; Kahneman, 1973). 

These physiological activity states can range from high arousal (i.e., excitement) to low arousal 
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(i.e., sleep). Attention and arousal involve complex psychophysiological processes with multiple 

dimensions that closely interact with each other, but they still retain their distinct and diverse 

characteristics (Coull, 1998). Like attention and arousal, task engagement and arousal are also 

similar but retain different processes. Dehais and colleagues (2020) mapped neurocognitive 

states that were predictive of degraded performance across orthogonal dimensions of task 

engagement and arousal (see Figure 20). For example, in Figure 20, an individual who has low 

arousal and low task engagement may choose to mind wander while an individual who has high 

arousal and high task engagement may experience perseveration. For this study, interesting and 

boring stimuli may have had different task engagement values (i.e., boring = low, interesting = 

high) but similar arousal values (i.e., both = high). Although, Figure 20 represents only one 

model of how arousal and task engagement may interact, arousal may have also played an 

important part in interestingness’ effect on LHA.  
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Figure 20 

Conceptual map of performance across arousal and task engagement.  

 

Note. Performance is optimal across the green “comfort zone” while degraded mental states lie 

outside of the operators’ “comfort zone” (Dehais et al., 2020).   

 

 

Calibration of LHA Performance 

 One important aspect of Yamani and Horrey’s (2018) model is the role of calibration 

(Unverricht et al., 2022). The DCF provides a model of the calibration process including 

assessment of the automation’s actions, their own abilities, and the state of the world (Horrey et 

al., 2015). One implication of the model is that humans do not have direct access to their abilities 

or the state of world but instead have access to cues that can help them make assessments or 

estimates of each reality. The TACM framework (de Craen, 2010) describes how inaccurate 
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assessments of one’s own abilities can result in crashes or losing control of the vehicle, 

indicating its importance for driving safety. In this study, as LOA increased, additional 

attentional resources were expected to be made available and help improve the drivers’ self-

assessment of their own LHA performance. However, the results did not support this hypothesis. 

Instead, those in the L0 and L2 conditions were well-calibrated to their performance whilst those 

in the L3 condition highly overestimated their performance. There are three mechanisms that 

may explain these results. First, drivers in the L3 condition may have reported similar calibration 

ratings to that found in the L2 and L0 conditions, yet they performed much poorer skewing their 

perceptions. This possibility means that the calibration questionnaire used in the study might not 

be sensitive to potential variations in their calibration judgments. Second, those in the L3 

condition may not have had any available resources left over to allocate towards the self-

monitoring task. This explanation is unlikely as those in the L2 condition were well-calibrated, 

anticipated significantly greater latent hazards, and were not significantly worse on the auditory 

recognition test. Lastly, those in the L3 condition may not have allocated their available 

attentional resources towards the self-monitoring process, as they devoted those resources 

elsewhere such as towards the auditory secondary task. This explanation is supported by the L3 

condition performing worse on LHA and well on the auditory recognition task. Further research 

is necessary to experimentally test these possibilities. 

NASA-TLX - Workload 

 The NASA-TLX was used as a manipulation check to determine if the different levels of 

automation and auditory stimuli varied in workload. Theoretically, the L3 condition and 

interesting condition should have reported the lowest workload in comparison to the manual and 

boring condition. Our results did not support this hypothesis. There was no interaction between 
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interestingness and LOA and no effect of interestingness. There are two possible explanations to 

explain this finding. First, although there was an urgent priority given to the secondary task 

through instruction of a test, listening to the secondary task was not explicitly stated to be 

mandatory and could have been attended to or ignored at will. Second, the instruction of the 

auditory recognition test may have resulted in the auditory material being attended to regardless 

of interestingness of the material. A main effect of LOA was found, and as expected and 

predicted by the Yamani and Horrey (2018) model, higher levels of automation resulted in lower 

subjective workload scores.  

Performance Operating Characteristic Function  

 To explore tradeoffs between the LHA task and the auditory task, I conducted a 

performance operating characteristic analysis. POC is an integrated method to represent resource 

tradeoffs where curve positions indicate efficiency and bias of two tasks concurrently performed 

on a theoretical curve assuming a fixed pool of attentional resources. Figure 21 illustrates 

multiple points, each representing distinct biases between two tasks on a performance space, 

with task A represented on the Y-axis and task B on the X-axis. Point P represents a performance 

level of perfect timesharing as well as each performance alone. Thus, the distance of POC from 

the origin indicates efficiency of time-sharing resources between tasks A and B.  
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Figure 21 

Example performance operating characteristic.  

 

 

 

Figure 22 presents a POC function between LHA and the auditory recognition scores 

across LOA levels plotted separately for interesting, boring, and neutral auditory stimuli. In 

general, as LOA increased, there was a tradeoff between LHA and auditory recognition scores as 

represented as the data point diagonally shifting from the top left to the bottom right. This is a 

pattern indicative of allocation of limited attentional resources from performing the LHA task to 

the auditory recognition task, as expected by Yamani and Horrey’s (2018) theoretical model of 

human-automation interaction.  
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Figure 22 

POC function between LHA and auditory recognition scores across LOA levels. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Note. POC function plotted separately for the interesting (left), boring (right) and neutral (center) 

auditory stimuli. 
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Limitations 

 There are several limitations that should be considered when interpreting the current data. 

First, the secondary task in this experiment did not include explicit instructions and did not have 

a direct outcome variable. Specifically, drivers were instructed that the auditory clips would play 

during the drive and of the test, but they were not explicitly instructed to listen nor did they have 

to provide any direct response during the task. One could inquire if the auditory task was a task 

at all. However, there was strong ecological validity of the auditory task. Many secondary tasks 

performed during driving do not require responses because to do so may compete with the 

primary driving task. If participants had performed an active secondary task, such as an n-back 

task, their workload would have increased and there could have been greater differences in LHA 

found between the different levels of automation. Yet, using an n-back task would have 

decreased the ecological validity and generalizability of the results found in this study. An 

obvious extension of the current work is to ask participants to respond in some way to auditory 

stimuli only if they are able and comfortable doing so. This would effectively serve as a 

secondary performance measure of workload (Wickens et al., 2021). It will reduce ecological 

validity but could clarify an interplay between driving/piloting ADS and listening to auditory 

stimuli. Second, the small number of interesting and boring trials for each participant (n = 3 per 

participant per condition) may have interacted with the sample size making the experiment 

underpowered to find differences between interesting and boring stimuli. This is unlikely as the 

differences between the groups were marginal (< 1%) and the sample size chosen for the current 

study was calculated via a power analysis using the most conservative estimate of the prior 

Samuel and colleagues (2020) effect sizes. Additionally, the auditory stimuli were validated with 

the ODU student population. It is likely that other aspects of task engagement such as task 
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difficulty may have interacted with the effects of task interest and washed away the differences 

between interesting and boring stimuli, but it requires further research. 

Practical Applications 

If attention is allocated as outlined in Yamani and Horrey’s (2018) model, automation 

may have the benefit of allowing a driver to successfully reallocate available resources to support 

the driving task, but it does not appear too useful for improving a young drivers’ LHA. 

Alternatively, automation has demonstrated an alarming cost to the driver’s LHA performance. 

Those in the L3 condition anticipated latent hazards at rates worse than those in the L2 condition, 

the difference being roughly 40 percentage points. In fact, L3 drivers’ LHA performance was at 

the same poor rate found in newly licensed drivers (Unverricht et al., 2018). Given that this 

effect was caused only by the instruction manipulation, inaccurate instruction on capabilities, 

limitations, or how to interact with the ADS, even occurring unintentionally, can cause young 

drivers to anticipate significantly fewer latent hazards when using vehicle. Instead of utilizing the 

L3 vehicle automation, other methods can be innovated and implemented such as training 

programs designed to improve LHA (Unverricht et al., 2018). However, if one decides to 

consider automation as a tool for improving, or replacing, young drivers’ driving performance, 

user guidance for automated systems is critical to promote the drivers to establish proper mental 

models of ADS and effective human-automation interaction.  

Additionally, as automated technologies become increasingly autonomous, understanding 

the psychological mechanisms underlying LHA may guide the development of artificial 

intelligence (AI) to support the human anticipatory process. One model explaining how humans 

anticipate hazards suggested that experience develops a series of schemas of driving 

environments in long term memory that is compared against while a driver is viewing the 
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forward roadway (Fitzgerald & Harrison, 1999). In this explanation, a driver is actively 

comparing the driving environment to stored representations of similar environments they have 

experienced in the past, if the present environment is similar to a stored schema of a potential 

hazard the driver will anticipate this hazard and scan for more information. Various trainings 

have applied models of hazard anticipation, such as Fitzgerald and Harrison’s, to improve 

drivers’ anticipatory ability. Horswill and colleagues (2021) developed a training that provided 

participants with over 1000 years of accident experience, assuming an accident rate of one 

accident per 10 years of driving, and found trained drivers anticipated approximately 60% more 

hazards than the control group and demonstrated real-world transfer of the training effects. It is 

unknown if the drivers in Horswill and colleagues (2021) study anticipated more hazards 

because they developed a larger more sophisticated set of schemas to compare against or if it was 

because of another mechanism apparent in their training; yet this finding highlights the 

importance of understanding the psychological mechanisms underlying LHA. Specifically, if we 

understand how LHA is developed and works in humans, we may apply such understanding to 

an AI to help support or replace the human anticipatory process. For example, if a human can 

improve their anticipatory ability by watching and analyzing hundreds of hours of motor vehicle 

near misses and crashes, then an AI system would be able to view and analyze thousands of 

videos within a shorter time period, improving its anticipatory ability. AI systems that can 

provide some hazard anticipatory assistance are currently under exploration (Saito et al., 2021). 

Theoretical Implications  

The results of this study concur with models of human-automation interaction (Yamani & 

Horrey, 2018; Driver Calibration Framework, Horrey et al., 2015). Even though these models 

describe how attention could be allocated to improve performance, various factors can influence 
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what allocation policy a driver will adopt (Kahneman, 1973). Young drivers demonstrated in this 

study, as well as in Samuel et al. (2020), that when faced with high levels of automation, they 

may adopt an attention allocation policy that impairs LHA, especially when performing a 

secondary task. Additionally, young drivers’ LHA ability may not simply improve by the 

allocation of additional attentional resources. Literature suggests that, to perform LHA well, one 

needs a well-developed mental model (Horswill & McKenna, 2017). Some evidence 

demonstrates that the deployment of such mental models require cognitively demanding and 

resource-dependent processes. For example, McKenna and Farrand (1999) had both experienced 

and novice drivers identify hazards while performing a random letter generation task. Their 

results showed a greater interference under dual task conditions for the experienced drivers when 

compared to novices. In fact, the interference from the dual-task was in such magnitude that it 

reduced the experienced drivers’ performance to that of novices.  Rowe (1997) performed a 

similar study using a letter detection task and found no difference between younger experienced 

drivers and older experienced drivers, indicating it was experience causing the interference not 

age. Young drivers have yet developed their mental models of typical driving scenarios because 

they have not been exposed to such risk scenarios since their licensure. However, older more 

experienced drivers may have developed their mental models representing common risky 

scenarios, allowing them to receive greater benefits from automation by “freeing up” and 

reallocating attentional resources to latent hazard anticipation. However, more research is 

required to understand the nature of LHA and how the mental models may develop as an 

individual grows in both age and experience. 
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Future Research 

 Findings within this dissertation represents one step of many required to understand the 

complex relationship between human drivers and automated vehicles. How instructions are 

framed and what mental models such instructions help the drivers form may have a detrimental 

effect on the driver’s attention and must be considered carefully. User guidance on how to 

interact with the automated system may be a critical component for attention allocation strategies 

and should be further explored. To these effects, future research is necessary for examining what 

factors influence drivers’ attention allocation policy. For example, it is possible that the drivers 

in the current study adopted a resource allocation policy to prioritize the auditory task over the 

LHA task because they were told that they would receive a test on the auditory stimuli. Such 

experimental procedures might have influenced their decision on which task to prioritize more 

when more attention becomes available. Additionally, more research should investigate how the 

development of mental models in young drivers can differ between conditions with or without 

ADS. 
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CHAPTER VII 

 

CONCLUSION 

 

The present research examined the effects LOA and task engagement on young drivers’ 

LHA. Additionally, we sought to explore how young drivers would allocate any attentional 

resources “freed” by automation when presented with a secondary task varying in engagement or 

interestingness. Results from this current work revealed two important findings. First, the L3 

automation impaired young drivers’ LHA and did not demonstrate any benefits towards 

improving their performance. Second, framing of user guidance for automated systems is a 

critical component that determines human-automation interaction involving ADS. In general, the 

effect of LOA on LHA replicated and extended that found in previous studies (Samuels et al., 

2020; Ebadi et al., 2021), and results were generally consistent with predictions inherent in the 

Yamani and Horrey (2018) model. This research is one step towards understanding the complex 

relationship between human drivers’ and automated vehicles.  
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APPENDIX A 

 

AUDITORY STIMULI AND DISTRACTORS 

 

Boring Auditory Stimuli 

• “Construction of Legacy Park is approximately 30 percent complete and is expected to be 

finished in fall of this year, according to the city’s most recent update of the project. Work 

completed to date includes the majority of the rough grading work on the park site and 

installation of most of the offsite storm drain infrastructure work, such as piping, catch 

basins and manhole structures.”  

• “United Nations Secretary-General Ban Ki-moon today appointed Major General Natalio 

C. Ecarma of the Philippines as Head of Mission and Force Commander of the United 

Nations Disengagement Observer Force (UNDOF).  The Secretary-General is grateful to 

Major General Jilke for his outstanding service and leadership of UNDOF over the past 

three years. Major General Ecarma is currently serving as Deputy Commandant, Philippine 

Marine Corps and Concurrent Commander, Marine Forces Southern Philippines.  He will 

bring to his new position extensive and wide-ranging command experience.” 

• “Sterling Speirn of San Mateo, California, has been named as the new president and CEO 

of the W.K. Kellogg Foundation. Speirn, who is currently the president and CEO of 

Peninsula Community Foundation, a leader in Peninsula and Silicon Valley community 

philanthropy and one of the Bay Area’s largest foundations, will replace William C. 

Richardson, who will retire from the Foundation December 31, 2005.” 

Interesting Auditory Stimuli 

• “A 48-year-old immigrant from Malta regularly hangs out in various New York City bars, 

but always on the floor, so that he can enjoy his particular passion of being stepped on. 

"Georgio T." told The New York Times in June that he has delighted in being stepped on 

since he was a kid. While one playmate "wanted to be the doctor, (another) wanted to be 

the carpenter ... I would want to be the carpet." Nowadays, he carries a custom-made rug 

he can affix to his back (and a sign, Step on Carpet) and may lie face-down for several 

hours if the bar is busy. He is also a regular at "high foot-traffic" fetish parties, where 

dozens of stompers (especially women in stilettos) can satisfy their own urges while 

gratifying Georgio.” 

• “The head of Florida's Department of Corrections admitted in May that at least 43 children 

(including a 5-year-old), who observed their parents' prison jobs as part of "Take Your 

Sons and Daughters to Work Day" in April, were playfully zapped by 50,000-volt stun 

guns. DOC Secretary Walt McNeil said the demonstrations (in three of the state's 55 

prisons) even included one warden's kid, but that only 14 children were individually shot 

(with the rest part of hand-holding circles feeling a passing current). Twenty-one 

employees were disciplined.” 
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• “Saskatchewan physician John Scheenberger, then 31, implanted a thin, 6-inch tube of 

someone else's blood in his own arm in order to beat a DNA test after two female patients 

had accused him of rape. He cut open his bicep, inserted the tube, and pushed it down to 

the crook of the arm from which blood is usually drawn. Thus, "his" DNA didn't match the 

rapist's, and the cases were closed. However, one victim later hired a private detective, who 

exposed the scam, and Berger was convicted in 1999 (though he maintained that he was 

forced into the deception because someone had framed him by breaking into his house and 

stealing a used condom).” 

Neutral Auditory Stimuli 

• “What a difference a day makes, Charles Wesley Mumbere, 56, was a longtime Nurses 

Aide at a nursing home in Harrisburg Pennsylvania. Until July, when the Uganda 

government recognized the separatist when Zururu territory founded in 1962 by Mumbere's 

late father. In October Mumbere, returned to his native country as king of the region's 

300,000 subjects” 

• “Saratoga Tree Nursery produces more than 50 species of trees and shrubs for planting on 

public and private land. The objective of the program is to provide low-cost, native planting 

materials from known New York sources to encourage landowners to enhance the state's 

environment for future generations. The Saratoga Nursery also offers a few non-native 

species which can enhance wildlife planting. For instance, torengo crabapple provides a 

winter food source for wild turkey, grouse and deer.” 

• “Donny Lee Cornell was incarcerated at 3:40 am Tuesday. Authorities in cable county 

charged him with felony fleeing while driving under the influence along with misdemeanor 

leaving the scene of an accident, 1st offense driving under the influence, and no insurance 

according to booking records at the western regional jail”. 

Distractors 

• “Attorney General Eric Holder today announced the appointment of three new U.S. 

Attorneys to serve on the Attorney General’s Advisory Committee. The committee, which 

reports to the Attorney General through the Deputy Attorney General, represents the voice 

of the U.S. Attorneys and provides advice and counsel to the Attorney General on policy, 

management and operational issues impacting the Offices of the U.S. Attorneys.”  

• “What a difference a day makes, four apparently quite bored people in their early 20s 

were arrested in September in Bennington, Vt., after a Chili's restaurant burglar alarm 

sounded at 4:30 a.m. According to police, the four intended to remove and steal the large 

chili on the restaurant's sign, using a hacksaw and power drill. However, not possessing a 

battery-operated drill, they had strung extension cords together running to the nearest 

outlet they could find, which was 470 feet away, across four lanes of highway and 

through a Home Depot parking lot.” 

• “In November, a Chicago judge ruled that former firefighter Jeffrey Boyle is entitled to 

his $50,000 annual pension even though he had pleaded guilty in 2006 to 8 counts of 

arson and allegedly confessed to 12 more. Boyle is known locally as matches Boyle to 

distinguish him from his brother John quarters Boyle who is present for bribery following 

the theft of millions of dollars in state Tollgate coins. Judge Leroy Martin jr. concluded 

that matches arsons were wholly separate from his firefighting.” 
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• “Starling Stern, in partnership with leading organic companies from around the world, 

has developed a web based sustainability navigator aimed at raising consumer awareness 

of sustainability. The 'Sustainability Flower' empowers the consumer to make an 

informed purchasing decision taking all relevant environmental and ethical implications 

into account.” 

• “United Union transit workers demanded health insurance upgrades and were agreed to 

by the the Southeastern Pennsylvania Transportation Authority. The upgrade will allow 

for the removal of the 10 tablet per month rationing of medications to allow as many as 

30 per month according to Philadelphia Daily News Report. The final contract, reported 

to be even more beneficial to the union, was being voted on by the union members at the 

present time.” 

• “Phillip Mathews, 73, whose logging truck is equipped with a tall boom arm to facilitate 

loading, forgot to lower the arm after finishing a job in Bellevue, Iowa, in October, and 

when he returned to the highway, the boom proceeded to snap lines on utility poles he 

passed for the next 12 miles until motorists finally got his attention” 

• “Donny Lyle, a Nebraskan prison guard, who had been on the job for a year and had just 

been promoted, was discovered to be on the lam from interpol for drug and fraud crimes 

from the Czech republic. The corrections department background check, on the FBI’s 

national crime database turned up nothing. But when officials subsequently googled Lyle 

the interpol wanted poster was one of the top results”. 

• “Determining the strength of ice is extremely difficult especially for an untrained 

individual ice must be at least 6 inches thick before it can maintain the weight of a person  

the temperature must be well below freezing 4 weeks  moreover ice is affected by the 

depth of the water the size of the water body the waters chemistry the distribution of 

weight on the ice and local climatic factors” 

• “From a police report in the North Bay (Ontario) Nugget (Nov. 7): An officer in line at a 

traffic light, realizing that cars had not moved through two light changes, walked up to 

the lead car to investigate. The driver said she was not able to move on the green lights 

because she was still on the phone and thus driving off would be illegal. The officer said 

a brief lecture improved the woman's understanding of the law.” 
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APPENDIX B 

 

BRIEFING INSTRUCTIONAL PAMPHLET 

 

The purpose of this pamphlet is to provide you with instruction on the following topics: 

• Latent Hazard Anticipation 

o What it is? 

o Where would it materialize? 

o What information can help me determine a latent hazard may occur? 

• Automated Driving Systems (ADS) 

o What is an automated driving system? 

o What procedures will the ADS take-over? 

o What procedures will the ADS not take-over? 

o What is a take-over request? 

o How would I accept a take-over request and successfully take-control of the 

vehicle? 

 

 

 

Please read through this pamphlet carefully and instruct the researcher when you have finished.  
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Latent Hazard Anticipation 

 

Latent hazards are imminent hazards that have not yet materialized on the roadway. For example, 

imagine a driver is traveling down a two-way road, where they approach a construction zone 

blocking the opposite lane. Oncoming traffic is obscured by a large construction vehicle so that 

the driver cannot see past. In this situation, another vehicle may turn into the drivers’ lane to pass 

the construction zone. The indicator is the construction truck, blocking the view of oncoming 

traffic. By looking towards the front of the truck as you approach the construction zone, you can 

look out for the hazard of oncoming traffic. 
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Partially Automated & Automated Driving Systems 

 

 Automated driving systems (ADS) are technologies installed into cars to help perform 

specific tasks. For example, adaptive cruise control (ACC) allows for the automation to accelerate 

or brake as the vehicle needs to either avoid crashing into a forward vehicle or maintain current 

speed. Another example is steering control, where the automation will maintain the vehicle’s 

position within the driving lane. The current ADS has both ACC and steering control, meaning it 

will accelerate to the appropriate speed as posted by the speed limit signs, and maintain the 

vehicle’s lane positioning.  

ADS can perform these actions through built in-sensors that can be obscured by rain, snow, or 

fog. This means that the automation can fail in certain circumstances, requiring the driver to 

constantly supervise the automation. In addition, another action the ADS cannot perform is the 

anticipation of latent hazards. 

1a) For drivers in partially automated systems, they must not only supervise the automation 

but also the forward roadway. One way to consider this is that even though these systems are 

active, YOU are still driving the vehicle.  

1b) For drivers in automated systems, they must supervise the automation. One way to consider 

this is that when these systems are active, the ADS is driving the vehicle.  

If the ADS identifies an issue, it may provide you with a take-over request. A take-over request 

is a warning submitted by the automation that one or more of its sensors have failed or may fail. 

In this event, to accept control of the vehicle the driver must ensure their hands are on the steering 

wheel, feet on the pedals, and they are aware of their surroundings.  
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APPENDIX C 

 

MOTION SICKNESS SUSCEPTIBILITY QUESTIONNAIRE 

 

This questionnaire is designed to find out how susceptible to motion sickness you are, and what 

sorts of motion are most effective in causing that sickness. Sickness here means feeling queasy or 

nauseated or actually vomiting.  

Your childhood experience only (before 12 years of age), for each of the following types of 

transport or entertainment please indicate 

1. As a child (before age 12), how often you felt sick or nauseated (tick boxes). 

 

 
Your experience over the last 10 years (approximately), for each of the following types of 

transport or entertainment please indicate 

2. Over the last 10 years, how often you felt sick or nauseated (tick boxes). 
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APPENDIX D 

 

SIMULATOR SICKNESS QUESTIONNAIRE 

 

INFORMATION PROVIDED ON THIS QUESTIONNAIRE IS STRICTLY 

CONFIDENTIAL.  

Your completion of this questionnaire is strictly voluntary and you can skip any 

questions that you do not want to answer.  

Participant ID:     Date:      

THIS SECTION OF THE QUESTIONNAIRE IS COMPLETED BEFORE USING THE 

DRIVING SIMULATOR. 

 PRE-EXPOSURE BACKGROUND INFORMATION 

 

1. How long has it been since your last exposure in a simulator?       days 

 How long has it been since your last flight in an aircraft?           days 

 How long has it been since your last voyage at sea?          days 

 How long has it been since your last exposure in a virtual environment?     days  

2. What other experience have you had recently in a device with unusual motion? 

 PRE-EXPOSURE PHYSIOLOGICAL STATUS INFORMATION 

3. Are you in your usual state of fitness? (Circle one)       YES        NO 

        If not, please indicate the reason:                                             

4. Have you been ill in the past week? (Circle one)           YES        NO 

 If "Yes", please indicate: 

 a) The nature of the illness (flu, cold, etc.):   

 b) Severity of the illness: Very                                   Very 

       Mild                                   Severe                  

 c) Length of illness:                                    Hours  /  Days                   

 d) Major symptoms:              

                                           

 e) Are you fully recovered?      YES     NO 

5. How much alcohol have you consumed during the past 24 hours? 

          12 oz. cans/bottles of beer             ounces wine              ounces hard liquor 

6. Please indicate all medications you have used in the past 24 hours.  If none, check the  

 first line: 

 a)   NONE   

 b)   Sedatives or tranquilizers   

 c)   Aspirin, Tylenol, other analgesics   

 d)   Antihistamines   
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 e)   Decongestants   

 f)   Other (specify): ________     

7. a)   How many hours of sleep did you get last night?                hours 

 b)   Was this amount sufficient? (Circle one)       YES     NO 

8. Please list any other comments regarding your present physical state which 

 might affect your performance on our test. 
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BASELINE (PRE) EXPOSURE SYMPTOM CHECKLIST 

 

Instructions: Please fill this out BEFORE you go into the virtual environment.  Circle how 

much each symptom below is affecting you right now.   

 

# Symptom Severity 

1. General discomfort None Slight Moderate Severe 

2. Fatigue None Slight Moderate Severe 

3. Boredom None Slight Moderate Severe 

4. Drowsiness None Slight Moderate Severe 

5. Headache None Slight Moderate Severe 

6. Eye strain None Slight Moderate Severe 

7. Difficulty focusing None Slight Moderate Severe 

8a. Salivation increased None Slight Moderate Severe 

8b. Salivation decreased None Slight Moderate Severe 

9. Sweating None Slight Moderate Severe 

10. Nausea None Slight Moderate Severe 

11. Difficulty concentrating None Slight Moderate Severe 

12. Mental depression None Slight Moderate Severe 

13. “Fullness of the head” None Slight Moderate Severe 

14. Blurred Vision None Slight Moderate Severe 

15a. Dizziness with eyes open None Slight Moderate Severe 

15b. Dizziness with eyes closed None Slight Moderate Severe 

16. *Vertigo None Slight Moderate Severe 

17. **Visual flashbacks None Slight Moderate Severe 

18. Faintness None Slight Moderate Severe 

19. Aware of breathing None Slight Moderate Severe 

20. ***Stomach  awareness None Slight Moderate Severe 

21. Loss of appetite None Slight Moderate Severe 

22. Increased appetite None Slight Moderate Severe 

23. Desire to move bowels None Slight Moderate Severe 

24. Confusion None Slight Moderate Severe 

25. Burping None Slight Moderate Severe 

26. Vomiting None Slight Moderate Severe 

27. Other  

 

* Vertigo is experienced as loss of orientation with respect to vertical upright. 

** Visual illusion of movement or false sensations of movement, when not in the simulator, 

car, or aircraft. 

*** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of 

nausea. 

THIS SECTION OF THE QUESTIONNAIRE IS COMPLETED AFTER USING THE 

DRIVING SIMULATOR. 

POST 00 MINUTES EXPOSURE SYMPTOMS CHECKLIST 
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Instructions:  Circle how much each symptom below is affecting you right now.  

 

# Symptom Severity 

1. General discomfort None Slight Moderate Severe 

2. Fatigue None Slight Moderate Severe 

3. Boredom None Slight Moderate Severe 

4. Drowsiness None Slight Moderate Severe 

5. Headache None Slight Moderate Severe 

6. Eye strain None Slight Moderate Severe 

7. Difficulty focusing None Slight Moderate Severe 

8a. Salivation increased None Slight Moderate Severe 

8b. Salivation decreased None Slight Moderate Severe 

9. Sweating None Slight Moderate Severe 

10. Nausea None Slight Moderate Severe 

11. Difficulty concentrating None Slight Moderate Severe 

12. Mental depression None Slight Moderate Severe 

13. “Fullness of the head” None Slight Moderate Severe 

14. Blurred Vision None Slight Moderate Severe 

15a. Dizziness with eyes open None Slight Moderate Severe 

15b. Dizziness with eyes closed None Slight Moderate Severe 

16. *Vertigo None Slight Moderate Severe 

17. **Visual flashbacks None Slight Moderate Severe 

18. Faintness None Slight Moderate Severe 

19. Aware of breathing None Slight Moderate Severe 

20. ***Stomach  awareness None Slight Moderate Severe 

21. Loss of appetite None Slight Moderate Severe 

22. Increased appetite None Slight Moderate Severe 

23. Desire to move bowels None Slight Moderate Severe 

24. Confusion None Slight Moderate Severe 

25. Burping None Slight Moderate Severe 

26. Vomiting None Slight Moderate Severe 

27. Other  

*   Vertigo is experienced as loss of orientation with respect to vertical upright. 

**  Visual illusion of movement or false sensations of movement, when not in the simulator, car 

or aircraft. 

*** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of 

nausea. 

POST-EXPOSURE INFORMATION 

1. While in the virtual environment, did you get the feeling of motion (i.e., did you experience 

a compelling sensation of self motion as though you were actually moving)?  (Circle one) 

    YES   NO  SOMEWHAT 

2. On a scale of 1 (POOR) to 10 (EXCELLENT) rate your performance in the virtual 

environment:  ______ 

3. a. Did any unusual events occur during your exposure? (Circle one)    YES   NO 
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APPENDIX E 

 

CALIBRATION QUESTIONNAIRE 

 

• Did you manually drive the vehicle, or did you drive with automated driving support 

systems? 

o Yes 

o No 

 

If yes, participants will receive this question. 

• On a scale of 1 (POOR) to 10 (EXCELLENT) rate your performance in the virtual 

environment while in the manual driving condition: 

If no, participants will receive this question. 

On a scale of 1 (POOR) to 10 (EXCELLENT) rate your performance in the virtual environment 

while in the automated driving condition: 
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APPENDIX F 

 

DRIVING HISTORY QUESTIONNAIRE 

 

This is a strictly confidential questionnaire. Only a randomly generated participant ID number, 

assigned by the research administrator, will be on this questionnaire. No information reported by 

you here will be traced back to you personally in any way. You can skip any questions you do 

not feel comfortable answering. 

 

Section 1:  Demographics 

Gender:   Male  Female 

Date of Birth:  (Month / Day / Year):  _______ / _______ / _______  Age: ___________ 

Race / Ethnicity:  Black / African American   Asian 

(check all that apply)  Caucasian      American Indian / Native Alaskan 

    Hispanic / Latino     Other  

Have you participated in a study at this laboratory in the past?  Yes   No 

Section 2:  Driving History 

Approximately how long have you had your driver’s license?    _______ years _______ 

months 

About how many miles did you drive since your licensure?  ____________ miles 

Does your license require you to wear glasses or contacts while driving?   Yes, 

eyeglasses 

            Yes, 

contacts      No 

Do you have any other restrictions on your driver’s license?    Yes   No 

If yes, please describe: _______________________________________________________ 

Are you currently on any over-the-counter or 

prescription medications that make it difficult to drive?   Yes   No 

If yes, please describe: _______________________________________________________ 

 

In the past three months, have you text messaged while driving?                                          Yes      

 No 

Section 2:  Driving History (continued) 

Do you think text messaging while driving could affect your driving performance?   Yes     

Maybe     No 

How frequently do you text message in a day?  Over 20  10 - 20   5 - 10  Less than 5 

 Never  

Within the last three years, have you had any moving violations?   Yes   No 

If so, what type and how many?    Speeding     How many times?  _____ 

      Running red light  How many times?  _____ 
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      Running stop sign  How many times?  _____ 

      Failure to yield  How many times?  _____ 

      Other _____________ How many times?  _____ 

 

Within the last three years, have you been involved  

in any automobile crashes?     Yes   No 

If so, what type of crashes(s)?  Head-on collision (front of car to front of car contact) 

(Please check all that apply)   Rear-end collision (front of car to rear of car contact) 

      Side impact or angled collision (front of car to side of car 

contact) 

      Sideswipe (door to door contact) 

      Single car accident (struck tree, sign, pedestrian) 

      Multiple car accident (more than two cars involved) 

      Other 

      I don’t remember 

Please describe each of these crashes in a few sentences below.  

  

__________________________________________________________________________ 

__________________________________________________________________________ 

__________________________________________________________________________ 
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