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A Dynamic Programming Algorithm for Finding

the Optimal Placement of a Secondary

Structure Topology in Cryo-EM Data

ABHISHEK BISWAS, DESH RANJAN, MOHAMMAD ZUBAIR, and JING HE

ABSTRACT

The determination of secondary structure topology is a critical step in deriving the atomic
structures from the protein density maps obtained from electron cryomicroscopy technique.
This step often relies on matching the secondary structure traces detected from the protein
density map to the secondary structure sequence segments predicted from the amino acid
sequence. Due to inaccuracies in both sources of information, a pool of possible secondary
structure positions needs to be sampled. One way to approach the problem is to first derive a
small number of possible topologies using existing matching algorithms, and then find the
optimal placement for each possible topology. We present a dynamic programming method
of Y(Nq2h) to find the optimal placement for a secondary structure topology. We show that
our algorithm requires significantly less computational time than the brute force method
that is in the order of Y(qN h).

Key words: algorithms, dynamic programming, electron cryomicroscopy, error, graph, protein,

secondary structure, topology.

1. INTRODUCTION

The knowledge of protein tertiary structures is critical in understanding functional mechanisms

of proteins. Electron cryomicroscopy (Cryo-EM) has evolved into a structure determination

technique that is particularly suitable for large molecular complexes. A number of important large

complexes have been resolved to 3–4 Å resolutions at which the backbone of proteins can be deter-

mined (Cong et al., 2010; Zhang, Jin et al., 2010). However, it is still challenging to determine protein

structures when the resolution of Cryo-EM density map is worse than 4 Å. A density map is a

3-dimensional (3D) image. At medium resolutions, such as 5–10 Å, the backbone of the protein is not

resolved. Only secondary structures such as a-helices and b-sheets are detectable. Various methods

have been developed to detect a-helices from a 3D image at medium resolutions ( Jiang et al., 2001;

Dal Palu et al., 2006; Baker et al., 2007; Zeyun and Bajaj, 2008; Ma et al., 2011; Si et al., 2012; Si and

He, 2013; Rusu and Wriggers, 2012). A helix detected from such 3D images is represented as an a-

trace (a red stick in Fig. 1A) that corresponds to the central axial line of the helix. The helical nature
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of the backbone is not visible for a helix at such resolutions. A b-sheet appears as a thin sheet (blue in

Fig. 1A) and can be detected using automatic or semiautomatic methods (Kong and Ma, 2003; Baker

et al., 2007; Si et al., 2012; Si and He, 2013). We recently showed that it is also possible to predict b-

strands from b-sheet density by analyzing the twist of a b-sheet (Si and He, 2014). Similar to a

detected helix, the location of a b-strand can be represented by a b-trace that corresponds to the central

line of the b-strand. Secondary structure traces (SSTs) refer to a-traces and b-traces detected from a

3D image. SSTs provide powerful constraints in protein structure determination.

The connection between SSTs is often ambiguous in density maps at medium resolutions. It is not known

which segment of the protein sequence corresponds to which SST in the 3D image. A topology of SSTs

refers to their order (with respect to the protein sequence) and the direction of each a-trace or b-trace. For

example, the true topology maps SSTs in the order (D2, D7, D9, D10, D1, D13, D14, D3, D6, D4, D8, D5, D11,

D12) (Fig. 1B) to sequence segments in the order (S1, S2, S4, S5, S6, S7, S8, S10, S11, S12, S13, S14, S15, S16)

(Fig. 1C). Observe that the two b-strands, S3 and S9 on the protein sequence, were not detected in the

image. Also, note that there are two possible directions when mapping a sequence segment (arrows in Fig.

1A and dot/cross in Fig. 1B).

Secondary structure topology determination is the process of finding the best mapping between the

secondary structures detected from a 3D image and those sequence segments predicted from a 1D amino

acid sequence. In reality, neither the positions of sequence segments nor the positions of SSTs can be

determined with complete accuracy. Long helices are often more accurately detected than shorter helices.

Alternative positions are often estimated for individual secondary structures (Fig. 2A, B). Suppose that

there are three alternative positions for each sequence segment on the sequence and three alternative

positions for each of the SSTs in the image, then there are 3N3NN!2N possible topologies in the solution

space, assuming that N is the number of secondary structures. The first two terms 3N3N come from the

combinatory nature of the problem when alternative positions of secondary structures are considered. The

last two terms correspond to mapping, since there are N! different orders and two possible directions in

mapping each secondary structure.

The problem of finding the optimal matching of secondary structures can be broken into two sub-

problems. One is a matching problem, that is, how to match the secondary structures if a specific set of

sequence segments and a specific set of SSTs are given. For this problem, we have shown that there is an

effective dynamic programming approach (Al Nasr et al., 2011, 2014a). The other problem is a placement

problem, that is, to find an optimal placement of the secondary structures among the alternative positions if

the possible orders of the secondary structures are known. We initially proposed a dynamic graph method

FIG. 1. Secondary structures and topology. (A) The density map (gray) was simulated to 10 Å resolution using protein

3PBA from the Protein Data Bank (PDB) and EMAN software (Ludtke et al., 1999). The secondary structures (red sticks,

alpha traces; blue, b-sheet; purple sticks, b-traces) were detected using SSETracer (Si and He, 2013) and StrandTwister (Si

and He, 2014). The semitransparent surface view was generated using Chimera (Pettersen et al., 2004). For clear viewing,

only those at the front of the structure are labeled. Arrows: the direction of the protein sequence at the secondary structure

regions. (B) The true topology of the secondary structure traces (SSTs) (circles, a-traces; triangles, b-traces). The two

directions of the a-traces are represented using a dot and a cross, respectively. (C) Secondary structures on the protein

sequence (rectangles, a-helix segments; triangles, b-strands; ‘‘.,’’ loops longer than two amino acids).
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to reduce computational overhead when alternative positions of secondary structures are considered

(Biswas et al., 2012). However, more effective methods are needed. In this article, we propose a dynamic

programming method to address the placement problem, particularly for the alternative position of SSTs

detected from 3D images. We show that, for each given mapping of the secondary structures, the optimal

placement problem can be solved using a dynamic programming method. When a small number of possible

mappings are derived, such a dynamic programming approach can be used to find the optimal placement for

each of the mappings.

2. METHODS

To simplify the formulation of the placement problem, let us assume that N secondary structure sequence

segments are being mapped to the same number of SSTs in the 3D image. Let S = (S1‚ S2‚ . . . ‚ SN ) be a

tuple of sequence segments. Let D = fD1‚ D2‚ . . . ‚ DNg be a set of the SSTs from the 3D image. In the

placement problem, it is assumed that the mapping between S and D is known, and the direction of each

SST is known. However, it is not known which alternative position of each secondary structure is to be

selected. Given a particular topology of SSTs, let mapping r be the mapping such that Si is mapped to

Dr(i) for i = 1‚ . . . ‚ N. Let us represent the alternative sequence segments and alternative SSTs, respec-

tively, as the following. Let (Si‚ al
i) be the lth alternative segment for the ith secondary structure on the

sequence, where l = 1‚ 2‚ . . . ‚ p‚ and i = 1‚ 2‚ . . . ‚ N. Let (Dr(i)‚ pk
r(i)) be the kth alternative for SST

Dr(i)‚ where k = 1‚ 2‚ . . . ‚ q‚ and i = 1‚ 2‚ . . . ‚ N. The placement problem is to find a tuple of sequence

segments [(S1‚ al1
1 )‚ (S2‚ al2

2 )‚ . . . ‚ (SN‚ alN
N )] and a tuple of SSTs Dr(1)‚ pk1

r(1)

� �
‚ Dr(2)‚ pk2

r(2)

� �
‚ . . . ‚

h

Dr(N)‚ pkN

r(N)

� �i
‚ 1pl1‚ l2‚ . . . ‚ lNpp‚ and 1pk1‚ k2‚ . . . ‚ kNpq, such that the score of mapping the two

tuples is minimized.

A variety of factors have been considered to score a mapping. The length of a helix can be estimated as

(1.5 · AA) Å for a helix and (3 · AA) Å for a b-strand, where AA is the number of amino acids involved in the

secondary structure. Therefore, the length of the secondary structure can be compared between an SST and a

sequence segment during a match. Similarly, the length of a loop between two consecutive secondary structures

can also be considered in scoring a mapping. The loop length in the image can be measured along the skeleton

image between the two end points ( Ju et al., 2007; Baker et al., 2011; McKnight et al., 2013). Additional factors

that were considered include the loop score (Lindert et al., 2009) and constraints of b-strands (Al Nasr et al.,

FIG. 2. Alternative positions of secondary structures and the dynamic programming table. (A) Alternative sequence

segments. (B) Alternative SSTs. The labeling scheme for a sequence segment and an SST can be found in the Methods

section. (C) The dynamic programming table.
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2014b). In this article, the scoring function compares the length of secondary structures being matched and the

loop length of those calculated from the skeleton trace in the image and those on the sequence (Al Nasr et al.,

2014b).

2.1. Dynamic programming algorithm of finding the optimal placement

A naı̈ve way to find the best placement of a topology is to exhaustively score each mapping of a set of alternative

sequence segments to a set of alternative SSTs. This will involve pN qN possible combinations to find the best

placement, where p and q are the number of alternatives for each secondary structure on the sequence and in the

image, respectively. However, one can devise a better algorithm to solve the problem using dynamic programming.

To simplify the exposition, first consider a subproblem in which the sequence segments are fixed. In other words,

there is only one alternative for sequence segments and p = 1. However, there are alternative positions for SSTs. In

this subproblem, Si is being mapped to Dr(i)‚ pk
r(i)

� �
, for i = 1‚ 2‚ . . . ‚ N‚ and k = 1‚ 2‚ . . . ‚ q. Let g(i, k) denote

the best cost of placing the first i SSTs using the kth alternative position for Dr(i). In other words, the best cost g(i, k)

is obtained when sequence segmentsfS1‚ S2‚ . . . ‚ Sig are optimally mapped to SSTsfDr(1)‚ Dr(2)‚ . . . Dr(i)g using

positions fpk1

r(1)‚ pk2

r(2)‚ ...‚ pk
r(i)g, respectively. Then for k0 2 f1‚ 2‚ . . . ‚ qg,

g(i + 1‚ k0) = min
k2f1‚ 2‚ ...‚ pg

g(i‚ k) + j l Dr(i + 1)‚ pk0

r(i + 1)

� ��

- l(Si + 1)j + jd Dr(i)‚ pk
r(i)

� �
‚ Dr(i + 1)‚ pk0

r(i + 1)

� �� �
- d(Si‚ Si + 1)j

� (1)

Note that l(Si+1) measures the length of secondary structure segment Si+1, and d(Si, Si+1) measures the

loop length between Si and Si+1 on the sequence. d (a, b) measures the distance in 3D between SST a and

SST b. Intuitively, for any position pk0

r(i + 1)‚ g(i + 1‚ k0) is only affected by the best cost of g(i, k) where

k = 1‚ 2‚ . . . ‚ q, and the score obtained from the relative positioning of the ith and the (i + 1)th SST (Fig. 2A,

C). The space requirement of the algorithm is Nq, since the implementation of the algorithm uses a table of

size Nq to store and reuse the computed g(i, k) (Fig. 2C). The running time of the dynamic programming

algorithm is Y (Nq2 h), where h is the time to calculate the 2nd, 3rd, and 4th term of Equation (1). Note that

the naı̈ve way to find the optimal placement is Y (qN h). Our dynamic programming method reduces the

computation time from an exponential in N to time that is linear in N. This is a massive improvement.

3. RESULTS AND DISCUSSION

To test the efficiency of the dynamic programming method for the optimal placement problem, an

experiment was performed using alternative SST positions while keeping the sequence segments of the

secondary structures unchanged. Our dynamic programming method was compared with a brute force

method in which all possible placements are calculated. The experimental dataset includes 12 a-proteins

and 4 a-b proteins, each contains an image and a known structure in the Protein Data Bank (PDB). a-

proteins contain only helices, and a-b proteins contain both a-helices and b-sheets. The proteins in this

dataset contain 9–33 helices with sizes ranging from 142 (1FLP) to 585 amino acids (2XVV) in length.

The atomic structures were downloaded from PDB and were used to simulate 3D images with 10 Å

resolution using EMAN (Ludtke et al., 1999). SSETracer was used to detect the position of a-helices and

b-sheets in the 3D images (Si et al., 2013). StrandTwister was used to identify b-traces from the isolated

b-sheets.

3.1. Finding optimal placement of a-traces in a-proteins

Although it is possible to detect helices from cryo-EM density maps at medium resolutions, it is almost

impossible to detect all the helices with complete accuracy. For each a-trace that was detected using

SSETracer and is shorter than 30 Å, five alternatives were produced. Since shorter helices are more error-

prone, two shifts (left and right along the central axis) of 10% of the length and two lengths (10% shorter or

longer) were created to simulate errors.

The initial mapping between helix traces in the 3D image and sequence segments was performed using

the topology graph method DP-TOSS (Al Nasr et al., 2014b). The helix traces detected using SSETracer
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and true secondary structure sequence segments were used to generate initial positions in DP-TOSS. DP-

TOSS generates a list of possible topologies sorted by topology scores. For each of the top 100 possible

topologies, the optimal placement of SSTs was searched. In the case of protein 3ACW (Table 1, row 5),

SSETracer detected 14 a-traces out of 17 helices in the true structure. We generated alternative positions

for 11 of the 14 detected helices as they were shorter than 30 Å in length and are expected to be error-prone.

In this case, the naı̈ve way to find the optimal cost for one topology requires enumerating all the possible

511 placements and finding the best among them. This brute force computation was done for the top-ranked

100 possible topologies. It takes 641.07 seconds for the brute force method to find the optimal placement

but only 14.2 seconds for our dynamic programming method. In fact, our implementation of the brute force

method used the bitmap technique that is often used in reducing the computation in combination problems.

Yet significant difference in run time is shown between the 2 methods for all 12 cases. It takes only about

26 seconds to find the best placement among top 100 topologies for the largest test case 2XVV in which 18

of the 33 helices in the protein have their alternative positions (Table 1).

In the test involving four a-b proteins, two images were simulated using the true structure as for the

a-proteins and two are experimentally derived cryo-EM density maps that were downloaded from Electron

Microscopy Data Bank (EMDB). Each density map corresponds to an atomic structure, and therefore can

be used to test the accuracy of our approach (see Table 2). In case of the experimentally derived cryo-EM

density maps, we extracted the density component corresponding to chain R of the protein for EMDB_5030

Table 2. Accuracy and Run Time of Finding the Optimal Placement Among Top

1000 Topologies with Maximum 20 Alternate Positions for Each Secondary Structure Trace

PDB IDa
No. of

a-helicesb
No. of

b-strandsc
No. of

a-stk/b-stkd Ranke
Brute

forcef
Dynamic

programmingg

1OZ9 5 5 5/5 76 378.46 28.82

1JL1 4 5 4/5 89 330.88 33.51

3FIN_R (5030)* 3 3 3/3 97 122.90 4.34

3IZ6_K (1780)* 3 5 2/5 6 336.94 18.45

aThe PDB ID with chain, with asterisk (*) indicating EMDB ID of the experimentally derived Cryo-EM map.
bThe number of helices in the true structure.
cThe number of b-strands in the true structure.
dThe number of a-traces/b-traces detected from the 3D image.
eThe rank of the true topology using the true sequence position of secondary structures.
fThe time (in seconds) to find optimal placement for top 100 topologies using brute force.
gThe time (in seconds) to find optimal placement for top 100 topologies using our dynamic programming algorithm.

Table 1. Run Time Finding the Optimal Placement Among Top 100 Topologies for a-Proteins

Index

Protein

PDB ID

No. of

true helices

No. of sticks

detecteda
No. of possible

placementsb
Brute

forcec
Dynamic

programmingd

1 1NG6 9 7 3.12 · 103 156.87 7.23

2 1FLP 7 7 78.12 · 103 198.65 8.71

3 2XB5 13 9 78.12 · 103 237.61 11.45

4 2OEV 26 20 1.95 · 106 290.78 12.48

5 3ACW 17 14 48.82 · 106 641.07 14.2

6 3LTJ 16 12 244.14 · 106 3559.81 15.69

7 1Z1L 23 15 244.14 · 106 3409.88 14.68

8 3ODS 21 16 3.81 · 1012 78544.24 17.54

9 2XSI 33 19 3.81 · 1012 316140.02 24.12

10 2XVV 33 19 3.81 · 1012 275412.51 26.78

11 3HJL 20 20 3.81 · 1012 304182.26 24.68

12 1HZ4 21 19 19.07 · 1012 493718.75 22.35

aThe number of a-traces detected using SSETracer.
bThe number of possible placements for a-traces shorter than 30 Å.
cThe time (in seconds) to find optimal placement for top 100 topologies using brute force.
dThe time (in seconds) to find optimal placement for top 100 topologies using our dynamic programming algorithm.
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and chain K for EMDB_1780 respectively. We derived a maximum of 20 alternative SSTs for each

a-helices/b-strand using SSETracer and StrandTwister. Most of the alternatives are produced for b-strands

with slightly different orientations and locations, since b-strands are often not detected exactly. The true

topology was ranked 97th and 6th for EMDB_5030 and EMDB_1780, respectively.

4. CONCLUSIONS

The inaccuracy in estimating the position of secondary structures on protein sequences and in 3D images

at medium resolutions requires the search for an optimal mapping among all possible alternate positions of

secondary structures. We propose a dynamic programming algorithm to find the optimal placement for a

given secondary structure topology. Our dynamic programming method uses Y (Nq2 h) time verses Y (qN h)

for the brute force method. The test using 12 a-proteins shows that the dynamic programming method uses

significantly less time than the brute force method particularly when the number of secondary structures (N)

and the number of alternatives (q) are large. The test involving four a-b proteins shows that the dynamic

programming method applies to more complicated proteins involving b-strands. In addition to the effi-

ciency, the approach has reasonable accuracy, although it has room to improve. We demonstrated in this

article that, for each possible topology of the secondary structures, finding the optimal placement among

alternative positions can be addressed using a dynamic programming method.
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