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Superheating field in
superconductors with
nanostructured surfaces

W. P. M. R. Pathirana1* and A. Gurevich2

1Department of Physics and Astronomy, Virginia Military Institute, Lexington, VA, United States,
2Department of Physics and Center for Accelerator Science, Old Dominion University, Norfolk, VA,
United States

We report calculations of a DC superheating field Hsh in superconductors with
nanostructured surfaces. Numerical simulations of the Ginzburg–Landau (GL)
equationswere performed for a superconductor with an inhomogeneous impurity
concentration, a thin superconducting layer on top of another superconductor,
and superconductor–insulator–superconductor (S-I-S) multilayers. The
superheating field was calculated taking into account the instability of the
Meissner state with a non-zero wavelength along the surface, which is
essential for the realistic values of the GL parameter κ. Simulations were
performed for the material parameters of Nb and Nb3Sn at different values of κ
and the mean free paths. We show that the impurity concentration profile at the
surface and thicknesses of S-I-S multilayers can be optimized to enhance Hsh

above the bulk superheating fields of both Nb and Nb3Sn. For example, an S-I-S
structure with a 90-nm-thick Nb3Sn layer on Nb can boost the superheating field
up to ≈500mT, while protecting the superconducting radio-frequency (SRF)
cavity from dendritic thermomagnetic avalanches caused by local penetration
of vortices.

KEYWORDS

superheating field, superconductors, multilayered superconductors, vortices,
Ginzburg–Landau theory

1 Introduction

The superconducting radio-frequency (SRF) resonant cavities in particle
accelerators enable high accelerating gradients with low power consumption. The
best Nb cavities can have high quality factors Q ~ 1010–1011 and sustain accelerating
fields up to 50 MV/m at T = 1.5–2 K and 0.6–2 GHz (Padamsee et al., 2018; Gurevich,
2023). The peak RF fields B0 ≃ 200 mT at the equatorial surface of Nb cavities can
approach the thermodynamic critical field Bc ≈ 200 mT at which the screening current
density flowing at the inner cavity surface is close to the depairing current density Jc ≃ Bc/
μ0λ—the maximum DC current density a superconductor can carry in the Meissner state
(Tinkham, 2004), where λ is the penetration depth of the magnetic field. Thus, the
breakdown fields of the best Nb cavities have nearly reached the DC superheating field
Bsh ≃ Bc (Galaiko, 1966; Matricon and Saint-James, 1967; Christiansen, 1969; Chapman,
1995; Catelani and Sethna, 2008; Transtrum et al., 2011; Lin and Gurevich, 2012). The Q
factors can be increased by material treatments such as high-temperature annealing
followed by low-temperature baking which not only increase Q (B0) and the breakdown
field but also reduce the deterioration of Q at high fields (Ciovati et al., 2010; Posen et al.,
2020). High-temperature treatments combined with the infusion of nitrogen, titanium,
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or oxygen can produce an anomalous increase of Q (B0) with RF
field amplitude B0 = μ0H0 (Ciovati et al., 2016; Grassellino et al.,
2017; Dhakal, 2020; Lechner et al., 2021). These advances raise
the question about the fundamental limit of the breakdown fields
of SRF cavities and the extent to which it can be pushed by surface
nanostructuring and impurity management (Gurevich and Kubo,
2017; Gurevich, 2023).

Several ways of increasing the SRF breakdown fields by
surface nanostructuring have been proposed. They include
depositing high-Tc superconducting multilayers with thin
dielectric interlayers (Gurevich, 2006; Gurevich, 2015; Kubo
et al., 2014; Liarte et al., 2017; Kubo, 2021) or a dirty
overlayer with a higher impurity concentration at the surface
(Ngampruetikorn and Sauls, 2019). The DC superheating field of
such structures has been evaluated using the London,
Ginzburg–Landau (GL), and quasiclassical Usadel and
Eilenberger equations in the limit of an infinite GL parameter
κ = λ/ξ→∞ in which the breakdown of the Meissner state atH0 =
Hsh occurs once the current density at the surface reaches the
depairing limit (Gurevich, 2006; Gurevich, 2015; Kubo et al.,
2014; Liarte et al., 2017; Kubo, 2021; Ngampruetikorn and Sauls,
2019). Yet, it has been well-established that in a more realistic
case of a finite κ, the breakdown of the Meissner state at H = Hsh

occurs due to the exponential growth of periodic perturbations of
the order parameter and the magnetic field with a wavelength
λc ~ (ξ3λ)1/4 along the surface, where ξ is the coherence length
(Christiansen, 1969; Chapman, 1995; Transtrum et al., 2011).
The effect of such periodic Turing instability (Cross and
Hohenberg, 1993) on Hsh can be particularly important for Nb
cavities with κ ~ 1. Addressing the effect of finite κ (which in turn
depends on the mean free path) on Hsh in superconductors with
nanostructured surfaces is the goal of this work.

We present the results of numerical calculations of a DC
superheating field for different superconducting geometries in
materials with finite κ and determine optimal surface
nanostructures that can withstand the maximum magnetic
field in the vortex-free Meissner state. In particular, we
consider a bulk superconductor with a thin impurity diffusion
layer, a clean superconducting overlayer separated by an
insulating layer from the bulk (e.g., Nb3Sn-I-Nb3Sn), a thin
dirty superconducting layer on the top of the same
superconductor (e.g., dirty Nb3Sn-I-clean Nb3Sn), and a thin
high-Tc superconducting layer on the top of a low-Tc

superconductor (e.g., Nb3Sn-I-Nb). We calculate Hsh and
determine an optimal layer thickness for each geometry by
numerically solving the GL equations, taking into account
both the non-linear screening of the applied magnetic field
and the periodic instability of the Meissner state in a
nanostructured superconductor.

The paper is organized as follows. The GL equations and
methods of numerical detection of Hsh and the wavelength λc of
a critical perturbation causing the instability of the Meissner state
are presented in Section 2. The results of numerical calculations of
Hsh for impurity diffusion layers and various S-I-S structures are
given in Section 3 and Section 4, respectively. Section 5 contains
discussion of the results, and Section 6 provides the conclusion with
a summary. Computational details are given in Section Method and
other technical details are given in Supplementary Appendices A, B.

2 GL equations and numerical
detection of Hsh and kc

We first consider a semi-infinite uniform superconductor in a
magnetic field H0 applied along the z-axis, parallel to the planar
surface. In this case, the induced supercurrents flow in the xy plane
and GL equations for the complex order parameter ψ = Δeiφ, and two
components of the vector potential Ax and Ay can be reduced to two
coupled partial differential equations for the amplitude Δ(x, y, t) and
the z-component of the magnetic field H (x, y, t). As shown in
Supplementary Appendix A, these equations can be written in the
following dimensionless form:

_f − f + f3 − ∇2f + κ2

f3
∂xh( )2 + ∂yh( )2[ ] � 0, (1)

∇ · ∇h

f2
( ) � h

κ2
. (2)

Here, f (x, y) = Δ(x, y)/Δ0, Δ0(T) is the equilibrium order parameter
in the bulk, h(x, y) � H(x, y)/ �

2
√

Hc, and all lengths are in units of
the coherence length ξ and κ = λ/ξ. Despite the presence of the time
derivative _f in Eqs (1, 2), they are essentially the quasi-static GL
equations, but not the true time-dependent Ginzburg–Landau
(TDGL) equations (Watts-Tobin et al., 1981; Sheikhzada and
Gurevich, 2020) which describe a non-equilibrium
superconductor at T ≈ Tc. Here, _f is added just to detect the

FIGURE 1
Spatial distribution of the order parameter calculated at κ =10,
H0= Hsh −0 (A), and H0= Hsh +0 (B).
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instability of the Meissner state in numerical simulations upon slow
ramping the applied magnetic field. This procedure allows us to find
the field H0 = Hsh above which the GL equations no longer have
stationary solutions. Another way of numerical calculation of Hsh is
based on finding the applied field at which the linearized Eqs (1, 2)
have zero eigenmode with _f � 0 (Christiansen, 1969; Chapman,
1995; Transtrum et al., 2011; Liarte et al., 2017), as summarized in
Supplementary Appendix B. It turns out that the direct solving Eqs
(1, 2) with the ad hoc term _f is much faster than solving the
eigenmode problem. For slow magnetic ramp rates _H0 used in our
simulations, the resulting Hsh calculated by these two methods only
differ by ≃ 1%, as it is shown in the next Sections. Equations (1, 2)
were solved with the following boundary conditions:

h 0, y( ) � h0 t( ),
h x, 0( ) � h x, Ly( ), f x, 0( ) � f x, Ly( ),

f Lx, y( ) � 1, h Lx, y( ) � 0,
(3)

where h0 � H0/
�
2

√
Hc and the lengths Lx and Ly of the simulation

box Lx × Ly were chosen to be ≃ (50–150)ξ depending on κ. The
details of the numerical calculations are given in the Supplementary
Method.

Shown in Figures 1A,B are f (x, y) calculated at κ = 10 and the
applied fieldsH0 slightly below and aboveHsh. AtH0 <Hsh, the order
parameter f(x) is reduced at the surface by the flowing screening
currents. At H0 > Hsh, the stationary f(x) becomes unstable with
respect to spontaneously growing periodic perturbations δf (x, y, t)
along the surface, as shown in Figure 1B. This Turing instability

(Cross and Hohenberg, 1993) occurs with respect to a small
disturbance δf (x, y, t) ∝ δf(x)eiky+Γt, where the increment Γ(H0,
k) depends on the wave vector k of spatial oscillations of f (x, y) along
the surface as shown in Figure 2A. Below the superheating field, Γ(k)
is negative so perturbations with all k decay exponentially and the
Meissner state is stable. At the superheating field, Γ(k) first vanishes
at a critical wave number k = kc at which Γ(k) is maximum. At H0 =
Hsh + 0, the increment Γ(k) becomes positive at k = kc, making the
Meissner state unstable with respect to a growing critical
perturbation δf(x, y, t)∝ δf(x)eikcy+Γ(kc)t with the wavelength
λc = 2π/kc, while all other perturbations with k ≠ kc decay
exponentially. We calculated Hsh by slowly ramping the applied
field and detecting the onset of the exponential growth of f (x, y, t)
with time as described in Method. The critical wavelength λc was
evaluated from the maximum peak in the spatial Fourier transform
of δf (0, y), as shown in Figure 2B. This instability is a precursor of
the penetration of the vortex structure with the initial period
λc ~ (ξ3λ)1/4 smaller than the stationary vortex spacing ~

��
λξ

√
at

H0 ≃ Hsh and κ > 1. The aforementioned direct method for the
calculation of Hsh is based on the numerical detection of the field
threshold above which the stationary Meissner state does not exist.
Here, the time scales of the transition to the vortex state at H0 > Hsh

are irrelevant, provided that Hsh is calculated at low enough
magnetic ramp rates at which Hsh is independent of _h0. We
calculated Hsh at _h0 ≃ 10−5 and verified that Hsh is indeed
practically independent of _h0, which is also consistent with the
calculations of Hsh using both the TDGL and full non-equilibrium
equations for dirty superconductors (Sheikhzada and Gurevich,
2020).

We then compare some of our numerical results with the known
analytical approximations for Hsh and kc at κ ≫ 1, given as follows
(Christiansen, 1969; Chapman, 1995; Transtrum et al., 2011; Liarte
et al., 2017).

Hsh

Hc
≈

�
5

√
3

+ 0.545�
κ

√ , (4)

λkc ≈ 0.956κ3/4. (5)
At κ = 10–20, Eqs (4, 5) give the instability wavelength λc �
6.57(ξ3λ)1/4 ≃ (1.17 − 0.21)λ and Hsh approximately (23–16)%
higher than Hsh = 0.745Hc in the limit of κ → ∞ in which λc →
0 and the breakdown of theMeissner state atH =Hsh occurs once the
current density at the surface reaches the depairing limit
(Christiansen, 1969). Thus, even at κ = 10–20, characteristic of a
dirty Nb or a clean stoichiometric Nb3Sn (Orlando et al., 1979;
Posen and Hall, 2017), the periodic instability along the surface
occurs on the scale of the order of the field penetration depth, so the
self-consistent GL calculation of Hsh is required.

3 Superconductor with an impurity
diffusion layer

We consider a dirty layer at the surface with a higher impurity
concentration, as shown in Figure 3A. In our simulations, such a
layer was modeled by a spatially varying coherence length and
penetration depths ξ2(x)/ξ2∞ � λ2∞/λ2(x) � 1 − α exp(−x/ld), as
shown in Figure 3B. Here, ξ∞ and λ∞ are the corresponding

FIGURE 2
(A) Qualitative dependence of the instability increment Γ(H0, k)
on the wave vector of perturbation k at different applied fields H0. (B)
Snapshot of δf(y) at x =0, and H0= Hsh +0 calculated at κ =10.
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bulk values far away from the surface, ld is the thickness of the
diffusion layer, and the parameter α < 1 quantifies the reduction of
ξ(0) = (1 − α)1/2ξ∞ and the enhancement of λ(0) = (1 − α)−1/2λ∞ at
the surface. The ratio ξ2(x)/ξ2∞ � λ2∞/λ2(x) is controlled by the
impurity function χ(ZvF/2πTcl(x)) (Werthamer, 1969) with an
inhomogeneous mean free path l(x), which is defined in
Supplementary Appendix A. The resulting GL equations take the
following form:

_f � f − f3 + ∇ · Sγ∇f( ) − κ2

Sγf3
∂xh( )2 + ∂yh( )2[ ], (6)

∇ · ∇h

Sγf2
( ) − h

κ2
� 0, (7)

where κ = λ∞/ξ∞, Sγ � ξ2(x)/ξ2∞ � 1 − α exp(−x/ld), and the lengths
are in units of ξ∞. The boundary conditions are the same as in Eq. (3).
Different impurity profiles were investigated by changing α and ld at
κ = 2 and κ = 10, respectively, representing a cleaner and dirtier Nb.

The calculated dependencies of Hsh(ld) on the diffusion layer
thickness at different α for κ = 2 and κ = 10 are shown in Figures
4A, B, respectively. One can see thatHsh(ld) first increases with ld, reaches
amaximum, and then decreases with ld approaching a lower value ofHsh

at ld ≫ ξ∞. At κ = 2, Hsh(ld) is maximum at ld/ξ∞ = 0.8, 0.9, 1.5 for
α = 0.2, 0.5, 0.8. Similarly, at κ = 10,Hsh(ld) is maximum at ld/ξ∞ = 4, 5,
10. Here, the diffusion layer can increase Hsh by ≈ 9% at κ = 2 and by
≈ 14% at κ = 10 as compared to a superconductor with an ideal surface.
A qualitatively similar non-monotonic dependence ofHsh on ldwas also
obtained by solving the quasiclassical Eilenberger equations in the entire
temperature range 0 < T < Tc (Ngampruetikorn and Sauls, 2019). The
maximum in Hsh(d) results from a current counterflow induced in the
dirty surface layer by a cleaner substrate with a smaller λ∞ < λ(0) (Kubo
et al., 2014; Gurevich, 2015), the magnitude of the peak increases as the
diffusion layer gets dirtier. The curves Hsh(ld) cross over at larger ld for
which Hsh(∞) is determined by the surface GL parameter κ(0) = κ∞/
(1 − α). As a result, Hsh(∞) decreases as the material gets dirtier, in
agreement with Eq. (4).

FIGURE 3
(A) Impurity diffusion layer at the surface shown by the dark gray contrast. (B) Variations of normalized coherence length and penetration depth
across a dirty layer with α =0.5.

FIGURE 4
Superheating fieldHsh(ld) as a function of the dirty layer thickness
calculated at (A) κ =2 (B) κ =10 for different α. The dashed line shows
Hsh(ld) calculated from the condition δ2F =0 and ∂kδ

2F =0 at (A) κ =2
and (B) κ =10 at α =0.5.
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The direct numerical calculation of Hsh involves detecting the
instability of the Meissner state with respect to an infinitesimal
perturbation δf(x, y) � δf(x)eikcy+Γt with a finite wave number kc
and an increment Γ(H0) changing the sign from negative atH0 <Hsh

to positive atH0 >Hsh. Figure 5 shows the fast Fourier transform of a

snapshot of δf (0, y, t) along y calculated atH0 =Hsh + 0 at α = 0.5, κ =
10, and different ratios ld/ξ∞. One can see that δf (0, y) has several
harmonics even at the slow field ramp rate _h0 � 5 · 10−5 used in our
simulations. Such multi-mode temporal oscillations of δf (0, y) can
result from a nonlinear mode coupling above the Turing instability
threshold (Cross and Hohenberg, 1993), as well as a finite size of the
computational box. In this case, the critical wave number kc would
correspond to the highest peak in the Fourier spectrum of δfk (0, t).
Yet, Figure 5 reveals two uneven peaks whose heights change
differently as the ratio ld/ξ∞ is varied. For instance, at ld/ξ∞ = 5,
the critical wave number kc is determined by the higher left peak
observed in Figure 5, but as ld/ξ∞ is increased to 6, the right peak
becomes higher than the left one, so kc changes jumpwise at ld/ξ∞ ≈
5.5. The peak shifts toward higher λ∞k values, providing a constant
kc in this range of ld/ξ∞. The switching of kc between two values as ld/
ξ∞ is increased can be seen in “Fourier Transform. mp4” in
Supplementary Video S1. To see the extent to which this
ambiguity in kc may affect Hsh, we have also calculated kc and
Hsh from the sign change of the second variation of the free energy
δ2F caused by small perturbations of δf (x, y) and δh (x, y). In this
method (Christiansen, 1969; Chapman, 1995; Transtrum et al.,
2011), Hsh is determined by the conditions δ2F (kc, Hsh) = 0 and
∂δ2F/∂kc = 0. Figures 6A, B show λ∞kc as a function of ld/ξ∞ at κ = 2
and κ = 10 and different α computed from the second variation δ2F,
as described in Supplementary Appendix B. One can see that the
peaks in kc shown in Figure 5 are in the range of λkc ≈ 5–7
qualitatively matching λkc (ld) ≈ 5 at α = 0.5, as shown in
Figure 6. Yet, the Hsh(ld/ξ∞) curves calculated by these two
methods at α = 0.5 turned out to be very similar (the difference
is approximately 1%), as shown by the dashed lines in Figure 4.

4 S-I-S structures

Using the direct simulation method outlined in Section 2, we
have calculatedHsh(d) and the critical wave number kc(d) for various
S-I-S structures: the S layer of thickness d is separated by an insulator
from the S substrate of the samematerial, a dirty S layer on the top of
a cleaner superconductor (e.g., dirty Nb-I-clean Nb), and a thin high
Tc overlayer on the top of a low Tc superconductor (e.g., Nb3Sn-I-
Nb). Here, the I layer is assumed to be thick enough to fully suppress

FIGURE 5
Discrete fast Fourier transform of δf (0, y) at H0=Hsh +0, α =0.5, and κ =10; (A) ld/ξ∞=5, (B) ld/ξ∞=5.5, and (C) ld/ξ∞=6. Evolution of these peaks with
ld/ξ∞ is shown in “Fourier Transform.gif” in Supplementary Video S1.

FIGURE 6
Dependencies of λkc on ld calculated from the conditions δ2F =0
and ∂kδ

2F =0 at (A) κ =2 and (B) κ =10 for different α.
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the Josephson coupling between the S overlayer and the bulk, but
thinner than the S overlayer. The screening of the applied field in an
S-I-S multilayer is shown in Figure 7.

4.1 S overlayer on the top of the S-substrate

TheGLEqs (1, 2) for the S overlayer separated by the I layer from the
substrate made of the same superconductor were solved in both
S-domains with the boundary conditions given by Eq. (3)
supplemented by the conditions of continuity of h (d + 0, y) = h
(d − 0, y), parallel electric field Ey (d + 0, y) = Ey (d − 0, y), and zero
current ∂yh (d + 0) = ∂yh (d − 0) = 0 through the I layer. Figure 8 shows
thatHsh is a function of the thickness of the S overlayer d calculated at κ =
17 representing Nb3Sn. Here, a very thin S overlayer reduces Hsh(d),
which then gradually increases with d, reaching a higher bulk value ofHsh

at d > 9ξ2, where ξ2 is the coherence length in the S-substrate. The
reduction of Hsh(d) at small d results from the I layer blocking the
perpendicular currents produced by the critical perturbation and
reducing its decay length in the bulk from ~

��
λξ

√
to d. In turn, the

critical wave number kc(d) along the surface shown in Figure 9 increases
jumpwise from kc ≈ 1.8/λ2 at d < 9ξ2 in a thin overlayer to kc ≈ 7.2/λ2 at
d > 9ξ2, corresponding to the instability of the Meissner state in a semi-
infinite superconductor. The calculated kc at d> 9ξ2 is approximately 10%
smaller than kc ≈ 8/λ2 given by the asymptotic Eq. (5) at κ2 = 17.

4.2 Dirty S overlayer on a cleaner S-substrate

A dirty S overlayer with a higher concentration of non-magnetic
impurities on a cleaner S substrate of the same material is considered,
assuming that both have the same Tc unaffected by non-magnetic
impurity scattering (Tinkham, 2004). Superconductivity in the bulk is
described by the following GL equations

_f2 � ∇2f2 + f2 − f3
2 −

κ22
f3
2

∂xh2( )2 + ∂yh2( )2[ ], (8)

∇ · ∇h2
f2
2

( ) � h2
κ22
, (9)

where index 2 corresponds to the substrate parameters in which the
lengths and f2 are in units of their respective bulk values of ξ2 and Δ2.
In turn, the GL equations in the overlayer are as follows:

_f1 � f1 − f3
1 +

ξ21
ξ22
∇2f1 − ξ21

ξ22

κ21
f3
1

∂xh1( )2 + ∂yh1( )2[ ], (10)

∇ · ∇h1
f2
1

( ) � h1ξ
2
2

ξ21κ
2
1

. (11)

Equations (8–11) were solved for a dirty Nb3Sn overlayer on a
cleaner Nb3Sn with a mean free path l = 2 nm, λ1 ≈ λ2(ξ2/l)1/2 ≈ 135

FIGURE 7
Superconductor–insulator–superconductor structure. The
vertical black line represents the insulating layer, and the red line
shows the screened magnetic field profile H(x).

FIGURE 8
Superheating field Hsh(d) calculated for the Nb3Sn-I-Nb3Sn
structure.

FIGURE 9
Critical wave number kc(d) calculated for the Nb3Sn-I-Nb3Sn
structure by solving the quasistatic GL equations directly as described
in Section 2.
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nm, ξ1 ≈ (lξ2)1/2 ≈ 3 nm, κ1 = 45 in the overlayer, and κ2 = 17 in the
bulk. Figure 10 shows the calculated dependence ofHsh on the overlayer
thickness which has a maximum at the optimum thickness dm ≈ 9ξ2.
Such an optimal dirty overlayer can increaseHsh by approximately 10%
as compared to the bulk Hsh. The behavior of Hsh(d) at a finite κ turns
out to be similar to that calculated using the London and GL theories in
the limit of κ→ ∞ in which the enhancement of Hsh at d ≃ dm results
from the current counterflow induced by the substrate with a shorter λ2
in the overlayer with a larger λ1 (Kubo et al., 2014; Gurevich, 2015).
Here, the cusp-like dependence ofHsh(d) is controlled by the instability
of the Meissner state in the substrate at d < dm and by the instability of
the Meissner state in the overlayer at d > dm, the overlayer partly
screening the substrate and allowing it to withstand external fields

higher than the bulkHsh. The corresponding critical wave number kc(d)
is shown in Figure 11. The jumpwise change of kc(d) reflects the switch
from the instability of the Meissner state at the inner surface of the
substrate at d < dm to the instability at the outer surface in the overlayer
at d > dm. Such a jump in kc also follows Eq. (5) which gives kcλ2 �
0.956κ3/22 ≈ 8 at d < dm and kcλ2 � 0.956κ1/41 κ1/22 ≈ 10.2.

4.3 High-Tc superconducting overlayer

Finally, we consider an S-I-S structure comprising a high-Tc
layer on the top of a lower-Tc substrate. The order parameter f2 and
the field h2 in the substrate are described in Eqs (8, 9), and the GL
equations for f1 and h1 in the overlayer are given by

_f1 � ζf1 − f3
1 + s∇2f1 − ~κ2

f3
1

∂xh1( )2 + ∂yh1( )2[ ], (12)

∇ · ∇h1
f2
1

( ) � λ22h1
λ21ζκ

2
2

, (13)

ζ � 1 − T/Tc1

1 − T/Tc2
, s � ξ21

ξ22
ζ , ~κ2 � ξ21λ

4
1

ξ22λ
4
2

κ22ζ
3, (14)

where Tc1 and Tc2 are the critical temperatures of the overlayer and
the substrate, respectively, and the order parameter and lengths are
normalized to the respective parameters of the substrate. Equations
(12–14) are supplemented by the boundary conditions given by Eq.
(3) and the conditions of field continuity and zero current through
the I layer.

We solved the GL equations for a clean Nb3Sn overlayer on a
bulk Nb using κ2 = 50/22 and κ1 = 17 (Orlando et al., 1979; Posen
and Hall, 2017). The calculated superheating field Hsh(d) shown
in Figure 12 has a maximum at dm ≈ 4ξ2. This behavior of Hsh(d)
is similar to that of Hsh(d) considered in the previous section:
Hsh(d) at d < dm is limited by the instability of the Meissner state
in the Nb substrate partly screened by the Nb3Sn overlayer, while

FIGURE 10
Superheating field Hsh(d) calculated for the Nb3Sn(dirty)-I-Nb3Sn
structure. The red dashed line shows Hsh(d) calculated from the
London Eqs (15–17) with Hsh1=0.855Hc and Hsh2=0.91Hc taken from
the asymptotic limits of Hsh(d) at d ≫ λ1 and d =0, respectively.

FIGURE 11
The critical wave number kc(d) calculated for the Nb3Sn(dirty)-I-
Nb3Sn structure by solving the quasi-static GL equations directly as
described in Section 2.

FIGURE 12
Superheating field Hsh(d) calculated for the Nb3Sn-I-Nb
structure. The red dashed line shows Hsh(d) calculated from the
London Eqs (15–17) withHsh1=2.28Hc andHsh2=1.08Hc taken from the
asymptotic limits of Hsh(d) at d ≫ λ1 and d =0, respectively.
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Hsh at d > dm is determined by the superheating field of Nb3Sn
enhanced at d ≈ dm by the current counterflow caused by the Nb
substrate. The corresponding dependence of kc(d) on the
overlayer thickness is shown in Figure 13. The jumpwise
change of kc(d) reflects the switch from the instability of the
Meissner state at the inner surface of the low-Tc substrate at d <
dm to the instability at the outer surface in the high-Tc overlayer
at d > dm, which is similar to that shown in Figure 11. For the
parameters used in the simulations, such Nb3Sn-I-Nb structures
with d ≈ dm can boost the superheating field up to ~ 2.2 times
higher than the bulk Hsh2 of Nb (Gurevich, 2006; Gurevich, 2015)
and approximately 5.3% higher than the bulk Hsh1 of Nb3Sn.

5 Discussion

The GL calculations of the DC superheating field at T ≈ Tc

self-consistently take into account the essential non-linear field
screening and the periodic instability of the Meissner state in the
entire range of the GL parameters which can be tuned by the
impurities. This approach shows that the thicknesses of the
impurity diffusion layer or S-I-S layers can be optimized to
increase Hsh above the superheating fields of individual
components. For instance, optimizing the diffusion length can
enhance Hsh by ≃ 5–20% at κ = 10 and by ≃ 2–9% at κ = 2. An
optimized dirty Nb3Sn overlayer deposited onto the Nb3Sn field
by ≃ 10% as compared to Hsh of a clean Nb3Sn. This effect
manifests itself in a non-monotonic dependence of Hsh on the
dirty layer thickness due to the current counterflow induced at
the surface by a superconducting substrate with a shorter field
penetration depth. Such behavior of Hsh(d) is consistent with the
previous calculations of Hsh based on the London (Gurevich,
2006; Gurevich, 2015; Kubo et al., 2014) or Usadel (Kubo, 2021)
and Eilenberger (Ngampruetikorn and Sauls, 2019) theories at κ
→∞. To see the extent to which the London model is consistent

with the GL results, we consider Hsh(d) calculated for an S-I-S
multilayer in the London limit (Gurevich, 2015).

Hsh d( ) � cosh d/λ1( ) + λ2/λ1( )sinh d/λ1( )[ ]Hsh2, d<dm (15)

Hsh d( ) � λ1 + λ2 tanh d/λ1( )
λ1 tanh d/λ1( ) + λ2

[ ]Hsh1, d>dm (16)

dm � λ1 ln
λ1

λ1 + λ2

Hsh1

Hsh2
+

�����������
H2

sh1

H2
sh2

+ 1 − λ22
λ21

√⎡⎢⎣ ⎤⎥⎦⎧⎨⎩ ⎫⎬⎭, (17)

whereHsh1 andHsh2 are the bulk superheating fields of the overlayer
and the substrate, respectively. Equation (15) describes Hsh(d) of
S-I-S structures with thin overlayers (d < dm), where the Meissner
state first breaks down at the surface of the substrate. Here, the high-
Hc overlayer partly screens the substrate, allowing it to stay in the
Meissner state at a higher applied field H0 = Hsh(d) than the bare
substrate. If d > dm, the Meissner state first breaks down at the outer
surface of the overlayer so that Hsh(d) → Hsh1 at d ≫ λ1. The
maximum Hsh(dm) is given by:

Hsh dm( ) � H2
sh1 + 1 − λ22

λ21
( )H2

sh2[ ]1/2

. (18)

The maximum Hsh(dm) � (H2
sh1 +H2

sh2)1/2 in an S-I-S multilayer
occurs if (λ2/λ1)2 ≪ 1.

Equations (15–17) do not take into account the reduction of
the superfluid density by current, non-linear field screening and
the periodic instability of the Meissner state at a finite κ. The
London model does not account for the size effect of reducing
Hsh(d) if the overlayer thickness is smaller than the decay length
~

����
λ1ξ1

√
of the critical perturbation, as was discussed in Section 4.1.

Indeed, for identical materials of the substrate and overlayer
(λ1 = λ2, Hsh1 = Hsh2), Eqs (15–17) give dm = 0 and Hsh(d) =
Hsh1 independent of d, which is inconsistent with the reduction of
Hsh(d) at d ≲ 10ξ2, as shown in Figure 8. Yet, the London model
captures the non-monotonic thickness dependence Hsh(d)
calculated from the GL theory if the overlayer has different
properties than those of the substrate, and the input parameters
Hsh1 and Hsh2 in Eqs (15–17) are exact bulk superheating fields for
given values of κ and Hc, respectively (Gurevich, 2015). For
instance, Figure 10 compares the GL and the London Hsh(d)
calculated for an Nb3Sn(dirty)-I-Nb3Sn structure with a dirty
overlayer for which the London model works reasonably well.
For the Nb3Sn-I-Nb multilayers considered in Section 4.3, we
observed a rather good agreement between Hsh(d) calculated from
the GL theory and Eqs (15–17), as shown in Figure 12. Such
surprising accuracy of Eqs (15–17) was also observed by Kubo
(2021) in the Usadel simulations of dirty S-I-S multilayers in the
entire temperature range of 0 < T < Tc at κ → ∞.

In theGL regionT≈Tc2, Eqs (15–17) predict a significant change in
the temperature dependence of Hsh(T) of the S-I-S multilayer with a
higher-Tc overlayer as compared toHsh2(T) of the bare substrate. IfT→
Tc2, the penetration depth λ2(T)∝ (Tc2 − T)−1/2 diverges andHsh2(T)
∝ Tc2 − T vanishes, while λ1 andHsh1 remain nearly independent of T.
This case is characteristic of Nb3Sn-I-Nb for which Tc1 ≃ 2Tc2, the
crossover thickness dm(T) increases with T and diverges logarithmically
atT→ Tc2. In turn,Hsh(d,T) obtained by Eq. (15) is limited by the small
superheating field of the substrate partially screened by the high-Tc
overlayer:

FIGURE 13
The critical wave number kc(d) calculated for the Nb3Sn-I-Nb
structure by solving the quasistatic GL equations directly as described
in Section 2.
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Hsh T( ) ≃ λ2/λ1( )sinh d/λ1( )Hsh2 T( )∝ ������
Tc2 − T

√
, (19)

Hence, Hsh(T) can be significantly higher than Hsh2(T)∝ Tc2 − T at
T ≈ Tc2, particularly if d > λ1. As an illustration, Figure 14 shows
Hsh(T) calculated from Eqs (15–17) for different ratios d/λ1 and the
parameters of Nb3Sn-I-Nb specified in Section 4.3. One can see both
the square root temperature dependence given by Eq. (19) at T ≈ Tc2
and a sharp change in Hsh(T) upon decreasing T as dm(T) becomes
shorter than d and Hsh(T) crosses over to a nearly constant Hsh1(T)
of the overlayer. For d/λ1 < 2, such a transition in Hsh(T) happens at
lower T outside the GL temperature range shown in the figure.

The relation between the static Hsh calculated here and the
dynamic superheating field Hsd (T, ω) representing the fundamental
field limit of superconductivity breakdown in SRF cavities depends
on the rf frequency ω, temperature, and the material purity
(Gurevich, 2023). The calculation of Hsd for S-I-S structures
generally requires solving complex equations of non-equilibrium
superconductivity, which in some cases can be reduced to TDGL
equations at T ≈ Tc (Watts-Tobin et al., 1981). The dynamic
superheating field of an alloyed superconductor with an ideal
surface at T ≈ Tc was calculated from the microscopic theory
(Sheikhzada and Gurevich, 2020), where it was shown that
Hsd(T) approaches the static Hsh(T) at low frequencies ω ≪ ωc

but can be by a factor
�
2

√
larger than Hsh at ω ≫ ωc. Here, the

crossover frequency ωc ~ min(τ−1ϵ , τ−1Δ ) is set by the inelastic
electron–phonon scattering time τϵ(T) ∝ T−3 and the TDGL
relaxation time of the order parameter τΔ = πZ/8kB(Tc − T)
(Gurevich, 2023). For Nb and Nb3Sn at T ≈ TNb

c � 9.2 K, both
τϵ(9K) ~ 10–11 s and τΔ ~ 10–11 s at Tc − T = 0.2 K are much shorter
than the rf period at 1 GHz. In this case, the superconducting and
quasiparticle screening currents follow practically instantaneously
the driving rf field, and the quasistatic Hsh(T) considered here is

applicable. The dynamic superheating field at lower temperatures
T ≃ 2 K at GHz frequencies has not yet been calculated from a
microscopic theory.

In this work, Hsh was calculated for S-I-S structures with ideal
surfaces and interfaces without topographical and material defects
or weakly coupled grain boundaries in the overlayer and the
substrate. Topographical and other surface defects can locally
reduce the field onset of the dissipative penetration of vortices
and reduce the global Hsh, as was shown by TDGL simulations
(Vodolazov, 2000; Pack et al., 2020; Wang et al., 2022). Likewise,
Hsh(T) can be reduced by weakly coupled grain boundaries causing
premature proliferation of mixed Abrikosov–Josephson vortices or
phase slips (Sheikhzada and Gurevich, 2017). The I interlayer in
S-I-S coating can mitigate these detrimental effects by the following:
1. increasing the cavity breakdown field by thin high-Hc overlayers
and 2. confining vortices penetrating at surface defects in a thin
overlayer and blocking flux penetration in the cavity wall, where it
can trigger thermo-magnetic avalanches, causing global
superconductivity breakdown (Gurevich, 2015; Gurevich, 2023).
The S-I-S coating can provide these two goals if the overlayer
thickness does not exceed λ1 (Gurevich, 2006). In this work, we
calculated the upper limit ofHsh and showed how the S-I-S geometry
can be optimized to increase Hsh at d ≲ λ1.

6 Conclusion

Our numerical GL calculations of the DC superheating field in
superconductors with nanostructured surfaces cover the entire
range of 1 < κ < ∞ and account for both the non-linear
Meissner screening and the instability with a finite wave number
kc atH0 =Hsh. We showed that there are optimum thicknesses of the
impurity diffusion layer and the superconducting overlayer which
maximize Hsh. These results suggest the possible ways of increasing
the breakdown fields by surface nanostructuring and can help
understand the ways of optimizing SRF cavities to achieve higher
accelerating gradients.
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FIGURE 14
Temperature dependencies ofHsh(T) calculated from Eqs (15–17)
for different ratios d/λ1 and the superconducting parameters of
Nb3Sn-I-Nb specified in the text. The sharp change in the behavior of
Hsh(T) upon decreasing T at d/λ1=2 occurs as dm(T) becomes
shorter than d and Hsh(T) crosses over to a nearly constant Hsh1(T) of
the overlayer. For smaller d/λ1, such a transition inHsh(T) takes place at
lower T outside the GL temperature range shown in the figure. Here,
the blue line with d/λ1=0 represents Hsh2(T) of the bare substrate.
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