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1. Introduction
The Earth's radiation belts are populated by electrons having energies of hundreds of keVs to several MeVs or even 
higher. These electrons are hazardous to satellites that encounter them in the inner-magnetosphere r ∼ 1.2–8 RE, 
including at the geosynchronous orbit (GEO), and at their foot points at low earth orbit (LEO) in the ionosphere, 
where 1 RE = radius of the Earth = 6,378 km. The MeV electrons can penetrate deep into spacecraft systems, 
leading to anomalous system, subsystem, or payload malfunctions, while those with energies <1 MeV can accu-
mulate on or near the surface of the spacecraft structure, leading to potentially hazardous electrical discharges.

It has long been recognized that the variabilities of the radiation belt electrons, to a large extent, are driven 
ultimately by the variability of the solar wind (e.g., Alves et  al.,  2017; Baker et  al.,  1990,  2018,  2019; Li 
et al., 2001, 2005; Pinto et al., 2018; Reeves, 2007; Reeves et al., 2013; Ukhorskiy et al., 2004; Xiang et al., 2017; 
Zhao et al., 2017). However, many solar wind parameters positively and negatively correlate with one another, 
which can complicate the interpretation as to which solar wind parameters are the real drivers and which param-
eters are only coincidentally correlated with the radiation belt electrons (e.g., Borovsky, 2018, 2020; Maggiolo 
et al., 2017; Wing & Johnson, 2019; Wing et al., 2016; Wing et al., 2022). For example, solar wind velocity 
(Vsw) positively correlates with radiation belt electron fluxes (Je) (e.g., Baker et al., 1990; Balikhin et al., 2011; 
Li et al., 2001, 2005; Paulikas & Blake, 1979; Reeves et al., 2011; Wing et al., 2016, 2022). Solar wind density 

Abstract An empirical model of radiation belt relativistic electrons (μ = 560–875 MeV G −1 and 
I = 0.088–0.14 RE G 0.5) with average energy ∼1.3 MeV is developed. The model inputs solar wind parameters 
(velocity, density, interplanetary magnetic field (IMF) |B|, Bz, and By), magnetospheric state parameters 
(SYM-H and AL), and L*. The model outputs the radiation belt electron phase space density (PSD). The model 
is operational from L* = 3 to 6.5. The model is constructed with neural networks assisted by information 
theory. Information theory is used to select the most effective and relevant solar wind and magnetospheric input 
parameters plus their lag times based on their information transfer to the PSD. Based on the test set, the model 
prediction efficiency (PE) increases with increasing L*, ranging from −0.043 at L* = 3 to 0.76 at L* = 6.5. The 
model PE is near 0 at L* = 3–4 because at this L* range, the solar wind and magnetospheric parameters transfer 
little information to the PSD. Using solar wind observations at L1 and magnetospheric index (AL and SYM-H) 
models solely driven by solar wind, the radiation belt model can be used to forecast PSD 30–60 min ahead. This 
baseline model can potentially complement a class of empirical models that input data from low earth orbit 
(LEO).

Plain Language Summary An empirical model of radiation belt relativistic electrons with an 
energy of 1–2 MeV is developed. The model inputs solar wind parameters, magnetospheric state parameters, 
and L*. L* gives a measure of radial distance from the center of the Earth with a unit of RE (radius of the 
Earth = 6,378 km). The model outputs the radiation belt electron phase space density (PSD). The model is 
operational from L* = 3 to L* 6.5. The model is constructed with an information theory informed neural 
networks. Information theory is used to select the relevant solar wind and magnetospheric parameters and 
their lag times based on the amount of information they provide to the radiation belt electrons. The model 
performance increases with increasing radial distance (L*) because at distances close to Earth (L* = 3–4), the 
solar wind and magnetospheric parameters provide little information about the radiation belt electron PSD. The 
model can be used to forecast radiation belt PSD 30–60 min ahead.
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(nsw) negatively correlates with radiation belt Je (e.g., Kellerman & Shprits, 2012; Li et al., 2005; Lyatsky & 
Khazanov, 2008b; Rigler et al., 2007; Wing et al., 2016, 2022). However, Vsw negatively correlates with nsw (e.g., 
Borovsky, 2020; Wing et al., 2016, 2022).

Radiation belt electrons also have strong dependences on the magnetospheric state, which can be proxied by geomag-
netic activity indices, such as SYM-H and AL (e.g., Baker et al., 2019; Borovsky, 2017; Borovsky & Denton, 2014; 
Lyatsky & Khazanov, 2008a; Tang, Wang, Ni, Su, et al., 2017; Zhao et al., 2017). SYM-H index gives a measure of 
the strength of the ring current and geomagnetic storms (Iyemori, 1990), while AL gives a measure of the strength 
of the westward auroral electrojets and substorms (Davis & Sugiura, 1966). SYM-H is similar to the disturbance 
storm time (Dst) index (Dessler & Parker, 1959), except that the SYM-H index has 1 minute time resolution whereas 
the Dst index has 1 hour resolution. Unfortunately, SYM-H and AL both also correlate with solar wind parameters, 
which raises the question how much additional unique information these two magnetic indices provide to the radi-
ation belt electrons and what their response lag times may be, given the solar wind parameters (Wing et al., 2022).

Wing et al. (2016, 2022) showed that information theoretic tool such as conditional mutual information can be 
quite useful to untangle the intertwined solar wind and magnetospheric drivers of the radiation belt electrons. 
They were able to isolate the effect of individual drivers and their response lag times. Moreover, they ranked the 
solar wind and magnetospheric parameters based on the information transfer of these parameters to the radiation 
belt Je (Wing et al., 2016) and, more recently, electron phase space density (PSD) (Wing et al., 2022). Thus, those 
studies provided relevant and useful information for radiation belt modeling.

Machine learning algorithms such as Neural Networks (NN) and deep learning (Rumelhart and McClelland, 1987; 
Schmidhuber, 2015) have found wide applications in space weather, particularly in empirical modeling. For exam-
ple, NN have been used to develop models for Kp (e.g., Boberg et al., 2000; Wing et al., 2005; Wintoft et al., 2017), 
geomagnetic storm (Wu & Lundstedt, 1997), source regions of particle precipitation (Newell  et al., 1990, 1991), 
and high-frequency (HF) backscattered signals (Wing et al., 2003). NN have also been used to construct empir-
ical radiation belt models (e.g., Chen et al., 2019; Chu et al., 2021; Claudepierre & O'Brien, 2020; Koons & 
Gorney, 1991; Ling et al., 2010; Perry et al., 2010; Pires de Lima et al., 2020; Simms & Engebretson, 2020; 
Smirnov et al., 2020; Tang et al., 2022). These empirical models generally complement physics-based models, for 
example, DREAM (Reeves et al., 2012), SPACECAST (Horne et al., 2013), VERB (Shprits et al., 2009), and other 
empirical models that use different approaches, for example, NARMAX (Balikhin et al., 2016; Wei et al., 2011), 
Kalman filter (Coleman et al., 2018), and linear prediction filter (Baker et al., 1990; Chen et al., 2019; Kellerman 
et al., 2013). For operational purpose, one may need to consider trade-offs among accuracy, computational speed, 
computing resource requirements, availability of input parameters, ease of use, etc.

The Van Allen Probes or Radiation Belt Storm Probe (RBSP) mission ended in 2019 and there is no dedicated 
follow-on mission to the equatorial radiation belts planned in the near future. The Polar Operational Environmen-
tal Satellite (POES) program, which provides observations of the precipitating radiation belt electrons, may end 
in the next several years, and there is no current plan to replace those assets. Moreover, as discussed later, NN 
models that input the past values of the output parameters tend not to be able to respond accurately and timely to 
sudden changes in the solar wind drivers, for example, sudden arrivals of density/pressure pulses or coronal mass 
ejections (CMEs) (e.g., Wing et al., 2005).

The present study develops an empirical model of the radiation belt electron PSD using an information-theory 
informed NN as the core of the model (Johnson & Wing, 2018). From the consideration of the versatility of 
running the model in real time and the aforementioned challenges, our model inputs only solar wind and magne-
tospheric state parameters (proxied by geomagnetic indices) and outputs outer radiation belt electron PSD. The 
input parameters and their lag times are determined from Wing et al. (2022) information theoretic analysis of the 
solar wind and magnetospheric drivers of PSD.

2. Data Set
The NASA's Van Allen Probes (RBSP) mission, which was launched in 2012, consisted of two identically instru-
mented spacecraft in near-equatorial orbit (about 10° inclination) with perigee at 600 km altitude and apogee at 
5.8 RE geocentric (Mauk et al., 2013). The MAGnetic Electron Ion Spectrometer (MagEIS) is part of the Ener-
getic particle, Composition, and Thermal plasma Suite (ECT) instrument on board of RBSP (Spence et al., 2013). 
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MagEIS measured the energy range from 30 keV to 4 MeV for electrons and 
from 20 keV to 1 MeV for ions (Blake et al., 2013).

Radiation belt electron dynamics can often be well-organized by electron 
PSD as a function its three adiabatic invariants: PSD (μ, I, and L*) where 
μ  =  the first adiabatic invariant related to the gyromotion perpendicular 
to the magnetic field line, I = the second adiabatic invariant related to the 
bounce motion along the field line (some studies use K instead of I, but 
they are related) (Green & Kivelson,  2004), and L*  =  the third adiabatic 
invariant related to the curvature and gradient drift motion around the Earth 
(actually L* is inversely proportional to the traditional third invariant Φ) 
(Roederer, 1970; Schulz & Lanzerotti, 1974).

The radiation belt electron PSD from MagEIS is calculated at 1 min reso-
lution using the TS04 magnetic field model (Tsyganenko & Sitnov, 2005) 
and a method similar to that used in Turner, Angelopoulos, Li, et al., 2014, 
Turner, Angelopoulos, Morley, et  al.,  2014). We select the electrons with 
μ = 560–875 MeV G −1 and I = 0.088–0.14 RE G 0.5. These electrons have an 
average energy of about 1.3 MeV over L* = 2.9–6.5 and are concentrated 

near the magnetic equator (i.e., mirroring at low magnetic latitudes); thus, they are representative of the core 
population of relativistic electrons in Earth's outer radiation belt.

The solar wind, AL, and SYM-H data 2013–2018 at 1 min resolution from the OMNI data set were used and 
provided by NASA (http://omniweb.gsfc.nasa.gov/). Both the PSD and OMNI data 2013–2018 are averaged with 
a 30 min sliding window.

We merge each OMNI solar wind parameters (Vsw, nsw, etc.) with the RBSP electron PSD (data from both RBSP 
A and B are used). The merged data set has ∼64,500 points distributed from L* = 2.9 to 6.5. However, the distri-
bution is not uniform across L*, as shown in Figure 1.

3. Methodology
It has been increasingly popular to use NN, including deep learning, to develop empirical space weather models, 
including radiation belt models. However, a novelty with our approach is that we use information theory to assist 
with the modeling. Figure 2 shows the schematic of the model.

The model inputs solar wind, magnetospheric parameters, and L*; and outputs radiation belt electron PSD. Wing 
et al. (2022) ranked the solar wind and magnetospheric parameters based on the information transfer to the PSD 

Figure 1. The distribution of the merged RBSP and OMNI data set 
2013–2018.

Figure 2. Schematic of the model that combines information theory and neural networks. The neural networks inputs the 
solar wind and magnetospheric parameters and L*; and outputs phase space density (PSD) (see Table 1). Information theory 
is used to select and rank solar wind and magnetospheric parameters and their lag times based on information transfer to the 
radiation belt electron PSD. The model operates at L* range from 3 to 6.5.

Neural Networks

Information theory
- relevant input 
  parameters
- response lag times

RB
PSD

solar wind
parameters

magnetospheric
 state parameters

L*

n...
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(see Table 4 in Wing et al. (2022)). We select the top eight parameters as the model input parameters, namely 
solar wind velocity, SYM-H, AL, solar wind dynamic pressure, IMF |B|, IMF Bz, solar wind density, and IMF 
By (in decreasing order by the amount of information transferred from the parameter to the radiation belt electron 
PSD). The solar wind dynamic pressure usually tracks the solar wind density fairly well and the information 
content in the dynamic pressure is entirely captured by the solar wind speed and density, so we omit solar wind 
dynamic pressure. The input parameters and their lag times are listed in Table 1. The solar wind, magnetospheric, 
and PSD data have gaps. Those input and output parameters that have gaps are discarded. The model outputs PSD 
with no time lag with respect to the arrival time of the solar wind at the magnetosphere (nowcast).

The NN architecture used is the standard feedforward–backpropagation network, which is sometimes referred to 
as multilayered perceptrons (MLP). The NN architecture has five layers: one input layer (531 nodes), one output 
layer (1 node), and three hidden layers (each has 800 nodes). The model is developed using Python and Tensor-
Flow machine learning package, which is an open source package (Abadi et al., 2016).

All the input and output parameters are normalized. The PSD distribution is skewed to the low values. In order to 
get higher performance, log PSD is used rather than PSD. Log PSD reduces the skewness in the original PSD distri-
bution, which would help training the NN. Both RBSP A and B data are split into two sets: (a) training set and (b) 
test set. The training set consists of data in the time intervals (2013.5–2015.5), (2016–2017), and (2017.5–2018.5), 
while the test set consists of (2013–2013.5), (2015.5–2016), (2017–2017.5), and (2018.5–2019.0). Staggering the 
training and test sets ensures no systematic temporal bias (e.g., solar cycle dependencies) are present in the result-
ing model. Also, 20% of the training set is set aside as a validation set to avoid overfitting.

4. Results
In order to show the model performance, we select two long events from the test set where there are at least two 
weeks of continuous solar wind observations, AL and SYM-H records, and RBSP electron PSD observations: 
(a) 2013 April 27–May 13 and (b) 2017 Mar 13–29. These intervals are selected also because they exhibit a wide 
range of solar wind driving as well as geomagnetic storm and substorm dynamics. Thus, they are intended to 
show how well the model can perform under average and unusual solar wind and magnetospheric conditions. 
They are certainly not intended to show the best examples of the model performance.

Figure  3A plots solar wind velocity (a), density (b), SYM-H (c), AL (d), L* and model PSD (e), Δ log 
PSD = log(observed PSD)–log(model PSD) (f), and observed and model PSD (g) for the first half of the first 
event, 2013 April 27–May 5. Panel d shows quasiperiodic substorms (minimum AL > −400 nT) throughout the 
interval, which is fairly typical (Borovsky & Yakymenko, 2017). However, an unusual feature of this interval 
is that there is a sharp density pulse (maximum ∼15 cm −3) that is followed by a moderate storm (minimum 

Note. Vsw = solar wind velocity. nsw = solar wind density. IMF (By, Bz) = GSM y and z component of the interplanetary 
magnetic field, respectively.

Table 1 
Input and Output Parameters of the Model

 15427390, 2022, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022SW

003090, W
iley O

nline L
ibrary on [28/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Space Weather

WING ET AL.

10.1029/2022SW003090

5 of 15

SYM-H ∼ −60 nT) and a large substorm (minimum AL ∼ −900 nT) on May 1. Panel g shows that there is a drop 
in PSD on May 1, which may be attributed to the sharp rise in solar wind density and dynamic pressure through 
processes such as magnetopause shadowing, radial diffusion, or precipitation to the atmosphere (e.g., Borovsky 
& Denton,  2009; Kellerman & Shprits,  2012; Li et  al.,  2001; Thorne,  2010; Turner et  al.,  2012; Ukhorskiy 
et al., 2006). However, the PSD seemed to have recovered by the end of May 2. Panels f and g show that the model 
generally performs reasonably well throughout this interval even in the presence of quasiperiodic substorms, but 
it does not do as well around the density/pressure pulse and the storm and substorm on May 1–2. At high L*, 

Figure 3A. Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model phase space density (PSD) (e), Δ log PSD = log(observed PSD) – 
log(model PSD) (f), and observed (green curve) and model PSD (blue curve) (g) for 27 April–5 May 2013, which is the first half of the first event. The unit for PSD is 
(c 3 MeV −3 cm −3). In panels (f) and (g), dotted vertical red lines are drawn to show that generally large |Δ log PSD| can be associated with low PSD.
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L* > 4, the model PSD appears to track the decrease and then the increase of the observed PSD reasonably well. 
However, at low L*, L* < 4, the model PSD decreases significantly, by more than an order of magnitude, whereas 
the observed PSD does not appear to be affected much by the density pulse.

Figure 3A panel f shows that most of the time the observed and model PSD are within the same order of magni-
tude of each other, |Δ log PSD| < 1. Large |Δ log PSD| generally corresponds to low PSD and low L* that is near 
the slot region. In order to show this, several dotted vertical red lines are drawn to connect some of the largest |Δ 

Figure 3B. Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model phase space density (PSD) (e), Δ log PSD = log(observed PSD) – 
log(model PSD) (f), and observed (green curve) and model PSD (blue curve) (g) for 5–13 May 2013, which is the second half of the first event. The unit for PSD is (c 3 
MeV −3 cm −3). In panels (f) and (g), dotted vertical red lines are drawn to show that generally large |Δ log PSD| can be associated with low PSD.
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log PSD| in panel f to their corresponding PSD in panel g. This trend can be seen throughout Figure 3A. When 
PSD is low, a little discrepancy from the observed value would lead to a large |Δ log PSD|. Low PSD may be 
less relevant for space weather than high PSD within the outer radiation belt. It should be noted that as shown in 
Figure 3A, most of the time, the error is small, |Δ log PSD| < 1, for high and low PSD.

Figure 3B presents the interval 05–13 May 2013, which is the second half of the first event, in the same format 
as Figure 3A. As in Figure 3A, panel d shows quasiperiodic moderate and small substorms (minimum AL > ∼ 
−300 nT) throughout the interval. This interval starts out with a small storm (minimum SYM-H ∼ −28 nT) on 
May 5, and a narrow density pulse (maximum density ∼ 19 cm −3) on May 6. There is a brief PSD decrease that 
occurs at or just before the storm onset on May 5, but the model misses this brief drop in PSD (panel g), resulting 
in a brief large discrepancy (Δ log PSD < −2) on panel f. Unlike the density/pressure pulse in Figure 3A, the 
density/pressure pulse on May 6 does not seem to affect the observed PSD that much, but the model responds by 
decreasing its PSD, particularly at L* < 4, resulting in a brief large discrepancy (Δ log PSD > 1) on May 6 (panel 
g). The rest of the interval has no storm, but there are small and moderate substorms (minimum AL > −300 nT). 
The model performs well (|Δ log PSD| < 1) during this interval, except near the end at low L* (L* < 4) where Δ 
log PSD > 1. It is not clear what causes the model to underestimate PSD at this time. As in Figure 3A, several 
dotted vertical red lines from some of the largest |Δ log PSD| are drawn in panels f and g to show that generally 
large |Δ log PSD| corresponds to low PSD, but most of the time the error is small for high and low PSD.

Figure 4A presents the interval 13–21 March 2017, which is the first half of the second event in the same format 
as Figure 3. This interval shows the worst model performance out of the four intervals presented herein and is 
one of the worst intervals seen in the entire test set. As in the previous intervals, there are quasiperiodic small 
and moderate substorms (minimum AL > −350 nT) in panel d. The solar wind velocity fluctuates but is lower 
than average, <400 km s −1, throughout the interval. There is a broad density pulse (maximum ∼ 23 cm −3) on 
Mar 15, which is followed by a small storm (minimum SYM-H ∼ −20 nT) and a moderate substorm (mini-
mum AL ∼ −350 nT) near the beginning of Mar 16. There is no significant change in the observed PSD that 
can be attributed to these solar wind parameters and magnetospheric activity indices (storm and substorm). 
However, the increase of solar wind density/pressure followed by substorm injections cause the model PSD 
to first decrease due to the expected magnetopause shadowing/radial diffusion/precipitation (e.g., Borovsky & 
Denton, 2009; Kellerman & Shprits, 2012; Li et al., 2001; Turner et al., 2012; Ukhorskiy et al., 2006; Wing 
et al., 2016, 2022) and then increase due to the expected storm time acceleration and substorm injections (e.g., 
Baker et al., 1996; Boyd et al., 2016; Li et al., 2009; Meredith et al., 2001; Tang, Wang, Ni, Zhang, et al., 2017; 
Wing et al., 2016, 2022). Because the model significantly decreases its PSD while the observed PSD does not 
significantly change, the model PSD severely underestimates the observed PSD at all L* as seen in panels f and 
g. As before, several dotted vertical red lines from some of the largest |Δ log PSD| are drawn in panels f and g to 
show that large |Δ log PSD| fairly consistently corresponds to low PSD.

Figure 4B presents the interval 21–29 March 2017, which is the second half of the second event in the same 
format as Figure 3. The solar wind velocity is higher than average, >500 km s −1, throughout most of the interval. 
This interval has two interesting features, one at the beginning and one at the end of the interval. At the beginning 
of the interval, there is a density pulse (maximum ∼ 32 cm −3), which is followed by a large substorm (minimum 
AL ∼ −750), but there is no indication of a corresponding geomagnetic storm (minimum SYM-H ∼ −25 nT). 
In response to the density/pressure increase, both the observed and model PSDs first decrease and then increase 
on Mar 21–22. However, the model PSD decreases more than the observed PSD, resulting in a large discrepancy 
with Δ log PSD > 2. However, the model PSD increases quickly, such that by the end of Mar 21, it has more or 
less caught up with the observed PSD. Thereafter, the model PSD tracks the observed PSD fairly well as they 
are both recovering from the electron loss. The PSD completely recovers by the middle of the day on Mar 22 
and thereafter, the model PSD generally performs well (Δ log PSD < 1) as shown in panels f and g. As before, 
several dotted vertical red lines from some of the largest |Δ log PSD| are drawn to show that large |Δ log PSD| 
fairly consistently corresponds to low PSD.

At the end of the interval, there is another density pulse (maximum ∼22 cm −3) that is followed by a large or 
moderate storm (minimum SYM-H ∼ – 80 nT) and three large substorms (two with minimum AL ∼ −1,000 nT 
one with minimum AL ∼ −750 nT) on Mar 27. In response, the observed PSD decreases soon after the density/
pressure pulse in the first half of Mar 27 and then increases. The observed PSD completely recovers by the middle 
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of the day on Mar 28. The model PSD tracks the observed PSD fairly well during this highly disturbed period  
(Δ log PSD < 1), as shown in panels f and g.

Figures 3 and 4 show that the model performs well and the error is small for high and low PSD. There are 
instances when the error is large, |Δ log PSD| > 1, but these points are usually associated with low PSD.

The model performance has also been evaluated statistically. There are 23,853 number of points in the test set. 
Figure 5 plots the model PSD versus the observed PSD in the entire test set. Consistent with the events shown 

Figure 4A. Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model phase space density (PSD) (e), Δ log PSD = log(observed PSD) – 
log(model PSD) (f), and observed (green curve) and model PSD (blue curve) (g) for 13–21 March 2017, which is the first half of the second event. The unit for PSD is 
(c 3 MeV −3 cm −3). In panels (f) and (g), dotted vertical red lines are drawn to show that generally large |Δ log PSD| can be associated with low PSD.

log PSD

Δ
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in Figures 3 and 4 panels f and g, Figure 5 shows that high PSD, which has higher space weather impacts, can 
be modeled more accurately than low PSD. Most of the low PSD points come from low L* as can be seen in 
Figures 3 and 4 panel e (further model evaluation as a function of L* is given below). Figure 5 also shows that the 
model tends to underestimate the observed PSD, especially for low PSD.

Based on the evaluation of model PSD for the entire test set: root mean square error (rmse) = 3.1 × 10 −6 c 3 
MeV −3 cm −3; the mean absolute percent error (mape) = 115%; the median absolute percent error = 57%; and 

Figure 4B. Solar wind velocity (a), solar wind density (b), SYM-H (c), AL (d), L* and log model PSD (e), Δ log PSD = log(observed PSD)–log(model PSD) (f), and 
observed (green curve) and model PSD (blue curve) (g) for 2017 Mar 21–29, which is the second half of the second event. The unit for PSD is (c 3 MeV −3 cm −3). In 
panels (f) and (g), dotted vertical red lines are drawn to show that generally large |Δ log PSD| can be associated with low PSD.

Model
Data

log PSD

Δ
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the prediction efficiency (PE) = 0.62. PE is defined as �� = 1 −
∑�

1 (��−��)2
∑�

1 (��−<�>)2
 

where o = observed PSD, m = model PSD, <o>  = mean observed PSD. 
PE = 1 indicates the model PSD exactly matches the observed PSD, while 
PE = 0 indicates the model simply outputs the mean value. PE < 0 indicates 
the model output is worse than simply outputting the mean for each point in 
the test set.

The model performance has a dependence on L*. The data are binned from 
L* = 3 to 6.5 into seven bins, with each bin having width = 0.5. Figure 6a 
plots the PE as a function of L*, which ranges from −0.043 for L* = 3 to 
0.76 for L* = 6.5. Figure 6b shows the histogram of the number of points in 
each bin. The L* = 6–6.5 bin has the fewest points, n = 227 and hence the 
PE for this bin may be less accurate than those for other L* bins. The PE for 
the entire test set (0.62) is close to that obtained for L* = 4.5–5.5 probably 
because this L* range has the most data points as shown in Figure 6b.

The model PSD accuracy generally increases with increasing distance from 
the Earth (increasing L*). The model PE for L* = 3–4 is nearly 0 because 
the solar wind and magnetospheric drivers have less influence on the PSD 
at L* < 4. Indeed, Wing et  al.  (2022) showed that the solar wind density 
transfers information to PSD only at L* > 4.5. Solar wind velocity and AL 
transfer information to PSD at L* > 4 and only a small amount of informa tion 
at L* = 3.5–4. Out of all the parameters that are inputted to the model, only 
SYM-H transfers information to PSD all the way to L* = 3, but the amount 
of information transfer at L* = 3–3.5 is small. Conversely, the input param-

eters (solar wind parameters, SYM-H, and AL) provide significant information about PSD at L* > 4 (Wing 
et al., 2022), and consequently, the model performance improves at this L* range.

The model PE is similar to that obtained by DREAM (Reeves et al., 2012) at L* > 4.5 and slightly better than 
that obtained by DREAM at L* < 4.5. The model comparison is inexact because the PE for DREAM was calcu-
lated for 1 MeV electron fluxes whereas our model PE is for PSD with an average energy of 1.3 MeV. As with 
DREAM, our model performs better than AE 8 min (Vette, 1991) and CRRESELE (Brautigam & Bell, 1995) 
models. For many years, the AE8 series model was considered standard for engineering applications. (AE8 min 
model is superseded by a newer model, AE9 (Ginet et al., 2013), but like AE8, AE9 is a statistical model i.e., not 
relevant to individual event-based prediction).

Figure 5. Model phase space density (PSD) versus observed PSD for the 
entire test set. High PSD, which has higher space weather impacts, can be 
modeled more accurately than low PSD.

Figure 6. (a) The model prediction efficiency (PE) of the test set as a function of L*. The PE is lower at L* < 4 or 4.5 because solar wind and magnetospheric 
parameters transfer little information to phase space density at these L*. (b) The distribution of the test set.
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We have also compared our model PE with that of PreMevE (Chen et al., 2019) and PreMevE 2.0 (Pires de Lima 
et  al.,  2020). PreMevE inputs POES and Los Alamos National Laboratory (LANL) geosynchronous satellite 
observations of MeV electrons at LEO and GEO, respectively, whereas PreMevE 2.0 inputs solar wind velocity, 
POES, and LANL data. The comparison is inexact because of the differences in the time cadence, forecasted 
time range, and predicted quantities. PreMevE 2.0 uses 5 hr time resolution and forecasts 100 keV–2 MeV elec-
tron fluxes 1 day ahead (PreMevE 2.0 does not have a nowcast model). Moreover, the PE for PreMevE 2.0 was 
calculated using log (electron flux), whereas our model PE is calculated using PSD. If these differences can be 
ignored, PreMevE 2.0 performs better than our model at L = 2.8–4.5 (PE = 0.6–0.8), but not as well at L = 4.5–6 
(PE = 0.4–0.6). Their high PE at L < 4.5 can be attributed to the model inputting of POES data. As noted by 
the authors, PreMevE 2.0 forecasted values often lag behind the observations when the fluxes suddenly jump in 
response to the sudden change in the solar wind drivers (Pires de Lima et al., 2020), presumably because the NN 
assigns more weight to the POES electron fluxes than to the solar wind velocity as discussed in the next section.

Chen et al. (2019) developed two nowcast PreMevE models: SubModel 1 and 2. Our model (PE = 0–0.3) performs 
worse than SubModel 1 (PE = 0.6–0.65) at L ≤ 4, but our model (PE = 0.6–0.76) performs better than SubModel 
1 (PE = −0.2 to 0.2) at L ≥ 5. Our model performs worse than SubModel 2 (PE = 0.9) at L ≤ 4 and performs 
comparably with SubModel 2 (PE = 0.6–0.8) at L ≥ 5.

5. Discussion and Conclusion
The radiation belt electron PSD has dependencies on the solar wind drivers and the state of the magnetosphere. 
The PSD also has a strong dependence on its past values because the magnetospheric dynamics can often be 
characterized, to a large extent, as being persistent. Because of this magnetospheric persistent characteristic, 
knowledge of the previous values of PSD (or Je) either directly from in situ satellites or inferred from the precip-
itating electrons, would immensely help NN learn more easily and reduce the error of the output PSD (or Je) 
significantly (e.g., Ling et al., 2010; Pires de Lima et al., 2020). However, a common problem for supervised 
learning NN models is that during the learning phase, the models would learn quickly that they would do very 
well if they assigned a lot of weight on the previous values and far less weight on the solar wind input parameters. 
As a result, the model output would, to some extent, mimic the input value with some time lag and would not be 
able to respond correctly and timely to sudden changes in the solar wind drivers, for example, sudden arrival of 
CMEs or density/pressure pulses. This persistent behavior is widely seen not just in the radiation belt models but 
also in other magnetospheric models that input past values of the predicted parameters (e.g., Wing et al., 2005).

The present study develops an empirical radiation belt model that inputs solar wind parameters, the magneto-
spheric state parameters as proxied by AL and SYM-H, and L* (i.e., location in the radiation belts). The model 
outputs radiation belt electron PSD at a particular set of adiabatic invariant coordinates (μ = 560–875 MeV G −1 
and I = 0.088–0.14 RE G 0.5, and user-input L*). It is, of course, more challenging to model PSD without having 
its past values as a reference. On the other hand, the model PSD does not exhibit the undesired persistent behavior 
where the output PSD would simply mimic the observed PSD with a time lag. Also, this new model can operate 
independently of input data from any radiation belt observatories, whether they be in the near-equatorial plane 
(e.g., Van Allen Probes) or at LEO (e.g., POES). This renders the model robust for operational space weather 
purposes.

The study demonstrates how information theory can be used to assist empirical modeling. Information theory is 
used to select the solar wind parameters and magnetospheric indices (proxy for the magnetospheric state) and 
their optimal lag times. The rather large number of past values, up to 72 hr, used in some input parameters (see 
Table 1) are justified because the results from information theory analysis reveal long-range linear and nonlin-
ear causal relationships between these parameters and PSD (Wing et  al.,  2022). Information theory analysis 
also helps explain the model performance, such as increasing PE with increasing L* as discussed in Section 4. 
Recently, there has been an increasing amount of effort put into developing “explainable” models, which stems 
from the desire to build more confidence on the usage of black box models such as neural networks. The fact that 
all the input parameters and their lag times have been shown to transfer information to PSD (instead of choosing 
input parameters in an ad hoc manner) and the model performance falls within the expected behavior of informa-
tion theory analysis, should help build confidence in our model.
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Moreover, we have used one of the simplest neural network architectures, namely feed forward-backpropagation 
or MLP architecture. Although the neural networks dimension is wide and deep, the simple architecture allows 
for relatively quick training and development time (the model was developed on a laptop computer). However, 
despite the simple architecture, the model appears to perform well. Using PE as a metric, the model performs 
as well as or slightly better than DREAM (Reeves et al., 2012) and performs better than AE8 min (Vette, 1991) 
and CRRESELE (Brautigam & Bell, 1995) models. Moreover, in our model, the error is generally small, |Δ log 
PSD| < 1. There are instances when the error is large, but these points are usually associated with low PSD slot 
region, which is expected considering the very high and sharp gradient in PSD at the boundary between the 
outer belt and the slot. Also, low PSD may have smaller space weather impacts. The good performance can be 
attributed, at least partly, to the usage of information theory, which guides the selection of the input parameters 
and their lag times.

Interestingly, just like our model, the DREAM model's PE increases with increasing L* but for a different 
reason. DREAM performs better at higher L* because the model was developed using data at L* > 4.2 (Reeves 
et al., 2012), whereas our model performs better at higher L* because solar wind and magnetospheric indices 
(SYM-H, and AL) transfer more information to higher L* than lower L*. This behavior can be contrasted to a 
class of empirical models that input precipitating radiation belt electrons observed at LEO. For example, the PEs 
for PreMevE (Chen et al., 2019) and PreMevE 2.0 (Pires de Lima et al., 2020) generally decrease with increasing 
L because the models input POES data. The lower performance with increasing L is also seen in another model, 
SHELLS, which inputs POES data (and Kp) (Claudepierre & O'Brien, 2020). They suggested that this behavior 
can be explained by (a) pitch angle scattering rate, which is proportional to |B|, decreases with increasing L; (b) 
rate of radial diffusion increases with L; and (c) low to high altitude mapping accuracy decreases with increasing 
L due to deviation from the dipolar field. Thus, it can be seen that based on the performance as a function of L or 
L*, our model can potentially complement a class of empirical models that input POES data or, in general, LEO 
satellite data.

For operational consideration, the model can input solar wind observations that are routinely available from the 
solar wind monitor at L1 and forecast PSD 30–60 min ahead. The input AL can be obtained from an AL fore-
cast/nowcast model that is driven entirely by solar wind (e.g., Amariutei & Ganushkina, 2012; Li et al., 2007; 
Luo et al., 2013; Weigel et al., 1999). Likewise, the input SYM-H can be obtained from a SYM-H or Dst fore-
cast/nowcast model that is driven entirely by the solar wind (e.g., Bhaskar & Vichare, 2019; Cai et al., 2009; 
Chandorkar et al., 2017; Siciliano et al., 2021; Temerin & Li, 2002, 2006). The Luo et al. (2013) AL and Temerin 
and Li (2006) Dst forecasts are routinely made available at the University of Colorado website http://lasp.colo-
rado.edu/space_weather/dsttemerin/dsttemerin.html. Although our model PSD can be useful for comparisons 
with physics-based models such as DREAM (Reeves et al., 2012) or VERB (Shprits et al., 2009), for operational 
consideration, we plan to write a post-processing routine to convert PSD to electron fluxes, which are more useful 
for space weather users.

The present model, which uses a simple neural network architectures, is intended to serve as a baseline model. To 
follow up on the present study, we plan to use more sophisticated neural network architectures, long short-term 
memory (LSTM), which was designed to work with time series data, and hence holds promises for better 
performance.

Data Availability Statement
The solar wind, SYM-H, and AL data set were obtained from NASA OMNIweb https://omniweb.gsfc.nasa.gov/. 
The RBSP MagEIS Level 4 data can be obtained from https://spdf.gsfc.nasa.gov/pub/data/rbsp/ and the PSD data 
can be obtained from https://rbspgway.jhuapl.edu/psd. The model and the derived data are publicly available at 
the Zenodo Archive (Wing, 2022).
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