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Abstract

Information theory is used to characterize the solar active region periodicities and memories from the Carrington
map images 1974–2021. The active regions typically evolve and move from one map to the next. In order to track
these active region structures in sequences of images, an innovative method based on information theory is
developed. Image entropy provides a measure of the organization of structures in the images. The entropy can also
be used as a filter to identify structures and partition the active regions, which are then registered for each image.
The partitions are used to compute the mutual information and measure the information flow from the active
regions from one image to the next. Finally, conditional mutual information is used to give a measure of the
information flow from one image to another given the third image. The results suggest the following: (1) there is a
long-term memory of two cycles or more; (2) the coherence time of the active regions is ∼2 yr; and (3) the average
active region structure scale size carrying the most information is approximately 118× 103–236× 103 Mm2. The
study has implications to the short- and long-term predictability of active regions and sunspots as well as the nature
of flux transport at the Sun. Finally, our innovative method can be similarly applied to stellar data to determine the
dynamics of the active regions of stars.

Unified Astronomy Thesaurus concepts: Solar active regions (1974); Solar cycle (1487); Sunspots (1653); Solar
dynamo (2001); Solar magnetic bright points (1984); Magnetogram (2359)

1. Introduction

Solar activity is often inferred from the number of
magnetically active regions, which often appear as dark regions
or sunspots on the photosphere of the Sun. The number of
sunspots increases and decreases with a periodicity of about 11
yr often referred to as the solar cycle. Predicting the sunspot
number (SSN), which has space weather implications, has been
difficult and challenging due to the complexity of the solar
dynamo (Pesnell 2016).

In the Babcock–Leighton model (Babcock 1961;
Leighton 1964, 1969), the solar cycle is a manifestation of the
cyclical conversion of the poloidal to toroidal magnetic fields (see
review in Charbonneau 2020). The meridional flow, which acts
like a conveyor belt, carries the poloidal field to the polar region
and then down to the bottom of the convection zone or tachocline
and then to lower latitude. As the flux is transported to lower
latitude, the differential rotation shears the magnetic field leading to
the growth of the toroidal field. The shearing motion creates
regions of strong magnetic field, which are buoyant and
subsequently rise to the surface (photosphere). The Coriolis force
acting on the rising toroidal field causes the emerging fluxes to
appear as pairs of sunspot with a slight tilt such that the following
spot of the pair tends to be further from the equator than the
preceding spot (Joy’s law), leading to the growth of the poloidal
field. The meridional flow subsequently transports the poloidal
field, which has the opposite polarity than that of the old polar
field, to higher latitude. This process continues until a new poloidal
field with the opposite polarity is established, which commences a
new solar cycle. Over the next cycle, the poloidal field reverts back
to the original polarity giving rise to an overall 22 yr periodicity.

In many flux transport models, the meridional flow in the
convection zone can be characterized by advection with low
diffusivity, particularly at the bottom of the convection zone or
tachocline, implying the possibility for a long-term memory of
previous cycles and solar cycle predictability (Dikpati &
Charbonneau 1999). In the model of Charbonneau & Dikpati
(2000), the slow transport speed at the bottom of convection zone
or tachocline results in memory of the previous two cycles.
Similarly, in the models of Dikpati et al. (2004) and Dikpati &
Gilman (2006), the convection is highly dominated by advection,
and their models exhibit long-term memory—three cycles or even
longer. Charbonneau & Barlet (2011) found that the polar field is
well correlated with the amplitude of the next cycle only when
there is a connection between the surface and interior layers.
However, advection-dominated transport driven by a randomly
fluctuating meridional flow may reduce cycle memory.
In contrast, in flux transport models where diffusion

dominates the transport, the memory is found to be short—
about one cycle (Choudhuri et al. 2007; Jiang et al. 2007;
Muñoz-Jaramillo et al. 2013a; Muñoz Jaramillo et al. 2013b;
Cameron & Schüssler 2016). Yeates et al. (2008) hypothesized
that stronger diffusion destroys the polar field faster and short-
circuits the meridional circulation, shortening the memory of
the previous cycles. Other factors that can affect the memory
include hemispherical asymmetry where the conveyor belt can
cross the equator, changing its profile, and transport by
turbulent pumping (Guerrero & de Gouveia Dal Pino 2008).
The solar magnetic cycle is challenging to model and predict

because the solar dynamo is a nonlinear and complex system
(Tobias 1997; Beer et al. 1998; Knobloch et al. 1998; Wilmot-
Smith et al. 2005), where the standard linear correlational
analysis may be inadequate. On the other hand, information
theory can determine linear and nonlinear correlations and the
amount of information transfer between variables. Information
theory has been used successfully in the studies of the Earth’s
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magnetosphere and ionosphere (Johnson & Wing 2005; Balasis
et al. 2013; Johnson & Wing 2014; Wing et al. 2016; De
Michelis et al. 2017; Johnson et al. 2018; Osmane et al. 2022;
Wing et al. 2022). It has been used to give a measure linear and
nonlinear correlation between energetic neutral atoms and
5 kHz narrowband radio wave emissions at Saturnian magneto-
sphere (Wing et al. 2020).

In the studies of the Sun, information theory has been used to
establish the amount of information transfer and its timescales
among polar field (proxy for poloidal field), sunspots (proxy for
toroidal field), and meridional flow (Wing et al. 2018; Wing &
Johnson 2019). More recently, it has been used to determine
the short-term memory of solar flares (Snelling et al. 2020;
Rivera et al. 2022a, 2022b).

In the present study, the Carrington map image is used to
provide a measure of the Sun’s magnetic field strength and
active regions. We use an innovative information theoretic tool
to investigate the flow of information from active regions in
one map to the next over several solar cycles. We examine how
much information the past active regions provide about their
future. We also examine the spatial scale of the active regions
as well as the decay timescale of the structures in these regions.
The present study can shed a new light on the predictability of
the active regions and sunspots from an observational
perspective.

2. Data Set

The sunspot number record is obtained from Sunspot Index
and long-term Solar Observations (SILSO) website, https://
www.sidc.be/silso/home. The Carrington map images are
obtained from http://wso.stanford.edu/synopticl.html. We use
a sequence of 597 consecutive Carrington map images from
1974 to 2021 covering solar cycles 21–24. These maps provide
magnetic field measurements up to ±75° latitude with a
resolution of approximately 5°.

3. Methods

3.1. Image Entropy and Hilbert–Huang Transform

The number of active regions and sunspots (proxies for the
toroidal field) varies with solar cycle. Accordingly, the
Carrington map images have more variations, structures, and
complexities near solar maximum than solar minimum. We use
image entropy as a way to quantify the image complexity.
Image entropy gives a measure of the disorder in the image.

We normalize the value of each pixel in the image with
respect to the maximum and minimum value of the entire data
set of 597 maps. For each image, we bin the pixel luminosity
(pixel value) into 256 bins and then calculate the image
entropy, which is given by

( ) ( )H P Plog . 1i i2å= -

Pi is the probability of each pixel value.
Figure 1(a) shows the image entropy for each Carrington

rotation from 1974 to 2021 (blue curve). Generally, the image
entropy increases with the number of active regions or
sunspots, as expected. More active regions lead to more
structures and more complexities in the image. For comparison
with the sunspots, Figure 1(a) also plots the sunspot number
(red curve). The figure shows that image entropy tracks the

sunspot number very well. The deep minima seen in solar cycle
24 (around 2008) and 25 (around 2019) in the sunspot number
(red curve) are also seen in the corresponding image entropy
(blue curve). Moreover, the continuing downward trend in the
sunspot number is also evident in image entropy.
Similar to sunspots, the image entropy also exhibits a

periodicity. Figure 1(b) displays the autocorrelation of the
image entropy shown in Figure 1(a). This figure shows that the
image entropy has a periodicity of about 140 Carrington cycles,
which is about 1 solar cycle timescale. It is to be noted that
subsequent peaks are not located at lags of 280 and 420
indicating that activity cycle is not purely sinusoidal and likely
has several modes of oscillation. It is well known the solar
cycle duration is not always fixed exactly at 11 yr, but rather it
can vary from one cycle to the next. It is also interesting to note
that the autocorrelation appears to increase three cycles ahead.
To examine this feature further, we apply a Hilbert–Huang

transform (Huang & Wu 2008; Barnhart & Eichinger 2011), to
the monthly sunspot number for this same time period, which
can give a measure of the instantaneous frequency of a time-
variable system. The transform starts by using empirical mode
decomposition to obtain the intrinsic mode functions. These
mode functions are the basis of the Hilbert spectral analysis,
which is shown in Figure 1(c).
The Hilbert spectrum provides the instantaneous frequency

of the intrinsic mode functions. The strongest mode has a
period of approximately 140 Carrington cycles or about 1 solar
cycle with some variability, which can be seen at f/fs= 1
( fs= 140 Carrington rotations) in Figure 1(c). Note, however,
the presence of a weaker mode at about f/fs= 0.5, which is
about 280 Carrington cycles or about 23 yr. This longer cycle
provides evidence of a two solar cycle effect and an asymmetry
between polarity of the cycles, which was first identified by
Gnevyshev & Ohl (1948). Additional variability having longer
timescales of 60–120 yr (Gleissberg cycle) have also been
identified in the historical monthly sunspot number sequence
dating back to the 1749 (Barnhart & Eichinger 2011). The
existence of overlap between cycles and asymmetries has also
recently been pointed out by (McIntosh et al. 2015; McIntosh
& Leamon 2017, and references therein) and may be reflected
in this f/fs= 0.5 mode. Besides these two main modes,
Figure 1(c) shows that there are also weaker higher frequency
modes, f/fs> 1, corresponding to periodicities of <1 solar
cycle. Unlike the two main modes, these higher frequency
modes sporadically appear and disappear within a cycle in the
solar cycles 21–24. Previous studies reported that some high
frequencies, e.g., Rieger-type periodicities (periodicities of
several Carrington rotations) and intermediate-term periodi-
cities (periodicities of 4–20 Carrington rotations), appear and
disappear within one cycle (Lean & Brueckner 1989; Zaqar-
ashvili 2010, and references therein). Interestingly, there is a
frequency mode at f/fs= 2.5–3 or a periodicity around 45–50
Carrington rotations (3.5–4 yr) near the minimum of solar cycle
24 (yr 2010–2012). We will explore these periodicities further
in Section 5.

3.2. Mutual Information

While the correlation provides some indication of how active
regions evolve, it is even more instructive to examine the
information flow between a sequence of maps. To do this, we
use mutual information (MI) and conditional mutual
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information (CMI), which are briefly summarized below, but
they are also described in (Balasis et al. 2013), and Wing et al.
(2016, 2018, 2022). MI compares the uncertainty of measuring
variables jointly with the uncertainty of measuring the two
variables independently. MI(X, Y) gives a measure of linear and
nonlinear dependence between X and Y. CMI(X, Y|Z) gives a
measure of MI between X and Y given Z.

For two integer time series X and Y, the mutual information
(in units of bits) is defined by

( ) ( ) ( ) ( ) ( )I X Y H X H Y H X Y, , 2= + -

where,

( ) ( ) ( ( )) ( )H X P x P xlog 3
x X

X X2å= -
Î

Figure 1. (a) The image entropy of normalized Carrington map image (blue) and the sunspot number (red) as a function of Carrington number and Gregorian year. (b)
The autocorrelation of the image entropy as a function of the lag time in Carrington rotation. The autocorrelation peaks at about 1, 2, and 3 solar cycle timescale. (c)
Hilbert–Huang transform showing the frequencies of the dominant intrinsic mode functions as a function of Gregorian year and time since 1974. Note the strong mode
at the frequency of the solar cycle, f/fs = 1 ( fs = 140 Carrington rotations) and a weaker mode at half the frequency, f/fs = 0.5 (or 2 solar cycles).
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( ) ( ) ( ( )) ( )H X P y P ylog 4
y Y

Y Y2å= -
Î

( ) ( ) ( ( )) ( )H X Y P x y P x y, , log , . 5
x X y Y

XY XY
;

2å= -
Î Î

H is entropy, PX(x) is the measured probability of the random
variable X taking in the value x, and PXY(x, y) is the joint
probability of observing random variable X having the value x
and Y having the value y.

The conditional mutual information gives the expected value
of the mutual information of two random variables X and Y
given the value of a third Z.

( ∣ ) ( ) ( ) ( ) ( )
( )

X Y Z H X Z H Y Z H X Y Z H ZCMI ; , , , ,
6

= + - -

One substantial challenge to measuring information flow
from one map to the next is the motion of structures in latitude
and longitude. Two images may have similar features;
however, if these features move between images, the mutual
information drops drastically. This issue leads to a misleading
loss of mutual information between structures. To solve this
issue, the prominent features need to be aligned before
calculating the mutual information. The alignment can be done
by identifying the features in the image, isolating them, then
registering each isolated region to its most likely counterpart.

To accomplish this task, an entropy filter is used. A 3× 3
neighborhood of pixels is chosen to calculate the local image
entropy, which highlights the features corresponding to active
solar regions. An example is presented in Figure 2. Figure 2(a)
shows the original image while Figure 2(b) shows the result of
applying entropy filter to the image in Figure 2(a). The figure
shows that active regions generally have higher entropies than
the rest of the image due to a higher variation in the
magnetic field.

To isolate the regions of high entropy (e.g., active regions), a
threshold is applied to the filtered image in Figure 2(b). Pixel
values less than 2.05 are set to 0 in this case while all other
values are set to 1. This creates a mask, which is shown in
Figure 2(c). The mask can then be multiplied by the original
image (Carrington map) in Figure 2(a), resulting in Figure 2(d).
This operation effectively isolates and selects the high-entropy
regions.

Finally, each separate partition is cropped from the image,
forming a set of partitions, which are highlighted by the red
boxes in Figure 2(d). This process is performed on all images
(Carrington maps), transforming the data set from images to
sets of partitions containing prominent features.

4. Image Mutual Information

Once the partitions of each image are registered, we compute
the mutual information between two images (A and B) based on
the set of partitions (A1, A2, ..., An) ä A and (B1, B2, ...,
Bm) ä B. Without loss of generality, we assume that the number
of partitions of A is less than or equal to the number of
partitions in B, i.e., n�m. We next compute the mutual
information between all partitions, MI(Ai, Bj). Once this step is
completed, we identify the pair of partitions having the largest
mutual information, and we relabel the elements of A and B so
that MI(A1, B1) is largest value of the mutual information. We
then consider the remaining pairs of partitions (Ai>1, Bj>1) and

relabel the remaining elements of A and B such that MI(A2, B2)
has the largest remaining mutual information. This procedure is
continued until all partitions A have been paired with a partition
of B. The mutual information of the two images is then
computed as ( ) ( )A B MI A BMI , ,i

n
i i1= å = .

When considering the mutual information between images
separated by τ Carrington rotations, we consider the ensemble
average over all pairs of images having a separation τ. Figure 3
shows the result of calculating the mutual information of image
(t) and image(t+τ) for τ= 1–500 Carrington rotations. The
mutual information drops off gradually at a timescale of about
20 Carrington rotation, suggesting a timescale over which the
active region structures remain coherent.
To determine the significance of the mutual information over

these time lags, we scramble the pixels in the partitions of one
of the images and determine the resulting mutual information.
The scrambling procedure is performed multiple times and
averaged. The mutual information of the active regions is then
compared with the mean of the surrogate (scrambled) active
regions and compared relative to the standard deviation (σ) of
the surrogates. In Figure 3, all MI> 3σ and hence they are all
significant.

5. Short- and Long-term Memory of the Active Regions

In the autocorrelation of the image entropy plotted in
Figure 1(b), the autocorrelation appears to increase three cycles
ahead suggesting complicated oscillation modes. Similar
pattern can be seen in the mutual information plotted in
Figure 3. Moreover, the Hilbert–Huang transform shown in
Figure 1(c) suggests the presence of multiple modes with
periodicities < 1 solar cycle, ∼11 yr (1 solar cycle), ∼23 yr (2
solar cycles), or even longer.
Furthering our analysis, we determine whether there is a

relationship between active regions that persists for two or
more cycles given that we know the properties of the active
region in the last cycle. In order to do this, we consider image
conditional mutual information (CMI) of the sequence of maps.
The conditional mutual information makes it possible to
determine the similarity of two images given a third image.
The main objective is to see whether there is evidence of
memory in the solar cycle beyond the most recent cycle. To
examine this question, we compute CMI(c(t+τ), c(t−Δ)|c(t)),
which calculates the mutual information between Carrington
map(c) at t+τ and t-Δ given the Carrington map at time t.
Figure 4 shows the results of the CMI. In the figure, all
CMI> 3σ and hence are all significant.
Several features in this plot are worth noting. The most

obvious features are the diagonal lines of enhanced CMI. These
lines occur when τ+Δ is a multiple of 140, suggesting that
there is a general similarity between the map separated by a
solar cycle, which perhaps can be expected. However, along
the diagonal lines there is substantial variation with obvious
peaks at τ≈ 1–20, 140–160, .... However, the recurrence of the
peaks after a solar cycle suggests a long-term memory lasting
two or possibly more solar cycles. The peak at τ and Δ∼ 140
(where the dashed gray lines intersect) shows that there is
additional information from the Carrington map two solar
cycles ago in addition to what is known one solar cycle ago.
Thus, it suggests a memory of two solar cycles. There is a
smaller peak at τ∼ 330 and Δ∼ 140, suggesting a longer
memory. The long-term memory obviously decreases with time
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as expected. The results here highlight the dynamics of the
active regions and have implications for the predictability of
the active region structures and sunspots. A long-term memory
of two solar cycle or more has also been found in Wing et al.
(2018), which examined information transfer from past polar
fields to the sunspot number at the Sun. The study found that
the polar field of the last two solar cycles or even further back
carries some information about the sunspot number.

The width of these peaks, about 20 Carrington cycles, may
suggest the coherence time (short term memory) of solar active

regions is ∼2 yr. This timescale may be consistent with
previous studies that found that the lifetimes of large active
regions (superactive regions, active zones) can range from
months to several years (Bai 1987). The spatial scale of our
active regions is discussed in the next section.

6. Spatial Scale of Active Regions

While this study investigates the temporal coherence of the
structures, we are also able to investigate the spatial coherence

Figure 2. An entropy filter is applied to original Carrington map image (a) to identify active region structures, which show up as regions with high entropies (b). Image
(d) is obtained by multiplying the image mask (c), constructed from thresholding image (b), with the original image (a). This procedure effectively identifies and
partitions the active regions in image (a). The partitions are bounded by the red rectangles in image (d).
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of the structures. To do this, we apply a neighborhood
averaging filter that effectively averages over larger and larger
regions of the image. The mutual information should peak
when the averaging filter corresponds to the size of the
structures. The mutual information would be smaller when there
is more random variation in the pixels (too much resolution) and
when there is not enough variation in the pixels (too little
resolution). The results are shown in Figure 5. The figure shows
that there is a peak when the scale size of the averaging filter is
32–64 square pixel. Each pixel corresponds to 5° resolution
(around 3686 Mm2) and hence, the strongest mutual information
occurs on a scale of 118× 103–236× 103Mm2, which perhaps
corresponds approximately to the scale size of the active region
structures that carry the most information.

7. Summary and Conclusion

We apply information theory to examine information flow
and nonlinear dynamics in the solar active regions. Such an
analysis can characterize the periodicities and memories of the
underlying dynamical process of the driving dynamo and to
determine predictability of the system. The analysis is based on
the image entropies of the Carrington maps from 597
Carrington rotations 1974 to 2021 spanning solar cycles
21–24. An innovative aspect of this study is using the entropy
filter to identify active region partitions, which are then
registered for each image. The mutual information for these
partitions are computed, which makes it possible to follow
structures that are coherent, yet moving (due to differential
rotation), in sequences of maps.

Figure 3. Ensemble average of the mutual information of a sequence of images: MI(c(t), c(t + τ)) where c(t) is the Carrington image at time t and τ is the lag time. The
MI peaks at τ ∼140 × n where n = integer. In other words, MI peaks at every integer multiplication of a solar cycle period.

Figure 4. Conditional mutual information between Carrington maps at look ahead τ and look behind Δ. Enhancement in the CMI are at τ = Δ = 140, where the
dashed gray lines intersect, suggests a long-term memory of two solar cycles in duration.
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Our analysis shows that the Sun has many intrinsic oscillation
modes and memories. We list below three key findings.

1. The Sun exhibits a long-term memory of two cycles
or more.

2. The coherence (short-term memory) timescale of the
active region structures is about ∼2 yr.

3. The average active region structure scale size carrying the
most information is approximately 118× 103–236× 103

Mm2.

The results have implications to the short- and long-term
predictability of the active region structures and by extension
sunspot structures (Pesnell 2016). In particular, for the long-
term prediction, our analysis provides evidence and hope that at
least in a statistical sense, it may be possible to predict some
aspects of the active region structures more than one or two
solar cycles ahead. Our study also has implications to the
nature of the convection and flux transport at the Sun.

Our innovative method can also be applied to the light
curves of stellar data. Each light curve has oscillations that
correspond to stellar rotation (the analog of Carrington
rotations) and changes in the light curves result primarily from
the starspots, flares, or planetary transits. By comparing light
curves for each rotation, we can also investigate the evolution
of the stellar active regions and see how that evolution
compares with the Sun.

We acknowledge the support of NASA Grants
80NSSC21K1678, 80NSSC20k0355, 80NSSC20K0704,
80NSSC22K0515, and NNX16AQ87G.
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