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ABSTRACT

PENALIZED BAYESIAN EXPONENTIAL RANDOM GRAPH MODELS

Vicki Modisette

July 7, 2023

Networks have the critical ability to represent the complex interconnectedness

of social relationships, biological processes, and the spread of diseases and informa-

tion. Exponential random graph models (ERGM) are one of the popular statistical

methods for analyzing network data. ERGM, however, struggle with computational

challenges and degeneracy issues, further exacerbated by their inability to handle

high-dimensional network data. Bayesian techniques provide a promising avenue to

overcome these two problems. This paper considers penalized Bayesian exponential

random graph models with adaptive lasso and adaptive ridge penalties to perform

variable selection and reduce multicollinearity on a variety of networks. The exper-

imental results demonstrate their effectiveness in variable selection and reduction of

multicollinearity across diverse networks, outperforming the widely used Bayesian

exponential random graph model proposed by Caimo et al. [10], which lacks regular-

ization capabilities. This paper presents a valuable extension to network models for

large-scale high-dimensional data and offers opportunities for advancing research in

diverse fields.
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CHAPTER 1

INTRODUCTION

Networks are an important method of representing relational data in many

fields. For example, in sociology and psychology, researchers have modeled friendships

and the spread of information with networks of nodes representing people and edges

formed on some condition of connection. An early example is Moreno and Jennings’

work in Sociometry using networks to describe the friendships of a girls’ school [69].

Later, Granovetter highlighted the strength of networks in this realm as a method

for representing both micro/individual and macro/society decisions [37]. In a more

modern context, researchers have studied networks of terrorists to better understand

the structures of these groups [78]. Similarly, Tsvetovat and Carley use properties of

networks to provide recommendations for the most effective destabilizing techniques

for law enforcement seeking to remove the threats from terrorist networks [95].

Biological contexts for networks abound including gene regulatory networks

and protein interaction networks in addition to the neural networks in our brains.

Since the interactions between the nodes in a gene regulatory network (GRN) inform

the development of the cells in living organisms, understanding the dynamics of these

networks has implications across the field of biology [75]. Additionally, protein-protein

interaction networks are significant to understanding many processes in the human

body [57] [15].

Network models have proven value across a wide variety of disciplines despite

the limitations of current models. This next section lays out the mathematical rep-

resentation of networks and the substructures that form the building blocks of the

1



models.

1.1 Network Substructures

Mathematical analysis of these networks requires representation beyond a

graphical perspective. The structure of a network with n nodes can be represented

with an n by n adjacency matrix. Figure 1.1a illustrates the graphical representa-

tion of a directed network with six nodes. The corresponding adjacency matrix is

represented in 1.1b. In this matrix, a tie between any two nodes is denoted by 1

in the corresponding position of the adjacency matrix. Unlike an undirected graph

that is symmetric, this matrix is asymmetric since an edge from node a to node b is

distinguished from an edge from node b to node a.

a

b

c

d

e
f

(a) Directed network

a b c d e f


0 0 0 0 0 0 a
1 0 0 0 0 0 b
1 0 0 0 1 0 c
0 1 0 0 1 0 d
0 1 1 1 0 1 e
0 0 0 1 0 0 f

(b) Adjacency Matrix

Figure 1.1: Network representations

Once this adjacency matrix is defined, we can observe substructures repre-

senting the local dynamics of the network [70]. For this context, we will focus on

node-level and dyad-level substructures.

1.1.1 Node-Level Substructures

Node-level statistics consider the attributes of nodes themselves providing in-

formation about the network through the characteristics of the nodes. Figure 1.2

2



represents three common node-level statistics: degree, triangles, and the k-star sub-

structure. The degree of a node or the number of nodes it is connected to can indicate

the amount of influence or interaction a node has with a network. This feature has

significant application for the study of both information and disease spreading with

the degree distribution showing the presence of hubs or high contact nodes.

The number of triangles or the connection of three nodes as seen in Figure 1.2b

can indicate the level of connection in a network with higher numbers of this feature

indicating a more densely connected network. This utility is particularly important

to the social sciences and the context of social networks.

Finally, the n-star formation for any n ∈ N is shown in Figure 1.2c with n = 3.

This structure occurs on undirected graphs, but similar but more detailed structures

exist in directed graphs. Ties directed to the central node (instar) or directed out

from the central node (outstar) can also be helpful distinctions depending on the

network context. Nodes that have a large number of nodes connected to them, exhibit

popularity and can indicate a node or agent with influence. Activity refers to the

tendency of nodes that have k-stars with edges directing to other agents. Both of

these substructures are particularly significant to understanding influential nodes in

a network.

(a) Degree (b) Triangle (c) 3-star

Figure 1.2: Examples of Node-level Network Structures

Using the adjacency matrix in the style of Figure 1.1, the counts of these

network substructures can be calculated for any given network. Given the adjacency

matrix Y with entries in the matrix defined as Yi,j for a network, the following sums

3



calculate the occurrences of the respective network configurations for the network

statistic.

Degree of node i:
∑
j

Yi,j Triangles:
∑
i<j<k

Yj,kYi,kYi,j 3-star:
∑

i<j<k<l

Yi,lYj,lYk,l

1.1.2 Dyad-Level Substructures

Dyad-level statistics consider the interactions in a network between pairs of

nodes. Each of these substructures provides information about agent-level connec-

tions driving the network shape and structure.

(a) Homophily (b) Transitive Triad

Figure 1.3: Examples of Dyad-Level Network Structures

Figure 1.3 displays two of these examples of network substructures: homophily

and transitive triads. Homophily refers to the tendency of nodes with similar char-

acteristics to be connected in a network. Here such nodes are denoted by the same

color. The inclusion of homophily in the network analysis allows us to study social

dynamics and community-based questions. In social networks, this is a frequently

observed phenomenon when people form friendships or other connections with those

that share a common demographic or occupational context.

Next, for directed graphs, a transitive triad considers three pairs of dyads with

node 1 connected to node 2, node 2 connected to node 3, and node 1 connected to

node 3 in contrast to triangles that merely consider three nodes with the connections

between. Again a transitive triad is frequently experienced in social contexts: a

friend of your friend is more likely to be your friend. This hints at the foundational
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assumption that distinguishes network analysis from classical regression techniques

that assume observations are independent as the foundation for any model. The

network models of this paper incorporate dependence by including these network

substructures as components of the terms of the model. This structure allows for the

analysis of data from a completely new angle and has promoted the utility of network

models across many areas of study.

The count of these networks statistics is found with the adjacency matrix real-

ization y of Y with i-j entry in the matrix defined as yij. For an undirected network,

the following summations demonstrate a method for counting these substructures.

Homophily:
1

2

∑
i<j

Yi,jYj,kδ(Xi, Xj) Transitive Triad:
∑
i<j<k

Yi,jYj,kYi,k

where δ is the Kronecker delta function returning 1 if a node attribute Xi is equal to

the node attribute Xj.

1.1.3 Geometrically Weighted Edgwise Shared Partners

In addition to the previously mentioned network statistics based on simple

configurations, there are other functions of the network topologies that model more

complex interactions. The geometrically weighted edgewise shared partner (GWESP)

network statistic captures the tendency for nodes in a network to form connections

with common neighbors. It extends the standard edgewise shared partners (ESP)

term (see Figure 1.4) by incorporating the following geometrically weighted function:

v(y; θt) = eθt
n−2∑
i=1

{
1− (1− e−θt)i

}
EPi(y) (1.1)

for a given network y where θt is a constant decay parameter, n is the number of

nodes in a network, and EPi(y) is the count of the node pairs that have exactly

i edgewise shared partners [53]. The upper limit of the summation, n − 2, is the

maximum number of edgewise-shared partners for a graph with n nodes.

5



Figure 1.4: One, two, and three edgewise-shared partners.

1.2 Motivation and Outline

Network models are built on the task of finding the probability of a tie between

any two nodes. Initial models for networks assumed that the probability of a tie

between any two nodes was constant. In other words, the chance of a tie between any

two nodes was independent of the other nodes’ connections. This makes every edge

a Bernoulli trial, so the probability of the entire graph is

P (G) = pM(1− p)(
n
2)−M (1.2)

where G is a graph with M edges [21]. The assumptions of this model fail to capture

many real-world examples of networks motivating the next big step in network models.

Modern network models work from the assumption that local selection forces are

dependent on factors in the network at large. The exponential random graph models

(ERGM), also known as p∗ models, emerged in the late 1970s and early 1980s as

a statistical framework to capture the complex dependencies and patterns in social

networks by using those local sub-configurations [64].

ERGM have proven to be valuable tools for analyzing network data, however,

ERGM have computational limitations and are prone to degeneracy, particularly

in the case of large or complex networks. Degeneracy occurs when the estimated

parameters from the ERGM process indicate graphs unlikely to be applicable. such

as the empty or complete graph; the indicated network fails to reflect the observed

data showing a lack of goodness of fit. Additionally, the normalizing constant required

for direct estimation requires millions of calculations for a graph of only 7 nodes with
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the required calculations increasing at an exponential rate for each additional node.

While there are methods that attempt to get around this difficulty (discussed in

Chapter 2), these come with compromises and assumptions [42]. The ergm package

for R contains functions attempting to diagnose degeneracy, but methods to reduce

it are lacking [52] [43] [59].

Thus, there are three main motivations for this dissertation. First, while poten-

tial applications abound, ERGM have computational difficulties, second, current net-

work models have significant degeneracy issues, particularly for networks of common

interest i.e. large and/or complex networks, and finally, ERGM lack regularization

methods for variable selection and handling multicollinearity on the high dimensional

networks. In this era of big data, the need for effective models that can assist with

cutting through the complexity to reveal features of interest is an increasingly pressing

need. The Bayesian exponential random graph model discussed in Chapter 3, pro-

vides the computational improvements that ERGM need but still lacks regularization

methods. This thesis pioneers the Bayesian adaptive lasso exponential random graph

and the Bayesian ridge exponential random graph addressing the need for parameter

selection and reducing multicollinearity. These models have the potential to pivotally

contribute to the future of network studies.

This dissertation is constructed to address these challenges as follows. Chapter

2 discusses the history and methods of ERGM. Next, Chapter 3 lays out the foun-

dation for the Bayesian exponential random graph model which provides the double

benefit of computational efficiency and prior specification advantages. We then lay

out the new Bayesian Adaptive Lasso exponential random graph model (BALERGM)

in chapter 4. To perform variable selection, we provide three alternative methods of

parameter estimations in Chapters 5 (Method 1), Chapter 6 (Method 2), and Chap-

ter 7 (Method 3). Each of these subsections includes the results of the new Bayesian

Adaptive Lasso exponential random graph model compared to the existing Bayesian

7



exponential random graph model, demonstrating the advantages of the lasso penalty

in parameter selection on three data sets.

Then, the new ridge penalized Bayesian exponential random graph model and

results are in Chapter 8. This chapter presents two variations of a new Bayesian ridge

exponential random graph model with two different priors. Finally, the discussion and

plans for future work are in the conclusion.
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CHAPTER 2

EXPONENTIAL RANDOM GRAPH MODELS

The first section of this chapter lays out the background and context for the

exponential random graph model. The next section covers the structure of this model

incorporating the network statistics from Chapter 1. Next, Section 2.3 focuses on the

traditional methods of estimation for ERGM. This model has proved to be widely

applicable but faces computational issues motivating the theory of the next chapter.

2.1 Introduction and Overview

Disciplines such as sociology, political science, and biology have all relied on

networks as a way of understanding and representing relationships between friends,

global trading partners, proteins, and genes. Classical statistical methods have limited

tools for fully capturing this relational data. Exponential random graph models

(ERGMs) allow for quantifying this type of data demonstrating how the local selection

forces shape the global structure of a network. Unlike the typical assumption of

independence in classical regression, exponential random graph models assume an

interdependence built into the structure of the network; the probability of any given

edge existing is related to the existence of other edges and the nature of nodes in the

entire graph. This assumption of dependence reflects an intuitive understanding of

how certain networks are built. Assuming a dependence between the existence of ties

was the catalyst for the development of ERGMs by Frank and Strauss in 1986 [25].

Historically, Erdös and Rényi propose the first random graph model in the

9



late 1950s [21]. Initially, these models assumed that all graphs of the same size

were equally likely or that the edges are independent, but such models have obvious

limitations.

In 1981, Holland and Leinhardt produce the next development with a model

for directed graphs limited to only using dyads that were assumed to be independent

[50]. Later work moved away from the limitations of the assumption of independence

and introduced Markov random graph models to create the structure of ERGMS that

would stand for decades [25].

Fundamentally, ERGMs are analogous to logistic regression when dyads are

independent; these models perform regression-like analysis but on a random network.

ERGMs calculate the probability that a pair of nodes in a network will have a tie

between them. However, the implementation of the estimations methods has com-

putational difficulties because of the intractability of the normalizing constant and

degeneracy problems [14]. Bayesian computational methods have provided ways to

get around these difficulties. We will discuss this development further in Chapter 3.

Exponential Random Graph Models (ERGM) are widely applicable to research

questions in the social and health sciences. In psychology, researchers studied Roma-

nian school children’s friendship networks to find that sex and mental health showed

patterns of homophily, concluding that ERGM are a “promising avenue for further

research” [4]. Also in the social and health sciences, Becker et al. considered the

friendship network of members of a sorority and the influence of disordered eating

habits on friendship finding that women tended to have disordered eating habits un-

like their friends [6]. This unexpected result has implications for understanding the

complex social dynamics that go into a serious health concern. Solo et al. note the

utility and suitability of ERGM for modeling connections within the brain compared

to more traditional methods, though they also note the computational difficulty of

ERGM [88]. On a much larger scale, ERGM have been used to understand the influ-
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ences of information sharing on tourism. The model helped answer questions about

the existence of patterns in the network including whether or not the network exhib-

ited the characteristic of homophily and how organizations should understand their

role in the network [102]. In the realm of biology, Stivala et al. show that ERGM can

address some of the limitations that previous research had found in modeling biolog-

ical processes [89]. This small sampling of papers shows the incredible flexibility and

significance of exponential random graph models.

2.2 Model Structure

The connectivity of the network’s graph is described by an n × n adjacency

matrix Y . Its i-j entry Yi,j = 1 if node i will give referral to node j and Yi,j = 0

otherwise. Let Y be the set of all possible graphs on n nodes and let y be a realization

of Y . A given network y consists of n nodes and m edges that define a relationship

between pairs of nodes called dyads. The adjacency matrix of the network graph Y

allows for the analysis of the structural relationship in the observed network.

Using the methods of Chapter 1, we can define s(y) as a vector of network

statistics of the counts of the network substructures. We can use these network

structures in the construction of the Exponential Random Graph Model. We see this

in Ove Frank and David Straus’ work in 1986 [25] [50] and expanded in more recent

works [52] [64] [14] [70] [98].

For general exponential random graph models, the network has the following

exponential family type density [64]:

π(y|θ) = 1

z(θ)
eθ

T s(y) (2.1)

where y is the observed network, θ is a vector of parameters, and s(y) is a vector of

network statistics. Each i-th network statistic si(·) has a corresponding parameter θi.

Here z(θ) is a normalizing constant, and z(θ) =
∑
y∈Y

eθ
T s(y) where Y is the set of all
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possible graphs with the same number of nodes as y. The number of possible graphs

with n nodes is 2n(n−1)/2 which becomes very large for all but the smallest graphs

[64]. Hence, the calculation of z(θ) is feasible only for small networks in computer

computation. It becomes challenging to find this normalization constant for large

networks or even moderate-sized networks. The intractability of z(θ) is a well-known

difficulty of ERGM.

We need one final component to the model. As we saw earlier, the transitive

triad is just one example of many showing that it is not reasonable to assume that

every tie between nodes is an independent variable. Instead, we see that the proba-

bility of a tie is dependent on the ties around it. With this assumption and the need

to modify the model to account for all the ties at once, since the probability of one

tie is connected to the existence of all other ties. We consider the change statistics

or the difference in the occurrences.

Let δ = s(y+
ij) − s(y−

ij) be the vector of changes in the statistics in s when

the edge yij between node i and j in the graph y changes from 1 to 0 along with

the complement part yc
ij same. Conditioned on the state of the rest of the graph

represented as Y−ij, the log odds of the probability of a tie existing between node i

and j is:

log
P (Yij = 1|Y−ij = y−ij,θ)

P (Yij = 0|Y−ij = y−ij,θ)
= θTδ. (2.2)

These network statistics can be overlapping subgraph configurations such as

the number of edges, mutual edges, triangles, and uniform homophily etc. The repre-

sentation above gives the intuitive explanation of the model parameter θ about their

effect on the probability of an edge between node i and j [58].

We can see the similarity to typical classical regression with constants that

indicate the relative significance of the corresponding predictor variables for the prob-

ability of a tie. The magnitude of a number indicates the significance of that variable

to the network with large numbers showing the variable is more significant. Posi-
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tive values indicate a higher probability of a tie, while negative values decrease the

probability of a tie [58].

2.3 Classical Inference for ERGMs

The inferential statistical goal is to find an appropriate estimate of θ such that

the corresponding generated network has the probability distribution centered on the

observed network on average. That is, we want to solve the moment equation:

Eθ(s(y)) = s(yobs) (2.3)

where yobs is the observed network and s(y) is a vector of network statistics in the pro-

posed graph and s(yobs) is a vector of the network statistics in the observed graph.

However, in most cases, the moment equation cannot be solved analytically. This

challenge leads to two mainstream simulations: maximum pseudolikelihood estima-

tion and Monte Carlo maximum likelihood estimation.

2.3.1 Maximum Pseudolikelihood Estimation

The direct maximum likelihood estimation of ERGMs is complicated since the

likelihood function is difficult to compute for models and networks of moderate or

large size. [90] proposed a standard approximation with maximum pseudolikelihood

estimation (MPLE). Instead of conditioning each tie on the state of the entire graph,

the assumption is that the dependence of each dyad is weak. In particular, the MPLE

estimates can be obtained by assuming the independence among values of Yij:

P (Yij = 1|δ−ij = y−ij) = P (Yij = 1). (2.4)
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This allows for the pseudolikelihood function that has the strength of quick estimation

but has been shown to not provide reliable estimates [96] [26].

π(y|θ) ≈ πpseudo(y|θ) =
∏
i ̸=j

π(yij|y−ij,θ) (2.5)

=
∏
i ̸=j

π(yij = 1|y−ij,θ)
yij

[1− π(yij = 0|y−ij,θ]yij−1
(2.6)

This will only provide the true estimate for ERGM with dyadic independence

or when the change statistics can be found only considering one tie without knowing

the rest of the graph. Research by [96] compares the maximum pseudo-likelihood

and maximum likelihood estimates, and their study shows the pseudo-likelihood es-

timation is biased and MPLE can only approximate the transitivity pattern in the

network well.

2.3.2 Monte Carlo maximum likelihood estimation

Similar to methods in linear regression, ERGMS are log-linear, and a typical

method for finding the maximum likelihood requires finding the roots of the derivative

of the log of the function. This results in the s(y)T − Eθ(s(y)) = 0 found earlier.

The Monte Carlo maximum likelihood estimation in ERGM case needs to find the

following important ratio [96]:

z(θ)

z(θ0)
= Ey|θ0

[
eθ

T s(y)

eθ
T
0 s(yobs)

]
(2.7)

The log-likelihood equation, however, is not directly solvable without com-

puting the normalizing constant. As previously mentioned, this is computationally

intensive for all but the smallest graphs. With this approximation, though, the nor-

malizing constant can be estimated by generating m graphs from the density π(π|θ0)

and finding e(θ−θ0)T s(yi) for each graph and use importance sampling technique. The

estimates of θ can be obtained by maximizing the log-likelihood ratio approximated
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as the following:

ℓ(θ)− ℓ(θ0) ≈ (θ − θ0)
T − ln

[
1

m

m∑
i=1

e(θ−θ0)T s(yi)

]
(2.8)

However, in this method, the choice of the initial θ0 is tricky and should be

near the maximum likelihood estimate of θ0. Poor choice of θ0 can lead to the failure

of the maximization log-likelihood function and degeneracy problem [96] [42].
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CHAPTER 3

BAYESIAN EXPONENTIAL RANDOM GRAPH MODELS

A Bayesian approach provides a potential solution to address the two issues

of ERGM intractability and degeneracy as discussed in Chapter 2. In this regard,

Caimo and Friel [9] introduce a Bayesian exponential random graph model (BERGM)

which improves upon the Monte Carlo maximum likelihood method of Geyer [30] and

the maximum pseudo-likelihood of Straus et al. [90]. By utilizing Bayesian analy-

sis, Caimo and Friel eliminated the need for calculating the normalizing constant in

ERGM. Instead, they focus on estimating the posterior distribution of model param-

eters given the observed data. This approach allows for more flexibility in modeling

and inference, as it leverages prior information and incorporates it into the parameter

estimation process. Second, the issue of degeneracy in ERGMs often arises when the

model places most of its probability mass on just a few possible networks, such as the

complete or empty network. This poses a challenge for common Markov Chain Monte

Carlo (MCMC) algorithms used to simulate and estimate ERGMs, as they struggle

to converge when parameter values are located near these degenerate regions. Con-

sequently, in the Bayesian analysis of ERGMs, it becomes necessary to address the

problems of instability and near-degeneracy by selecting a prior distribution based

on a procedure that takes the data into account. This selection process ensures that

the prior distribution provides appropriate regularization and helps overcome the dif-

ficulties associated with instability and near-degeneracy. Therefore, in the Bayesian

analysis of ERGMs, the choice of a data-dependent prior distribution becomes crucial

in mitigating the challenges posed by instability and near-degeneracy. In particular,
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when dealing with large-scale network data that includes numerous nodal covariates,

it becomes increasingly challenging to determine the appropriate prior settings for all

model parameters. The complexity and dimensionality of the data make it difficult

to select suitable prior distributions that adequately capture the underlying structure

of the network. This challenge serves as a key motivation for the present project,

which aims to develop a network model that incorporates variable selection and ad-

dresses the issue of multicollinearity. By introducing these additional components,

this project seeks to overcome the limitations of traditional approaches and enhance

the modeling and inference process for large-scale network data.

This chapter outlines the methods of researchers Caimo and Friel in creating

BERGM by explaining how Bayesian analysis removes the requirement for calculating

the normalizing constant and adjusts the required Metropolis Hasting algorithm.

Next, we detail the parallel adaptive sampling algorithm utilized by Caimo and Friel to

improve the sampling of θ [9]. Although the algorithms mentioned above are primarily

used for BERGM, the principles and methodologies underlying Markov Chain Monte

Carlo (MCMC) in BERGM can be adapted and extended to the penalized exponential

random graph models.

Assume that a prior distribution π(θ) is placed on θ, and we are interested in

the posterior distribution

π(θ|y) ∝ π(y|θ)π(θ). (3.1)

While priors on θ provide various utilities, the equation is now doubly in-

tractable since both the normalizing constant z(θ) and model evidence π(y) are

computationally prohibitive to produce [64]. Consequently, an approximate exchange

algorithm was introduced by Caimo and Friel [10]. The exchange algorithm consists

of a Gibbs update of augmented θ′ followed by a Gibbs update of the network y′.

In this context, the standard Metropolis-Hastings ratio for the move from θ to θ′ to

generate MCMC samples for the posterior distribution is as follows:
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H(θ|θ′) =
eθ

′T s(y)π(θ′)p(θ|θ′)

eθT s(y)π(θ)p(θ′|θ)
/z(θ′)

z(θ)
(3.2)

where p(θ|θ′) is the transition probability from θ to θ′. The main difficulty of this

ratio is the fact that it requires calculating the normalizing constant twice [46].

Møller et al. demonstrate adding an auxiliary variable to move from (θ, x) →

(θ′, x′) and assuming the proposal density or the probability of moving to the new

value is

p(y′|y,θ) = π(y′|θ′) =
eθ

′T s(y′)

z(θ′)
(3.3)

or the same density as the likelihood [74]. Now the new value (θ′, x′) is accepted with

the following probability where clearly the normalizing constants cancel out:

min

(
1,

eθ
′T s(y′)π(θ′)ϵ(θ|θ′)eθ

′T s(y)

eθT s(y)π(θ)ϵ(θ′|θ)eθT s(y)

z(θ)z(θ′)

z(θ)z(θ′)

)
. (3.4)

Thus the final ratio is

min

(
1,

eθ
′T s(y′)π(θ′)ϵ(θ|θ′)eθ

′T s(y)

eθT s(y)π(θ)ϵ(θ′|θ)eθT s(y)

)
. (3.5)

The exchange algorithm offers a solution to avoid the need for calculating the

normalizing constants in ERGM likelihoods. By utilizing multiple chains that interact

with each other through parallel adaptive direction sampling described in the next

section, the exchange algorithm will improve computational efficiency and enhance

chain mixing performance.

3.1 Adaptive Parallel Direction Sampling Algorithm

There have been considerable developments in the approaches dealing with the

problem of sampling from a distribution with a doubly intractable normalizing con-

stant. For example, the easy-to-implement and more direct single variable exchange

algorithm proposed by Murray et al. [73]. However, if there is strong temporal de-

pendence in the state process and a strong correlation between model parameters,
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the exchange algorithm performs slow mixing. Caimo et al. in [10] and [12] apply

the ideas of Murray et al. in [73] to increase MCMC sampling efficiency by combin-

ing delayed rejection and adaptive Monte Carlo techniques. First, a collection of H

parallel Markov chains are generated. Then the next element of a current chain h

is found using the differences of the estimates from two chains h1 and h2 such that

h1 ̸= h2 ̸= h scaled by a factor γ.

Algorithm: Parallel Adaptive Sampling Algorithm

while i = 1, ..., N do
Define a scalar ADS move factor γ, for each chain h ∈ {1, 2, 3, · · · , H}:

1. Sample two current states h1, h2 and h1 ̸= h2 ̸= h.
2. Sample the error term from a symmetric normal distribution. ϵ ∼ N(0,σ2

ϵ ).
3. The sampling of θh performs a simple random walk:

θh′ = θh + γ(θh1 − θh2) + ϵ

. 4. Sample y′ from π(·|θ′

h).
5. Accept θ

′

h with probability

min(1,
q(y|θ′

h)π(θ
′
h)q(y

′|θh)

q(y|θh)π(θh)q(y′|θ′
h)
)

where q(y|θ) = eθ
T s(y) is the unnormalized likelihood.

end while

The move of θ is illustrated in Figure (3.1). Here, two other chains h1 and

h2 are chosen at random. The difference between the corresponding estimates in the

other two chains θh1 and θh2 are used to find the distance to move away from θh. A

normal distribution with a very small variance is used to slightly adjust the estimate

for the new θ.

The parallel ADS move of θh is generated based on the difference of the states

θh1 and θh2 in other Markov chains and ϵ is a random error term

3.2 Bayesian Exponential Random Graph Model algorithm
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θh1

θh2

θh
ϵ

Figure 3.1: Parallel Adaptive Sampling Diagram

In this section, we will list the algorithm of the Bayesian exponential random

graph model (BERGM). They set up the exchange algorithm with a Gibbs update of

θ′ and then y′ using Markov Chain Monte Carlo iteration without penalized terms.

The algorithm can be written in the following concise way:

Algorithm: Bayesian Exponential Random Graph Model

while i = 1, ..., N do
while h = 1, ..., H do

1. generate h1 and h2 such that h1 ̸= h2 ̸= h

2. generate θ′
h from γ(θh1 − θh2) + ϵ(

. . . |θh)

3. simulate y′ from π(
. . . |θ′

h)
4. update θh → θ′

h with the log of the probability

min

(
0, [θh − θ′

h]
T [s(y′)− s(y)] + log

[
π(θ′

h)

π(θh)

])
end while

end while

where s(y) and s(y′) are functions of the observed and simulated vector of network

statistics respectively.
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CHAPTER 4

BAYESIAN ADAPTIVE LASSO EXPONENTIAL RANDOM GRAPH MODEL

With the foundation of the last chapters, we are ready for the presentation

of the new Bayesian adaptive lasso exponential random graph model. This chapter

will discuss the theory of the lasso penalty with its advantages in parameter selection

and derive the Gibbs sampling algorithms needed to implement variable selection for

network data.

4.1 Background of the Lasso Penalty

Since ERGMs have so much in common with logistic regression, let us recall

the traditional lasso method in classical linear regression and discuss its development

and relation to Bayesian theory so that we have some hints about the problems dur-

ing developing lasso estimates on the exponential random network. In a separate

chain of developments from linear regression, the least absolute shrinkage and selec-

tion operator or lasso parameter was first introduced in 1986 by Santosa et al [84].

Later, in 1996, Robert Tibshirani in his bio-statistics work in genomics brought new

attention to this parameter. The lasso of Tibshirani [93] is a method for simultaneous

shrinkage and model selection in regression problems. It is often applied to the linear

regression model but has not been applied to the random graph. In the context of

linear regression, the lasso is a regularization technique for simultaneous estimation

and variable selection where if y = Xβ + ϵ where y = (y1, y2, · · · , yn)⊤ is the re-

sponse vector, X = (x1,x2, · · · ,xp) is an n×p predictor matrix, β = (β1, β2, · · · , βp)
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is a corresponding vector of regression coefficients, ϵ = (ϵ1, · · · , ϵn) are independent

normal distributed errors, then the lasso estimates are defined as

β̂(lasso) = argmin
β

∥y −
p∑

j=1

xjβj∥2 + λ

p∑
j=1

|βj| (4.1)

where the second term in (4.1) is the so-called “l1 penalty”. The tuning parameter

λ controls the amount of penalty. Fan et al. studied a class of penalized models

including the lasso [23]. They proved that the lasso can perform automatic variable

selection because of the singularity of l1 penalty at the origin. If certain conditions

are not satisfied, the lasso estimates could be inconsistent. Furthermore, the lasso

shrinkage produces biased estimates for the large coefficients, and thus it could be

suboptimal in terms of estimation risk. The asymptotic setup of the traditional lasso

method is somewhat unfair because it forces the coefficients to be equally penalized

in the l2 penalty. To overcome the above issues, Zou [105] and Wang et al. [100]

proposed an adaptive lasso that enjoys the consistency and the oracle properties:

namely, it performs as well as if the true underlying model were given in advance.

Tibshirani suggests that lasso estimates can be interpreted as posterior mode esti-

mates when the regression parameters have independent and identical Laplace (i.e.,

double-exponential) priors [93]. Targeted at finding this mode, several other authors

studied subsequently different Bayesian contexts. Yuan et al. studied an empirical

Bayes algorithm with Laplace-like priors [104]. Park and Casella studied the practi-

cal Gibbs sampler implementation for the Bayesian Lasso and offered methods that

address the choice of λ [76]. Leng et al. [62] and Alhamzawi and Ali [1] studied

Bayesian Adaptive Lasso method with hierarchical Bayesian structures. However, all

these studies are for linear regressions and they are not built on random networks.

4.2 Model Derivation

This work is motivated by the need to explore model uncertainty and flexibility.
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With these objectives, we consider the following exponential random graph model,

this model is a particular class of discrete exponential random exponential families

that represent the probability distribution of the adjacency matrix Y ∈ Y where Y

is the set of all possible graphs on n nodes. Let y a realization of Y . The likelihood

function of an ERGM stands for the probability density of a random network and

can be expressed as:

π(y|θ) = q(y|θ)
z(θ)

=
eθ

T s(y)

z(θ)
(4.2)

where q(y|θ) = eθ
T s(y) is the unnormalized likelihood.

We consider the following adaptive lasso estimator on the exponential random

network:

θ̂ = argmax
θ

l(θ|y)− P (θ) (4.3)

P (θ) =

p∑
j=1

λj|θj| (4.4)

where l(θ|y) = ln(π(y|θ)) is the log-likelihood function of θ and each λj is a different

penalty parameter used for the coefficients. In dyadic independence ERGMs, maxi-

mizing the log-likelihood function (4.3) is equivalent to maximizing the following log

pseudo-likelihood function:

l(θ|y) =
∑
y

yij ln(πij) +
∑
y

(1− yij) ln(1− πij)−
p∑

j=1

λj|θj| (4.5)

where πij = P (Yij = 1|yc
ij) = P (Yij = 1). In this case, the network estimation

problems are transformed into the classical adaptive lasso logistic linear regression

model. We can use LARS algorithm proposed in [20] to estimate θj, j = 1, 2, 3, · · · , p.

However, different from the generalized linear regression models, the challenge of

estimation on the dyadic dependent ERGMs is that the exponential random network

relies on the intractable normalizing constant appearing in the log-likelihood function.

With the review of ERGMs likelihood-based methods in Chapter 2, the solution to

the equation (4.3) has similar obstacles. To get around those obstacles, we will study
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this problem with an adaptively Bayesian estimate obtained from the lasso penalized

method on the random networks.

Assume that a prior distribution π(θ) is placed on θ, and we are interested in

the posterior distribution

π(θ|y) ∝ π(y|θ)π(θ). (4.6)

We consider a conditional Laplace prior specification of the form similar to the

classical Bayesian lasso linear regression developed in ([76]) but with different penalty

terms so that we have λj for j = 1, 2, 3, · · · , p:

π(θ|σ2) =

p∏
j=1

λj

2
√
σ2

e−λj |θj |/
√
σ2
. (4.7)

We can now formulate a hierarchical model on the exponential random graph,

which we can use to implement this version of the Bayesian lasso with a Gibbs sampler,

using the Laplace distribution as a scale mixture of Gaussians. When the mixing

distribution is exponential, the resulting distribution is Laplace ([3]).

a

2
e−a|z| =

∫ ∞

0

1√
2πs

e−
z2

2s
a2

2
e−

a2s
2 ds, a > 0 (4.8)

Now we use a latent parameter τ 2 to make the prior (4.7) as a scale mixture of

normal distributions (4.8). We can consider τjs as additional parameters that assign

different variances to the prior of θ. When τj → 0, the coefficient of sj(y) is shrunk

to zero.

Assume θ = (θ1, θ2, ..., θp) follows normal distributions centered at zero with

variance defined below.

θ|σ2, τ 21 , τ
2
2 , ..., τ

2
p ∼ N (0p, σ

2Dτ ) (4.9)

where σ2 > 0 and Dτ = diag(τ 21 , τ
2
2 , · · · , τ 2p ) is a matrix that allows each parameter

to come from a normal distribution with a different variance.
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Different than the basic Bayesian lasso model proposed by [76] in which τ

follows

π(τ 2) =
λ2

2
e−

λ2τ2

2 , (4.10)

our Bayesian adaptive lasso exponential random graph model BALERGM sets up

different shrinkage parameters for different coefficients. This motivates us to define a

more adaptive penalty in the hierarchical structure:

π(σ2, τ1, τ2, · · · , τp|λ) ∝ π(σ2)

p∏
j=1

λ2
j

2
e−

λ2j τ
2
j

2 (4.11)

and an independent non-informative scale-invariant marginal prior π(σ2) ∝ 1

σ2
on σ2

suggested by Park and Casella [76]. The conditional distribution on σ2 guarantees

a unimodal full posterior distribution for the estimate θ on the network. (See Ap-

pendix). The unimodal posterior distribution ensures the quick convergence of the

Gibbs sampling algorithm and ensures the meaningful point estimate of θ.

4.3 Sampling Methods for Lambda

This paper presents three methods for sampling λ

Method 1: The simplest prior for the penalty term λj, for j = 1, 2, 3, · · · , p would

be a uniform distribution, but this proved to be problematic with complex networks,

particularly when a model has many parameters. Thus, following the notation of

Park and Casella [76], we propose an adaptive prior such that λ2
j ∼ Gamma (r, δj)

so that

π(λ2
j) =

δrj
Γ(r)

(
λ2
j

)r−1
e−δjλ

2
j for λj, r, δj > 0. (4.12)

This prior mixes well with the other choices for the Gibbs sampling and as

Park and Casella [76] note, this prior can approach 0 as λ → ∞ and can concentrate
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probability near the maximum likelihood estimator. This derivation is continued in

Chapter 5.

Method 2: This method uses the same prior for λ as before:

π(λ2
j) =

δrj
Γ(r)

(
λ2
j

)r−1
e−δjλ

2
j for λj, r, δj > 0. (4.13)

In contrast to the previous method, where δj, j = 1, 2, · · · , p were treated

as fixed constants, the proposed method incorporates an empirical update of δj, j =

1, 2, · · · , p based on the Expectation-Maximization (E-M) algorithm. The empiri-

cal update of δj, j = 1, 2, · · · , p through the E-M algorithm is beneficial for several

reasons. First, it removes the need for manual specification of the appropriate hy-

perparameter values. Instead, the parameter values are estimated directly from the

observed data, providing a data-driven approach for hyperparameter selection. Fur-

thermore, the empirical update of δj, j = 1, 2, · · · , p allows the model to capture the

nuances and complexities that may not be accounted for by method 1 with a fixed

hyperparameter. This method is detailed in Chapter 6

Method 3: For the final method, λ is updated in entirely empirically by an E-M

algorithm. For the details, see Chapter 7. While empirical Markov Chain Monte

Carlo (MCMC) methods offer several advantages, such as adapting to the data and

improving exploration of the parameter space, they also have certain disadvantages

that should be considered.

One of the primary disadvantages of empirical MCMC is its computational

cost. Empirical MCMC methods typically require additional iterations and computa-

tions compared to traditional MCMC algorithms. The empirical updates of param-

eters or proposal distributions can be computationally intensive, particularly when

dealing with large datasets or complex models. This can result in longer execution

times, limiting the scalability of the method.

Another disadvantage is the potential for bias or inefficiency in the estimation
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process. Empirical updates rely on the observed network data to estimate the param-

eters and the proposal distribution of the network. If the nodal sufficient statistics are

not fully representative or the observations of nodal random variables contain outliers,

the empirical estimates may introduce biases or inefficiencies in the MCMC sampling.

Additionally, the convergence of method 3 needs careful tuning of the other hyperpa-

rameters to achieve optimal performance. The optimization of hyperparameters can

be nontrivial and needs expert knowledge or extensive experimentation.

The first major difference of BALERGM compared with the Bayesian lasso in

[76] is that the Bayesian lasso method in the work of Park and Casella [76] is applied

to linear regression model y = µ1n + Xβ + ϵ without any network structure. In

other words, y in [76] follows the normal distribution N (µ1n +Xβ, σ2In), where y

is a n× 1 vector of responses which does not involve any random graph. Second, our

model allows different penalty variables λj, one for each different parameter. In this

case, each τ 2j can have its own distribution and thus the variance of each normal dis-

tribution can be different. With the flexibility of the penalties, the lasso estimate of

the parameter for less important random variables on the exponential random graph

will have a larger penalty. A smaller penalty will be applied to those important ran-

dom variables. Compared with the existing Bayesian Adaptive Lasso model [62][1],

our model is built on the random network. Additionally compared with the Bayesian

Exponential Random Graph Model (BERGM) by [10], our model Bayesian Adaptive

Lasso Exponential Random Graph Model (BALERGM) has more accurate estima-

tions, and the structure is more flexible and adaptive to the network statistics level

by adopting distinct shrinkage and penalties for different network statistics. The es-

timates θ̂j of θj for j = 1, 2, 3, · · · , p will be small and close to 0 if it does not provide

much improvement on predicting the random network Y . So it naturally leads to an

estimator with an automatic variable selection property. The value of λj will affect the

estimates θj. The larger λ̂j exists in the model, the sparser θ will be. (namely, more
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coefficients are small and near 0) whereas smaller θ̂j leads to a less sparse θ. Sparsity

is a common expectation in high-dimensional statistics because we anticipate only a

few covariates are actually related to the response and most covariates are useless.

BALERGM is very powerful in this scenario because it leads to a sparse estimator

on the network (many coefficients are near 0). Note that high-dimensional problems

in network science are very common. For example, in genetics, there are many genes

per individual but often we have few patients in our study, or in neuroscience, the

fMRI machine produces many voxels per person at a given time.

4.4 Unimodalilty of Posterior Distribution

To ensure faster convergence of Gibbs sampling and have confidence in the

estimates obtained, it is crucial to select a prior distribution that leads to a unimodal

posterior distribution.

When the prior distribution is unimodal, it means that the prior assigns the

highest probability to a single mode or peak of the parameter space. This is desirable

because it indicates a clear preference or belief in a particular range of parameter

values. When the prior is unimodal and aligns with the true underlying distribution,

it increases the likelihood of the posterior distribution also being unimodal. Having

a unimodal posterior distribution is advantageous for Gibbs sampling convergence.

Gibbs sampling relies on updating each parameter in turn, conditioned on the values

of the other parameters. When the posterior distribution is unimodal, the updates

tend to move the parameter values toward the mode of the distribution. This pro-

motes efficient exploration of the parameter space and faster convergence to the most

probable values. The following theorem shows BERGM has a unimodal posterior

distribution for faster convergence of Gibbs sampling and provides more confidence

in the estimates obtained.

28



Theorem 1 The joint posterior distribution is unimodal for typical choices of π(σ2)

and any choice of λ ≥ 0.

Proof :

We begin by representing the joint distribution of θ and σ2 > 0 using distri-

butions already defined.

π(θ, σ2) ∝ π(θ|σ2)π(σ2) (4.14)

=

p∏
j=1

λj

2
√
σ2

e−λj |θj |/
√
σ2 1

σ2
(4.15)

We have chosen the prior such that π(σ2) ∝ 1
σ2 according to the recommenda-

tion of the literature [76].

We wish to show that the posterior is unimodal in the sense that every upper-

level set of {(θ, σ2)|π(θ, σ2) > x, σ2 > 0}, for x > 0 is connected. We will show this

is true under a continuous transform with continuous inverse since the continuous

image of a connected set is connected [72].

The posterior is shown here:

π(θ, σ2|y) ∝ π(y|(θ, σ2))π(θ, σ2) (4.16)

= π(y|(θ, σ2))π(θ|σ2)π(σ2) (4.17)

=
1

z(θ)
eθ

T s(y)

p∏
j=1

λj

2
√
σ2

e−λj |θj |/
√
σ2 1

σ2
(4.18)

=
eθ

T s(y)

z(θ)

1

σ2

1

2p
√
σ2

p

p∏
j=1

λje
−λj |θj |/

√
σ2

(4.19)

We now take the natural log of the equation above.

lnπ(θ, σ2|y) = − ln(σ2) + θT s(y)−
p∑

j=1

λj|θj|
1√
σ2

+

p∑
j=1

ln(λj)− p ln(2)− p

2
ln(σ2)

(4.20)

The following transform allows for easier calculation.
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ϕj ↔
θj√
σ2

ρ ↔ 1√
σ2

j = 1, 2, 3, ...p

This is continuous with a continuous inverse when 0 < σ2 < ∞, so the upper-level

sets for the original parameters correspond under the transformation to upper-level

sets for the original parameters. Let ϕ = (ϕ1, ϕ2, ...ϕp)
T be the column vector for ease

of notation. This transform is one-to-one and continuous for 0 < σ2 < ∞, therefore

the unimodality of the transformed equation is equivalent to the unimodality of the

original equation.

Using the transform and algebra we get the following expression

h(ϕ, ρ) = ln ρ2 + (
√
σ2ϕ)T s(y)−

p∑
j=1

λj|ϕj|+
p

2
ln(ρ2)

= (p+ 2) ln(ρ) +
ϕT s(y)

ρ
−

p∑
j=1

λj|ϕj|.
(4.21)

We can show that (4.21) is unimodal by showing it is a concave function in (ϕ, ρ).

We will do that by considering each term of the equation in turn.

h1 = ln(ρ), h2 =
ϕT s(y)

ρ
, h3 = −

p∑
j=1

λj|ϕj|.

We will determine the concavity of the first two functions by checking the

spectral property of the corresponding Hessian matrix.

Hhi
=

 ∂2hi

∂ϕ2
∂2hi

∂ϕ∂ρ

∂2hi

∂ρ∂ϕ
∂2hi

∂ρ2

 , i = 1, 2. (4.22)

For the first term h1 = ln(ρ) and the second term h2 =
ϕT s(y)

ρ
, the correspond-

ing Hessian matrix Hh1 and Hh2 are both negative semi-definite and thus h1 and h2

are both concave in (ϕ, ρ).

For the third term h3 = −
∑p

j=1 λj|ϕj|, we see this is a sum of the negative of

a constant times an absolute value function. This is a concave function in ϕ, ρ, since
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the j the term in h3 is h3(j) = −λj|ϕj| which is a concave function of ϕj and the sum

of concave functions is a concave function.

Using the same reasoning that the sum of concave functions is concave gives

that (4.21) is concave, and hence the posterior distribution is concave.

Therefore, we can conclude that our posterior distribution is unimodal.

□

With the pieces needed for the Gibbs sampling, the next three chapters present

the three variations of this model: full Bayes, partial empirical, and full empirical.

The full Bayes method updates each parameter using the distributions found in this

chapter. The partial empirical method updates the single parameter δ for the param-

eterization of the gamma distribution for the λ update. Finally, the full empirical

method updates the penalty λ in a fully empirical way.

Chapter 8 discusses the advantages and demonstrates the effectiveness of these

models on different data sets.
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CHAPTER 5

BAYESIAN ADAPTIVE LASSO ERGM - FULL BAYES

Drawing upon the theoretical hierarchical structure outlined in Chapter 4,

we present a comprehensive Bayesian Adaptive Lasso algorithm with a full Bayes

method. We lay out the chosen distributions in the hierarchical model in Section 5.1.

Using these distributions, we combine them for the joint distribution in the following

section. Finally, Sections 5.3 and 5.4 present the sampling distributions of the Gibbs

sampling algorithm.

5.1 Hierarchical Model

Using the distributions defined in the previous chapter, we summarize the full

Bayes hierarchical model (method 1) below.

π(y|θ) = 1

z(θ)
eθ

T s(y) (5.1)

θ|σ2, τ 21 , τ
2
2 , ..., τ

2
p ∼ N (0p, σ

2Dτ ) (5.2)

Dτ = diag(τ 21 , · · · , τ 2p ) (5.3)

π(σ2, τ1, τ2, · · · , τp|λ) ∝ π(σ2)

p∏
j=1

λ2
j

2
e−

λ2j τ
2
j

2 (5.4)

π(λ2
j) =

δrj
Γ(r)

(
λ2
j

)r−1
e−δjλ

2
j (5.5)

π(σ2) ∝ 1

σ2
(5.6)

for σ2, r, δj and τ 21 , τ
2
2 , · · · , τ 2p > 0.

Here the likelihood π(y|θ) is the distribution from the ERGM. We find the
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conditional distribution of θ|σ2, τ 2 as a mixture of normal distributions with individ-

ualized variances τ 2 each following an exponential distribution as seen in the fourth

line. These variances are conveniently notated as the diagonal matrix Dτ . The

distribution of λ and σ2 are discussed in more detail in the previous chapter.

5.2 Joint Distribution

Now we will implement the model with a Gibbs sampler. The Gibbs sampling

method is a Monte Carlo Markov Chain (MCMC) algorithm. In our case, the joint

distribution is difficult to sample from directly, but the conditional distribution of

each variable is known and is easier to sample from. The Gibbs sampling algorithm

generates an instance from the distribution of each variable in turn, conditioned on

the current values of the other variables. The construction of the hierarchical model

(5.1) makes the derivation of the full conditional distributions for each component of

the estimates feasible.

Thus we can write the joint density as the product of the conditional density

of y|θ and the density of θ. Using the pieces of the hierarchical formulation of the

model from (5.1) we can substitute in each piece that we have already chosen to find

the joint distribution.

π(y,θ, σ,λ, τ )

= π(y|θ)π(θ)

= π(y|θ)
p∏

j=1

π(θj|τ 2j , σ2)π(τ 2j |λj)π(λj)π(σ
2)

=
1

z(θ)
eθ

T s(y)

p∏
j=1

1

(2σ2τ 2j )
1/2

e
− 1

2σ2τ2
j

θ2j λ
2
j

2
e−

λ2j τ
2
j

2
δrj
Γ(r)

(
λ2
j

)r−1
e−δjλ

2
j
1

σ2

(5.7)

5.3 Gibbs Sampling Implementation
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To implement the Gibbs sampling, we require the sampling distribution of each

parameter τj, λj, σ
2 to update in turn. From the joint distribution (5.7), we consider

all parts of that joint distribution that depend on each variable.

As summarized in Table 5.1, we consider the full conditional distributions for

τj, λj, and σ2 respectively.

Table 5.1: Sampling distributions from joint distribution for each variable

Variable Proportional Distribution

1

τ 2j
Inverse Gaussian

(√
λ2
jσ

2

θ2j
, λ2

j

)
λj Gamma

(
2,

τ2j
2

)
σ2 Inverse Gamma

(
p
2
, 1
2
θTD−1

τ θ
)

Sample τj

For each τj we have the following distribution.

π(τj|y,θ, σ,λ) ∝ (τ 2j )
−1
2 e

− 1
2

(
θ2j /σ

2

τ2
j

+λ2
jτ

2
j

)
(5.8)

To find what distribution each τj follows, we begin by considering the following trans-

formation [16]. If a random variable x ∼ Inverse Gaussian(µ, λ′), that is

f(x, µ, λ′) =

(
λ′

2πx3

) 1
2

e
−λ′(x−µ)2

2µ2x , (5.9)

then with the change of variable, we can find the density f ′ of w = x−1 as

f(w, µ, λ′) =

(
λ′

2πw3

) 1
2

e
−λ′(1−µw)2

2µ2w . (5.10)
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Hence

f ′(w, µ, λ′) = µwf(w, µ−1, λ′µ−2). (5.11)

Then we can rewrite equation (5.8) into the reciprocal of the Inverse Gaussian

distribution

(
1

τ 2j

)− 3
2

exp

{
−1

2

(
θ2j
τ 2j

+
λ2
j

1/τ 2j

)}
∝
(

1

τ 2j

)− 3
2

exp

−
θ2j

(
1
τ2j

−
√

λ2
jσ

2

θ2j

)2

2σ2 1
τ2j

 (5.12)

thus
1

τ 2j
follows inverse Gaussian distribution with parameters

√
λ2
jσ

2

θ2j
and λ2

j .

Sample λ2
j

For each λ2
j we have to find the following distribution.

π(λ2
j |y,θ, σ, τ ) ∝

λ2
j

2
e−

λ2j τ
2
j

2 (5.13)

This shows us that λ2
j is proportional to a gamma distribution with α = 2 and

β =
τ2j
2
, since a standard gamma probability density function is f(x) =

βα

Γ(α)
xα−1e−βx.

Therefore we can conclude:

π(λ2
j |y,θ, σ, τ ) ∝ Gamma(2,

τ 2j
2
) (5.14)

Sample σ2

Similar to the other distributions, we now look at σ2.

π(σ2|y,θ,λ, τ ) ∝ (σ2)−1− p
2 e−

1
2σ2 θ

TD−1
τ θ (5.15)

If x ∼ Inverse Gamma (α, β) with the shape parameter α and scale parameter β,

then it has the following density function:

f(x, α, β) =
βα

Γ(α)
x−α−1e−

β
x . (5.16)
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We can compare the conditional density (5.15) with (5.16) to find:

π(σ2|y,θ,λ, τ ) ∝ Inverse Gamma

(
p

2
,
1

2
θTD−1

τ θ

)
. (5.17)

5.4 Full Bayes Algorithm

For the new Bayesian Adaptive Lasso model, we use the parallel adaptive

direction sampler method suggested by BERGM from Chapter 3 and combine that

with Gibbs sampling theory from Chapter 4 to generate samples of θ.

Algorithm: Bayesian Adaptive Lasso Exponential Random Graph Model Algorithm

Require: Set the initial value for λ, σ2, γ, Use ERGM to find MPLE (Maximizer to
the Psuedolikelihood Function) to find initial values for θ. Denote samples of θ in
the hth chain, as θh.
while i = 1, ..., N do

while h = 1, ..., H do
1. sample θh with Parallel Adaptive Direction Sampler:

a. generate h1 and h2 such that h1 ̸= h2 ̸= h
b. update D−1

τ

c. generate θ′
h from γ(θh1 − θh2) + ϵ(

. . . |θh)

d. simulate y′ from π(
. . . |θ′

h)
e. update θh → θ′

h with the log of the probability

min

(
0, [θh − θ′

h]
T [s(y′)− s(y)] + log

[
π(θ′

h)

π(θh)

])
where π(θ) ∼ N (0p, σ

2Dτ )
2. sample σ2 by generating a sample from Inverse Gaussian(p

2
,−1

2
θTD−1

τ θ)
3. sample τ 2j for j = 1, 2, 3, .. by generating a sample from

Inverse Gaussian

(√
λ2
jσ

2

θ2j
, λ2

j

)
4. sample λ2

j for j = 1, 2, 3, .. by generating a sample from Gamma (2,
τ2j
2
)

end while
end while

This code was built with R version 4.1.1 (2021-08-10). [79] The following package

versions were also used: coda 0.19-4, mcmc 0.9-7, Bergm 5.0.3, ergm.count 4.0.2,
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ergm 4.1.2, mvtnorm 1.1-3.

The full Byes method presented in this chapter provides a method for under-

standing networks in a powerful way. Chapter 8 provides examples of the effectiveness

of this critical model.
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CHAPTER 6

BAYESIAN ADAPTIVE LASSO ERGM - DELTA EMPIRICAL

For this chapter, we lay out the theory for the empirical update for one of the

parameters for the penalty term λ. This modification to the algorithm in Chapter 4

allows for the specification of the gamma parameters for the distribution of λ. This

modification is particularly necessary since the R code generating samples from the

gamma and inverse gamma distributions is very sensitive to parameter specification.

Incorrect initial parameter conditions or complex model structures can result in ex-

treme values that can become NAs in the gamma function in R leading to models

that fail to converge.

6.1 Empirical Derivation

The Monte Carlo Expectation-maximization algorithm for empirical Bayes es-

timation of hyperparameters proposed by [63] essentially treats the parameters as

missing data and then uses the E-M algorithm to iteratively approximate the hyper-

parameters substituting Monte Carlo estimates for any expected values that cannot

be computed explicitly. For BALERGM, the Gibbs sampler is used to estimate the

expected values.

To begin this process, we consider the part of the joint distribution that de-

pends on δ, since when taking the derivative all other terms will become zero.

π(y,θ, δ) =
δrj
Γ(r)

(
λ2
j

)(r−1)
e−δjλ

2
j + terms not involving δ2j (6.1)
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We then take the natural log of the resulting equation.

ln(δj|y,θ) ∝ r ln(δj)− δjλ
2
j (6.2)

1. Expectation step

Q(δj|δ(k−1)
j , y(k−1)) = Eδ(k−1)

[
ln(δj|y,θ)|δ(k−1)

j , y(k−1)
]

(6.3)

= r ln(δj)− δjE
[
λ2
j |δ

(k−1)
j , y(k−1)

]
+ terms without δj (6.4)

2. Maximization step

δ
(k)
j = argmax

δj
Q(δj|δ(k−1)

j ,y(k−1)) (6.5)

∂Q

∂δj
=

r

δj
− E

[
λ2
j |δ

(k−1)
j , y(k−1)

]
= 0 (6.6)

Now, solving for δj gives the expression for estimating this parameter.

δj =
r

E
[
λ2
j |δ

(k−1)
j , y(k−1)

] (6.7)

The sample mean can then be used to approximate the given expected value for λ2
j .

6.2 Empirical Delta Algorithm

With the empirical update of δ, we can consider the previous 5 estimates of λ

as representative of the expected value of λ.

Algorithm: Bayesian Adaptive Lasso Exponential Random Graph Model Algorithm

Require: Set the initial value for λ, σ2, γ, Use ERGM to find MPLE (Maximizer to
the Psuedolikelihood Function) to find initial values for θ. Denote samples of θ in
the hth chain, as θh.
while i = 1, ..., N do

while h = 1, ..., H do
1. sample θh with Parallel Adaptive Direction Sampler:

a. generate h1 and h2 such that h1 ̸= h2 ̸= h
b. update D−1

τ
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c. generate θ′
h from γ(θh1 − θh2) + ϵ(

. . . |θh)

d. simulate y′ from π(
. . . |θ′

h)
e. update θh → θ′

h with the log of the probability

min

(
0, [θh − θ′

h]
T [s(y′)− s(y)] + log

[
π(θ′

h)

π(θh)

])
where π(θ) ∼ N (0p, σ

2Dτ )
2. sample σ2 by generating a sample from Inverse Gaussian(p

2
,−1

2
θTD−1

τ θ)
3. sample τ 2j for j = 1, 2, 3, .. by generating a sample from

Inverse Gaussian

(√
λ2
jσ

2

θ2j
, λ2

j

)
4. empirical update of δ and update of λ

a. update δ with the following

δj =
r

Eδk−1
j

[
λ2
j |δ

(k−1)
j , y(k−1)

]
estimating the expected value by the mean of the last five λ samples.
b. sample λ2

j for j = 1, 2, 3, .. by generating a sample from

Gamma (r + 1,
τ2j
2
+ δ)

end while
end while

This code was built with R version 4.1.1 (2021-08-10) [79]. The following package

versions were also used: coda 0.19-4, mcmc 0.9-7, Bergm 5.0.3, ergm.count 4.0.2,

ergm 4.1.2, mvtnorm 1.1-3.

Since the exact specification of the hyperparameters for the specification of the

λ penalty term can be difficult, the partial empirical method presented in this chapter

allows for a more flexible model. Chapter 8 provides examples and applications of

this model.
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CHAPTER 7

BAYESIAN ADAPTIVE LASSO ERGM - LAMBDA EMPIRICAL

The final method of estimating the penalty term λ is a full empirical method.

Here using methods similar to the previous chapter, we find that λ can be estimated

from the averages of the generated samples.

7.1 Empirical Derivation

The empirical process of estimating λj begins with the joint distribution terms

that depend on λj.

π(y,θ,λ, σ2, τ |y, s(y)) (7.1)

∝ π(y|θ)π(θ|σ2, τ )

p∏
j=1

π(σ2, τ |λ2
j)π(λ

2
j (7.2)

=
eθ

T s(y)

z(θ)

p∏
j=1

1√
2πj2

exp

{
− 1

2τ 2j
θ2j

}
λ2
j

2
exp

{
−
λ2
jτ

2
j

2

}
δrj
Γ(r)

(
λ2
j

)r−1
e−δjλ

2
j (7.3)

Next, we take the natural log:

ln π(y,θ,λ, σ2, τ |y, s(y)) =
p∑

j=1

[
r ln(λ2

j)− λ2
j

(
τ 2j
2

+ δj

)]
+ terms not involving λ

(7.4)

Using the justification from Section 6.1, we repeat the same Expectation-

Maximization method beginning by deriving the expectation step.
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1. Expectation step

Q(λ|λ(k−1),y(k−1)) = Eλ(k−1)

[
lnπ(y,θ,λ, σ2, τ |y, s(y))|λ(k−e),y(k−e)

]
=

p∑
j=1

r ln(λ2
j)−

p∑
j=1

λ2
j

(
Eλ(k−1)

[
τ 2j |y(k−1), λ(k−1)

]
+ δj

)
+ terms not involving λ.

(7.5)

Now, we find the second component with the maximization step.

2. Maximization step

λ(k) = argmax
λ

Q(λ|λ(k−1),y(k−1)). (7.6)

Thus

∂Q

∂λj

=
2r

λj

− 2λj

(
Eλ(k−1)

[
τ 2j |y(k−1), λ(k−1)

]
+ δj

)
(7.7)

= 2r − 2λ2
j

(
Eλ(k−1)

[
τ 2j |y(k−1), λ(k−1)

]
+ δj

)
= 0 (7.8)

We can now solve for λ2
j .

λ2
j =

r

Eλ(k−1)

[
τ 2j |y(k−1), λ(k−1)

]
+ δj

. (7.9)

To estimate the conditional expectations of τ 2j , we compute the sample averages

of the quantities of interest using the obtained samples from the Gibbs sampler.

Specifically, for each iteration, we calculate the relevant quantity based on the current

parameter values and estimates of λ(k−1) in the previous iteration. By averaging these

quantities across the iterations, we obtain an estimate of the conditional expectations

of τ 2j .

7.2 Full Empirical Algorithm

Using the above theory, we present the final method of the Bayesian adaptive

lasso algorithm.
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Algorithm: Bayesian Adaptive Lasso Exponential Random Graph Model Algorithm

Require: Set the initial value for λ, σ2, γ, Use ERGM to find MPLE (Maximizer to
the Psuedolikelihood Function) to find initial values for θ. Denote samples of θ in
the hth chain, as θh.
while i = 1, ..., N do

while h = 1, ..., H do
1. sample θh with Parallel Adaptive Direction Sampler:

a. generate h1 and h2 such that h1 ̸= h2 ̸= h
b. update D−1

τ

c. generate θ′
h from γ(θh1 − θh2) + ϵ(

. . . |θh)

d. simulate y′ from π(
. . . |θ′

h)
e. update θh → θ′

h with the log of the probability

min

(
0, [θh − θ′

h]
T [s(y′)− s(y)] + log

[
π(θ′

h)

π(θh)

])
where π(θ) ∼ N (0p, σ

2Dτ )
2. sample σ2 by generating a sample from Inverse Gaussian(p

2
,−1

2
θTD−1

τ θ)
3. sample τ 2j for j = 1, 2, 3, .. by generating a sample from

Inverse Gaussian

(√
λ2
jσ

2

θ2j
, λ2

j

)
4. update λ with the sample mean of τ estimating the expected value

λ2
j =

r

Eλk−1
j

[
τ2j
2
|λ(k−1)

j , y(k−1)
]
+ δ

end while
end while

This code was built with R version 4.1.1 (2021-08-10). [79] The following package

versions were also used: coda 0.19-4, mcmc 0.9-7, Bergm 5.0.3, ergm.count 4.0.2,

ergm 4.1.2, mvtnorm 1.1-3.

As discussed in the next chapter, the fully empirical method conveniently

removes the need to specify any hyperparameters for the λ penalty terms. This

flexibility is key for complex networks.
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CHAPTER 8

BALERGM APPLICATIONS AND SIMULATIONS

This chapter presents examples of the effectiveness of the new penalized models

of the last four chapters. The first two sections compare the model convergence and

parameter selection. The final section uses data collected in a recent study to show

the parameter selection abilities of this new penalized Bayesian exponential random

graph model.

8.1 Simulation

This first comparison of the old BERGM and three new BALERGM methods

uses the Faux Dixon High School data set to demonstrate the usefulness of BA-

LERGM.

8.1.1 Data Description

The network object Faux Dixon High represents a friendship network among

junior high and high school students based on data gathered by a National Longi-

tudinal Study of Adolescent Health. [80] This study, first conducted in 1994-1995,

considered more than 90,0000 American students. Students were asked to list friends,

and a tie is formed between them in the network if both students claimed friendship.

[35] To preserve confidentiality, the school data was fit to a model; then the final

network was obtained by simulating from that model.

Generated in R, this plot shows the clustering of student friendship with stu-
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Grade 9
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Grade 11
Grade 12

Figure 8.1: Faux Dixon High School Plot

dents in the same grade.

The final network has 248 nodes with 1,197 directed edges. Each node has

three characteristics: grade, sex, and race. The grades include 7th-12th, and race

is first delineated by Hispanic and non-Hispanic which was further split into Asian,

Black, Native American, Other, and White. Figure 8.1 shows the network plotted

with nodes colored for each grade showing the homophily.

Executing any of the three BALERGM algorithms requires choosing network

statistics with both nodal and edge attributes and structural features such as triangles

and triads such as those laid out in Chapter 1.

A natural network statistic for this data is the instances of homophily between

students in the same grade, since as seen in the plot above 8.1, nodes with the same

attribute (in this case grade) appear visually to have more connections. As seen

below, with the diagonal entries of the mixing matrix from Grade i to Grade i for

i ∈ {7, 8, 9, 10, 11, 12}, most of the connections are between students in the same

grade. This feature can be included in network models with the R code nodematch.
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Table 8.1: Number of student friendships in each grade pair

Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 Sum

Grade 7 42 5 8 3 3 1 62

Grade 8 9 263 48 10 7 4 341

Grade 9 13 53 184 35 32 15 332

Grade 10 3 14 46 183 14 13 273

Grade 11 0 2 13 12 42 16 85

Grade 12 0 4 11 10 8 71 104

Sum 67 341 310 253 106 120 1197

While it is possible just by looking at the graph to see that students are more

likely to be friends with those of the same grade, this observation lacks specificity

to the degree that this attraction motivates the structure of the network. While

examining the matrix of student ties based on grades allows for a more specific jus-

tification of the instances of homophily, the network models offer a way to quantify

the significance of these instances of homophily.

8.1.2 Results

For this comparison of the four models, we use the following network statis-

tics: nodematch(“grade”), nodematch(“race”), and nodematch(“sex”). These each

measure the homophily of three different nodal factors. This enables a comparison of

the significance of having the same grade, the same race, or the same sex respectively.

To demonstrate the effectiveness of the new models, we generate 30 indepen-

dent exponential random graphs based on the Faux Dixon High data set with known,

fixed parameters θ. For this result, the chosen network statistics are the count of

the edges in the network (θ1) and the count of the occurrences of homophily where
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students of the same grade have a friendship connection (θ2), the count of the oc-

currences of homophily for students with the same race (θ3), and the counts of the

occurrences of homophily with students having the same sex (θ4). Using an initial run

of BERGM algorithm to estimate, the θ = (−5, 3, 0, 0) are fixed. Without the loss of

generality, these 100 networks can be treated as new exponential random graphs with

node attributes. This creates 30 opportunities to estimate θ using both algorithms

and compare performance to a true value.

Since the long-term behavior for all models is expected to be similar, we restrict

the iteration numbers to better allow for the comparison of these models. For each

of the 30 simulations and estimations, the initial parameters are set as below: Other

Table 8.2: Initial settings for the simulation runs

main iterations 2,000

auxiliary iterations 200

burn-in iterations 200

chains 8

(a) Iteration numbers

r, δ 5, 1

τ 2 1

λ 5

σ2 100

(b) Initial conditions

settings are set at values recommended by the literature [10], the variance for the

parallel adaptive sampling is 0.0001, and the scaling for the difference in the same

process is 0.5.

In each run of BERGM and BALERGM, the main chain for every model

consists of 2,000 iterations after 200 burn-in iterations. In 30 simulations, each model

generates a sequence of values estimating each θ in each simulation. To confirm the

stability of the model, the following representation of the MCMC results shows the

strength and stability of the BALERGM algorithm after relatively few iterations.

The unimodal distribution of estimates is on the left of Figure 8.2, 8.3, 8.4, 8.5,
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MCMC output for Model: y ~ edges + nodematch("grade") + nodematch("race") + nodematch("sex")

Figure 8.2: MCMC output of BERGM algorithm
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Figure 8.3: MCMC output of BALERGM Method 1 algorithm
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MCMC output for Model: y ~ edges + nodematch("grade") + nodematch("race") + nodematch("sex")

Figure 8.4: MCMC output of BALERGM Method 2 algorithm
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Figure 8.5: MCMC output of BALERGM Method 3 algorithm
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and the center column shows the trace of the estimates indicating a stable estimating

process. The final column shows the autocorrelation plot with the lag decreasing

quickly; by 50 iterations, the process has stabilized to minimal lag.

These MCMC plots show that all three methods of the Bayesian adaptive lasso

exponential random graph model can produce a stable approximation of θ

In Tables 8.3 and 8.4, the true known value of each θ is estimated by either

the mean or median of the generated samples. The quantiles for estimates of θ show

the spread of each estimate.

Table 8.3: Results of simulating 30 graphs and comparing results for BERGM and
BALERGM using means as the estimates of θ

Mean of the MCMC output as the estimate for θ

True Value
a

Estimate
b Quantiles c

2.5% 25% 50% 75% 97.5%

BERGM

θ1 -5.0 -5.1414 -5.283 -5.171 -5.349 -5.095 -5.043
θ2 3.0 2.9990 2.889 2.950 3.005 3.037 3.118
θ3 0.0 0.1371 0.035 0.092 0.132 0.175 0.265
θ4 0.0 0.0354 -0.069 0.015 0.044 0.067 0.185

BALERGM
θ1 -5.0 -5.0713 -5.217 -5.110 -5.065 -5.017 -4.973
θ2 3.0 2.9214 2.799 2.878 2.904 2.972 3.048

Method 1 θ3 0.0 0.1089 0.032 0.070 0.102 0.135 0.208
θ4 0.0 0.0096 -0.117 0.038 0.019 0.055 0.126

BALERGM
θ1 -5.0 -5.0420 -5.147 -5.070 -5.035 -5.007 -4.962
θ2 3.0 2.9161 2.813 2.868 2.926 2.961 3.018

Method 2 θ3 0.0 0.0432 0.001 0.026 0.042 0.052 0.118
θ4 0.0 0.0076 -0.030 -0.011 0.008 0.023 0.045

BALERGM
θ1 -5.0 -5.0144 -5.127 -5.052 -4.995 -4.972 -4.945
θ2 3.0 3.8708 2.736 2.827 2.867 2.972 3.011

Method 3 θ3 0.0 0.0272 0.005 0.021 0.041 0.053 0.114
θ4 0.0 0.0039 -0.040 0.009 0.006 0.021 0.048

aChosen true value for parameter for each simulated graph
bMean of MCMC outputs
cQuantiles from MCMC output
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Table 8.4: Results of simulating 30 graphs and comparing results for BERGM and
BALERGM using medians as the estimates of θ

Median of the MCMC output as the estimate for θ

True Value Estimate
a Quantiles

2.5% 25% 50% 75% 97.5%

BERGM

θ1 -5.0 -5.1271 -5.283 -5.171 -5.349 -5.095 -5.043
θ2 3.0 2.9848 2.889 2.950 3.005 3.037 3.118
θ3 0.0 0.1388 0.035 0.092 0.132 0.175 0.265
θ4 0.0 0.0354 -0.069 0.015 0.044 0.067 0.185

BALERGM
θ1 -5.0 -5.0589 -5.217 -5.110 -5.065 -5.017 -4.973
θ2 3.0 2.9082 2.799 2.878 2.904 2.972 3.048

Method 1 θ3 0.0 0.1087 0.032 0.070 0.102 0.135 0.208
θ4 0.0 0.0095 -0.117 0.038 0.019 0.055 0.126

BALERGM
θ1 -5.0 -5.0297 -5.147 -5.070 -5.035 -5.007 -4.962
θ2 3.0 2.9007 2.813 2.868 2.926 2.961 3.018

Method 2 θ3 0.0 0.0351 0.001 0.026 0.042 0.052 0.118
θ4 0.0 0.0069 -0.030 -0.011 0.008 0.023 0.045

BALERGM
θ1 -5.0 -5.0055 -5.127 -5.052 -4.995 -4.972 -4.945
θ2 3.0 3.8708 2.736 2.827 2.867 2.972 3.011

Method 3 θ3 0.0 0.0272 0.005 0.021 0.041 0.053 0.114
θ4 0.0 0.0039 -0.040 0.009 0.006 0.021 0.048

aMedian of MCMC outputs

Using the stable estimating process demonstrated in the last few graphs and

tables, we can more directly compare the abilities of the four models. The table (8.5)

shows that using either the mean or median of the generated estimates in MCMC for

θ First, BALERGM has a better overall acceptance rate and effective sample size on

average than BERGM. The acceptance rate or the percentage of generated samples

that are accepted in the MCMC process is increased. With the larger effective sample

size, this implies all three methods of BALERGM adjust to the true parameter for

each single variable faster than BERGM. Secondly, BALERGM offers an improve-

ment over BERGM with a lower mean squared error (MSE). This can be seen in

the quantiles for each estimate of θ since the true values are θ = (−5, 3, 0, 0), the
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BALERGM estimates are much closer to these true values. The mean squared error

is dramatically lower with the BALERGM process no matter whether the mean or

median in MCMC is used as the estimate for θ. The three methods of BALERGM

decrease the MSE when compared to the old method BERGM by %32, %68, and %53

respectively when using the mean or %32, %68, and %52 when using the median.

Table 8.5: Results of both BERGM and BALERGM using formula y ∼ edges +
nodematch(“Grade”)+nodematch(“race”) + nodematch(“sex”)

Results

Median AR Mean ESS Mean Squared Error Median Squared Error

BERGM

θ1

0.33

238.7

0.01449166 0.01360988
θ2 229.3
θ3 245.4
θ4 243.6

BALERGM
θ1

0.34

251.2

0.009889426 0.00999344
θ2 245.5

Method 1 θ3 253.8
θ4 249.3

BALERGM
θ1

0.35

272.5

0.00465299 0.004939428
θ2 215.8

Method 2 θ3 255.7
θ4 268.0

BALERGM
θ1

0.33

223.2

0.00676853 0.006586248
θ2 215.8

Method 3 θ3 255.7
θ4 268.0

8.1.3 Goodness of Fit

As modeled in [10] one method of evaluating the efficacy of BALERGM is

through a Bayesian goodness of fit diagnostic. To run Bayesian goodness of fit diag-

nostics, 100 graphs are simulated from 100 independent realizations taken from the

estimated posterior distributions.
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These 100 graphs are compared to the original network data in three non-

explicit factors: degree distributions, the minimum geodesic distance, and the number

of edge-wise shared partners. Since the Faux Dixon High School network graph is

a directed graph, the degree distributions for both in and out degrees are included.

Since the graph includes isolated nodes and clusters such that there is no path between

some nodes, the minimum geodesic distance or the minimum number of edges needed

to connect any two nodes is infinite leading to the spike in the plot for minimum

geodesic distance in Figures 8.6, 8.7, and 8.8. Finally, the edge-wise shared partners

is concentrated in the lower values since the number of nodes in common for any

number of edges is small.
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Figure 8.6: Goodness of Fit Diagnostics for BALERGM Method 1

Figures 8.6, 8.7, and 8.8 show the summary results of the 100 generated graphs

in black and gray compared to the original network in red showing a strong match

in all these high-level characteristics which are not modeled explicitly. This demon-
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Figure 8.7: Goodness of Fit Diagnostics for BALERGM Method 2
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Figure 8.8: Goodness of Fit Diagnostics for BALERGM Method 3
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strates that the posterior mean found through BALERGM correctly produces net-

works with matching structures.

8.2 Variable Selection

The next set of comparisons here highlights all three BALERGM methods’

abilities to penalize network statistics that do not contribute to the structure of the

network. Considering the frequency of networks with many covariates, parameter

selection is a critical component of network models.

8.2.1 Data Description

The network object faux.magnolia.high represents a friendship network among

junior high and high school students based on data gathered by a National Longi-

tudinal Study of Adolescent Health [80] with faux.magnolia.high being based on two

particular schools in the American South.

Grade 7
Grade 8
Grade 9
Grade 10
Grade 11
Grade 12

Figure 8.9: Faux Magnolia High School Plot
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Generated in R, this plot shows the clustering of student friendships with

students that have the same grade represented by ties between nodes of the same

color.

The final network has 1,461 nodes with 974 undirected edges connecting the

nodes. Each node has three characteristics: grade, sex, and race. The grades include

7th-12th, and race is first delineated by Hispanic and non-Hispanic which was further

split into Asian, Black, Native American, Other, and White.

For this test of the model, we generated three fake variables. Since these

variables are constructed in a random/uniform way, they should not be influential to

the structure of the network and thus the corresponding θj should be zero.

The first variable is “GPA.” This variable simulates a supposed grade point

average for each student. Using a beta distribution with a shape parameter of 8 and

a scale parameter of 2, this variable gives every student a GPA between 0 and 4.
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Figure 8.10: Histogram of the simulated GPA values for Faux Magnolia High

The second variable is generated as the estimated salary in thousands of dollars

of each student’s household. This is done as a uniform random variable between 20

and 75. The final variable is the estimated number of sports that each student plays.

This variable is simulated as an integer between 0 and 5 with all values equally likely.

While these variables are intended to have some connection to the real-life data they

are meant to emulate, the key feature is that they are generated independently of the

network structure and should not collate with the structural features of the network.
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8.2.2 Results

Thus using the generated network statistics, we can run the following formula:

y ∼ edges + nodematch(“Grade”) + nodecov(“GPA”) + nodecov(“Wealth”) + node-

match(“Sport”). To understand the long-term behavior of this process, we choose a

large number of iterations and chains. This allows for the comparison of these meth-

ods in performing variable selection. The initial parameters are set as below:

Table 8.6: Initial settings for the variable selection runs

main iterations 2,000

auxiliary iterations 1,000

burn-in iterations 3,000

chains 500

(a) Iteration numbers

r, δ 7.5, 1

τ 2 1

λ 10

σ2 100

(b) Initial conditions

To improve the mixing, the variance for the parallel adaptive sampling is

0.0001, and the scaling for the difference in the same process is 0.5.

These MCMC outputs show a stable estimating process with convergent sam-

pling distributions, a steady trace of estimates, and a quickly decreasing lag. In-

terestingly, BALERGM method 3 with the fully empirical estimation produces the

sharpest distributions reflecting the double exponential distribution. All three meth-

ods are able to identify the three extraneous variables of nodecov(“GPA”), node-

cov(“Wealth”), nodematch(“Sport”) all generated apart from the structure of the

network. This means that all three estimates for the corresponding θj should be zero

indicating that these variables are not significant to the graph. Table 8.7 shows that

the estimates for θ3, θ4 and θ5 are all very close to zero.
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MCMC output for Model: y ~ edges + nodematch("Grade") + nodecov("GPA") + nodecov("Wealth") + nodematch("Sport")

Figure 8.11: MCMC output of BALERGM Method 1 algorithm
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Figure 8.12: MCMC output of BALERGM Method 2 algorithm
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Figure 8.13: MCMC output of BALERGM Method 3 algorithm

Table 8.7: BALERGM estimates of θ

Mean of the MCMC output as the estimate for θ

Estimate
a Quantiles

2.5% 25% 50% 75% 97.5%

BALERGM
θ1 -8.7467 -10.543 -9.356 -8.740 -8.126 -6.980
θ2 3.2707 2.893 3.137 3.267 3.400 3.668

Method 1 θ3 -0.0094 -0.264 -0.097 -0.009 0.078 0.241
θ4 0.0015 -0.006 -0.001 0.001 0.004 0.009
θ5 -0.0136 -0.453 -0.165 -0.015 0.136 0.435

BALERGM
θ1 -8.0297 -9.533 -8.979 -8.728 -8.488 -7.984
θ2 3.2720 2.836 3.122 3.264 3.414 3.7434

Method 2 θ3 0.0008 -0.075 -0.019 0.001 0.020 0.076
θ4 0.0005 -0.004 -0.001 0.000 0.002 0.006
θ5 0.0004 -0.315 -0.095 -0.001 0.093 0.321

BALERGM
θ1 -8.7408 -10.550 -9.183 -8.713 -8.283 -7.013
θ2 3.3131 2.207 3.037 3.280 3.546 4.625

Method 3 θ3 3.334e-05 -0.196 -0.032 0.000 0.032 0.197
θ4 4.903e-04 -0.008 -0.001 0.000 0.002 0.010
θ5 -7.526e-04 -0.252 -0.047 0.000 0.046 0.246

aMean of MCMC outputs
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Table 8.8 demonstrates that BALERGM Method 3 with a fully empirical up-

date of the penalty term λ is the most efficient method. Analyzing the long-term be-

havior of the MCMC process indicates that the performance of BALERGM Method

3 provides the highest number of samples that can be considered to be drawn inde-

pendently.

Table 8.8: Results three methods of BALERGM using formula y ∼ edges + node-
match(“Grade”) + nodecov(“GPA”) + nodecov(“Wealth”) + nodematch(“Sport”)

Results

Effective Sample Size Run time

BALERGM
θ1 6,108

2.55 hours
θ2 6,075

Method 1 θ3 6,150
θ4 6,893
θ5 6,254

BALERGM
θ1 7,221

2.60 hours
θ2 6,834

Method 2 θ3 8,505
θ4 9,767
θ5 7,392

BALERGM
θ1 8,950

2.54 hours
θ2 8,054

Method 3 θ3 9,837
θ4 13,351
θ5 9,099

Once we have the sampling distribution for each θ, we can find the probability

of a sample less than zero. If this probability is about 0.5, then we can claim a

distribution centered at zero for some significance level α. Thus we have:

|P (θ < 0)− 0.5| = α.

This provides a more rigorous method of ranking variables and quantifying

which variables contributed the least/most to the network.
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Using this calculation, all three methods of BALERGM are able to select out

the irrelevant variables θ3, θ4 and θ5 when α is 0.1 or greater. Though all methods are

able to perform the variable selections, in this particular larger network, BALERGM

Method 3 is able to perform the more efficiently.

8.2.3 Goodness of Fit

To run Bayesian goodness of fit diagnostics, 100 graphs are simulated from 100

independent realizations taken from the estimated posterior distributions and com-

pared to the original network data in three non-explicit factors: degree distributions,

the minimum geodesic distance, and the number of edge-wise shared partners.

The original Faux Magnolia High School network graph is relatively sparse;

out of 1461 nodes, 524 or 35.87% are isolated and have a degree of zero. In our

goodness of fit experiments, the simulated graphs follow the same proportion of 35%

of nodes having degree zero on average.
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Figure 8.14: Goodness of Fit Diagnostics for BALERGM Method 1

This fact of the network also affects the minimum geodesic distance since that

distance is considered to be infinite for nodes that are isolated. That is why in the

middle of Figures 8.14, 8.15, and 8.16, there is a sharp increase on the right end of
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Figure 8.15: Goodness of Fit Diagnostics for BALERGM Method 2
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Figure 8.16: Goodness of Fit Diagnostics for BALERGM Method 3

the graph. However, our simulated graphs based on BALERGM in red track this

sparsity feature in the original data as well. From Figures 8.14, 8.15, and 8.16, our

generated graphs in red match the original network in black in all these high-level

characteristics which are not modeled explicitly.

8.3 Application

In this final application section, we demonstrate the critical improvement of-

fered by the BALERGM algorithm. The BERGM algorithm takes a prohibitively
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long time to produce estimates θ for the following data set, but BALERGM penal-

izes non-important statistics allowing for parameter selection in an efficient way. In

cases such as this where the number of covariates is large, BALERGM effectively

estimates θ providing a distinct advantage over older models.

8.3.1 Data Description

With reports by [92] of worsening metrics of American health, communities

are working on addressing and understanding the factors that might improve health

outcomes. To this end, the University of South Carolina Prevention Research Center

and Sumter County Active Lifestyles (SCAL) based in Sumter County, South Car-

olina conducted a respondent-driven sampling study in 2014 to better understand the

dynamics of social networks and health outcomes.

In this study, community ambassadors chosen for their history of community

involvement were given a set compensation for their participation. Each ambassador

was instructed to share the survey with those in their social network. Each of these

respondents was also compensated for both completion of the survey and sharing the

survey with others that completed the survey. Using referral codes, a network can be

created with nodes representing survey respondents, edges formed by survey sharing,

and nodal characteristics from the results of the survey. The final network has 80

nodes with the data for 30 questions for each respondent.

The survey was intended to be a brief but broad look at self-reported health

benchmarks. Questions cover demographic characteristics revealing that the respon-

dents are primarily white (87%), female (78%), likely to be older than 50 (44%), and

more educated with 46% being college graduates. Other questions focused on self-

reported health outcomes and activities including exercise habits, eating habits, and

social support dynamics. The question forms included qualitative questions about
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physical activities and opportunities for physical activities in the community. For the

purposes of this network, network attributes were assigned using the answers to only

multiple-choice questions.

Member
Yes
No
Not sure
Refused

Figure 8.17: Generated in R, this plot shows results of asking “Have you heard of a

group called Sumter County Active Lifestyles (SCAL)?”

The resulting network contains many nodal attributes. This motivates a model

like BALERGM which enables understanding which of these network statistics con-

tribute less to the network structure.

8.3.2 Results

Using the SCAL data set from the previous section, we use the network statis-

tics in Table 8.9 to analyze this model.

The ergm terms “nodematch,” “nodefactor,” and “nodecov” all provide mea-
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sures of homophily. Nodematch counts the instances of nodes with the same attribute

for a given attribute. Nodecov performs a similar function but for continuous vari-

ables. Nodefactor creates network statistics for each discrete level of a nodal attribute

and counts the occurrences of connected nodes with the same attribute level. For more

details, see [70].

Table 8.9 shows the BALERGM output on the SCAL social network. Here

the sparsity of the network can be seen in the large negative values for the network

statistics for edges and the out-degree of the nodes. While the standard deviations

vary with each estimate, the MCMC outputs show stable estimating with symmetric

distributions as the quantile values indicate.

The adaptive lasso penalty in BALERGM is useful for shrinking θ values for

network statistics that are less significant to the network structures. Depending on

the model and network conditions, the parameter estimate might not reach exactly

zero. For example, the estimate for both θ26 = −.001 and θ20 = −.076 are small,

but this mean of the generated samples as the single factor utilized doesn’t allow for

a nuanced ranking of how significant each parameter is. Using the distribution of

θ found in the Gibbs sampling process, we can find the probability that half of the

distribution is less than zero at some significance level α:

|P (θ < 0)− 0.5| = α

. This creates the ability to rank variables. The following Table 8.10 shows the vari-

ables less significant to the construct of the network at various significance levels. This

calculation takes into account the spread and centering of the distribution to quantify

how close an estimate truly is to zero. This table shows that the network statistic of

the nodecov of the age of the participant (θ26) is less significant than for the network

statistic of nodematch of having heard of the SCAL program (θ20). While neither

are primary factors in the network structure, the values found by BALERGM give
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researchers insights into the social dynamics of Sumter County allowing for targeted

programs to improve health outcomes.

Interestingly, θ6 through θ13 which correspond to questions about participants’

diets are all positive values indicating that participants are more likely to share a con-

nection if they have similar eating habits. Additionally, participating in the walking

program (θ19) is a much stronger predictor of a tie than having heard of the SCAL

program θ20. This is a reflection on the structure of the network in this respondent-

driven sampling survey, demonstrating the type of information that estimates for θ

can indicate.
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Table 8.9: Results from BALERGM with Variable Selection on SCAL data

Result for Parameter Selection

Network Statistic Mean SD Quantiles

2.5% 25% 50% 75% 97.5%
θ1 (edges) -5.794 0.995 -7.770 -6.460 -5.782 -5.121 -3.879
θ2 (out degree 0) 1.212 0.64 -0.051 0.795 1.216 1.631 2.477
θ3 (out degree 1) -1.025 0.526 -2.066 -1.372 -1.025 -0.679 0.016
θ4 (out degree 2) -0.629 0.407 -1.428 -0.901 -0.632 -0.363 0.189
θ5 (out degree 3) -0.207 0.319 -0.853 -0.410 -0.209 -0.002 0.431
θ6 (1 serving fruit/day) a 0.654 0.308 0.046 0.453 0.655 0.859 1.265
θ7 (2 servings fruit/day) a 0.536 0.304 -0.063 0.334 0.534 0.738 1.134
θ8 (3-4 servings fruit/day) a 0.608 0.329 -0.054 0.391 0.612 0.829 1.245
θ9 (5+ servings fruit/day) a 0.877 0.461 -0.066 0.577 0.887 1.186 1.772
θ10 (1 serving vegetables/day) a 0.451 0.310 -0.164 0.248 0.454 0.655 1.062
θ11 (2 servings vegetables/day) a 0.477 0.295 -0.106 0.283 0.478 0.675 1.056
θ12 (3-4 servings vegetables/day) a 0.587 0.292 0.018 0.392 0.587 0.782 1.165
θ13 (5+ servings vegetables/day) a 0.096 0.359 -0.644 -0.128 0.109 0.335 0.770
θ14 (vigorous phys. activities/week)b -0.011 0.206 -0.426 -0.145 -0.008 0.125 0.389
θ15 (moderate phys. activities/week)c 0.008 0.042 -0.075 -0.019 0.009 0.037 0.090
θ16 (days walking 10min/week)c -0.018 0.035 -0.088 -0.042 -0.019 0.006 0.052
θ17 (days using parks/month) c -0.030 0.028 -0.090 -0.049 -0.030 -0.011 0.022
θ18 (heard of walking program) b 0.333 0.214 -0.087 0.190 0.334 0.478 0.752
θ19 (participate in walking program)b 0.186 0.244 -0.305 0.027 0.188 0.346 0.668
θ20 (heard of SCAL)b 0.076 0.191 -0.310 -0.049 0.081 0.206 0.448
θ21 (general health is very good)a -0.203 0.206 -0.616 -0.339 -0.201 -0.065 0.194
θ22 (general health is good) a -0.247 0.204 -0.650 -0.381 -0.248 -0.113 0.154
θ23 (general health is fair) a -0.072 0.207 -0.470 -0.211 -0.077 0.063 0.349
θ24 (general health is poor) a -0.479 0.477 -1.505 -0.773 -0.456 -0.160 0.402
θ25 (gender) a -0.064 0.15 -0.362 -0.163 -0.064 0.035 0.226
θ26 (age) c -0.001 0.005 -0.012 -0.005 -0.001 0.002 0.009
θ27 (highest year of school completed)b -0.165 0.205 -0.571 -0.302 -0.166 -0.029 0.240

anodefactor
bnodematch
cnodecov
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Table 8.10: Variable Selection with Different Tolerance Levels

Tolerance Level Variable Index Number

0.05 26

0.10 16 20 25 26

0.15 4 16 20 25 26

0.20 4 14 15 16 20 22 25 26
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CHAPTER 9

BAYESIAN ADAPTIVE RIDGE EXPONENTIAL RANDOM GRAPH MODEL

In addition to the lasso penalty, the remaining sections of this dissertation

will discuss the ridge penalty for the Bayesian exponential random graph. This mod-

ification enables improved estimations for models involving multicollinearity. This

chapter introduces the theory behind the ridge penalty in the context of classical

regression before then presenting the theory for the Bayesian adaptive ridge expo-

nential random graph model. We first develop the Cauchy prior for the λ penalty at

the recommendation of the literature. While this prior results in a model comparable

with the BERGM, we also develop a model for the Bayesian adaptive ridge expo-

nential random graph model with a gamma distribution prior for the λ parameter.

This distribution proves advantageous as the concentration of the probability of the

gamma distribution more closely matches the model requirements.

9.1 Classical Ridge Penalty

The ridge penalty term is first introduced in the context of biased estimation

for nonorthogonal problems in classical regression by Hoerl and Kennard [49]. Within

a few years, in 1975, Marquardt and Snee note the utility of ridge regression when

data is highly correlated and indicate ridge regression’s relative ease of calculation

[65]. Later the same year, McDonald and Galarneau develop Monte Carlo methods

for estimating β with ridge estimation [66]. Gibbons in [31] used these Monte Carlo

methods to compare 10 different penalty calculation methods finding [17], [34], and
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[48] show strong performance confirming previous work while [47] performed poorly.

Hsiang [51] first suggests the combination of Bayesian analysis and ridge regression for

the classical regression setting. In [60], Lawless and Wang show that incorporating

a Bayesian approach to finding the penalty parameters improves estimates better

than Hoerel and Kennard [49] who estimate parameters from the data. Erp et al.

compare the results of several popular penalty priors including ridge, lasso, group

lasso, hyper lasso, elastic net, and others on both full and empirical Bayes methods

for finding ridge penalties. The conclusions show ridge penalty priors outperform all

other methods in MSE tests under certain conditions [97]. Similarly [56] and [2] find

improvements over ordinary least squares estimates. Later, [71] compare estimators

from [56] and [55] to find the size of σ and the degree of correlation between variables

influence the effectiveness of each method with the newly proposed methods and those

of [56] surpassing others. The ridge penalty and in particular Bayesian ridge penalty

has a long history of utility particularly in the face of multicollinearity issues.

Considering the typical classical regression model with y = Xβ + ϵ where

y = (y1, y2, · · · , yn)⊤ is the vector of observations, X = (x1,x2, · · · ,xp) is an n × p

predictor matrix, β = (β1, β2, · · · , βp) is a corresponding vector of regression coeffi-

cients, ϵ = (ϵ1, · · · , ϵn) is a vector of independent normal distributed errors, then the

ridge estimates are defined as

β̂(lasso) = argmin
β

∥y −
p∑

j=1

xjβj∥2 + λ

p∑
j=1

β2
j (9.1)

This minimum is achieved at β̂ = (XTX+λI)−1XTy Because of the structure

of this penalty, ridge penalties in contract to other penalties such as lasso do not

penalize parameters to zero.

While the classical regression theory for ridge penalty is well developed, the

corresponding theory for networks is a more open field. In 2014, [41] with their
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package [40] explored ridge penalties for graphical models in biology particularly

in the context of gene networks. More recently, [101] use Bayesian adaptive ridge

regression to understand blood protein graphs. While the context of graphical models

is interesting, they fail to fully capture the information contained in networks, namely

the assumption of interdependence foundational to ERGMs.

In this paper, we incorporate the strengths of Bayesian analysis and the adap-

tive ridge penalty to produce an effective model for estimating and understanding

parameters in networks.

9.2 Prior Specification

With the ability to use Markov Chain Monte Carlo methods, we now develop

the needed prior. The ridge estimates for θ maximize the likelihood l(θ|y) with a

penalty term defined below.

θ̂ = argmax
θ

l(θ|y)− P (θ) (9.2)

P (θ) =

p∑
j=1

λjθ
2
j (9.3)

Modeling after the work of Fu in [27] for the general case of the bridge regres-

sion we choose the following prior which is then equivalent to having the penalty l2

penalty as in Equation 9.2

πλ(θ) = C(λ)e−λ∥θ∥2q (9.4)

Comparing to the pdf of the normal distribution, we choose normal priors for

each θj each centered on zero. Thus the conditional prior is as below

π(θj|σ2, λ) =

√
λ

2πσ2
exp

{
−
λθ2j
2σ2

}
. (9.5)

9.3 Bayesian Ridge Exponential Random Graph Model- Cauchy Prior
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Using the recommendation in the literature from [97] and [77], the distribution

for the penalty λ is chosen to follow a half-Cauchy distribution with parameters 0

and 1.

θj|λj, σ
2 ∼ Normal(0,

σ2

λj

), for j = 1, ..., p (9.6)

λ ∼ half-Cauchy(0, 1) (9.7)

The Gibbs sampling for the current parameters is not straightforward, so a

brief discussion of the half-Cauchy distribution allows for utilizing this process.

9.3.1 Half Cauchy

The half-Cauchy prior proves to provide computational difficulties. We have

in [99] several steps that will allow for the Gibbs sampling to be developed to avoid

these difficulties.

First, consider the Half-Cauchy distribution density below:

π(λj|µ, σ) =
2

πσ

1

1 + (λj − µ)2/σ2
for y ≥ µ. (9.8)

When λj ∼ Half-Cauchy (0, A), λj is a Half t distribution with one degree of

freedom such that λj ∼ Half -t(A, 1). Here is the general form for the pdf of the Half

t distribution

2Γ(ν+1
2
)

√
πνΓ(ν

2
)A[1 + (

λj

A
)2/ν]

ν+1
2

for A, ν > 0. (9.9)

Substituting in the conditions ν = 1, A = γj we get the following distribution

2Γ(1+1
2
)

√
π1Γ(1

2
)γj{1 + (

λj

γj
)2/1} 1+1

2

for γj > 0. (9.10)

Simplifying we get the following which is analogous to the Half-Cauchy distri-

bution.

2

πγj{1 + (λj/γj)2}
for γj > 0 (9.11)
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We also have a result that relates the Half t distribution and a scale mixture

of Inverse Gamma distributions [99].

Let x and a be random variables such that

x|a ∼ Inverse-Gamma(
ν

2
,
ν

a
) and a ∼ Inverse-Gamma(

1

2
,
1

A2
).

Given these conditions, we then know
√
x ∼ Half-t(A, ν).

Using the above statements, we use a conditional distribution of λj|γj and the

distribution of γj both following inverse gamma distributions.

λj|γj ∼ Inverse Gamma

(
1

2
,
1

γj

)
,

γj ∼ Inverse Gamma

(
1

2
, 1

)
.

(9.12)

9.3.2 Hierarchical Model One

With these pieces, we can now set up the complete hierarchical model with θj

following a normal distribution from the chosen prior,

π(y|θ) = 1

z(θ)
eθ

T s(y) (9.13)

θj|τ 2j , σ2λ ∼ Normal(0, σ2τ 2j ), for j = 1, ..., p (9.14)

λj|γj ∼ Inverse Gamma(1/2, 1/γj) (9.15)

γj ∼ Inverse Gamma(1/2, 1) (9.16)

π(σ2) ∝ π(
1

σ2
). (9.17)

9.3.3 Gibbs Sampling

As before, we begin with the joint distribution.
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π(y,θ, σ2,λ,γ)

= π(y|θ)π(θ)

= π(y|θ)
p∏

j=1

(
π(θj|λj, σ

2)π(λj|γj)π(γj)
)
π(σ2)

=
1

z(θ)
eθ

T s(y) 1

σ2

p∏
j=1

1√
2π σ2

λj

exp

{
−

θ2j

2σ2

λj

} ( 1
γj

)1/2
Γ(1

2
)

(
1

λj

) 1
2
+1

e
− 1

γjλj
1

Γ(1
2
)

(
1

γj

) 1
2
+1

e
− 1

γj

(9.18)

We now find the sampling distribution for each parameter.

Sample λj

1√
2π σ2

λj

exp

{
θ2j

2σ2

λj

}(
1

λj

) 1
2
+1

e
− 1

γjλj

∝
√

λj√
2πσ2

exp

{
−λj

θ2j
2σ2

}(
1

λj

) 3
2

e
− 1

γjλj

∝ λ
− 1

2
j exp

{
−λj

θ2j
2σ2

− λ−1
j

(
1

γj

)}
(9.19)

Recall the pdf of Generalized inverse Gaussian is proportional to

f(x) = x(p−1)e−(ax+ b
x
)/2 (9.20)

where a, b, and x > 0. Thus λj ∼ Inverse Gaussian (p = 0, a =
θ2j
2σ2 , b =

1
γj
)

Sample γj

(
1
γj

)1/2
Γ(1

2
)

e
− 1

γjλj

(
1

γj

) 1
2
+1

e
− 1

γj

∝ γ
− 1

2
j e

− 1
γj

1
λj γ

− 3
2

j e
− 1

γj

= γ−2
j e

− 1
γj

(
1+ 1

λj

)
(9.21)
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We have γj ∼ Inverse Gamma
(
1,
(
1 + 1

λj

))
Sample σ2

Pieces that involve σ2

1

σ2

p∏
j=1

1√
2π σ2

λj

exp−

{
θ2j

2σ2

λj

}

∝ 1

σ2

(
1√
σ2

)p

exp−

{
1

σ2

p∑
j=1

θ2jλj

2

}

= (σ2)−(
2+p
2 ) exp−

{
1

σ2

(
p∑

j=1

θ2jλj

2

)} (9.22)

Comparing to the pdf of the inverse gamma distribution:

BA

Γ(A)
x−A−1e−B/x for A,B > 0

we have σ2 ∼ Inverse Gamma
(

p
2
,
(∑p

j=1

θ2jλj

2

))
We can summarize the findings of the last three steps in Table 9.1.

Table 9.1: Sampling distributions from joint distribution for each variable

Variable Proportional Distribution

λj Inverse Gaussian
(
0,

θ2j
2σ2 ,

1
γj

)

γj Inverse Gamma
(
1,
(
1 + 1

λj

))

σ2 Inverse Gamma
(

p
2
,
(∑p

j=1

θ2jλj

2

))

Thus, we can lay out the full algorithm using the parallel adaptive direction sampler

method to update the estimates of θ, and the sampling distributions from Table 9.1.
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9.4 Algorithm

Algorithm: Bayesian Ridge Exponential Random Graph Model- Cauchy Prior

Require: Set the initial value for λ, σ2,γ, Use ERGM to find MPLE (Maximizer to
the Psuedolikelihood Function) to find initial values for θ. Denote samples of θ in
the hth chain, as θh.
while i = 1, ..., N do

while h = 1, ..., H do
1. sample θh with Parallel Adaptive Direction Sampler:

a. generate h1 and h2 such that h1 ̸= h2 ̸= h
b. update D−1

τ

c. generate θ′
h from γ(θh1 − θh2) + ϵ(

. . . |θh)

d. simulate y′ from π(
. . . |θ′

h)
e. update θh → θ′

h with the log of the probability

min

(
0, [θh − θ′

h]
T [s(y′)− s(y)] + log

[
π(θ′

h)

π(θh)

])
where π(θ) ∼ N (0p, σ

2Dτ )
2. sample λj for j = 1, 2, 3, .. by generating a sample from

Inverse Gaussian

(
0,

θ2j
2σ2

,
1

γj

)
3. sample γj for j = 1, 2, 3, .. by generating a sample from

Inverse Gamma

(
1,

(
1 +

1

λj

))
3. sample σ2 by generating a sample from Inverse Gamma(

(
p
2
,
(∑p

j=1

θ2jλj

2

))
end while

end while

This process has introduced an additional parameter γj with its own distri-

bution, and since this type of model is sensitive to initial conditions this increased

the difficulty of finding appropriate tuning. This drawback motivates the next pro-

posed model which improves the flexibility of λ without increasing the number of

hyperparameters.
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9.5 Bayesian Ridge Exponential Random Graph Model- Gamma Prior

While it has been suggested in the literature from [97] and [77], the distri-

bution for the penalty λ is chosen to follow a half-Cauchy (0,1), we have found in

the context of networks the concentration of probability between 0 and 1 in the half-

Cauchy distribution is insufficiently flexible for the models. Also, to mix with the

other distributions, the half-Cauchy distribution required using definitions to add an

additional parameter to enable Gibbs sampling.

9.5.1 Hierarchical Model

Using the same reasoning as the previous chapter, we choose a normal prior

for each θj

π(θj|σ2, λ) =

√
λ

2πσ2
exp

{
−
λθ2j
2σ2

}
(9.23)

While the recommendation from the classical regression context was the half-

Cauchy distribution, for networks with higher dimensions we need more possibilities

for the λ penalty such that the probability is not always concentrated near zero. We

propose gamma(r, δj), j = 1, 2, · · · , p. This allows for a more flexible control of the

range of the λ better allowing for larger penalties.

Thus, following the notation of Park and Casella [76] we propose a prior such

that λj ∼ Gamma (r, δj).

π(λj) =
δrj
Γ(r)

(λj)
r−1 e−δjλj for λj, r, δj > 0 (9.24)

The product of this specification of λ and the likelihood combine well in the joint

distribution for the Gibbs sampling, and the specification of either r or δ allows

the specification of the distribution mean tuning the amount of penalty as required.
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Therefore, the final hierarchical model is

π(y|θ) = 1

z(θ)
eθ

T s(y) (9.25)

θj|σ2λ ∼ Normal(0, σ2/λj), for j = 1, ..., p (9.26)

λj ∼ Gamma (r, δj) (9.27)

π(σ2) ∝ π

(
1

σ2

)
(9.28)

9.5.2 Gibbs Sampling

Using the distributions defined in the hierarchical model, we can define the

joint distribution below.

π(y,θ, σ2,λ) ∝ π(y|θ)π(θ)

∝ π(y|θ)
p∏

j=1

(
π(θj|λj, σ

2)π(λj)
)
π(σ2)

∝ eθ
T s(y)

z(θ)

1

σ2

p∏
j=1

1√
2π σ2

λj

exp−

{
θ2j

2σ2

λj

}
δrj
Γ(r)

(λj)
r−1 e−δjλj

(9.29)

To sample from this distribution, we will update each parameter in turn by

considering the terms of this distribution that depend on that parameter.

Sample σ2

The pieces of 9.29 that involve σ2 are below:

1

σ2

p∏
j=1

1√
2π σ2

λj

exp−

{
θ2j

2σ2

λj

}
(9.30)

∝ 1

σ2

(
1√
σ2

)p

exp

{
− 1

σ2

p∑
j=1

θ2jλj

2

}
(9.31)

= (σ2)−(
2+p
2 ) exp

{
− 1

σ2

(
p∑

j=1

θ2jλj

2

)}
. (9.32)

Comparing the simplified form to the pdf of the inverse gamma distribution:

BA

Γ(A)
x−A−1e−B/x for A,B > 0
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we have σ2 ∼ Inverse Gamma
(

p
2
,
(∑p

j=1

θ2jλj

2

))
Sample λj

In a similar method as before, we consider the components of 9.29 that depend

on λj.

1√
2π σ2

λj

exp

{
−

θ2j

2σ2

λj

}
(λj)

r−1 exp {−δjλj} (9.33)

∝
√

λj (λj)
r−1 exp

{
−λj

θ2j
2σ2

}
exp {−δjλj} (9.34)

∝ λr− 1
2 exp

{
−λj

[
θ2j
2σ2

+ δj

]}
(9.35)

∝ λr+ 1
2
−1 exp

{
−λj

[
θ2j
2σ2

+ δj

]}
(9.36)

Using the following definition of the gamma distribution with scale parameter α and

rate parameter β, we have that

f(x) =
βα

Γ(α)
xα−1e−βx, (9.37)

and we find that we can estimate λj with Gamma (r + 1
2
,− θ2j

2σ2 + δj).

9.6 Algorithm

Algorithm: Bayesian Ridge Exponential Random Graph Model- Gamma Prior

Require: Set the initial value for λ, σ2,γ, Use ERGM to find MPLE (Maximizer to
the Psuedolikelihood Function) to find initial values for θ. Denote samples of θ in
the hth chain, as θh.
while i = 1, ..., N do

while h = 1, ..., H do
1. sample θh with Parallel Adaptive Direction Sampler:

a. generate h1 and h2 such that h1 ̸= h2 ̸= h
b. update D−1

τ

c. generate θ′
h from γ(θh1 − θh2) + ϵ(

. . . |θh)

d. simulate y′ from π(
. . . |θ′

h)
e. update θh → θ′

h with the log of the probability
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min

(
0, [θh − θ′

h]
T [s(y′)− s(y)] + log

[
π(θ′

h)

π(θh)

])
where π(θ) ∼ N (0p, σ

2Dτ )
2. sample λj for j = 1, 2, 3, .. by generating a sample from

Gamma

(
r +

1

2
,−

θ2j
2σ2

+ δj

)
3. sample σ2 by generating a sample from Inverse Gamma(

(
p
2
,
(∑p

j=1

θ2jλj

2

))
end while

end while

9.7 Data Description

The health crisis of the COVID-19 pandemic has highlighted the need for

effective local response to emerging health crises. American local health departments

(LHDs) have been a subject of study for years [61]. In particular, the National

Association of County and City health officials (NACCHO) with funding from the

Centers for Disease Control and Prevention have conducted several comprehensive

studies to understand the resources and composition of (LHDs).

Local health departments have a wide variety of jurisdictions at the city,

county, and state levels serving from 1,000 to 10 million people. They provide a

variety of services from immunizations to epidemiology and environmental health re-

search and monitoring. Other LHDs perform regulation and inspection services for

restaurants, schools, daycares, and public pools. This study provides details about

the demographics of leadership, characteristics of staffing resources, and factors af-

fecting emergency preparedness including staffing and funding. These studies provide

an interesting look at the future challenges facing LHDs. Similar to the general popu-

lation, the age of top executives is increasing, indicating that a significant changeover

in leadership could occur in the coming years [61]. This has prompted a closer un-
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derstanding of the connections between LHDs and their ability to share information.

The following network found in the book [45] and R package [44] shows the 1283

LHDs as nodes with edges created by communication between the leadership of each

LHD. Each node has attributes to indicate which state it is located in, whether or not

the LHD provides tobacco use prevention programming or HIV screening, the size in

millions of the serviced area, and the number of years the current leader of the LHD

has been in their position.

0
1
2
3

years
years
years
years

Figure 9.1: Size of node determined by the size of population served, the color of

node determined by years

This data set has missing values for 27 nodes which poses problems for the sub-

sequent models. While there are multiple options to address this issue, the simplest

in this situation is to exclude these nodes. This is the option taken here.
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9.8 Results

To demonstrate the effectiveness of the Ridge Bayesian exponential random

graph model, we choose three network statistics. The first is the count of the number

of edges, the second is the counts of homophily for the continuous variables for the

population of the districts in millions, and the last is gwesp with 0.7 as the decay

value. Chapter 1 describes the theory of these network statistics in more detail.

Both models were run with the same formula with the network statistics listed

above. The initial settings were set to be the same at a relatively small number of

the main iterations at 500, after 200 iterations of burn-in on 10 chains. The results

in Table 9.2, 9.3, 9.4 show estimates for θ that are similar for each model and both

methods produce fairly small standard deviations though the new ridge model has a

slightly smaller spread of estimates.

Table 9.2: Estimates for θ by BERGM

Result for BERGM

Network Statistic Mean SD Quantiles

2.5% 25% 50% 75% 97.5%

θ1 (edges) -7.086 0.108 -7.298 -7.155 -7.087 -7.011 -6.882
θ2 (nodecov(population)) 0.126 0.127 -0.122 0.042 0.119 0.206 0.378
θ3 (gwesp) 2.352 0.287 1.881 2.145 2.323 2.521 2.986

Table 9.3: Estimates for θ by Ridge BERGM with Cauchy prior

Result for Penalized Ridge

Network Statistic Mean SD Quantiles

2.5% 25% 50% 75% 97.5%

θ1 (edges) -7.104 0.121 -7.358 -7.1880 -7.10 -7.024 -6.867
θ2 (nodecov(population)) 0.133 0.130 -0.111 0.0503 0.130 0.211 0.417
θ3 (gwesp) 2.350 0.263 1.920 2.1603 2.32 2.501 2.938
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We see here that all models converge to similar values, but both the BERGM

and Ridge BERGM with Cauchy prior have a larger value for θ3 than the result

generated by the Ridge BERGM with Gamma prior.

Table 9.4: Estimates for θ by Ridge BERGM with Gamma prior

Result for Penalized Ridge

Network Statistic Mean SD Quantiles

2.5% 25% 50% 75% 97.5%

θ1 (edges) -6.999 0.121 -7.239 -7.081 -6.995 -6.917 -6.770
θ2 (nodecov(population)) 0.103 0.109 -0.121 0.035 0.104 0.173 0.311
θ3 (gwesp) 1.937 0.216 1.556 1.787 1.926 2.073 2.401

As seen in plots in Figures 9.2, 9.3, and 9.4 the process has produced centered

distributions though the BERGM plot is closer to being unimodal, the trace of the

estimates is stable, and the lag decreases very quickly and maintains a negligible level

through the estimating process.

θ1 (edges)

−7.6 −7.4 −7.2 −7.0 −6.8

0
1

2
3

0 1000 3000 5000

−
7.

4
−

7.
0

Iterations

0 200 400 600 800 1000

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

θ2 (nodecov.popmil)

−0.4 −0.2 0.0 0.2 0.4 0.6

0.
0

1.
0

2.
0

3.
0

0 1000 3000 5000

−
0.

2
0.

2
0.

4

Iterations

0 200 400 600 800 1000

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

θ3 (gwesp.fixed.0.7)

1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
4

0.
8

1.
2

0 1000 3000 5000

2.
0

2.
5

3.
0

3.
5

4.
0

Iterations

0 200 400 600 800 1000

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

MCMC output for Model: y ~ edges + nodecov("popmil") + gwesp(decay = 0.7, fixed = TRUE)

Figure 9.2: MCMC plot for BERGM
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Figure 9.3: MCMC plot for Ridge with Cauchy prior
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Figure 9.4: MCMC plot for Ridge with Gamma prior

To better weigh the abilities of these models we introduce the VIF function

for exponential random graph models.
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9.8.1 VIF function

The standard definition for Variance Inflation Factor (VIF) in the general

regression model is

V IFi =
1

1−R2
i

. (9.38)

This quantity aids in understanding the degree of multicollinearity between variables

since when R2
i = 0 or the variables are not correlated, the VIF value will be 1.

Duxbury has translated this concept to the context of exponential random

graph models [18]. The following algorithm is adapted from this work to this context.

Algorithm: VIF calculation for Bayesian Exponential Random Graph Models

1. Generate values for θ through BERGM/BALERGM/BARERGM

2. Simulate a large number of networks from the values found forθ

3. Count the number of each network statistic in each network creating a

distribution

4. Use the distribution generated in step 3 to calculate R2

5. Calculate VIF

VIF =
1

1−R2

Using the estimates found by the model in question, the simulate function

generates a number of networks. For each of these networks, the network statistics

are counted. This creates a list of numbers for each network statistic which can be

used in the calculation of the correlation between the network statistics. For each

variable y,

R2
y = rTxxR

−1
xx r

2
xy (9.39)

where x is all other network statistics, and R is the correlation matrix (excluding

the edges term). Here rxx is the correlation vector between all statistics except for
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the variable of interest y and the edges term which is excluded through this process.

Once this value is found, the VIF calculation follows

V IFy =
1

1−R2
y

. (9.40)

The typical benchmark that VIF values greater than 5 indicate highly corre-

lated variables is not appropriate in the context of ERGM. As found by [18], threshold

values of 20 for concerning and 100 for severe collinearity.

Table 9.5: VIF results for Bayesian adaptive Ridge BERGM with both Gamma and
Cauchy priors and BERGM

Ridge: Gamma Prior Ridge: Cauchy Prior BERGM

Estimate SD VIF Estimate SD VIF Estimate SD VIF
θ2

a 0.103 0.109 1.182162 0.133 0.130 48.11192 0.126 0.127 53.29528
θ3

b 1.937 0.216 1.182162 2.350 0.263 48.11192 2.352 0.287 53.29528

a(nodecov(population))
b(gwesp)

In Table 9.5, we see the Bayesian Ridge exponential random graph model with

Gamma prior effectively penalizing the estimation of the θ for the gwesp network

statistic reducing the collinearity in the model.

9.9 Goodness of Fit

We can confirm the accuracy of the estimates produced by the new ridge

BERGM by using Bayesian Goodness of Fit Diagnostics produced in [11]. Using the

estimates for θ found in Section 9.7, 100 graphs are generated, and their characteris-

tics are plotted as grey histograms. The true network’s values in red track with the

generated values indicating effective estimations.
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CHAPTER 10

CONCLUSIONS

The statistical family of exponential random graph models has shown to be

very promising for addressing a wide range of research questions across many disci-

plines. Even though the modern iteration of these models is only a couple of decades

old, it has become a mainstay for analyzing relational data. Despite these successes,

ERGMs are plagued by degeneracy issues leaving many important networks unana-

lyzed. Considering the significance of networks, advancements in exponential random

graph models have significant potential to shape many fields. Bayesian models, such

as BERGM by Caimo and Friel et al., as well as BALERGM and BARERGM pro-

posed in this study, effectively address the challenges of intractability and degeneracy

in network analysis. Through the utilization of MCMC methods, these models cir-

cumvent the computational complexities associated with calculating the normalizing

constant, ensuring efficient estimation. Furthermore, the incorporation of prior dis-

tributions aids in mitigating degeneracy, enhancing convergence and stability of the

models.

While Bayesian analysis provides significant advancements to these crucial

models, the five novel models presented in this study offer valuable contributions.

Specifically, they address the current limitations of the BERGM model, which lacks

parameter selection capabilities and strategies to handle multicollinearity. Given the

frequent need for such tasks, especially in the analysis of large-scale network data,

these new models provide practical advantages to fill these gaps.

The integration of Bayesian ridge and Lasso models within the network analy-
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sis framework presents a potent approach for comprehending and exploring intricate

networks. By combining the strengths of these two regularization techniques, we can

overcome the limitations inherent in each method and capitalize on their respective

benefits. This integration yields a more comprehensive and robust modeling frame-

work that offers enhanced insights into the underlying structures and dynamics of

complex networks.

The Bayesian adaptive ridge exponential random graph model (BARERGM)

provides a flexible and robust approach for handling multicollinearity and stabilizing

parameter estimates. By incorporating a Gaussian prior distribution on the regression

coefficients, the ridge penalty introduces shrinkage effects that effectively handle cor-

related nodal covariates. This leads to more reliable parameter estimates, improved

predictive performance, and better generalizability of the model.

On the other hand, the Bayesian adaptive lasso exponential random graph

model (BALERGM) offers an automatic variable selection mechanism, emphasizing

the most relevant network parameters while diminishing the influence of less signifi-

cant ones. By applying a l1 penalty, the Lasso model promotes sparsity in parameter

estimates, resulting in a more parsimonious model that aids in identifying influen-

tial factors governing network behavior. Furthermopre, the BALERGM promises to

provide the possibility of fine-tuning the estimations for each parameter with individ-

ualized standard deviations allowing for a faster and more effective algorithm. This

not only enhances interpretability but also improves computational efficiency by re-

ducing the number of variables considered. The simulation and application results

show that the Bayesian Adaptive Lasso ERGM is a significant improvement to the

BERGM model in both improving the acceptance rate and ability to select parame-

ters while maintaining the goodness of fit. This model provides a more accurate and

reliable estimate with faster convergences, increasing the effectiveness of the answers

sought in various research contexts.
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The combination of Bayesian ridge and lasso models within the network analy-

sis framework provides a comprehensive and flexible modeling approach. Researchers

can leverage the strengths of both techniques to address various challenges encoun-

tered in network analysis, such as multicollinearity, variable selection, and model

complexity. All the examples presented in this study were implemented using the R

programming language. The code for the algorithms and examples is readily available

to researchers and practitioners upon request.

Several future directions can be explored to advance the field of network anal-

ysis and improve the performance of Bayesian models like BARERGM and BA-

LERGM. Some potential areas of focus include: (1) Extension to dynamic networks:

Currently, BERGM Ridge primarily focuses on static networks. Extending the model

to dynamic networks would enable the analysis of evolving network structures and

relationships over time. This could involve incorporating time-varying parameters or

considering temporal dependencies in the network dynamics. (2) Incorporating ad-

ditional regularization techniques: further exploration can involve integrating other

regularization techniques such as the Elastic Net, which combines both Lasso and

ridge penalties. This would offer a more flexible approach to address various chal-

lenges in network analysis, such as variable selection, multicollinearity, and model

stability.
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