
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2023

A machine learning approach to constructing Ramsey graphs A machine learning approach to constructing Ramsey graphs

leads to the Trahtenbrot-Zykov problem. leads to the Trahtenbrot-Zykov problem.

Emily S. Hawboldt
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation Recommended Citation
Hawboldt, Emily S., "A machine learning approach to constructing Ramsey graphs leads to the
Trahtenbrot-Zykov problem." (2023). Electronic Theses and Dissertations. Paper 4125.
Retrieved from https://ir.library.louisville.edu/etd/4125

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F4125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=ir.library.louisville.edu%2Fetd%2F4125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/4125?utm_source=ir.library.louisville.edu%2Fetd%2F4125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

A MACHINE LEARNING APPROACH TO CONSTRUCTING RAMSEY
GRAPHS LEADS TO THE TRAHTENBROT-ZYKOV PROBLEM

By

Emily S. Hawboldt
B.M., University of Louisville, 2017
M.A., University of Louisville, 2019

A Dissertation
Submitted to the Faculty of the

College of Arts and Sciences of the University of Louisville
in Partial Ful�llment of the Requirements

for the Degree of

Doctor of Philosophy
in

Applied and Industrial Mathematics

Department of Mathematics
University of Louisville
Louisville, Kentucky

August 2023

A MACHINE LEARNING APPROACH TO CONSTRUCTING RAMSEY
GRAPHS LEADS TO THE TRAHTENBROT-ZYKOV PROBLEM

Submitted by

Emily S. Hawboldt

A Dissertation Approved on

June 22, 2023

by the Following Dissertation Committee:

Dr. André Kézdy,
Dissertation Director

Dr. Robert Powers

Dr. D. Jacob Wildstrom

Dr. Gerard Williger

ii

DEDICATION

To my future students. I look forward to more mathematical adventures

with them.

iii

ACKNOWLEDGMENTS

The machine learning aspect of my project was supported in part by the

University of Louisville Graduate Student Council. Thanks also to the Department

of Mathematics for funding the rest of my deep learning workstation and to Joel

for helping assemble it.

It was a joy to talk to my longtime friend Karissa Jackson (Freedom House;

MA, Indiana University REEI) about mathematics as she helped with the Bulitko

translation.

Thank you to the UofL Counseling Center, particularly Michelle and Gabrielle.

Thank you to the Disability Resource Center, and to Dr. Alica Miller for encour-

aging me to go. These resources helped me unlock potential at every step of my

studies.

Dr. Adam Jobson was my �rst mentor in grad school. One of the greatest

things he taught me was how to program.

Many thanks to the members of my committee for their thoughtful comments

on my work. In particular, I thank Dr. Powers for encouraging me to pursue

graduate studies in mathematics when I met him during my senior year as a music

education major. It's never too late to learn more about mathematics.

Special thanks also to Dr. Kézdy for being an excellent mentor. The COVID-

19 pandemic presented a unique set of challenges and I'm grateful to have had Dr.

Kézdy's support during such a strange time. I will miss our conversations and work

when I move on to my next chapter.

I'm grateful to the many folks in my life who have shown tremendous support

iv

over the last several years. It would be hard to name them all, but I'm con�dent

they know who they are.

The greatest supporter of them all is my husband Dan. I'm sure we'll con-

tinue occasionally discussing graph theory over dinner for many years to come.

v

ABSTRACT

A MACHINE LEARNING APPROACH TO CONSTRUCTING RAMSEY
GRAPHS LEADS TO THE TRAHTENBROT-ZYKOV PROBLEM

Emily S. Hawboldt

June 22, 2023

Attempts at approaching the well-known and di�cult problem of construct-

ing Ramsey graphs via machine learning lead to another di�cult problem posed by

Zykov in 1963 (now commonly referred to as the Trahtenbrot-Zykov problem): For

which graphs F does there exist some graph G such that the neighborhood of every

vertex in G induces a subgraph isomorphic to F?

Chapter 1 provides a brief introduction to graph theory. Chapter 2 introduces

Ramsey theory for graphs. Chapter 3 details a reinforcement learning implementa-

tion for Ramsey graph construction. The implementation is based on board game

software, speci�cally the AlphaZero program and its success learning to play games

from scratch. The chapter ends with a description of how computing challenges nat-

urally shifted the project towards the Trahtenbrot-Zykov problem. Chapter 3 also

includes recommendations for continuing the project and attempting to overcome

these challenges.

Chapter 4 de�nes the Trahtenbrot-Zykov problem and outlines its history,

including proofs of results omitted from their original papers. This chapter also con-

tains a program for constructing graphs with all neighborhood-induced subgraphs

isomorphic to a given graph F . The end of Chapter 4 presents constructions from

the program when F is a Ramsey graph. Constructing such graphs is a non-trivial

vi

task, as Bulitko proved in 1973 that the Trahtenbrot-Zykov problem is undecidable.

Chapter 5 is a translation from Russian to English of this famous result, a proof

not previously available in English.

Chapter 6 introduces Cayley graphs and their relationship to the Trahtenbrot-

Zykov problem. The chapter ends with constructions of Cayley graphs Γ in which

the neighborhood of every vertex of Γ induces a subgraph isomorphic to a given

Ramsey graph, which leads to a conjecture regarding the unique extremal Ram-

sey(4, 4) graph.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

1. INTRODUCTION . 1

2. RAMSEY THEORY . 11

2.1 Introduction . 11

2.2 History of Ramsey theory . 13

2.2.1 Known 2-color Ramsey numbers 16

3. REINFORCEMENT LEARNING AND RAMSEY GRAPHS 19

3.1 Reinforcement learning . 20

3.1.1 What is a neural network? 22

3.1.2 Tree search . 24

3.1.3 Reinforcement learning and the game of Go 33

3.2 Training a reinforcement learning agent to generate Ramsey graphs 34

3.2.1 Implementation . 38

3.3 Simulations . 42

3.4 Recommendations for continuing project 44

3.5 A change of direction . 45

4. THE TRAHTENBROT-ZYKOV PROBLEM 46

4.1 History . 47

viii

4.2 Variants of the T-Z problem . 50

4.3 Existence results . 51

4.4 Non-existence results . 52

4.5 Tree search to construct graph realizations 68

4.5.1 Linear programming formulation of subgraph isomor-

phism problem . 68

4.6 Graphs of order 7 . 69

4.7 Realizations of certain Ramsey graphs 71

4.7.1 Unique realization of R(3, 3; 5) 72

4.7.2 Realizations of a Ramsey(3, 4) graph, H3 75

4.7.3 Realizations of a Ramsey(3, 4) graph, H2 76

5. UNDECIDABILITY OF THE TRAHTENBROT-ZYKOV PROBLEM 78

5.1 Introduction to domino problem 78

5.2 Construction of the graph L(P) 80

5.3 More properties of L(P) . 84

5.4 Bulitko's results . 87

6. CAYLEY GRAPHS . 95

6.1 Introduction to Cayley graphs 95

6.2 Circulant graphs . 96

6.3 Cayley realizations of Ramsey graphs 100

6.3.1 Unique Cayley realization of R(3, 3; 5) 101

6.3.2 Two Cayley realizations of a Ramsey(3, 4) graph, H3 . 106

6.3.3 Two Cayley realizations of a Ramsey(3, 4) graph, H2 . 108

6.3.4 Realizability of R(4, 4; 17) 112

7. CONCLUSIONS . 113

REFERENCES . 115

APPENDIX

ix

I. PROGRAMMING TOOLS . 125

I.1 Python . 125

I.1.1 Keras . 125

I.1.2 Gurobi . 125

I.2 GAP . 126

II. SPECIFICATION OF CERTAIN GRAPHS 127

II.1 Ramsey graphs . 127

II.2 Realizations of Ramsey graphs 128

II.2.1 R(3, 3; 5) realization 128

II.2.2 H2 realizations . 129

II.2.3 H3 realizations . 131

INDEX . 133

CURRICULUM VITAE . 135

x

LIST OF TABLES

3.1 Computer hardware comparison (comparing processor, RAM,

and GPU to AlphaGo) . 42

3.2 Development of reinforcement learning agent for Ramsey graph

construction . 43

3.3 Performance improvements for di�erent versions of the rein-

forcement learning agent for Ramsey graph construction 43

4.3 Realizability of graphs of order 7 71

4.4 Summary of known H3 realizations 77

4.5 Summary of known H2 realizations 77

6.1 Multiplication table for S ⊂ G ∼= C7 ⋊ C3 to construct Cayley

graph Γ(G,S) . 108

6.2 Multiplication table for another subset S ⊂ G ∼= C7 ⋊ C3 to

construct a di�erent Cayley graph Γ(G,S) 110

6.3 Multiplication table for S ⊂ G ∼= Z2×A4 to construct a Cayley

graph Γ(G,S) . 112

xi

LIST OF FIGURES

2.1 Ramsey(3, 4) critical graphs (H1, H2, H3) 13

2.2 Ramsey(4, 4) critical graph . 17

3.1 The reinforcement learning cycle 21

3.2 Keras Conv2D layer . 24

3.3 A partial Monte Carlo Tree Search (MCTS) tree (accompanies

MCTS example) . 28

3.4 A partial AlphaZero Tree Search (AZTS) tree (accompanies

AZTS example) . 31

3.5 Network structure for Ramsey graph construction 42

4.1 21-vertex realization of H3 . 76

5.1 Example of domino (Wang tile) types 80

5.2 The fulcrum vertices in Bulitko's graph serve as a locking mech-

anism . 82

5.3 (Figure supplements proof) Gu[dj] 86

5.4 (Figure supplements proof) Neighborhood of b3 in Gu[dj] . . . 88

5.5 (Figure supplements proof) Neighborhood of a1 in Gu[dj] . . . 88

5.6 (Figure supplements proof) Neighborhood of a2 in Gu[dj] . . . 89

5.7 (Figure supplements proof) Neighborhood of a3 in Gu[dj] . . . 89

5.8 (Figure supplements proof) Neighborhood of a4 in Gu[dj] . . . 89

5.9 (Figure supplements proof) Ga1(LA) and an updated partial

view of G . 91

xii

5.10 (Figure supplements proof) Ga2(LA) and an updated partial

view of G . 92

5.11 (Figure supplements proof) Ga4(LA) and an updated partial

view of G . 92

5.12 (Figure supplements proof) Ga3(LA) and an updated partial

view of G . 93

5.13 (Figure supplements proof) Updated view of G after specifying

neighborhoods of corner vertices in Gu(dj) 93

6.1 The Petersen graph . 97

6.2 Labeled icosahedron to demonstrate Cayley graph construction 101

6.3 Icosahedron with faces colored to demonstrate Cayley graph

construction . 102

6.4 Icosahedron ∼= Γ(A4, {(2 3 4), (1 3 2), (1 2 3), (1 2)(3 4), (2 4 3)}) 105

6.5 Neighborhood of identity element in Γ(C7 ⋊ C3, S) induces H3 108

6.6 Neighborhood of identity element in Γ(C7 ⋊ C3, S) induces H2 109

6.7 Neighborhood of identity element in Γ(C2 × A4, S) induces H2 112

xiii

CHAPTER 1

INTRODUCTION

This dissertation connects two topics in graph theory: Ramsey graphs and

the Trahtenbrot-Zykov (T-Z) problem. Broadly speaking, Ramsey theory deals with

the inevitability of certain substructures as the size of a larger structure grows. The

T-Z problem asks about global structures that admit uniform local structures. The

problems are de�ned more precisely in their respective chapters � Chapter 2 for

Ramsey graphs, and Chapter 4 for the T-Z problem.

This chapter covers basic de�nitions and notation. Chapter 2 introduces

Ramsey theory as it relates to simple graphs and cliques. Chapter 3 outlines a

method for generating Ramsey graphs by using machine learning, speci�cally rein-

forcement learning. Attempts at this machine learning implementation lead to a

perspective on Ramsey graphs rooted in the T-Z problem.

De�nition 1 (Graph). A graph G = (V,E) consists of a vertex set V and a

collection E of two-element subsets of these vertices, called edges. The vertex and

edge set of G are denoted V (G) and E(G), respectively.

Only simple, undirected graphs are considered in this work, i.e. graphs

without loops or multiple edges. The order of a graph G is its number of vertices

and is denoted |G|. The size of a graph G is its number of edges and is denoted

||G||.

1

Example 1 (Graph). Let G be the graph shown below:

0

1

5

3

4

2

� The vertex set is V (G) = {0, 1, 2, 3, 4, 5}.

� The edge set isE(G) = {{0, 1}, {0, 5}, {1, 2}, {1, 4}, {1, 5}, {2, 3}, {3, 4}, {4, 5}}.

� G is a graph of order 6 with size 8; that is, |G| = 6 and ||G|| = 8.

△

De�nition 2 (Adjacency). Let G be a graph with u, v ∈ V (G). If {u, v} ∈ E(G),

then u and v are adjacent in G.

The following class of graphs is important for both Ramsey theory and the

T-Z problem.

De�nition 3 (Complete graph). A complete graph is a graph in which all vertices

are pairwise adjacent. Write Kn to denote the complete graph of order n.

Example 2 (Complete graphs). The complete graphs K3, K4, K5, and K6 are

shown below:

△

2

Complete graphs include all possible edges. For graphs that aren't complete

graphs, one might ask what kind of graph is formed by the edges not present in the

graph. This coincides with the notion of graph complement.

De�nition 4 (Graph complement). Let G be a graph. The complement of G,

denoted G, is the graph with V (G) = V (G) and {u, v} ∈ E(G) if and only if

{u, v} ̸∈ E(G).

Example 3 (Complement). A graph G and its complement are shown below:

0
1

2
3

4

G

0
1

2
3

4

G

△

Ramsey theory and the T-Z problem both address graph substructures.

There are two key types of substructures to consider: subgraphs, and induced sub-

graphs.

De�nition 5 (Subgraph). Let G and H be graphs. If V (H) ⊆ V (G) and E(H) ⊆

E(G), then H is a subgraph of G.

De�nition 6 (Induced subgraph). Let G and H be graphs. If V (H) ⊆ V (G) and

{u, v} ∈ E(H) if and only if {u, v} ∈ E(G) for all u, v ∈ V (H), then H is an

induced subgraph of G.

3

Example 4 (Subgraph, induced subgraph). Consider the following graphs:

0

1

2

3

4

G

0

1

2

3

H

0

1

2

3

H ′

Observe that H is a subgraph of G, but it is not an induced subgraph of G. On

the other hand, H ′ is an induced subgraph of G. △

Certain subgraphs are of enough interest that they have special names;

cliques and independent sets are two such subgraphs.

De�nition 7 (Clique). A clique is a complete subgraph.

De�nition 8 (Independent set). An independent set (also called a stable set or

coclique) is a set of vertices in a graph such that no two vertices in the set are

adjacent to one another.

In other words, a set of vertices in a graph forms an independent set if

the vertices induce a clique in G. Hence Km is sometimes written to denote an

independent set of order m.

Example 5. Consider the following graph:

0

1
2

3

4

5
6

7

4

Vertices {0, 1, 2, 3} form a clique of order 4. The vertices {4, 5, 6} form a clique of

order 3. Each edge corresponds to a clique of order 2, and each vertex corresponds

to a clique of order 1.

The vertices {1, 4, 7} form an independent set of order 3. △

Example 5 contains multiple cliques. It is often interesting to consider what

the largest clique in a graph is.

De�nition 9 (Maximum clique; clique number). Let G be a graph. A maximum

clique of G is a clique of largest order. The clique number of G, denoted ω(G), is

the order of a maximum clique in G.

Example 6 (Maximum clique; clique number). The graph G in Example 5 has a

maximum clique {0, 1, 2, 3}. It follows that ω(G) = 4. △

Sometimes, a graph (or subgraph) resembles a �copy� of some other graph.

This is the notion of graph isomorphism, de�ned below.

De�nition 10 (Graph isomorphism). Let G and G′ be graphs. If there is some

bijection ϕ : V (G) → V (G′) such that {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈

E(G′), then G and G′ are isomorphic, denoted G ∼= G′. That is, two graphs are

isomorphic if there is an edge-preserving bijection between the vertex sets.

Example 7 (Isomorphism). Consider the following graphs:

0
1

2
3

4

G

c

d

e
a

b

G′

5

Observe that G and G′ are isomorphic; that is, G ∼= G′. One satisfactory mapping

ϕ : V (G) → V (G′) is given by ϕ(0) = a, ϕ(1) = c, ϕ(2) = e, ϕ(3) = b, ϕ(4) = d. △

Problems in Ramsey theory often focus on the presence of one copy of a

given substructure; in contrast, the T-Z problem concerns several copies of a given

substructure. More speci�cally, the T-Z problem asks about copies of subgraphs

within vertex neighborhoods :

De�nition 11 (Vertex neighborhood; Gv). Let G be a graph, and let v ∈ V (G) be

an arbitrary vertex. The (open) neighborhood of v in G is the set NG(v) := {x ∈

V (G) : {v, x} ∈ E(G)}. Write Gv to denote the subgraph of G induced by NG(v).

The T-Z problem asks for which graphs F there exists a graph G such that for

each vertex v ∈ V (G), the subgraph induced by the neighbors of v is isomorphic to

F . Such a graph G is said to be locally F . More generally, G might simply be called

a local graph. Chapter 4 describes the T-Z problem in more detail. It also outlines a

program that constructs graphs that are locally F for given F . The program applies

linear programming to the subgraph isomorphism problem to conduct a tree search

for satisfactory graphs. Chapter 4 presents graphs constructed by the program that

are locally Ramsey, i.e. locally F for some Ramsey graph F .

Constructing local graphs is a non-trivial task. The Russian mathematician

V.K. Bulitko proved in 1973 that the T-Z problem is undecidable, i.e. that there

is no general algorithm which, given any set of input graphs, always correctly de-

termines whether local graphs exist for those graphs. Winkler also establishes the

undecidability of the T-Z problem, independently of Bulitko [78]. Chapter 5 con-

tains a translation of the �rst section of Bulitko's paper, which is not available in

English.

Chapter 6 addresses (undirected) Cayley graphs (De�nition 52). All Cayley

graphs are local graphs. This work highlights Cayley graphs that are locally Ramsey.

6

Cayley graphs represent group structures. Groups and graphs are related through

the notion of graph automorphisms.

De�nition 12 (Automorphism). Let G be a graph. An automorphism of G is an

isomorphism from G to itself.

De�nition 13 (Automorphism group of a graph). Let G be a graph. The set of all

automorphisms of G forms a group under the operation of composition. This group

is called the automorphism group of G, denoted Aut(G).

The automorphism group of a graph acts on the set of vertices of the graph.

Certain classes of graphs are de�ned based on properties of this group action; the

vertex-transitive graphs form such a class.

De�nition 14 (Transitive action). Let G be a group acting on a set X. The action

is said to be transitive if for any x, y ∈ X there exists some g ∈ G such that g ·x = y.

De�nition 15 (Vertex-transitive graph). Let G be a graph. If Aut(G) acts tran-

sitively on V (G), then G is vertex-transitive. That is, G is vertex transitive if for

any u, v ∈ V (G) there is some ϕ ∈ Aut(G) such that ϕ(u) = v.

De�nition 16 (Circulant graph). Let G be a graph. If Aut(G) contains a cyclic

subgroup that acts transitively on V (G), then G is a circulant graph.

Like Cayley graphs, the vertex-transitive graphs are local graphs. Chapter

6 draws connections between Cayley graphs and vertex-transitive graphs, namely

the fact that every Cayley graph is also vertex-transitive. Chapter 6 also includes

a de�nition of circulant graphs that is based on Cayley graphs.

The following basic graph classes are studied in both Ramsey theory and the

T-Z problem.

7

De�nition 17 (Path). A path is a graph G = (V,E) such that

V (G) = {v0, v1, . . . , vn}

and

E(G) = {{v0, v1}, {v1, v2}, . . . , {vn−1, vn}},

with all vi distinct. The vertices v0 and vn are the endpoints of the path. Write Pn

to denote a path of order n.

Example 8 (Path). The paths P3, P4, P5, and P6 are shown below:

△

A graph is connected if there is a path between any two vertices of the graph.

De�nition 18 (Cycle). A cycle is a graph G = (V,E) such that

V (G) = {v0, v1, . . . , vn}

and

E(G) = {{v0, v1}, {v1, v2}, . . . , {vn−1, vn}, {vn, v0}},

with all vi distinct. Write Cn to denote a cycle of order n.

Example 9 (Cycle). The cycles C3, C4, C5, and C6 are shown below:

△

8

De�nition 19 (Tree). A tree is a connected cycle-free graph.

Example 10 (Tree). A tree of order 9 is shown below:

△

De�nition 20 (Complete multipartite graph). A complete k-partite graph is a

graph with k independent sets in which there is an edge between every pair of vertices

from di�erent independent sets. A complete k-partite graph with independent sets

of order m1,m2, . . . ,mk is denoted Km1,m2,...,mk
.

Example 11 (Complete multipartite graph). The complete multipartite graphs

K3,3, K2,2,2 and K2,4 are shown below:

△

Next are some basic de�nitions and notation necessary for arguments in later

proofs.

De�nition 21 (Distance between two vertices). Let G be a graph and let u and v

be two arbitrary vertices of G. The distance between u and v, denoted dG(u, v), is

the order of the shortest path connecting u and v. If no path connecting u and v

exists, the distance between them is assumed to be in�nite.

9

De�nition 22 (Degree of a vertex). Let G be a graph. For a vertex v ∈ V (G), the

degree of v is denoted deg(v,G) and is de�ned as the number of vertices adjacent

to v in G. That is,

deg(v,G) := |{u ∈ V (G) : {u, v} ∈ E(G)}|.

A graph in which all vertices have the same degree is a regular graph.

Chapter 2 includes proofs of elementary Ramsey theory results, in particular

focusing on neighborhood arguments to foreshadow the T-Z problem. Chapter 4

presents proofs that were omitted from the papers in which they originally appeared.

Chapter 5 is a translation from Russian into English of Bulitko's famous proof

regarding the T-Z problem. Chapter 6 includes constructive proofs of T-Z results

concerning Cayley graphs.

10

CHAPTER 2

RAMSEY THEORY

Ramsey theory is a famous and di�cult branch of mathematics. This chapter

provides a brief introduction to Ramsey theory with particular attention towards its

role in graph theory. The recent plateau in progress identifying Ramsey numbers

(De�nition 25) makes it clear that new techniques for attacking the problem are

needed. Chapter 3, describes how reinforcement learning is used to generate Ramsey

graphs (De�nition 26).

2.1 Introduction

In 1929, F.P. Ramsey [59] proved what would come to be known as Ramsey's

Theorem. The theorem was presented as a result of formal logic:

Theorem 1 (Ramsey's theorem). Let Γ be an in�nite class, and µ and r positive

integers; and let all r-combinations of the members of Γ be divided in any manner

into µ mutually exclusive classes Ci (i = 1, 2, . . . , µ) so that every r-combination is

a member of one and only one Ci; then, assuming the axiom of selections, Γ must

contain an in�nite subclass ∆ such that all the r-combinations of the members of ∆

belong to the same Ci.

Ramsey's theorem led to a new �eld known as Ramsey theory. For readers

interested in learning more about Ramsey theory, the book by Graham, Rothschild,

and Spencer [26] gives an overview of the subject. While some Ramsey theoretic

results precede the theorem, Ramsey's theorem gained popularity in the decades

11

following his original paper. The result is particularly popular within the �eld of

graph theory, where it is often stated in terms of edge colorings.

De�nition 23 (Edge coloring). Let G be a graph. An edge coloring of G is a map

χ : E(G) → C, where C is a set of colors.

De�nition 24 (Monochromatic clique). Let G be a graph and let χ be an edge

coloring of G. A monochromatic clique of G is a clique such that all of its edges

are colored with the same color under χ.

Ramsey's theorem for graphs determines the inevitability of monochromatic

cliques of a �xed order as the order of an edge-colored graph grows.

Theorem 2. For any given number of colors, c, and any given positive integers

n1, . . . , nc, there is a number, denoted R(n1, . . . , nc) such that if the edges of a

complete graph of order R(n1, . . . , nc) are colored with c di�erent colors, then for

some i ∈ {1, . . . , c}, there is a monochromatic clique of order ni colored i.

When only two colors are considered, Ramsey's theorem might be stated in

terms of graph complements as follows:

Theorem 3. For any positive integers k and ℓ, there is a number n such that for

any graph G of order N ≥ n either G contains a clique of order k or G contains a

clique of order ℓ.

The statement of Ramsey's theorem in Theorem 3 is the primary considera-

tion of this work. Next is some vocabulary associated with Ramsey's theorem.

De�nition 25 (Ramsey number). The Ramsey number for (k, ℓ), denoted r(k, ℓ),

is the smallest integer such that any graph of order r(k, ℓ) contains either a clique

of order k or an independent set of order ℓ.

12

H1 H2 H3

Figure 2.1: R(3, 4; 8) graphs

De�nition 26 (Ramsey graph). Let G be a graph that does not contain a Kk or

Kℓ. Such a graph G is a Ramsey graph for (k, ℓ). In general, R(k, ℓ;n) denotes a

Ramsey graph of order n.

De�nition 27 (Critical Ramsey graph). Let R(k, ℓ;n) be a Ramsey graph. If n =

r(k, ℓ) − 1 (i.e. is of the largest order possible), then R is a critical Ramsey (k, ℓ)

graph. Equivalently, R is Ramsey(k, ℓ)-critical.

Example 12. Figure 2.1 shows Ramsey graphs for (3, 4). It is shown later that

these are in fact Ramsey(3, 4)-critical graphs. △

2.2 History of Ramsey theory

While some results similar to Ramsey's theorem appeared before Ramsey's

paper in 1930, interest in Ramsey theory increased signi�cantly in the years fol-

lowing his paper. Erd®s showed particular interest with his 1935 paper [21] that

o�ered a new proof of the theorem � one that improved on Ramsey number bounds

originally given by Ramsey � as well as results regarding convex polygons formed

from arbitrary sets of points in a plane. Erd®s furthermore introduced some of

the earliest techniques for addressing Ramsey numbers, perhaps most notably the

probabilistic method used to improve lower bounds, introduced in 1947 [20]. The

probabilistic method is a non-constructive argument for improving lower bounds,

in contrast with the constructive approach of providing a counterexample. In 1975,

Spencer made further improvements with the probabilistic method [71].

13

In 1955, Greenwood and Gleason proved results related to various upper

bounds for Ramsey numbers, including cases involving three or more colors [29].

Among the several Ramsey numbers identi�ed in this paper is the three-color Ram-

sey number r(3, 3, 3) = 17. Of particular interest in their paper is the following

recurrence result:

Theorem 4. r(k,m) ≤ r(k − 1,m) + r(k,m− 1).

Proof. Let p = r(k − 1,m) + r(k,m − 1). Let G be a graph of order p, and let

v ∈ V (G). Let NG(v) and NG(v) be as indicated in De�nition 11. Note that

|NG(v)|+ |NG(v)|+1 = p. It follows that either |NG(v)| ≥ r(k−1,m) or |NG(v)| <

r(k − 1,m).

If |NG(v)| ≥ r(k− 1,m) then NG(v) either induces a clique of order k− 1 or

an independent set of order m. In the latter case, the proof is �nished, so suppose

the former. Since there is a clique of order k − 1, this clique joined with the vertex

v as a universal vertex results in a clique of order k in G, completing the proof.

Suppose instead that |NG(v)| < r(k−1,m). In this case, |NG(v)| ≥ r(k,m−

1), and the argument is similar to the one presented above to produce the desired

clique or independent set.

Theorem 4 and its proof are widely known. The inclusion of the proof here

serves to draw attention to the importance of vertex neighborhoods in the argument.

The following corollary has been useful for improving bounds of some Ramsey

numbers.

Corollary 1. If k,m ∈ N are such that r(k,m− 1) and r(k − 1,m) are both even,

then r(k,m) < r(k − 1,m) + r(k,m− 1), i.e.

r(k,m) ≤ r(k − 1,m) + r(k,m− 1)− 1.

14

Proof. Let p = r(k,m− 1) + r(k,m− 1)− 1 and let G be a graph of order p. Let

v ∈ V (G). Next,

|NG(v)|+ |NG(v)| = r(k − 1,m) + r(k,m− 1)− 2.

Consider three possibilities:

1. |NG(v)| > r(k − 1,m)− 1. In this case, |NG(v)| ≥ r(k − 1,m). Hence NG(v)

induces either a clique of order k − 1 or an independent set of order m. In

either case, the proof is �nished.

2. |NG(v)| < r(k − 1,m)− 1. In this case,

|NG(v)| = r(k − 1,m) + r(k,m− 1)− 2− |NG(v)|

> r(k − 1,m) + r(k,m− 1)− 2− r(k − 1,m) + 1

≥ r(k,m− 1).

Hence NG(v) induces either a clique of order k or an independent set of order

m− 1 in G. Either way, the proof is �nished.

3. |NG(v)| = r(k − 1,m)− 1. Note that r(k − 1,m)− 1 is odd since r(k − 1,m)

is even. Hence there must be some vertex u ∈ V (G) that falls under Case 1

or 2. Otherwise, this would imply that G (a graph of odd order) is regular of

odd degree, which is not possible.

While Corollary 1 may seem a simple result, it has yielded improvements in

the search for r(5, 5). First, the corollary led to improvements on the bounds (and

eventual exact identi�cation) of r(4, 5). The identi�cation of r(4, 5) was then used

to improve bounds on r(5, 5) [54].

Paths, trees, forests, and cycles represent a few of the other popular graph

classes studied in Ramsey theory. An extensive survey regarding Ramsey numbers

is maintained at [58].

15

2.2.1 Known 2-color Ramsey numbers

Identifying Ramsey numbers is a notoriously di�cult problem in mathemat-

ics. The process for establishing a Ramsey number r(k, ℓ) is twofold. To establish

r(k, ℓ) ≥ n, one typically produces a counterexample of order n − 1. To establish

r(k, ℓ) ≤ n, one must show that every graph of order n satis�es the property of

containing a Kk or Kℓ. Ramsey numbers of the form r(k, k) are frequently called

the symmetric Ramsey numbers. Currently, only two of the symmetric Ramsey

numbers are known.

The proofs presented below are fairly simple and well-known results. They

are included here because the neighborhood arguments used in the proofs fore-

shadow the Trahtenbrot-Zykov problem encountered in Chapter 4. These proofs

might also help familiarize readers with the common early techniques in Ramsey

theory.

Theorem 5. r(3, 3) = 6.

Proof. The cycle C5 establishes r(3, 3) ≥ 6. To establish r(3, 3) ≤ 6, let G be a

graph of order 6. Let v ∈ V (G) be arbitrary. By the pigeonhole principle, v has

either 3 neighbors or 3 non-neighbors in G. Without loss of generality, assume v has

3 neighbors. If any two of these neighbors are adjacent to one another, G contains

a K3. On the other hand, if the 3 neighbors are pairwise non-adjacent, they form

an independent set of order 3 in G.

The following lemma will be used together with Corollary 1 to establish

r(3, 4) later.

Lemma 1. r(2, k) = k.

Proof. Let G be a graph of order k − 1, and suppose E(G) = ∅. It follows that G

does not contain a K2 or an independent set of order k. Hence r(2, k) > k − 1.

16

Figure 2.2: R(4, 4; 17) graph

Next, let G′ be a graph of order k. If G′ contains any edges, then G′ contains

a K2. On the other hand, if G′ contains no edges, then G′ contains an independent

set of order k. Hence r(2, k) ≤ k.

Thus r(2, k) = k.

Theorem 6. r(3, 4) = 9.

Proof. Figure 2.1 shows r(3, 4) > 8, i.e. r(3, 4) ≥ 9. To show r(3, 4) ≤ 9, note that

by Lemma 1, r(2, 4) = 4 and by Theorem 5, r(3, 3) = 6. Since both of these are

even, by Corollary 1, r(3, 4) < r(2, 4) + r(3, 3), i.e. r(3, 4) < 10. Hence r(3, 4) ≤ 9.

It follows that r(3, 4) = 9.

Corollary 2. r(4, 4) = 18.

Proof. Figure 2.2.1 shows r(4, 4) > 17, i.e. r(4, 4) ≥ 18. Next, by Theorem 4 and

Theorem 6, it follows that r(4, 4) ≤ 9 + 9, so r(4, 4) ≤ 18. Hence r(4, 4) = 18.

In 1995, McKay established r(4, 5) = 25 [53]. McKay also made improve-

ments on bounds for r(5, 5) as recently as 2018 [4], when he established r(5, 5) ≤ 48.

Theorem 7 ([22, 4]). 43 ≤ r(5, 5) ≤ 48.

17

In Theorem 7, the lower bound of 43 was established constructively in 1989

[22]. It is conjectured that r(5, 5) is precisely 43 due to the fact that despite the ex-

penditure of extensive computer resources, attempts to construct R(5, 5; 43) graphs

have been unsuccessful [4].

Much of the progress on improving the upper bounds is due to Brendan

McKay's work involving linear programming. Section 4.5 outlines how to apply

linear programming in the subgraph isomorphism problem. Computers are a major

tool in the search for Ramsey numbers, as even some of the early papers detail

the extent to which computers were used [39]. The linear programming approach

frequently employed by McKay involves a gluing procedure in which larger Ramsey

graphs are constructed by gluing together graphs along some smaller Ramsey graph

[52]. In 1992, McKay made an improvement of 1 on the upper bounds of each of

r(4, 5), r(5, 5), and r(4, 6), in particular establishing r(5, 5) ≤ 53. Improvements

on the bounds of r(4, 5) later helped establish r(5, 5) ≤ 50. In 1995, r(5, 5) was

improved from 50 to 49 using the gluing procedure [54]. This remained the best

upper bound until 2018 when it was established, again by the linear programming

gluing technique, that r(5, 5) ≤ 48.

McKay notes that a contributing factor to the 2018 progress is the ability to

make computations that would have simply taken far too long in 1995, highlight-

ing the importance of computing power in addressing Ramsey numbers. The next

chapter details another computer-based approach to improving bounds on Ram-

sey numbers: the application of reinforcement learning to producing edge-colored

graphs.

18

CHAPTER 3

REINFORCEMENT LEARNING AND RAMSEY GRAPHS

Section 3.1 of this chapter covers basic concepts regarding neural networks

and reinforcement learning. Section 3.2 describes how we trained a reinforcement

learning agent to generate Ramsey graphs (De�nition 26). Section 3.3 contains re-

sults of simulations. Recommendations for continuing this project comprise Section

3.4, and Section 3.5 describes how the project led to the Trahtenbrot-Zykov prob-

lem de�ned in Chapter 4. Code for this chapter is publicly available on GitHub

(Appendix I).

The application of reinforcement learning towards the problem of construct-

ing Ramsey graphs is motivated by recent improvements with arti�cial intelligence

and the game of Go. Go is a di�cult game for a computer agent to master due

to the large number of possible board positions and moves, as the game tree for

Go has a signi�cantly greater breadth and depth than chess � approximately 250150

possible move sequences as opposed to 3580 [65]. In 2015, Google's DeepMind, using

their AlphaGo program [65], defeated a professional Go player without any in-game

handicaps. The number of 2-colorings of the edges of a complete graph Kn is 2(
n
2),

which surpasses the number of Go positions when n = 50:

2(
n
2) ≥ 250150

n ≥
1 +

√
1 + 4(300 log2 250)

2
≈ 49.4

These tools, having conquered the game of Go, might reasonably be expected to

19

tackle the task of 2-coloring edges of graphs of order less than 50, possibly helping

to construct new Ramsey graphs. This is of particular interest in the case of r(5, 5),

known to be between 43 and 48 and conjectured to in fact be precisely 43 [4],

or for other Ramsey numbers for which the lower bounds are below 50 and might

possibly be improved by the new tools of reinforcement learning. The application of

reinforcement learning towards generating Ramsey graphs therefore seems plausible

from a complexity standpoint. Reinforcement learning has been applied towards the

task of constructing combinatorial counterexamples with success, as demonstrated

by Wagner [75]. More speci�cally, the tools related to the game of Go have been

applied towards problems in graph theory. In 2019, Huang et al. adapted AlphaGo

Zero (Section 3.1.3) to color large graphs [37].

The following de�nition is central to this chapter.

De�nition 28 (Ramsey game). Let n, k, ℓ be integers, with k ≤ n and ℓ ≤ n. Let G

be a complete graph of order n with all edges colored black. The r(k, ℓ;n) game is as

follows: Two players take turns coloring black edges of G using their assigned color.

Player 1 colors edges red while Player 2 colors edges blue. The game ends when

either Player 1 colors a Kk red or Player 2 colors a Kℓ blue, whichever happens

�rst. The player who �rst completes a clique in their color loses the game. If both

players avoid creating a monochromatic clique, the game ends in a draw.

3.1 Reinforcement learning

Machine learning systems are trained rather than explicitly programmed

[16]. Three main classes of machine learning are supervised learning, unsupervised

learning, and reinforcement learning. This work primarily concerns reinforcement

learning, which is a sort of �trial and error� approach to computers solving problems.

20

Environment

AgentAction
State

Reward

Figure 3.1: The reinforcement learning cycle

De�nition 29 (Reinforcement learning). Reinforcement learning is a class of ma-

chine learning algorithms in which agents take actions within some prescribed en-

vironment in order to maximize rewards [16].

The notions of actions, environment, and rewards in De�nition 29 appear

throughout this section. For an agent to receive information about its environ-

ment, the environment is converted to a computer representation. This computer

representation of the environment is called the state. Note that the encoding of

the environment as a state is a subjective process; choosing how to encode an en-

vironment is a step of machine learning known as feature engineering, in which

the programmer's knowledge of the task and environment is used to extract useful

representations of the environment to encode.

The objective in the Ramsey game is to color all edges of a complete graph

red or blue in stages, and in such a way that avoids creating monochromatic cliques.

Coloring edges represents an action. At each stage of the coloring process, the edge-

colored graph is an environment. The agent is backed by a neural network. The

reward is based on the result at the conclusion of the game � avoiding monochro-

matic cliques maximizes the reward, while coloring a monochromatic clique yields

negative rewards. Section 3.2 contains more details of the implementation.

21

3.1.1 What is a neural network?

Neural networks are closely related to machine learning and speci�cally deep

learning.

De�nition 30. Let S be a set of states and let D be a set of decisions. A neural

network is a function f : S → D that takes some state s ∈ S as input and yields a

decision d ∈ D.

More speci�cally, a neural network f might be de�ned by a function compo-

sition

f = (ϕn ◦ fn) ◦ · · · ◦ (ϕ0 ◦ f0),

where each fi, i ∈ {0, . . . , n} corresponds to what is called a layer of the net-

work, and each ϕi, i ∈ {0, . . . , n} corresponds to an activation function. One of the

simplest and most common layer types is the dense layer, which returns a linear

transformation of the input data.

De�nition 31 (Dense layer). Let x be a vector of input data for a neural network.

Given a weight matrix W and a bias vector b, a dense layer f returns a linear

transformation:

f(x) = Wx+ b.

An activation function applies a nonlinearity to the output of a layer. Di�er-

ent activation functions are recommended for certain layer types; page 41 includes

the recommendations followed for this project.

The de�nition of a dense layer includes a weight matrix. Weights are learned

by the network during the training loop. Training consists of a forward pass of data

through the network to get an output. The accuracy of this output is measured

through a loss function. Information from this loss function is then used in a back-

ward pass through the network, and weights are adjusted through a process known

22

as backpropagation. For more information on loss functions and backpropagation,

see [16]. While dense layers are used here as a simple example for the training

process, the overall procedure for learning network weights to improve network pre-

dictions is similar for networks with other types of layers, such as convolutional

layers.

The Conv2D layer

The major building block of our network is the Keras Conv2D layer, a convolutional

layer. Broadly speaking, convolutional layers take snapshots of visual data in order

to extract local patterns. Convolutional layers have two key hyperparameters: the

number of �lters and the kernel size. Informally, kernel size dictates the size of

the snapshots taken of the input data, while the number of �lters determines the

depth of the layer's output. A kernel size of 3× 3 is fairly standard. The number of

�lters is typically chosen empirically; see AlphaGo's data collected for versions of

the network with di�erent numbers of �lters [65]. Another hyperparameter in the

Conv2D layer is the convolutional kernel used for the convolution step; we use the

Keras default, which is the Glorot uniform initializer.

Consider a Conv2D layer with kernel size 3 × 3 and d �lters. As shown in

Figure 3.2, the passage of data through a convolutional layer is as follows:

1. Pass the environment through the layer as an input state: view this as an

n× k × ℓ array.

2. Collect as many 3× 3× ℓ snapshots as possible; say s = (n− 2)(k − 2) is the

number of snapshots.

3. Take the dot product of each snapshot with the convolutional kernel to get s

vectors with ℓ entries each.

4. The vectors get rearranged into a n×k×d representation of the environment.

23

Environment

Encoder

State

Conv2D

Kernel size

Data snapshots
Dot product

with convolutional kernel
#
�l
te
rs

Output

Figure 3.2: Keras Conv2D layer

A neural network that consists of mostly convolutional layers is called a Convolu-

tional Neural Network (CNN). Convolutional layers are useful for detecting visual

patterns in data, as they are speci�cally designed to process data that come in the

form of multiple arrays [45].

Other important layers

The Keras Dense layer attempts to match relationships between any two input fea-

tures [16]. This is in contrast with Conv2D layers, which look at local relationships.

The Keras Flatten layer �attens input into one-dimensional data. Since convolu-

tional layers are designed speci�cally for multidimensional data, Flatten layers are

a way to pass convolutional layer outputs to other layer types, such as the Dense

layer.

3.1.2 Tree search

This section outlines two types of tree search related to our neural network.

The �rst tree search, Monte Carlo Tree Search, is a well-known search algorithm

24

used in decision processes. The second tree search, AlphaZero Tree Search, is a

modi�cation of Monte Carlo Tree Search.

Monte Carlo Tree Search

Monte Carlo methods rely on repeated random sampling to estimate possible out-

comes of uncertain events. Monte Carlo Tree Search (MCTS) is an algorithm for

exploring game trees in search of optimal moves. Two key factors in MCTS are

exploration and exploitation. Exploration tends to favor exploring many new game

positions while exploitation favors looking deeper into moves known well. The fol-

lowing explanation of MCTS is based on the r(k, ℓ;n) game described in De�nition

28, where Player 1 is assigned the color red and Player 2 is assigned the color blue.

De�nition 32 (Game state). A game state is an environment within a game.

The attributes of a game state depend on the game being played. In the

r(k, ℓ;n) game, the game state consists of a complete graph of order n under some

(not necessarily proper) edge coloring using red, blue, and black. The current player

is also an attribute of the game state.

Next are some de�nitions for the set-up of MCTS in the Ramsey game.

De�nition 33 (Game tree node). A game tree node ti consists of an associated

game state gi, a number ni corresponding to the number of visits to this game tree

node, and numbers ri, bi, and di corresponding respectively to the number of red wins,

blue wins, and draws resulting from simulations from ti. Write ti = (gi, ni, ri, bi, di).

De�nition 34 (Root node). A game tree node is the root node if it corresponds

to the current (present) game state, i.e. if it corresponds to the game state for the

beginning of the tree search being conducted.

De�nition 35 (Incomplete node). A game tree node is incomplete if it is not a

terminal node and if there are unexplored legal moves from its corresponding game

state, i.e. if the node has potential children not yet added to the tree.

25

De�nition 35 notes the relationship between nodes and children. This notion

is related to the game tree's structure as a directed graph in which legal moves

between game states constitute edges.

De�nition 36 (MCTS temperature). The temperature of Monte Carlo Tree Search

is a nonnegative number c that determines how heavily the tree search favors an ex-

ploration based approach (exploring many new moves) as opposed to an exploitation

based approach (repeatedly visiting moves it already knows well). A low value of c

results in more exploitation while a high value of c results in more exploration.

The temperature c is chosen empirically. It is �xed at the beginning of the

search. There is not a set interval from which c should be chosen, as this varies

with di�erent games and implementations. Experimentation determines a value of

c appropriate for the desired level of exploration or exploitation.

The temperature a�ects the UCT score for nodes, which dictates the tree

search.

De�nition 37 (Upper Con�dence bound applied to Trees (UCT)). Let tm =

(gm, nm, rm, bm, dm) be a game tree node that is a descendant of root node t0 =

(g0, n0, r0, b0, d0). Suppose P0 is the current player in g0 and w is the percentage of

games P0 has won starting from tm. Suppose the parent of tm has been visited Nm

times. Let c be the temperature of the tree search. The UCT score for tm is de�ned

by

U(tm) := w + c

√
logNm

nm

De�nition 38 (Rollout). A rollout is a random simulation of gameplay from a

given game state; that is, a rollout is a set of moves selected at random until a

terminal game state is reached.

26

The two hyperparameters for MCTS are the temperature and the number

of rollouts to perform. Each rollout will correspond to a round of MCTS, and each

round of MCTS consists of the following steps:

1. Selection: Starting from the root node, select child nodes until an incomplete

node is reached. This node selection is based on the UCT score; the node

with the highest UCT score is selected at each step of the tree traversal. Note

that if the root node itself is incomplete, it will be selected.

2. Expansion: Randomly choose any unexplored move to make from the incom-

plete node's game state and add the corresponding child node to the tree.

3. Simulation: Complete a rollout from the child node's game state. Record the

result.

4. Backtrack: Travel back up the tree and update information for ancestors of

the child node.

As more rollouts are carried out, tree node statistics regarding outcomes (wins,

losses, draws) from a particular position become increasingly reliable. The number

N of rollouts is typically chosen in a way that balances computational expense

against the desire for reliable statistics, i.e. choosing the greatest number of rollouts

one can a�ord given computational constraints.

Example 13 (Example of using MCTS to play Ramsey game). This example shows

what a round of MCTS looks like on the r(3, 3; 5) game; see De�nition 28 for details

regarding the game. Suppose the current environment is as shown below:

0

1

23

4

27

It is currently Player 2's turn to choose some edge to color blue. Suppose 16 rounds

of MCTS have already been completed, and the tree is as shown in Figure 3.3. Let

t0 = (g0, 16, 7, 9, 0), where 7 = r0 is the number of red wins from this state and

9 = b0 is the number of blue wins from this state.

t0

t1 t2 t3
t4

t5 t6
t7

t10 t12 t15 t8 t13 t16 t9 t14 t11

Figure 3.3: A partial MCTS tree

1. Selection: Suppose t6 = (g6, 2, 1, 1, 0) is selected as having the highest UCT

score among {t1, t2, . . . , t7}.

2. Expansion: The game state g6 is shown below:

0

1

23

4

To expand the tree, randomly choose any unexplored legal move that might

be made next; suppose Player 1 colors {0, 4} red. Add the node t17 with

corresponding game state g17, shown below:

28

0

1

23

4

3. Simulation: Complete a rollout from g17. Suppose Player 1 (red) wins the

game. This corresponds to node t17 = (g17, 1, 1, 0, 0).

4. Backtrack: Update statistics for nodes t6 and t0:

� t6 = (g6, 2 + 1, 1 + 1, 1, 0) = (g6, 3, 2, 1, 0)

� t0 = (g + 0, 16 + 1, 7 + 1, 9, 0) = (g0, 17, 8, 9, 0)

△

The next type of tree search, AlphaZero Tree Search (AZTS), is closely

related to MCTS. While MCTS relies heavily on randomness, AlphaZero receives

some information from a neural network to guide the tree search.

AlphaZero Tree Search

The AlphaZero algorithm uses a modi�ed form of MCTS. The AlphaZero Tree

Search (AZTS) has hyperparameters for temperature and the number of rollouts,

similarly to MCTS. The nodes in AZTS have di�erent associated statistics based

on the neural network backing the AlphaZero agent.

De�nition 39 (Prior value of a move). Let s be a game state, and let f be the

neural network for the AlphaZero agent. Let m be a legal move from s. Suppose

f(s) = (P, v), where P is a probability distribution over legal moves from s. The

prior value of m is de�ned as P (m).

29

De�nition 40 (Value of a game state). Let s be a game state, and let f be the

neural network for the AlphaZero agent. Suppose f(s) = (P, v). The value of s is

de�ned as v.

De�nition 41 (AlphaZero game tree node). An AlphaZero (AZ) game tree node

zi consists of an associated game state gi, a positive integer ni corresponding to the

number of visits to this game tree node, and an accumulated value vi. The AZ game

tree node is denoted zi = (gi, ni, vi).

De�nition 42 (Expected value of AZ game tree node). Let zi = (gi, ni, vi) be an

AZ game tree node. The expected value Q of zi is

Q(zi) :=


vi
ni

if ni ̸= 0

0 otherwise

De�nition 43 (AlphaZero score). Let c be the temperature for AZTS. Let zt =

(gt, nt, vt) be an AZ game tree node with parent zs = (gs, ns, vs). Let mt be the move

made from gs to transition to gt. The AlphaZero (AZ) score zt is

A(zt) := Q(zt) +
c · P (mt) ·

√
ns

1 + nt

The overall steps for AZTS are similar to MCTS:

1. Selection: Starting from the root node, select child nodes until an incomplete

node is reached. This node selection is based on the AZ score; the node with

the highest AZ score is selected at each step of the tree traversal. Note that

if the root node itself is incomplete, it will be selected.

2. Expansion: From the incomplete node, select the unexplored move with the

highest prior value and add the corresponding child node to the tree.

3. Simulation: Determine and record the value of the child node game state.

30

4. Backtrack: Travel back up the tree and update information for ancestors of the

child node. At each step of this process, the accumulated value of each node

should be subtracted from its parent to account for the change in perspective

due to players taking turns.

The move that is selected by the agent after completing all rollouts is simply the

move corresponding to the child of the root node that has the most recorded visits.

This is a reliable way to select a move because nodes with several recorded visits

will have an expected value that is not only high but also trustworthy.

Example 14 (Example of using AZ tree search to play Ramsey game).
z0

z1 z2 z3 z4
z5 z6 z7

z10 z12 z15 z8 z13 z16 z9 z14 z11

Figure 3.4: A partial AZTS tree

This example shows what a round of AZTS looks like on the r(3, 3; 5) game;

see De�nition 28 for details regarding the game. Suppose the current environment

is as shown below:

0

1

23

4

It is currently Player 2's turn to choose some edge to color blue. Suppose 16 rounds

31

of AZTS have already been completed, and the tree is as shown in Figure 3.4. Let

z0 = (g0, 16, 0.25).

1. Suppose z6 = (g6, 2, 0.7) is selected as having the highest AZ score among

{z1, z2, . . . , z7}, where g6 is shown below:

0

1

23

4

2. Expansion: Suppose the prior values for each valid move from g6 are given

below:

m {0, 2} {0, 3} {0, 4} {1, 2} {1, 3} {2, 4}

P (m) 0.18 0.12 0.2 0.35 0.08 0.07

The move {1, 2} is already represented by node z14 on the tree, so select the

move {0, 4} as the unexplored move with the highest prior value. Add the

node z17 with corresponding game state g17 to the tree, where g17 is shown

below:

0

1

23

4

3. Simulation: Let f be the neural network for the AlphaZero agent. Suppose

f(g17) = (P,−0.23). Record the statistics for z17, so z17 = (g17, 1,−0.23).

32

4. Backtrack: Update statistics for ancestors, so

z6 = (g6, 2 + 1, 0.7 + 0.23) = (g6, 3, 0.93)

z0 = (g0, 16 + 1, 0.25− 0.93) = (g0, 17,−0.68)

△

Tree search is a major component of several board game software imple-

mentations. The next section describes the development of a high-performance Go

program.

3.1.3 Reinforcement learning and the game of Go

AlphaGo was �rst trained to play Go on a vast set of human-generated data.

The data set included 30 million board positions and moves made by experts from

those positions [65]. After this initial training, more improvements were made by

using self-play. During self-play, moves were selected in accordance with a Monte

Carlo Tree Search [65]. By completing thousands of high-level games in this way,

more data were generated in order to further improve the network. AlphaGo's

victory over Fan Hui in 2015 made it the �rst Go program to defeat a professional

Go player without any handicaps; furthermore, AlphaGo went on to defeat the even

higher-ranked Lee Sedol, widely considered one of the best Go players in the world,

in 2016 [65].

AlphaGo consists of two networks, one each for policy and value. Policy

corresponds to actions which might be taken in a particular game state, i.e. the

policy network dictates which move the program should make at a particular point

in time. The value network estimates the overall value of the game state for the

player, i.e. whether it appears the player is on track to win (a high value) or lose

(low value). Value thus corresponds to the concept of reward in the reinforcement

33

learning cycle. Both the policy network and the value network for AlphaGo were

trained on the same data set. Further improvements to the trained version of

AlphaGo were made through self play with MCTS.

AlphaGo Zero is an algorithm based on AlphaGo with some key di�erences.

The �rst such di�erence is that AlphaGo Zero consists of one network with two

separate outputs, as opposed to two separate networks each with their own output.

The two outputs from the AlphaGo Zero network are still policy and value as

previously described.

Another key di�erence, perhaps the most signi�cant, is in the training pro-

cess. While AlphaGo relied on expert-level, human-generated data, AlphaGo Zero

learned entirely from scratch by using self play to generate its own data set. Through-

out self-play, moves were selected in accordance with AZTS. At �rst, the outputs

for policy and random were seemingly random, but as more games were carried out

(and the network weights adjusted accordingly), AlphaGo Zero saw tremendous im-

provement, surpassing all previous versions of AlphaGo in just 40 days [67]. This

was a major improvement over the already impressive growth of AlphaGo, which

took months to train [65].

AlphaZero, a more general version of AlphaGo Zero, was introduced in late

2017 [66]. Overall, AlphaZero has a similar structure with a few key di�erences

which allow the single algorithm to master several di�erent games, including go,

chess, and Shogi. The development of such a generalized approach to reinforcement

learning with turn-based games made a similar approach to the construction of

Ramsey counterexamples seem enticing.

3.2 Training a reinforcement learning agent to generate Ramsey graphs

The objective for each player in the r(k, ℓ;n) game is to avoid creating a

34

monochromatic clique in their color for as long as possible. Note that for certain

values of n and k, it is in fact possible for the game to end in a draw � for example,

when n = 5 and k = ℓ = 3, both players are able to avoid creating a monochromatic

triangle. This follows from the fact that r(3, 3) > 5. Similarly, other values of n

and k might guarantee that someone must lose the game. Considering r(3, 3) = 6,

it follows that for n ≥ 6 and k = ℓ = 3 one of the players will be forced to create a

triangle in their color.

A hypothetical example of optimal play

This section outlines an example of optimal play of the r(3, 3; 5) game. Play is

optimal when, if possible, it ends in a draw. If a draw is not possible, play is

optimal when as many edges as possible are colored before a loss is declared. Let

the vertices of the game graph be labeled using {0, 1, 2, 3, 4}:

0

1

23

4

1. Player 1 chooses any edge. Without loss of generality, Player 1 colors {0, 1}

red.

0

1

23

4

2. Player 2 avoids any edge incident to 0 or 1 since these edges present opportu-

nities for Player 1 to color a triangle red. Without loss of generality, Player 2

chooses {2, 3} to color blue.

35

0

1

23

4

3. Player 1 avoids any edges incident to 0 or 1 since these are �high risk� edges

that might lead to a red K3. Without loss of generality, Player 1 chooses

{2, 4} to color red.

0

1

23

4

4. Player 2 avoids any edges incident to 2 or 3 since these are �high risk� edges

that might lead to a blue K3. Without loss of generality, Player 2 chooses

{0, 4} to color blue.

0

1

23

4

5. Player 1 colors {3, 4} red because all of the other edges are risky.

0

1

23

4

36

6. Player 2 colors {1, 4} blue because all of the other edges are risky.

0

1

23

4

7. Player 1 can no longer avoid risky moves. {0, 2} will make {1, 2} danger-

ous later (and vice versa), similarly for {0, 3} and {1, 3}. Without loss of

generality, Player 1 chooses {0, 2} to color red.

0

1

23

4

8. Player 2 avoids {1, 2} because in this case, player 1 will likely choose {0, 3}

next, forcing blue to take {1, 3} and lose. Player 2 also avoids {1, 3} because

in this case, Player 1 will likely choose {0, 3} next, forcing Player 2 to take

{1, 2} and lose. Player 2 therefore chooses {0, 3} to color blue.

0

1

23

4

9. Player 1 avoids {1, 2} and chooses {1, 3} to color red.

37

0

1

23

4

10. Player 2 colors {1, 2} blue. The game ends in a draw.

0

1

23

4

3.2.1 Implementation

Environment and state

De�nition 44 (Ramsey game graph). A Ramsey game graph is an environment

at some turn of the r(k, ℓ;n) game. It is a complete graph of order n under some

(not necessarily proper) edge coloring χ : E(Kn) → {red, blue, black}.

Each Ramsey game graph must be encoded as a state to provide as input for a

neural network. Recall from Section 3.1 that this encoding is a subjective process.

It is important to capture features of the environment that are particularly relevant

to the objective of the game. For the r(k, ℓ;n) game, it seems useful to encode

information about monochromatic cliques within the environment. The following

de�nitions lead to the encoding scheme in our implementation.

De�nition 45 (ωχ(e)). Let G be a Ramsey game graph, and let e ∈ E(G). De�ne

ωred(e) := max{p : e is part of a red Kp},

38

and

ωblue(e) := max{p : e is part of a blue Kp}.

De�nition 46 (Rt, Bt). Let G be a graph and let χ : E(G) → {red, blue, black} be

an edge coloring of G. De�ne

Rt := {e ∈ E(G) : ωred(e) = t},

and

Bt := {e ∈ E(G) : ωblue(e) = t}.

Next is the de�nition of our encoding scheme used for the Ramsey game.

De�nition 47 (Encoding scheme for r(k, k;n) game). The environment at each

turn of the r(k, k;n) game is encoded as a sequence M1,M2, . . . ,M2k−1 of n × n

matrices, where for 1 ≤ t ≤ k − 1 the matrices are speci�ed as follows:

M1
i,j =


1 if {i, j} is black

0 otherwise

M2t
i,j =


1 if {i, j} ∈ Rt+1

0 otherwise

M2t+1
i,j =


1 if {i, j} ∈ Bt+1

0 otherwise

A similar scheme might be used for the r(k, ℓ;n) game with k ̸= ℓ, but only

the r(k, k;n) scheme is considered here.

39

Example 15 (Example of encoding scheme). ARamsey game graph for the r(3, 3; 5)

game is shown below:

0

1

23

4

Its encoding M = M1,M2,M3,M4,M5 is as follows:

M =





0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

1 0 0 0 0

0 1 1 0 0





0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0





0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

0 1 0 0 1

1 0 0 1 0





0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0





0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




△

The data encoded from gameplay could be augmented by including data cor-

responding to relabelings of graphs. Our implementation does not do this. AlphaGo

exploits board symmetries [65], so this is an approach worth considering. AlphaZero

does not make use of symmetry since the rules of chess are asymmetric [66], so its

training set is not augmented.

Agent

In the reinforcement learning cycle, the agent receives information about its envi-

ronment in order to take action. The agent in our implementation uses a neural

network to select an action.

40

Network structure

The AlphaZero network is a Convolutional Neural Network (CNN). The net-

work we attempt to implement is a heavily reduced version of the one implemented

for AlphaZero in order to account for our relative hardware constraints (see Ta-

ble 3.1), so our network is also a CNN. The main building block of our network

is thus the Keras Conv2D layer. AlphaZero used a minimum of 40 convolutional

layers leading up to the output, across what they describe as convolutional blocks

and residual blocks in the network [66]. Our network consists of 8 convolutional

layers, each with ReLu activation, which is the most popular activation function for

convolutional layers. Each convolutional layer in our network has a kernel size of

3 × 3 and 32 �lters. For comparison, AlphaZero uses 256 �lters. The output from

these convolutional layers is then passed through the layers corresponding to the

policy and value outputs.

Policy has its own Conv2D layer, this time with only 2 �lters. This output

is passed to a Flatten layer and two Dense layers. The penultimate policy Dense

layer uses a ReLu activation while the �nal Dense layer uses a Softmax activation

in order to output a probability distribution over the legal moves from a game

state. Similarly, value has its own Conv2D layer, this time with just 1 �lter. It

is then passed to a Flatten layer followed by two Dense layers. The last Dense

layer uses a tanh activation, which is well-suited for binary classi�cation problems

[57] and outputs a value in the interval (−1, 1). Figure 3.5 shows the architecture

of our network. The overall structure of our network is derived largely from Max

Pumperla and Kevin Ferguson's Deep Learning and the Game of Go [57]. Our code

can be found on GitHub (Appendix I) and we encourage the reader to look there for

any details regarding the network that might have been accidentally omitted here.

41

Input

Conv2D Conv2D Conv2D Conv2D

Conv2D Flatten Dense Dense p = [p1 · · · pm]

Conv2D Flatten Dense Dense v ∈ (0, 1)

Policy head

Value head

Figure 3.5: Sketch of network

Training cycle

The training cycle consists of several batches of self-play to generate data followed

by adjustment of network weights using this data. For our hardware (see Table 3.1)

playing the r(3, 3; 5) game, a batch size of 2,000 games provides a balance between

amount of data generated and time required to generate the data. Throughout self-

play, moves are selected in accordance with AZTS with a temperature of c = 0.4

and 500 rollouts. AlphaGo Zero reported using 1,600 simulations to select each

move, which required less than a half second for each search [67]. To select a move,

our agent completes 500 rounds of AZTS and selects the root child node that has

the most recorded visits.

Component Our computer part DeepMind AlphaGo [65] �nal version part

Processor AMD FXTM-8120 Eight-core Processor 3.10 GHz 48 CPUs total

RAM Corsair Vengeance Pro 32 GB (4× 8 GB) DDR3 1600 MHz Not listed

GPU NVIDIA GeForce RTX 2070 Super 8 GPUs total

Table 3.1: Computer hardware comparison

3.3 Simulations

We trained an agent to play the r(3, 3; 5) game. Table 3.2 shows the devel-

opment of the agent. The number of games refers to the number of self-play games

42

Agent name # games # samples c N Time

init N/A � initialized agent

v1 5,000 45,000 0.4 500 1,500 min

v2 2,500 22,320 0.4 500 700 min

Table 3.2: Development of r(3, 3; 5) agent.

Player 1 Player 2 Games played P1 losses Draws Avg edges colored

init init 100 1 5 8.47

v1 v1 100 20 17 9.8

v2 v2 100 25 58 9.69

Table 3.3: Performance improvements for the r(3, 3; 5) agent

completed, and the number of samples corresponds to the number of game states

generated by the agent across all games of self-play. Values of c and N correspond

respectively to temperature and rollouts for AZTS, and the time recorded is the

amount of time it took to complete self play. Note that v1 is an improved version

of init; that is, init completed 5,000 games of self-play, and this data was used to

train the agent that would become v1. Similarly, v2 is an improved version of v1.

Table 3.3 shows performance improvements for the agent playing the r(3, 3; 5)

game. Note that init is di�erent from a purely random bot in that its moves are

in fact still backed by the AZTS. The games played for evaluation are completed

with the �rst move being chosen at random. After only 7,500 games of self-play

(just over 36 hours of training time), our agent is able to achieve a draw over half

of the time.

Our results for the r(3, 3; 5) game are encouraging enough that we attempted

to extend the experiment to playing the r(4, 4; 17) game. With our implementation,

43

one r(4, 4; 17) game with c = 0.4 and n = 250 took over 5 hours, with only 127 of the

168 edges being colored before a loss. Our implementation thus does not scale well

to playing on larger graphs. These constraints ultimately changed the direction of

the project, as described in Section 3.5. The next section includes recommendations

for overcoming these challenges.

3.4 Recommendations for continuing project

Training a reinforcement learning agent to construct larger Ramsey graphs

seems to be a worthwhile task. For readers interested in continuing this project,

some recommendations are o�ered here.

� Avoid Python's deepcopy function if possible. It is very computationally ex-

pensive and slow, as it constructs a new compound object and then recursively

populates the new object with copies of the child objects found in the original

object. Our implementation regularly calls deepcopy to create copies of our

custom GameState objects, which involves copying a large amount of data.

As seen in our code on GitHub, deepcopy is called primarily during the tree

search to avoid modi�cation of game states throughout that process. We are

not sure how to avoid it ourselves, but it is likely possible. More experienced

programmers might also consider manually de�ning a special __deepcopy__()

method for the GameState class. There are likely many other opportunities

for optimization in our code.

� Experiment with network architecture and hyperparameters.

� Consider a solitaire approach in which a solitaire agent chooses an edge and its

color (as opposed to strictly alternating). It is unclear whether the algorithm

might support such an approach or if changes might need to be made, so

we disregard this approach in favor of a truly 2-player game. The solitaire

44

approach might be helpful for training a bot to generate asymmetric Ramsey

counterexamples since such graphs would require di�erent numbers of red and

blue edges.

� Experiment with reward structure. We chose ±1 to mirror Go implementation

as closely as possible. Another reward scheme worth considering (especially

with a solitaire game) would be awarding the agent based on the total number

of edges colored.

� Find other ways to speed up self-play, which is a CPU-intensive task. A GPU

speeds up training of the network since it processes data very quickly, but

generating the data for training is a major bottleneck of the project.

3.5 A change of direction

Due to the performance slowdown from the r(3, 3; 5) game to the r(4, 4; 17)

game, it is tempting to abandon a �learn from scratch� approach and instead intro-

duce some hints to the agent. In order for hints to apply to graphs of varying orders,

hints should ideally be as general as possible. We therefore consider commonalities

between the R(3, 3; 5) and R(4, 4; 17) graphs. The R(4, 4; 17) graph is in Figure 2.2,

and the R(3, 3; 5) graph is isomorphic to C5.

An interesting pattern emerges when one considers the subgraph induced by

the neighbors of any particular vertex. In the R(3, 3; 5) graph, this subgraph (for

every vertex) is isomorphic to K2, which is itself a R(2, 3; 2) graph. Perhaps more

interesting is the case of R(4, 4; 17), as the neighborhood of each vertex in this graph

induces the same R(3, 4; 8) graph. While this observation may not be completely

surprising given Theorem 4, it does lead to another interesting problem in graph

theory: The Trahtenbrot-Zykov problem, described in Chapter 4.

45

CHAPTER 4

THE TRAHTENBROT-ZYKOV PROBLEM

In 1963, Zykov [1] posed the following problems:

Question 1. For which graphs F is there a graph G such that Gv
∼= F for every v

in V (G)?

Question 2. For which graphs F are there only in�nite G with Gv isomorphic to

F for every v ∈ V (G)?

Zykov notes that the �rst question was previously stated in a less general form

by B.A. Trahtenbrot. The problem is thus frequently referred to as the Trahtenbrot-

Zykov (T-Z) problem.

This chapter highlights seminal results related to the T-Z problem as well

as examples of graphs related to those results. Section 4.1 brie�y surveys some

foundational papers related to the T-Z problem. Section 4.2 identi�es some variants

of the T-Z problem, including a conjecture of Szamkoªowicz. Section 4.3 includes

some existence results, while Section 4.4 focuses on non-existence results. Section

4.5 outlines a Python program that, given some graph F , attempts to construct a

graph G such that Gv
∼= F for every v ∈ V (G). This program is used in Section 4.6

to address graphs F of order 7 (related to a paper by Hall [31]) and in Section 4.7,

which contains constructions from the program when F is a Ramsey graph.

Graphs in which all neighborhood induced subgraphs are isomorphic are

sometimes called local graphs .

46

De�nition 48 (Locally F ; realizable; realization). A graph G in which Gv is iso-

morphic to F for every v ∈ G is said to be locally F, and F is said to be realizable,

with G being a realization of F.

If G is �nite and locally F , then F might be said to be f -realizable. In some

contexts, if G is locally F , G might also be said to have constant link F , with F

being a link graph.

The T-Z problem may also be considered in terms of families of graphs. Let

F be a family of graphs. A graph G is locally F if for every v ∈ V (G), Gv is

isomorphic to some F ∈ F .

4.1 History

The complete graphs represent a class for which the Trahtenbrot-Zykov prob-

lem is trivial, as it is clear that Kn is locally Kn−1 for all n. Complete symmetric

multipartite graphs with all parts equal size are also trivially realizable; speci�cally,

Km,m,...,m, with n parts, is realized by Km,m,...,m with n + 1 parts. The complete

graphs and complete multipartite graphs are the only trivial cases of the T-Z prob-

lem.

Bulitko [12] proves that there is no general algorithm which, given any set of

input graphs, will always correctly determine whether these graphs are realizable or

not. This is a major result regarding the T-Z problem and is addressed in greater

depth in Chapter 5.

Two papers by Brown and Connelly [9, 10] in 1973 and 1975, respectively, are

frequently cited throughout the literature. The following de�nition is introduced to

discuss their results.

De�nition 49 (m-ad). An m-ad is a tree with m leaves and only one vertex of

degree greater than two.

47

Example 16 (m-ad). Below is one example each of a 3-ad, 4-ad, and 5-ad, respec-

tively.

△

In [9] Brown and Connelly credit Zykov [1] for the T-Z problem in general.

Brown and Connelly use a topological approach to obtain results about graphs

which are locally a disjoint union of paths as well as graphs which are locally m-ad.

Speci�cally, they state existence conditions for graphs that are locally F , where F

is a �nite disjoint union of paths, and graphs that are locally F for F a �nite m-ad.

The construction methods of Brown and Connelly are implemented in later papers

both by themselves and others (e.g. Hall [31]).

In 1974, Chilton et al. showed that Cn is realizable for all n, n ≥ 3 [15].

They establish conditions for graphs that are locally Ck for k ∈ {3, 4, 5}. They also

give additional requirements when k ≥ 6. The proofs are constructive in nature and

use notions of graph automorphisms and some geometry. Cycles are an interesting

family for the T-Z problem, as early published results regarding them were not

correct; in fact, [15] was published to correct an erroneous result [3] regarding the

realizability of some cycles.

Among realizability results for well-known classes of graphs are graphs that

are locally Petersen [30], locally paths (of potentially varying orders) [55], and locally

regular [85]. Some of the earliest papers on the T-Z problem [69, 68, 70], published

as early as 1965, address locally Hamiltonian graphs.

48

Another local property studied is that of locally connected graphs, namely

in the 1974 paper by Chartrand and Pippert [13]. Neither the property of being

connected nor the property of being locally connected implies the other, as seen

in Example 17. Chartrand and Pippert also explore the relationship between local

connectivity and planarity. Su�cient conditions for locally connected graphs are

stated in terms of degree sums and minimum degree.

Example 17. The graph mKn consists of m disjoint copies of Kn. For m > 1, it is

locally connected but not connected. The graph 4K3 is shown below as an example:

On the other hand, Cn, n ≥ 4 is connected but not locally connected. △

In [31], Hall resolves the T-Z problem for all graphs of up to order 6; that is,

for all graphs G such that |G| ≤ 6, it is determined whether or not G is realizable.

These results are then used to determine all graphs of order up to 11 which are

realizations of some graph, i.e. all graphs H with |H| ≤ 11 such that H has

constant link. While Hall states some general theorems regarding the existence or

non-existence of graph realizations, some graphs are still left to ad-hoc methods for

resolving the problem. Section 4.4 includes some proofs of results that were omitted

from Hall's paper.

It is worth noting that every vertex-transitive graph (De�nition 15) realizes

some graph. However, vertex transitivity is not required for a graph to be a realiza-

tion of some other graph; see [84] and [8] for some examples. Later in this chapter

is another example, a non-vertex-transitive realization of a Ramsey graph.

49

4.2 Variants of the T-Z problem

There are several variants of the Trahtenbrot-Zykov (T-Z) problem. One

of these variants considers subgraphs induced by more distant neighbors of each

vertex.

De�nition 50 (kth neighborhood). Let G be a graph, and let u ∈ V (G) be arbitrary.

Let k ∈ N. The kth neighborhood of u in G, denoted Nk
G(u), is de�ned as

Nk
G(u) := {v ∈ V (G) : dG(u, v) = k}.

Gk
u denotes the subgraph of G which is induced by Nk

G(u).

Question 3. Let k ∈ N. For which graphs F does there exist a graph G such that

Gk
u
∼= F , for every u ∈ V (G)?

The original T-Z problem corresponds to k = 1.

Szamkoªowicz addresses Question 3 in [73] and [72]. In [73] he determines

graphs for which the kth neighborhood of every vertex is edge-free. He extends these

results to properties regarding the chromatic number of a graph, in particular draw-

ing connections to K®nig's Theorem. In [72] he o�ers conjectures and observations

related to these conjectures; in particular, he conjectures the following:

Conjecture 1 (Szamkoªowicz [72]). Let G be a graph, and let K(G) = {k ∈ N :

V (Gk
u) ̸= ∅}. Let n ∈ N. If G (Cn) := {G : ∀u ∈ V (G),∀k ∈ K(G), Gk

u
∼= Cn}, then

G (C3) = {K4} and G (Cn) = ∅ for n ≥ 4.

While the T-Z problem asks about graphs such that all neighborhoods are

the same, others have researched graphs such that all of the neighborhoods are

di�erent.

Question 4. Characterize graphs G for which Gu and Gv are not isomorphic for

all u, v ∈ V (G).

50

Sedlá£ek addresses Question 4 in [63]. The paper includes a minimal graph

with all neighborhoods di�erent from one another and furthermore proves that for

all n ≥ 6, there is a graph of order n in which all of the neighborhoods are non-

isomorphic. In [64] Sedlá£ek focuses on planar and outerplanar graphs in which all

of the neighborhoods are non-isomorphic.

Another variant of the T-Z problem considers subgraphs induced by neigh-

bors of edge endpoints, i.e. edge neighborhoods.

Question 5. Let G be a graph with e ∈ E(G). Let Ge denote the subgraph of G

induced by the set of all vertices of G which are not endpoints of e and are adjacent

to at least one endpoint of e. Characterize the graphs F with the property that there

exists a graph G such that Ge is isomorphic to F for each edge e of G.

Zelinka addressed Question 5 in 1986 [80]. Let Ne denote graphs F for which

there is some G with every edge neighborhood isomorphic to F . Zelinka proves that

Ne includesKn for all n; Km,n for allm,n; Ck for k ∈ {3, 4, 6, 8}; and Cn, n ∈ {3, 4},

among others. Sedlá£ek also addresses Question 5 in [63] where he demonstrates

the nonexistence of certain path edge-neighborhood graphs, i.e. that for 6 ̸= d ≥ 4

there is no graph G that has Pd as the edge neighborhood of each e ∈ E(G).

Zelinka also researches the T-Z problem in the context of digraphs. In [82]

Zelinka addresses all digraphs of order at most 3 whose neighborhoods are all iso-

morphic.

Readers interested in more history regarding the T-Z problem might consider

the survey paper by Hell [36] as well as the paper by Sedlá£ek [62]. Some of their

results are also included in Sections 4.3 and 4.4 to follow.

4.3 Existence results

As previously noted, the complete graphs and the complete multipartite

51

graphs with equal parts represent classes of graphs that are trivially realizable.

Other large classes of graphs are realizable, including (most) paths and cycles.

Theorem 8 (Paths and cycles [36]). All paths and cycles, with the exception of P3,

are f -realizable.

Hell [36] also includes results regarding realizability based on some graph

operations, including disjoint unions, Cartesian products, conjuction, and composi-

tion of graphs. These methods of producing realizations of graphs based on other

graph realizations lead to a more general result, which is that any graph can be

made realizable.

Theorem 9 (Any graph can be made realizable [36]). For every graph L, there

exists a graph L′ such that L ∪ L′ is realizable.

A natural corollary of Theorem 9 is that every connected graph is a compo-

nent of some link graph.

As an example of a graph related to Theorem 9, consider P3 ∪ K2. Hall

[31] shows how one might construct �nite or in�nite realizations of P3 ∪K2. There

are in�nitely many realizations of P3 ∪ K2 (�nite and in�nite) despite one of its

components being isomorphic to P3, which is non-realizable. The non-realizability

of P3 is established in the next section.

Edge subdivision is another simple way to produce link graphs, as described

in the following theorem.

Theorem 10 ([36]). Every graph G admits a realizable subdivision G′. Furthermore,

G′ can be chosen so that all of its subdivisions are also realizable.

Hell notes that Theorem 10 was discovered independently by himself, Bulitko,

and Brown and Connelly.

52

4.4 Non-existence results

Theorem 8 notes that P3 is not f -realizable. More speci�cally, P3 is not

realizable at all.

Proposition 1. Let P3 be a path on 3 vertices. There is no graph G such that

Gv
∼= P3 for every v ∈ V (G).

Proof. Let G be a graph and let v0 ∈ V (G). Suppose Gv0
∼= P3 as shown below:

v0

v1 v2 v3

Consider v1. It requires one more neighbor for a P3 neighborhood. Furthermore,

this neighbor must be adjacent to either v0 or v2. Since Gv0
∼= P3 and Gv2

∼= P3, it

follows that the construction cannot be completed. Hence P3 is not realizable.

Some new notation is required for the next results. Let L be a graph, and let

B ⊆ N be non-empty. Let DL(B) denote the set of vertices of L which have degree

b for some b ∈ B; that is,

DL(B) = {v ∈ V (L) : deg(v, L) ∈ B}.

It is understood that DL(k) := DL({k}), k ∈ N. As before, NL(v) denotes the open

neighborhood of v in L. In this open neighborhood, vertices of a certain degree

might be considered, so de�ne

NL(v,B) := NL(v) ∩DL(B).

Next, let G be a graph and let u ∈ V (G) be arbitrary. Let Du(B) denote

the set of vertices {v ∈ V (Gu) : deg(v,Gu) ∈ B}. Similarly, Nu(v) := {w ∈ V (Gu) :

{v, w} ∈ E(Gu)}. Let Guv denote the subgraph induced by Nu(v).

53

The following example demonstrates the notation introduced so far in this

section.

Example 18. Let G be the graph below:

0

1
2

3

4

5
6

7

Let B = {2, 3}. Observe the following:

DG(B) = {v ∈ V (G) : deg(v,G) ∈ B}

= {1, 2, 3, 5, 6, 7}

D0(B) = {v ∈ G0 : deg(v,G0) ∈ B}

= {4}

NG(0, B) = NG(0) ∩DG(B)

= {1, 4, 5, 7} ∩ {1, 2, 3, 5, 6, 7}

= {1, 5, 7}

N0(4) = {v ∈ G0 : {4, v} ∈ E(G0)}

= {1, 5}

△

Lemma 2. If G is a graph with {u, v} ∈ E(G), then Guv = Gu ∩Gv.

Proof. Let {x1, y1} ∈ E(Guv). Since x1 is adjacent to both u and v, x1 ∈ Gu ∩Gv.

Similarly, y ∈ Gu ∩Gv. Hence {x1, y1} ∈ E(Gu ∩Gv).

Next, let {x2, y2} ∈ E(Gu ∩Gv). It follows that x2 is adjacent to both u and

v, so x ∈ V (Guv). Similarly y2 ∈ V (Guv), so {x2, y2} ∈ E(Guv).

54

Corollary 3. If G is a graph with {u, v} ∈ E(G), then Guv = Gvu.

Proof. Observe that

Guv = Gu ∩Gv

= Gv ∩Gu

= Gvu.

Hence Guv = Gvu.

The next theorem uses degree arguments and techniques that in�uence other

frequently cited papers on the T-Z problem, namely those by Brown and Connelly

[9] and Hall [31]. The proof presented here uses di�erent notation but follows the

same general ideas of the original proof.

Theorem 11 (Theorem 1 of Blass, Harary, Miller[8]). Let k ∈ N0 and suppose L

is a link graph with DL(k) non-empty. For B ⊆ N, de�ne

fL(k,B) := min
v∈DL(k)

|NL(v,B)|

and

FL(k,B) := max
v∈DL(k)

|NL(v,B)|.

If B satis�es

k < fL(k,B) + FL(k,B)

then there is some edge {x, y} ∈ E(L) such that x, y ∈ DL(B).

Proof. Suppose G has constant link L, and let u ∈ V (G). Let v ∈ Gu be such that

|Nu(v,B)| = max
x∈Du(k)

|Nu(x,B)|,

i.e.

|Nu(v,B)| ≥ |Nu(x,B)|

55

for every x ∈ Gu. Note that x ∈ Du(k) means x has degree k in Gu, where Gu
∼= L

since G has constant link L. Observe that

deg(u,Gv) = |Gvu|

= |Guv|

= k,

by de�nition of v. Also, since G has constant link,

min
x∈Du(k)

|Nu(x,B)| = min
x∈Dv(k)

|Nv(x,B)|.

By the assumption of the theorem,

k < min
x∈Du(k)

|Nu(x,B)|+ |Nu(v,B)|

= min
x∈Dv(k)

|Nv(x,B)|+ |Nu(v,B)|.

Now since

|Nv(u,B)| ≥ min
x∈Dv(k)

|Nv(x,B)|,

it follows that

k < |Nv(u,B)|+ |Nu(v,B)|.

Furthermore,

|Nv(u,B)|+ |Nu(v,B)| − |Nv(u,B) ∩Nu(v,B)| = |Nv(u,B) ∪Nu(v,B)|,

where Nv(u,B) ∪Nu(v,B) = V (Guv), and |Guv| = k. Thus

|Nv(u,B)|+ |Nu(v,B)| − |Nv(u,B) ∩Nu(v,B)| = k

i.e.

|Nv(u,B)|+ |Nu(v,B)| = k + |Nv(u,B) ∩Nu(v,B)|.

56

Now,

k < |Nv(u,B)|+ |Nu(v,B)|

k < k + |Nv(u,B) ∩Nu(v,B)|

0 < |Nv(u,B) ∩Nu(v,B)|,

so there must be some element w ∈ Nv(u,B) ∩ Nu(v,B). Note that this implies

{u, v} ∈ E(Gw). Furthermore,

deg(u,Gw) = |Gwu| = |Guw| = deg(w,Gu)

and

deg(v,Gw) = |Gwv| = |Gvw| = deg(w,Gv),

where deg(w,Gu), deg(w,Gv) ∈ B. Hence there is an edge {u, v} ∈ E(Gw) with

u, v ∈ Dw(B).

The paper by Blass, Harary, and Miller [8] addresses the realizability of

trees. The following example is one included in their original paper, with further

explanation included here.

Example 19 (Example from Blass, Harary, Miller [8]). Theorem 11 will be used

in two di�erent ways to show that this L is not realizable. The original paper [8]

gives just one example of suitable k and B.

0

2 3 4

5 6

1 7 8

First, let k = 2, B = {3} as suggested in the original paper. Relevant data are

shown below.

57

DL(2) = {3, 5, 7}

v ∈ DL(2) Nu(v,B) |Nu(v,B)|

3 {2, 4} 2

5 {4} 1

7 {4} 1

It follows that fL(2, {3}) = 1 and FL(2, {3}) = 2. Since 2 < 1 + 2, if L is a

link graph, there should be an edge in L such that both endpoints have degree 3 in

L. As this is not the case, L is not a link graph.

Next is another way to apply the theorem. Let k = 3, B = {2}. Relevant

data is shown below.

Du(3) = {2, 4}

v ∈ DL(2) Nu(v,B) |Nu(v,B)|

2 {3} 1

4 {3, 5, 7} 3

It follows that fL(3, {2}) = 1, FL(3, {2}) = 3 Since 3 < 1 + 3, if L is a link graph,

there should be an edge in L such that both endpoints have degree 2 in L. As this

is not the case, L is not a link graph. △

While Theorem 11 appears in a paper regarding the realizability of trees, it

also determines non-realizability of some non-tree graphs, as seen in the following

example.

Example 20. Let L be as shown below:

0

1

4
3

2
v 0 1 2 3 4

NL(v) {1} {0, 1} {1, 3} {2, 4} {1, 3}

58

Let k = 1, and let B = {3}. Next, DL(1) = {0}, and

fL(1, {3}) = FL(1, {3}) = 1,

since the only neighbor of 0 of degree 3 in L is 1.

By Theorem 11, if L is a link graph, there should be an edge in L such that

both endpoints have degree 3. As this is not the case, L is not a link graph. △

Next is a theorem that is a slight generalization of Theorem 11. Let B be a

family of graphs. Let G be a graph with u, v ∈ V (G). De�ne

Nu(v,B) := {w ∈ Gu : {v, w} ∈ Gu and Guw ∈ B}.

Theorem 12. Let B be a family of graphs. Suppose L is a link graph and let k ∈ N0

be such that D := DL(k) is non-empty. De�ne

fL(k,B) = min
v∈D

|NL(v,B)|

and

FL(k,B) = max
v∈D

|NL(v,B)|.

If B is a non-empty subset of L = {Lx : x ∈ V (L)} satisfying

k < fL(k,B) + FL(k,B)

then there is an edge {x, y} ∈ E(L) with Lx, Ly ∈ B.

Proof. Suppose G has constant link L. Let u ∈ V (G) be arbitrary and let v ∈ Du

be such that

|Nu(v,B)| = max
x∈Du

|Nu(x,B)|.

Note that because G has constant link,

min
x∈Dv

|Nv(x,B)| = min
x∈Du

|Nu(x,B)|.

59

Thus, by the assumption,

k < |Nv(u,B)|+ |Nu(v,B|.

By similar reasoning as above, Nv(u,B) and Nu(v,B) share a common element

w, i.e. w ∈ Nv(u,B) ∩ Nu(v,B). Note that w ∈ Nv(u,B) ⇐⇒ Gvw ∈ B and

w ∈ Nu(v,B) ⇐⇒ Guw ∈ B. As Gvw = Gwv and Guw = Gwu, it follows that

Gwv, Gwu ∈ B. Thus {u, v} ∈ Gw is the desired edge with Gwu, Gwv ∈ B.

Next is a simple example of Theorem 12 applied to a potential link graph.

Example 21. Let L be as in Example 20:

0

1

4
3

2

The neighborhood subgraphs in L are outlined below:

v 0 1 2 3 4

Lv K1 K3 K2 K2 K2

Let k = 1, and let B = {K3}. Next, DL(1) = {0}, and

min
v∈DL(1)

|NL(v,B)| = max
v∈DL(1)

|NL(v,B)| = 1,

since the only neighbor of 0 with K3 as its neighborhood in L is 1.

By Theorem 12, if L is a link graph, there should be an edge in L such that

both endpoints have K3 as a neighborhood. As this is not the case, L is not a link

graph. △

The next example shows a graph which is non-realizable by Theorem 12 but

is not ruled out as a link graph by Theorem 11.

60

Example 22. Consider the graph L shown below:

0 2 5

1 3 4 6

It is �rst veri�ed that L cannot be ruled out as a link graph by Theorem

11. If k = 1, then DL(1) = {1, 2}, where NL(1) = NL(2) = {3}. Next, observe the

following:

B {0} {1} {2} {0, 1} {0, 2} {1, 2} {0, 1, 2}

NL(1, B) ∅ ∅ {3} ∅ {3} {3} {3}

It follows that fL(1, B) = FL(1, B) = 1 for all choices of B such that 2 ∈ B. The

triangle component of L will ensure that there is an edge with both endpoints in B.

Now let k = 2. Next,

DL(2) = {3, 4, 5, 6}

NL(3) = {1, 2}

NL(4) = {5, 6}

The following table excludes data for vertices 5 and 6 since the data will be similar

to vertex 4.

B NL(3, B) NL(4, B)

{0} ∅ ∅

{1} {1, 2 } ∅

{2} ∅ {5, 6 }

{0, 1} {1, 2 } ∅

{1, 2 } {1, 2 } {5, 6}

{0, 1, 2 } {1, 2 } {5, 6 }

61

The assumptions of the theorem are satis�ed whenever both 1 and 2 are in B, i.e.

for B = {1, 2} and B = {0, 1, 2}. In both cases, fL(2, B) = FL(2, B) = 2. Any edge

will satisfy the requirement that both endpoints have a degree in B.

Next, it is veri�ed that L is determined by Theorem 12 to be non-realizable. Let

k = 1 and B = {K2}. Next, DL(1) = {1, 2}. The neighborhood induced subgraphs

of L are outlined below:

x 0 1 2 3 4 5 6

Lx ∅ K1 K1 K2 K2 K2 K2

It follows that f(1, {K2}) = F (1, {K2}) = 1 so the assumptions of Theorem

12 are satis�ed. There is no edge in L such that the neighborhood of each endpoint

induces K2, so L is not a link graph. △

Hall [31] uses techniques similar to those of Blass, Harary, and Miller. The

following theorem rules out realizability based on neighborhood-induced subgraphs

within the potential link graph itself.

Theorem 13 (Theorem B of Hall [31]). Let L be a link graph and let B ⊆ {Lx :

x ∈ V (L)} be non-empty. Let B = {b ∈ V (L) : Lb ∈ B}. Let C =
⋃

b∈B NL(b) and

let C = {Lc : c ∈ C}. For each Y ∈ C , there is an edge {a, b} ∈ E(L) with La
∼= Y

and Lb ∈ C .

Proof. Let G be a graph that is locally L. Let a ∈ V (G) be arbitrary. Let Y ∈ C

and let c ∈ Ga be such that Gac
∼= Y . Note that c ∈ Ca. c has a neighbor in Ga,

say b, such that Gab ∈ B, i.e. b ∈ Ba. Since Gab ∈ B, Gba ∈ B so a ∈ Bb. Since

{a, c} ∈ E(Gb), it follows that c ∈ Cb, i.e. Gbc ∈ C . Next, in Gc it follows that

Gca = Gac
∼= Y , and Gcb = Gbc ∈ C . Hence in Gc, the edge {a, b} yields the desired

result.

The next example serves to illustrate the notation of Theorem 13. Theorem

13 does not eliminate the possibility of the graph in the example being a link graph.

62

Example 23. Let L be the graph shown below:

1 3 4 6

0 2 5

To show that L is not ruled out as a possible link graph by Theorem 13, it must

be veri�ed that a satisfactory edge {a, b} exists for each choice of B. First, observe

the present neighborhood induced subgraphs:

x 0 1 2 3 4 5 6

Lx ∅ ∅ K3 K1 K1 K2 K1

Next is data regarding neighborhood subgraphs induced by the endpoints of each

edge in L:

{x, y} {2, 3} {2, 4} {2, 5} {5, 6}

Lx K3 K3 K3 K2

Ly K1 K1 K2 K1

The following table considers each possible choice of B ⊆ L = {Lx : x ∈ V (L)}

and identi�es a satisfactory edge {a, b}.

B B C C Y {a, b}

{∅} {0, 1} {∅} {∅}

{K3} {2} {3, 4, 5} {K1, K2} K1 {5, 6}

K2 {5, 6}

{K1} {3, 4, 6} {2, 5} {K3, K2} K3 {2, 5}

K2 {2, 5}

{K2} {5} {2, 6} {K3, K1} {2, 4}

{∅, K3} {0, 1, 2} {3, 4, 5} already done �

any {∅, Lx} done.

63

{K3, K1} {2, 3, 4, 6} {2, 3, 4, 5} {K3, K1, K2} K3 {2, 3}

K1 {5, 6}

K2 {5, 6}

{K3, K2} {2, 5} {2, 3, 4, 5, 6} {K3, K1, K2} done

{K1, K2 {3, 4, 5, 6} {2, 5, 6} {K3, K2, K1} done

{∅, K3, K1} {0, 1, 2, 3, 4, {2, 3, 4, 5} done

5, 6}

{K3, K1, K2} {2, 3, 4, 5, 6} {2, 3, 4, 5, 6} {K3, K1, K2} done

It follows that Theorem 13 does not identify L as non-realizable. △

Next is an example of a graph that is not realizable based on Theorem 13.

Example 24. Let L be the graph from Example 22. Theorem 13 rules out the

possibility of L being a link graph. Let B = {K2}. Next,

B = {2}

C = {1, 3}

C = {K1}

Let Y ∼= K1. By Theorem 13, if L is a link graph, it should contain an edge {a, b}

such that La
∼= K1 and Lb

∼= K1. Since no such edge exists, L is not realizable. △

Hall expands on Theorem B in [31] by introducing Theorem BC, where �C�

might suggest the notion of clique. Theorem BC rules out realizability based on

vertices that induce cliques within the potential link graph. To state and prove

Theorem BC, some additional notation is needed.

Let G be a graph. De�ne KG,k := {Q ⊆ V (G) : G[Q] ∼= Kk}. That is, KG,k

consists of all vertex subsets in G that induce a clique of order k. For a vertex

v ∈ V (G), let Kv,k denote {Q ⊆ V (Gv) : Gv[Q] ∼= Kk}.

64

For a subset of vertices X ⊆ V (G), let GX denote the subgraph of L induced

by
⋂

x∈X NG(x), and call GX the intersection neighborhood of X in G.

Lemma 3. If y ∈ V (G) is arbitrary, and X ⊆ V (Gy), then GX∪{y} = (Gy)X .

Proof. First, show that V (GX∪{y}) ⊆ V ((Gy)X). Let u ∈ V (GX∪{y}). By de�nition

of GX∪{y}, u is adjacent to each vertex of X ∪ {y}. In particular, u is adjacent to

y, so u ∈ (Gy). Since X ⊆ V (Gy) and u is adjacent to each vertex of X, it follows

that u is adjacent to each vertex of X within Gy, so u ∈ V ((Gy)X).

Next, show V ((Gy)X) ⊆ V (GX∪{y}). Let u ∈ V ((Gy)X). It follows that u is

adjacent to y. Since X ⊆ V (Gy) and u is adjacent to each vertex of X within Gy,

it follows that u is adjacent to each vertex of X. Hence u is adjacent to each vertex

of X ∪ {y}, i.e. u ∈ V (GX∪{y}).

The proof of Theorem BC in [31] is omitted from the original paper. Our

own proof is included below.

Theorem 14 (Theorem BC in [31]). Let L be a link graph. Let B be a non-empty

subset of neighborhood-induced subgraphs of L such that BB ∈ KL,k for some k.

Suppose that for all Q ∈ KL,k − B, LB and LQ are non-isomorphic. For every

Y ∈ CB, there is an edge {a, b} ∈ E(L) with La
∼= Y and Lb ∈ C . Furthermore, if

Y ∈ C − B, then Lb ∈ C − B also.

Proof. Suppose G has constant link L. Let B be a non-empty set of neighborhood-

induced subgraphs of L such that B ∈ KL,k for some k. Let Y ∈ C − B, as the

more general case of Y ∈ C was addressed in Theorem 13.

Let a ∈ V (G) be arbitrary, and suppose c ∈ Ca is such that Gac
∼= Y . It

follows that c has a neighbor b in Ga such that b ∈ Ba. Note that c ̸∈ Ba by

de�nition of Y .

Since b ∈ Ba, Gab = Gba ∈ B, so a ∈ Bb. Furthermore, {a, c} ∈ E(Gb). Since

a ∈ Bb and {a, c} ∈ E(Gb) it follows that c ∈ Cb, i.e. Gbc ∈ CB. If Gbc ∈ CB − B

65

then the proof is �nished, as {a, b} would be the desired edge in Gc with Gca
∼= Y

and Gcb ∈ C − B. Suppose to the contrary that Gbc ∈ CB ∩ B.

Since Gbc ∈ B, it follows that c ∈ Bb. Let X = Bb ∪ {b}. In G, X induces a

clique of order k + 1. By Lemma 3 GX , the intersection neighborhood of X in G,

is precisely (Gb)Bb
.

Now since a ∈ Bb, in Ga there is a clique W ∈ Ka,k such that V (W) = X−a.

Note that W ̸= Ba since c ∈ W but c ̸∈ Ba. Furthermore, Lemma 3, (Ga)W =

GX = (Gb)Bb
.

Hence (Ga)W = (Gb)Bb
. Since (Gb)Bb

∼= (Ga)Ba , it follows that (Ga)W ∼=

(Ga)Ba , a contradiction.

The next example shows a graph that is ruled out as a link graph by Theorem

14 but not by Theorem 13.

Example 25. Let L be the graph below:

0

1
2

3

4

5
6

The following table outlines the neighborhood subgraphs induced in L:

v ∈ V (L) Lv v ∈ V (L) Lv

0 2

3

4

5
6

4

0

1
2

5
6

66

1 3

4

5
6

5

0

1
3

4
6

2 0
4

6

0

1
3

4

5

3 1

5
6

Note that L0
∼= L4. Let X ∼= L0, and let B = {X}. It follows that B = {0, 4},

where B ∈ KL,2 = E(L). Observe the following:

Q ∈ KL,2 V (LQ) LQ Q ∈ KL,2 V (LQ) LQ

{0, 2} {4} K1 {1, 6} {3, 4, 5} P3

{0, 3} {5, 6} K2 {2, 4} {0} K1

{0, 4} {2, 5, 6} K2 ∪K1 {3, 5} {0, 1, 6} P3

{0, 5} {3, 4, 6} P3 {3, 6} {0, 1, 5} P3

{0, 6} {3, 4, 5} P3 {4, 5} {0, 1, 6} P3

{1, 3} {5, 6} K2 {4, 6} {0, 1, 5} P3

{1, 4} {5, 6} K2 {5, 6} {0, 1, 3, 4} C4

{1, 5} {3, 4, 6} P3

As seen in the above table, LQ ̸∼= LB for all Q ∈ KL,2 − B, so the assumptions of

67

Theorem 14 are satis�ed. Next,

CB = {Lx : x ∈
⋃
b∈B

NL(b)}

= {Lx : x ∈ V (G)}

Let Y ∼= K2, and note that Y ∈ C −B. By Theorem 13, if L is a link graph, there

is an edge {u, v} ∈ E(L) such that Lu
∼= K2 and Lv is isomorphic to some graph in

C − B. Observe that {u ∈ V (L) : Lu
∼= K2} = {2}. The only neighbors of 2 in L

are 0 and 4, where L0 ∈ B and L4 ∈ B. Hence L is not a link graph. △

4.5 Tree search to construct graph realizations

This section details a realization construction program. The program is

framed as a tree search and is implemented in Python. The code, included on

GitHub (Appendix I), makes calls to Gurobi. Gurobi is powerful optimization

software brie�y described in Appendix I.1.2.

4.5.1 Linear programming formulation of subgraph isomorphism problem

Suppose, given two graphs H and G with |H| ≤ |G|, it is asked whether

G contains a subgraph that is isomorphic to H. This is known as the subgraph

isomorphism problem. Algorithm 1 shows a linear programming formulation of the

problem.

68

Algorithm 1 Subgraph Isomorphism
Input: Graphs H and G of order m and n, respectively
Output: True if H is isomorphic to a subgraph of G; false otherwise.
Procedure:

Return true if the linear programming problem below returns m for objective.
(xij is 1 if the ith vertex of H is mapped to jth vertex of G; zero otherwise)

maximize
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

xi,j

subject to
∑

1≤i≤m

xi,j ≤ 1 for all j = 1, . . . , n (injective)

∑
1≤j≤n

xi,j = 1 for all i = 1, . . . ,m (well-de�ned)

xi,r + xj,s ≤ 1 for all {ui, uj} ∈ E(H)
xi,s + xj,r ≤ 1 and all {vr, vs} ̸∈ E(G)

(edge-preserving)

xi,j boolean.

Algorithm 1 is used in our realization construction program, outlined below.

Let L be a graph. The goal of the realization construction program is to construct a

graph G such that G is locally L. While our implementation on GitHub (Appendix

I) frames the problem as a tree search, the program is ultimately a recursion. Al-

gorithm 2 shows the realization construction program. The subgraph isomorphism

program in Algorithm 1 is used to check that (∗) in Algorithm 2 is satis�ed.

4.6 Graphs of order 7

There are 1,044 graphs of order 7. These graphs are available on Brendan

McKay's website [48]. Code that checks for realizability results based on Theorems

11, 12, 13, and 14 is available on GitHub (Appendix I). Our results are summarized

in Table 4.3.

69

Algorithm 2 Search-L-Realizer
(Note: To guarantee this algorithm halts, place a maximum bound on |V (G)|.)
Input: Graphs L and G such that G satis�es

(∗) All vertices have neighborhood isomorphic to a subgraph of L.

Output: A supergraph of G realizing L, if such a graph exists; otherwise ∅
Procedure:

if |V (G)| is too big then
return ∅ // exceeded boundary of search

else
if Gv

∼= L, for all v ∈ V (G) then
return G

else
Let v ∈ V (G) such that Gv ̸∼= L and Gv is as close to L as possible
if possible to add new vertices S and new edges to NG(v) ∪ S so that v's

neighborhood completes to L and new graph satis�es (∗) then
for All ways to complete the neighborhood of v to L do

Let H be the next completion of v's neighborhood
(so G ⊂ H and Hv

∼= L and H satis�es (∗))
set J = output of Search-L-Realizer on L, H
if J ̸= ∅ then

return J
end if

end for
return ∅ // loop exhausted all possible ways to complete N(v)

else
return ∅ // no way to complete N(v)

end if
end if

end if

70

After checking for realizability based on these theorems, 312 graphs of order

7 are left as potentially realizable. This includes some graphs which are de�nitely

realizable, such as K7.

Given 5 minutes to construct a realization of some L, the tree search con-

structs realizations of 18 of the 312 unresolved graphs. It runs out of time on 114

graphs. The tree search terminates for 180 graphs, which suggests those graphs

may not have realizations of order 40 or smaller.

Theorem # graphs of order 7 non-realizable by theorem

Theorem 11 355

Theorem 12 589

Theorem 12, NOT Theorem 11 234

Theorem 11, NOT Theorem 12 0

Theorem 13 486

Theorem 14 643

Theorem 13, NOT Theorem 14 15

Theorem 14, NOT Theorem 13 172

Table 4.3: Realizability of graphs of order 7

To continue resolving the realizability of graphs of order 7 (and larger graphs),

it would be useful to code more known results, particularly existence theorems.

4.7 Realizations of certain Ramsey graphs

Section 3.5 describes how patterns detected in certain Ramsey graphs are

related to the Trahtenbrot-Zykov problem. This section draws more connections

between Ramsey graphs and the T-Z problem by exhibiting realizations of some

critical Ramsey graphs.

71

4.7.1 Unique realization of R(3, 3; 5)

The unique R(3, 3; 5) graph is isomorphic to C5, which is uniquely realizable.

Proposition 2. If G is a connected graph that is locally C5, then G is isomorphic

to the icosahedron graph.

Proof. Suppose G is a connected graph which is locally C5. Let v1 ∈ V (G) with

NG(v1) = {v2, v3, v4, v5, v6}. Let {v2, v3}, {v2, v6}, {v3, v4}, {v4, v5}, {v5, v6} be the

edges of the C5 induced by these vertices. For any vertex v ∈ V (G), the neighbor-

hood of v is established if Gv
∼= C5. Hence, the neighborhood of v1 is established.

v3

v1 v4

v5

v6

v2

Next, consider v2, whose currently known neighbors are {v1, v3, v6}. Note that v2

cannot be adjacent to any more of {v2, v3, v4, v5, v6} without disrupting the neigh-

borhood of v1. Disrupting the neighborhood means making changes that will result

in an (established) C5 neighborhood no longer being isomorphic to C5. Let v7 and

v8 be the remaining neighbors of v2, so that NG(v2) = {v1, v3, v6, v7, v8}. Without

loss of generality, suppose the remaining edges of the C5 are {v3, v7}, {v6, v8}, and

{v7, v8}. The neighborhoods of v1 and v2 are now established.

v3

v7

v1 v4

v5

v6

v2

v8

72

Now consider v3, whose currently known neighbors are {v1, v2, v4, v7}. Again,

v3 cannot be adjacent to any more of the previously identi�ed vertices, so let v9 be

its last remaining neighbor. Now NG(v3) = {v1, v2, v4, v7, v9}. Let {v7, v9} and

{v4, v9} be the remaining edges of the C5. Thus the neighborhoods of v1, v2, and v3

are established.

v3

v7

v9

v1 v4

v5

v6

v2

v8

Similarly, the last remaining neighbor of v4 is v10, and edges {v9, v10} and {v5, v10}

are added to complete the C5 for the neighborhood of v4, soNG(v4) = {v1, v3, v5, v9, v10}.

This establishes the neighborhood of v4, so that v1, v2, v3, v4 have established neigh-

borhoods.

v3

v7

v9

v1 v4

v5

v10

v6

v2

v8

The last neighbor of v5 should be v11 so that NG(v5) = {v1, v4, v6, v10, v11}. Add the

edges {v6, v11} and {v10, v11} to the graph, and add v5 to the list of vertices with

established neighborhoods.

73

v3

v7

v9

v1 v4

v5

v10

v6

v11

v2

v8

Note that v6 is currently of degree 5 with neighbors {v1, v2, v5, v8, v11}. The

addition of edge {v8, v11} will complete the C5 and establish the neighborhood of

v6.

v3

v7

v9

v1 v4

v5

v10

v6

v11

v2

v8

Now vertices v7, v8, v9, v10 and v11 are all of degree 4. The neighborhoods of all prior

vertices are already established, so there must be another vertex v12 adjacent to all

�ve of v7, v8, v9, v10, v11.

Suppose instead that v12 is added and has some new neighbor(s) yet to be

identi�ed; for the sake of illustration, suppose more speci�cally that NG(v12) =

{v11, v13, v14, v15, v16}. There must be a C5 among these vertices, but v11's neigh-

borhood is already established, so it can't be adjacent to any of these new vertices.

74

This reasoning would apply with any number of �new� neighbors introduced. Hence

it must be the case that NG(v12) = {v7, v8, v9, v10, v11}.

Observe that the resulting graph is 5-regular and is also locally C5. Further-

more, this graph is isomorphic to the icosahedron.

v3

v7

v9

v12

v1 v4

v5

v10

v6

v11

v2

v8

No more vertices or edges can be added while maintaining regularity, so this graph

is indeed the unique connected graph which is locally C5.

4.7.2 Realizations of H3

The R(4, 4; 17) graph, shown in Figure 2.2, is locally H3, where H3 is a

critical Ramsey(3, 4) graph shown in Figure 2.1. While this is clear through simple

observation, a constructive proof is in Section 6.3.2. The tree search procedure

described in Section 4.5 produces another realization of H3. This second realization

is of order 21 and it shown in Figure 4.1. The second realization is also a Cayley

75

graph and is constructed in Section 6.3.2. Based on the tree search, we conjecture

that these two known realizations of H3 are in fact the only �nite realizations:

Conjecture 2. Only two �nite realizations of H3 exist, speci�ed in Table 4.4.

Automorphism groups of the realizations are computed using GAP (Ap-

pendix I.2). A quick summary of the H3 realizations is given in Table 4.4. The

summary includes graph6 speci�cations for these graphs; graph6 is a text-based

format for graph speci�cation. For more information regarding the graph6 codes,

see Appendix II.

Figure 4.1: 21-vertex realization of H3

4.7.3 Realizations of H2

The graph H2 is a critical Ramsey(3, 4) graph shown in Figure 2.1. The tree

search produces three realizations of H2. A summary of these graphs is given in

Table 4.5.

76

Realization 1 Realization 2
Order 17 21
Aut(G) Z17 ⋊ Z8 PGL2(F7)
Vertex transitive Yes Yes
Cayley graph∗ Yes Yes

* constructions in Chapter 6

� Realization 1 graph6 speci�cation: PsOihr~lEW{OeRSuLIhM]Fdg

� Realization 2 graph6 speci�cation: TsOihr~sd?uGoBQEhoPYQHBgQCgaagKo{HFe

� Note: See Appendix II for adjacency matrices.

Table 4.4: Summary of known H3 realizations

Automorphism groups are computed via GAP (Appendix I.2). Note that

Realization 2 has an automorphism group of order 8. Vertex-transitive graphs of

order n have automorphism groups of order at least n, so it follows that this graph

is not vertex-transitive due to its automorphism group being too small.

Realization 1 Realization 2 Realization 3
Order 21 24 24
Aut(G) Z7 ⋊ Z6 Z4 × Z2 Z2 × A4

Vertex transitive Y es No (!) Yes
Cayley graph∗ Y es No Yes

* constructions in Chapter 6

� Realization 1 graph6 speci�cation:
T@hZCf~KDOkPIcRBP_QghDSqPKoEN]Cdb@XH

� Realization 2 graph6:
W@hZCf~N@_CRiACSA`KOaR?hCSSEBe?TU@BSOpBICWm?@|E

� Realization 3 graph6:
W@hZCf~N@_CRiACSA`KOaR?hCSSABm?TUBBOOr@qCGx?@|D

� Note: See Appendix II for adjacency matrices.

Table 4.5: Summary of known H2 realizations

77

CHAPTER 5

UNDECIDABILITY OF THE TRAHTENBROT-ZYKOV PROBLEM

The Trahtenbrot-Zykov problem and terminology associated with it (e.g.

realization, link graph, locally F) are addressed in Chapter 4.

Theorem 15 (Bulitko, 1973 [12]). There is no algorithm that can determine, given

any graph F , whether there exists a graph G in which the subgraph induced by the

open neighborhood of every vertex is isomorphic to F .

In 1973, Bulitko proved that the link problem is undecidable [12], i.e. that

there is no general algorithm that can determine whether a particular graph F is

realizable or not. The result is based on another famous undecidable problem �

the domino problem, detailed in Section 5.1. Bulitko's paper, published in Russian,

is not available in English. This chapter contains a translation of the �rst section

of Bulitko's paper, which establishes the undecidability of the Trahtenbrot-Zykov

problem. We make some modi�cations to the notation and structure of Bulitko's

proof, but the ideas presented here are largely due to Bulitko. The second section of

Bulitko's paper addresses classes of graphs for which the link problem is decidable;

that section is not translated in this work.

5.1 Introduction to domino problem

A domino is a square with edges colored. All dominoes are the same size.

Each domino edge has a particular color. For every domino, there is an unlimited

78

set of copies; these copies have a certain domino type. See Figure 5.1 for examples

of domino types.

The problem is to cover the plane (quadrant) using copies of a speci�c set of

types of dominoes under the following restrictions:

(D1) Dominoes may not be rotated.

(D2) Dominoes may not be re�ected.

(D3) Dominoes may not overlap.

(D4) Adjacent edges between two dominoes must be the same color.

Tiles like the ones shown in 5.1 are sometimes calledWang tiles, due to the following

famous result.

Theorem 16 (Wang [38]). There is no general algorithm that can correctly deter-

mine whether any set of domino types can be used to tile the plane.

Let P be a �nite set of domino types. The pair (Q,P) with Q ⊆ P is

solvable on the plane if there is a covering of the plane by means of dominoes whose

types belong to P and in the covering there is a domino whose type belongs to

Q. Similarly, (Q,P) is said to be solvable in the quadrant (�rst quadrant) if it is

possible to tile the �rst quadrant in such a way that the leftmost domino in the

bottom row is from Q.

The domino types in Figure 5.1 will be used for some examples. Let P =

{d1, d2, d3, d4, d5, d6} from the �gure. The set Q0 = P is solvable. The set Q1 =

{d1, d3, d5} is also solvable. Note that the set Q2 = {d5, d6} is not solvable, because

there is no tiling of the plane using dominoes of type di ∈ P in which d5 or d6 will

appear.

A �nite set P of domino types is strongly solvable on the plane if, for every

d ∈ P , the pair ({d}, P) is solvable on the plane. That is, a set of domino types is

79

d1 d2 d3 d4 d5 d6

Figure 5.1: Some domino types

strongly solvable if each type in the set gets used in some tiling of the plane, i.e.

there exists some tiling of the plane using dominoes from P where a domino of type

d is used, for every d ∈ P . Hence the set P from 5.1 is not strongly solvable.

5.2 Construction of the graph L(P)

Let P be a �nite set of domino types. This section constructs a graph L(P)

to serve as a model of these domino types. The graph L(P) is a disconnected graph

consisting of |P | + 3 components: one component for each domino type, labeled

L(di) for di ∈ P , and the components LA, LB, and LF , which will be speci�ed later.

The goal is to construct a graph with the following properties:

(L1) For each di ∈ P , L(di) has no nontrivial automorphisms.

(L2) For di, dj ∈ P , with i ̸= j, no supergraph of L(di) is isomorphic to any

subgraph of L(dj).

(L3) For each di ∈ P , no supergraph of LA is isomorphic to any subgraph of L(di).

To begin constructing this graph, let di ∈ P be a domino type as shown below:

i1

i2

i3

i4

The �rst component of L(P) constructed is the graph L(di), corresponding to a

single domino type. The graph L(di) is assembled in three phases:

80

Phase 1:

|S1(di)| = 5 + 2i1

|S2(di)| = 4 + 2i2

|S3(di)| = 5 + 2i3

|S4(di)| = 4 + 2i4

a4 a1

a2a3

The vertices a1, a2, a3, a4 are called corner vertices.

Phase 2:

f1

f2

f3

f4

L1(di)

L2(di)

L3(di)

L4(di)

The vertices f1, f2, f3, f4 are called fulcrum vertices. These serve as a way to

�lock� adjacent dominoes together, as the �rst and third sides have compat-

ible fulcrums, as well as the second and fourth sides. See Figure 5.2 for an

illustration. The diagram above also draws attention to the subgraphs Lk(di),

k ∈ {1, 2, 3, 4}, where Lk(di) coincides with the side of the domino colored ik.

81

Figure 5.2: Fulcrum vertices serve as a locking mechanism.

Phase 3:

c4 c2

c3

c1

The vertices c1, c2, c3, c4 are called apex vertices.

This completes the construction of L(di). Based on this construction of L(di), the

following properties of L(P) are established:

(L4) Any triangle in L(di) contains an apex vertex.

82

(L5) Any vertex that is adjacent to two distinct apex vertices must be a corner

vertex.

(L6) No corner vertex is adjacent to any other corner vertex. No apex vertex is

adjacent to any other apex vertex.

(L7) Corner vertices have degree 4, 5, or 6. Fulcrum vertices have degree 4. Apex

vertices are of degree at least 7. All other vertices of L(di) are of degree 3.

(L8) The open neighborhood in L(di) of each fulcrum vertex is isomorphic to K1,3.

Next, the three other components of the graph L(P) are speci�ed. The graph LA

is shown below:

A1

A2
A3

A4
A5 A6

A7

A8
A9

A10

A result later in this chapter (Lemma 5) shows that this graph LA is related to the

corner vertices in L(di).

The next component of L(P) is LB, shown below:

The graph LB is isomorphic to the subgraph of L(di) induced by the open neighbor-

hood of any degree 3 vertex, with every vertex connected to an additional universal

vertex.

The last component of L(P) is LF , shown below:

83

The graph LF is isomorphic to the subgraph of L(di) induced by the open neighbor-

hood of any fulcrum vertex, with every vertex connected to an additional universal

vertex.

The graph L(P) is de�ned in terms of the above components:

De�nition 51 (L(P)). Let P be a �nite set of domino types. The graph L(P) is

de�ned by

L(P) := LA ∪ LB ∪ LF ∪
⋃
di∈P

L(di),

where ∪ denotes the disjoint union of graphs.

With all components speci�ed, the following property of L(P) is also ob-

served:

(L9) Any vertex of L(P) whose neighborhood contains a �long� path (a path of

order at least 4) must be an apex vertex of some L(di).

The properties of L(P) outlined in this section are clear through observation of the

graph. The next section establishes less pronounced properties of L(P).

5.3 More properties of L(P)

Let G be a graph that is locally L(P) for some �nite set P of domino types.

Let x ∈ V (G) be arbitrary. As in Chapter 4, Gx denotes the subgraph of G induced

by the open neighborhood of x. Let Gx(di) denote the subgraph (component) of Gx

84

which is isomorphic to G(di) for some domino di. Similarly, let Gx[di] denote the

graph Gx(di) along with the vertex x as a universal vertex.

Lemma 4. Let P be a �nite set of domino types. Let G be a graph that is locally

L(P). Let u ∈ V (G) and dj ∈ P both be arbitrary. If v ∈ V (G) is an apex vertex

of Gu(dj), then u is an apex vertex of Gv(dm) for some dm ∈ P .

Proof. Let G be locally L(P). Let u ∈ V (G) and dj ∈ P both be arbitrary. Let

v ∈ V (G) be an apex vertex of Gu(dj). Note that Guv = Gvu has some component

which contains a long path. This long path coincides with some Gv(dm) for dm ∈ P .

In particular, each vertex of this long path is adjacent to u, so u is an apex vertex

of Gv(dm) by (L9).

Lemma 5. Let P be a �nite set of domino types. Let G be a graph that is locally

L(P). Let u ∈ V (G) and dj ∈ P both be arbitrary. If v ∈ V (G) is a corner vertex

of Gu(dj), then (Gu[dj])v is isomorphic to some subgraph of LA.

Proof. Let Gu[dj] be labeled as shown in Figure 5.3. First consider vertex a3; as

shown later, the cases for the other corner vertices can be resolved similarly to this

one. The current neighborhood of a3 in Gu[dj] is shown in Figure 5.7. Note that

(Gu[dj])a3 is not isomorphic to any subgraph of LB or LF , so it must be isomorphic

to a subgraph of either LA or L(dp) for some dp ∈ P . Suppose, to the contrary, that

(Gu[dj])a3 is a subgraph of L(dp).

Based on its degree, u must be either a corner or apex vertex in Ga3(dp). It

cannot be a fulcrum vertex because it has two distinct pairs of adjacent neighbors,

a violation of (L8). Consider each case.

First, suppose u is an apex vertex in Ga3(dp). Its neighborhood in Ga3(dp)

must contain a long path (L9). Note that in Gu[dj], the graph Gu ∩Ga3 = Gua3 is

completely speci�ed; that is, there can be no more vertices adjacent to u in Ga3(dp),

as these vertices would be adjacent to a3 also. Similar restrictions prevent adding

85

b1

f1

x1 y1
a1

y2

x2

f2

b2

a2y3x3

f3

b′3b3a3

b4

b′4

f4

x4

y4

a4

c1

c2

c3

c4 u

Figure 5.3: Gu[dj]

86

any new edges to Ga3(dp). It is therefore impossible to create the long path required

in (Ga3(dp))u.

Next, suppose u is a corner vertex inGa3(dp). Consider the triangles {u, b3, c3}

and {u, b4, c4} in Ga3(dp). Each of these triangles must contain an apex vertex (L4).

Since u is a corner vertex, it cannot be an apex vertex. Thus, consider two cases:

b3 is an apex vertex, or c3 is an apex vertex.

Case 1. Suppose b3 is an apex vertex. Consider its neighborhood, shown

in Figure 5.4. Since b3 is an apex vertex of Ga3(dp), it follows by Lemma 4 that

a3 is an apex vertex of some Gb3(dr), dr ∈ P . Furthermore, since {u, c3, b′3} forms

a triangle in Gb3(dr), b
′
3 must also be an apex vertex (otherwise, there would be

two adjacent apex vertices, a violation of (L6)). However, any common neighbors

between two apex vertices must be corner vertices (L5), and corner vertices are not

adjacent to other corner vertices (L6), so this is a contradiction.

Case 2. Suppose c3 is an apex vertex. Since c3 is an apex vertex of Ga3(dp),

a3 must be an apex vertex of some Gc3(dq), dq ∈ P (Lemma 4). Similarly, since c3 is

an apex vertex of Gu(dj), u must be an apex vertex of some Gc3(dq′). In fact, since

u is adjacent to a3, u and a3 are in the same component of Gc3 , so q = q′. This

is a contradiction, as no apex vertex is adjacent to any other apex vertex (L6). A

similar argument can be used to reach a contradiction when c4 is an apex vertex.

Consider a1, a2, and a4, whose neighborhoods are shown in Figures 5.5, 5.6,

and 5.8, respectively. Observe that each neighborhood contains Gu[dj]a3 as a sub-

graph. It can thus be similarly argued that each of these neighborhoods must be

a subgraph of LA, since the previous arguments regarding degree and vertex roles

would be the same.

Thus, (Gu[dj])ak is a subgraph of LA for each k ∈ {1, 2, 3, 4}.

87

b′3
a3

c3

u

Figure 5.4: Neighborhood of b3 in Gu[dj]

f1

y1

y2

f2

c1

c2u

Figure 5.5: Neighborhood of a1 in Gu[dj]

88

b2

y3

f3

c2

c3

u

Figure 5.6: Neighborhood of a2 in Gu[dj]

b3

b4

c3

c4
u

Figure 5.7: Neighborhood of a3 in Gu[dj]

b1

f4

y4

c1

c4 u

Figure 5.8: Neighborhood of a4 in Gu[dj]

89

5.4 Bulitko's results

Theorem 17 (Lemma 1 of [12]). If L(P) is a link graph, then P is strongly solvable

in the plane.

Proof. The proof begins by constructing a graph that is locally L(P). It is then

veri�ed that this local graph coincides with a strongly solvable P .

Let G be locally L(P). Let u ∈ V (G) and dj ∈ P both be arbitrary. Let

Gu[dj] be labeled according to Figure 5.3. The �rst goal is to complete the neighbor-

hood component of each corner vertex. Consider a1, whose current neighborhood

is shown in Figure 5.5. By Lemma 5, (Gu(dj))a1 must be a subgraph of LA, i.e. u

is in the LA component of Ga1 .

Because u currently has degree 6, it must play the role of A2 in LA (see LA

on page 83). Since c1 and c2 each have two common neighbors with u, they must

play the roles of A4 and A7, respectively. Next, f1 and y1 play the roles of A1 and

A5 (interchangeably) and f2 and y2 play the roles of A3 and A6 (interchangeably).

At this point, all vertices in the current neighborhood have assigned roles, so add

three new vertices, t1, t2, and t3, to the graph G to ful�ll the roles of A8, A10, and

A9 respectively in Ga1(LA). A �snapshot� of this portion of G is shown in Figure

5.9.

Next, consider Ga2(LA). Since u is of degree 5, it must play the role of A4 (or,

equivalently, A7). It cannot be A2 because that would require more neighbors, but

the neighborhood of u in this component is already fully speci�ed (a consequence of

Gu ∩ Ga3 being fully speci�ed by Gu[dj]). Next, since c3 has two shared neighbors

with u, it must play the role of A2. Then f3 and y3 are, without loss of generality,

A1 and A5. Whichever of b2 and c2 is assigned to A9 will eventually share a neighbor

with c3 and a2. For ease of the drawing, let c2 be assigned to A9. Now, add new

90

f1
u

f2

c1 y1 y2
c2

t1
t3

t2
u

a1

y2

f2

c2

f1 y1

c1

t1

t2

t3

Figure 5.9: Ga1(LA) and an updated partial view of G

vertices t4, t5, t6, and t7 to G to respectively play the roles of A3, A6, A7, and A10

within Ga2(LA). See Figure 5.10 for an updated view of the graph.

Since the speci�cation of Ga4(LA) will be similar to the procedure for a2,

that is next. The vertices f4, c4, u, y4, b1, and c1 will play the roles of A1, A2, A4,

A5, A8, and A9, respectively. New vertices t8, t9, t10, and t11 are introduced to ful�ll

the roles of A3, A6, A7, and A10, respectively. See Figure 5.11.

Finally, consider Ga3(LA). Let c3 and c4 play the roles of A4 and A7 respec-

tively. Let b3 and b4 play the roles of A8 and A10, and let u play the role of A9.

Introduce vertices t12, t13, t14, t15, and t16 to ful�ll the roles of A1, A2, A3, A5, and

A6, respectively. See Figure 5.12.

Now that all of the corner vertices have been addressed, an updated view of

G is in Figure 5.13.

Next, consider c1. Since the degree of c1 exceeds the order of each of LA, LB,

and LF , it follows that (Gu)c1 must be a subgraph of some L(dp), dp ∈ P . Consider

Gu(dj) ∩ Gc1(dp). On one hand, this graph is isomorphic to L1(dj); on the other

hand, it is isomorphic to some Lk(dp). Since L1(dj) has an odd number of vertices,

91

f3
c3

t4

u
y3 t5

t6

b2 c2
t7

u c2

c3

b2

f3 y3
a2

t4

t5

t6

t7

Figure 5.10: Ga2(LA) and an updated partial view of G

f4
c4

t8

u
y4 t9

t10

b1 c1
t11

u

c1

c4

b1

y4

a4
t11

f4

t8t9

t10

Figure 5.11: Ga4(LA) and an updated partial view of G

92

t13
t12

t14

c3
t15 t16

c4

b3 u
b4

u

c3

c4

b3

b4

t12

t13
t14

t15

t16 a3

Figure 5.12: Ga3(LA) and an updated partial view of G

b1

f1

x1 y1
a1

y2

x2

f2

b2

a2y3x3

f3

b′3b3a3

b4

b′4

f4

x4

y4

a4

c1

c2

c3

c4 u

t1

t2

t3

t4

t5

t6

t7

t12

t13
t14

t15

t16

t11

t8t9

t10

Figure 5.13: Updated view of G after specifying neighborhoods of corner vertices

in Gu(dj)

93

it follows that k must be 1 or 3. Suppose k = 1. Then, without loss of generality,

there must be some fulcrum vertex f5 such that {a1, f5} and {c1, f5} are edges in

Gc1 [dp]. This disrupts the already established Ga1(LA) component, however. Hence

k must be 3, and it follows that Gu(dj) ∩Gc1(dp)
∼= L1(dj) ∼= L3(dp).

Next, consider c2. Again, (Gu[dj])c2 must be a subgraph of some L(dq),

dq ∈ P . Consider Gu(dj) ∩ Gc2(dq). This graph is, on the one hand, isomorphic

to L2(dj), and on the other, Lk(dq). Since L2(dj) has an even number of vertices,

it follows that k must be 2 or 4. Suppose k = 2. Then, as before, there must

be some fulcrum vertex f6 such that {a1, f6} and {c2, f6} are edges of Gc2(dq).

Again, this disrupts the Ga1(LA) component, so conclude that k = 4 and thus

Gu(dj) ∩Gc2(dq)
∼= L2(dj) ∼= L4(dq).

Observe then, that the color i1 in dj must match the color i3 in dp, and the

color i2 in dj is the same as i4 in dq. This coincides with a tiling of dominoes in

the plane, starting with a domino of type dj in the leftmost place of the bottom

row with a domino of type dp above it and a domino of type dq to the right of the

domino of type dj. As dj and consequently dp and dq were chosen arbitrarily, it is

thus shown that P is strongly solvable in the plane, as the tiling can be continued

using similar techniques.

94

CHAPTER 6

CAYLEY GRAPHS

Chapter 4 addresses local graphs. Local graphs are closely related to two well-

known graph classes addressed in this chapter: vertex-transitive graphs, and Cayley

graphs. Section 6.1 reviews the relationship between vertex-transitive graphs and

Cayley graphs, including a well-known theorem of Sabidussi. Section 6.2 explores

Cayley graphs for cyclic groups, which form the famous class of graphs known as the

circulant graphs. Section 6.3 exhibits Cayley realizations of some Ramsey graphs

and includes a conjecture regarding the realizability of the R(4, 4; 17) graph.

In other chapters, G typically denotes a graph. The reader is cautioned that

in this chapter, G is used to denote groups, while Γ is used to denote graphs.

6.1 Introduction to Cayley graphs

Cayley graphs are graphs that represent group structures.

De�nition 52 (Cayley graph). Let G be a group. Let S be a subset of elements of

G such that the identity is not in S, S generates G, and S is closed under taking

inverses. The Cayley graph Γ(G,S) is the graph with vertex set

V (Γ) = {g : g ∈ G}

and edge set

E(Γ) = {{g, gs} : g ∈ G, s ∈ S}.

95

De�nition 52 requires that S generate G so the resulting Cayley graph is

connected. The requirement that S be closed under taking inverses is so the resulting

graph is also undirected. Directed Cayley graphs do not require inverse closure for

S, but only undirected Cayley graphs are considered in this work.

Cayley graphs are closely related to vertex-transitive graphs, or graphs Γ such

that Aut(Γ) acts transitively on V (Γ). Recall from De�nition 14 that a transitive

action is a group action such that for each x, y in the set X which a group G acts

on, there is some group element g which sends x to y, i.e. there is some g such that

g · x = y. If this de�nition is further restricted to require the uniqueness of g, this

corresponds to a simply transitive action:

De�nition 53 (Simply transitive action). Let G be a group acting on a set X. The

action is simply transitive if it is transitive and if for each x, y ∈ X there exists a

unique g ∈ G such that g · x = y.

Sabidussi [61] characterizes Cayley graphs through the notion of simply tran-

sitive actions.

Theorem 18 (Sabidussi's Theorem [61]). A graph Γ is a Cayley graph of a group

G if and only if it admits a simply transitive action of G by graph automorphisms

from Aut(Γ).

An important corollary of Sabidussi's theorem is that every Cayley graph is

a vertex-transitive graph. The Petersen graph (Figure 6.1) is a well-known example

of a graph that is vertex-transitive but not a Cayley graph.

6.2 Circulant graphs

Circulant graphs are a well-studied class of graphs. De�nition 16 is widely

considered a typical de�nition of circulant graphs. Several equivalent de�nitions of

circulant graphs exist, including a de�nition rooted in Cayley graphs.

96

Figure 6.1: The Petersen graph

De�nition 54 (Circulant graph as a Cayley graph). A graph G is a circulant graph

if it is a Cayley graph for some cyclic group.

Recall from Chapter 4 that a graph Γ is a realization of some graph L if, for

every vertex v in V (Γ), the subgraph induced by the open neighborhood of v in Γ is

isomorphic to L. The next result concerns circulant realizations of certain graphs.

Proposition 3. If L is a connected graph of odd order at least 3, and L is triangle-

free, then L does not admit a circulant realization.

Proof. Suppose Γ is a circulant realization of some connected L, |L| ≥ 5. Note that

since Γ is circulant, Γ is a Cayley graph for some cyclic group G with generating

set S. That is, Γ = Γ(Z, S), where Z is a cyclic group. We show that either L has

a triangle or L has even order.

First, suppose L has odd order; show that L must then contain a triangle.

Note that since Γ is regular of odd degree (as a realization of L), Γ must be of even

order (since |E(Γ)| = mn
2
). Thus Z ∼= Z2k, k ∈ {2, 3, 4, . . .}.

Since L has odd order, |S| is odd. Since S is closed under taking inverses,

it follows that some element of S must be its own inverse, i.e. S has an element of

order 2, so k ∈ S.

Next, consider NΓ(0) = S. Since L is connected, k has some neighbor s ∈

NΓ(0), where −s ∈ S also. Since k is adjacent to s, it follows that s = k + s′

97

for some s′ ∈ S, where s′ = s − k. Note that s − k ̸= k since this would imply

s = 2k = 0. Thus either s− k = −s, or s− k is some other element in S. Consider

each case.

1. First, suppose s− k = −s, i.e. k = s+ s. It follows that

−s+ k = −s+ (s+ s)

= s,

so −s is adjacent to s. Also,

k + s = s+ k (Cyclic, abelian)

= s− k (since k = −k)

= s− (s+ s)

= −s,

so k is adjacent to −s also. Hence there is a triangle in Γ0.

2. Suppose s−k is some other element of S. Next, s+k = s−k, so s is adjacent

to s− k. Also,

k + s = s+ k

= s− k,

so k is adjacent to s− k. Hence Γ0 contains a triangle.

Thus if L is of odd order, then it must contain a triangle.

It remains to be shown that if L is triangle-free, then L must then be of even

order. Thus, suppose L is triangle free. Note that if |Γ| is odd, then |L| must be

even, since |E(Γ)| = 1
2
|L||G|. Thus consider only the case where |Γ| is even. As

previously shown, an element of order 2 in S forces a triangle in Γ0. Since S is

closed under taking inverses, and S contains no elements of order 2, |S| is even so

|L| is indeed even.

98

Section 4.1 mentions the tension regarding cycles and the T-Z problem. Here

is a di�erent proof of the fact that C6 is indeed realizable and, in particular, has

in�nitely many circulant realizations.

Proposition 4. If G is a cyclic group of order at least 13, i.e. G ∼= Zn, n ≥ 13,

and S = {1,−1, 3,−3, 4,−4}, then Γ(G,S) is locally C6.

Proof. Let Γ(G,S) be the Cayley graph for G ∼= Zn, n ≥ 13 and

S = {1,−1, 3,−3, 4,−4}. Note the following addition table in Zn:

g g + 1 g + 3 g + 4 g − 4 g − 3 g − 1

0 1 3 4 n− 4 n− 3 n− 1

1 2 4 5 n− 3 n− 2 0

3 4 6 1 n− 1 0 2

4 5 7 8 0 1 3

−4 = n− 4 n− 3 n− 1 0 n− 8 n− 7 n− 5

−3 = n− 3 n− 2 0 1 n− 7 n− 6 n− 4

−1 = n− 1 0 2 1 n− 5 n− 4 n− 2

The goal is to establish Γ0
∼= C6, where NΓ(0) = S. Note that from the table,

1− 4 = n− 3, so 1 is adjacent to n− 3 in Γ. By similarly using the table above, Γ0

is as shown below:

1

43

n− 1

n− 4 n− 3

It must be veri�ed that there are no more edges in Γ0, i.e. that no vertex in S has

any more neighbors within S. Observe that since n ≥ 13, the table can be updated

as follows:

99

g g + 1 g + 3 g + 4 g − 4 g − 3 g − 1

0 1 3 4 n− 4 ≥ 9 n− 3 ≥ 10 n− 1 ≥ 12

1 2 4 5 n− 3 ≥ 10 n− 2 ≥ 11 0

3 4 6 1 n− 1 ≥ 12 0 2

4 5 7 8 0 1 3

n− 4 ≥ 9 n− 3 ≥ 10 n− 1 ≥ 12 0 n− 8 ≥ 5 n− 7 ≥ 6 n− 5 ≥ 8

n− 3 ≥ 10 n− 2 ≥ 11 0 1 n− 7 ≥ 6 n− 6 ≥ 7 n− 4 ≥ 9

n− 1 ≥ 12 0 2 1 n− 5 ≥ 8 n− 4 ≥ 9 n− 2 ≥ 11

So Γ0 is precisely as speci�ed above.

The following example demonstrates the importance of n ≥ 13 in Proposition

4.

Example 26. Let Z12 be the cyclic group of order 12, and let S = {1,−1, 3,−3, 4,−4}.

Consider the Cayley graph Γ(G,S). The neighborhood subgraph Γ0 is as shown be-

low:

1

43

11

8 9

Informally speaking, requiring n ≥ 13 in Proposition 4 allows the neighbor-

hood of n− 4 to �clear� the neighborhood of 0 in Γ. △

6.3 Cayley realizations of Ramsey graphs

Section 4.7 identi�es realizations of some Ramsey graphs. For each Ramsey

graph for which at least one realization has been found, at least one of those real-

izations is a Cayley graph. This section provides constructions of currently known

Cayley realizations of Ramsey graphs found by the tree search in Section 4.5.

100

11

4

5

1

12 9

8

6

7

2

10
3

Figure 6.2: Labeled icosahedron

6.3.1 Unique Cayley realization of R(3, 3; 5)

Section 4.7.1 establishes the icosahedron as a realization of the uniqueR(3, 3; 5)

graph. What follows below is a construction of the icosahedron as a Cayley real-

ization of R(3, 3; 5) that includes many details. It seems possible that perhaps the

uniqueness of the icosahedron as a realization of C5 could be understood from a

group theory perspective, though this section does not yet contain such a result.

Let Γ be the icosahedron graph, labeled as in Figure 6.2. Color the faces of

this icosahedron using 5 colors in such a way that each vertex is incident with only

one face of each color, as shown in Figure 6.3. Consider the faces colored yellow

and label them arbitrarily as follows:

� 1 → {1, 2, 6}

� 2 → {4, 5, 11}

101

11

4

5

1

12 9

8

6

7

2

10
3

Figure 6.3: Icosahedron with faces colored

� 3 → {3, 7, 10}

� 4 → {8, 9, 12}

The goal is to form a subgroup of Aut(Γ) consisting of 12 automorphisms, sending

vertex 1 to each of 1, 2, . . . , 12. Such a subgroup satis�es Sabidussi's Theorem

(Theorem 18). For the element sending vertex 1 to vertex 1, select the identity

element of Aut(Γ). Next, consider a rotation of each yellow face and the resulting

automorphisms:

Rotate Face 1 (i.e. �Fix 1�) (1 2 6)(3 8 5)(4 7 9)(10 12 11)
(1 6 2)(3 5 8)(4 9 7)(10 11 12)

Rotate Face 2 (i.e. �Fix 2�) (1 9 10)(2 8 7)(3 6 12)(4 5 11)
(1 10 9)(2 7 8)(3 12 6)(4 11 5)

Rotate Face 3 (i.e. �Fix 3�) (1 11 8)(2 4 12)(3 10 7)(5 9 6)
(1 8 11)(2 12 4)(3 7 10)(5 6 9)

Rotate Face 4 (i.e. �Fix 4�) (1 3 4)(2 10 5)(6 7 11)(8 12 9)
(1 4 3)(2 5 10)(6 11 7)(8 9 12)

102

Now, consider ways to swap Face 1 with each of the other yellow faces, i.e.

swap Face 1 with each of Faces 2, 3, and 4. Since automorphisms mapping vertex

1 to vertices 5, 7, or 12 have yet to be selected, choose the following:

Swap Faces 1 & 2 (1 5)(2 11)(3 9)(4 6)(7 12)(8 10) (Note: Also swaps Faces 3 & 4)

Swap Faces 1 & 3 (1 7)(2 3)(4 8)(5 12)(6 10)(9 11) (Note: Also swaps Faces 2 & 4)

Swap Faces 1 & 4 (1 12)(2 9)(3 11)(4 10)(5 7)(6 8) (Note: Also swaps Faces 2 & 3)

The 12 automorphisms selected thus far do indeed form a subgroup of Aut(Γ).

More speci�cally, this subgroup is isomorphic to A4, as shown next. To specify the

bijection φ : A4 → Aut(Γ), begin by assigning

φ((2 3 4)) = (1 2 6)(3 8 5)(4 7 9)(10 12 11),

since this automorphism was previously described as an element that ��xes� Face

1. Next, its inverse is

φ((2 4 3)) = (1 6 2)(3 5 8)(4 9 7)(10 11 12).

By swapping di�erent yellow faces, it also naturally follows that

φ((1 2)(3 4)) = (1 5)(2 11)(3 9)(4 6)(7 12)(8 10)

φ((1 3)(2 4)) = (1 7)(2 3)(4 8)(5 12)(6 10)(9 11)

φ((1 4)(2 3)) = (1 12)(2 9)(3 11)(4 10)(5 7)(6 8)

To make remaining assignments, consider that in A4,

(2 3 4)(1 2)(3 4) = (1 2 4)

(2 3 4)(1 3)(2 4) = (1 3 2)

(2 3 4)(1 4)(2 3) = (1 4 3)

Thus the bijection is fully speci�ed as follows:

103

g ∈ A4 φ(x) ∈ Aut(Γ)

(1) e

(2 3 4) (1 2 6)(3 8 5)(4 7 9)(10 12 11)

(2 4 3) (1 6 2)(3 5 8)(4 9 7)(10 11 12)

(1 4 3) (1 9 10)(2 8 7)(3 6 12)(4 5 11)

(1 3 4) (1 10 9)(2 7 8)(3 12 6)(4 11 5)

(1 2 4) (1 11 8)(2 4 12)(3 10 7)(5 9 6)

(1 4 2) (1 8 11)(2 12 4)(3 7 10)(5 6 9)

(1 3 2) (1 3 4)(2 10 5)(6 7 11)(8 12 9)

(1 2 3) (1 4 3)(2 5 10)(6 11 7)(8 9 12)

(1 2)(3 4) (1 5)(2 11)(3 9)(4 6)(7 12)(8 10)

(1 3)(2 4) (1 7)(2 3)(4 8)(5 12)(6 10)(9 11)

(1 4)(2 3) (1 12)(2 9)(3 11)(4 10)(5 7)(6 8)

Next, return to the original labeling of Γ presented in Figure 6.2. Arbitrarily relabel

vertex 1 using (1) ∈ A4. Next, label remaining vertices according to the element

g ∈ A4 such that φ(g) yields a permutation sending 1 that neighbor; for example,

vertex 8 is relabeled (1 4 2) since φ(1 4 2) = (1 8 11)(2 12 4)(3 7 10)(5 6 9). The

resulting relabeling of Γ is shown in Figure 6.4. The set S consists of the elements

that send vertex 1 to its neighbors:

S = {(2 3 4), (1 3 2), (1 2 3), (1 2)(3 4), (2 4 3)}.

Hence the icosahedron graph is isomorphic to the Cayley graph

Γ(A4, {(2 3 4), (1 3 2), (1 2 3), (1 2)(3 4), (2 4 3)}).

The automorphism group of the icosahedron is A5 × Z2, a group of order 120. The

alternating group A4 is a subgroup of this group.

104

(1 2 4)

(1 2 3)

(1 2)(3 4)

e

(1 4)(2 3)
(1 4 3)

(1 4 2)

(2 4 3)

(1 3)(2 4)

(2 3 4)

(1 3 4)
(1 3 2)

Figure 6.4: Icosahedron as a Cayley graph

105

6.3.2 Two Cayley realizations of H3

Realizations of the critical Ramsey(3, 4) graph H3 (Figure 2.1) are estab-

lished in Section 4.7.2. The �rst known realization ofH3 is the well-knownR(4, 4; 17)

graph. The second realization is a 21-vertex graph. Both of these realizations of H3

are Cayley graphs, as shown next.

The �rst realization: R(4, 4; 17)

The R(4, 4; 17) graph (Figure 2.2) realizes H3 (Figure 2.1). The R(4, 4; 17) graph is

circulant and is therefore a Cayley graph for some cyclic group. More speci�cally,

R(4, 4; 17) ∼= Γ(Z17, {1, 2, 4, 8, 9, 13, 15, 16}).

The automorphism group of the R(4, 4; 17) graph is Z17⋊Z8, which contains

Z17 as a subgroup.

The second realization

Let G be the group of order 21 with the following presentation:

G = ⟨a, b : a3 = b7 = 1, aba−1 = b4⟩.

Let

S = {a, a2, b, b6, ab, ab2, a2b3, a2b6}.

The set S is of order 8, does not contain the identity element, and is closed under

taking inverses:

a · a2 = e,

b · b6 = e,

ab · a2b3 = b4 · b3

= e,

106

ab2 · a2b6 = ab2a · ab · b5

= ab2a · b4a · b5

= ab2 · ab · b3 · ab · b4

= ab2 · b4a · b3 · b4a · b4

= ab6a2b4

= ab6a · ab · b3

= ab6a · b4a · b3

= ab6 · ab · b3 · ab · b2

= ab6 · b4a · b3 · b4a · b2

= ab3a2b2

= ab3a · ab · b

= ab3a · b4a · b

= ab3 · ab · b3 · ab

= ab3 · b4a · b3 · b4a

= a · a · a

= e.

Table 6.1 shows a multiplication table for S, where an entry of �-� denotes a product

that is not in S. Consider the Cayley graph Γ(G,S). This is an 8-regular graph of

order 21. The neighborhood of the identity element in Γ(G,S) is shown in Figure

6.5. Since Γ0
∼= H3, it follows that Γ is locally H3. This group G is isomorphic to

Z7 ⋊ Z3, which is a subgroup of PGL2(F7) ∼= Aut(Γ) as noted in Table 4.5.

107

a a2 b b6 ab ab2 a2b3 a2b6

a a2 − ab − − − − b6

a2 − a − a2b6 b − − −

b ab2 − − − − − a2 a2b3

b6 − a2b3 − − − a a2b6 −

ab − − ab2 a a2b3 − − −

ab2 − b − ab − a2b6 − −

a2b3 b6 − − − − b ab −

a2b6 − − a2 − b6 − − ab2

Table 6.1: Multiplication table for S

a

b6

a2

ab

a2b3

b
ab2

a2b6

Figure 6.5: Γ0
∼= H3

6.3.3 Two Cayley realizations of H2

As described in Section 4.7.3, the critical Ramsey(3, 4) graph H2 (Figure

2.1) has three realizations, two of which are Cayley graphs. The Cayley graph

constructions are presented in this section.

The �rst realization

Let G be the group of order 21 with the following presentation:

G = ⟨a, b : a3 = b7 = 1, aba−1 = b4⟩.

108

Let

S = {a, a2, b2, b3, b4, b5, ab3, a2b2}.

Note that S does not contain the identity, has order 8, and is closed under

taking inverses:

a · a2 = b2 · b5 = b3 · b4 = ab3 · a2b2 = e,

where the last equality follows from

ab3 · a2b2 = ab3 · a · ab · b

= ab3a · b4a · b (ab = b4a)

= ab3a · b4 · ab

= ab3ab4 · b4a

= ab3 · ab · a

= ab3 · b4a · a

= a3

= e.

A multiplication table for S is given in Table 6.2, where an entry of �−� indicates

a product that is not in S.

The neighborhood of the identity element in Γ(G,S) is thus as shown in

Figure 6.6. This graph is isomorphic to H2.

b2

a
a2

b3

b5

ab3
a2b2

b4

Figure 6.6: Γ0
∼= H2

109

a a2 b2 b3 b4 b5 ab3 a2b2

a a2 − − ab3 − − − b2

a2 − a a2b2 − − − b3 −

b2 − − b4 b5 − − a −

b3 − − b5 − − − − a2

b4 − a2b2 − − − − ab4 a2b4

b5 ab3 − − b2 b3 − −

ab3 − b5 − − a − a2b2 −

a2b2 b4 − − − − a2 − ab3

Table 6.2: Multiplication table for S

This group G is isomorphic to Z7 ⋊ Z3, which is a subgroup of Z7 ⋊ Z6
∼=

Aut(Γ) as noted in Table 4.5.

The second realization

Let G be the group of order 24 which has the following presentation:

G = ⟨a, b, c, d : a2 = b2 = c2 = d3 = 1, ab = ba, ac = ca, ad = da, dbd−1 = bc = cb, dcd−1 = b⟩.

Let

S = {d, d2, ab, bc, bd2, abd2, bcd, abcd}.

Note that S is closed under taking inverses:

d · d2 = e,

ab · ab = ab · ba

= a · a

= e,

110

bc · bc = bc · cb

= b · b

= e,

bd2 · bcd = d2bc · bcd

= d2 · d

= e,

abd2 · abcd = abd2a · bc · d

= abd2a · dbd2 · d

= abd2 · ad · b

= abd2 · da · b

= ab · ab

= ab · ba

= a · a

= e.

A multiplication table for S is given in Table 6.3, where an entry of �−� indicates

a product that is not in S.

The neighborhood of the identity element in Γ(G,S) is thus as shown in

Figure 6.7. This graph is isomorphic to H2.

111

d d2 ab bc bd2 abd2 bcd abcd

d d2 − abcd − bc − − −

d2 − d − bd2 − − − ab

ab − abd2 − − − d2 − −

bc bcd − − − − − d −

bd2 − − − d2 bcd abcd − −

abd2 ab − − − abcd bcd − −

bcd − bc − − − − bd2 abd2

abcd − − d − − − abd2 bd2

Table 6.3: Multiplication table for S

bcd

bd2

d2
ab

abd2

abcd
d

bc

Figure 6.7: Γ0
∼= H2

The group G is isomorphic to Z2 × A4, which is itself the automorphism

group of Γ, as noted in Table 4.5.

6.3.4 Realizability of R(4, 4; 17)

The Cayley graph constructions so far in this section lead to a natural con-

jecture regarding the R(4, 4; 17) graph.

Conjecture 3. The R(4, 4; 17) graph is realizable and, in particular, is f -realizable

by some Cayley graph.

112

CHAPTER 7

CONCLUSIONS

Chapter 3 includes recommendations for continuing the reinforcement learn-

ing project for Ramsey graph construction. In those recommendations, there is a

focus on making the Ramsey game work, and the game is centered solely around

graphs as the object to work with. Given the content of later chapters, it seems

reasonable to instead consider neighborhoods or groups.

This interest in groups is inspired by the Cayley realizations of two R(3, 4; 8)

graphs in Chapter 6. The same group (Z7⋊Z3) with di�erent generating sets leads to

Cayley realizations of the critical Ramsey(3, 4) graphs, H2 and H3 (Figure 2.1). In

retrospect, it seems that perhaps this group should have given enough information

from the start to construct realizations. All constructions presented in Chapter

6 are derived from already knowing the realization and its automorphism group,

but it seems that having a particular subgroup (the group for the Cayley graph)

should be enough. A result similar to Proposition 4 seems within reach for R(3, 4; 8)

graphs. Such a result might also help determine whether or not realizations of the

remaining critical Ramsey(3, 4) graph H1 (Figure 2.1) exist.

If groups do not give enough information, perhaps they might still be used

to boost the realization construction program in some way. This is of particular

interest in attempting to construct realizations of the R(4, 4; 17) graph.

Connections might also be drawn between Ramsey graphs and Cayley graphs

by considering the following conjecture of Alon:

113

Conjecture 4 ([2]). There is a constant c such that, for every �nite group G of

order n > 1, there is an inverse-closed generating set S for G such that the Cayley

graph Γ(G,S) has neither a clique nor an independent set of order c log n.

114

REFERENCES

[1] Theory of graphs and its applications, Publishing House of the Czechoslovak

Academy of Sciences, Prague, 1964. MR 0172259

[2] Research problems, Discrete Mathematics 138 (1995), no. 1, 405�411, 14th

British Combinatorial Conference.

[3] S. Ja. Agaki²ieva, Graphs with prescribed vertex environments, Mat. Zametki

3 (1968), 211�216. MR 236043

[4] Vigleik Angeltveit and Brendan D. McKay, R(5, 5) ≤ 48, J. Graph Theory 89

(2018), no. 1, 5�13. MR 3828124

[5] Egon Balas and Chang Sung Yu, On graphs with polynomially solvable

maximum-weight clique problem, Networks 19 (1989), no. 2, 247�253. MR

984569

[6] Markus Baumeister and Anna M. Limbach, Clique dynamics of locally cyclic

graphs with δ ≥ 6, Discrete Math. 345 (2022), no. 7, Paper No. 112873, 23.

MR 4394715

[7] Itai Benjamini and Tom Hutchcroft, Large, lengthy graphs look locally like lines,

Bull. Lond. Math. Soc. 53 (2021), no. 2, 482�492. MR 4239190

[8] Andreas Blass, Frank Harary, and Zevi Miller, Which trees are link graphs?, J.

Combin. Theory Ser. B 29 (1980), no. 3, 277�292. MR 602420

115

[9] Morton Brown and Robert Connelly, On graphs with a constant link, New di-

rections in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan,

Ann Arbor, Mich., 1971), 1973, pp. 19�51. MR 0347685

[10] , On graphs with a constant link. II, Discrete Math. 11 (1975), 199�232.

MR 364016

[11] Francis Buekenhout and Xavier Hubaut, Locally polar spaces and related rank

3 groups, J. Algebra 45 (1977), no. 2, 391�434. MR 460155

[12] V. K. Bulitko, Graphs with prescribed environments of the vertices, Trudy Mat.

Inst. Steklov. 133 (1973), 78�94, 274, Mathematical logic, theory of algorithms

and theory of sets (dedicated to P. S. Novikov on the occasion of his seventieth

birthday). MR 0434882

[13] Gary Chartrand and Raymond E. Pippert, Locally connected graphs, �asopis

P¥st. Mat. 99 (1974), 158�163. MR 0398872

[14] Gary Chartrand and Ping Zhang, Ramsey sequences of graphs, AKCE Int. J.

Graphs Comb. 17 (2020), no. 2, 646�652. MR 4169782

[15] Bruce L. Chilton, Ronald Gould, and Albert D. Polimeni, A note on graphs

whose neighborhoods are n-cycles, Geometriae Dedicata 3 (1974), 289�294. MR

357220

[16] François Chollet, Deep learning with Python, Manning Publications Co, Shelter

Island, New York, 2018 (en), OCLC: ocn982650571.

[17] Václav Chvátal and Frank Harary, Generalized Ramsey theory for graphs. II.

Small diagonal numbers, Proc. Amer. Math. Soc. 32 (1972), 389�394. MR

332559

116

[18] L. H. Clark, R. C. Entringer, J. E. McCanna, and L. A. Székely, Extremal

problems for local properties of graphs, vol. 4, 1991, Combinatorial mathemat-

ics and combinatorial computing (Palmerston North, 1990), pp. 25�31. MR

1129266

[19] P. Erd®s and C. A. Rogers, The construction of certain graphs, Canadian J.

Math. 14 (1962), 702�707. MR 141612

[20] P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53

(1947), 292�294. MR 19911

[21] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio

Math. 2 (1935), 463�470. MR 1556929

[22] Geo�rey Exoo, A lower bound for R(5, 5), J. Graph Theory 13 (1989), no. 1,

97�98. MR 982871

[23] Dalibor Fron£ek, Locally linear graphs, Math. Slovaca 39 (1989), no. 1, 3�6.

MR 1016323

[24] Dennis P. Geo�roy and David P. Sumner, An upper bound on the size of a

largest clique in a graph, J. Graph Theory 2 (1978), no. 3, 223�230. MR 505816

[25] A. W. Goodman, On sets of acquaintances and strangers at any party, Amer.

Math. Monthly 66 (1959), 778�783. MR 107610

[26] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey the-

ory, second ed., Wiley-Interscience Series in Discrete Mathematics and Op-

timization, John Wiley & Sons, Inc., New York, 1990, A Wiley-Interscience

Publication. MR 1044995

[27] Jack E. Graver and James Yackel, An upper bound for Ramsey numbers, Bull.

Amer. Math. Soc. 72 (1966), 1076�1079. MR 199120

117

[28] , Some graph theoretic results associated with Ramsey's theorem, J.

Combinatorial Theory 4 (1968), 125�175. MR 225685

[29] R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic

graphs, Canadian J. Math. 7 (1955), 1�7. MR 67467

[30] J. I. Hall, Locally Petersen graphs, J. Graph Theory 4 (1980), no. 2, 173�187.

MR 570352

[31] , Graphs with constant link and small degree or order, J. Graph Theory

9 (1985), no. 3, 419�444. MR 812408

[32] J. I. Hall and E. E. Shult, Locally cotriangular graphs, Geom. Dedicata 18

(1985), no. 2, 113�159. MR 792576

[33] Frank Harary and Edgar M. Palmer, Graphical enumeration, Academic Press,

New York-London, 1973. MR 0357214

[34] Heiko Harborth and Stefan Krause, Ramsey numbers for circulant colorings,

Proceedings of the Thirty-Fourth Southeastern International Conference on

Combinatorics, Graph Theory and Computing, vol. 161, 2003, pp. 139�150.

MR 2050525

[35] , Distance Ramsey numbers, Util. Math. 70 (2006), 197�200. MR

2238441

[36] Pavol Hell, Graphs with given neighborhoods. I, Problèmes combinatoires et

théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq.

Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 219�223. MR 539979

[37] Jiayi Huang, Mostofa Patwary, and Gregory Diamos, Coloring big graphs with

alphagozero, 2019.

118

[38] A. S. Kahr, Edward F. Moore, and Hao Wang, Entscheidungsproblem reduced

to the ∀∃∀ case, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 365�377. MR 169777

[39] J. G. Kalb�eisch, Construction of special edge-chromatic graphs, Canad. Math.

Bull. 8 (1965), 575�584. MR 193026

[40] , On an unknown Ramsey number, Michigan Math. J. 13 (1966), 385�

392. MR 201343

[41] , Upper bounds for some Ramsey numbers, J. Combinatorial Theory 2

(1967), 35�42. MR 211919

[42] F. Larrión, M. A. Pizaña, and R. Villarroel-Flores, Small locally nK2 graphs,

Ars Combin. 102 (2011), 385�391. MR 2867738

[43] R. C. Laskar and Henry Martyn Mulder, Path-neighborhood graphs, Discuss.

Math. Graph Theory 33 (2013), no. 4, 731�745. MR 3117052

[44] R. C. Laskar, Henry Martyn Mulder, and B. Novick, Maximal outerplanar

graphs as chordal graphs, path-neighborhood graphs, and triangle graphs, Aus-

tralas. J. Combin. 52 (2012), 185�195. MR 2917926

[45] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton, Deep learning, Nature 521

(2015), no. 7553, 436�444 (en).

[46] Bernard Lidický and Florian Pfender, Semide�nite programming and Ramsey

numbers, SIAM J. Discrete Math. 35 (2021), no. 4, 2328�2344. MR 4321243

[47] A. Márquez, A. de Mier, M. Noy, and M. P. Revuelta, Locally grid graphs: clas-

si�cation and Tutte uniqueness, vol. 266, 2003, The 18th British Combinatorial

Conference (Brighton, 2001), pp. 327�352. MR 1991727

[48] Brendan McKay, Combinatorial data.

119

[49] Brendan D. McKay, Transitive graphs with fewer than twenty vertices, Math.

Comp. 33 (1979), no. 147, 1101�1121, loose micro�che suppl. MR 528064

[50] Brendan D. McKay and Zhang Ke Min, The value of the Ramsey number

R(3, 8), J. Graph Theory 16 (1992), no. 1, 99�105. MR 1147807

[51] Brendan D. McKay and Stanisªaw P. Radziszowski, A new upper bound for the

Ramsey number R(5, 5), Australas. J. Combin. 5 (1992), 13�20. MR 1165791

[52] , Linear programming in some Ramsey problems, J. Combin. Theory

Ser. B 61 (1994), no. 1, 125�132. MR 1275272

[53] , R(4, 5) = 25, J. Graph Theory 19 (1995), no. 3, 309�322. MR 1324481

[54] , Subgraph counting identities and Ramsey numbers, J. Combin. Theory

Ser. B 69 (1997), no. 2, 193�209. MR 1438619

[55] T. D. Parsons and Tomaº Pisanski, Graphs which are locally paths, Combina-

torics and graph theory (Warsaw, 1987), Banach Center Publ., vol. 25, PWN,

Warsaw, 1989, pp. 127�135. MR 1097642

[56] Erich Prisner, Graphs with few cliques, Graph theory, combinatorics, and al-

gorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., Wiley, New

York, 1995, pp. 945�956. MR 1405872

[57] Max Pumperla and Kevin Ferguson, Deep learning and the game of Go, Man-

ning, Shelter Island, 2019 (en), OCLC: on1033778541.

[58] Stanisªaw P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. 1

(1994), Dynamic Survey 1, 30. MR 1670625

[59] F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. (2) 30

(1929), no. 4, 264�286. MR 1576401

120

[60] Mark A. Ronan, On the second homotopy group of certain simplicial com-

plexes and some combinatorial applications, Quart. J. Math. Oxford Ser. (2)

32 (1981), no. 126, 225�233. MR 615196

[61] Gert Sabidussi, On a class of �xed-point-free graphs, Proc. Amer. Math. Soc.

9 (1958), 800�804. MR 97068

[62] J. Sedlá£ek, On local properties of �nite graphs, Graph theory (�agów, 1981),

Lecture Notes in Math., vol. 1018, Springer, Berlin, 1983, pp. 242�247. MR

730654

[63] Ji°í Sedlá£ek, Local properties of graphs, �asopis P¥st. Mat. 106 (1981), no. 3,

290�298. MR 629727

[64] , On local properties of graphs again, �asopis P¥st. Mat. 114 (1989),

no. 4, 381�390. MR 1027234

[65] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-

neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,

Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Ko-

ray Kavukcuoglu, Thore Graepel, and Demis Hassabis, Mastering the game of

Go with deep neural networks and tree search, Nature 529 (2016), no. 7587,

484�489 (en).

[66] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis, A

general reinforcement learning algorithm that masters chess, shogi, and Go

through self-play, Science 362 (2018), no. 6419, 1140�1144 (en).

121

[67] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George

van den Driessche, Thore Graepel, and Demis Hassabis, Mastering the game

of Go without human knowledge, Nature 550 (2017), no. 7676, 354�359 (en).

[68] Z. Skupie«, Locally Hamiltonian graphs and Kuratowski theorem, Bull. Acad.

Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 615�619. MR 193029

[69] , Locally Hamiltonian and planar graphs, Fund. Math. 58 (1966), 193�

200. MR 195764

[70] , On the locally Hamiltonian graphs and Kuratowski's theorem, Prace

Mat. 11 (1968), 255�264. MR 0227045

[71] Joel Spencer, Ramsey's theorem�a new lower bound, J. Combinatorial Theory

Ser. A 18 (1975), 108�115. MR 366726

[72] L. Szamkoª owicz, On a classi�cation of graphs with respect to the properties of

neighbourhood graphs, Finite and in�nite sets, Vol. I, II (Eger, 1981), Colloq.

Math. Soc. János Bolyai, vol. 37, North-Holland, Amsterdam, 1984, pp. 675�

678. MR 818269

[73] Lucjan Szamkoª owicz, A note on a generalization of the Trachtenbrot-Zykov

problem, Graph theory (�agów, 1981), Lecture Notes in Math., vol. 1018,

Springer, Berlin, 1983, pp. 257�259. MR 730656

[74] Walter Vogler, Graphs with given group and given constant link, J. Graph The-

ory 8 (1984), no. 1, 111�115. MR 732024

[75] Adam Zsolt Wagner, Constructions in combinatorics via neural networks, 2021.

122

[76] K. Walker, Dichromatic graphs and Ramsey numbers, J. Combinatorial Theory

5 (1968), 238�243. MR 231751

[77] , An upper bound for the Ramsey number M(5, 4), J. Combinatorial

Theory Ser. A 11 (1971), 1�10. MR 274340

[78] Peter M. Winkler, Existence of graphs with a given set of r-neighborhoods, J.

Combin. Theory Ser. B 34 (1983), no. 2, 165�176. MR 703601

[79] Huijuan Yu and Baoyindureng Wu, Graphs in which G − N [v] is a cycle for

each vertex v, Discrete Math. 344 (2021), no. 9, Paper No. 112519, 7. MR

4278078

[80] Bohdan Zelinka, Edge neighbourhood graphs, Czechoslovak Math. J. 36(111)

(1986), no. 1, 44�47. MR 822865

[81] , Locally snake-like graphs, Math. Slovaca 38 (1988), no. 1, 85�88. MR

945083

[82] , Small directed graphs as neighbourhood graphs, Czechoslovak Math. J.

38(113) (1988), no. 2, 269�273. MR 946295

[83] , Two local properties of graphs, �asopis P¥st. Mat. 113 (1988), no. 2,

113�121. MR 949039

[84] , The least connected non-vertex-transitive graph with constant neigh-

bourhoods, Czechoslovak Math. J. 40(115) (1990), no. 4, 619�624. MR 1084898

[85] , Locally regular graphs, Math. Bohem. 125 (2000), no. 4, 481�484. MR

1802296

[86] Bo Zhang and Baoyindureng Wu, Graphs G in which G − N [v] has a pre-

scribed property for each vertex v, Discrete Appl. Math. 318 (2022), 13�20.

MR 4432999

123

[87] A. A. Zykov, Graph-theoretical results of Novsibirsk mathematicians, Theory

of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), Publ. House

Czech. Acad. Sci., Prague, 1963, pp. 151�153. MR 0172277

124

APPENDIX I

PROGRAMMING TOOLS

The accompanying code for this dissertation is publicly available at https:

//github.com/ehawb/diss.

I.1 Python

Python was chosen because of the vast number of resources available for it.

The book our Ramsey graph bot is based on, Deep Learning and the Game of Go,

is coded in Python. There is also a Python interface for Gurobi, the optimizer used

in our linear programming subgraph checker.

I.1.1 Keras

Keras is a Python library for arti�cial neural networks. According to its web-

site (https://keras.io/), Keras is one of the most widely used machine learning

frameworks. Keras is designed to be easy to learn and use.

I.1.2 Gurobi

Gurobi is a powerful mathematical optimization solver. Free academic li-

censes are available, as well as other types of licenses. Gurobi has a variety of

interfaces available, though we only use the Python gurobipy library. Gurobi's

125

https://github.com/ehawb/diss
https://github.com/ehawb/diss
https://keras.io/

website (https://www.gurobi.com/ has several resources available for those inter-

ested in getting started with Gurobi.

I.2 GAP

GAP (Group, Algorithms, Processing) is a system for computational discrete

algebra. GAP has large data libraries of algebraic objects, including the groups

addressed in this dissertation. GAP is freely available at gap-system.org.

GRAPE (GRaph Algorithms using PErmutation groups) is a GAP package

for computing with graphs and groups. GRAPE is an interface to the well-known

nauty (No AUTomorphisms, Yes?) package developed by Brendan McKay.

126

https://www.gurobi.com/
gap-system.org

APPENDIX II

SPECIFICATION OF CERTAIN GRAPHS

This section includes information for graphs presented in this dissertation.

Each graph is speci�ed using a graph6 code and an adjacency matrix. The graph6

codes are also on GitHub (Appendix I).

II.1 Ramsey graphs

� R(3, 3; 5) graph

� graph6: Dhc

� Adjacency matrix:

01001

10100

01010

00101

10010

� H1 (Figure 2.1)

� graph6: G@hZCc

� Adjacency matrix:

00001001

00000110

00011010

00100101

10100100

01011000

01100001

10010010

� H2 (Figure 2.1)

127

� graph6:

� Adjacency matrix:

01001000

10000001

00010100

00100010

10000110

00101001

00011001

01000110

� H3 (Figure 2.1)

� graph6: G`_gqK

� Adjacency matrix:

01110000

10001010

10000101

10000011

01000101

00101010

01010100

00111000

II.2 Realizations of Ramsey graphs

II.2.1 R(3, 3; 5) realization

(Icosahedral graph)

� graph6: KhFKFCrEk[n_

� Adjacency matrix:

010001110010

101001010001

010100011001

001010001101

000101000111

110010000011

100000011110

111000101000

128

001100110100

000110101010

100011100100

011111000000

II.2.2 H2 realizations

1. Realization 1

� graph6: T@hZCf~KDOkPIcRBP_QghDSqPKoEN]Cdb@XH

� Adjacency matrix:

000010011010001001011

000001101001010100011

000110101111100000000

001001011100000111000

101001001010111000000

010110001000011110000

011000011001100000110

100100101000000011101

111111110000000000000

001100000010100110011

101010000101010001001

011000100010010101100

001010100100001010110

010011000011000010101

100011000000100101110

010101000101001001010

000101010100110000101

100100010011001100100

000000110001111011000

110000100100101100001

110000010110010010010

2. Realization 2

� graph6: W@hZCf~N@_CRiACSA`KOaR?hCSSEBe?TU@BSOpBICWm?@|E

� Adjacency matrix:

000010011000100100111000

000001101000000011010110

000110101111100000000000

001001011110011000000000

101001001100100110000000

010110001100001011000000

011000011001000000100110

129

100100101000010000101100

111111110000000000000000

001111000001010101000000

001100000001101000010011

001000100110000001000111

101010000010000010011001

000100010100001100101001

000101000010010010110001

100010000100010001101010

010011000000101000010101

010001000101000100001110

100000110000011100010010

110000000010101010100010

100000010000110101000101

010000110001000011001001

010000100011000101110000

000000000011111010001100

3. Realization 3

� graph6: W@hZCf~N@_CRiACSA`KOaR?hCSSABm?TUBBOOr@qCGx?@|D

� Adjacency matrix:

000010011000100100111000

000001101000000011010110

000110101111100000000000

001001011110011000000000

101001001100100110000000

010110001100001011000000

011000011001000000001110

100100101000010000101100

111111110000000000000000

001111000001010101000000

001100000001101000010101

001000100110000001000111

101010000010000010011001

000100010100001100101001

000101000010010010110001

100010000100010001101010

010011000000101000010011

010001000101000100100110

100000010000011101010100

110000000010101010100100

100000110000110100000011

010000110011000001110000

130

010000100001000111001001

000000000011111010001010

II.2.3 H3 realizations

1. Realization 1

� graph6: PsOihr~lEW{OeRSuLIhM]Fdg

� Adjacency matrix:

01110000111110000

10001010101101100

10000101110100110

10000011110011001

01000101101010101

00101010111000011

01010100100101011

00111000100011110

11111111000000000

10110100001001101

11001100010011010

11100010000010111

10011001001100011

01010011011000110

01101001010101001

00100111001111000

00011110010110100

2. Realization 2

� graph6: TsOihr~sd?uGoBQEhoPYQHBgQCgaagKo{HFe

� Adjacency matrix:

011100001111100000000

100010101100111000000

100001011011000110000

100000111101000001100

010001011000011100001

001010101000001110010

010101001100001001010

001110001001000100101

111111110000000000000

110100100010010000110

101000000100110110010

101100010000100011001

110000000011011010001

131

010010000110100100101

010011100000100011001

001011010010010000110

001001000011101001010

000100100001001010111

000100010100010101011

000001100110000111100

000010010001111001100

132

INDEX

Gv, 6

Guv, 53

L(P), 84

L(di), 82

NG(v), 6

Γ(G,S), 95

f -realizable, 47

r(k, l;n) game, see Ramsey game

adjacency, 2

AlphaZero Tree Search, 29

AZTS, see AlphaZero Tree Search

Cayley graph, 95

circulant graph, 7, 96, 97

clique, 4

coclique, 4

complement, 3

constant link, 47

degree, 10

distance, 9

domino problem, 78

graph, 1

automorphism, 7

complete graph, 2

complete multipartite graph, 9

connected, 8

cycle, 8

independent set, 4

local graph, 46

path, 7

regular, 10

subgraph, 3

induced subgraph, 3

tree, 9

vertex-transitive graph, 7

graph isomorphism, 5

graph6, 76

icosahedron, 101

isomorphism

graph isomorphism, 5

linear programming, 68

link graph, 47

133

locally F, 46

MCTS, see Monte Carlo Tree Search

Monte Carlo Tree Search, 25

neighborhood, 6

neural network, 22

Conv2D layer, 23

activation function, 22

convolutional neural network, 24

Petersen graph, 96

Ramsey game, 20

Ramsey's theorem, 11

critical Ramsey graph, 13

Ramsey graph, 13

Ramsey number, 12

realizable, 47

realization, 47

reinforcement learning, 21

AlphaGo, 33

AlphaGo Zero, 34

policy, 33

value, 33

Sabidussi's Theorem, 96

simply transitive action, 96

stable set, 4

subgraph isomorphism problem, 68

transitive action, 7

134

CURRICULUM VITAE

Emily S. Hawboldt

emily.hawboldt@gmail.com github.com/ehawb

EDUCATION 2017-2023 University of Louisville
Ph.D., Applied and Industrial Mathematics

2017-2019 University of Louisville
MA, Mathematics

2012-2017 University of Louisville
BM, Music Education
Band emphasis � horn
Minor in Mathematics
University of Louisville Honors Program
Helen Boswell Award in Music Education
(Senior Award for Academic Achievement)

TEACHING 2023- Je�erson County Public Schools
Hudson Middle School, 6th grade mathematics

2023 Bellarmine University
Bridge to BU

2023 Je�erson County Public Schools
Substitute teacher

2017-2023 University of Louisville
2021-2022 Faculty Favorite
Main instructor
Mathematics for Elementary Educators I
Mathematics for Elementary Educators II
College Algebra
Contemporary Mathematics
Teaching assistant
Elements of Calculus
Elementary Statistics
College Algebra

135

mailto:emily.hawboldt@gmail.com
github.com/ehawb

Contemporary Mathematics
2017 Je�erson County Public Schools

Student teacher
Je�erson County Traditional Middle School
Band, grades 6-8
Foster Traditional Academy
General music, grades K-5

2014 University of Louisville Summer Wind Band Institute
Horn: Grades 6-12
Music theory: Grades 6-8

RESEARCH 2022 Presentation: University of Louisville American
Mathematical Society Chapter
A machine-learning approach to Ramsey graphs leads
to the Trahtenbrot-Zykov problem

2022 Presentation: University of Louisville Department of
Mathematics
Ph.D. Candidacy Exam: Ramsey Theory and the
Trahtenbrot-Zykov problem

2021 Presentation: University of Louisville Graduate Stu-
dent Regional Research Conference
Ramsey theory: A reinforcement learning based ap-
proach

2019 Grant: University of Louisville Graduate Student
Council Research Grant
Awarded $500 for graphics processing unit

2019 Presentation: Bluegrass Open Problems in Combina-
torics Workshop
Antimagic Labelings

2017-2022 Independent studies
Deep learning and combinatorics
Ramsey theory
Programming for graph theory
Research in combinatorics
Algebraic graph theory
Graph minors seminar

INVOLVEMENT 2022-2023 Qualifying exams study group
Started a weekly study group for mathematics Ph.D.
students preparing for qualifying exams

2021-2022 Mathematics graduate students walking club

136

Started a biweekly walking club to build community
among mathematics graduate students

2019-2021 Graduate Student Council
Representative for Mathematics Department

2018-2020 General Education Committee
Attended monthly meetings of the General Education
Committee within the Department of Mathematics to
discuss resources and content for general education
courses in the department

2017-2023 American Mathematical Society
University of Louisville Graduate Chapter
Secretary, 2020-2022

2017-2022 Chamber Winds Louisville & Louisville Concert Band
Horn player

2012-2016 University of Louisville Wind Ensemble
Horn player

2012-2014 Cardinal Marching Band
Mellophone player
Section leader, 2013-2014

137

	A machine learning approach to constructing Ramsey graphs leads to the Trahtenbrot-Zykov problem.
	Recommended Citation

	DEDICATION
	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	1.661INTRODUCTION
	1.661RAMSEY THEORY
	1.661Introduction
	1.661History of Ramsey theory
	Known 2-color Ramsey numbers

	1.661REINFORCEMENT LEARNING AND RAMSEY GRAPHS
	1.661Reinforcement learning
	What is a neural network?
	Tree search
	Reinforcement learning and the game of Go

	1.661Training a reinforcement learning agent to generate Ramsey graphs
	Implementation

	1.661Simulations
	1.661Recommendations for continuing project
	1.661A change of direction

	1.661THE TRAHTENBROT-ZYKOV PROBLEM
	1.661History
	1.661Variants of the T-Z problem
	1.661Existence results
	1.661Non-existence results
	1.661Tree search to construct graph realizations
	Linear programming formulation of subgraph isomorphism problem

	1.661Graphs of order 7
	1.661Realizations of certain Ramsey graphs
	Unique realization of R(3, 3; 5)
	Realizations of a Ramsey(3, 4) graph, H3
	Realizations of a Ramsey(3, 4) graph, H2

	1.661UNDECIDABILITY OF THE TRAHTENBROT-ZYKOV PROBLEM
	1.661Introduction to domino problem
	1.661Construction of the graph L(P)
	1.661More properties of L(P)
	1.661Bulitko's results

	1.661CAYLEY GRAPHS
	1.661Introduction to Cayley graphs
	1.661Circulant graphs
	1.661Cayley realizations of Ramsey graphs
	Unique Cayley realization of R(3, 3; 5)
	Two Cayley realizations of a Ramsey(3, 4) graph, H3
	Two Cayley realizations of a Ramsey(3, 4) graph, H2
	Realizability of R(4, 4; 17)

	1.661CONCLUSIONS
	REFERENCES
	1.661PROGRAMMING TOOLS
	1.661Python
	Keras
	Gurobi

	1.661GAP

	1.661SPECIFICATION OF CERTAIN GRAPHS
	1.661Ramsey graphs
	1.661Realizations of Ramsey graphs
	R(3, 3; 5) realization
	H2 realizations
	H3 realizations

	0.25in INDEX
	CURRICULUM VITAE

