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ABSTRACT 

INTERACTIVE COMPUTER-BASED SIMULATIONS AS 

 EXPLORATORY LEARNING ACTIVITIES 

Derek McClellan 

June 28, 2023 

Typical college lectures follow a direct instruction framework, where instructors deliver a 

lecture, followed by an activity. Exploratory learning flips this routine by providing 

students with an activity prior to instruction. Research suggests that this inversion 

benefits students’ conceptual understanding and ability to transfer their knowledge. The 

majority of exploratory learning tasks in the literature are problem-solving activities. The 

current work investigates the use of computer-based simulations during exploratory 

learning, and whether manipulating the cognitive load of the activity impacts learning. In 

Experiment 1, undergraduate students (N=66) were randomly assigned to explore a 

simulation-based circuit construction activity prior to instruction (explore-first) or receive 

instructions on the topic prior to the activity (instruct-first). The learning assessment 

consisted of conceptual knowledge and transfer of knowledge to a similar topic. 

Participants in the instruct-first condition scored higher on the assessment than 

participants in the explore-first condition, and reported lower cognitive load. In 

Experiment 2, participants received one of two versions of the exploration activity, 

designed to provide stronger guidance and reduce intrinsic or extraneous cognitive load.
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 Undergraduate students (N=195) were randomly assigned to one of four conditions based 

on order (explore-first or instruct-first) and cognitive load reduction type (intrinsic load 

reduction or extraneous load reduction). Participants in the intrinsic load reduction 

conditions scored at an equal level on conceptual knowledge, and higher on transfer,  

compared to participants in the extrinsic load reduction conditions, regardless of order. 

Across both experiments, participants in the explore-first conditions reported 

motivational benefits (higher curiosity and higher perceived knowledge gaps). Yet the 

instruct-first approach led to higher learning, suggesting that these components are not 

enough for effective exploratory learning, even when reducing intrinsic cognitive load 

through guidance. Simulation environments may be too complex for students to 

effectively explore the deep problem features that otherwise provide conceptual 

advantages.  

Keywords: exploratory learning, interactive simulations, educational technology, 

cognitive load, STEM education 
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CHAPTER I: INTRODUCTION 

Science, technology, engineering, and mathematics (STEM) undergraduate 

classes typically follow a direct instruction framework, consisting of a lecture, and 

sometimes a subsequent practice activity (Stains et al., 2018). This instructor-centered 

approach places the teacher as a locus of knowledge, and students as passive recipients of 

knowledge (Hovey et al., 2019), consequently lowering student agency (Zeiser et al., 

2018) and engagement in the classroom (Hovey et al., 2019). Some pedagogical research 

challenges this framework, advocating for students to become more active agents in the 

learning process through constructivist methods. In contrast to traditional tell-then-

practice instruction, constructivist methods task students with constructing their own 

knowledge through trial-and-error experiences (Prince, 2004; Schwartz et al., 2011).  

 Exploratory learning is a constructivist-inspired method that reverses the typical 

classroom routine, providing students with an activity prior to receiving instructions on 

the to-be-learned topic (DeCaro & Rittle-Johnson, 2012). Exploratory learning activities 

often task students with solving novel problems (Kapur, 2012). Such problems can take a 

variety of forms, such as providing ‘real-world’ physics problems students must invent 

solutions to (Schwartz et al., 2011), or intentionally ill-defined mathematics questions 

(Kapur, 2010).  

Though exploratory learning activities are usually completed independently, some 

level of scaffolding can be provided through contrasting cases (Bego et al., 2023; 

Schwartz et al., 2011), prompts (Holmes et al., 2014), or partially completed worked 
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examples (Newman & DeCaro, 2019; Schwartz & Martin, 2004). These activity-first 

approaches are researched under several terms, including problem-solving by invention 

(Loibl et al., 2017), preparation for future learning (Schwartz & Martin, 2004), and 

productive failure (Kapur, 2014). For the purposes of this work, all such activity-first 

approaches will be referred to as exploratory learning (DeCaro & Rittle-Johnson, 2012; 

Weaver et al., 2018).  

By combining exploration with a learning resource (e.g., instructions), 

exploratory learning is designed to avoid the problems that pure discovery learning is 

commonly criticized for—namely, that exploring without instruction can cause confusion 

and rehearsal of erroneous problem-solving solutions (Mayer, 2004). This reversed 

instructional sequence is intended to correct misconceptions acquired during the 

exploration process (Schwartz & Bransford, 1998). Furthermore, unlike pure discovery 

learning methods, learners need not arrive at a correct solution for exploration to be 

deemed a success, as research suggests that the quality of solutions while exploring does 

not hinder future learning (Kapur, 2016). Contrarily, through exploratory learning, 

students seldom arrive at the canonical solutions on their own (Kapur, 2012). Despite the 

quality of students’ solutions, research shows that through ‘productive failure’, students 

still benefit from exploration when it is paired with subsequent instruction (Loibl & 

Rummel, 2014b).  

Research shows that exploratory learning can result in higher conceptual 

understanding of material (Kapur, 2016; Loibl & Rummel, 2014a) and comparable 

procedural and fact-based learning compared to instruct-first approaches (DeCaro & 

Rittle-Johnson, 2012; Loibl & Rummel, 2014b; Newman & DeCaro, 2019; Weaver et al., 
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2018). By providing students with more generalized domain knowledge, exploratory 

learning better prepares students to transfer their knowledge when learning new concepts 

(Schwartz & Martin, 2004). The conceptual benefits of exploratory learning have been 

demonstrated across multiple STEM domains, including elementary and middle school 

mathematics (e.g., DeCaro & Rittle-Johnson, 2015; Kapur, 2010; Kapur, 2011), college-

level physics (e.g., Hofer et al., 2018; Schwartz et al., 2011; Weaver et al., 2018), 

chemistry (e.g., DeCaro et al., 2022), biology (e.g., Chowrira et al., 2019; Halmo et al., 

2020), and statistics (e.g., Newman & DeCaro, 2019; Schwartz & Martin, 2004).  

Mechanisms of Exploratory Learning  

Exploratory learning is thought to benefit students’ learning through several 

mechanisms. When attempting to solve novel problems without prior instruction, learners 

rely on relevant knowledge they already possess (Kapur, 2012; Schwartz & Bransford, 

1998). Activating prior knowledge facilitates the formation of connections between new 

and existing schema, allowing for stronger integration of novel information (Sweller et 

al., 1998). With this integration, students may also gain new perspectives and correct 

misconceptions (Ohlsson, 1996). Through the activation of prior knowledge, exploratory 

learning better prepares students for future learning, as prior knowledge may help 

students interpret the information during instruction (Schwartz & Martin, 2004). 

Retrieving and applying existing schemas can also facilitate knowledge transfer (i.e., 

applying learned knowledge to a novel but relevant problem; Kapur, 2014; Schwartz & 

Martin, 2004).  

Activating prior knowledge encourages students to reflect on what information 

they do and do not already understand, improving their metacognitive awareness 
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(Glogger-Frey et al., 2015). Direct instruction may sometimes lead to passive 

engagement (Chi & Wylie, 2014), risking students becoming overconfident in their own 

understanding, and forming an ‘illusion of understanding’ (Bjork, 1994; Szpunar et al., 

2014). Inaccurately perceived fluency can lead to less time restudying material, resulting 

in poor long-term retention (Dunlosky & Rawson, 2012). During exploratory learning, 

students often find that their current understanding does not lead them to successful 

solutions, consequently raising their awareness of gaps in their knowledge (Glogger-Frey 

et al., 2015). Awareness of such flaws fosters a ‘need to know’, heightening curiosity to 

learn successful solutions (Lamnina & Chase, 2019) and increases motivation to better 

understand material (Loibl et al., 2017). This increased motivation improves learners’ 

engagement when learning through subsequent instructions (Loibl & Rummel, 2014b). 

Awareness of knowledge gaps is critical to successful exploratory learning, as failing to 

raise metacognitive awareness prior to instruction limits the benefits of exploration (Loibl 

et al., 2020; Nachtigall et al., 2020).  

Exploratory learning helps students focus their attention on the deep structure of 

information through identifying key problem features (Chi et al., 2016). Exploration 

provides opportunities for learners to observe, interpret, reflect, and test multiple 

strategies to assess the relationships between a problem’s variables (DeCaro & Rittle-

Johnson, 2012; Glogger-Frey et al., 2015; Schwartz & Martin, 2005). This trial-and-error 

allows students insight into which approaches work, but also why certain strategies are 

effective or ineffective based on a problem’s structure (Chin et al., 2016).  

Introducing exploration activities in the classroom breaks the normal lecture 

routine. Furthermore, exploration activities task students to work with materials they may 
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have no prior experience with. For these reasons, exploratory learning has the potential to 

be a frustrating and cognitively demanding experience for some students (Kapur, 2014). 

Despite potential frustrations, exploratory learning can result in equal (Glogger-Frey et 

al., 2015; Kapur, 2014; Newman & DeCaro, 2019) or greater (Weaver et al., 2018, 

Experiment 1) situational interest compared to direct instruction. These findings suggest 

that even though exploratory learning activities are challenging, their inclusion does not 

hinder student interest and motivation.  

Despite their advantages, there are challenges to implementing exploration 

activities in classrooms. Designing exploration activities can be a time and resource 

demanding endeavor for instructors. Furthermore, for exploration to be productive, 

materials should be difficult enough to challenge students, without being so difficult that 

they lose motivation and disengage (Kapur, 2014). Appropriate difficulty of a learning 

activity is necessary for learners to achieve a flow state, characterized by the learner 

experiencing high concentration, and feeling optimally challenged yet confident about 

their ability to succeed (Rheinberg et al., 2003). An activity that balances task difficulty 

with a learner’s knowledge should heighten the learner’s attention and perceived fluency 

(Engeser & Rheinberg, 2008).  

Balancing the difficulty of exploration may be discouraging to instructors who are 

new to designing exploratory learning activities. One solution is to look to existing 

educational resources as possible exploration activities. Computer-based simulations are 

promising resources for two reasons. First, simulations are already designed for students 

to learn in an exploratory manner (De Jong & Van Joolingen, 1998). Second, there is a 
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growing body of literature supporting their effectiveness when implemented as classroom 

activities (e.g., Adams et al., 2015; Chamberlain et al., 2014; Roll et al., 2014). 

Simulations as Exploratory Learning Tools 

Implementing computer-based simulations as exploration activities, as opposed to 

pen-and-paper activities, might offer pedagogical and research advantages. This work 

will use the term simulation to refer to interactive simulations specifically designed for 

graphical visualized representations of processes, situations, and systems (Moser et al., 

2017). Such simulations have applications across many different disciplines, even outside 

of academia, including healthcare and military training (Koh et al., 2010).  

Use of simulations has become increasingly common within STEM disciplines, as 

they can demonstrate complex real-world phenomena (Jimoyiannis & Komis, 2001; 

Moser et el., 2017). Effective simulations are designed to represent scientifically 

authentic events, allow students to engage in scientific inquiry by testing hypotheses, and 

are tailorable to students’ interests and ability levels (Blake & Scanlon, 2007; Moser et 

al., 2017). Simulations are also increasingly accessible, with a growing number of 

computer-based simulations freely available online through sources like the University of 

Colorado Boulder’s physics education technology (PhET) online library (Wieman et al., 

2008).  

Simulations are popular tools for guided discovery and inquiry-based research, as 

they allow learners to explore domain-specific concepts by granting virtual tools to 

investigate and manipulate visualized models (De Jong & Van Joolingen, 1998). 

Simulation-based learning has been found to be more effective than traditional instruction 

alone (Akpan & Andre, 2000; Chen, 2010; Hagemans et al., 2013; Sarabando et al., 2014; 
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Trundle & Bell, 2010; Zacharia & Olympiou, 2011). Direct instruction paired with a 

subsequent simulation activity (i.e., instruct-first approaches) has been found to help 

students overcome prior misconceptions (Jimoyiannis & Komis, 2001).  

Simulations can be effective replacements for expensive or difficult to obtain 

laboratory equipment. Finkelstein and colleagues (2005) found that learning about 

electrical circuits via a simulation can result in stronger learning outcomes compared to 

learning with comparable real-world laboratory equipment. Simulations also offer the 

advantage of modeling concepts that are too small to observe (e.g., atomical structures, 

neuron action potentials; see DeCaro et al., 2022; Jones et al., 2005), or are otherwise 

unrealistic (e.g., exploring the conservation of energy by skateboarding in earth’s gravity 

compared to Jupiter’s gravity; see Trey & Khan, 2008). 

Much of the existing research investigating the use of simulations stems from 

inquiry-based learning research. Like exploratory learning, inquiry learning is a 

constructivist-inspired method, wherein students construct their own understanding 

throughout the learning process (Kuhlthau & Maniotes, 2015). Students engaged in 

inquiry-based learning are given a carefully scaffolded series of problems, and are asked 

to make sense of them, often independently or in groups. Inquiry-based learning differs 

from exploratory learning in its structure, as inquiry-based learning is a more open-ended 

process, and subsequent instruction is not necessarily provided to students (Ernst et al., 

2017). Consequently, the two approaches may activate different cognitive mechanisms by 

which they benefit learning (Song & Kapur, 2017).  

Inquiry-based learning research by Roll and colleagues (2018) demonstrated that 

using interactive simulations can improve conceptual understanding, as well as encourage 
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positive attitudes towards the material. Research has also shown that simulation-based 

learning can facilitate activation of prior knowledge and help students with low prior 

knowledge perform at a similar level to students with high prior knowledge (Roll et al., 

2014; Roll et al., 2018). Despite the popularity and effectiveness of simulations as 

inquiry-based learning tools, to our knowledge, few studies have examined the use of 

computer-based simulations as exploratory learning activities (see Chin et al., 2016; 

DeCaro et al., 2022). More research is needed to determine the effectiveness and best 

practice for pairing simulations with instructions (e.g., whether simulations should be 

accessed prior to or after instruction, how much scaffolding is necessary for simulation-

based exploration to benefit instruction).  

Many interactive simulations share characteristics with commonly used pen-and 

paper exploratory learning activities, as they provide problem spaces for testing multiple 

hypotheses, strategies, and solutions (Kapur, 2016; Moser et al., 2017). However, 

simulations can offer real-time, adaptive feedback to learners while they explore 

(Podolefsky et al., 2010). Such feedback can dynamically reveal successes and failures, 

based on learner input. Feedback can also be more granular, showing progression towards 

or away from a desired goal (Roll et al., 2014). This feedback pairs well with the 

mechanisms thought to be responsible for the benefits of exploratory learning, as it can 

act as an additional source of information highlighting learners’ knowledge gaps. 

Another advantage to implementing simulations as exploratory learning activities 

is that simulations may assist students in discerning relevant problem features. For 

example, a student learning with a PhET atomic structure simulator might notice all 

electron particles, once placed, automatically orbit outside of the nucleus. The simulation 
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does not produce this effect when placing protons, or neutrons, highlighting an important 

difference between these particles. The curation of which features a learner can and 

cannot interact with, and in what ways, may help highlight critical aspects of the topic.  

Beyond pedagogical advantages, there are also technological advantages to using 

simulations as exploratory learning activities in learning research. By using a logfile or 

screen recording software, researchers can monitor student strategies during exploration 

(Perez et al., 2017; Roll et al., 2018). These data allow researchers to examine variables 

such as a learner’s off-task behaviors, pausing to reflect on feedback, how learners 

incorporate guidance, and the quantity of solutions generated during exploration (Tavares 

et al., 2013). Advancements have also been made in simulation customizability and 

interoperability, allowing instructors and researchers to personalize controls, labels, 

starting parameters, and stimuli presentation (Moore & Perkins, 2018). Such features 

grant educators the freedom to tailor simulation-based learning to meet their students’ 

needs.  

There are challenges to consider when using computer-based simulations as 

exploration activities. If exploratory learning is not incorporated in a classroom 

environment with regularity, it is possible that students will become frustrated by the idea 

of breaking from their normal classroom activities to do unfamiliar problem-solving tasks 

(Lopatto et al., 2020). Effectively guided simulation-based learning may alleviate these 

problems, as simulation-based learning can elicit students’ situational interest (Adams et 

al., 2008a; Yaman et al., 2008). Such interest, if sustained, is thought to improve attention 

to task-relevant information and conceptual learning (Hidi & Renninger, 2006), as well as 

help students persist when material is challenging (Rounds & Su, 2014).  
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Simulations can be rich with detail, giving learners an abundance of information 

to process while they learn (Jones et al., 2005; Lehtinen & Viiri, 2017; Zacharia & 

Olympiou, 2011). Thus, some simulations may be too demanding for some students 

(Marshall & Young, 2006). The cognitive load experienced by the student while learning 

from the simulation should be considered when implementing simulations as exploratory 

learning activities. It is likely that some level of scaffolding is necessary to balance the 

complexity of the simulation and help students focus on relevant information without 

prior instruction.  

The Role of Cognitive Load 

In order to learn, students must process information in working memory; 

however, working memory capacity is limited in how much information can be processed 

at once (Mayer & Fiorella, 2014). Educators must be mindful of cognitive load (i.e., the 

amount and types of demand on working memory) when selecting and designing learning 

materials. Presenting too much concurrent information comes at the risk of 

overburdening working memory capacity (Cowan, 2010). According to the triarchic 

theory of cognitive load (Sweller, 2005), and the cognitive load theory of multimedia 

learning (Mayer & Moreno, 2003), load imposed on working memory can be classified 

into three categories: extraneous, intrinsic, and germane processing. Each load type 

utilizes working memory resources differently and should be considered when appraising 

the appropriateness of an instructional method.  

Intrinsic cognitive load refers to the number, and complexity, of elements that are 

essential for accurate comprehension of concepts (Van Merrienboer & Ayres, 2005). 

Intrinsic cognitive load depends on the nature and connectivity of the material, rather 
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than the instructional method used to deliver the information (Brame, 2016; Sweller, 

2016). Intrinsically demanding materials are those which have several elements that must 

be processed within working memory to obtain a full understanding (DeLeeuw & Mayer, 

2008; Van Merrienboer & Ayres, 2005). The term element interactivity (Sweller, 1994) is 

often used to define the degree of complexity of those elements, as well as their 

interactions. Highly complex topics, like those often covered in STEM courses, possess 

an abundance of interacting elements, making them especially challenging for students 

with low relevant prior knowledge (Mutlu-Bayraktar et al., 2019).  

Extraneous cognitive load refers to resources used when learners engage in 

processing information that does not support the formation of relevant schema 

(DeeLeeuw & Mayer, 2008). Extraneous load is elicited by the ways in which 

information is delivered, and is high when the learning materials include distracting or 

irrelevant information that impedes processing of the target content (e.g., distracting 

sounds, imagery, confusing instructions, poorly configured layouts, an abundance of text; 

Brame, 2016). Cognitive load is additive—regardless of the type of cognitive load, all 

load within the same sensory modality draws from the same pool of shared resources 

(Sweller, 1998). If sufficient encoding is to occur, the total load cannot exceed the 

available working memory resources (Sweller, 2011). As working memory resources are 

allocated to process superfluous information, resources available to process relevant 

information are limited (Orru & Longo, 2019), making extraneous load a hindrance to 

forming new schema.  

Germane cognitive load, or generative processing, is load devoted to cognitive 

processes that are necessary to form robust schema (Sweller, 1994). Whereas extraneous 
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load is considered interference, germane load is effective load, as germane processing 

promotes learning (Kalyuga, 2011). Some researchers have reconceptualized germane 

load as a direct function of intrinsic load, rather than as an independent source of load, 

arguing that germane load is comprised of the resources learners devote to address the 

interactivity stemming from task difficulty (Jiang & Kalyuga, 2020). Such arguments do 

not account for the possible inverse relationship between intrinsic and germane load, as 

an overwhelmingly complex task (e.g., high on intrinsic load) leaves little room for the 

deeper processing that is characteristic of germane load (Kalyuga, 2011).  

If intrinsic and extraneous loads leave adequate working memory resources, 

germane load allows better organization and elaboration through linking information with 

existing schema (Gerjets & Scheiter, 2003). Germane load is also a function of learner 

characteristics, with higher levels of motivation and prior knowledge leading to better 

integration of schema (Cook, 2006).  

Cognitive Load and Exploratory Learning 

There is ongoing debate regarding Cognitive Load Theory’s (CLT) applicability 

to the mechanisms of exploratory learning. A criticism of constructivist-inspired methods 

is that learners experience high cognitive load (Kirschner et al., 2006). When students are 

tasked with independently inventing solutions to novel problems, they often produce 

errors and allocate their attentional resources to superfluous details or incorrect solutions 

(i.e., sources of extraneous cognitive load; Kapur, 2016). This procedure comes at the 

expense of allocating those resources to germane information and successful strategies 

(Sinha & Kapur, 2019). These notions put cognitive load theory at odds with the 

exploratory learning benefits found throughout literature.  
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Attempting to resolve this discrepancy, Kalyuga and Singh (2016) argue that the 

goal of exploration is to prepare students for future learning through motivating and 

engaging the learner. The framework of CLT assumes that the goal of a learning activity 

is to immediately acquire domain-specific schemas. By this reasoning, because students 

are not expected to discover the canonical solution while exploring, CLT is not relevant 

to exploratory learning. Despite this claim, there is a growing body of literature 

suggesting that cognitive mechanisms are at least partially responsible for the benefits of 

exploratory learning (Kapur, 2010; Schwartz & Martin, 2004), and that cognitive load 

plays a role in successful exploration (Kapur, 2014; Newman & DeCaro, 2019).  

When element interactivity (i.e., intrinsic load) is high, instruct-first methods may 

result in better conceptual learning and knowledge transfer compared to explore-first 

methods (Ashman et al., 2020). Even though exploratory learning may increase students’ 

cognitive load (Kapur, 2014; Toh & Kapur, 2017), it is possible that much of this mental 

effort could be beneficial for learning. If attention is divided between task relevant 

information and extraneous information, engagement may suffer (Vesga et al., 2021), but 

this problem extends beyond motivation. Without focusing on relevant problem details, 

learners may fail to encode key problem features, and may not perceive gaps in their 

knowledge, leading to poorer schema acquisition during subsequent instruction (Newman 

& DeCaro, 2019). If most working memory processes are devoted to acquiring key 

problem features throughout exploration, then this load could be classified as germane 

(i.e., the learner is processing information relevant to the to-be-learned concept). 

Consistent with this idea, Newman & DeCaro (2019) found that use of worked examples 
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during exploration (i.e., a means of reducing extraneous load) improved conceptual 

understanding and knowledge transfer.  

Supporting Exploratory Learning 

Though explore-first approaches to learning have sometimes been shown to be 

effective with minimal guidance (e.g., Kapur, 2008), providing support may still alleviate 

unnecessary cognitive load. Several methods of reducing cognitive load during 

exploration have been tested. Contrasting cases have been found to be an effective means 

of focusing learners’ attention on specific problem features by reducing the amount of 

processed information (Bego et al., 2023; Schwartz & Martin, 2004). However, 

contrasting cases may only support exploration beyond instruct-first approaches when 

learners are guided to use them during problem-solving (Loibl et al., 2020). Other studies 

have found metacognitive prompts (Holmes et al., 2014; Kalyuga & Hsu, 2019) and self-

explanation prompts (Fyfe et al., 2014) to be effective scaffolding during exploration. 

The nature of the prompts may influence the effectiveness of exploratory learning, as 

studies that used prompts probing conceptual knowledge have led to more effective 

learning (e.g., Holmes et al., 2014). 

Worked examples (i.e., problems with solutions already prepared and available to the 

learner), have been found to reduce working memory demand by narrowing the number of 

possible strategies and streamlining attention to critical problem features, facilitating attention 

towards germane information (Sweller et al., 1998). Evidence suggests worked examples are an 

effective form of guidance for reducing cognitive load (Kirschner et al., 2006). Some studies have 

found worked examples to be an effective tool for guided exploration, resulting in better 

conceptual learning (Glogger-Frey et al., 2015; Newman & DeCaro, 2019, Studies 1 & 3) and 

reduced cognitive load (Glogger-Frey et al., 2017; Kalyuga & Hsu, 2019) when compared to 
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learning from unguided exploration. Other studies have found no significant differences when 

comparing exploration guided by worked examples to no guidance exploration (Likourezos & 

Kalyuga, 2017; Newman & DeCaro, 2019, Study 2). 

Simulations and Cognitive Load 

When designing activities for simulation-based learning, it is important to 

consider cognitive load from three angles: 1) guidance provided by the instructor with the 

goal of facilitating conceptual inquiry (Adams et al., 2008a), 2) feedback embedded 

within the simulation design (e.g., visual cues to draw student attention to germane 

features, or dynamically demonstrate to students that they have made an error; Roll et al., 

2014), and 3) how simulation features (e.g., interface, buttons, sliders, options, and 

modes) are designed (Moore & Perkins, 2018).  

Optimally designed simulations allow for more robust scientific inquiry and 

minimize extraneous load, while still offering enough complexity to allow opportunities 

for germane processing (Adams et al., 2008b). How information is delivered by a 

simulation is critical for managing working memory resources. For example, pairing 

relevant words and visuals together reduces extraneous load (i.e., spatial contiguity 

principle, see Mayer & Fiorella, 2014). When left to explore on their own, students are 

likely to explore the most salient features within a simulation. Activity design can take 

advantage of this tendency by highlighting the most important problem features within 

the simulation, minimizing attention drawn to less relevant features (i.e., signaling, see 

Mayer & Fiorella, 2014). Successful simulations teach by visualizing information, rather 

than describing details in text (Adams et al., 2008c).   
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Guidance and Simulation-Based Learning 

The type and amount of guidance necessary for implementing simulations as 

exploratory learning activities is not well known. Most studies implementing simulations 

use them as inquiry learning tools (e.g., Roll et al., 2014; Roll et al., 2018), and do not 

manipulate the order of instructions to determine whether simulations are appropriate for 

exploratory learning. Even though simulations are often designed to provide dynamic 

feedback, most simulations are not imbedded with intrinsic objectives or goals for 

students, and typically rely on the help of instructor activities or guidance for added 

context (Holmes et al., 2014).  

Without context, student interest and attention are not driven by learning goals 

and are instead driven by the simulation features (Wieman et al., 2010). As such, student 

engagement can be minimal. Students who receive no guidance during simulation-based 

learning tend to interact with the most salient simulation features, regardless of 

conceptual relevance (Adams et al., 2008b). With no guidance, the extraneous load 

induced by the simulation’s design is critical to success, as it is common for students to 

disengage if they cannot navigate the simulation on their own (Adams et al., 2008a). 

The level of guidance that is most appropriate may largely depend on the 

characteristics of the learner. Interactions between some learner characteristics (e.g., prior 

knowledge, motivation), and simulation-based inquiry learning, are well studied (e.g., 

Manlove et al., 2007; Roll et al., 2018). Inquiry-based learning research has found that 

pairing simulations with strong, direct support (e.g., reflection prompts, visual aids, 

compare-and-contrast examples) can improve learning, especially when learners already 

possess high levels of prior knowledge (Roll et al., 2018).  
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It is uncertain whether simulation-based exploratory learning requires similar 

guidance compared to using simulations in other ways. Some researchers argue that the 

goal of exploration is not the initial acquisition of domain-specific knowledge (Kalyuga 

& Singh, 2015), but is instead to activate prior knowledge, bring awareness to knowledge 

gaps, and highlight critical problem features to prepare for future learning (Schwartz & 

Martin, 2004). Furthermore, exploratory learning includes an additional learning resource 

(i.e., subsequent instruction) to assist in schema consolidation and correcting 

misconceptions; learners need not necessarily acquire knowledge from exploring the 

simulation alone (Kapur, 2016). These design features would suggest that using 

simulations as exploratory learning tools would require less formal structure than in other 

contexts.  

However, simulations are often rich with information from extraneous and 

germane resources, so it is still likely that simulation-based exploratory learning would 

benefit from appropriate scaffolding. Just as research suggests that contrasting cases help 

focus attention to deeper problem features when problem-solving (Loibl et al., 2017; 

Schwartz & Martin, 2004), educators can use relevant simulation features to narrow 

learners’ attention to critical problem features, concepts, and relationships, leading to 

higher germane processing and improved conceptual understanding.  

Current Research 

The objectives of this research were to investigate (a) whether simulations can be 

effectively used as exploratory learning activities, (b) how the intrinsic cognitive demand 

of these activities affects learning strategies and outcomes, and (c) whether guidance is 

necessary to improve learning when implementing these activities. It is important to 
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examine the type of guidance students require to successfully explore simulations for two 

reasons. First, simulations have built in guidance in the form of dynamic feedback 

(Lehtinen & Viiri, 2017; Roll et al., 2014), so care must be taken that students are not 

overwhelmed with an abundance of information from multiple sources. Additionally, 

exploratory learning entails adding a set of instructions following exploration (Kapur, 

2012), so support should be designed to ensure information is presented in a way in 

which key ideas can be integrated together, rather than result in redundant or superfluous 

processing (Mayer & Fiorella, 2014; Sweller, 2011). 

Existing research on simulation-based learning has examined how implementing 

guidance during simulation activities can improve learning (Roll et al., 2014, 2018). 

However, these studies did not include direct instruction either before or after their 

simulation activities. Recent research has examined instructional order (DeCaro et al., 

2022), but has done so without manipulating the type of guidance provided to students 

during exploration. The current work expands on prior simulation-based research by 

investigating how instructional order (i.e., completing the simulation activity before or 

after instruction), and the intrinsic cognitive load of the material, can affect conceptual 

understanding and knowledge transfer.   

Experiment 1 addressed the first research question, by examining how 

instructional order affects learning. We investigated whether using a computer-based 

physics simulation as an exploratory learning activity prior to conceptual instruction 

(explore-first) yielded benefits compared to exploring the same simulation-based activity 

after instruction (instruct-first). The simulation provided students the necessary 

components to construct virtual circuits, as well as tools to measure the current and 
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voltage of these circuits. All participants were provided with an activity worksheet to 

complete while exploring the simulation (see Appendix A). Analogous to pure invention 

methods of exploratory learning (Schwartz & Martin, 2004), only minimal guidance was 

provided to participants while they explored the simulation (i.e., few conceptual 

reasoning questions were posed, no explanatory tables or diagrams were displayed, no 

reflection prompts were provided). The worksheet included a stated objective (i.e., “use 

the simulation to explore how voltage, current, and the brightness of the light bulbs 

depends on 1) the number of light bulbs in the circuit, and 2) the arrangement of light 

bulbs in the circuit). The worksheet included questions and scenarios for participants to 

explore using the simulation (e.g., which bulb do you think will be the brightest?; how 

could you hook up a battery and 2 light bulbs so that the least amount of current flows 

through the battery?) but did not include guidance of scaffolding to facilitate successful 

completion of these problems.  

Because some research suggests that activity review is necessary to prepare for 

future learning from a learning resource (Loibl et al., 2017), after the exploration and 

instruction phases were both completed, participants reviewed the solutions to the 

exploration activity worksheet. To assess whether exploring prepared participants for 

future learning and knowledge transfer, participants then viewed video material on a 

similar but unexplored topic. Survey items assessed participants’ perceptions of the 

learning activities, including self-reported cognitive load, perceived knowledge gaps, 

perceived flow, curiosity about the learned material, and interest/enjoyment. Finally, 

participants completed a learning assessment, measuring their conceptual knowledge of 
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the taught physics topic, and how well they could transfer their knowledge to the 

unexplored video material. 

Based on previous literature revealing the benefits of exploratory learning, we 

hypothesized that participants in the explore-first condition would score higher on 

conceptual items (i.e., questions that probe knowledge covered by the activity and 

instruction) and transfer items (i.e., questions that are similar, but not identical content to 

concepts covered by the activity and instruction) than students in the instruct-first 

condition. Based on previous research, we also predicted that participants in the explore-

first condition would report higher levels of perceived knowledge gaps (Glogger-Frey et 

al., 2015), flow (Kapur, 2012), curiosity (Loibl et al., 2017), and equal or higher levels of 

interest/enjoyment (Kapur, 2014; Weaver et al., 2018, Experiment 1). Based on prior 

literature, we also predicted that participants in the explore-first condition would report 

equal or higher levels of cognitive load (Newman & DeCaro, 2019).  

Experiment 2 addressed the remaining research questions regarding intrinsic 

cognitive demand of exploratory learning activities and whether guidance is necessary 

when implementing these activities. A 2 (instructional order: explore-first, instruct-first) 

× 2 (load reduction: intrinsic load, extraneous load) between-subjects design was used. 

As in Experiment 1, participants were randomly assigned to either complete the 

simulation activity before instruction (explore-first) or receive instructions prior to 

completing the simulation activity (instruct-first).  

We predicted that cognitive load imposed by the simulation activity would be 

reduced in two ways, varying across condition. In the intrinsic load reduction condition 

(ILR), the intrinsic demand of the activity was reduced by breaking down the activity into 
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smaller problem sets (e.g., pairwise comparisons of circuit components instead of 

comparing multiple circuits at once). By breaking the activity down into steps, the 

number of interacting elements participants must concurrently hold within working 

memory was reduced. Beyond this manipulation, participants in the ILR condition 

received a level of guidance comparable to participants in Experiment 1.  

A second condition, the extraneous load reduction condition (ELR), addressed 

cognitive load by embedding partially completed worked examples into the activity 

worksheet. The format of questions was similar to Experiment 1 but included some steps 

to correctly solve the worksheet problems. The intention was to reduce extraneous 

cognitive load experienced by the participants, as prior research suggests that worked 

examples are an effective way to focus students’ attention to key problem features and 

correct solutions, allowing them to allocate working memory resources to constructing 

schema (Sweller, 2004).   

The goal of Experiment 2 was to set up two potentially more optimal explore-first 

conditions, to compare to two instruct-first conditions that use the same activity and 

instructions (in reverse order). An objective of Experiment 2 was to establish preliminary 

guidelines for implementing computer-based simulations as exploratory learning 

activities. With these preliminary guidelines, future research can further examine and 

expand upon the design features that are beneficial to learning.  

Like Experiment 1, Experiment 2 used survey items assessing participants’ 

perceptions of the learning activities: perceived knowledge gaps, flow, curiosity, and 

interest/enjoyment. Experiment 2 assessed self-reported cognitive load, but also 
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employed an additional instrument to discriminate between the three types of cognitive 

load (Klepsch et al., 2017; Leppink et al., 2013).  

The manipulations used in Experiment 2 were intended to reduce cognitive load 

relative to participants in Experiment 1. Compared to students in the instruct-first 

conditions, we predicted that participants in the explore-first conditions would score 

higher on conceptual and transfer items. We predicted that participants in the ELR and 

ILR conditions would score comparably on conceptual items. We also predicted that 

participants in the ELR would perform lower on transfer items compared to participants 

in the ILR conditions. Prior literature suggests that worked examples are effective at 

focusing student attention to problem features, thus, reducing extraneous cognitive load 

(Sweller, 2004). Such forms of strongly directed guidance can lead to less freedom 

during simulation learning, resulting in students fixating on only the prescribed 

instructions (Adams et al., 2008a).  

Consistent with previous literature, we predicted that participants in the explore-

first conditions will report higher perceived knowledge gaps, perceived flow, curiosity, 

and equal or higher interest/enjoyment than participants in the instruct-first conditions. 

We predicted that participants in the explore-first conditions would report equal or higher 

cognitive load than participants in the instruct-first group, but that the type of cognitive 

load reported would vary based on the load reduction condition (ELR or ILR). Consistent 

with our design intentions, we hypothesized that participants in the ELR condition would 

report significantly lower extraneous load, but significantly higher intrinsic load, than 

participants in the ILR condition.  
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Beyond examining learning outcomes, Experiments 1 and 2 used video recording 

software to capture how learners explored the simulation. Though studies have 

investigated student strategies during exploration (e.g., Kapur, & Bielczyz, 2011), this 

work used a different method to look at how those solutions inform preparation for future 

learning. Analyzing video footage allows researchers to investigate how specific student 

approaches facilitate learning (e.g., construction using more circuit components, formal 

testing through measurement tools, taking more time to reflect on feedback, and going 

beyond activity tasks).  

In Roll et al.’s (2018) prior research, students who received guidance with 

simulations were more likely to engage in formal testing (i.e., using the tools provided by 

the simulation to obtain objective data), whereas unguided students were more likely to 

engage in informal testing (i.e., constructing pieces within the simulation to observe 

feedback provided by the simulation). Pausing and resetting the simulation were equal 

across conditions. If we consider instructions as comparable to directive guidance, we can 

predict that students who receive instructions prior to the activity will engage in more 

formal testing, whereas participants who complete the activity prior to instruction may 

engage in less formal observation. We predict that pausing and resetting the simulation 

will be equal across conditions. Given that we are manipulating the order of these 

instructions, it is possible that these findings will not be consistent with prior inquiry-

based findings. An alternative prediction is that students who explore the simulation first 

would show increased use of all these approaches, as prior research shows that 

exploration leads to increased generation of strategies (Kapur, 2008).  
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Theoretical and Practical Implications 

The current research will link the exploratory learning and computer-based 

simulation literatures and begin to identify the boundary conditions for implementing 

simulations as exploratory learning tools in real classrooms. There are a lot of variables 

to consider when determining how to best use an educational intervention (e.g., 

participant attitudes, perceptions, characteristics). This research takes steps towards 

identifying when and why this intervention may work. One goal of this work is to form a 

theoretical and empirical starting point for a body of literature which outlines the 

conditions necessary for educators to use simulations to enrich student learning through 

exploratory learning. As suggested by previous literature, there are conditions for which 

exploration may not be advantageous (e.g., when a task is too intrinsically demanding; 

Ashman et al., 2020; the material is strictly procedural; Loibl & Rummel, 2014b). If 

particular kinds of simulations, used in particular contexts, are not optimal as conceptual, 

exploratory learning tools for particular learning objectives, understanding why may 

inform their classroom implementation, and future simulation design.  

The secondary hypotheses regarding learner perceptions, such as perceived flow, 

interest, perceived knowledge gaps, and curiosity, will extend our understanding of the 

motivational mechanisms behind the effectiveness of exploratory learning, and will 

extend these findings into the domain of computer-based learning.  

Finally, capturing student exploration strategies on video will also grant insight 

into how student strategies are related to successful exploratory learning. If particular 

behavioral patterns (e.g., engaging in more formal testing or reflection) map onto self-

report of increased awareness of knowledge gaps, curiosity, interest, or activation of prior 
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knowledge, we may gain insight into how those mechanisms are affecting student 

strategies. Understanding when and why students engage with specific simulation 

features may also be a step towards improving future simulation design.   
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CHAPTER II: EXPERIMENT 1 

Two experiments will assess the level of guidance that is optimal when 

implementing computer-based simulations as exploratory learning activities. Because the 

implementation of simulations as exploratory learning activities is relatively new, the 

goal of Experiment 1 was to obtain a baseline comparison for instruct-first and explore-

first conditions in a simulation-based learning task, using only minimal guidance. 

Experiment 1 tested the design of a minimal guidance exploratory learning worksheet, 

paired with a PhET physics-based simulation on the topic of circuit construction. The 

primary measured outcomes were participants’ learning on items assessing their 

conceptual understanding of the conceptual material, as well as learning of transfer items 

(i.e., items that assess a similar but not identical topic). Experiment 1 also assessed 

secondary variables of interest that have been found to be associated with exploratory 

learning or learning from simulations, including cognitive load, perceived knowledge 

gaps, interest and enjoyment, and curiosity. Experiment 1 also measured perceived flow; 

a variable found to be associated with improved learning in computer-based simulations 

(Winberg & Hedman, 2008). 

Method 

Participants 

Undergraduate students (N=66, Mage=19.65, SD=2.52, 76% female) participated 

for research credit in psychology courses. Thirteen additional participants were excluded 

from analyses for not following the study protocol. Participants were randomly assigned 



27 

to either explore a physics simulation before instruction (explore-first condition; n=35) or 

receive instructions prior to exploring the physics simulation (instruct-first condition, 

n=31).     

Materials 

This study consisted of multiple phases, the order of which was altered across the 

two conditions. In the explore-first condition, the order consisted of the simulation 

activity, instruction, review, assessment, transfer instruction, and transfer assessment. In 

the instruct-first condition, the order consisted of instruction, the simulation activity, 

review, assessment, transfer instruction, and transfer assessment. For each condition, 

survey items were administered after exploration, and once again after the exploration 

review (see Table 1). 

Table 1: Order of Materials for each Condition 

Explore-First Instruct-First 

Simulation Activity Instruction 

Instruction Simulation Activity 

Activity Review Activity Review 

Assessment Assessment 

Transfer Instruction Transfer Instruction 

Transfer Assessment Transfer Assessment 

Instruction. Participants watched an 8-min video lecture about circuit 

construction 

(https://www.youtube.com/watch?v=x2EuYqj_0Uk&ab_channel=BozemanScience). The 

lecture described basic circuit components (i.e., wires, batteries, switches, and light 

https://www.youtube.com/watch?v=x2EuYqj_0Uk&ab_channel=BozemanScience
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bulbs), showed different types of circuits (i.e., series, parallel, and complex circuits), and 

explained the differences between these different circuit designs in terms of the current 

they produce.   

Simulation Activity. Before completing the simulation activity, participants 

watched a 2-min video briefly explaining the simulation’s controls and features (e.g., 

how to click and drag objects within the simulation environment). This instruction was to 

ensure that all participants had at least a basic understanding of how to operate the 

simulation. Participants were then given access to the simulation. The PhET simulation 

was on the topic of circuit construction (https://phet.colorado.edu/sims/html/circuit-

construction-kit-dc/latest/circuit-construction-kit-dc_en.html). The simulation’s interface 

allows users to construct circuits using various parts (e.g., wires, batteries, light bulbs, 

resistors), and offers dynamic feedback (e.g., brightness of light bulbs, visualized current 

speed), based on user input. This simulation was selected due to its use in prior inquiry 

learning research (Roll et al., 2014; Roll et al., 2018). Participants were then provided 

with a worksheet consisting of four problems to answer by using the simulation (see 

Appendix A). The worksheet consisted of four problems, each targeting relevant aspects 

of circuit construction (e.g., current, voltage). Participants were given 20-min to interact 

with the simulation.  

The method for coding student actions within the simulation were adapted from 

Roll and colleagues (2018). The following actions were counted: constructing (e.g., 

adding individual resistors, connecting wires, splitting junctions, etc.); testing (i.e., using 

the voltmeter and ammeter to test voltage and current); pausing for reflection (i.e., not 

using any simulation functions for longer than 15 seconds), and resetting (i.e., using the 

https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-construction-kit-dc_en.html
https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-construction-kit-dc_en.html
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reset button to remove all components and start from scratch). Actions that did not 

change the circuit or test the circuit (e.g., zooming) were ignored.  

Activity Review. After participants completed both the simulation activity and 

instruction phases, participants were provided the answers to the four worksheet 

problems on the computer and were instructed to carefully review each explanation. Each 

explanation was accompanied by visual aids in the graphical interchange format (GIF), 

showing the correct circuit layouts and measured current.  

Survey. Survey items were administered once after the simulation activity, and 

again after the activity review. Cognitive load was measured using the Mental Effort 

Rating Scale (Paas, 1992). Participants rated the amount of mental effort they spent on 

the activity by responding on a scale from 1 (very, very low mental effort) to 9 (very, very 

high mental effort). Participants also rated their prior knowledge on the topic from 1 (Not 

at all) to 4 (Very much).  

All other survey items were intermixed and rated on a 5-point Likert scale 

(1=Strongly Disagree, 5=Strongly Agree). To measure interest and enjoyment, items 

were adapted from Ryan (1998) (3 items, e.g., “I found this learning activity interesting”; 

α = 0.88; Weaver et al., 2018). Perceived knowledge gaps were measured using 4 items 

adapted from Flynn and Goldsmith (1999) (e.g., “Compared to most other people, I know 

less about this topic”; α = 0.87). Curiosity was measured using items adapted from the 

Melbourne Curiosity Inventory (Naylor, 1981) (6 items, e.g., “I feel like seeking 

information about what I just worked on”; α =0.80). Perceived flow was measured using 

7 items from the Flow Short Scale (Rheinberg et al., 2003). These flow items were 

separated into two factors: fluency of performance (4 items, e.g., “The right 
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thoughts/movements occurred of their own accord”, α=.74), and absorption by activity (3 

items, e.g., I was totally absorbed in what I am doing”, α=.84).  

Conceptual Knowledge Assessment. The conceptual knowledge assessment 

consisted of 14 multiple-choice items adapted from Roll and colleagues (2014). These 

items assessed learning of the taught concepts (i.e., circuit construction, different types of 

circuits, and current; e.g., “Comparing circuits B and D, which circuit has the brightest 

light bulbs?”, “Comparing light bulbs A and B, which light bulb has the stronger 

current?” (see Appendix A for example).  

Transfer Instruction. Interleaved between the two assessments was a 10-min 

video lecture covering the topics of resistors and resistance 

(https://www.youtube.com/watch?v=J4Vq-xHqUo8&ab_channel=BozemanScience). 

Though these concepts are relevant to circuit construction, they were not explicitly taught 

during the first instruction phase. The purpose of this phase, as well as the subsequent 

assessment, was to examine how instructional order (i.e., instruct-first vs. explore-first) 

prepares students for future learning of similar concepts (Schwartz & Martin, 2004).  

Transfer Assessment. The second assessment consisted of 13 multiple choice 

items adapted from Roll and colleagues (2014), intended to assess transfer of acquired 

knowledge to new, but similar, topics. These items assessed knowledge of circuit 

resistors and resistance.  

Procedure 

Participants worked at a computer station in a session by themselves. After 

participants provided informed consent, the researcher explained that the purpose of the 

study was to see how people learn new information, and that they would be watching 

https://www.youtube.com/watch?v=J4Vq-xHqUo8&ab_channel=BozemanScience


31 

learning videos and answering questions about what they learn. Participants began the 

experiment by either completing the simulation activity (explore-first) or watching the 8-

min instructional video (instruct-first), completing survey 1, then subsequently 

completing the other activity. Participants were then provided with answers to the activity 

and given time to review. After the activity review, participants completed survey 2. The 

first assessment was then administered, with additional instructions on transfer items to 

follow. An additional assessment, this time with items targeting transfer concepts, was 

then completed. After completing the study, participants were debriefed. The session 

lasted approximately 1-hr and 15-min. All study procedures were approved by the 

university Institutional Review Board. 

Results 

Learning Outcomes 

As a preliminary analysis, we examined whether participants in the two 

conditions were equal in terms of prior knowledge. Participants in the explore-first 

condition (M=2.03, SE=.13, 95% CI [1.76,2.29]) and instruct-first condition (M=1.87, 

SE=.14, 95% CI [1.59,2.16]) did not significantly differ in prior knowledge, F<1.  

Performance on the learning assessment was examined using a 2 (instructional 

order: explore-first, instruct-first) × 2 (knowledge type: conceptual, transfer) mixed-

factorial analysis of variance (ANOVA), with order as a between-subjects factor, and 

knowledge type as a within-subjects factor. As shown in Figure 1, the results revealed a 

significant main effect of order, in the opposite direction than hypothesized, 

F(1,64)=4.39, p=.040, ηp
2=.063. Participants in the instruct-first condition (M=8.58, 

SE=.41, 95% CI [7.76, 9.40]) scored higher than participants in the explore-first 
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condition (M=7.40, SE=.56, 95% CI [6.63, 8.17]). There was a significant main effect of 

knowledge type, F(1,64)=30.43, p<.001, ηp
2= .321, with higher accuracy on items 

assessing conceptual knowledge (M=7.99, SE=.28, 95% CI [7.43, 8.55]) than transfer 

knowledge (M=6.15, SE=.29, 95% CI [5.58, 6.73]). There was no significant order × 

knowledge type interaction, F<1: explore-first conceptual knowledge (M=7.41, SE=.38, 

95% CI [6.66,8.16]), instruct-first conceptual knowledge (M=7.50, SE=.40, 95% CI 

[6.67,8.26]), explore-first transfer knowledge (M=5.71, SE=.35, 95% CI [5.02,6.39]), 

instruct-first transfer knowledge (M=5.82, SE=.37, 95% CI [5.01,6.55]).  

Figure 1: Assessment Scores as a Function of Order of Instruction 

Note: Error bars represent standard error of the mean 

Survey Items 

To assess cognitive load, a 2 (instructional order: explore-first, instruct-first) × 2 

(survey administration time: survey 1, survey 2) mixed-factorial ANOVA was conducted, 

with instructional order as a between-subjects factor, and the timing of the two surveys 
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(i.e., after simulation activity/instruction, after activity review) as a within-subjects 

factor. Results revealed a significant main effect of order, F(1,64)=5.15, p=.027, 

ηp
2=.071, with participants in the explore-first (M=6.29, SE=.24, 95% CI [5.80, 6.77]) 

condition reporting significantly higher cognitive load than participants in the instruct-

first condition (M=5.48, SE=.26, 95% CI [4.97, 5.99]). There was no significant main 

effect of time, F(1,64)=3.74, p=.058, and no significant order × time interaction, F<1.  

Similar mixed-factorial ANOVAs were conducted on the remaining survey items 

(Table 2). For perceived knowledge gaps, no main effect of order was found, 

F(1,64)=2.94, p=.091. Because of our stated a priori hypothesis, we proceeded with 

simple effects analysis. Planned comparisons revealed that, on survey 1, participants in 

the explore-first condition (M= 3.65, SE=.14, 95% CI [3.38, 3.92]) reported higher 

perceived knowledge gaps than participants in the instruct-first condition (M=3.23, SE=, 

95% CI [2.94, 3.52]), F(1,64)=, p<.040, ηp
2=064.  Participants in the explore-first 

condition also reported higher perceived knowledge gaps on survey 1 than survey 2, 

F(1,64)=18.02, p<.001, ηp
2=.222. The results revealed a main effect of survey 

administration time, F(1,64)=18.77, p<.001, ηp
2= .231, with participants reporting higher 

knowledge gaps after survey 1 (M=3.44, SE=.10, 95% CI [3.24, 3.64]) compared to 

survey 2 (M=3.12, SE=.09, 95% CI [2.93, 3.31]). There was no significant order × time 

interaction, F(1,64)=2.21, p=.142.  

Assessing interest and enjoyment, there was no significant main effect of order, 

F<1, survey time, F(1,64)=3.41, p=.07, or interaction, F<1. When assessing fluency of 

performance, there was no significant main effect of order, F<1, survey administration 

time F(1,64)=1.88, p=.176, nor was there a significant interaction, F<1. Assessing 
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absorption by the activity, there was no significant main effect of order or survey 

administration time, nor was there a significant interaction, Fs<1. Examining curiosity, 

results revealed a main effect of order, F(1,64)=4.15, p=.046, ηp
2=.021, with participants 

in the explore-first condition (M=3.58, SE=.12, 95% CI []) reporting higher curiosity than 

participants in the instruct-first condition (M=3.24, SE=.12, 95% CI []). There was no 

main effect of survey time, F(1,64)=3.25, p=.076, or interaction, F(1,64)=3.65, p=.060.  

Table 2: Descriptive Statistics for Survey Measures 

Survey 1 Survey 2 

Explore-First Instruct-First Explore-First Instruct-First 

M SE M SE M SE M SE 

Cognitive Load 6.49 0.26 5.58 0.28 6.09 0.27 5.39 0.28 

Perceived 

Knowledge Gaps 
3.65 0.14 3.23 0.15 3.22 0.13 3.02 0.14 

Interest/Enjoyment 3.81 0.16 3.82 0.17 3.71 0.15 3.67 0.16 

Fluency of 

Performance 
3.49 0.14 3.52 0.15 3.39 0.13 3.44 0.14 

Absorption by 

Activity 
3.83 0.13 3.69 0.14 3.87 0.13 3.67 0.14 

Curiosity 3.68 0.12 3.24 0.12 3.24 0.12 3.24 0.13 

Student Behaviors during Simulation Activity 

Screen recordings were coded using the method outlined by Roll (2018). Four 

student behaviors during the simulation activity were quantified for analysis: construct 

(i.e., adding resistors, connecting wires, splitting junctions), test (i.e., using the ammeter 

and voltmeter to conduct measurements), pause (i.e., not engaging with the simulation for 

longer than 15 seconds), and reset (i.e., removing all components from the testbed and 

starting from scratch). We addressed whether these behaviors were associated with 
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learning. Twenty percent of the video recordings were scored by a second observer 

(r=.76). Preliminary analyses examined correlations between assessment scores and each 

of the four behaviors. As shown in Table 3, more use of the simulation measurement 

tools (i.e., ammeter and voltmeter) was associated with higher scores on both conceptual 

items, r(64)=0.36, p=.003, and transfer items, r(64)=0.44, p<.001. No other behaviors 

were associated with assessment scores (see Table 3).  

Table 3: Simple Correlations between Scores and Simulation Activity Behaviors 

Conceptual Items Transfer Items 

M SD Pearson’s r (p-value) 

Construct 49.37 21.10 -0.12

(.341)

-0.74

(.556)

Measurements 23.67 19.05 0.36** 

(.003) 

0.44** 

(<.001) 

Pause 7.95 1.12 -0.68

(.585)

0.10 

(.424) 

Reset 2.21 1.91 -0.13

(.317)

-0.13

(.293)

Between-subjects ANOVAs were used to further examine the relation between 

instructional order and the four coded behaviors (see Table 4). When examining 

measurement tool use, results revealed a significant difference between conditions, 

F(1,64)=4.02, p=.049. Participants in the instruct-first condition used the measurement 

tools with higher frequency (M=28.52, SE=3.34, 95% CI [21.83, 35.19]) than participants 

in the explore-first condition (M=19.31, SE=3.14, 95% CI [13.03, 25.60]). No other 

ANOVAs were significant (Fs=0.02-1.54, ps=.219-.984). Based on these preliminary 

findings, we next tested whether the difference in performance on conceptual items 
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depended on the use of measurement tools. A between-subjects ANCOVA was used to 

examine the effect of instructional order on assessment performance of conceptual items 

while controlling for the effects of measurement tool use. Results revealed no significant 

main effect of order when controlling for measurement tools, F(1,64)=2.20, p=.143. 

There was a significant main effect of measurement tool use, F(1,64)=6.96, p=.011, 

ηp
2=.099, suggesting that the use of measurement tools is a potential mediator of the 

effect of condition on assessment outcomes.  

Table 4: Descriptive Statistics for Simulation Activity Behaviors by Condition 

Explore-First Instruct-First 

M SE M SE 

Construct 49.31 3.94 49.42 3.91 

Measurements 19.31 2.54 28.52 3.94 

Pause 1.77 0.17 1.81 0.22 

Reset 2.48 0.35 1.90 0.30 

Discussion 

Participants in the instruct-first condition scored significantly higher on 

assessment items, averaging across both conceptual and transfer items. Furthermore, we 

found evidence that the relation between instructional order and assessment accuracy was 

mediated by the use of measurement tools during the simulation. The latter finding is 

consistent with prior literature demonstrating that learners conduct more formal testing 

during simulation learning when provided with some direct guidance/instruction (Roll et 

al., 2018).  

Our findings are not consistent with much of the literature demonstrating the 

benefits of exploratory learning (cf. Loibl et al., 2017). However, our findings are 
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consistent with literature suggesting that instruct-first approaches may be preferred when 

intrinsic load is too demanding (Ashman et al., 2020; Fyfe et al., 2014). Our results also 

revealed a significant difference in self-reported cognitive load, with students in the 

explore-first condition reporting higher cognitive load than participants in the instruct-

first condition. This finding suggests that element interactivity may have been too high 

for students in the explore-first condition to identify important problem features. This 

explanation is especially likely given the sample of participants, as the majority were 

early college students majoring in psychology or neuroscience (69.3%). Most of our 

sample reported never having encountered similar materials before or reported that they 

had not been taught these materials recently. Thus, the majority of our sample can be 

considered novices, and did not have adequate prior knowledge to fall back on while 

independently exploring. 

Other survey items suggested that student perceptions were similar across 

conditions, with the exception of curiosity and perceived knowledge gaps. Participants in 

the explore-first condition reported higher curiosity overall than participants in the 

instruct-first condition. Planned comparisons also revealed that on the first survey, 

participants in the explore-first condition reported higher perceived knowledge gaps than 

participants in the instruct-first condition. Participants in the explore-first condition also 

reported higher perceived knowledge gaps on the first survey than the second survey. 

These findings suggest that exploration did heighten their ‘need to know’ and raise their 

metacognitive awareness, but other mechanisms may not have been in place (e.g., 

discerning problem features) to successfully prepare them for subsequent learning. 

Limitations   
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One limitation of this study was the single self-reported item used to assess 

cognitive load. Though the results suggested that participants in the explore-first group 

experienced higher cognitive load than participants in the instruct-first group, we did not 

assess the type of cognitive load experienced. Furthermore, this limitation makes it 

difficult to determine whether the cognitive load experienced was a hinderance to 

learning through exploration.  

A second limitation was the sparse mention of the measurements tools made by 

the activity worksheet, relative to the instructions. Because participants in the instruct-

first condition were exposed to those instructions prior to completing the simulation 

activity, they may have been more likely to use the measurements tools compared to 

participants in the explore-first condition. Given that use of tools was correlated with 

learning outcomes, it is possible that providing instruction on the tools explains the 

differences between conditions beyond the impact of instructional order more generally. 

Another limitation to consider is the low reliability between assessment items: 

conceptual knowledge, 14 items, α=.42; transfer knowledge, 13 items, α =.11. Thes 

scores indicate that items were not closely related to one other, suggesting they may not 

be assessing similar constructs.  

Conclusion 

The results of Experiment 1 suggest that, for simulation-based learning, direct 

instruction methods may benefit students more than exploration. These findings were 

driven by student strategy use, with students in the instruct-first condition engaging in 

more formal testing through the simulation’s tools. However, cognitive load was also 

relatively high in the explore-first condition, which is known to impede the benefits of 
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exploration (e.g., Ashman et al., 2020; Fyfe et al., 2014). It is possible that adding 

guidance, or reducing intrinsic load, will promote the mechanisms necessary for 

exploration to benefit learning.  Experiment 2 was designed to replicate and expand upon 

the findings of Experiment 1, measuring the different types of cognitive load reported by 

participants, and manipulating the load elicited by the exploration activity.
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CHAPTER III: EXPERIMENT 2 

Experiment 1 suggested that, when given minimal guidance, completing a 

simulation activity prior to instruction results in higher cognitive load than receiving 

instructions prior to completing the simulation activity. Furthermore, receiving 

instructions prior to completing an activity worksheet led to higher scores than an 

explore-first condition. Following these findings, the goal of Experiment 2 was to 

investigate how to best reduce cognitive load of the same activity worksheet. Experiment 

2 examined how reducing the intrinsic demand of activities affects learning outcomes, 

and whether increased guidance would improve exploratory learning, with the goal of 

better understanding STEM learning processes.   

As in Experiment 1, the primary measured outcomes were participants’ learning 

on items assessing their conceptual understanding of the material and transfer items. 

Experiment 2 assessed the same secondary variables as Experiment 1 (i.e., cognitive load, 

perceived knowledge gaps, interest and enjoyment, curiosity, and perceived flow). 

Experiment 2 also assessed different types of cognitive load (i.e., germane, extraneous, 

and intrinsic) to understand how these types of cognitive load affected learning outcomes. 

Method 

Participants 

A G*Power analysis for ANOVA (α = 0.05, power = .95, df =3, groups=4) 

showed that a sample size of 195 would be sufficient to achieve ηp
2 =.100 (f = 0.33;
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 medium effect=0.25, large=0.40). Participants (N=195, Mage=19.34, SD=3.44, 67% 

female) for Experiment 2 were undergraduate students in the psychology participant pool. 

Sixteen additional participants were excluded from analyses for not following the study 

protocol. Two versions of the activity worksheet were used, varying between conditions. 

The phases throughout the experiment, as well as their order, were identical to 

Experiment 2. Participants were randomly assigned to one of four conditions: explore-

first with a worksheet designed to reduced intrinsic load (explore-first ILR, n= 50), 

instruct-first with a worksheet designed to reduce intrinsic load (instruct-first ILR, n=45), 

explore-first with a worksheet that included worked examples designed to reduce 

extraneous load (explore-first ELR, n=49) or instruct-first with a worksheet that included 

worked examples to reduce extraneous load (instruct-first ELR, n=51).  

 Activity. The worksheet varied between conditions, with some participants 

receiving partially completed worked examples (ELR, see Appendix B) and the others 

receiving a worksheet with the same problems as Experiment 1, but with those problems 

broken down into smaller comparisons (ILR, see Appendix C). To further reduce intrinsic 

load for participants in the ILR condition, the final two items had their cover stories 

removed. Additionally, both versions of the worksheet made explicit mention of the 

measurement tools that are available in the simulation interface. Both worksheets 

included the same problems, which tasked students to learn about circuit construction by 

examining brightness and current in a PhET physics simulation 

(https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-

construction-kit-dc_en.html).  

https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-construction-kit-dc_en.html
https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-construction-kit-dc_en.html
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Survey. Survey items were identical to Experiment 1, with the addition of 13 

items to measure different types of cognitive load (Klepsch et al., 2017; Leppink et al., 

2013). Three items measured intrinsic load (e.g., while working on the learning activity, I 

needed to keep many things in mind simultaneously), 6 items measured extraneous load 

(e.g., it was difficult to figure out the important information), and 4 measured germane 

load (e.g., each part of the learning activity added to my understanding of the key 

concepts).  

Procedure  

The study procedures were identical to Experiment 1, except that participants 

were randomly assigned to two different activity conditions as well as instructional 

orders.  

Results 

Learning Outcomes 

Preliminary results showed no significant main effects of prior knowledge for 

instructional order, F(1, 194)=1.10, p=.295, or load reduction, F<1, nor an interaction 

effect, F(1,194)=2.69, p=.103, suggesting that participants in the explore-first ILR 

(M=2.10, SE=.13, 95% CI [1.84, 2.37]), instruct-first ILR (M=2.18, SE=.14, 95% CI [1.9, 

2.46]), explore-first ELR (M=2.29, SE=.13, 95% CI [2.02, 2.55]), and instruct-first ELR 

(M=1.92, SE=.13, 95% CI [1.66, 2.18]) conditions began with, on average, the same level 

of content knowledge.  

Performance on the conceptual assessment items was examined using a 2 

(instructional order: explore-first, instruct-first) × 2 (load reduction: intrinsic load, 

extraneous load) between-subjects factorial ANOVA. Results showed no significant 
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differences between participants in the explore-first conditions (M=7.22, SE=.22, 95% CI 

[6.79, 7.66]), and instruct-first conditions (M=7.45, SE=.22, CI [7.01, 7.89]), F<1. 

Results also suggest no significant differences between participants in the ILR conditions 

(M=7.22, SE=.23, 95% CI [6.77, 7.66]) and ELR conditions (M=7.46, SE=.22, 95% CI 

[7.02, 7.90]). The interaction was not significant, F(1,172)=1.55, p=.215.  

Performance on the transfer items was examined using the same ANOVA. Results 

showed no significant differences between participants in the explore-first conditions 

(M=6.02, SE=.21, 95% CI [5.60, 6.44]) and instruct-first conditions (M=6.08, SE=.22, 

95% CI [5.65, 6.51]), F<1. Results revealed a main effect of load reduction, 

F(1,172)=4.65, p=.032, ηp
2=.024 (Figure 2). Participants in the ILR conditions (M=6.38, 

SE=.22, 95% CI [5.95, 6.81]) scored higher on transfer items than participants in the ELR 

conditions (M=5.72, SE=.21, 95% CI [5.31, 6.14]). There was no significant interaction, 

F<1.  

Figure 2: Transfer Assessment Scores as a Function of Order of Instruction and 

Load Reduction 
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Note: Error bars represent standard error of the mean 

Cognitive Load Items  

Due to a technical error, a portion of participants (n=19) did not complete the 

survey portion of Experiment 2. To assess overall cognitive load, a 2 (instructional order: 

explore-first, instruct-first) × 2 (load reduction: intrinsic load, extraneous load) × 2 

(survey administration time: survey 1, survey 2) mixed-factorial ANOVA was conducted, 

with instructional order and load reduction as between-subjects factors, and the timing of 

the two surveys as a within-subjects factor. Results revealed no main effect of order, F<1. 

Results show a significant main effect of load reduction, F(1,172)=4.21,  p=.042, 

ηp
2=.024. Participants in the ELR conditions reported higher cognitive load (M=5.64, 

SE=.16, 95% CI [5.32, 5.96]) than participants in the ILR conditions (M=5.16, SE=.17, 

95% CI [4.84, 5.49]). The main effect of survey administration time was not significant, 

F(1,172)=1.00, p=.318. The interactions were also not significant, Fs<1 (see Table 5).  

Specific types of cognitive load were examined using similar mixed-factorial 

ANOVAs (Table 5). Analyzing germane load, results reveal a main effect of instructional 

order, F(1,172)=4.07, p=.045, ηp
2= .023. Participants in the instruct-first conditions 

(M=3.84, SE=.06, 95% CI [3.72, 3.95]) reported higher germane load than participants in 

the explore-first conditions (M=3.67, SE=.06, 95% CI [3.56, 3.79]). A significant main 

effect of survey administration time was found, F(1,172)=5.12, p=.025, ηp
2=.029. 

Participants reported higher germane load after receiving instruction (M=3.79, SE=.04, 

95% CI [3.71, 3.89]) than after completing the activity (M=3.72, SE=.05, 95% CI [3.62, 

3.81]).  
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These main effects were qualified by a significant instructional order × load 

reduction × survey administration time interaction effect, F(1,172)=6.22, p=.014, 

ηp
2=.035. Comparing instructional order conditions, a simple effect was found between 

participants in the ILR condition, F(1,170)=4.64, p=.033, ηp
2 =.020. Participants in the 

instruct-first-ILR condition (M=3.96, SE=.90, 95% CI [3.81, 4.16]) reported significantly 

higher germane load after receiving instruction than participants in the explore-first-ILR 

condition (M=3.72, SE=.08, 95% CI [3.56, 3.88]). No other significant simple effects 

were found between instructional order conditions: explore-first and instruct-first ILR 

after activity, F(1,172)=1.14, p=.287, explore-first and instruct-first ELR after activity, 

F(1,172)=1.30, p=.065, explore-first and instruct-first ELR after instruction, F<1. 

Comparing load reduction conditions, a simple effect was found between participants in 

the instruct-first condition, F(1,172)=4.63, p=.893, ηp
2=.027. After instruction, 

participants in the instruct-first-ILR condition (M=3.96, SE=.90, 95% CI [3.81, 4.16]) 

reported significantly higher germane load than participants in the instruct-first ELR 

condition (M=3.74, SE=.08, 95% CI [3.58, 3.90]). No other significant simple effects 

were found between load reduction conditions, Fs<1.  

Table 5: Descriptive Statistics for Cognitive Load Measures 

After Activity After Instruction 

 Intrinsic Load 

Reduction 
Explore-First Instruct-First Explore-First Instruct-First 

M SE M SE M SE M SE 

Paas (2003) Mental 

Effort 
5.44 0.21 4.95 0.25 5.31 0.23 4.95 0.27 

Germane Load 3.67 0.09 3.81 0.11 3.72 0.09 3.98 0.09 

Extraneous Load 2.14 0.09 2.22 0.11 2.14 0.09 1.87 0.09 

Intrinsic Load 2.53 0.12 2.74 0.12 2.77 0.12 2.50 0.13 
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 Extraneous Load Reduction     

Paas (2003) Mental 

Effort 
5.51 0.23 5.55 0.21 4.95 0.27 5.75 0.24 

Germane Load 3.57 0.08 3.81 0.09 3.73 0.07 3.74 0.08 

Extraneous Load 2.22 0.11 0.00 0.00 2.25 0.10 0.00 0.00 

Intrinsic Load 2.77 0.12 2.90 0.11 2.86 0.13 2.89 0.12 

Examining extraneous load, no main effects were found for instructional order, 

F(1,172)=1.06, p=.306, load reduction, F(1,172)=2.47, p=.118, or survey administration 

time, F(1,172)=3.44, p=.065. Results revealed a significant instructional order × survey 

administration time interaction, F(1,172)=5.16, p=.024, ηp
2=.029. Planned comparisons 

revealed that, after instruction, participants in the explore-first conditions (M=2.20, 

SE=.07, 95% CI [2.06, 2.33]) reported significantly higher extraneous load than 

participants in the instruct-first conditions (M=2.00, SE=.07, 95% CI [1.87, 2.14]), 

F(1,172)=4.11, p=.044, ηp
2=.024. No other significant interaction effects were observed: 

instructional order × load reduction, F<1, load reduction × survey administration time, 

F(1,172)=1.03, p=.313, instructional order × load reduction × survey administration time, 

F<1.  

Assessing intrinsic load, no main effects were found for instructional order or 

survey administration time, Fs<1. Load reduction was a significant predictor of reported 

intrinsic load, F(1,172)=3.94, p=.049, ηp
2=.022 (see Figure 3). Participants in the ELR 

conditions (M=2.86, SE=.08, 95% CI [2.70, 3.02] reported significantly higher intrinsic 

load than participants in the ILR conditions (M=2.63, SE=.08, 95% CI [2.46, 2.79]). 

Results revealed an instructional order × survey administration time interaction, 

F(1,172)=14.71, p<.001, ηp
2=.079. Planned comparisons revealed that participants in the 
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explore-first conditions reported significantly higher intrinsic load after instruction 

(M=2.81, SE=.09, 95% CI [2.64, 2.99]) than after the activity (M=2.65, SE=.08, 95% CI 

[2.48, 2.82]), F(1,172)=8.22, p=.005, ηp
2=.046. The opposite was found for participants 

in the instruct-first conditions, who reported higher intrinsic load after the activity 

(M=2.82, SE=.08, 95% CI [2.66, 2.99]) than after instruction (M=2.68, SE=.09, 95% CI 

[2.51, 2.85]), F(1,172)=6.53, p=.011, ηp
2=.037.  

Figure 3: Cognitive Load a Function of Load Reduction, collapsed across 

Instructional Order 

Note: Error bars represent standard error of the mean 
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intrinsic load than participants in the instruct-first ILR condition (M=2.47, SE=.13, 95% 

CI [2.21, 2.73]), F(1,172)=5.82, p=.017, ηp
2=.033. Planned comparisons revealed a 

significant simple effect for participants in the explore-first ILR condition; participants in 

the explore-first ILR condition reported significantly higher intrinsic load after 

instruction (M=2.77, SE=.12, 95% CI [2.52, 3.01]) than after the activity (M=2.53, 

SE=.12, 95% CI [2.29, 2.76]), F(1,172)=9.36, p=.003, ηp
2=.052. A significant simple 

effect was also found for participants in the instruct-first ILR condition. Participants in 

the instruct-first ILR condition reported significantly higher intrinsic load after the 

activity (M=2.74, SE=.12, 95% CI [2.50, 2.99]) than after instruction (M=2.47, SE=.13, 

95% CI [2.21, 2.73]), F(1,172)=11.03, p=.001, ηp
2=.060. No other interaction effects 

were significant, Fs<1. 

To further investigate the effect the ILR manipulation had on transfer score, a 

between-subjects ANCOVA was used to examine the effect of load reduction while 

controlling for the effects of intrinsic load reported after the activity. Results reveal no 

significant main effect of load reduction when controlling for intrinsic load reported after 

the activity, F(1,172)=3.23, p=.074. There was a significant main effect of intrinsic load 

reported after the activity, F(1,172)=5.26, p=.023, ηp
2=.030. These findings suggest that 

the reduction of intrinsic load in the ILR condition during the activity may mediate the 

relationship between load reduction condition and transfer score.  

Survey Items 

Similar mixed-factorial ANOVAs were used to examine the remaining survey 

items (Table 6). When assessing interest and enjoyment, there was no main effect of 

instructional order or load reduction, nor were there significant interaction effects, Fs<1. 
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For perceived knowledge gaps, there were no main effects of instructional order, 

F(1,172)=1.66, p=.200, or load reduction, F(1,172)=2.96, p=.087. A significant 

instructional order × survey administration time interaction effect was found, 

F(1,172)=34.09, p<.001, ηp
2=.165. Post-hoc comparisons with Bonferroni correction 

(α=.016) revealed that, after the activity, participants in the explore-first conditions 

(M=3.39, SE=.09, 95% CI [3.21, 3.56]) reported higher perceived knowledge gaps than 

participants in the instruct-first conditions (M=2.97, SE=.09, 95% CI [2.79, 3.15]), 

F(1,172)=9.70, p=.002, ηp
2=.054 . Furthermore, participants in the explore-first 

conditions reported significantly higher knowledge gaps after the activity (M=3.39, 

SE=.09, 95% CI [3.20, 3.56]) compared to after instruction (M=3.07, SE=.09, 95% CI 

[2.89, 3.24]), F(1,172)=25.81, p<.001, ηp
2=.132. Participants in the instruct-first 

conditions reported significantly higher knowledge gaps after instruction (M=3.18, 

SE=.09, 95% CI [3.01, 3.36]) compared to after the activity (M=2.97, SE=.09, 95% CI 

[2.79, 3.14]), F(1,172)=11.40, p<.001, ηp
2=.063. No other interactions were significant, 

Fs <1.   

Examining curiosity, no main effects of instructional order, F(1,172)=1.50, 

p=.228, load reduction, or survey administration time were found, Fs<1. Results revealed 

a significant instructional order × survey administration time interaction effect, 

F(1,172)=12.57, p<.001, ηp
2=.069. Participants in the explore-first conditions (M=3.42, 

SE=.08, 95% CI [3.27, 3.57]) reported higher curiosity after the activity than participants 

in the instruct-first conditions (M=3.18, SE=.08, 95% CI [3.03, 3.33]), F(1,172)=5.17, 

p=.024, ηp
2=.030. No other interactions were significant, Fs<1.  
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Examining fluency of performance, there was a main effect of load reduction, 

F(1,172)=4.24, p=.041, ηp
2=.024. Participants in the ILR conditions (M=3.49, SE=.07, 

95% CI [3.35, 3.63]) reported significantly higher fluency of performance than 

participants in the ELR conditions (M=3.29, SE=.07, 95% CI [3.15, 3.42]). A significant 

instructional order × survey administration time interaction was found, F(1,172)=13.86, 

p<.001, ηp
2=.075. Participants in the explore-first conditions reported significantly higher 

fluency after the activity (M=3.48, SE=.08, 95% CI [3.32, 3.63]) than after instruction 

(M=3.27, SE=.076, 95% CI [3.13, 3.42]). No other interaction effects were significant, 

Fs<1.  

Finally, examining absorption by activity, results showed a significant main effect 

of survey administration time, F(1,172)=6.86, p=.010, ηp
2=.039. On average, participants 

reported higher absorption after the activity (M=3.67, SE=.06, 95% CI [3.56, 3.78]) than 

after instruction (M=3.53, SE=.06, 95% CI [3.42, 3.64]). No significant main effects of 

instructional order, F(1,172)=1.68, p=.197, or load reduction, F<1, were found. A 

significant instructional order × survey administration time interaction was found, 

F(1,172)=19.93, p<.001, ηp
2=.105. Post-hoc comparisons with Bonferroni correction 

(α=.025) revealed that, after instruction, participants in the instruct-first conditions 

(M=3.71, SE=.08, 95% CI [3.55, 3.87]) reported significantly higher absorption by 

activity than participants in the explore-first conditions (M=3.35, SE=.08, 95% CI [3.19, 

3.51]), F(1,172)=10.08, p=.002, ηp
2=.056. Furthermore, participants in the explore-first 

conditions (M=3.72, SE=.08, 95% CI [3.57, 3.88]) reported significantly higher 

absorption after the activity than after instruction (M=3.35, SE=.08, 95% CI [3.19, 3.51]), 

F(1,172)=24.93, p<.001, ηp
2=.128. These effects was further informed by a significant 
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instructional order × load reduction × survey administration time interaction, 

F(1,172)=4.36, p=.038, ηp
2=.025. After instruction, participants in the instruct-first ILR 

condition (M=3.74, SE=.12, 95% CI [3.51, 3.98]) reported higher absorption than 

participants in the explore-first ILR condition (M=3.20, SE=.12, 95% CI [2.98, 3.42]), 

F(1,172)=10.88, p=.001, ηp
2=.060. No other interactions were significant, F<1.  

Table 6: Descriptive Statistics for Survey Measures 

After Activity After Instruction 

 Intrinsic Load 

Reduction 
Explore-First Instruct-First Explore-First Instruct-First 

M SE M SE M SE M SE 

Interest/Enjoyment 3.28 0.05 3.26 0.05 3.25 0.05 3.32 0.06 

Fluency of 

Performance 
3.62 0.10 3.42 0.12 3.33 0.12 3.60 0.08 

Absorption by 

Activity 
3.70 0.10 3.55 0.12 3.20 0.13 3.74 0.11 

Curiosity 3.43 0.11 3.14 0.11 3.24 0.11 3.23 0.11 

Perceived 

Knowledge Gaps 
3.31 0.12 2.90 0.14 2.93 0.12 3.13 0.13 

 Extraneous Load Reduction 

Interest/Enjoyment 3.29 0.04 3.29 0.06 3.24 0.06 3.28 0.06 

Fluency of 

Performance 
3.33 0.11 3.28 0.10 3.21 0.11 3.30 0.10 

Absorption by 

Activity 
3.74 0.10 3.67 0.11 3.49 0.11 3.68 0.10 

Curiosity 3.41 0.96 3.17 0.11 3.31 0.11 3.30 0.10 

Perceived 

Knowledge Gaps 
3.46 0.14 3.07 0.12 3.18 0.13 3.30 0.11 

Student Behaviors during Simulation Activity 

Identical to experiment 1, screen recordings were coded using the method 

outlined by Roll (2018). Four student behaviors during the simulation activity were 

quantified for analysis: construct (i.e., adding resistors, connecting wires, splitting 
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junctions), test (i.e., using the ammeter and voltmeter to conduct measurements), pause 

(i.e., not engaging with the simulation for longer than 15 seconds), and reset (i.e., 

removing all components from the testbed and starting from scratch). Twenty percent of 

the videos were scored by a second observer (r=.81). Preliminary analysis examined 

correlations between each of the four behaviors, conceptual knowledge, and transfer 

knowledge. As shown in Table 7, no behaviors were significantly related to performance 

on conceptual or transfer items. Based on the findings of Experiment 1, a between-

subjects ANOVA was used to investigate whether measurement tool use varied across 

conditions. No significant effects were found, Fs<1.  

Table 7: Simple Correlations between Scores and Simulation Activity Behaviors 

Conceptual Items Transfer Items 

M SD Pearson’s r (p-value) 

Construct 48.73 21.16 -0.04

(.258)

0.08 

(.556) 

Measurements 21.13 11.57 -0.07

(.363)

0.07 

(.336) 

Pause 1.39 0.87 0.08 

 (.246) 

0.05 

(.522) 

Reset 2.00 1.56 -0.06

(.416)

0.06 

(.432) 

Discussion 

Experiment 2 tested whether different versions of an activity worksheet would 

reduce cognitive load during exploration. Experiment 2 also investigated whether load 

reduction would result in better learning and knowledge transfer. The results did not 

support our prediction regarding instructional order and learning outcomes. Despite the 
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lack of learning benefits, the instruct-first approach appeared to be beneficial for 

managing cognitive load within this learning environment. Participants in the instruct-

first conditions reported, on average, higher germane load than participants in the 

explore-first conditions. Furthermore, after receiving instruction, participants in the 

explore-first conditions reported, on average, higher extraneous load than participants in 

the instruct-first conditions.  

These findings suggest that participants who explored the simulation prior to 

instruction were more likely to be distracted by irrelevant information than those in the 

instruct-first condition, and thus had fewer working memory resources to rely on for 

germane processing. It is possible that, despite scaffolding, this simulation’s interface 

was too information dense for students to properly allocate resources during exploratory 

learning. This conclusion is supported by our findings that suggest reducing the intrinsic 

load improves knowledge performance, though this intervention was not sufficient for 

exploratory learning to be more beneficial than traditional instruction. Narrowing 

attention in a way that is native to the simulation environment, rather than through 

auxiliary resources, may be more optimal for simulation-based exploratory learning. 

Future research may wish to address this question further by manipulating the salience of 

simulation features. 

There was a main effect of load reduction on knowledge transfer. Supporting our 

hypothesis, participants in the ILR conditions scored higher on transfer items than 

participants in the ELR conditions. This pattern is also consistent when examining 

fluency of performance, as participants in the ILR condition reported higher fluency than 

participants in the ELR conditions.  Also consistent with our hypothesis, there was no 
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main effect of load reduction on conceptual item performance. These findings were 

further informed by our analyses examining cognitive load. Looking at an overall 

measure of cognitive load (Paas, 2003), participants in the ILR conditions reported 

exerting less mental effort than participants in the ELR conditions. Participants in the ILR 

conditions also reported less intrinsic load than ELR participants. Additionally, we found 

that the benefit of the ILR worksheet on transfer score may be mediated by the amount of 

intrinsic load reported after the activity, suggesting the ILR worksheet reduced element 

interactivity, resulting in higher transfer scores.  

Our results suggest that, despite differing levels of report germane and extraneous 

load, participants in all conditions reported similar interest and enjoyment. This finding is 

consistent with our hypothesis and previous exploratory learning research (Glogger-Frey 

et al., 2015; Kapur, 2014; Newman & DeCaro, 2019; Weaver et al., 2018), suggesting 

that even when simulation-based exploration is too cognitively demanding to benefit 

novice students, exploratory learning does not result in a lack of interest.  

Though there was no main effect of perceived knowledge gaps, an instructional 

order × survey administration time interaction effect revealed that, consistent with our 

stated hypothesis, participants in the explore-first conditions reported higher knowledge 

gaps after the activity than participants in the instruct-first conditions. Participants in the 

explore-first conditions also reported higher knowledge gaps after the activity than after 

instructions.  

Regarding curiosity, Experiment 2 found an instructional order × survey 

administration time interaction effect, revealing that after the activity, participants in the 

explore-first conditions reported higher curiosity than participants in the instruct-first 
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conditions. This finding is consistent with our hypothesis that the explore-first condition 

would experience higher curiosity. Heightened curiosity (Loibl et al., 2017) and increased 

awareness of knowledge gaps (Glogger-Frey et al., 2015) are both critical mechanisms of 

successful exploratory learning, however, these findings suggest that these components 

are not enough for effective exploratory learning. Learners must also be able to identify 

critical problem features to benefit from exploration. The high cognitive demand of the 

simulation is likely why learners were unable to correctly discern the problem features.  

As was the case in Experiment 1, participants were students with little prior 

knowledge of the covered concepts. An absence of relevant prior knowledge to fall back 

on during exploration may be another reason our data did not replicate prior research, as 

the activation of prior knowledge could be a stronger mechanism than curiosity or 

awareness of knowledge gaps. Existing research using simulations as exploratory 

learning activities within a chemistry classroom (DeCaro et al., 2022) found exploration 

to be beneficial for conceptual knowledge. This study differs from the current research in 

a few critical ways, one being that the study procedures took place in a live classroom of 

students enrolled in a chemistry course. Though this is speculation, students enrolled in a 

course with the intention of learning taught material may have higher average motivation 

and prior knowledge compared to students who are recruited for a study, wherein the 

knowledge they acquire may not be used in the future.  

The results of Experiment 2 did not replicate Experiment 1’s finding regarding 

participants’ tool use throughout exploration. None of the four coded behaviors (i.e., 

construct, measure, pause, reset) were significantly related to performance on assessment 

items. This result may be a consequence of the redesigned worksheets, as both made 
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more explicit mention of the measurement tools than the worksheet used in Experiment 1. 

In Experiment 2, the measurement tools were explained to the participants uniformly 

across all conditions, and participants were more likely to use those tools regardless of 

condition. This is a possible reason that participants in the explore-first conditions 

performed comparably to participants in the instruct-first conditions, rather than at the 

lower level shown in Experiment 1.  

Limitations 

Like Experiment 1, a limitation to consider is the low reliability of assessment 

items: taught knowledge, 14 items, α=.53; transfer knowledge, 13 items, α=.42. If items 

poorly relate to one another, it may be the case that they do not measure the same 

construct. Interpretation of these data should keep this possibility in mind.  

Conclusion 

Though there was no main effect of instructional order on learning, the instruct-

first approach appeared to be more optimal for minimizing extraneous load and 

improving germane processing. On average, participants who received a worksheet 

designed to reduce intrinsic load performed better on transfer items than participants who 

received a worksheet designed to reduce extraneous load. Examining cognitive load, 

participants in the ILR conditions reported significantly lower overall cognitive load, as 

well as intrinsic cognitive load, than participants in the ELR conditions. Furthermore, our 

findings suggest that the level of intrinsic load reported after the activity may have 

mediated the effectiveness of the worksheet on transfer performance. These results 

suggest that reducing the element interactivity of simulation activities, by breaking them 



57 

into smaller segments, prepares students to apply their knowledge when learning novel 

concepts.  
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CHAPTER IV: GENERAL DISCUSSION 

Experiments 1 and 2 investigated the implementation of an interactive computer-

based simulation as an exploratory learning activity. The current research also examined 

the roles of cognitive load, perceived knowledge gaps, perceived flow, interest and 

enjoyment, and curiosity. This research adapted a coding scheme (Roll et al., 2014) to 

study how participants’ behaviors and strategies during exploration affect learning. How 

often students constructed circuits using new circuit components, tested circuits using 

measurement tools, paused all action within the simulation for 15 or more seconds, and 

reset the simulation testbed, were all quantified.  

The results of Experiment 1 revealed a main effect of instructional order, with 

participants in the instruct-first condition scoring higher on conceptual items than 

participants in the explore-first condition. This effect was potentially mediated by tool 

use. Our results did not support our hypothesis based on previous exploratory learning 

research; however, this finding is analogous to prior simulation-based research. Findings 

by Roll and colleagues (2018) suggest that students who receive direct guidance are more 

likely to engage in formal testing than participants who receive less guidance. The 

worksheet featured in Experiment 1 did not make many explicit mentions of the 

measurement tools, whereas the video instructions made ample mention of them. It is 

possible that participants’ attention was more likely to be directed to these tools if they 

had received instructions first.  
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There are other possible reasons Experiment 1 saw an instruct-first benefit. 

Though this finding is inconsistent with an abundance of exploratory learning literature 

suggesting that exploratory learning is more beneficial for conceptual learning (e.g., Bego 

et al., 2023; DeCaro & Rittle-Johnson, 2015; Kapur, 2014: Newman & DeCaro, 2019), 

some research suggests that exploratory learning is not ideal when element interactivity is 

high (Ashman et al., 2020). The element interactivity experienced by the learner does not 

just depend on the material, but also the knowledge of the learner (Chen, et al., 2015). 

Participants across both experiments reported considerably low average prior knowledge. 

With fewer existing schema to rely on, it may be more challenging for learners to 

concurrently maintain several interacting elements within working memory (Kalyuga, 

2013).  

In Experiment 1, participants in the explore-first condition also reported 

significantly higher cognitive load than participants in the instruct condition. This 

cognitive load was also high relative to the scale maximum (M=6.29 out of 9). Though it 

is impossible to determine what type of cognitive load was experienced using a single 

item, it is possible that much of the load reported was extraneous. For the purpose of 

teaching the users about electrical conduction, the PhET simulation used in these 

experiments features various objects (e.g., paper clips, coins, pencils, erasers) that are 

irrelevant to our activity. The presentation of incidental information is in violation of the 

coherence principle of multimedia learning, which argues that learning is disrupted when 

an abundance of irrelevant text or images are present (Mayer & Moreno, 2003). It is 

possible that the presence of this information may have distracted participants who were 

not yet instructed on which objects would be required for successfully building circuits 
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(i.e., explore-first participants). The presence of irrelevant interface objects is also a 

feature that distinguishes this research from studies that have found an explore-first 

benefit using simulations (e.g., DeCaro et al., 2022). Future research can investigate this 

possibility by manipulating the number of irrelevant objects found within the simulation 

testbed.  

In Experiment 2, participants used more heavily guiding versions of the activity 

worksheets. These worksheets were designed to either 1) reduce intrinsic load by 

breaking down problems into smaller sets or 2) reduce extraneous load by providing 

partially completed worked examples. Experiment 2 also addressed some limitations of 

Experiment 1 by introducing items measuring different types of cognitive load and 

revising the activity worksheets to include direct mention of the measurement tools.  

Though Experiment 2 did not replicate Experiment 1’s main effect of order, there 

was a main effect of load reduction. Consistent with our prediction, participants who 

received worksheets designed to reduce intrinsic load scored higher on transfer items than 

participants who received extraneous load reducing worksheets. Participants who 

received ILR worksheets also reported lower overall load, and lower intrinsic load, than 

participants who received ELR worksheets. The intrinsic load reported after the activity 

mediated the ILR worksheet’s benefit on transfer score. These findings are consistent 

with Cognitive Load Theory’s (CLT) narrow limits of change principle. This principle 

argues that, to avoid overwhelming working memory capacity, information must be 

structured in a way that limits the number of elements necessary at once (Suthers, 2006). 

All problems featured in ILR worksheet were nearly identical to those featured in 
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Experiment 1 but were segmented in a way that reduced the number of elements that 

must be maintained in working memory at once. 

The finding that ELR participants scored lower on transfer items is also consistent 

with CLT’s randomness as genesis principle. If learners are without adequate prior 

knowledge, problem-solving solutions are randomly generated and tested for 

effectiveness (Chen et al., 2015). CLT argues that the worked examples benefit students 

by removing the elements of randomness during problem-solving (Sweller, 2011). 

Worked examples provide step-by-step solutions without need for guesswork or relevant 

prior knowledge, making them especially effective for reducing erroneous solutions 

during learning. This procedure should provide adequate information to acquire domain-

specific knowledge during the simulation activity. Because the learner did not generate 

this information themselves (see generation effect, Bertsch et al., 2007) this approach 

may allow for less flexibility in applying that knowledge (i.e., less knowledge transfer).  

One possible reason for finding no ELR benefit for learning is a failure to reduce 

extraneous load, as our results showed load reduction was not predictive of reported 

extraneous load. Some research suggests that worked examples that require learners to 

integrate knowledge from several sources at once are ineffective for learning (Ward & 

Sweller, 1990). It is possible that tasking students to complete the problems using the 

complex simulation interface, while concurrently integrating the steps provided in an 

external worksheet may have resulted in an abundance of task-switching and consequent 

extraneous load.  
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Limitations & Future Work 

As cognitive load is of central importance to the current research, one major 

limitation of both experiments is their reliance on self-report cognitive load measures. 

Such measures are both indirect and subjective, so responder biases may limit their 

interpretability. Future research may wish to employ more direct and objective measures 

(e.g., eye-tracking procedures, dual-task approaches) to measure cognitive load more 

effectively.  

An additional limitation lies in the generalizability of these data. Both 

Experiments 1 and 2 recruited participants from an undergraduate psychology subject 

pool. Furthermore, both Experiments 1 and 2 were conducted within a laboratory setting. 

Future studies may expand on this research by investigating simulation-based exploratory 

learning in a real physics classroom.  

Conclusion 

Interactive computer-based simulations are affordable and accessible tools for 

STEM learning. Establishing guidelines to best use these tools will help instructors 

communicate scientific concepts to students without requiring an abundance of time or 

resources. Our findings highlight some steps towards discovering those guidelines: 1) 

when element interactivity is high, providing instructions prior to the simulation activity 

may result in greater conceptual understanding and transfer, and help manage working 

memory resources, 2) segmenting problem elements in accordance with Cognitive Load 

Theory’s narrow limits of change principle may reduce intrinsic cognitive load and 

improve students’ preparation for future learning.  
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The current research also has implications for physics education specifically. 

Simulations have become increasingly common in STEM classrooms, as they are an 

effective and engaging way to represent real-world scientific phenomena. Though some 

studies have investigated simulations as exploratory learning activities (Chin et al., 2016; 

DeCaro et al., 2022), no studies have tested implementing simulations as exploratory 

learning activities in physics. Future studies may expand on this point by using various 

simulations to test different physics concepts.  

This research should be regarded as only a first step towards implementing 

simulations as exploratory learning activities within the realm of physics. There is 

considerably more research to be done to determine how to best implement simulations 

as exploratory learning activities, especially as technology allow researchers and 

educators to improve the accuracy, accessibility, and interoperability of computer-based 

simulations.  
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APPENDIX A: Experiment 1: Exploration Worksheet 

INSTRUCTIONS 
Your objective is to use the simulation to explore how voltage, current, and the brightness 

of light bulbs depends on: 

1) the number of light bulbs in the circuit,

2) the arrangement of light bulbs in the circuit

You will have 20 minutes to explore the simulation. Press the blue arrow button on the 

bottom right of the screen to advance to the simulation. 

Use the blank spaces provided on this sheet to record your answers. 

 Consider the following circuits: 

1. Without using the simulation. From the circuits above, which bulb (or bulbs) do you

think will be the brightest of all 7 bulbs? Why do you think that?

Now that you have made a prediction, use the simulation to test it. What did you find

out?
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2. Current is the flow of charge (measured in coulombs/sec = amps) in a circuit. Predict

how you think current will flow in the different types of circuits above, by drawing

arrows in the pictures above. Where within the circuit will current be stronger or weaker?

(Label in the diagrams above).

Now test your predictions using the simulation. What did you find out? 

3. Imagine you are an engineer making a string of battery-powered holiday lights. If a bulb

burns out, current cannot flow through that bulb any longer (as if the wire at the bulb has

been cut). Figure out how to hook up 2 light bulbs and a battery so that, when one bulb

burns out (or is disconnected), the other stays lit. Once you have finalized your design,

draw the circuit below.

4. Now, you instead want to make sure the battery for your string of lights will last as long

as possible. A battery will last longer if it powers a circuit with low current. How could

you hook up a battery and 2 light bulbs so that the least amount of current flows through

the battery? Try solving this problem without changing the voltage of the battery. Use the

measurement tools in the simulation to check your design. Once you have finalized your

design, draw the circuit below.
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APPENDIX B: Experiment 2: Extraneous Load Reduction 

INSTRUCTIONS 
Your objective is to use the simulation to explore how voltage, current, and the brightness 

of light bulbs depends on: 

1) the number of light bulbs in the circuit,

2) the arrangement of light bulbs in the circuit

You will have 20 minutes to explore the simulation. Press the blue arrow button on the 

bottom right of the screen to advance to the simulation. 

Use the blank spaces provided on this sheet to record your answers. 

 Consider the following circuits: 

1. From the circuits above, which bulb (or bulbs) will be the brightest of all 7 bulbs?

We can use the simulation to answer this question. Let’s begin by testing which bulb (or

bulbs) is the brightest of bulbs 1 and 2. The following instructions will show you how to

begin solving this problem. As you read the steps, try to follow them using the

simulation.

A) Let’s build Circuit 1. To start, we will need to gather the necessary circuit elements. To

build a circuit identical to this one, we will need 7 wire pieces, 2 light bulbs, and 1

battery.
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B) 

C) Next, let’s assemble the circuit by connecting the light bulbs and battery to the wires.

Make sure to connect wires to the light bulbs by using each junction. Connecting two

wires to the same junction will cause the circuit to overheat.

The finished circuit should look like this: 

We can see that bulbs 1 and 2 are equally bright. Now that you have built one circuit, 

predict which bulb (or bulbs) will be the brightest of all 7 bulbs. Why do you think that? 

Now that you have a made a prediction, use the simulation to test it. What did you find 

out?  

1 

2 
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2. Current is the flow of charge (measured in coulombs/sec = amps) in a circuit. Predict

how you think current will flow in the different types of circuits below, by drawing

arrows in the pictures below. Where within the circuit will current be stronger or

weaker? (Label in the diagrams below).

Circuit A Circuit B    Circuit C 

Now that you have made a prediction, use the simulation to test it by following these 

steps:  

A) An easy way to view the direction of current is by selecting the conventional option in

the top right-hand corner of the simulation interface. Now the electrons in the simulation

display have been replaced by arrows, showing the current’s direction.

B) You can select the Ammeter tool to measure the strength of the current in the circuits.

You can find this tool in the top right-hand corner of the simulation interface.
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C) The strength of the current can be measured by dragging the wire end of the ammeter to

various parts of the circuit. After investigating the first circuit, we see that the current is a

constant 0.45 amps throughout.

Use the ammeter to test the current of the other two circuits. What did you find out? 

3. Imagine you are an engineer making a string of battery-powered holiday lights. If a bulb

burns out, current cannot flow through that bulb any longer (as if the wire at the bulb has

been cut). Figure out how to hook up 2 light bulbs and a battery so that, when one bulb

burns out (or is disconnected), the other stays lit. Once you have finalized your design,

draw the circuit below.

4. Now, you instead want to make sure the battery for your string of lights will last as long

as possible. A battery will last longer if it powers a circuit with low current. How could

you hook up a battery and 2 light bulbs so that the least amount of current flows through

the battery? Try solving this problem without changing the voltage of the battery. Use the

measurement tools in the simulation to check your design. Once you have finalized your

design, draw the circuit below.
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APPENDIX C: Experiment 2: Intrinsic Load Reduction 

INSTRUCTIONS 

Your objective is to use the simulation to explore how voltage, current, and the brightness 

of light bulbs depends on: 

1) the number of light bulbs in the circuit,

2) the arrangement of light bulbs in the circuit

You will have 20 minutes to explore the simulation. Press the blue arrow button on the 

bottom right of the screen to advance to the simulation. 

Use the blank spaces provided on this sheet to record your answers. 

 Consider the following circuits: 

     Circuit A  Circuit B 

1. Without using the simulation. From the circuits above, which bulb (or bulbs) do you

think will be the brightest of all 4 bulbs? Why do you think that?

Now that you have made a prediction, use the simulation to test it. What did you find 

out?
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Now consider the following circuit: 

Circuit C 

2. Without using the simulation. From the circuit above, which bulb (or bulbs) do you

think will be the brightest of all 3 bulbs? Why do you think that?

Now that you have made a prediction, use the simulation to test it. What did you find 

out? 
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3. Current is the flow of charge (measured in coulombs/sec = amps) in a circuit. Predict

how you think current will flow in the different types of circuits below, by drawing

arrows in the pictures below. Where within the circuit will current be stronger or weaker?

(Label in the diagrams below).

Circuit A Circuit B    Circuit C 

Now that you have made a prediction, use the simulation to test it. Use the Ammeter tool 

to help you. What did you find out? 

     Circuit A  Circuit B 

4. Without using the simulation. Imagine you are making a string of battery-powered

holiday lights. You want to design the lights so that, if a bulb burns out, current

cannot flow through that bulb any longer (as if the wire at the bulb has been cut).

Looking at Circuits A and B above, which of these circuits do you think is hooked up

so that, if one bulb burns out (or is disconnected), the other stays lit. Explain your

reasoning.
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Now that you have made a prediction, use the simulation to test it. What did you find 

out? 

5. Without using the simulation. Let’s say you wanted to make sure the battery for a string

of lights will last as long as possible. A battery will last longer if it powers a circuit with

low current. Looking at Circuits A and B above, which of these circuits do you think is

hooked up so that the least amount of current flows through the battery? Assume that the

two batteries have the same voltage. Explain your reasoning.

Now that you have made a prediction, use the simulation to test it. Use the Ammeter tool 

in the simulation to check your prediction. What did you find out? 
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