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ABSTRACT 

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited 

treatment options and a poor prognosis. Although some studies have attempted to identify new 

biomarkers and therapies, only a few have shown promise in clinical trials. In the context of 

cancer development, infectious agents rank as the third major risk factor, contributing to 

approximately 15-20% of cancer cases, according to the American Cancer Society. Hence, the 

identification of biomarkers associated with infection-originated cancer is crucial for enhancing 

cancer prevention, early detection, diagnosis, and treatment. Borrelia burgdorferi, the causative 

agent of Lyme disease, has been linked to TNBC and its aggressive characteristics. Therefore, 

investigating prognostic or diagnostic markers in B. burgdorferi-infected TNBC cells holds great 

potential for shedding light on the mechanisms underlying this complex association. In this 

study, we employed RNA-Sequencing (RNA-Seq) technology to examine changes in gene 

expression induced by B. burgdorferi infection in TNBC cell line MDA-MB-231 and a normal 

breast epithelial cell line (MCF10A). Our analysis identified common biomarkers, including 

CXCL-1, CXCL-8, C3, PTGS2 (COX2), and SAA1, in B. burgdorferi -infected TNBC cells. The 

genes identified for MCF10A included members of the CXCL family (CXCL10, CXCL8, 

CXCL3, and CXCL2), CCL20, and IFIT1. Furthermore, pathway analysis using KEGG and 

REACTOME databases revealed the involvement of the IL-4, 10, 13 & 17 signaling, TNF, NOD 

like receptor, TLR, NF-kB and Chemokine-signaling pathways. The most enriched signaling 

pathways in MCF10A included the IL-10 & 17, chemokine, cytokine and TNF signaling 

pathways. Common infectious diseases pathway associated in TNBC cells included COVID-19, 

Legionellosis, Prion disease, Influenza-A, Pertussis, Measles, Kaposi-sarcoma-associated 

herpesvirus, and Chagas disease, among others with several of the above identified genes in 
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function. The most common infectious disease associated pathways in MCF10A cells included 

Amoebiasis, Legionellosis, Hepatitis-C and Influenza-A. There were common metabolic 

pathways observed for MCF10A from the KEGG and REACTOME servers which include fatty 

acid metabolism, glycolipid metabolism and steroid metabolism. Also, certain biosynthesis 

pathways such as steroid and terpenoid backbone biosynthesis pathways were observed common 

from the KEGG and REACTOME servers for MCF10A.These findings highlight the 

significance of exploring these potential biomarkers as therapeutic targets in B. burgdorferi -

associated TNBC. Our study provides a promising starting point for future research endeavors 

aimed at improving diagnostic and treatment strategies for this challenging infection-associated 

cancer subtype. 

LIST OF FIGURES 

Figure 1: Volcano plot of differentially expressed genes (DEGs) in MDA-MB-231 cell line Run 

1.  

Figure 2: Volcano plot of DEGs in MDA-MB 231 cell line Run 2.  

Figure 3: Volcano plot of DEGs in MCF10A cell line.  

Figure 4: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1 and 2. Genes with a differential expression ≥ 1.5-fold and p-value < 

0.01 in MDA-MB-231 cells for both the runs were considered. 

Figure 5: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1 and 2. Genes with a differential expression ≥ 2-fold and p-value < 0.01 

in MDA-MB-231 cells for both the runs were considered. 
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Figure 6: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1 and 2. Genes with a differential expression ≥ 3-fold and p-value < 0.01 

in MDA-MB-231 cells for both the runs were considered. 

Figure 7: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1+2 and MCF10A. Genes with a differential expression ≥ 1.5-fold and p-

value < 0.01 in MDA-MB-231 cells for both the runs were considered. 

Figure 8: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with KEGG inflammation pathways from B. burgdorferi -infected MDA-MB-231 

(1+2) Runs.  

Figure 9: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with KEGG infection pathways from B. burgdorferi -infected MDA-MB-231 (1+2) 

Runs.  

Figure 10: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with (A) REACTOME inflammation pathways, (B) REACTOME infection pathways 

and (C) REACTOME metabolic pathways from B. burgdorferi -infected MDA-MB-231 (1+2) 

Runs.  

Figure 11: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with (A) KEGG inflammation pathways, (B) KEGG infection pathways and (C) 

KEGG metabolic pathways from B. burgdorferi -infected MCF10A cells.  
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Figure 12: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with (A) REACTOME inflammation pathways, (B) REACTOME metabolic pathways 

from B. burgdorferi -infected MCF10A cells. 

INTRODUCTION 

Breast cancer (BC) accounts for the leading cause of death due to cancer among women, second 

only to lung cancer, with a 1 in 39 chance of fatality [1]. Among the various sub-types of breast 

cancer, triple-negative breast cancer (TNBC), which tests negative for estrogen, progesterone, 

and human epidermal growth factor receptor (HER2), presents with a shorter survival and higher 

mortality rate [2]. TNBC is highly invasive with a higher risk of metastasis and recurrence [2]. 

Unlike other breast cancer subtypes, TNBC lacks targeted therapies, making it challenging to 

treat effectively [3]. Although some progress has been made in the treatment and drug research 

of breast cancer, studies have shown that due to the lack of understanding of the pathogenesis of 

this complex disease, there is currently no effective treatment, and the recurrence and death of 

breast cancer patients are still not effectively controlled [4, 5]  

Previously, the use of bioinformatics methods to explore differentially expressed genes has made 

significant progress in pancreatic cancer [6], gastric cancer [7-9], colorectal cancer [10, 11], 

prostate cancer [12] and other diseases [13-17]. The occurrence and development of breast 

cancer is a process involving a synergistic action of multiple genes in multiple stages [18]. 

Therefore, the differential change of gene expression profile has always been a recent topic in 

breast cancer research [19]. At present, some studies have explored new biomarkers and relative 

therapies in TNBC, but only few of these have proven useful in clinical trials [20]. The 

identification of a germline BRCA1/2 mutations impacted cancer screening and prevention 
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practices in this subgroup of patients and their relatives. Later, the knowledge of the pathological 

mechanisms of these mutations, led to the development of new therapeutic approaches, such as 

poly (ADP-ribose) polymerase (PARP) inhibitors, selectively directed on BRCA 1 or BRCA 2 

deficient cells [21]. Multiple anti-HER2 vaccines are also under evaluation in HER2-low BC, 

with some displaying favorable results in the TNBC sub-population [22,23]. Neratinib, an 

inhibitor for HER2, HER4, and EGF receptors has shown efficacy in metastatic HER2-mutated, 

HER2-low BC [24]. Other anti-HER2 Tyrosine Kinase Inhibitors (TKIs), including poziotinib 

(NCT02544997) and pyrotinib (NCT03412383), are also being evaluated [25,26] The androgen 

receptor (AR) is part of the steroid receptor family and functions as a nuclear transcription factor 

[27]. AR-positive TNBC has a lower Ki-67 (a good marker of proliferation) index than AR-

negative TNBC and could be less sensitive to chemotherapy, which is in accordance with the 

Luminal androgen receptor (LAR) subtype having a lower pathological complete response (pCR) 

rate relative to other subtypes [28,29]. The introduction of immune checkpoint inhibitors (PD-1 

inhibitors and PD-L1 inhibitors) as a strategy to wake up the immune cells and reduce the tumor 

growth, is playing a critical role in improving treatment of TNBC [30]. The phosphatidylinositol 

3-kinase (PI3K) pathway is another key regulator of survival, growth, proliferation, 

angiogenesis, metabolism, and migration [31]. Moreover, chromosomal translocations are well-

known oncogenic drivers in malignancies, and targeting gene fusions have become a highly 

effective strategy to treat rearrangement-driven cancers [32, 33, 34]. Still, a critical need remains 

for the development of more modern next generation sequencing (NGS)-based biomarker to 

continue to improve outcomes in patients with TNBCs.  

In the realm of cancer development, infectious agents rank as the third major risk factor. 

According to the American Cancer Society, approximately 20% of cancer cases are attributed to 
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infections [35]. For instance, lung cancer has been associated with Mycobacterium tuberculosis 

infection, while Helicobacter. pylori infection is linked to increased migration and invasion rates 

in gastric cancer, and Campylobacter. jejuni has been correlated with small intestine lymphomas 

[36]. Notably, the presence of the bacterium Fusobacterium nucleatum in breast cells has been 

linked to accelerated tumor growth [37]. One of the most recent findings involves tumor-resident 

microbiota, playing an important role in promoting cancer metastasis, intervention of which 

might therefore be worth exploring for advancing oncology care [38]. Also, another recent study 

implied that F. nucleatum orchestrates a molecular network of the Toll-like receptor, micro-

RNAs (miRNAs), and autophagy to clinically, biologically, and mechanistically control 

colorectal cancer chemoresistance [39]. Overall, these studies underscore the importance of 

considering infectious agents as potential contributors to cancer development and progression 

and thereby emphasizing the need for further research in this area to better understand and target 

these complex interactions.  

Identification of biomarkers in the infection origin of cancer is critical for improving cancer 

prevention, early detection, diagnosis, and treatment. It has the potential to significantly impact 

patient care, enhance treatment outcomes, and advance our understanding of these interactions 

between infectious agents and cancer development. Currently, the identification of specific 

markers for targeting pathogen-associated breast cancer is an area of ongoing research, and no 

widely accepted markers are available for clinical use. However, there are some potential 

markers that have been studied in the context of pathogen-association to several cancers such as 

HPV E6 and E7 Oncoproteins in cervical cancer [40], EBV-Encoded RNAs (EBERs) and CA-

724 in gastric cancer [41,42], PI3/Akt pathway in lung cancer [43], LMP2A in nasopharyngeal 
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cancer [44], Carcinoembryonic antigen (CEA) in colorectal cancer [45] and Alpha-fetoprotein 

(AFP) in liver cancer [46].  

A groundbreaking study from 2018 identified bacterial signatures in breast cancer, with Borrelia 

burgdorferi showing an association with poorer prognosis in HER2-positive breast cancer [36]. 

Borrelia burgdorferi, the causative agent of Lyme disease (LD), is known to cause a range of 

clinical manifestations, including musculoskeletal inflammation and neurological symptoms [47-

50]. This pathogen enters the body through tick bites and can spread to different tissues and 

organs [47, 49, 50]. Past research has revealed that B. burgdorferi employs various strategies to 

evade the host immune response, such as altering its membrane proteins, actively suppressing the 

host immune system, and existing in different forms [50,51]. Furthermore, the bacterium can 

hide from the immune system by internalizing into host cells without harming their viability [51-

53]. Our recent study reported that B. burgdorferi can invade both normal and cancerous 

mammary epithelial cells, impacting the invasion and matrix remodeling potential of cancer cells 

[54]. This capability, combined with cancer cells' uncontrolled growth, may ensure the bacteria's 

survival within the host. Notably, our research demonstrated that B. burgdorferi infection could 

potentially make TNBC cells more aggressive [54]. In addition, data from the prior thesis 

research study of our research group have demonstrated that B. burgdorferi can alter the 

expression of cancer-associated genes in MDA-MB-231 [55]. Also, one of the most recent 

published studies identified potential miRNAs (miR-206 and 214) which could be further 

evaluated as biomarkers for tumorigenesis caused by B. burgdorferi in breast cancer cells [56]. 

As a result, it becomes crucial to comprehend the physiological effects of B. burgdorferi on 

TNBC cells and identify the underlying molecular mechanisms through which it induces these 

aggressive cancer traits.  
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RNA-seq is a powerful technique used for quantifying gene expression, allele-specific 

expression, and splice variants in high-throughput. This method is particularly useful for 

studying the differential gene expression in cells infected with bacteria [57]. In previous 

research, RNA-seq was successfully employed to comprehensively map genes with altered 

expression in response to B. burgdorferi infection in human brain microvascular cells [58]. 

Interestingly, many of these differentially expressed genes (DEGs) were associated with 

dysregulated pathways in cancer, including breast cancer [59, 60]. Building upon this 

knowledge, we utilized RNA-Seq technology and KEGG, REACTOME pathway enrichment 

analysis to investigate potential biomarkers through which B. burgdorferi may impact triple-

negative breast cancer and normal breast epithelial cell lines - MDA-MB-231 and MCF10A. By 

conducting two separate RNA-Seq runs for MDA-MB-231, we aimed to ensure the reliability 

and reproducibility of our results, thereby strengthening the confidence in the identified DEGs 

and the subsequent pathway analysis. This research offers crucial understanding of how B. 

burgdorferi infection impacts gene expression and pathways in TNBC cells. The potential 

biomarkers identified in this study hold great promise for further investigations to unravel the 

mechanisms underlying B. burgdorferi-associated TNBC. Moreover, these findings could lead to 

the development of innovative diagnostic panels and therapeutic strategies for combating this 

aggressive and complex form of breast cancer. 

 

MATERIALS AND METHODS 

Borrelia burgdorferi culture: 
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The B31 strain of Borrelia burgdorferi (ATCC 35210, Manassas, VA) was cultured in Barbour-

Stoner-Kelly-H (BSK-H) medium (Sigma Aldrich, St Louis, MO), supplemented with 6% rabbit 

serum (GeminiBio, West Sacramento, CA) in sterile 15 mL glass tubes at 37 ⁰C and 3% carbon 

dioxide. Low passage numbers (<P6) were used for all experiments.  

Mammalian cell culture and infection with B. burgdorferi: 

Normal breast epithelial cells and triple-negative breast cancer cells (TNBC) were cultured using 

standard cell culture techniques at 37 ⁰C and 5% carbon dioxide. MDA-MB-231, was cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, Sigma Aldrich, Louis, MO) supplemented with 

10% fetal bovine serum (FBS) and 1% penicillin-streptomycin-glutamine (PSG, ThermoFisher 

Scientific, Waltham, MA), along with the 20 ug/mL gentamycin. MCF-10A was cultivated in 

Dulbecco’s Modified Eagle Medium-F12 (DMEM/F-12), (Sigma Aldrich, St Louis, MO) 

supplemented with 5% Horse Serum (GibcoTM; Waltham, MA, USA), 10 ug/mL bovine insulin 

(Sigma Aldrich, St Louis, MO), 100 ng/mL cholera toxin (Sigma Aldrich, St Louis, MO), 20 

ng/mL epidermal growth factor (EGF, ThermoFisher, Waltham, MA), 0.5 mg/mL hydrocortisone 

(Sigma Aldrich, St Louis, MO), and 1% Penicillin-Streptomycin (PS, GibcoTM; Waltham, MA, 

USA). The cells were serum deprived overnight in serum-free basal growth media supplemented 

with 1% of required antibiotic (PSG for MDA-MB-231 and PS for MCF10A) and infected with B. 

burgdorferi at an MOI of 60 for 48 hours in co-culture media composed of 1/3rd serum- and 

antibiotic-free growth media and 2/3rd of BSK-H supplemented with 6% rabbit serum. 

 

RNA extraction: 
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Infected cells along with co-culture controls were trypsinized and pelleted by centrifuging at 2200 

rpm for 10 minutes at room temperature (RT). The medium was aspirated, and the pellet was 

resuspended in phosphate-buffered saline (PBS, Sigma Aldrich, St Louis, MO) followed by 

centrifugation at 2200 rpm for 10 minutes at RT. RNA was extracted using RNeasy mini kit 

(Qiagen, Hilden, Germany) following the manufacturer’s instruction and quantitated using the 

Nanodrop Lite spectrophotometer (ThermoFisher Scientific, Waltham, MA). The total RNA 

extracted from three independent sets of infected and uninfected samples for each cell line was 

sent for sequencing at the Yale Center for Genome Analysis (Yale West Campus, Orange, CT).   

cDNA library prep and RNA sequencing: 

The integrity of the RNA was determined by running an Agilent Bioanalyzer gel (Agilent, Santa 

Clara, CA), to measure the ratios of the ribosomal peaks and to assign an RNA integrity/RNA 

quality number (RIN/RQN) to the samples. Total RNA was subjected to either polyA selection 

(MDA-MB-231) using Roche Kapa mRNA Hyper Prep Kit (Roche KAPA Biosystems, 

Wilmington, MA) or ribosomal depletion using the Roche KAPA RNA Hyper Prep Kit with 

RiboErase (Roche KAPA Biosystems, Wilmington, MA). Samples with a yield of ≥ 0.5 ng/uL and 

a size distribution of 150-300 bp were used for sequencing. Samples were sequenced on Illumina 

NovaSeq6000 according to Illumina protocols. 

Analysis of differentially expressed genes (DEGs) and pathway enrichment analysis: 

Volcano plots were generated using R (EnhancedVolcano library) to illustrate significantly DEGs 

from the RNA-seq data. Genes were considered significantly differentially expressed if the log2 

fold change was > 0.585 (fold change 1.5) and the adjusted p-value (false discovery rate (FDR)) 

was < 0.1. The DEGs were run through the Database for Annotation, Visualization, 
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and Integrated Discovery (DAVID) [60] to determine cellular processes that the DEGs were 

enriched in. Within DAVID, two different servers – KEGG and REACTOME were used for the 

pathway enrichment analysis. KEGG is a comprehensive database that integrates genomic, 

chemical, and systemic functional information. It contains various types of biological pathways, 

including metabolic pathways, signaling pathways, and disease-related pathways. KEGG 

pathways are represented as networks of interacting genes and gene products that participate in 

specific biological processes. The KEGG pathway analysis involves mapping DEGs from 

experimental data onto the known pathways in the KEGG database. REACTOME is another 

widely used pathway database that provides curated and peer-reviewed information about 

biological pathways and processes. It covers a broad range of biological areas, including cell 

signaling, metabolism, immune response, and DNA repair, among others. REACTOME pathway 

analysis involves inputting gene lists from experimental data and identifying overrepresented 

pathways. The analysis assesses the statistical significance of the overlap between the input gene 

list and the genes associated with specific REACTOME pathways. For this study, pathways that 

highlighted the top 12 genes (FC ≤ 8) for MDA-MB-231 both runs (1+2) and the top 12 genes (FC 

≤ 5) for MCF10A have been discussed. Each pathway was then mapped to the significantly 

expressed genes for both cell lines in EXCEL according to the following rules: (1) genes with 

adjusted p values < 0.0001 and base Mean greater than 400; (2) pathways with the Benjamini-

Hochberg adjusted p-value ≤ 0.10. 

RESULTS 

In this study, RNA sequencing was performed on TNBC cell line MDA-MB-231 and a normal 

mammary epithelial cell line, MCF10A. The reliability and reproducibility of our findings were 

confirmed by performing two distinct, independent RNA sequencing runs for MDA-MB-231 cells 
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(Run 1 and 2). For each cell line run, 1 x106 cells were plated in biological triplicates for 6 hours 

after which they were serum starved for 10 hours and then infected with B. burgdorferi at a 

multiplicity of infection (MOI) of 60 alongside uninfected controls. The RNAs extracted from 

these biological triplicates of uninfected and B. burgdorferi-infected cells were determined to be 

good quality as assessed by an RNA Quality Number (RQN) value >7.  

 

RNA-seq on triple-negative breast cancer and normal-like mammary epithelial cells  

To investigate the changes in gene expression after B. burgdorferi infection, computational 

analysis of the DEGs between the infected and uninfected group was performed. Overall, 142 

DEGs between uninfected and infected samples were identified in MDA-MB-231 cells (adjusted 

p-value < 0.01) for Run 1 out of which 122 significant genes were differentially expressed by over 

1.5-fold.  

The volcano plots display the statistical significance of the difference relative to the magnitude of 

difference for every single gene in the comparison, through the negative base-10 log of the adjusted 

p-value (FDR) and log2 fold-change, respectively. Since the p-values have a negative 

transformation, the higher along the y-axis a data point falls, the smaller the p-value. Data points 

closer to 0 represent genes that have similar or identical mean expression levels. Extreme data 

points along the x-axis depicts upregulated genes on the right and downregulated genes towards 

the left of the origin. From Figure 1, we observed a total of 122 genes upregulated for MDA-MB-

231 Run 1 as the data points skews towards the right, out of which 13 of these significant genes 

showed a ≥3-fold change. These included the CXCL family (CXCL-1,3,8,10 & 11), CCL20, 
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interleukin-6 and SAA1 to name a few. A total of 20 genes were downregulated out of which the 

most significant ones are shown as data points to the left of the origin. 

 

Figure 1: Volcano plot of DEGs in MDA-MB 231 cell line Run 1. The x-axis represents the log2 

fold change and the y-axis represents the negative log10 of the adjusted P-value. The cutoff criteria 

were adjusted P-value ≤0.10 and log2 fold change greater than 0.585. Points in red represent genes 

that exceed both cutoff criteria. 

 

By conducting two independent RNA sequencing runs for MDA-MB-23 (6 months apart), we 

aimed to ensure the reliability and reproducibility of our results. A total of 113 DEGs between 

uninfected and infected samples were identified in MDA-MB-231 cells (adjusted p-value < 0.01) 

for Run 2 out of which 60 significant genes were differentially expressed by over 1.5-fold. From 

Figure 2, we observed those 60 upregulated genes for MDA-MB-231 Run 2 as the data points 
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skews towards the right, out of which 8 of the significant genes showed a ≥3-fold change. These 

included genes from the CXCL family (CXCL-1, 8, 10), C3, PTGS2 (COX2), C15orf48 

(chromosome 15 open reading frame 48), PI3 and SAA1. A total of 60 genes were downregulated 

out of which the most significant ones are shown as data points to the left of the origin. 

 

Figure 2: Volcano plot of DEGs in MDA-MB 231 cell line Run 2. The x-axis represents the log2 

fold change and the y-axis represents the negative log10 of the adjusted P-value. The cutoff criteria 

were adjusted P-value ≤0.10 and log2 fold change greater than 1.5. Points in red represent genes 

that exceed both cutoff criteria. 

 

In order to have a reference point for comparison, normal epithelial cell line, MCF10A was used 

for which 95 DEGs between uninfected and infected samples were identified (adjusted p-value < 

0.01). Within these DEGs, a subset of 38 genes were differentially expressed over 1.5-fold (p < 
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0.01, Table 1). From Figure 4, a total of 38 genes upregulated for MCF10A can be seen as the 

data points skews towards the right, out of which 3 of the significant genes showed a ≥3-fold 

change. These included CXCL10, RSAD2 and TNF alpha induced protein 6 (TNFAIP6). A total 

of 57 genes were downregulated out of which the most significant ones are shown as data points 

to the left of the origin. 

 

Figure 3: Volcano plot of DEGs in MCF10A cell line. The x-axis represents the log2 fold change 

and the y-axis represents the negative log10 of the adjusted P-value. The cutoff criteria were 

adjusted P-value ≤0.10 and log2 fold change greater than 1.5. Points in red represent genes that 

exceed both cutoff criteria. 

 

 

 



 

 

21 

Screening of DEGs in triple-negative breast cancer and normal-like mammary epithelial cells 

In this study, following the data analysis for the independent RNA sequencing runs (Run 1 and 

Run 2) for the MDA-MB-231 cell line and MCF10A, Venn diagrams were generated to identify 

the overlapping genes between the multiple cell lines illustrating the common DEGs that were 

consistently identified in the multiple cell line RNA sequencing runs after B. burgdorferi 

infection. A total of 122 and 60 significantly upregulated genes were observed for MDA-MB-

231 Run 1 and 2 respectively. MCF10A on the other hand showed 38 significantly upregulated 

genes. 

From Figure 5, the intersection of the Venn diagram illustrates the genes that were commonly 

upregulated in response to B. burgdorferi infection in MDA-MB-231 Run 1 and Run 2. About 49 

genes were observed that were consistently upregulated in both runs with a cut off ≥1.5 FC. As 

the fold change cut off was increased to ≥2, about 15 genes were observed that were consistently 

upregulated in both runs (Figure 6). As a more stringent fold change cut off ≥3 was applied, a 

subset of genes that remained consistently upregulated was observed among MDA-MB-231 Run 

1 and Run 2 in response to B. burgdorferi infection. Specifically, about 6 genes were identified as 

consistently upregulated with a fold change of ≥3 in both runs, as observed in Figure 7. The genes 

include genes from the CXCL family (CXCL-1,8 & 10), C3, PTGS2 (COX2) and SAA1. 

These genes may represent the most significantly regulated targets in the cellular response to B. 

burgdorferi in the MDA-MB-231 cell line, suggesting their potential importance in B. 

burgdorferi -associated in the physiology of MDA-MB-231 cells. 
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Figure 4: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1 and 2. Genes with a differential expression ≥ 1.5-fold and p-value < 

0.01 in MDA-MB-231 cells for both runs were considered. 
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Figure 5: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1 and 2. Genes with a differential expression ≥ 2-fold and p-value < 0.01 

in MDA-MB-231 cells for both the runs were considered. 

 

 

Figure 6: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1 and 2. Genes with a differential expression ≥ 3-fold and p-value < 0.01 

in MDA-MB-231 cells for both the runs were considered. 

 

For further screening, MCF10A, the normal epithelial cell line was included which serves as a 

reference point for understanding the gene expression changes specific to B. burgdorferi-infected 

TNBC cells. Investigating that, a fold change cut off ≥1.5 was considered to identify genes that 

were consistently upregulated commonly for the MDA-MB-231 Run (1+2) (Refer to Figure 5) and 

MCF10A cell line. Figure 9, illustrates the common genes that were upregulated in response to B. 

burgdorferi infection in both MDA-MB-231 and MCF10A cell lines. A total of 6 genes that were 

consistently upregulated in both cell lines under these conditions were observed. These included 
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the CXCL family genes- CXCL10, 8, 3 & 2, CCL20 and IFIT1. The identified common 

upregulated genes between MDA-MB-231 and MCF10 cells may indicate 6 critical markers of the 

host response to B. burgdorferi infection, irrespective of the cell's malignancy status.  

Figure 7: Venn diagram showing the common up-regulated DEGs in the RNA Sequencing data 

of MDA-MB-231 Run 1+2 and MCF10A. Genes with a differential expression ≥ 1.5-fold and p-

value < 0.01 in MDA-MB-231 cells for both the runs together and MCF10A were considered. 

 

KEGG and REACTOME pathway enrichment analyses of DEGs in triple-negative breast cancer 

and normal-like mammary epithelial cells 

To further explore the functional significance of these common identified genes, pathway 

analysis was performed using the KEGG and REACTOME pathway enrichment analyses on the  

DAVID Bioinformatics site (https://david.ncifcrf.gov). The enrichment analysis using the 

screened DEGs from the above analysis revealed pathways related to inflammation, infection, 
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metabolism, and cancer pathways, supporting the notion that these genes may be involved in 

critical biological processes implicated in B. burgdorferi -associated TNBC cells.  

In order to gain insights into the functional implications of the identified upregulated genes in 

MDA-MB-231 cells, pathway analysis was performed using the top 12 genes consistently 

upregulated in both MDA-MB-231 Run 1 and Run 2 (Figure 5) upon B. burgdorferi infection. 

These 12 genes were selected based on their highest average fold change values and their 

consistent upregulation across independent RNA sequencing runs. The heatmap (Figure 11) 

represents the expression patterns of these 12 upregulated genes and their corresponding fold 

changes in response to B. burgdorferi infection. This expression pattern was studied using the 

KEGG pathway analysis. The color intensity in the heatmap reflects the magnitude of gene 

expression changes, with red indicating higher expression levels and light yellow indicating 

lower expression levels. Pathway analysis of these top 12 upregulated genes revealed their 

involvement in approximately 15 KEGG pathways associated with diverse inflammation 

processes. Notably, several signaling pathways including the IL-17, TNF, NOD like receptor, 

TLR, NF-kB and Chemokine-signaling pathways were significantly enriched. Moreover, 

receptor interactions such as cytokine-cytokine receptor interaction and viral protein interaction 

with cytokine receptor was significantly enriched. Inflammatory disease pathways such as for 

Rheumatoid Arthritis, Alzheimer’s, Alcoholic liver disease and Atherosclerosis were enriched 

too in the KEGG pathway analysis. Additionally, several of the DEGs were also enriched in 

pathways implicated in cancer. From the top 12 genes common to both the RNA Sequencing 

runs for MDA-MB-231(1+2), the CXCL-family genes (CXCL8,3 & 1) and IL6 were the most 

common in all the KEGG inflammatory pathways enriched. Also, IL1B was one of the most 

common genes with a lower fold-change however making a very significant difference by being 
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involved in very important pathways as depicted in Figure 11. These findings align with the 

emerging evidence of B. burgdorferi 's influence on inflammation in MDA-MB-231 cells. 

Figure 8: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with KEGG inflammation pathways from B. burgdorferi -infected MDA-MB-231 

(1+2) Runs. Pathways with the Benjamini-Hochberg adjusted p-value ≤ 0.10 were considered. 

Red indicates higher expression levels and light yellow indicates lower expression levels. 

 

Figure 12 represents the expression patterns of the same 12 upregulated genes and their 

corresponding fold changes in response to B. burgdorferi infection. Pathway analysis of these 

top 12 upregulated genes revealed their involvement in approximately 15 KEGG pathways 

associated with diverse infectious processes. The KEGG server highlighted the involvement of 

the 12 DEGs in pathways activated during various infectious diseases like COVID-19, 

Legionellosis, Prion disease, Influenza-A, Pertussis, Measles, Kaposi-sarcoma-associated 

herpesvirus and Chagas disease, among others. Notably, only one signaling pathway that is the 

RIG-I like receptor-signaling pathways was significantly enriched. Additionally, pathways 

involved in pathogenic E. coli infection and epithelial cell signaling in H. Pylori infection was 

also observed which shows potential connection to other infectious origin pathways in TNBC 
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cells- MDA-MB-231. From the top 12 genes common to both the RNA Sequencing runs for 

MDA-MB-231(1+2), the CXCL-family genes (CXCL8,3 & 1), IL6 and IL1B were also common 

in majority of the KEGG infection pathways enriched. Although, complement 3, which showed 

regulation for only one of the inflammatory pathways (Figure 10), was enriched for a total of 

seven out of the 15 pathways depicting a key role in body's infection related immune response. 

These findings align with the emerging evidence of B. burgdorferi 's influence on infection in 

MDA-MB-231 cells. 

Figure 9: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with KEGG infection pathways from B. burgdorferi -infected MDA-MB-231 (1+2) 

Runs. Pathways with the Benjamini-Hochberg adjusted p-value ≤ 0.10 were considered. Red 

indicates higher expression levels and light yellow indicates lower expression levels. 

To further explore the functional significance of the top 12 upregulated genes consistently 

observed in both MDA-MB-231 Run 1 and Run 2 upon B. burgdorferi infection, REACTOME 

pathway enrichment analysis was conducted which showed 9 inflammation, 2 infection and 1 

metabolic pathway enriched. From Figure 13A, out of the nine pathways enriched for 

inflammation, six of them were involved in important signalling pathways such as cytokine, 

interleukin (IL-10, 4 & 13), G alpha (I) and GPCR downstream signalling pathways. The other 
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important pathways indicate the receptors functioning such as the chemokine receptors, peptide 

ligand binding receptors and rhodopsin-like receptors. Among the 12 top regulated genes, 

CXCL8 was involved in all the pathways followed by CXCL10 & 1 and CCL20 being the most 

common genes expressed in majority of the inflammatory pathways. Surprisingly the expression 

of SAA1, which was not in the KEGG pathway analysis, was in 7 out of the 9 pathways 

enriched. Looking further onto the infection pathways enriched in the REACTOME server for 

MDA-MB-231 (Figure 13B), only two significant pathways were observed which includes the 

immune system pathway depicting the upregulation of all twelve genes except CXCL3. Also, for 

the IFIH1 mediated induction of interferon-alpha/beta pathway, only SAA1 was involved. Figure 

13C shows the only involvement of PTGS2 in the Nicotinate metabolism pathway as per the 

REACTOME pathway analysis.  

Figure 10: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with (A) REACTOME inflammation pathways, (B) REACTOME infection pathways 

and (C) REACTOME metabolic pathways from B. burgdorferi -infected MDA-MB-231 (1+2) 

Runs. Pathways with the Benjamini-Hochberg adjusted p-value ≤ 0.10 were considered. Red 

indicates higher expression levels and light yellow indicates lower expression levels. 
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The comparative analysis of the effects of B. burgdorferi infection in both normal and cancerous 

cellular contexts was perpetuated by using MCF10A cells, which serve as a relevant control to 

discern pathway alterations that are specific to B. burgdorferi -infected TNBC cells, as opposed to 

general cellular responses to B. burgdorferi. 

KEGG pathway analysis was performed using the top 12 genes consistently upregulated in 

MCF10A RNA sequencing data upon B. burgdorferi infection. Pathway analysis of these 

upregulated genes revealed their involvement in approximately 7 KEGG pathways associated 

with diverse inflammation processes. The heatmap (Figure 15A) depicts some already indicated 

IL-17, chemokine & TNF signaling pathways significantly enriched. Inflammatory disease 

pathways such as for Rheumatoid Arthritis and Alcoholic liver disease were also enriched in the 

KEGG pathway analysis for MCF10A. Additionally, several DEGs were enriched in pathways 

implicated in cytokine-cytokine receptor signaling as well as viral protein interaction with 

cytokine-cytokine receptors. From the top 12 genes, the CXCL-family genes (CXCL8,3, 2 & 10) 

and CCL20 were the most common in majority of the KEGG inflammatory pathways enriched. 

Also, the endoplasmic reticulum (ER) enzyme stearoyl-CoA desaturase (SCD) was involved in 

only Alcoholic liver disease pathway with a lower fold-change as depicted in Figure 15A. Figure 

15B represents the expression patterns of the same 12 upregulated genes and their involvement 

in approximately 4 KEGG pathways associated with diverse infectious processes. The KEGG 

server highlighted the involvement of the DEGs in previously discussed pathways activated 

during various infectious diseases like amoebiasis, hepatitis-C, legionellosis and influenza-A. 

From the top 12 genes of the RNA Sequencing run for MCF10A, the CXCL-family genes 

(CXCL8,3,2 & 10) and RSAD2 were common in majority of the KEGG infection pathways 

enriched. Also, farnesyl diphosphate synthase (FDPS) showed regulation for only one of the 
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infectious disease pathways i.e., Influenza-A. Additionally, the KEGG server in DAVID, 

highlighted fatty acid metabolism and metabolic pathways in general, for MCF10A as shown in 

Figure 15C. Interestingly, several DEGs were enriched in pathways related to biosynthesis of 

steroids, terpenoid backbone and unsaturated fatty acids, which could be indicative of a cellular 

transformation in MCF10A. The most common genes involved in at least two of these 5 

pathways related to metabolism and biosynthesis are Methyl sterol monooxygenase 1 (MSMO1), 

member of the fatty acid desaturase gene family-FADS1 & 2, enzyme involved in lipid 

metabolism- ACAT2, FDPS and SCD.    

Figure 11: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with (A) KEGG inflammation pathways, (B) KEGG infection pathways and (C) 

KEGG metabolic pathways from B. burgdorferi -infected MCF10A cells. Pathways with the 

Benjamini-Hochberg adjusted p-value ≤ 0.10 were considered. Red indicates higher expression 

levels and light yellow indicates lower expression levels. 

 

To further explore the functional significance of the top 12 upregulated genes consistently 

observed in MCF10A upon B. burgdorferi infection, REACTOME pathway enrichment analysis 

was conducted which surprisingly showed 4 inflammation and 4 metabolic pathways enriched. 
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From Figure 16A, out of the four pathways enriched for inflammation, 1 of them is involved in 

the interleukin-10 signalling pathway. The other important pathways indicate the receptors 

functioning such as the chemokine receptors and the peptide ligand binding receptors. Cytokine 

signalling in the immune system is also one important pathway enriched in this analysis. Among 

the 12 top regulated genes, CXCL8, 2 & 10 and CCL20 was involved in all the pathways. 

CXCL3 was involved in binding of the chemokine receptors pathway and peptide ligand binding 

receptors pathway. Also, RSAD2 is involved in cytokine signalling in the immune system. 

Surprisingly the expression of SAA1, which was nil in the KEGG pathway analysis, was 

expressed in 7 out of the 9 pathways enriched. Looking further onto the metabolic pathways in 

the REACTOME server for MCF10A (Figure 16B), metabolism of steroids, lipids and 

metabolism in general was significantly enriched. Interestingly, several DEGs were enriched in 

pathways related to biosynthesis cholesterol which further confirms the chances of cellular 

transformation in MCF10A. The most common genes include MSMO1, ACAT2 and FDPS in all 

the metabolic and biosynthesis pathways.   

Figure 12: Heatmap depicting the expression of top 12 upregulated genes and their fold changes 

associated with (A) REACTOME inflammation pathways, (B) REACTOME metabolic pathways 

from B. burgdorferi -infected MCF10A cells. Pathways with the Benjamini-Hochberg adjusted 

p-value ≤ 0.10 were considered. Red indicates higher expression levels and light yellow indicates 

lower expression levels. 
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DISCUSSION 

Although great efforts have been invested in the management of TNBC, the prognosis of infection 

associated TNBC patients is still poor. Thus, it is necessary to elucidate detailed mechanisms for 

early diagnosis, treatment, and prognosis of infection associated TNBC. Our previous studies 

demonstrated that by 48 hours, 96% of B. burgdorferi spirochetes were able to internalize within 

MDA-MB-231 cells, while 52% spirochetes were able to invade MCF10A cells [54]. Additionally, 

Matrigel based invasion assays have demonstrated a 4-fold increase in invasion by MDA-MB-231 

cells upon infection with B. burgdorferi accompanied with a 48% increase in their migration rate 

in corresponding wound-healing assays [54]. Thus, tackling this complex form of infection 

associated cancer requires developing targeted therapies, enhancing treatment efficacy while 

reducing side effects.  

With the progress in bioinformatics analysis, analysis of sequencing data has been regarded as a 

useful strategy for investigating general genetic alterations and deciphering the pathophysiology 

of TNBC. In this study, we performed RNA sequencing on two different cell lines: MDA-MB-

231-twice and MCF10A. Through this multiple run approach, we could identify potential 

biomarkers that are consistently differentially expressed in response to B. burgdorferi infection 

across TNBC cell lines while also distinguishing TNBC-specific responses from general cellular 

responses to infection. From the intersection of the Venn diagram (Figure 5), 49 genes were 

identified that were commonly upregulated in both MDA-MB-231 Run 1 and Run 2 in response 

to B. burgdorferi infection. These 49 genes were consistently upregulated with a fold change cutoff 

of ≥1.5. Upon increasing the fold change cutoff to ≥3 (Figure 7), a subset of 6 genes were identified 

that were upregulated in both runs. These genes included members of the CXCL family (CXCL-

1, CXCL-8, and CXCL-10), C3, PTGS2 (COX2), and SAA1. The CXCL family of chemokines 
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plays a crucial role in inflammation and immune response regulation. Previous studies have linked 

CXCL-1, CXCL-8, and CXCL-10 to breast cancer development and progression, and they have 

been associated with tumour growth, metastasis, and angiogenesis [61-63]. In breast cancer cells, 

CXCL1 expression is lineage-dependent, being highest in triple-negative MDA-MB-231 cells 

[64,65]. CXCL1 induces cell proliferation, migration, and epithelial-to-mesenchymal transition 

(EMT) [66,67]. It also contributes to the formation of metastasis, particularly in the bone, lung, 

brain, and lymph nodes [65]. CXCL1 is also said to be associated with chemoresistance and radio 

resistance, and its increased expression is linked to a worse prognosis in obese breast cancer 

patients [68-71]. In humans, Interleukin-8 (IL-8 or CXCL8) is a granulocytic chemokine with 

multiple roles within the tumor microenvironment (TME), such as recruiting immunosuppressive 

cells to the tumor, increasing tumor angiogenesis, and promoting EMT [72]. All these effects of 

CXCL8 on individual cell types can result in cascading alterations to the TME [73]. It has also 

been reported that CXCL10 also might be related to the prognosis in pancreatic adenocarcinoma 

[74] and TNBC [75]. For TNBC, a recent study demonstrated that CXCR4 and CXCL10 were the 

chemokines related to prognosis. Therefore, CXCL10 might be an effective prognostic factor and 

obviously potential therapeutic target for TNBC treatment [76]. The complement component C3 

plays a significant role in triple-negative breast cancer (TNBC) and infection, exerting diverse 

effects in both contexts. In TNBC, C3 has been implicated in promoting tumour growth, invasion, 

and metastasis. Its expression is often elevated in TNBC tissues, and studies have shown that C3 

contributes to tumour progression by interacting with complement receptors on cancer cells, 

leading to activation of downstream signalling pathways that promote proliferation and survival 

[77,78]. Moreover, C3 can interact with tumour-associated macrophages and immune cells, 

fostering an immunosuppressive microenvironment that hinders anti-tumour immune responses. 
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In the context of infection, C3 is a key component of the innate immune response. When pathogens 

invade the body, the complement system, including C3, is activated to opsonize and eliminate the 

invaders [79]. PTGS2 or COX2 a downstream target of TGFβ plays an important role in regulating 

cancer stem cells in TNBC. COX-2 catalyzes a key step in the formation of prostaglandins (PGs) 

and is highly induced at inflammatory sites and during tumor progression [80]. SAA1 on the other 

hand, an important marker for LD, induces suppressive neutrophils through the Toll‐like receptor 

2–mediated signalling pathway to promote progression of breast cancer [81]. Serum amyloid A 

levels are significantly elevated in several malignancies and correlate with poor prognosis [82]. 

Previous studies have reported that SAA is a critical mediator of pro‐inflammatory cytokine 

production and recruitment of immune cells, and thereby promotes tumor development by 

facilitating angiogenesis, tumor invasion, and immunosuppression [83,84]. These six important 

genes identified, thereby hold promise as potential diagnostic or therapeutic targets for B. 

burgdorferi -associated TNBC cells.  

To further analyse the common markers for B. burgdorferi infection in normal breast cells, a 

comparative analysis including MCF10A was carried out which identified genes in common to 

both the MDA-MB-231 runs (1+2) together. These genes included members of the CXCL family 

(CXCL10, CXCL8, CXCL3, and CXCL2), CCL20, and IFIT1. CCL20, is implicated in the 

formation and function of mucosal lymphoid tissues via chemoattraction of lymphocytes and 

dendritic cells towards the epithelial cells surrounding these tissues [86]. Additionally, the 

expression of CCL20 in triple-negative breast cancer cell lines (MDA-MB-231 and BT549) 

facilitated tumor migration by upregulating MMP1, MMP-2 and MMP-9 [87]. IFIT1 modulates 

the proliferation, migration, and invasion of pancreatic cancer cells via Wnt/β-catenin signalling 

[88]. In breast cancer, IRDS genes are regulated by exosome transfer from stroma cells, mediate 
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resistance to radiation- and chemo-therapy, predict poor prognosis and are enriched in cells 

exerting cancer stem cell like features [89]. In one of the previous studies, overexpression of 

GIRK1 in the benign MCF10A triggered enhanced expression of several IRDS genes such as 

IFIT1, IFIT3, IRF7 and ISG15 [90]. These results altogether suggest that CXCL8 and CXCL10 

are promising therapeutic targets, having consistent expressions in all the three runs, for B. 

burgdorferi infected cells.   

Infection-associated triple-negative breast cancer (TNBC) cells have been shown to exhibit 

dysregulation in various signaling pathways involved in immune responses and pathogen 

recognition. One of the key pathways implicated in infection-associated TNBC is the toll-like 

receptor (TLR) pathway. TLRs play a crucial role in recognizing pathogen-associated molecular 

patterns (PAMPs) and initiating innate immune responses against invading pathogens, including 

bacteria like B. burgdorferi [91]. Additionally, the nuclear factor-kappa B (NF-κB) pathway is 

often upregulated in infection-associated TNBC, as NF-κB plays a central role in regulating the 

expression of genes involved in inflammation and cell survival [92]. Moreover, the Janus kinase-

signal transducer and activator of transcription (JAK-STAT) pathway have been implicated in 

infection-associated breast cancer, as it contributes to the modulation of immune responses and 

cell proliferation [93]. These pathways may collectively contribute to the host's response to B. 

burgdorferi infection in TNBC cells and potentially influence the tumor microenvironment, 

influencing cancer progression and immune evasion. In order to confirm the same, our pathway 

analysis identified several common pathways involved in inflammation, infection. From the 

KEGG server, the most common inflammatory pathways in TNBC cells included the IL-17 

signaling, TNF signaling, NF-kB signaling and chemokine signaling pathways with several of the 

above identified genes in function. The other signaling pathways enriched by the REACTOME 



 

 

36 

server include cytokine signaling, IL-4, 10 & 13 signaling, G alpha (i) and GPCR downstream 

signaling pathways. From the KEGG server, the most common inflammatory pathways in 

MCF10A cells included the IL-17 signaling, TNF signaling and chemokine signaling pathways 

with several of the above identified genes in function. The other signaling pathways enriched by 

the REACTOME server include IL-10 signaling, and cytokine signaling pathways. Several 

pathways associated to inflammatory diseases were also identified for all the three runs, the most 

common being Rheumatoid Arthritis and Alcoholic Liver disease. From the KEGG server, the 

most common infectious disease associated pathways in TNBC cells included COVID-19, 

Legionellosis, Prion disease, Influenza-A, Pertussis, Measles, Kaposi-sarcoma-associated 

herpesvirus, and Chagas disease, among others. Additionally, pathways involved in pathogenic E. 

coli infection and epithelial cell signaling in H. Pylori infection was also observed which shows 

potential connection to other infectious origin pathways in TNBC cells- MDA-MB-231.The other 

infection associated pathways also common to MCF10A include Hepatitis-C and Amoebiasis. The 

most common enriched metabolic pathways for MCF10A from the KEGG and REACTOME 

servers include fatty acid metabolism, glycolipid metabolism and steroid metabolism. Biosynthesis 

pathways such as steroid and terpenoid backbone biosynthesis pathways were also observed 

common from the KEGG and REACTOME server for MCF10A. Further studies are needed to 

unravel the precise molecular mechanisms underlying these pathways in the context of infection-

associated TNBC and their potential as therapeutic targets. From the REACTOME server, the most 

common signaling pathways common to MCF10A include the IL-10 signaling and cytokine 

signaling pathways. Several pathways associated to receptor binding were also identified for 

MDA-MB-231(1+2) and MCF10A, the most common being chemokine receptors and peptide 

ligand binding receptors. There were no common pathways for metabolism and biosynthesis in 
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any of the TNBC cell lines runs and MCF10A suggesting that cancer cells exhibit distinct 

metabolic characteristics compared to normal cells, a phenomenon known as "metabolic 

reprogramming." The altered metabolism in cancer cells is driven by various factors, including 

oncogenic mutations and the tumor microenvironment.  

Altogether, the biomarkers identified show significant correlations to cancer and its progression. 

It is important to thereby understand what these pathways implicate. IL-17 signaling directly 

activates the early stages of cancer cell proliferation via STAT3 signaling [94]. IL-17 also 

promoted tumor graft development and directly inhibited apoptosis in several breast cancer cell-

lines in a TGF-β dependent manner [95]. IL-17 secretion promotes the development of 

chemoresistance in breast cancer by suppressing the expression of pro-apoptotic signals [96]. This 

association to cancer progression suggests a similar phenomenon induced by B. burgdorferi 

infection. Similarly, the IL-10 signaling pathway is said to be involved in signaling via the 

JAK/STAT pathway. IL-10 upon binding to its receptor causes phosphorylation of JAK1 which 

inturn activates STAT3 [97]. But its implications on cancer have been paradoxical as both the pro- 

and anti-tumor effects of IL-10 have been well characterized [98]. IL-10 can promote CD8+ T cell 

activation and proliferation, which has a direct or indirect cytotoxic effect on the cancer cells. 

Second, IL-10 inhibits T cell-stimulated tumor-killing immunity by suppressing antigen 

presentation by APCs [99]. Other important signaling pathways implicated towards cancer include 

the other type 2 cytokine signaling pathways IL4 and IL13, which are said to be overexpressed in 

cancers including pancreatic cancer [100]. IL-4 was also considered to be closely related to the 

poor outcome of breast cancer thereby emphasizing the role of these important signaling pathways 

that have been enriched by B. burgdorferi infection in TNBC cells [101]. Receptor interaction 

pathways were also enriched significantly some of which included the cytokine-cytokine receptor 
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interactions depicting the various cytokines in play and the toll-like receptor pathway in response 

to the B. burgdorferi infection. TLR stimulation is said to have both pro-tumor role and anti-tumor 

roles depending on the cell type [102]. Stimulation of TLR 2, 4, and 7/8 can lead to tumor 

progression via production of immunosuppressive cytokines, increased cell proliferation and 

resistance to apoptosis [103]. Another significant receptor interaction is the NOD like receptors 

which are major players (and targets) in the interface between innate immunity and cancer. 

Overexpression of either NOD1 or NOD2, in the TNBC cells, can reduce cell proliferation but 

increase clonogenic potential in vitro [104]. The proteomic profile of these overexpressing cells 

suggests the involvement of several inflammation- and stress-related pathways (intersecting NF-

κB, PI3K and MAPK cascades) in the modulation of protein degradation processes, cell cycle and 

cellular adhesion [105]. The disruption of these critical systems suggests a functional link between 

NOD1/NOD2 and the proliferation and migration of triple negative breast cancer cells [105]. 

These pathways induced by Borrelia infection could thereby have significant role in driving the 

progression of this complex breast cancer type. Also, importantly, these pathways implicate, 

irrespective of the fold change, it is important to understand the genes are involved in a number of 

these crucial pathways leading towards cancer development.  

One of the recent studies presents a complete picture of the signaling events evoked in human 

brain microvascular endothelial cells (hBMECs) by Borrelia bavariensis infection. This study 

revealed several of the genes related to cytokines, chemokines, interferon, and TNF that may cause 

alteration in the blood-brain barrier (BBB) integrity [58]. While our study focused on investigating 

the gene expression changes in triple-negative breast cancer (TNBC) cells upon Borrelia 

burgdorferi infection, the endothelial cells of the brain microvasculature represent a distinct 

cellular context. Some of the most common upregulated genes between hBMECs and MDA-MB-
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231 (Figure 5) include the CXCL family genes- CXCL8, CXC3CL1, CXCL1, CXCL10, CXCL3 

and CXCL2 playing significant roles in signal transduction, innate immune response and in the 

Induction of the Pattern Recognition Receptors and Downstream Signalling Cascades. CCL20 was 

also identified common which plays a significant role in the latter of the two mentioned above. 

The interleukin family- IL1B and IL6 were common which were discussed to be responsible for 

remodulation of cell cytoskeleton and recruiting leukocytes during the B. burgdorferi l invasion. 

The binding and uptake of ligands by scavenger receptors was functioned by SAA1. Also, C3 was 

identified to be recurrent in their RNA Sequencing data. The other common genes include 

C15orf48, GoS2, POU2F2, LAMC2, CTSS, PTX3 and ZC3H12A involved in several of the Gene 

ontology biological processes. A previous study by our research group identified miR-206 and 

214-3p as the most statistically significant miRNA upregulations in B. burgdorferi-infected breast 

cell lines compared to the uninfected breast cells [56]. The down streaming gene targets of miR-

206 was identified to be common to two of the most significant genes expressed in our comparative 

analysis of the two MDA-MB-231 runs (Figure 6)- PTGS2 and IL-6. Inhibition of MALAT1 leads 

to the restoration of miR-206 levels, subsequently reducing the expression of PTGS2 [106]. 

Moreover, IL-6 induced miR-206 down-regulation by reducing the cropping process of primary 

miR-206 in EGFR-mutant lung cancer cells [107]. This further helps us target these significant 

genes with miRNAs to have a more comprehensive and detailed understanding of the molecular 

landscape underlying B. burgdorferi -infected triple-negative breast cancer.  

 

CONCLUSION 

B. burgdorferi infection has a significant impact on triple-negative breast cancer (TNBC) cells, 

leading to dysregulation of various genes and pathways involved in inflammation, immune 
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response, and cancer progression. The study utilized RNA sequencing to identify differentially 

expressed genes (DEGs) in response to B. burgdorferi infection in two cell lines: MDA-MB-231, 

and MCF10A (normal breast cells). By comparing the gene expression profiles of the two MDA-

MB-231 runs, we identified common biomarkers of the CXCL family CXCL-1, CXCL-10 & 

CXCL-8, C3, COX2 and SAA1 in B. burgdorferi -infected TNBC cells. Pathway analysis revealed 

the IL-4, 10, 13 & 17 signaling, TNF, NOD like receptor, TLR, NF-kB and Chemokine-signaling 

pathways. The most enriched signaling pathways in MCF10A included the IL-10 & 17, 

chemokine, cytokine and TNF signaling pathways. The most common infectious disease 

associated pathways in TNBC cells included COVID-19, Legionellosis, Prion disease, Influenza-

A, Pertussis, Measles, Kaposi-sarcoma-associated herpesvirus, and Chagas disease, among others 

with several of the above identified genes in function. The most common infectious disease 

associated pathways in MCF10A cells included Amoebiasis, Legionellosis, Hepatitis-C and 

Influenza-A. The most common enriched metabolic pathways for MCF10A from the KEGG and 

REACTOME servers include fatty acid metabolism, glycolipid metabolism and steroid 

metabolism. Biosynthesis pathways such as steroid and terpenoid backbone biosynthesis pathways 

were also observed common from the KEGG and REACTOME servers for MCF10A.Triple-

negative breast cancer is one of the most aggressive types of breast cancer, which has a an 

extremely high treatment burden and no definitive cause and potentially a wide array of 

mechanisms that have gone awry. The prevalence of Lyme disease combined with the ability of 

the Lyme disease pathogen B. burgdorferi to infect breast cancer cells prompts to a potential cause-

effect relationship which demands to be explored. High throughput transcriptomic studies such 

this, can prove to be extremely effective for preliminary screening to identify molecular markers 

that the bacteria may be implementing to orchestrate more severe breast cancer phenotypes, 
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particularly TNBC. In conclusion, our study provides valuable insights into the gene expression 

changes and pathways associated with B. burgdorferi infection in TNBC cells. The identified 

potential biomarkers represent a promising starting point for future research aiming to elucidate 

the underlying mechanisms of B. burgdorferi -associated TNBC and identify novel targets for 

diagnostic and therapeutic interventions. 
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