
Governors State University Governors State University

OPUS Open Portal to University Scholarship OPUS Open Portal to University Scholarship

All Student Theses Student Theses

Summer 2023

Automation Script For Evaluation Of Source Codes Automation Script For Evaluation Of Source Codes

Prudvi Raj Manukonda

Follow this and additional works at: https://opus.govst.edu/theses

 Part of the Computer Sciences Commons

For more information about the academic degree, extended learning, and certificate programs of Governors State
University, go to http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

Visit the Governors State Computer Science Department
This Thesis is brought to you for free and open access by the Student Theses at OPUS Open Portal to University
Scholarship. It has been accepted for inclusion in All Student Theses by an authorized administrator of OPUS Open
Portal to University Scholarship. For more information, please contact opus@govst.edu.

https://opus.govst.edu/
https://opus.govst.edu/theses
https://opus.govst.edu/student_theses
https://opus.govst.edu/theses?utm_source=opus.govst.edu%2Ftheses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=opus.govst.edu%2Ftheses%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
mailto:opus@govst.edu

Automation Script For Evaluation Of Source Codes

By

Prudvi Raj Manukonda

B.Tech in Computer Science
Jawaharlal Nehru Technological University, 2018

GRADUATE CAPSTONE THESIS PROJECT

Submitted in partial fulfillment of the requirements.

For the Degree of Master of Science,

With a Major in Computer Science

Governors State University
University Park, IL 60484

2023

ii

ACKNOWLEDGMENT

I would like to extend my heartfelt gratitude to the following individuals who played a

significant role in the successful completion of my thesis:

Dr. Soon-Ok Park, my mentor and chairperson, provided unwavering support and guidance

throughout the entire research process. Her valuable advice and assistance were instrumental in

shaping the direction of my work.

Professors Freddie Kato and Aslam Shahid, who graciously served on my committee, played a

pivotal role in the success of my thesis. Their unwavering dedication and commitment to my

research were evident as they generously shared their invaluable expertise, offered profound

insights, and provided constructive feedback.

Through their guidance, my research was significantly refined, elevating the quality and impact

of my work. I am deeply indebted to them for their support and mentorship throughout this

academic journey.

I am especially grateful to Professor Juo Zune for remaining connected to my roots during this

thesis. Your contributions and insights have been invaluable, and I am immensely grateful for

your guidance.

Dr. Carrington, the division chair, for approving my enrollment in the program of study, which

paved the way for this academic journey.

Nancy Rios, the department secretary, for her constant support, counsel, and assistance

throughout my graduate studies. Her efficiency and dedication were truly appreciated.

iii

I am especially grateful to McMullen Paula, my academic advisor, for her unwavering support

and patience in explaining the process until I obtained authorization for my thesis. Her guidance

and encouragement were instrumental in keeping me focused.

Special thanks to Makiko Maria for her tireless efforts in helping me with all the necessary

documents and arrangements for my thesis. Her assistance made the process smoother and more

manageable.

Finally, I want to express my deepest appreciation to my parents for their never-ending support

and inspiration throughout my life. They have been a pillar of strength, constantly encouraging

and believing in me.

 No number of words can fully convey my gratitude to all these individuals for their

contributions to my academic journey. Their support has been invaluable, and I am forever

indebted to them for helping me reach this milestone.

iv

ABSTRACT

This thesis focuses on the development of an automation script integrated with a Web application

to extract crucial information from .NET projects. The objective was to streamline the process of

retrieving database type, database name, and .NET version, build status zip files, generate

comprehensive reports, and present key metrics on a dashboard.

The automation script was implemented in Python, utilizing packages such as os, subprocess,

zipfile, re, json5, shutil, and xml.etree.ElementTree. The script automated the extraction of

information from the zip files, eliminating the need for manual intervention. It executed the .Net

build command to determine the success of the build and captured error details if any. The

appsettings.json file was parsed to obtain the database type and name, while the csproj files

provided the .NET version.

The developed automation script was integrated with a Web application, allowing users to upload

zip files and apply the script effortlessly. The application displayed a dashboard presenting

statistical insights, including the counts of database types used, the distribution of .NET versions,

and the overall success rate of the build process. Reports were generated, providing detailed

breakdowns of the build process and error details.

The experimental setup involved using various test files, including sample files representing SQL

Server and SQLite databases and files intentionally modified to include build errors. The results

obtained from running the automation script on the test files demonstrated its effectiveness and

v

efficiency in extracting information and generating accurate reports. The script showcased

advantages over existing methods and tools, offering simplicity, cost-effectiveness, and flexibility.

The thesis concludes with a discussion of the strengths and limitations of the automation script,

potential improvements, and recommendations for future automation efforts. Overall, the

developed automation script proved valuable for extracting information from zip-filed .NET

projects and demonstrated its potential for enhancing productivity and decision-making in software

development processes.

vi

Table of Contents

ACKNOWLEGMENT ... ii

ABSTRACT ... iv

List of Figures .. viii

1. INTRODUCTION ...1

1.1 Background on Automation. ..1

1.2 Importance of automating. ...2

1.3 Purpose of the thesis. ..2

2. OVERVIEW OF RELEVANT STUDIES ...4

2.1 Overview of existing methods ..4

2.2 Review of Relevant Literature on Automation Techniques. ..6

3. PROBLEM STATEMENT ..8

3.1 Identification of the problem ..8

3.2 Challenges and limitations associated with the problem. ..9

4. METHODOLOGY ..12

4.1 Description of the proposed approach. ...12

4.2 Explanation of the selected libraries and tools. ..14

4.3 Overview of the steps involved in the automation process. ...15

5. IMPLEMENTATION ..17

5.1 Resources and Tools Used in the Implementation ...17

5.2 Python Automation Script: A brief overview. ...18

5.3 Web Application Implementation. ...33

vii

5.4 Report and Dashboard Implementation ..35

6. RESULTS AND EVALUATION ..37

6.1 Experimental Setup and Test Files ...37

6.2 Results and Analysis ..38

6.3 Evaluation of Effectiveness and Efficiency ...41

6.4 Comparison with Existing Methods and Tools ..42

7. DISCUSSION ..44

7.1 Interpretation and Analysis of the Results ..44

7.2 Discussion of the Strengths and Limitations ..46

7.3 Potential Improvements and Future Work ...48

8. CONCLUSION ..50

8.1 Summary of the Thesis Objectives and Contributions ...50

8.2 Recapitulation of the Key Findings and Insights ...51

8.3 Final Remarks and Recommendations for Future Automation Efforts52

9. REFERENCES ..53

viii

List of Figures

Figure 1. Requirements file ___ 14

Figure 2. Overview of the implementation flow _____________________________________ 16

Figure 3. Applying Automation Script gives Build, Database, Version Info _______________ 18

Figure 4. Reads database info from appsettings.json file. _____________________________ 28

Figure 5. Reads version info from application’s csproj file. ____________________________ 30

Figure 6. Web UI helps to get reports and Dashboard. ________________________________ 33

Figure 7. Test Suites Evaluation Report ___ 39

Figure 8. Admin Dashboard __ 40

1

1. INTRODUCTION

1.1 Background on Automation

Automation has transformed the evaluation of programming assignments, benefiting both

educators and programmers. Manual evaluation tasks were often time-consuming, leading to

delayed feedback. Automation streamlines processes like testing and feedback generation,

allowing instructors to deliver prompt and constructive feedback, fostering continuous

improvement in programmers' programming skills. Automated testing identifies errors early,

enhancing code quality and learning outcomes. Additionally, automation ensures consistent and

fair grading, reducing human errors in evaluation. Embracing automation optimizes resource

utilization for educators and enhances the learning experience for programmers.

By embracing automation, educators can focus on guiding and mentoring programmers

effectively. Automated processes take care of routine tasks, enabling instructors to engage with

programmers and provide personalized support. Timely and constructive feedback empowers

programmers to understand their strengths and areas for improvement, promoting continuous

learning and growth. Automation's consistency in grading ensures impartial evaluation, fostering

a fair and equitable assessment process. Overall, automation in programming assignment

evaluation creates a positive and impactful experience for both educators and programmers,

advancing learning outcomes in the field of programming (Al Sweigart, Automate the Boring

Stuff with Python).

2

1.2 Importance of automating

Automating tasks in programming assignment evaluation holds immense significance, benefiting

both educators and learners. By implementing automation techniques, the evaluation process

becomes streamlined and efficient, reducing manual efforts and saving time for instructors.

Automated test execution allows for swift and consistent assessment of code submissions,

ensuring faster feedback delivery to programmers. Furthermore, automation enhances the

accuracy of grading, eliminating potential biases and ensuring fairness in evaluations. Test

automation helps identify errors and bugs early in the development cycle, promoting higher code

quality and better learning outcomes for programmers. Overall, embracing automation in

programming assignment evaluation optimizes resource utilization, improves collaboration, and

elevates the educational experience for all stakeholders involved.

3

1.3 Purpose of the thesis

The purpose of this thesis is to develop a specialized automation script for efficient evaluation of

.Net Core programming assignments. By addressing challenges in handling complex

assignments, the script aims to provide a tailored solution for programming assessment,

streamlining the evaluation process for instructors and promoting faster feedback for

programmers. The integration of a Web application enhances usability and customization,

allowing instructors to easily adapt the automation script to their specific evaluation criteria.

Additionally, compatibility testing ensures seamless integration with the .Net Core environment

and databases, ensuring the automation script's versatility across various programming setups.

The thesis ultimately seeks to deliver an optimized and comprehensive automation solution that

enhances the evaluation experience for both instructors and programmers in the industry.

4

2. OVERVIEW OF RELEVANT STUDIES

2.1 Overview of existing methods

In today's rapidly evolving technological landscape, programming assignments play a crucial

role in assessing programmers' understanding of coding concepts and problem-solving skills. As

the number of programming assignments grows, educators and institutions face the challenge of

efficiently evaluating and providing timely feedback to programmers. To address this,

automation tools and scripts have become indispensable aids in streamlining the evaluation

process for programming assignments. These tools offer a wide range of features that enhance

grading consistency, reduce human bias, and enable faster assessment, thereby benefiting both

programmers and instructors.

i. Automated Test Execution and Grading Tools: Automated test execution and grading

tools are fundamental components of programming assignment evaluation. These tools

facilitate the automatic execution of predefined test cases against programmer

submissions and provide immediate feedback. Instructors can define test cases to cover

various aspects of the assignment requirements and grading rubrics. Popular tools in this

category include JUnit for Java, Pytest for Python, and Mocha for JavaScript. Such tools

ensure that each programmer's code is thoroughly evaluated against a standard set of test

cases, enabling fair and objective grading.

ii. Code Quality Analysis and Static Code Analysis Tools: Code quality analysis tools

focus on assessing the overall quality of programmers' code and adherence to coding best

5

practices. Static code analysis tools play a vital role in identifying potential bugs, code

smells, and vulnerabilities. These tools automatically analyze the codebase and provide

valuable insights to both programmers and instructors. Examples of widely used tools

include SonarQube, ESLint, and FindBugs. By integrating these tools into the evaluation

process, instructors can guide programmers to write cleaner and more maintainable code.

iii. Online Integrated Development Environments (IDEs) and Autograders: Online

Integrated Development Environments (IDEs) are cloud-based platforms that allow

programmers to write, compile, and test their code directly in a web browser without the

need for local installations. Within these IDEs, instructors can incorporate autograders,

which provide real-time feedback as programmers write their code. This instant feedback

helps programmers identify and rectify errors early in the development process. Repl.it,

Code anywhere, and Cloud9 are popular examples of IDEs with built-in auto grading

capabilities.

6

2.2 Review of Relevant Literature on Automation Techniques

In this subsection, we delve into automation techniques commonly used for evaluating

programming assignments in educational settings. We explore automated test execution tools,

such as JUnit, Pytest, and Mocha, which enable instructors to execute predefined test cases

against programmers' code submissions and provide immediate feedback. Additionally, we

examine code quality analysis tools like SonarQube and ESLint, which identify potential bugs,

code smells, and vulnerabilities in the codebase. Understanding these automation techniques will

inform the development of our specialized automation script for evaluating .Net Core

programming assignments, ensuring efficient and accurate assessment.

Best Practices in Automation Script Design:

In this section, we investigate the best practices followed in designing automation scripts for

programming assignment evaluation. We emphasize the importance of modular and reusable

code structures to ensure maintainability and scalability. Providing comprehensive and

constructive feedback to programmers is another key aspect that supports their learning and

improvement. Moreover, we discussed the significance of version control systems in managing

code submissions and tracking changes during the evaluation process. By incorporating these

best practices, our automation script will be optimized to deliver effective evaluations for .Net

Core projects (Andrew Troelsen, Philip Japikse. .NET Core 3: A Guide to the .NET Core

Runtime).

7

By reviewing existing methods, tools, and literature in automation, as well as discussing

solutions for working with zip files and executing .Net commands, this thesis aims to build upon

established knowledge and propose.

8

3. PROBLEM STATEMENT

3.1 Identification of the problem

The identified problem is the manual extraction of zip files, which requires time-consuming and

repetitive human intervention. The need for automation arises to streamline and speed up

extracting information from these zip files efficiently. The objective is to develop an automation

script and integrate it with a user-friendly web application, enabling seamless and accurate

extraction of crucial data from .NET projects, such as database type, database name, and .NET

version. The automation aims to eliminate the manual efforts involved in this task and provide a

more efficient and reliable approach for extracting information from zip files.

9

3.2 Challenges and limitations associated with the problem

The problem of manually extracting zip files in the evaluation of programming assignments

presents several challenges and limitations that necessitate the development of an automation

script. This section delves into the key difficulties associated with manual extraction and

highlights the drawbacks of not employing an automated solution.

1. Time-Consuming and Repetitive Process: Manually extracting files from numerous zip

submissions is a time-consuming and repetitive process for instructors. As the number of

assignments increases, the manual effort required escalates, leading to potential delays in

providing timely feedback to programmers. This limitation affects the overall efficiency

of the evaluation process, hindering instructors from focusing on other critical evaluation

tasks.

2. Prone to Human Errors: The manual extraction of zip files leaves room for human

errors, such as misplacing or overlooking files, especially when handling a large volume

of submissions. Inconsistent file organization and accidental omission of important files

may result in incomplete evaluations, leading to inaccurate feedback and unfair grading.

3. Lack of Versatility and Compatibility: Different assignments may have varying file

structures and formats within the zip submissions. Manually handling these diverse

formats can be challenging and time-consuming. Moreover, compatibility issues may

arise when opening submissions in different Integrated Development Environments

(IDEs), leading to inconsistencies in evaluations.

10

4. Scalability Issues: As the number of programmers and assignments grows, manual

extraction becomes increasingly impractical. Instructors may struggle to manage the

escalating workload, compromising the quality and promptness of feedback provided to

programmers.

To address these challenges and limitations, the proposed automation script aims to streamline

the extraction of zip files, providing a robust and efficient solution for evaluating programming

assignments. Automation will alleviate the burden of manual extraction, improve accuracy,

ensure consistency, and enhance the overall evaluation experience for both instructors and

programmers. By identifying and mitigating these challenges, the automation script will optimize

the evaluation process and enable instructors to deliver timely and constructive feedback,

fostering a conducive learning environment for programmers.

To address the identified problem and overcome the associated challenges, this thesis aims to

answer the following research questions and achieve the following objectives:

Questions:

1. How can the automation of zip file extraction be implemented effectively using Python?

2. How can .Net build and run commands be executed automatically and reliably within the

automation process?

3. How can the automation solution accurately determine the success of the build process

based on the command output?

11

Objectives:

1. Develop an automated Python solution to extract zip files and handle various file

structures effectively.

2. Implement a mechanism to execute .Net build and run commands automatically within

the automation process.

3. Capture and analyze the output of .Net build commands to accurately determine the

success or failure of the build process.

4. Evaluate the effectiveness and efficiency of the automation solution through

experimentation and performance analysis.

5. Recommend further improvements and future research in automating software

development projects' extraction and build processes.

By addressing these research questions and achieving the stated objectives, this thesis aims to

contribute to the automation of the extraction and build processes in software development,

improving efficiency, reliability, and productivity in the development workflow.

12

4. METHODOLOGY

4.1 Description of the proposed approach

This section outlines the proposed approach to automate the extraction of zip files and execute

.Net build commands using Python, aligning with the principles of the Linear Testing

Framework and incorporating Non-Functional Testing processes. The automation strategy

focuses on harnessing Python's versatile libraries and tools to streamline the evaluation process

efficiently (Harish Bajaj, Technical Test Lead ECSIVS, Infosys 2018).

The automation process begins by identifying the target zip files and their respective paths.

Python offers a rich set of functions and modules to interact with the file system, enabling

seamless identification and selection of zip files for extraction. Following the Linear Testing

Framework, the automation script systematically processes each zip file, ensuring an organized

and orderly evaluation.

Next, the proposed approach integrates Non-Functional Testing processes to check the

compatibility of the submission with the rubrics of the assignment. The automation script verifies

crucial aspects like the version used, database type, and database name, ensuring adherence to

the specified requirements. This compatibility testing enhances the evaluation's accuracy and

consistency, promoting fair grading and an objective assessment of the submissions.

To execute .Net build commands automatically, the automation script utilizes Python's

subprocess module. By leveraging this module, the script interacts with the system shell,

executing .Net build commands within the Python environment. The output of the build process

13

is captured and analyzed to determine its success or failure. In case of errors or issues, the

automation script handles them gracefully, ensuring a robust and reliable evaluation process.

By adhering to the principles of the Linear Testing Framework and incorporating Non-

Functional Testing processes, the proposed approach ensures a systematic and comprehensive

evaluation of .Net Core programming assignments. The Python-based automation solution

optimizes efficiency, accuracy, and scalability, empowering instructors to deliver timely and

constructive feedback while fostering an enhanced learning experience for programmers.

14

4.2 Explanation of the selected libraries and tools

To automate the extraction of zip files and execute .Net build commands, specific libraries and

tools are chosen to facilitate the automation process (Python 3.10 Documentation, The Python

Package Index).

Figure 1. Requirements file

The shutil library in Python provides a comprehensive set of functions for working with files and

directories. It includes functionalities for extracting zip files, copying files, and managing file-

related operations. By utilizing the shutil library, the automation script can effectively remove

the contents of the zip files and organize them as required.

The subprocess module in Python enables the execution of external commands, such as .Net

build and dotnet run, from within the automation script. It allows the hand to interact with the

command-line interface, execute the desired commands, and capture the output for further

15

analysis. The subprocess module provides flexibility and control over the execution of these

commands, enabling seamless integration within the automation process.

4.3 Overview of the steps involved in the automation process

The automation process follows these steps:

Extracting zip files: The code searches for zip files in the specified directory and extracts their

contents using the extract_zip() function.

Deleting extracted folders: The code removes the folders that were extracted from the zip

archives but does not delete the corresponding zip files. This is achieved using the

delete_extracted_folders() function.

Building projects: The code iterates through the extracted folders and executes the .Net build

command for each project using the execute_dotnet_build() function. The build results are saved

using the write_results() function.

Retrieving database information: The code reads the appsettings.json file in each project and

extracts the database type and name using the get_database() function.

Extracting .NET version: The code parses the .csproj file in each project and retrieves the .NET

version using the get_version() function.

 Displaying and storing results: The code displays the build status, database type and name, and

.NET version for each project. The results are stored in a list and can be further processed or

analyzed.

These steps collectively automate the tasks described in the code using Python.

16

Figure 2. Overview of the implementation flow

17

5. IMPLEMENTATION

5.1 Resources and Tools Used in the Implementation

In this thesis, a range of essential tools were employed to support and expedite the research

process.

Resources/Tool Purpose

IDE - VS Code Evaluation Environment (Style Guide for
Python Code)

.Net Core Corss-Platform .Net Framework (Microsoft
.NET Documentation)

.Net CLI Command-Line Interface for .Net

Python Automation Scripting Language

Django Web Framework

SqlServer, Sqlite Databases Management System

GitHub: Version Control and Collaboration Platform

Resources / Tools

These tools collectively empowered the thesis project and supported successful outcomes.

18

5.2 Python Automation Script: A brief overview

The apply_automate_script(zip_file) function is the entry point for the automation process. It

takes the path of a .Net Core zip file as input and applies the automation script to that file. Here's

an explanation of the flow:

Figure 3. Applying Automation Script gives Build, Database, Version Info

apply_automate_script(zip_file):

The function receives the zip_file parameter, which is the path of the zip file to be processed.

19

The function calls the extract_zip(zip_file) function to extract the contents of the zip file to a

specified extraction path. This function uses the zipfile library to open and extract the zip file. It

returns the name of the extracted folder.

The function calls the get_file_data(folder_name) function, passing the extracted folder name as

the parameter. This function retrieves the required data for the folder, including the build details,

database information, and .NET version (Nate McMaster, Dustin Metzgar .NET Core in Action).

delete_mac_extract_folders():

The function delete_mac_extract_folders() is a method designed to remove unnecessary folders

that may be created during the extraction process of a zip file. Specifically, this function targets

the "__MACOSX" folder, which is commonly generated when zipping files on a Mac operating

system.

20

The implementation of delete_mac_extract_folders() involves iterating over the entries in the

extraction path, which is typically the folder where the contents of the zip file are extracted. For

each entry, the function checks if it is a directory (folder) and if its name matches

"__MACOSX".

If the conditions are met, the function utilizes the shutil.rmtree() function to delete the entire

folder and its contents. shutil.rmtree() is a function from the shutil module in Python that

recursively removes a directory tree. By passing the folder path to shutil.rmtree(), the function

effectively deletes the "__MACOSX" folder and all its subdirectories and files.

The purpose of deleting the "__MACOSX" folder is to eliminate any unnecessary clutter and

maintain a clean and organized extraction path. This folder is specific to macOS systems and

may not contain relevant information for the automation process or subsequent analysis.

By implementing delete_mac_extract_folders() within the automation script, it ensures that any

extracted zip files are free from extraneous "__MACOSX" folders, promoting a streamlined and

efficient workflow.

In the context of the thesis, this method can be mentioned as part of the implementation details to

demonstrate the consideration for maintaining a clean extraction path and eliminating

unnecessary folders. It showcases the awareness of platform-specific artifacts and the steps taken

to ensure data integrity and organization within the automation process.

get_file_data(folder_name):

21

The get_file_data(folder_name) function performs the following steps:

1) Extracting Build Information: This may be accomplished in several phases, such as

running the command for the specified source folder, handling errors and logging, and

extracting error data to display the build result.

a) Executing the Command

It calls the execute_dotnet_build(folder_name) function to execute the .Net build

command for the specified folder. This function runs the .Net build command using the

subprocess library and captures the output. It determines whether the build was

successful or not and retrieves the error details if any.

To execute the .Net build command, capture the console output, and determine the

success or failure of the build process. Additionally, it includes functionality to extract

error details, such as file name, line number, error code, and error message, in case the

build fails.

22

To execute the command, the function utilizes the subprocess.Popen() method from the

subprocess module. It specifies the command to be executed (.Net build) and sets the

current working directory to the project path using the cwd parameter.

The console output is captured using the stdout=subprocess.PIPE parameter, which

directs the output to a pipe. The output is then retrieved using the communicate()[0]

method.

b) Exception Handling and Error Logging

In case of any exceptions during the execution of the .Net build command, such as

command not found or invalid project path, the function handles the exception and

returns a dictionary indicating a build failure, along with the error details.

The function then processes the console output, converting it to a string and replacing

unnecessary characters. It saves the build results to a file using the write_results(content)

function.

To determine the success or failure of the build process, the function searches for the

phrase "Build succeeded." in the console output using a regular expression pattern. If the

pattern is found, the function returns a dictionary indicating a successful build.

Otherwise, it proceeds to extract error details using the get_error_details(build_output)

function.

c) Extracting the Error Details

The get_error_details(build_output) function utilizes a regular expression pattern to

extract error information from the build output. It searches for lines containing error

23

messages and captures details such as the file name, line number, error code, and error

message.

The function keeps track of unique errors and counts the total number of errors

encountered. If the phrase "Build Failed" is present in the build output, indicating a failed

build, it appends the corresponding message.

Finally, the function returns the error details as a multiline string, which includes the

extracted error information and the total error count.

By implementing this logic, the automation script effectively executes the .Net build

command, captures the console output, and determines the success or failure of the build

process. Additionally, it extracts error details in case of build failures, providing valuable

information for further analysis or troubleshooting.

In the context of the thesis, this implementation detail can be highlighted to demonstrate

the script's ability to execute and analyze the build process, capture console output, and

extract error details. This functionality ensures accurate monitoring of the build process

and facilitates effective identification and resolution of any encountered errors.

24

.NET cli command used to build Data

 execute_dotnet_build(folder_name):

25

26

2) Extracting Database information: It calls the get_database(folder_name) function to

retrieve the database information for the folder. This function checks if the

appsettings.json file exists in the folder and reads the connection strings from it. It

determines the database type (e.g., Sqlite or SqlServer) and extracts the database name.

The get_database(project_path) function is responsible for retrieving the database type

and database name from the appsettings.json file within the specified project path. The

function takes the project path as a parameter, which represents the path to the extracted

project folder.

If the appsettings.json file exists, the function proceeds to read the connection string from

the file using the read_connection_string() function. The connection string typically

contains the necessary information to establish a connection with the database.

a) Identify the Database Type

To identify the database type, the function checks if the connection string value

contains the ".sqlite" substring. If it does, the database type is identified as SQLite,

and the function extracts the database name using a regular expression pattern

specified in the get_database_name() function. The extracted database name and

database type are then stored in the database dictionary.

27

b) Identify the Database Name

If the connection string does not contain the ".sqlite" substring, the function assumes

the database type is SQL Server. Similarly, it extracts the database name using the

get_database_name() function and assigns the values to the database dictionary.

The get_database_name(connection_string, pattern) function is a helper function that

utilizes regular expressions to extract the database name from the connection string. It

takes the connection string and an optional regular expression pattern as parameters.

The default pattern is used for SQL Server databases, while a custom pattern is

provided for SQLite databases. The function searches for a match based on the

specified pattern and returns the extracted database name.

By implementing this logic, the automation script can effectively identify the

appsettings.json file, extract the database type and name from the connection string,

and provide this information for further processing or analysis. This ensures that the

relevant database details are retrieved accurately and utilized appropriately within the

Web application.

Finally, the function returns the database dictionary containing the extracted database

name and database type.

28

Figure 4. Reads database info from appsettings.json file.

get_database(folder_name):

29

3) Extracting Version Information: It calls the get_version(folder_name) function to

retrieve the .NET version used in the folder. This function searches for .csproj files in the

folder, reads and parses them using the xml.etree.ElementTree library, and finds the

"TargetFramework" element. It extracts the .NET version from the element.

The following explanation outlines the implementation details of the logic used to

retrieve the version of .NET Core from the csproj file of a .NET application. This logic

enables the automation script to identify and extract the .NET version used in the project.

The get_version(project_path) function is responsible for retrieving the .NET version

from the csproj file within the specified project path. The function takes the project path

as a parameter, which represents the path to the extracted project folder.

To locate the csproj file, the function utilizes the os.walk() function to traverse the project

directory and its subdirectories. It searches for files with the .csproj extension and creates

a list of the file paths using the csproj_files variable.

Next, the function initializes the .Net_version variable to store the retrieved .NET

version. It then iterates through each csproj file in the csproj_files list.

For each csproj file, the function reads and parses the XML structure using the

ET.parse(csproj_file) method from the xml.etree.ElementTree module. This enables the

script to navigate and extract information from the csproj file.

The function searches for the TargetFramework element within the csproj file using the

XPath expression ./PropertyGroup/TargetFramework. If the element is found, the text

content of the TargetFramework element is extracted, representing the .NET version used

in the project.

30

Once a valid .NET version is found, the function assigns it to the .Net_version variable,

prints it to the console for verification purposes, and breaks the loop to avoid unnecessary

iterations.

By implementing this logic, the automation script can effectively extract the .NET

version used in the project by examining the csproj file. This information can be utilized

within the Web application for reporting, analysis, or any other necessary functionalities

related to the .NET version.

In the context of the thesis, this implementation detail can be highlighted to showcase the

script's ability to read and parse the csproj file, locate the TargetFramework element, and

extract the .NET version accurately. This ensures that the correct version information is

retrieved and utilized within the automation process, contributing to the overall

functionality and effectiveness of the solution.

Figure 5. Reads version info from application’s csproj file.

get_version(folder_name):

31

32

4) Collecting the Information: It creates a dictionary containing the folder name, build

status, error details, database name, database type, and .NET version.

The get_file_data(folder_name) function returns the dictionary containing the extracted

data. The apply_automate_script(zip_file) function returns the dictionary received from

the get_file_data(folder_name) function.

This function serves as a bridge between the Web application and the automation script.

In the Web application, you can call this function by passing the path of a zip file as a

parameter. It will then apply the automation script to the zip file, extract the necessary

information, and return it as a dictionary. The Web application can use this information to

display the dashboard, generate reports, or perform any other required actions.

The flow of the automation process ensures that the zip file is extracted, and the

necessary data is retrieved using the .Net build command, appsettings.json file, and

.csproj files. The extracted data can be further utilized according to the requirements of

the Web application.

Please note that the code provided earlier in the conversation might need modifications or

adaptations to fit seamlessly into the Web application architecture.

33

5.3 Web Application Implementation

The implementation of the Web application plays a crucial role in facilitating the seamless

integration of user inputs, file processing, and interaction with the automation script. This section

provides a detailed explanation of the development process and key components involved.

The Web application is built using the Web Application framework, which provides a robust

foundation for developing web applications. The application incorporates a user interface that

allows users to upload files and initiate the automation process. To ensure data integrity and

consistency, the application performs thorough input validation to ensure that the uploaded files

adhere to the required naming convention (Web Software Foundation, Holovaty, Adrian;

Kaplan-Moss, Jacob. The Definitive Guide to Django: Web Development Done Right).

Upon receiving a file upload, the application processes the uploaded file and extracts relevant

information, such as usernames and assignment numbers, from the filenames. This information is

crucial for associating the uploaded files with specific users and assignments.

Figure 6. Web UI helps to get reports and Dashboard.

34

The application interacts with the automation script by invoking the

apply_automate_script(zip_file) function, which serves as the entry point for the automation

process. The path of the uploaded zip file is passed as a parameter to this function, triggering the

extraction of the zip file contents and subsequent application of the automation script.

To manage the extracted data effectively, the application utilizes Web's built-in database models.

These models define the structure and relationships of the data, allowing for seamless storage

and retrieval of information. The extracted data, including database type, database name, .NET

version, and build status, is stored in the database for further analysis and reporting purposes.

35

5.4 Report and Dashboard Implementation

The report and dashboard components of the Web application play a vital role in providing users

with meaningful insights into the processed data. This section delves into the implementation

details of the report generation and dashboard development, highlighting their functionalities and

how they leverage the extracted information.

The report generation functionality is designed to provide a comprehensive overview of the build

process for each uploaded file. By utilizing the stored data, the application generates reports

based on usernames and assignment numbers. These reports indicate whether the build process

was successful or encountered errors, allowing users to quickly identify any issues.

The implementation of the report generation functionality involves querying the database for

relevant data based on user inputs, such as usernames or assignment numbers. The application

then compiles this data into a well-structured report format, which can be presented in various

formats, such as PDF or HTML, depending on the requirements.

Furthermore, the Web application incorporates a dynamic and interactive dashboard to visualize

key statistics and trends derived from the processed data. The dashboard provides a user-friendly

interface that displays counts of different database types used, the distribution of .NET versions,

and the overall success rate of the build process.

The dashboard is designed to be interactive, enabling users to filter and drill down into specific

data subsets based on their preferences. This enhances the user experience by providing a

customizable and tailored view of the processed data.

36

To implement the dashboard, the application leverages visualization libraries such as Matplotlib

or Plotly, which enable the creation of insightful charts and graphs. These visual representations

effectively convey the processed data, allowing users to grasp important patterns and make

informed decisions based on the displayed information.

In conclusion, the report generation and dashboard implementation within the Web application

offer valuable insights into the processed data. The reporting functionality enables users to obtain

detailed information on the build process, while the dashboard provides a visually appealing and

interactive platform to analyze key statistics and trends. Together, these components enhance the

usability and effectiveness of the Web application, empowering users to make informed

decisions based on the processed data.

37

6. RESULTS AND EVALUATION

6.1 Experimental Setup and Test Files

To evaluate the effectiveness of the automation script, a meticulously designed experimental

setup was established. The setup aimed to cover various scenarios and test the script's

capabilities comprehensively. A diverse range of test files was prepared, including sample files

representing SQL Server and SQLite databases, as well as files intentionally modified to include

build errors.

The test files were carefully crafted to align with the required naming convention. Each file name

consisted of the respective usernames and assignment numbers, ensuring compatibility with the

automation script's logic. Multiple versions of .NET solutions were included in the test files,

enabling a thorough assessment of the script's functionality across different .NET environments.

The experimental setup was carried out in a controlled environment, with standardized hardware

and software configurations to ensure consistent and reliable results. The automation script was

executed on each test file individually, capturing and analyzing the outputs for further

evaluation.

38

6.2 Results and Analysis

The execution of the automation script on the test files yielded a comprehensive set of results,

providing valuable insights into the build process and the extracted information. The analysis of

these results facilitated a deeper understanding of the automation script's performance and its

ability to retrieve crucial data from the files.

The list of zip file information served as an overview of the processed files, presenting key

details such as usernames, assignment numbers, build status (success or failure), database type,

database name, and .NET version. This consolidated information enabled a quick assessment of

the files and their associated properties.

The generated reports offered a detailed breakdown of the build process for each file. The reports

indicated whether the build was successful or encountered errors, enabling users to promptly

identify any issues. In the case of build failures, the reports provided specific error details,

including file names, line numbers, error codes, and error messages. This level of granularity

empowered users to pinpoint and address the root causes of build failures efficiently.

39

Figure 7. Test Suites Evaluation Report

The dashboard, a visual representation of statistical insights derived from the processed data,

provided a holistic view of the automation script's performance. It presented metrics such as the

counts of different database types used, the distribution of .NET versions, and the overall success

rate of the build process. The dashboard's intuitive visuals facilitated data interpretation and

decision-making, allowing users to identify trends, patterns, and areas that required attention.

40

Figure 8. Admin Dashboard

41

6.3 Evaluation of Effectiveness and Efficiency

The evaluation of the automation process emphasized its effectiveness and efficiency in several

aspects. Firstly, by eliminating the need for manual extraction of zip files and manual inspection

of code in an Integrated Development Environment (IDE), the automation script significantly

reduced manual effort and minimized the potential for human error. The automated approach

ensured consistent and accurate results, enhancing the reliability of the information extracted

from the files.

Furthermore, the automation script demonstrated efficiency in retrieving the required details

from the files, such as database type, database name, and .NET version. By leveraging the

inherent structure and organization of the files, the script efficiently extracted the necessary

information, reducing processing time and optimizing the overall efficiency of the automation

process.

Moreover, the automation process offered ease of use and improved productivity. It provided a

streamlined workflow, eliminating the need for additional tools or complex setups. Unlike

existing methods or tools like Jenkins, Docker, or Travis CI, which require installation,

configuration, and potentially premium subscriptions, the automation script offered a lightweight

and user-friendly solution. It facilitated a seamless integration with the Web application,

allowing users to effortlessly upload files, extract information, and generate reports without the

need for extensive technical knowledge.

42

6.4 Comparison with Existing Methods and Tools

In comparison to existing methods and tools, the automation script exhibited several advantages.

Unlike tools such as Jenkins or Docker, which require setup and configuration, the automation

script offered a straightforward approach. It eliminated the need for manual intervention and

complex setups, streamlining the process of extracting vital information from the files.

Furthermore, the automation script provided a cost-effective solution, as it did not require any

premium subscriptions or licenses. In contrast, some existing tools may have associated costs,

particularly when considering enterprise-level usage or advanced features. The automation script,

being based on open-source Python code, offered a freely available and customizable solution to

meet specific requirements.

Compared to writing customized YAML files for tools like Jenkins or Travis CI, the automation

script offered greater flexibility and ease of modification. As the script was written in Python, a

widely adopted and versatile programming language, it was easy to understand and modify. This

flexibility allowed for rapid improvements, adjustments, and customizations based on evolving

project needs, without the need to navigate through complex configuration files.

In conclusion, the automation script proved to be an effective and efficient solution for extracting

vital information from .NET projects. It offered a streamlined workflow, ease of use, and

improved productivity, without the need for complex setups or additional tools. Moreover, the

script provided a cost-effective and customizable alternative to existing methods and tools,

empowering users to gather and analyze essential data with ease. The automation process

demonstrated its effectiveness and efficiency, offering significant benefits in terms of time

43

savings, accuracy, and overall productivity compared to traditional manual approaches or

complex tools.

44

7. DISCUSSION

7.1 Interpretation and Analysis of the Results

The results obtained from running the automation script on the test files provide valuable insights

into the build process, database information, and .NET versions used in the projects. The

interpretation and analysis of these results shed light on the effectiveness and accuracy of the

automation script in extracting relevant information and generating reports and dashboards.

The list of zip file information offers a comprehensive overview of the processed files. By

extracting usernames, assignment numbers, build status, database type, database name, and .NET

version, the script provides a clear snapshot of the projects. This information enables users to

quickly identify the characteristics and properties of each file, facilitating efficient tracking and

management.

The generated reports play a crucial role in understanding the build process for each file. By

indicating whether the build was successful or encountered errors, the reports help users assess

the overall quality of the projects. The inclusion of specific error details, such as file names, line

numbers, error codes, and error messages, provides actionable insights for resolving build

failures promptly. This detailed analysis allows users to address potential issues effectively and

optimize the build process.

The dashboard, presenting statistical insights derived from the processed data, offers a

comprehensive view of the project's characteristics. The number of different database types used,

and the distribution of .NET versions provide valuable information about the technology

landscape. Also, the overall success rate of the build process assesses the projects' quality and

45

reliability. The visual representations in the dashboard facilitate quick understanding and enable

users to make informed decisions based on the presented data.

46

7.2 Discussion of the Strengths and Limitations

The developed automation script possesses several strengths that contribute to its effectiveness

and usability. Firstly, it eliminates the need for manual extraction of zip files and manual

inspection of code, streamlining the process and reducing manual effort. The script automates the

extraction of relevant information, providing consistent and accurate results.

The script's flexibility allows it to handle various scenarios and versions of .NET solutions,

(Mark J. Price. C# 9 and .NET 5 – Modern Cross-Platform Development) accommodating

different project structures and configurations. By leveraging Python's capabilities, the script can

be easily customized and enhanced to meet specific requirements. This adaptability ensures the

script's longevity and scalability as new versions of .NET and evolving project structures

emerge.

Moreover, the automation script provides a lightweight and user-friendly solution, avoiding the

complexities associated with installing and configuring additional tools or frameworks. Its

integration within the Web application enables a seamless workflow, empowering users to

upload files, extract information, and generate reports effortlessly.

However, there are certain limitations to consider. The script relies on specific naming

conventions for the uploaded files, which may require users to adhere to a predefined structure.

Any deviation from the naming convention may result in inaccurate or incomplete information

extraction. Additionally, the script's reliance on specific file structures and conventions may limit

its applicability to projects that deviate significantly from the standard practices.

Furthermore, the script currently focuses on extracting database information and .NET versions,

with limited support for other project aspects. While the reports provided and dashboard offer

47

valuable insights, they may not cover all aspects that stakeholders may be interested in, such as

code quality metrics or performance analysis. Expanding the scope of the script to incorporate

additional analysis and reporting capabilities would enhance its utility and value.

48

7.3 Potential Improvements and Future Work

To improve the automation script, several potential enhancements can be considered. Firstly,

refining the error detection and reporting mechanism would provide more detailed and actionable

insights into build failures. The script can be enhanced to capture and analyze additional error

information, such as stack traces or specific error codes, facilitating more effective debugging

and resolution.

Additionally, incorporating advanced analytics techniques could enable the script to generate

more comprehensive reports and insights. Implementing code quality metrics, performance

analysis, or security checks would offer a deeper understanding of the projects' overall health and

adherence to best practices.

Furthermore, expanding the script's compatibility to other frameworks, such as Flask or Spring

Boot, would widen its applicability and cater to a broader range of projects. This expansion

would require adapting the script to handle different project structures, configuration files, and

build processes specific to each framework.

In terms of performance and efficiency, optimizing resource consumption and handling port

conflicts during the script's execution could be addressed. Ensuring efficient resource utilization

and implementing strategies to handle potential port conflicts would enhance the overall

reliability and scalability of the automation process.

In conclusion, the automation script exhibits strengths in its flexibility, ease of use, and

integration within the Web application. However, certain limitations related to naming

conventions and the scope of analysis should be considered. By implementing potential

improvements, such as refining error reporting, incorporating advanced analytics, expanding

49

compatibility with other frameworks, and optimizing resource consumption, the script's

effectiveness and utility can be further enhanced. These improvements and future work

contribute to the ongoing evolution and refinement of the automation process, ensuring its

relevance and value in the rapidly evolving landscape of .NET development.

50

8. CONCLUSION

8.1 Summary of the Thesis Objectives and Contributions

The objective of this thesis was to develop an automation script for extracting essential

information from .NET projects and integrating it into a Web application. The automation script

aimed to streamline the process of extracting database type, database name, .NET version, and

build status from zip files, generating reports, and presenting key metrics on a dashboard.

The developed automation script successfully achieved these objectives and made valuable

contributions to the field of software development and automation. By leveraging Python's

capabilities, the script provided a user-friendly and efficient solution for extracting information

from .NET projects. Its integration with the Web application allowed users to upload zip files,

extract data, and generate reports effortlessly.

51

8.2 Recapitulation of the Key Findings and Insights

Through the execution of the automation script on test files, several key findings and insights

were gained. The script effectively extracted information such as database type, database name,

.NET version, and build status from the zip files, providing a comprehensive overview of the

projects. The generated reports offered a detailed breakdown of the build process and error

details, facilitating prompt resolution of build failures. The dashboard presented statistical

insights, enabling users to analyze the distribution of database types, .NET versions, and overall

success rates.

The analysis of the results demonstrated the effectiveness and efficiency of the automation

process. By eliminating manual extraction and inspection of code, the script reduced human

effort and potential errors. It provided accurate and consistent results, enhancing productivity and

decision-making. Furthermore, the automation script highlighted several advantages over

existing methods and tools by offering simplicity, cost-effectiveness, and flexibility.

52

8.3 Final Remarks and Recommendations for Future Automation Efforts

In conclusion, the developed automation script for extracting information from .NET projects

and integrating it into a Web application proved to be a valuable tool for streamlining processes

and improving productivity. It highlighted the power of automation in reducing manual effort

with the added integration of technologies like Celery,	(Celery Documentation) and providing

accurate insights.

For future automation efforts, several recommendations can be made. Firstly, expanding the

capabilities of the automation script to cover additional aspects, such as code quality metrics or

performance analysis, would provide a more comprehensive evaluation of the projects.

Incorporating advanced analytics techniques could offer deeper insights into the projects' health

and adherence to best practices.

Additionally, optimizing resource consumption and handling port conflicts during the execution

of the automation script would improve its performance and scalability. Ensuring efficient

resource utilization and implementing strategies to handle potential conflicts would contribute to

a smoother automation process (Jithin Alex, Network Automation using Python).

In conclusion, the developed automation script provided a valuable contribution to software

development and automation. Its integration with the Web application facilitated the extraction

of essential information from .NET projects, enabling efficient analysis and decision-making.

The findings and insights gained from this research open possibilities for further enhancements

and future automation efforts in the realm of .NET development and beyond.

53

9. REFERENCES

Python 3.10 Documentation (n.d.). os, zipfile, subprocess, json5, shutil &

xml.etree.ElementTree modules. Available at:

https://docs.python.org/3.10/library/

Web Software Foundation. Available at: https://docs.djangoproject.com/en/4.0/

Style Guide for Python Code. PEP 8. Available at: https://www.python.org/dev/peps/pep-

0008/

Microsoft .NET Documentation. Available at: https://learn.microsoft.com/en-us/dotnet/

Celery Documentation. Available at: https://docs.celeryproject.org/en/stable/

The Python Package Index. PyPI. Available at: https://pypi.org/

Harish Bajaj, Technical Test Lead ECSIVS, Infosys 2018. Choosing the Right Automation

Testing Framework for Your Project. Available at:

https://www.infosys.com/services/it-services/white-papers/documents/choosing-

right-automation-tool.pdf

Al Sweigart, Automate the Boring Stuff with Python. Available at:

https://automatetheboringstuff.com/

Jithin Alex, Network Automation using Python 3, Available at:

https://www.amazon.com/Network-Automation-using-Python-Administrators-

ebook/dp/B084GFJB41

54

Holovaty, Adrian; Kaplan-Moss, Jacob. The Definitive Guide to Django: Web Development

Done Right. Available at: https://link.springer.com/book/10.1007/978-1-4302-

1937-8

Andrew Troelsen, Philip Japikse. .NET Core 3: A Guide to the .NET Core Runtime -

Available at:

https://books.google.com/books?id=AvLuCgAAQBAJ&printsec=frontcover&sou

rce=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Mark J. Price. C# 9 and .NET 5 – Modern Cross-Platform Development Available at:

https://www.amazon.com/NET-Cross-Platform-Development-intelligent-

Framework-ebook/dp/B08KQK22LJ

Nate McMaster, Dustin Metzgar .NET Core in Action - Available at:

https://books.google.com/books?id=xzczEAAAQBAJ&printsec=frontcover&sour

ce=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

	Automation Script For Evaluation Of Source Codes
	Microsoft Word - CPSC8900_Prudvi_Manukonda_Modified_Aug_13.docx

