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Abstract

In recent years, there has been significant interest in utilization of PhotoVoltaic (PV) solar 

systems of single- and double-digit MW power ratings, at sub-transmission and distribution volt

age levels of the power system, under the umbrella of Distributed Generation (DG). Despite this 

interest, however, inadequate investigation has been dedicated to the connection of PV systems to 

distribution networks, and there is little experience regarding the operation of such PV systems. 

The study reported in this thesis attempts to address this gap.

This thesis proposes a control strategy and provides stability analysis for a typical single

stage, three-phase, PV system that is connected to a (residential/commercial) distribution net

work. The control is based on an inner current-control loop and an outer DC-link voltage reg

ulator. The current-control strategy decouples the dynamics of the PV system from those of 

the network and the loads. The DC-link voltage control scheme enables the control and maxi

mization of the output real power of the PV system. Further, a feed-forward control strategy is 

employed for the DC-link voltage regulation scheme, to enhance the stability of the PV system. 

The feed-forward compensation scheme makes the PV system dynamics independent of the non

linear characteristic of the PV panels. This, in turn, permits the design and optimization of the 

PV system controllers for a wide range of operating conditions.

In this thesis, a mathematical model and a control design methodology are presented for the 

PV system, and it is shown that, under proposed control, the PV system fulfills the operational 

requirements for a grid-connected PV system. The effectiveness of the proposed control strategy 

and the most important transients of the PV system are evaluated through simulation studies 

conducted on a detailed switched model of the PV system, in the PSCAD∕EMTDC software 

environment.

Based on the developed mathematical model, a modal/sensitivity analysis is conducted in this 

thesis on a linearized model of the overall system, i.e. the PV system, the distribution network, 

and the local loads, to characterize the dynamic properties, to evaluate the robustness of the con

trollers, and to identify the nature of interactions between the PV system and the network/loads. 

The modal analysis confirms that, under the proposed control strategy, dynamics of the PV sys

tem are decoupled from those of the distribution network/loads. This, alternatively, means that, 

if its controllers are designed based on the proposed structure and methodology, the PV system 
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does not destabilize the distribution network. It is also shown that the PV system dynamics are 

not influenced by those of the network. Thus, the PV system maintains its stability and dynamic 

properties despite major variations in the line length, line X/R ratio, load type, and load distance 

from the PV system. f

Keywords- Distributed Generation (DG), PhotoVoltaic (PV) solar power, Voltage-Sourced 

Converter (VSC), power electronics, control, modal analysis, eigenvalue analysis, participation 

factor, feed-forward, distribution power network, modeling.
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Chapter 1

Introduction

1.1 Statement of the Problem and Thesis Objectives

In a PhotoVoltaic (PV) system, the conversion of solar energy to electricity is 

facilitated by means of an array of PV panels and a power-electronic converter 

system. This, in view of nonlinear characteristics of the PV panels and power 

conditioning unit, coexistent with a multi-loop control structure, raises concern 

about the dynamic behavior and impact on the distribution network of a PV sys

tem. Moreover, to most utility companies, grid-connected PV systems- and for 

that matter most of other Distributed Generation (DG) systems- are black boxes 

whose models are unknown and dynamic properties unidentified. Thus, ade

quately accurate models must be developed to enable impact studies and help the 

system transients be characterized. Such models must provide the capability of 

being augmented with those of the distribution networks, to allow comprehen

sive analytical and simulation studies. This, however, is not a straightforward 

task since manufacturers do not divulge design parameters or dynamic properties 

of their products, for proprietary reasons. Therefore, the only viable option seems 

to be that of the development of models that are based on the experts’, understand

1



ing of a typical PV system; such models might not exactly represent real-world 

PV systems, but will capture the essence of generally-accepted behavior of such 

systems. This is the overall objective of the work presented in this thesis. Specific 

objectives of this investigation are:

• to formulate a mathematical model as well as a simulation model for a typ

ical PV system connected to a distribution power network;

• to propose a control design methodology for the PV system, such that the 

functionality of the PV system based on the developed model agrees with 

that generally understood and accepted for a typical, real-world, grid-connected, 

PV system;

• to characterize the most important transients and the behavior of the PV 

system in response to various disturbances; and

• to investigate stability and to identify dynamic properties of the PV system, 

especially, in view of the connection to a distribution power network and 

proximity to regional loads.

1.2 Background

In recent years, lack of adequate transmission capacity, limitation in construct

ing new transmission lines, and electricity market deregulation have been the 

main driving forces behind the concept of Distributed Generation (DG) whereby 

small-scale generators can be permitted at the distribution level and close to the 

end users [1]. Many DG systems employ renewable resources for electricity 

generation and therefore help the mitigation of adverse environmental impacts 
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of the fossil-fuel-based centralized generation. Among renewable DG systems, 

PV solar systems have attracted considerable attention and investment in sev

eral countries; and despite its relatively high cost and low efficiency, significant 

progress and penetration of the PV energy is forecasted. In fact, in each of the 

years 2001 and 2002, the world PV production grew by 40% per annum, bring

ing total world PV production in 2002 to an estimated 560 MW [4]. Appreciable 

progress in increasing the efficiency and reducing the cost of PV energy has been 

made over the past few decades. Thus, commercially available PV modules now 

have 20% efficiency as compared to 17% in the last decade, and the PV modules 

price has dropped to below $4 per peak Watt. Since, the energy source in a PV 

system is pollution-free, most abundantly available, and operable for a relatively 

long time without wearing out, many commercial and industrial buildings now 

have PV arrays that supply a substantial proportion of their energy needs, and 

megawatt-sized PV power stations are connected to the electricity grid and are in 

operation. Such an aggressive growth of the distributed PV generation may entail 

undesirable consequences for the existing power system, in terms of harmonies, 

voltage profile, stability, etc. Therefore thorough investigations are required in 

terms of modeling, control, and performance of the PV systems.

Thus far, PV systems of single- or double-digit MW capacities have been con

nected to the power system at sub-transmission voltage levels. However, there ex

ists little experience on the interconnection of such PV systems with distribution 

networks, where load and/or other local generators are also present. Research on 

the PV systems in the context of DG is still in beginning stage. Presently, DG PV 

systems are mainly composed of single-phase, rooftop installations, with capac

ities limited to few hundred Watts, which are unlikely to make an impression on 
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the distribution network and the loads. Such PV systems are not even permitted 

to cause a reverse power flow. This is however not true for large-scale PV sys

tems which have considerably higher capacities and more sophisticated control. 

Thus, it is imperative to analyze larger-scale, three-phase, PV systems employed 

as DG units, in terms of their control, dynamic characteristics, and performance.

There exists a vast body of the technical literature that deals with different 

aspects of PV systems including energy production and economics [5]- [7]. The 

most widely-addressed engineering issue regarding a PV system is the so-called 

Maximum Power-Point Tracking (MPPT). Reference [8] reviews 19 different

MPPT methods introduced since 1968. The scope of the reported literature en

compasses both large-scale and DG PV systems. Another widely-addressed topic 

is that of power converter configurations and aggregation schemes for PV sys

tems. References [9]- [12] provide comprehensive reviews on different single

phase and three-phase converter circuits for PV applications. Recently, with the $ 

consideration of PV systems as DG units, the literature has also reported the inte- • 

gration of islanding detection schemes into single-phase PV systems [13]- [16]. I 

In addition, a fair amount of the technical literature has dealt with the integration # 

of PV systems into distribution networks. Majority of this body of the litera- î 

ture has focussed on single-phase PV systems, with an emphasis on harmonic 

interferences with the distribution networks [17]- [19] and on the power qual

ity [20]- [22]. However, only a few previous works have investigated the control 

and stability aspects of PV systems.

Dynamic stability of single-phase, DG, PV systems is investigated in a num

ber of works [23]- [24]. The work in [23] has conducted an eigenvalue analy

sis for a two-stage configuration with the model of the DC cable between the 
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two stages considered. However, the distribution line and loads are not mod

eled. Reference [24] has studied the impact of grid impedance variation on the 

closed-loop stability of a single-phase PV system. Moreover, a control design 

methodology to ensure the provision of adequate damping has been presented. 

A number of works have studied dynamic models, stability, and/or control of 

three-phase, single-stage, PV systems [27]- [30]. Reference [27] has elegantly 

developed a reduced-order model for a PV system which can be conveniently 

incorporated into power system time-domain simulations. However, the control 

approach proposed in [27] is a voltage-mode control strategy, which is prone to 

protection complication when the PV system is faulted. Moreover, no controller 

design methodology has been presented in [27]. A number of literatures, [28]

[30], have adopted the current-mode control strategy. Reference [28] identifies 

the control loops and the transfer-functions of a PV system. However, it re

ports no analysis of the stability or interactions, especially with regards to the 

line/loads. The work presented in [29] has adopted a similar analysis approach as 

in [28], investigating the impact of grid impedance on the closed-loop stability. 

However, the interaction between the PV system and the distribution network has 

not been studied. In [30] the behavior of a three-phase, single-stage, PV system 

has been studied. However, the emphasis is on the MPPT strategy, rather than on 

the control or stability of the PV system.

1.3 Methodology and Software Used

The research carried out in this investigation proposes a new control strategy for 

a single-stage, three-phase, PV system which is connected to a power distribu
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tion network. The proposed control strategy is based on a modified version of 

the conventional current-mode control and is used to (i) regulate the PV system 

power-factor (at unity, for example) and (ii) to control the PV system DC-link 

voltage and, therefore, its real-power output. In addition to protecting the PV 

system against external faults, the modified current-control strategy virtually de

couples the PV system from the distribution network and the loads, as analyti

cally shown in this thesis. On the other hand, the DC-link voltage control scheme 

ensures a stable operation of the PV system, guarantees safe operation of the 

power-conditioning unit of the PV system, and permits the incorporation of an 

MPPT scheme. This thesis also proposes a feed-forward compensation strategy 

for the DC-link voltage control loop, to eliminate the impact of nonlinearities of 

the PV panels on the closed-loop stability of the PV system. Thus, the proposed 

feed-forward compensation permits the design of the DC-link voltage controller 

irrespective of the PV system operating point, and also renders the closed-loop 

eigenvalues of the PV system insensitive to the DC-link voltage level and the so

lar irradiation. The effectiveness and robustness of the proposed control strategy 

against changes in the operating conditions, distribution network parameters, and 

load types/parameters are demonstrated through a comprehensive modal analysis 

as well as nonlinear, time-domain, simulation studies.

The modal analysis is conducted on a linearized mathematical model of the 

overall system, i.e. the system including the PV system, the power distribution 

network, and the loads, implemented in the MATLAB software environment. The 

simulation studies are, however, performed on a detailed, large-signal, circuit

based model of the overall system in the PSCAD∕EMTDC software environment 

[31]. Thus, in the absence of an experimental set-up, the PSCAD model- to 
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which we refer to as the “detailed switched model” in this thesis- serves as an 

effective, reliable means of further evaluation of the proposed control strategy 

and the transient behavior of the overall system.

PSCAD is an effective, popular simulation tool for simulation of complex 

power systems which may have a fair degree of complexity in the control, switch

ing, etc. PSCAD provides large-signal, electromagnetic transients, time-domain 

instantaneous responses, and various analysis tools. Therefore, it provides an 

economical substitution for hardware implementations where the power/voltage 

ratings are significant. The PSCAD is, however, not capable of identifying and 

quantifying the cause and nature of control instabilities and dynamic interac

tions among different system components. Such information can be obtained 

only through analytical methods, e.g. eigenvalue analysis.

1.4 Thesis Outline

The thesis consists of six chapters:

• in Chapter 2, first, a mathematical model of the PV system connected to a 

stiff grid is developed both in space-phasor and dq-frame domains. Based on 

the developed model, the DC-link voltage control and the AC-side current

control schemes are designed. Moreover, a feed-forward compensation strat

egy is proposed for the DC-link voltage control. Furthermore, a few case 

studies are carried out to validate the model.

• Chapter 3 augments the model developed in Chapter 2 with that of a dis

tribution network. Chapter 3 also considers an asynchronous machine load 

connected to the distribution network. The mathematical model of the dis
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tribution network and the load are also presented in detail. Moreover, the 

performance of the PV system is evaluated and the most important tran

sients are identified through simulation studies.

• Chapter 4 deals with the small-signal stability and eigenvalue analyses of the 

overall system, consisting of the PV system, the distribution network, and 

the load. In this Chapter, the nonlinear equations of the system are linearized 

around an equilibrium point, and the responses obtained from the linearized 

model are compared with those obtained from detailed switched model of 

the system to verify the linearized model. Then, an eigenvalue analysis is 

carried out on the linearized model to characterize the dynamics of the PV 

system, to identify the nature of interactions between the PV system and 

the network/loads, and to determine the robustness of the PV system control 

against variations of the parameters.

• In Chapter 5, performance of the PV system is studied in the presence of 

different kinds of loads to demonstrate if the proposed PV system maintains 

its stability and dynamic properties irrespective of load types. Chapter 5 

quantifies the stability of the PV system in terms of eigenvalues.

• Chapter 6 concludes the thesis, and provides suggestions for future research.

1.5 Contributions

The main contributions of this thesis are:

• a new control strategy for a single-stage, three-phase, PV system is pro

posed. The proposed control strategy is based on a modified version of the 
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conventional current-mode control and is used to (i) regulate the PV system 

power factor and (ii) to control the converter DC-link voltage and, therefore, 

the PV system real power, through a voltage control scheme. In addition to 

protecting the PV system against faults, the modified current-control strat

egy virtually decouples the PV system from the distribution network and the 

load.

• Based on the developed dynamic model and control strategy, important tran

sients are identified through simulation in PSCAD/EMTDC environment 

when the proposed PV system is interfaced with a distribution network and 

a load is connected to the distribution network.

• A feed-forward compensation strategy for DC-link voltage control loop has 

been proposed to eliminate the nonlinear characteristic of the PV panel. 

Thus, the proposed feed-forward compensation permits the design of the 

DC-link voltage controller irrespective of the PV system operating point.

• A linearized model of the PV system in conjunction with the distribution 

network and load is developed. An eigenvalue analysis on the linearized 

model is carried out to identify the nature of interactions between the PV 

system dynamics and those of networks/loads, and to determine the robust

ness of the proposed control against variation of parameters.
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Chapter 2

Modeling and Control of a PhotoVoltaic 

(PV) Plant Interfaced with a Stiff Grid

2.1 Introduction

This chapter develops a mathematical model and identifies the controllers of a 

PhotoVoltaic (PV) system that is interfaced with a stiff grid. Thus, the stiff grid is 

modeled by an ideal, three-phase, voltage source. This enables the modeling and 

analysis of the PV system independent of dynamic properties of the distribution 

network and loads. Similarly, the controllers of the PV system are designed in this 

chapter under the assumption that the PV system is not affected by the distribution 

network to which it is connected. The developed model will be augmented with 

that of a distribution network in Chapter 3, to constitute a mathematical model 

for the overall system, and to enable the study of interactions between the PV 

system and the distribution network.

In this chapter, based on the PV system model, a controller is designed to 

regulate the DC-link voltage of the Voltage-Sourced Converter (VSC) such that 

the power out of the PV panel can be maximized in varying weather conditions. 
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In this chapter, a feed-forward compensation mechanism is proposed for DC-link 

voltage control loop. Fast and decoupled controller for d- and q- components 

of the VSC AC-side currents are also derived. Finally, performance of the PV 

system is evaluated by simulation case studies. Thus, a few case-studies are 

performed to demonstrate the effectiveness of the feed-forward compensation of 

the DC-link voltage control scheme.

This chapter is organized as follows: Section 2.2 introduces the structure of a 

single-stage, three-phase, PV system. Sections 2.3 and 2.4 present the mathemat

ical model and controllers of the PV system, respectively. Performance of the PV 

system under the proposed control strategy is evaluated in Section 2.5. Section 

2.6 concludes the chapter.

2.2 Structure of PV System

Fig. 2.1 shows a single-line schematic diagram of a typical PV system that is 

interfaced with a stiff grid, represented by the voltage source Vg at a Point of 

Common Coupling (PCC). The main building blocks of the PV system are a ma

trix of PV panels, a forced-commutated VSC, a three-phase, LC, interface filter, 

and the interface transformer Tri. The matrix of PV panel is composed of paral

lel combination of np number of strings. Each string is composed of ns number 

of series-connected PV cells. The numbers np and ns are chosen such that the 

PV matrix delivers an adequately large DC voltage and power. The PV matrix 

is connected in parallel with the DC-side terminals of the VSC. The DC-link ca

pacitance of the VSC is represented by C. Each AC-side terminai of the VSC is 

interfaced with the corresponding phase of the low-voltage side of Tri, through 
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one phase of the interface filter. Each phase of the filter is composed of a series 

reactor and a shunt capacitor. The inductance and resistance of the reactor are 

represented by L and R, respectively, and its capacitance is signified by Cf. Cf 

provides a low-impedance path for the current harmonics generated by the PV 

system and prevents them from penetrating into the grid. R also includes the ef

fect of the VSC ohmic losses. The interface filter is employed to prevent voltage 

and current harmonics generated by the VSC from penetrating into the grid. Ps 

and Qs, respectively, represent the real and reactive power that the PV system de

livers to the grid at the PCC. The transformer Tr1 steps down the network voltage 

to a level suitable for the PV system. The high-voltage side of Tr1, i.e. the side 

interfaced with the grid, has a star-connected winding configuration and is solidly 

grounded.

PV System

PV Matrix

g1

PWM & 
Gate DriveDC Voltage Regulator 

Feed-Forward

abo
dq

v2*dcref

2 Pt

VSC
PCCI

Yt Vs 85

Figure 2.1: Single-line diagram of a typical PV system connected to a stiff grid
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2.3 PV System Model

A mathematical model is essential for the control design as well as analysis of 

the PV system. In this section the mathematical model of the uncontrolled PV 

system is formulated. The overall model consists of three sets of equations which 

describe the PV matrix, the DC-link voltage dynamics and the AC-side current 

dynamics of the PV system. The model of the uncontrolled PV system along with 

those of the controllers constitute a model for the closed-loop PV system.

2.3.1 Space-Phasor Representation of the PV System

The PV matrix is described by the following equations [32]:

• - 7 (q Vdc) , 
lpv — Nplph nplrs exp , 1 1L \kTcA ns) 

(2.1)

where q is the unit charge, k is Boltzman’s constant, A is the p-n junction ideality 

factor, and Tc is the cell temperature. Irs is the cell reverse saturation current, 

which varies with temperature according to the following equation:

11, _ Te]3 MMi 1N Irs-ITT, exp(kA T. Te) (2.2)

where Tr is the cell reference temperature, Irr is the reverse saturation current 

at Tr, and EG is the band-gap energy of the cell. The photovoltaic current, Iph, 

depends on the insolation level and the cell temperature as:

Iph = 0.01 [Iscr + K, (Tc - Tr)] S (2.3)

where Iscr is the cell short-circuit current at the reference temperature and radia

tion, Ke is a temperature coefficient, and S is the insolation level in kW/m2. The

13



power delivered by the PV matrix is calculated by multiplying both the sides of 

(2.1) by vdc:

Ppv ~ WpIphVdc WpIrsVdc ( q Vdc)pUrcA n, ) - 1 (2.4)

Based on (2.4), it is evident that the power delivered by the PV matrix is a func

tion of Iph which depends on the insolation level, S. Fig. 2.2 illustrates the power 

versus voltage characteristic of the PV matrix for different insolation levels. Fig. 

2.2 shows that for a given insolation level, Ppv is zero at vdc = 0, but increases 

as vdc is increased. However, this trend continues only up to a certain value of 

vdc at which Ppv peaks; beyond this point, Ppv decreases with the increase of vdc. 

Thus, Ppv can be maximized by control of vdc, based on a Maximum Power Point 

Tracking (MPPT) strategy [32].

In the PV system of Fig. 2.1, the VSC is a 6-pulse converter employing In

sulated Gate Bipolar Transistor (IGBT) switches, adopting the Sinusoidal Pulse

Width Modulation (SPWM) strategy. The output voltage of the VSC, vi, is re-

(a)
1.2

0

S=1
S=0.5
S=0.1

0.4

0.8

0.5 1.1 1.4

∙S=1 
-S=0.5
∙S=0.1

0.2
Vac(kV)

A?

Figure 2.2: Current versus voltage and power versus voltage characteristics of a PV matrix

0.8
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lated to Vdc as:

V = dm (2.5)

where vi and m are the space-phasors, [33], corresponding to the VSC terminal 

voltages and the PWM modulating signals.

Dynamics of the DC-link voltage are governed by the principle of power bal

ance, as [34]:
Cdv⅛
- = Ppv - Pdc (2.6)

where Pdc denotes the power drawn by the VSC DC-side (see Fig. 2.1). Ignoring 

the VSC power loss, Pdc is assumed to be equal to Pr, i.e. the real power exiting 

the VSC AC-side terminals. Pt in turn is the summation of the real power deliv

ered at the PCC, i.e. Ps, and the (real) power absorbed by the R - L branch of the 

interface filter. Therefore,

PR

where * denotes the complex-conjugate operator. Substituting for Pdc from (2.7) 

in (2.6), one finds

C dv2 3 ( 3 (_—d = Ppv - -Re ^f + -Re Ri it |

Ps PR

(2.8)

Equation (2.8) represents the dynamics of the DC-link voltage in a space-phasor 

form. The VSC AC-side current dynamics are described by the following space-

phasor equation:

di —» ) )
L— = -Ri + vt- Vs 

ut
(2.9)
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di 
L—

Substituting for vt from (2.5) in (2.9), one deduces:

=-Ri+dm-v, (2.10)

Equation (2.10) is used for the design of the VSC current controller.

2.3.2 DQ-Frame Representation of the PV system

For the purposes of analysis and control, the space-phasor variables of the PV 

system model are projected on a dq-frame. Transformation of the variables from 

the space-phasor form to the dq-frame form results in equivalent DC variables, 

which simplify the analysis and control design tasks. Moreover, a dq-frame- 

based control can be implemented more conveniently compared to the case where 

the control signals are time-varying. The transformation is defined as:

7=Ga+ifselp (2.11)

where f represents a space-phasor, fd and fq are the space-phasor dq-frame com

ponents, and p is the reference angle of the dq-frame. Another useful quantity is 

the derivative of a space-phasor, that is:

a/_d[(a+ifc)ele]

dt dt

(dfa dfo) in dp . io
= + Je+J(a+ Jfq)e

∖ dt dt ∕ ,

=(de+/)eh+j(fa+is)elP (2.12) 

where ω is the dq-frame angular speed, as
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Based on (2.11), Ps in (2.7) can be expressed as:

3 *Ps = -Re (Vsd + jVsq) elp] [(id + jiq) e-J] 
2

Vs &
which can further be simplified to

Ps ~ Q (Vsdld + Vsq'q)

Similarly, the dq-frame equivalent of PR in (2.7) is deduced as:

Pe = 3R(2+2)
In addition, based on (2.11) and (2.12), PL in (2.7) is simplified to

- 3,(. did . dig)L - 2"dr+ 'odr )

(2.14)

(2.15)

(2.16)

Substituting in (2.8) for Ps, PR, and PL, respectively from (2.15), (2.16), and 

(2.17) one finds:
Cdv2- 3 . 3 9 3.(. did . dig)
- - Ppv - S(Vsd'd + Vsq'q) - SR(Ld + 14) - -Ltd- + 1q. (2.18) 
4 Cl — 2 — Ult 

Equation (2.18) is employed in designing a voltage regulator to maintain the DC- 

link voltage, Vde, at a desired level, such that the power out of the PV matrix can 

be maximized.

A similar procedure as the one adopted to derive (2.18) yields the following 

dq-frame equivalents for (2.10):

„did T . Vdc
= LOlq - Rld + Md - Vsd 

„diq_ τ' Vdc •, — LOld Riq + Mq - Vsq. 
at 72 

(2.19)

(2.20)

Equations (2.18), (2.19), and (2.20) constitute a state-space model for the VSC, 

in which vdc, id, iq are the state variables, md and mq are the control inputs, and 

Vsd, vsq, and S are the exogenous inputs.
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2.4 PV System Control

The main control task pertinent to the PV system of Fig. 2.1 is to regulate the 

DC-link voltage, to maximize the power extracted from the PV matrix. As shown 

in Fig. 2.1, the control involves the following three coordinated tasks:

• the VSC PWM and control schemes are synchronized to the PCC voltage 

through a Phase-Locked Loop (PLL) [35]. This ensures that the three-phase 

AC signals are transformed into dq-frame counterparts, and the controllers 

process the DC equivalents of the original sinusoidally-varying signals;

• the error between (the square of) the DC-link voltage, i.e. và, and its cor

responding reference value, vcref, is processed by a compensator, ky(s), 

whose output is augmented by a feed-forward signal to generate the current 

command idref. The feed-forward compensation counteracts the destabiliz

ing, nonlinear, characteristic of the PV matrix and enhances the PV system 

stability. Vdcref is usually obtained from an MPPT scheme and is permitted 

to vary from a lower limit to an upper limit (not shown in Fig. 2.1), to ensure 

proper and safe operation of the VSC; and

• the command idref is delivered to a dq-frame, current-control scheme that 

forces id to track idref. The control of id enables the control of Ps and Ppv. 

idref is limited by a saturation block (not shown in Fig. 2.1) to protect the 

VSC against overload and faults. The current-control scheme also forces 

ig to track iqref. As discussed in Section 2.4:1, Qs is proportional to iq. 

Therefore, to ensure that the PV system exhibits a unity power-factor to the 

network, iqref is set to zero, to make Qs = 0. This also maintains the mag- 
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Iiitude of the VSC line current at a minimum, for a given real power flow. 

In subsequent sections, the foregoing three control schemes are discussed in 

detail.

2.4.1 Phase-Locked Loop (PLL)

As discussed in Section 2.3.2, the AC variables of the PV system are projected 

on a dq frame the rotational speed of which is ω. In a steady state, the AC 

variables are sinusoidal functions of the grid frequency ω0. Thus, their dq-frame 

components become time-invariant (in the steady-state) if the dq-frame angular 

speed ω becomes equal to ω0. This is achieved by means of a PLL mechanism 

[35]. A block diagram of the PLL adopted in this research is presented in Fig. 

2.3. As Fig. 2.3 shows, vs is resolved into its d- and q-axis components, based 

on (2.11). Then, Vsq is processed by the compensator H(s), and ω is determined. 

In a steady state, Vsq is forced to zero while ω becomes equal to ωo. Therefore, 

H(s) must include at least one integrator.

V- Vso,H (s) 0 /

Figure 2.3: Block diagram of the Phase-Locked Loop (PLL)

Let H(s) be a PI compensator cascaded with a first-order, low-pass, transfer

function, as U

Ω = H(S)Vsq
Bs+/2
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where/1 and/2 are the proportional and integral gains of the PI part, respectively, 

whereas /3 is the pole of the low-pass function of the compensator. Let the two 

state variables ξι and 52 are defined as

TT 314.7 — 5- - - Z—s2 +/3S
(2.22)

X6 = SX2 (2.23)

then, the PLL is described by the state-space model

where

d
deXpl = ApliXpl + Bpul

( = EplXpll

Vsd

. Vsq .

(2.24)

(2.25)

P = FplXpll (2.26)

Apu =
-B3 0 0

10 0

B, β2 0

Bpu =

(2.27)

(2.28)

0 1

0 0

0 0
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Epu = βl β2 0 (2.29)

Fpu= 0 0 1 (2.30)

Equations (2.24) through (2.26) introduce the PLL as a dynamic system whose 

inputs are Vsd and Vsq, the state variables are ^, 52, and p and the outputs are ω 

and p. Regulation of vsq at zero also has the implication that the expression for 

the PV system real-power output, i.e. (2.15), is simplified to

Ps = SVsdia. (2.32)

Hence, Ps is proportional to, and can be controlled by, id. Similarly, the dq-frame 

expression for the reactive power assumes the form:

3 /.) 
@s = -ImVsl

= -Im2

which can be further simplified to:
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Qs ~ 2Vsdiq (2.34)

Equation (2.34) indicates that Qs can be controlled by iq to adjust the power-factor 

that the PV system exhibits to the distribution network.

2.4.2 VSC Current Control

Equations (2.32) and (2.34) show the dependence of Ps and Qs on id and iq, 

respectively. In this section, a current-control scheme is presented to ensure that 

id and iq rapidly track their respective reference commands, idref and iqref. The 

current-control strategy also protects the VSC against overload and faults if idref 

and iqre∕ are limited. The current-control scheme is designed based on (2.19) 

and (2.20) which describe the dynamics of the VSC AC-side current. In (2.19) 

and (2.20), id and iq are the state variables and also the outputs; md and mq are the 

control inputs, and vsd, vsq, ω, and Vdc are the disturbances. Due to the presence of 

the factor Lω, dynamics of id and iq are coupled and nonlinear. To decouple and 

linearize the dynamics, md and mq are determined based on the control laws [36]:

2/ ∖md = — (ud- Lwia + Vsd) (2.35)
Vdc 1

2 ∖■ mq = — [uq + Lωid + Vsq) (2.36)
Vdc 7 

where Ud and uq are two new control inputs. Substituting for md and mq in (2.19) 

and (2.20), one obtains 

Ldld =-Ria+ua (2.37) 
at
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diq .
L—— = ~Ria + ua. 

dt 4 q
(2.38)

Equations (2.37) and (2.38) represent two decoupled, first-order, systems in which 

id and iq can be controlled by ud and uq, respectively. Fig. 2.4 illustrates a block 

diagram of the dq-frame current-control scheme. Fig. 2.4 shows that the con

Vdc
2

1 
i 

dref -

-O— 
if

_

Figure 2.4: Block diagram of the dq-frame current control scheme

trol signal ud is the output of a compensator, ka(s), processing the error signal 

ed = idref - id. Similarly, uq is the output of another compensator, kq(s), that pro

cesses eq = iqref - iq. It should be noted that, to produce md and mq, the signals 

2/Vdc, id, and ωiq are employed as feed-forward terms to decouple the dynamics 

of id and iq from that of Vdc.

The PWM modulating signals are generated by the transformation of md and
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mq into ma, mb and mc, based on:

Ma

mb

cos(p) -sin(p) -
ma

= cos(p - 3) - sin(p - 2) (2.39)

mc
ma

cos(p - 3) - sin(p - T)

ma, mb, and mc are then compared with a triangular PWM carrier signal, and the 

switching pulses are generated for the VSC valves.

Since the d- and q-axis control plants are identical, the compensators ka(s) 

and kq(s) can be picked to be identical. Let the compensator be of a PI type as: 

k,s + k;
ka(s) = kq(s) = -—- (2.40)S

where kp and kt are the proportional and integral gains, respectively. If kp and k; 

are selected as

k=Z (2.41)
Ti

k;= - (2.42)
Ti

then, the closed-loop transfer-functions of the d- and q- axis current controllers 

assume the first-order form

, — - Gi(S) — 1 
^dref 1qref Tis + 1 

(2.43)

where Ti is the time-constant, usually selected in the range of 0.5 to 5 ms, de

pending on the desired speed of response. It is noted that the foregoing control 

strategy renders the dynamic of id and iq decoupled from those of ω, Vdc, Vsd and 

Vsq. Equation (2.43) can be expressed in a state-space form as: 

(2.44)
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2.4.3 DC-Link Voltage Control and Feed-Forward Compensation

Equation (2.18) describes the dynamics of the DC-link voltage. In (2.18), the first 

and second terms represent the PV matrix power and the PV system real-power, 

respectively, whereas the third and fourth terms denote the power absorbed by the 

inductance and resistance of the VSC interface reactor. As discussed in Section 

2.4.1, the PLL ensures that Vsq is regulated at zero. Therefore, if the power of the 

interface reactor is ignored, (2.18) can be approximated as:

cave JP 3, i2 dt ~PPv 2^
3

% Ppv - SVsdidref- (2.45)

Equation (2.45) represents a control plant of which the input is idref, the output is 

v2., and the disturbance input is Vsd- It should be noted that, in deducing (2.45), 

it is assumed that τi is small in (2.44) and therefore id can be substituted by idref.

Equation (2.45) indicates that the control of the DC-link voltage is a nonlinear 

process. The reasons is mainly that Ppv is a nonlinear function of Vdc and ipv. 

Thus, to mitigate the impact of the nonlinearity on the control, idref is determined 

based on the following control law:

P
idref = uv+y 3 : (2.46)

72Vsd
if∕ 

where uv is a new control input and iff = Ppv/(ÂVsd) is a feed-forward term with 

y as a gain which can be unity or zero, y as a gain which can be unity or zero. 

Substituting for idref from (2.46) in (2.45), one deduces:

C dv2 3
— % (1 - y) Ppv - Vsauy (2.47)
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Equation (2.47) indicates that if y = 1, the impact of the PV matrix character

istic on the DC-link voltage control is eliminated, and the effective control plant 

becomes an integrator. Thus, the feed-forward compensation effectively coun

teracts the dynamics of Ppv and prevents them from manifesting themselves in 

(2.47). The end result is that Vdc is controlled predominantly by the control vari

able uv. Even though the product Vsduy also introduces a nonlinearity, its impact 

is insignificant since Vsd is practically a relatively constant variable.

The control signal uv is determined by a compensator as

U, = k,(S)E, = QS1G2E, (2.48) 
S(S + Q3)

where the error signal is Ev = £(vcres-v&c}. Equation (2.48) represents a PI com

pensator cascaded with a first-order, low-pass, filter, a and N2 are the propor

tional and integral gains of the PI part of the compensator, respectively, whereas 

Q3 is the pole of the low-pass function.

Fig. 2.5 illustrates a block diagram of the DC-link voltage control scheme. 

As Fig. 2.5 indicates, if γ = 1 the impact of Ppv does not manifest itself in 

id. On the other hand, id is related to up through idref and the transfer function 

(2.43). Consequently, the effective control plant from uv to v^c is composed of 

an integrator cascaded with Gi(s). Substituting for uv from (2.48) in (2.46), one 

obtains an expression for idref with the feed-forward compensation, as:

i^=rι{^S}*f4^^vy+⅛ (2-49)

If the two state variables x3 and X4 are defined as

^dcref ~ ⅛X3 = ---- acre------“ (2.50)
S(S + Q3)
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X4 = SX3 (2.51)

then, the state-space model of DC-link voltage controller is expressed as:

^dref ~ Q2 01
3

X4

Ppv+Y3—
2Vsd

(2.53)

Vsd

v2A • deref - )—•
1;

Ppv

ST

DC-Link Voltage Model

Feed-Forward Compensation '

Vaa

DC-Link Voltage Controller _ 
* Limiter.

• — -HAO

_ _ _ _ _ _ _ PV Matrix

I

Current 
Controller

Gi(s)
2 

Csk.(s)

Figure 2.5: Block diagram of the voltage control scheme

2.5 Model Validation

In this section, simulation studies are conducted on a detailed switched model of 

the PV system of Fig. 2.1. The simulations are conducted in the PSCAD/EMTDC 

software environment. The PV system of Fig. 2.1 simulated to

• evaluate the performance of the PV system under the proposed control strat

egy, and

• demonstrate the effectiveness of the feed-forward compensation of the DC- 

link voltage controller

27



2.5.1 Case 1

This case study demonstrates the performance of the PV system of Fig. 2.1 and 

the feed-forward scheme. Fig. 2.6 shows the response of Vdc and id for differ

ent insolation levels when Vdcref is changed step-wise from 1.0 kV to 1.1 kV. 

Columns (a) and (b), respectively, demonstrate the responses of Vdc and id. It can 

be observed that, the DC-link voltage controller tracks the value set by Vdcref in 

less than 10 ms. Moreover, the change in Vdc results in a change in id, which 

translates into a proportional change in the output real power of the PV system 

(based on (2.32)). It is interesting to note that the increase of Vdc results in the 

increase of the output power, except for the case S = 0.1. The reason is that for 

S = 0.1, the DC-link voltage corresponding to the maximum power is about 1.0 

kV. Consequently, any increase of Vdc beyond 1.0 kV results in an output power 

drop.

2.5.2 Case 2

Fig. 2.7(a) shows that, initially, Vdc = 1 kV (at S = 1), and the current of the PV 

matrix, ipv, is 1.4 kA as shown in Fig. 2.7(b). The feed-forward compensation is 

enabled. As shown in Fig. 2.7(c), the d-axis component of VSC AC-side current, 

id, is about 2.25 kA, which correspond to an (real) output power of about 1.34 

MW, as illustrated in Fig. 2.7(d). At t = 2.0 s, Vdcref is changed stepwise to 1.22 

kV. Consequently, Vdc tracks Vdcref in less than 10 ms, as shown in Fig. 2.7(a). 

Fig. 2.7(b) illustrates that ipv drops from 1.4 kA to 1.1 kA, in response to the step 

change in Vdc. Figs. 2.7(c) and (d) show that id and Ps settle at the values 2.25 kA 

and 1.34 MW, respectively. Att = 2.4 s, Vdcref is changed stepwise from 1.22 kV
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Figure 2.6: Response of Vde and id at different insolation levels when a 10% step change is imposed on Vdcref
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to 1.0 kV. Att = 2.5 s, the feed-forward compensation is disabled. Consequently 

the PV system becomes oscillatory thereafter, as Fig. 2.7 shows. This case study 

confirms the effectiveness of the feed-forward compensation, and that without 

the feed-forward compensation, the stability of the PV system is dependent on 

the operating point.
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Figure 2.7: Transient behaviors of Ps, ipv, and id in response to step changes in Vdcref, and de-activation of 

the feed-forward compensation in the DC-link voltage controller
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2.6 Conclusion

In this chapter, a mathematical model is developed for a PhotoVoltaic system 

that is interfaced with a stiff grid. Based on the developed model, a control 

methodology is identified for the PV system. The proposed control strategy is 

based on an inner current-control scheme and an outer DC-link voltage control 

scheme. Proper feed-forward compensation strategies are adopted to make the 

current-control scheme independent of the rest of the system. Further, a feed

forward compensation mechanism is also proposed for the DC-link voltage con

trol loop to mitigate the impact of nonlinearity of the PV panels on the control 

of the PV system. The developed model is validated through case studies in the 

PSCAD∕EMTDC software environment, and the effectiveness of the proposed 

feed-forward control strategy is confirmed.
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Chapter 3

Performance of a PhotoVoItaic (PV) System 

Interfaced with a Distribution Network

3.1 Introduction

In chapter 2, a mathematical model of a single-stage, three-phase, PV system was 

developed. The model developed in Chapter 2 was that of a PV system interfaced 

with a stiff grid. The model enabled the control design and optimization tasks, 

independently of the grid model. This chapter augments the model of Chapter 

2 with those of the distribution network, and the loads. Then the overall model 

is used to identify some important transients of the overall system. The overall 

model will also be used in Chapter 4 for stability analysis and the assessment of 

the interactions between the PV system and the network.
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3.2 Description of the Model

Consider the PV system of Fig. 2.1. Fig. 3.1 shows that the PV system is 

interfaced with a distribution network at a Point of Common Coupling (PCC). 

The distribution network is supplied from a stiff grid which is represented by 

a voltage source Vg. A squirrel-cage asynchronous machine, employed here as 

a load, is connected to the distribution line at a location between the PCC and 

the grid. The inductance and resistance of the line segment between the PCC 

and the load are represented by Li and Ri, respectively. L2 and R2, respectively, 

signify the inductance and resistance of the line segment between the load and 

the grid. It should be noted that Li and Ri also include the leakage and winding 

resistance of transformer Tri, respectively. The capacitor Ci represents the load 

power-factor correction capacitor. However, for the purpose of analysis, Ci is 

considered as a component of the distribution network. Ps and Qs, respectively, 

represent the real- and reactive-power components that the PV system exchanges 

with the distribution network, at the PCC.

Figure 3.1: Schematic diagram of the PV system interfaced with a distribution network
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3.3 Distribution Network Model

The dynamics of distribution network in the space-phasor form can be explained 

by the following sets of equations:

=-Rigi -V,+V, (3.1), digi
1 dt

di,2 - _ , _ ,
2dr = ~^2 Î g2~ Va * Vz

dv? - -
Crar ***a

dvι → → →
CIdt = Igl - 'g2- 11

(3.2)

(3.3)

(3.4)

As discussed in Section 2.4, the controllers of the PV system are designed based 

on the dq-frame mathematical model. In order to study the behavior of the PV 

system in association with the distribution network, the equations describing the 

dynamics of the distribution network must be expressed in dq-frame equivalents. 

Hence, based on (2.11) and (2.12), the dq-frame equivalents of (3.1) through (3.4) 

are expressed as:

digid Rι. . N 1
— = —lgld + Clglq + —Vsd — —Vid 
at L1 L1 L1

(3.5)

diglq . Ri. N 1
dt = -WZgld - Li'slq + LiVsq - L,Vkq (3.6)

dig2d 
dt

R2. . 1 1, .
L'g2d + 6lg2q + L,Vld - L,V8 cos θ

1
(3.7)
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dig2q 
dt

. R2. 1
= —lg2d - —lg2q + —V1q + —Vg sin θ

-2 -2 -2
(3.8)

dVsd 
dt

1. N.
— ld lgld + OVsq

Cf cf
(3.9)

dVsq 
dt

1. N.
~ C 4q C 'slq WVsd (3.10)

dvid _ 
dt

1. 1. 1.
—Igld------ lg2d + CVlq------- lidCl Cιs * C[ (3.11)

dt
1. 1. 1.
'glq 'g2q ωvld llq 

Cl CI Cl
(3.12)

Equations (3.5) through (3.12) describe the dynamics of the distribution network

in the dq-frame with igld, iglq, ig2d, and ig2q, as state variables, and Vsd, Vsq, Vld, 

and V[q as the state variables as well as the outputs. The PV system AC-side 

current components, id and iq, and the load current components, id and iq, act as 

exogenous inputs for the distribution network.

3.4 Load Model

As discussed in Section 3.2, the asynchronous machine load, is connected to the 

distribution line at a point between the PCC and the grid. To measure the relative 

distance of the load with respect to the PV system, the factor df is introduced. 

Thus, df of value 0.5 corresponds to the case where the load is located in the 

middle of the PCC and the grid.

A space-phasor model of a squirrel-cage asynchronous machine is [37]

(3.13) 
at

d2, — .— =-R,1, (3.14) 
at
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where Rs and Rr represent the stator and rotor resistances, respectively. Às and 2, 

represent the space phasors corresponding to the stator and rotor flux linkages, 

respectively. Ignoring the magnetic saturation, one can write

A, — Lm (1+ c,) is + el"i,

2, = Lm (1 + O" r) ir +e jri, 

(3.15)

(3.16)

where Lm is the magnetizing inductance, and θr is the rotor angle, os, o,, is, 

and ir denote the stator leakage factor, the rotor leakage factor, the stator cur

rent space-phasor, and the rotor current space-phasor, respectively. The machine 

electrical torque is formulated as

Te = SLmIm β (i,ej8-) }. (3.17)
2 ∖∖ /

The machine equations can be transformed into a state-space representation if the 

following changes of variables are introduced:

i=(1+c,)i,+e'ori, (3.18)

i = (1 + o)elri, + i,. (3.19) 

Expressing i, and i, in terms of il and i2, based on (3.18) and (3.19), and sub

stituting for them in (3.13) to (3.17), one deduces

~ C—-R,4 +  ------- ——-—-R,i2 (3.20) 
dt (1+op)(1 +Ts)-1---------(1+op(1+os)-1

. dip . — 1 -
Lm — JLm@rl2 + TTT TTT - -Rrli dt (1+op)(1 +os)-1

(1+0(1 + c) -1 rl2 (3.21)
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Moreover, the expression for the machine toque assumes the form:

Te = SLmIm (i *). (3.22)

Assuming a two-mass representation of the mechanical system, one can write

dû, 3 (->> )
J,— = -Drωr - Ks(θr - θm) + -LmImin i2* 

at 2()
τe

do.
Jm- = -Dmm + Ks(0, ~ θm) — Tmat
dθr
dt r
dem
~dΓ~ωm

(3.23)

(3.24)

(3.25)

(3.26)

where Jr (Jm) is the machine (mechanical load) moment of inertia, ωr (ωm) is 

the machine (mechanical load) angular speed, θr (8m) is the machine (mechan

ical load) rotor angle, and Dr (Dm) is the machine (mechanical load) damping 

coefficient. Ks is the drive-train spring constant, and Tm is the mechanical load 

torque.

Equations (3.20), (3.21), and (3.23)-(3.26) constitute a state-space model for 

load subsystem. It should be noted that if Tm is set to a negative value, the 

asynchronous machine acts as a generator rather than a load. For example, an 

asynchronous generator can represent a constant-speed wind turbine-generator 

unit interfaced with the distribution network, dq-frame equivalents of state-space 

model of the asynchronous machine are:

diid (1+o,) Rs. .
—,------ --------- -— lld 1 Ollq - dt (1+op)(1+os)-1Lm q 

1-------------- R,.------- 1 
+—-—-—-2d + —Vid (3.27) (1 +or)(1 + Ts) ILm Lm 
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dilq__ ._ _ _ (1+o,) Rs. 
dt mid (1 + o)(1 +o) - 1Lm°4q 

1________R,.____ 1 
+e,____ _ ____ _—-=i2q + —Vlq (3.28) (1+gp)(1 +os)-1Lm Lm 

di2d 1______ R,. (1+os) R,. 
dt (1+c)(1+c,)-1Lm"d (1+o)(1 + c)- 1Lm'2d 

+ (w - (p)i2q_________________________________ (3.29) 

di2q_ _ _ _ _ 1_ _ _ _ _ R,. (l+σs) R,. 
dt (1+0) (1+c,)-1Lm'19 (1+0(1+c,)-1Lm29 

- (w - „)izd____________________________ (3.30) 

dor. 3Lmilq . 3Lmild . 
dt - 2J[(1+o,)(1+F,)-1]'2d- 2J[(1+c)(1+F,) - 1]124 

D 1 
-Wr-Tm_________________________________ (3.31) 
•J

The load current, i.e the stator current, is, is expressed in terms of in and i2 as 

__+_ _ _ _ _ _ 1_ _ _ _  
" (1 + 0,(1 +,)- 1" (1+0,)+,)-1"2________ '

i, can then be expressed in the dq-frame as:

• (1+c,) . 1 . 
lid — ea  a   ilid - a  a ∖  2d (3.33) (1+op)(1+os)-1 (1+op)(l+os)-1

44q (1+0)(1+0,)-1'lq (1+0(1+0-1’24

Equations (3.27)-(3.31) and (3.33)-(3.34) constitute the state-space model of the 

distribution network, in dq-frame. ild, ilq, i2d, and i2q, are the state variables, and 

id and iq are the outputs of the load subsystem.
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3.5 PV System Transients

To evaluate the dynamic behavior of the PV system, in conjunction with the 

distribution network, the PV system of Fig.3.1 is simulated using a detailed 

switched model of the overall system. The simulation studies are conducted in 

the PSCAD/EMTDC environment to evaluate:

• the start-up transient of the PV system;

• the performance of the DC-link voltage regulation scheme under normal and 

faulty conditions;

• the ability of the PV system in operating at unity power factor and introduc

ing a low level of harmonic currents to the distribution network;

• the robustness of the PV system against faults; and

• the need for and the effectiveness of the feed-forward compensation scheme 

in maintaining the stability of the PV system.

The system parameters are presented in Appendix A.

3.5.1 PV System Start-Up and Normal Operation

Fig. B.4 shows the system response to the start-up process followed by a steady

state condition. Initially, the system is connected to the distribution network 

while the PV system is disabled for a period of 0.2 s. The DC-link capacitor, 

C, is therefore pre-charged via anti-parallel diodes of the VSC valves, and v⅛ 

reaches about 1.34 kV as shown in Fig. B.4(a). Att = 0.2 s, the VSC and con

trollers are activated. Consequently, Vde smoothly settles at 1.0 kV set by Vdcref, 
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and the PV matrix current, i.e. ipv, rises to about 1.4 kA, as illustrated in Figs. 

B.4(a) and B.4(b), respectively. The rise in ipv results in a sharp rise in id through 

the feed-forward mechanism of the DC-link voltage controller of the PV system, 

as shown in Fig. B.4(c). Fig. B.4(d) shows that Ps, i.e. power that the PV sys

tem real-power output increases from zero to about 1.36 MW, subsequent to the 

system start-up transient.

—

1

0.8 .

1.2

1.4 (b)

0.7

(c)3

2.14

0 0.1 0.2 0.3 0.4
time (s)

0 0.1 0.2 0.3 0.4
time (s)

1.34 F==(a)

1.36 ∙(d)

Figure 3.2: PV system transient response during the start-up process

Fig. 3.3(a) illustrates the effectiveness of the Phase-Locked Loop (PLL) 

mechanism in synchronizing the dq-frame to the PCC voltage. As Fig. 3.3(a) 

shows, subsequent to the start-up, Vsd and Vsq stabilize and vsq settles at zero in 

less than 0.2 s. Thus, Vsd settles at a value of about 0.4 kV, i.e. the peak value of 

the PCC line-to-neutral voltage. Fig. 3.3(b) and 3.3(c), respectively illustrate the 

waveforms of iq and @s, during the start-up process, and that they are both regu

lated at zero, irrespective of the transient and steady-state excursions of id and Ps, 

Fig. B.4. This confirms that the d and q-axis current controllers are decoupled.
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Figure 3.3: Synchronization and the responses of Vs, iq, and Qs during the start-up process

3.5.2 DC-Link Voltage Control and MPPT

As discussed in Section 2.3, the power of the PV matrix and, thus, the output 

(real) power of the PV system are highly dependent on the insolation and DC- 

link voltage levels. The following case study is to demonstrate the mechanism of 

and the need for a Maximum Power Point Tracking (MPPT) strategy.

Fig. 3.4(a) shows that the initial value of the insolation level is S =1 for this 

case study. This, at the DC-link voltage of 1.3 kV, Fig. 3.4(b), translates into 

an output power of 750 kW, as Fig. 3.4(c) indicates. For S = 1, the DC-link 

voltage Vdc = 1.3 kV is however different than the value corresponding to the 

maximum output power. Att = 2.0 5, v^ is changed to 1.22 kV, Fig. 3.4(b), 

resulting in an increase of the output power to about 1.3 MW, as shown in 3.4(c). 

At t = 2.2 s, the insolation level changes stepwise to S = 0.8 while the DC- 
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link voltage reference is kept unchanged at Vdcref = 1.22 kV. Consequently, the 

output power drops and settles at about 1.0 MW, Fig. 3.4(c). The output power 

is maximized for 5 = 0.8 when the DC-link voltage is reduced to 1.15 kV, at t = 

2.4 s. The optimum DC-link voltage of 1.15 kV corresponds to an output power 

of 1.13 MW, as Fig. 3.4(c) illustrates. This case study clearly illustrates how the 

output power can be significantly controlled (optimized) if the DC-link voltage is 

controlled over only a narrow range.

S 122 -

1.15E

0.9-

0.8E

1.3

2.1 2.2
time (s)

2.3 2.4 2.5 2.6

-------Udcref
----Vdc___

0.75E
1.9

(C)

1.3.......
1.13-.....

1.......

Figure 3.4: Control of Ps by means of DC-link voltage control

3.5.3 Independent Control of Real and Reactive Power

This case study is to demonstrate the capability of the PV system to independently 

control its real- and reactive-power output. For this case study, S = 1. Thus, as 

Fig. 3.5(a) shows, Vdc = 1.32 kV results in a real-power output of about 500 kW, 

Fig. 3.5(b). However, iqref is set to zero and therefore Qs is also zero as illustrated 
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in Fig. 3.5(b). Hence, the PCC phase voltage and the corresponding VSC line 

current are cophasal, Fig. 3.5(c). At t = 2.0 s, Vdcref is changed stepwise to 1.13 

kV. Consequently, Vdc also reduces to and settles at 1.13 kV, Fig. 3.5(a) and 

Ps rises to about 1.5 MW. However, Qs remains unchanged, as shown in Fig. 

3.5(b). The increase in Ps results in a corresponding increase in the line current 

amplitude; however, the line current phase relative to the PCC voltage remains 

zero, as shown in Fig. 3.5(c).

At t =2.1 s, Qs is changed to about 500 kVAr while Vdcref is kept constant at 

1.13 kV. Therefore, the line current rapidly lags the PCC voltage and its ampli

tude slightly increases, Fig. 3.5(c). The change in Qs, however, does not impact 

Ps as shown in Fig. 3.5(b). At t = 2.15 s, Qs is brought back to zero and the PV 

system again exhibits a unity power-factor to the distribution network.

It is interesting to note that the changes of Qs momentarily disturb Vdc whereas 

they do not affect Ps. The reason is that a change of Qs results in a correspond

ing change in the amplitude of the VSC line current which, in turn, results in a 

transient exchange of power with the line reactor of the VSC. Thus, the reactor 

absorbs power when the current amplitude increases, and vice-versa. However, 

since Ps is regulated and does not change, the transient reactor power must be 

necessarily exchanged with the VSC DC-side and DC-link capacitor. Conse

quently, vdc gets disturbed.

3.5.4 Line-to-Ground Fault

To demonstrate the robustness of the PV system against external fault, a case 

study has been investigated in which phase (c) of the high-voltage side of Tri 

is bolted to the ground for a duration of about three 60-Hz cycles. Fig. 3.6
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Figure 3.5: Transient behaviors of Ps and Qs in response to step changes in iqref and Vdcref

demonstrates the PV system response to the fault. During the fault, the voltage of 

faulted phase becomes zero, as Fig. 3.6(a) shows, and the line current becomes 

unbalanced and distorted, as illustrated in Fig. 3.6(b). This also results in fluctu

ations in Ps as well as a drop in its average value, Fig. 3.6(c). The fluctuations 

of Ps translate into fluctuations of Vdc, as shown in Fig. 3.6(d). Fig. 3.6 shows 

that, despite the severity of the fault, however, the PV system remains stable and 

retrieves its normal operation, subsequent to the fault clearance.

3.5.5 Performance without Feed-Forward Compensation

The cases discussed thus far assess the performance of the PV system when the 

feed-forward compensation of the DC-link voltage controller is enabled. The 

case studies illustrate that, employing the proposed control approach, the PV
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Figure 3.6: PV system response to a line-to-ground fault

3.16 3.18 3.2 3.22 3.25 3.28 3.31 3.34
time (s)

0.7 -

1 3Γ
S1.1 
⅞0.9- 

3 0.7-

5Rn AAAO $ XXXXXXX S 0-VTT $ YYYXYYYY

% 0XXXXX
_5 μ......... 1............ 1

2 1.45 VWWWX.

= : ! WMMM

--------- ⅛

SH

AARAAASRdA-

— High Voltage-Side of T,1 ]

system remains stable under various adverse conditions. However, this section 

demonstrates the performance of the PV system when the feed-forward com

pensation is disabled. It is shown in this section that, in the absence of the 

feed-forward compensation the PV system performance highly depends on its 

operating point, which is a property of a nonlinear system such as the PV system 

Fig. 3.7(a) illustrates the start-up response of the PV system when Vdcref is 

set to 1.0 kV and the feed-forward control is disabled. It can be observed that Vdc 

approaches 1.0 kV, but oscillates with a frequency of about 15.6 Hz. A compari

son between Fig. 3.7(a) and Fig. B.4(a) clearly confirms the difference between 

the cases with and without feed-forward compensation. Fig. 3.7(b) shows that 

the oscillations stop when Vdcref is changed from 1.0 kV to 1.1 kV, that is in 

the absence of feed-forward compensation, the system dynamics depend on the 

operating point.
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Figure 3.7: Response of DC-link voltage when feed-forward of the DC-link voltage controller is disabled

In this case study, to find the DC-link voltage at which the oscillations com

mence, vdcref is gradually decreased towards lower values. Figs. 3.8(a) through 

(c) show that, down to 1.02 kV the PV system remains stable and damped. How

ever, the damping becomes poorer as the DC-link voltage is reduced. Fig. 3.8(d) 

shows that the damping becomes zero and oscillations develop once Vdcref reaches 

a value of about 1.015 kV. The sustained oscillations result in similar oscillations 

in the output power, the PCC voltage, and the operating frequency of the PV 

system, as shown in Figs. 3.9(a) through (c). The oscillations penetrate into the 

distribution network and may excite the torsional mode of some motor loads of 

other consumers, as shown in Fig. 3.9(d).
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Figure 3.8: Dependence of the PV system dynamics on the operating point if the feed-forward 

compensation is disabled
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Figure 3.9: Instability of the PV system when the feed-forward compensation is disabled

3.5.6 Power Quality

In view of connection to a distribution network, the impact of a PV system on the 

power quality is of high importance. To evaluate this impact, the following case 

study is conducted in which the harmonic spectrum of the current injected into 

the distribution network is examined. The study is carried out under the condition 

that Vdc = 1.1 kV and 5 = 1, resulting in an output power of Ps = 1.34 MW.
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Fig. 3.10(a) illustrates the spectrum of the VSC AC-side terminal voltage up 

to the 55th harmonic. It is observed that vz includes dominant 49th, 51sf, and 53rd 

harmonic components, in addition to its fundamental component. The reason is 

adoption of a SPWM strategy of which the carrier frequency is 51 times the power 

line frequency. However, due to the VSC filter, the high-order harmonics are 

filtered, such that the VSC line current and the current injected into the network 

have insignificant harmonic distortions, as illustrated in Fig. 3.10(b) and 3.10(c).
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Figure 3.10: Harmonie spectra of vr, i, and igl

3.6 Conclusion

In this chapter, the application of the PV system as a distributed generator is 

demonstrated. The case studies illustrated the need for the feed-forward com

pensation strategy in maintaining the stability of the PV system under various 

adverse conditions. Moreover, the case studies revealed the nonlinear character

istic of the PV system when the feed-forward compensation is not in service. It
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was further shown that the instability caused in the absence of the feed-forward 

compensation not only impacts the PV system locally, but also affects the loads 

connected to the distribution network. Through the case studies it was shown 

that the decoupled current control is achieved, the PV system is able to maintain 

the unity power-factor, and the (real) power delivered to the distribution network 

can be maximized by DC-link voltage control. Moreover in this chapter, the PV 

system stability under a fault was also examined. Finally, the harmonic spectrum 

of the current injected into the distribution network was analyzed.
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Chapter 4

Modal Analysis of the PhotoVoltaic (PV)

System Interfaced with a Distribution

Network

4.1 Introduction

Chapter 3 provided a mathematical model of the PhotoVoltaic (PV) system inter

faced with a distribution network. Chapter 3 further discussed the performance 

of the PV system subjected to disturbances in the DC-link voltage level, the inso

lation level, etc. Moreover, behavior of the system was studied in the presence as 

well as in the absence of the feed-forward compensation of the DC-link voltage 

controller. The approach taken in Chapter 3 was a simulation-based one which 

attempted to provide a better understanding of the PV system and its dynamic 

properties. However, Chapter 3 did not provide a systematic analytical approach. 

In this chapter, a small-signal analysis of the PV system of Fig. 2.1 is conducted 

to characterize the dynamic properties of the PV system, and to characterize the 

dynamic interactions between the PV system and the distribution network/load.
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To evaluate the stability of the PV system under the proposed control strategy, 

and to investigate the potential for interactions between the PV system and the 

distribution network/load, an eigenvalue analysis is carried out. The analysis is 

based on a linearized state-space model of the overall system. The parameters of 

the linearized model are functions of the steady-state operating point.

4.2 Small-Signal Model

4.2.1 Linearization

The models of the PV system, the distribution network, and the load developed in 

Chapter 2 and Chapter 3 are nonlinear. Nonlinear equations are suitable for large- 

signal analysis and simulation studies. Simulation studies provide an insight into 

the behavior of the PV system in response to disturbances. However, they are not 

very useful in providing information about the system stability, and robustness 

against parameters uncertainties. Furthermore, it can not readily be understood 

from the nonlinear equations as to how each dynamic mode is influenced by dif

ferent parameters, e.g. the insolation level, length of distribution line, X/R ratio, 

etc. Therefore, the nonlinear equations are linearized about a system steady-state 

operating point, to provide a linear model. Of course, the derived linear model is 

valid only for small perturbations of the system around the operating point.

For the purposes of modeling and analysis, the system of Fig. 3.1 is catego

rized into three subsystems: the PV subsystem (Xc), distribution network sub

system (Xn), and load subsystem (Xi). Eigenvalue analysis is performed on the 

linearized model of the overall system which includes the foregoing three subsys

tems. The three subsystems are governed by the following nonlinear equations.
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• PV subsystem

Xc = f(X,u)

where

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

V
C 22 %3 %. 'w % *ST

Xc = id ⅛ X3 X4 iq X6 X7 p

uC — Vsd Vsq Vcref)'qref S

• Distribution Network subsystem

Xn = f(Xn,un)

where

An - igld iglq ig2d ig2q Vsd Vsq VId Vlq

JT
Un = id iq & P ild i[q

• Load subsystem

Xz = f (Xz, uj)

where

uZ= Vld Vlq & T 1 m
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The derivation of the nonlinear equations is discussed in Chapters 2 and 3. As 

an example, let us go through the linearization process for a general nonlinear 

system described by,

x = f(x,u) (4.10)

Let xo, be the initial state vector and Uo, the input vector corresponding to the 

equilibrium point about which the small-signal performance is to be investigated 

for the aforementioned nonlinear system described by equation (4.10). Since X0 

and U0 satisfy equation (4.10), one can deduce

xo = f(x0,u0) = 0 (4.11)

If the system is subjected to a small disturbance, there will be perturbation in 

state variables, so the final perturbed state is

X = Xo +X

u=uo+u (4.12)

Substituting the new value of x and u from (4.12) in (4.10), one obtains

X = Xo + ^X

= f[(xo+ x),(u0+u)] (4.13)

As the perturbations are assumed to be small, the nonlinear function f (x, u) can 

be expressed in terms of Taylor’s series expansion. With terms involving second
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or higher orders of x, u neglected. When Taylor’s series is applied on the function, 

f (x, u), it becomes

à; = do +x,=fi [(xo + x), (uo + u)]

σur
(4.14)

Since to = fi (X0, Uo), one deduces

- Ofi- Ofi- Ofi- Ofi-
- -—X1 + ... + -—Xn + -—ui + ... + -—u

8x1 Oxn ∂uι ∂ur (4.15)

with i=l,2,.... ,n one can have

Xj = A x + B u (4.16)

B =

0x
0fi

(4.17)

on
∂ur

(4.18)

All of the partial derivatives in the matrices A, B are evaluated at the equilibrium 

point xo. Following the procedures from (4.10) to (4.16) linearization of PV 

subsystem, distribution network subsystem and load subsystem are carried out.
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4.2.2 Linearized Model of the PV Subsystem

As discussed in Chapter 2, the mathematical model of the PV system is repre

sented by a set of nonlinear equations. Appendix C presents a detailed procedure 

of linearizing these equations based on (4.10) to (4.16). Equations (C.23), (C.28), 

(C.16), C.17, (C.24), (C.29), (C.30) and (C.31) from Appendix C represent the 

linearized equations in state variables Xi, X2, X3, X4, X5, F1, Z2, p.

The linearized form for the photovoltaic system can be written in the following 

form,

5 =EcXc (4.21)

P = FcXc (4.22)

Equations (4.19) through (4.22) constitute a linearized state-space model for the 

PV subsystem. For the PV subsystem, Vsd and Vsq are the inputs obtained from the 

distribution network subsystem, whilst id, 1q, ω and p are the outputs delivered to 

the distribution network subsystem. There is no direct coupling between the PV 

subsystem and the load subsystem.
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4.2.3 Linearized Model of the Distribution Network Subsystem

Dynamics of distribution network in dq-frame are described by (3.5) to (3.12) 

in Chapter 3. The linearized equations of distribution network subsystem are 

presented in Appendix D. Equations (D.1) through (D.8) can be represented in 

state-space form as:

+ Cn + Hnp + Dπ

Via
= EnXn (4.24)

Vsd

7sq
= FnXn (4.25)

where

(4.26)

Equations (4.23) to (4.25) constitute a linear state-space model of the distribution 

network subsystem, id, iq, , and p are the inputs obtained from the PV sub

system, whereas id and iq are the inputs obtained from the load subsystem. îld 

and Viq are the outputs delivered to the load subsystem; and Vsd and vsq are the 

outputs delivered to the PV subsystem. It should be noted that p represents the 

perturbation of the phase angle of Vsabc relative to that of the grid voltage Vgabc. 

The steady-state value of p, is determined based on the real- and reactive-power 

flow in the system.
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4.2.4 Linearized Model of the Load subsystem

In Section 3.4 the mathematical model of a squirrel-cage asynchronous machine 

was presented. Appendix E contains the linearized expressions of equations de

scribing the dynamics of the asynchronous machined load. The state-space rep

resentation of (E.1) through (E.5) is:

(4.27)

(4.28)

(4.29)

-Xi = AιXι + Bι at
Vid

. Viq .
+ C + DιTm

ild =
- =E∕X∕

ilq

where

Xi- ild ilq i2d l2q
lr 

ωr

Equations, (4.27)-(4.29), represent the linearized model of the load. Mechanical 

torque, Tm is the free control input for the asynchronous machine. However, the 

control input as well as other matrices; X[, A[, B/, C/, D;, E/ have different entries 

and dimensions depending on the type of load. Two other types of loads are 

discussed in the next chapter. In the linearized model of asynchronous load, v^ 

and Vig are the inputs obtained from the distribution network subsystem, and S is 

the input obtained from the PV subsystem. On the other hand, id and ~iιq are the 

outputs delivered to the distribution network subsystem.
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4.3 Linearized Model of Overall System

The linearized model of overall system is derived by combining three subsystems 

discussed in subsections 4.2.2 to 4.2.4. The final linearized model is achieved 

by substituting the output(s) of a subsystem in the relevant input(s) of another 

subsystem. The process yields

dXsys 
dt

Ac B.F, Osxm

(B„De + CnEc + HnFc) An DπE∕

CE BzEn X∕

Xsys + B,ygÜ,ys (4.30)

Asys

where,

Usys Vdcref S Iqref (4.31)

x,ys = XT Xr Xr ] (4.32)

An output of interest can be expressed as

y ~ CsysX sys (4.33)

Equation (4.30) has 21 state variables, if the load is an asynchronous machine. 

Each eigenvalue corresponds to one of the system modes. The PV subsystem 

of Fig. 2.1 has 8 modes, the distribution network subsystem also has 8 modes, 

and load subsystem has m modes. Thus, depending on the type of load, the 

number of eigenmodes of the load subsystem varies. Based on the first theorem 

of Lyapunov, the stability of the system is determined by the eigenvalues of the 

system as follows [39]:
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• If the real parts of all eigenvalues are negative, the system is asymptotically 

stable around the equilibrium point;

• If at least one of the eigenvalues has a positive real part, the system is unsta

ble; and

• If at least one eigenvalue has a zero real part, the system stability around the 

equilibrium point can not be judged.

To determine the contribution of each variable in a mode and to evaluate the 

sensitivity of the mode to system parameters, a participation factor analysis [39]

[40] is also conducted in this chapter.

4.4 Model Verification

The linearized model of (4.30) is implemented in MATLAB software environ

ment with the parameters specified in Tables A.1-A.3. The results obtained from 

MATLAB are compared with those of the detailed switched model of the sys

tem implemented in PSCAD/EMTDC environment to evaluate the accuracy of 

the linearized model. The accuracy of the linearized model is evaluated for both 

conditions of disabled and enabled feed-forward compensation in the DC-link 

voltage control loop.

4.4.1 Case 1: Step change in DC-link voltage

Initially, the system of Fig. 4.1 is in a steady state, and the reference commands 

VcLcref and iqref are set to 1.0 kV and zero, respectively. In addition, the feed

forward compensation of the DC-link voltage controller is enabled. The load is
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connected to the middle of the distribution line, i.e. df = 0.5. The machine is 

used as a generator with a mechanical torque of -0.71 pu. At t=2.0 s, a 10% step 

change is imposed on v^c. Fig. 4.1 illustrates the response of the DC-link voltage 

to the disturbance at insolation levels of S =0.1, 0.5, and 1.0. The columns 

(a) and (b) of Fig. 4.1 illustrate the responses obtained from the linearized model 

and the switched model, respectively. It can be observed that the linearized model 

closely agrees with the detailed switched model.
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0.95 .S=0.5
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S1 
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(a) (b)
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0.95======5
1.8 1.9 2 2.1 2.2 2.3
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Figure 4.1: Step response of the DC-link voltage obtained from (a) linearized model, and (b) switched model

Fig. 4.2 illustrates the responses of id and Ps to the aforementioned distur

bance, only for the unity insolation level. Similar to Fig. 4.1, column (a) includes 

the response based on the linearized model, whereas column (b) illustrates that 

obtained from the switched model. Fig. 4.2 shows that subsequent to the dis

turbance, id increases from 2.22 to 2.31 kA, corresponding to a change in the 

real power Ps from 1.35 to 1.41 MW. Fig. 4.2 also confirms the close agreement 

between the linearized model and the switched model.
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Figure 4.2: Response of id and Ps to a step change in DC-link voltage (a) linearized model, and (b) switched mo<

4.4.2 Case 2: Effectiveness of Feed-Forward Compensation

This case was already discussed in Section 3.5. Here, the oscillations caused by 

deactivation of the feed-forward compensation at Vdcref =1.015 kV, are examined 

from a modal analysis perspective.

1.28

0.8

2.1 2.2 2.3
time (s)

— 1.1
31.015

1.28

0.8

2 Cycles 
=0.128 s

2.124 2.252
time (s)

— 1.1

= 1.015 υ

Figure 4.3: Step response of DC-link voltage;(a) with feed-forward compensation, and 

(b) without feed-forward compensation

Fig. 4.3(a) illustrates the response of Vdc to the disturbance when the feed

forward compensation is in service. Fig. 4.3(b) illustrates the response of Vdc 

when the feed-forward compensation is disabled. Fig. 4.3(b) shows that sub
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sequent to the disturbance, the response becomes oscillatory with a frequency 

of about 15.6 Hz. On the other hand calculation of the system eigenvalues for 

this case, based on equation (4.30), reveals the existence of a pair of complex

conjugate eigenvalues at 8.5 ± 100.1j for this case. The imaginary part of the 

eigenvalues corresponds to a 15.9 Hz oscillatory mode, which is in a close agree

ment with the response obtained from switched model, Fig. 4.3(b).

4.5 Eigenvalue and Sensitivity Analyses

To identify the potential interactions between the PV system and the distribution 

network/loads, to identify the nature of interactions, and to determine the robust

ness of the PV system controllers against variation of parameters, an eigenvalue 

analysis is carried out on the linearized model of (4.30). The system parameters 

are reported in Tables A.1-A.6. The analysis indicates that, under the proposed 

control strategy, the PV system dynamics possess more or less the same proper

ties irrespective of the parameters variation. Table 4.1 illustrates the results which

are discussed hereafter.

Table 4.1 reports the eigenvalues of the overall system, i.e. the solution of 

Asys - 2;1 = 0 (i=1, 2, ....,8+8+m), under the condition that the feed-forward 

compensation is enabled. The eigenvalues are calculated for y = 1, le = 15 

km, X/R = 0.6, and df = 0.5. In addition, the DC-link voltage is 1.1 kV. Ta

ble 4.1 shows the eight eigenvalues of the PV subsystem, of which the first five 

correspond to the VSC whereas the other three are due to the PLL. Out of the 

eight eigenvalues of the distribution network subsystem, only the dominant one 

is reported here. Similarly, the eigenvalue corresponding to the load is also the
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Table 4.1: Overall System Eigenvalues and States Participation Factors; y = 1, Ie = 15 km, X/R = 

0.6, d, = 0.5.

Eigenvalues of Asvs and Their Associated Subsystems

41 =
-1350;

PV

A2 =
-672;

PV

A3 =

-228;

PV

24 =

-55;

PV

As =
-2000;

PV

16 =

132.5;

PV

47,8 =
-219±

il):
PV

/9,10 =
-143 ±

8437;
Network

An =
-29 ±

0.4j;
Load

PV
 S

ys
te

m
 S

ta
te

s

XI 0.760 0.163 0.110 0.007 0 0.007 0.007 0.007 ≈0

0.020 0.620 2.090 0.044 0 0.022 0.033 >0 ~0
X3 0.001 0.042 0.479 1.420 0 0.011 0.006 > 0 >0

Ra 0.087 1.770 0.698 0.027 0 0.004 0.011 ~0 ≈0
⅛ 0 0 0 0 1 0 0 0 0
R.6 0.002 0.003 0.230 %0 0 0.920 1.910 0.002 ~0
Ra7 ≈0 ~0 0.153 *0 0 3.220 1.073 ~0 ~ 0

Re8 0.001 ~0 0.353 >0 0 3.090 2.890 0.001 0.012

N
et

w
or

k 
St

at
es

X 0.329 0.033 0.010 ~0 0 0.001 0.002 0.006 >0
8,2 ~0 ≈0 ≈0 ≈0 0 ~0 ~0 0.393 ~0

0.034 0.003 0.001 >0 0 ≈0 ~0 0.003 = 0
≈ 0 >0 =0 >0 0 0.002 0.004 0.0913 ≈0

0.007 %0 ≈0 ≈0 0 ≈0 ~0 0.014 ≈0
8,6 0.001 >0 ≈0 >0 0 0.001 0.001 0.456 ≈0
X,7 = 0 ~0 ≈0 >0 0 20 %0 0.001 =0
⅛ ≈0 ~0 %0 =0 0 0.001 0.002 0.032 ~0

Lo
ad

 S
ta

te
s R, ≈0 ~0 0.006 %0 0 0.033 0.045 ≈0 0.004

Xn ≈0 ≈ 0 ≈0 ≈0 0 0.001 0.001 0.001 0.005

Xn >0 ≈0 0.003 «0 0 0.064 0.0521 = 0 0.500

Ru *0 ≈0 0.001 >0 0 0.005 0.003 ~0 0.504

dominant one. Table 4.1 also shows the state-variables of the overall system as 

well as a measure of the participation of each state-variable in the eigenmodes 

corresponding to the eigenvalues.

The participation of a state-variable xr in a mode corresponding to the eigen

mode 2; is calculated from:
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Pri= vu (4.34) 

where u[ and v, signify the rth elements of the vectors u; and Vi, respectively [38]. 

ui and Vi are, in turn, the eigenvectors of Asys and ASys, respectively, correspond

ing to the eigenvalue 2;. In general, Pri = a+ jb is a complex number. However, 

here the relative participation of a state-variable in a mode is of prime interest and, 

therefore, IIprill = Vα2 + b2 is reported in Table 4.1 rather than pri. In addition, 

the values are rounded off to the thousandth place and any relative participation 

smaller than 0.001 is denoted by "& 0” in the table.

Table 4.1 indicates that while the state-variables of the PV system actively 

participate in the eigenmodes corresponding to 21 to 2g, participation of the net

work and load state variables in those eigenmodes is insignificant. The only 

exception is the network state-variable, Xn1, which participates relatively actively 

in the eigenmode corresponding to A1. Thus, it can be concluded that the PV sub

system eigenvalues and the corresponding eigenmodes are weak functions of the 

network and load parameters. Therefore, if the eigenmodes of the PV subsystem 

are stable by proper design of the controllers, they do not become unstable as a 

result of variations in the network and load parameters. The participation of Xni 

in the eigenmode corresponding to 21 cannot pose any instability complications, 

since this mode is very far from the imaginary axis of s-plane. It should be noted 

that pri also represents the sensitivity of the eigenvalue λi to the element arr of 

the system matrix Asys [41]. Table 4.1 further confirms that the eigenvalues of 

the PV subsystem, i.e. 11 to Ag, are insensitive to those elements of Asys that cor

respond to the network and load subsystems, i.e. arr with r= 9, 10,.... , 16 + m. 
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Similar analyses are carried out also for an R-L load and a rectifier load, which 

are discussed in the next chapter.

Participation-factor analysis is conducted also for the case where the system 

becomes oscillatory in the absence of the feed-forward compensation. This case 

was discussed in more detail in Section 2.5.2. Table 4.2 indicates the participation 

of the state variables corresponding to the eigenvalue in the eigenmode 2g = 

8.5 ± 100.1j. Table 4.2 shows that the participation of state variables Xc2, Xe3 and 

Xc3 is quite significant as compared to the others. In other words, they exhibit the 

largest contribution to the oscillatory mode of the system at the corresponding 

operating point. The linearized model suggest that the foregoing state variables 

are tightly related to the DC-link voltage controller.

Table 4.2: Participation of State-Variables in the Oscillatory Eigenmode, Ag = 8.5 ± 100.1j

States Participation States Participation States Participation States Participation

X1 0.007 R6 0.01 X3 0.006 Xs ~0

Ra 0.6 X, 0.002 ~0 Xn 0.0015

X3 0.5 Xs 0.004 X5 ≈0 Xp ≈0

R4 0.15 X1 0.029 ≈0 8, 0.005

Res 0 X,2 ≈0 ≈0 Ra ≈0

The movement of the eigenvalue Ag can be explained with reference to the 

matrix, Ac,(4.19). The diagonal element a22 of Ac is equal to -875 when the 

feed-forward compensation is in service at Vdco = 1.1 kV. However, elimina

tion of the feed-forward compensation makes a22 equal to 223 at Vdc0=1.015 kV. 

The absence of feed-forward compensation combined with a change of the volt

age level has a major impact on the value of a22. Equation (C.28), Appendix 
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C, formulates the value of a22, in the presence and absence of the feed-forward 

compensation, respectively, as:

. ipvo u Lido ipvOLido -
(a22)y=1 = —- - - - - - - - - - - - - - - - - - - - 7- - - - - - - - - - (4.35)CVdcO C CVsdTi CVsdOVdcOTi

⅛-δ (436) 
where the parameter u is defined in Appendix C. The quantity, co - cv0ovd0r, is 

considerably larger than 40 - ". Hence, when y = 1 a22 takes a negative value 

and results in an eigenmode in the left half plane, far from the origin. However, 

this is not the case when the feed-forward compensation is disabled, i.e. γ = 0. 

a22 becomes equal to 40 - " which is a function of Vdc0.CVdcO C
Dominant eigenmodes, 23 = -228 and 24 = -55, are resulted in the PV sub

system for the case when the feed-forward compensation is active. State variables 

corresponding to the DC-link voltage controller have the highest contribution in 

the aforementioned dominant eigenmodes as presented in Table 4.1. Table 4.1 

conveys the information that, in the dominant mode 23, the participation of PLL 

state variables are quite significant as compared to the eigenmode 24. The rea

son is that presence of feed-forward compensation tends to decouple the voltage 

control loop from the rest of the system. However, the decoupling is no longer 

maintained in the absence of feed-forward compensation and a complex conju

gate eigenmode, 2g = 8.5 ± 100.1j is resulted with significant participation of 

state variables that correspond to the DC-link voltage control loop and the PLL . 

Variations of 23, 24, and Ag with respect to Vdco are plotted in Fig. 4.4.

Fig. 4.4(a) plots the variation of the real part of the PV system dominant 

eigenmode as a function of Vdco when feed-forward compensation is disabled. 
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Fig. 4.4(c) shows that with the increase in Vdc0, the dominant eigenmode moves 

to the left of the s-plane. A positive real part is resulted if Vdco is reduced to about 

1.015 kV. The dominant eigenmodes are also plotted for the case when the feed

forward compensation of the DC-link voltage regulator is active. Figs. 4.4(b) and 

(c) illustrate that Vdco has insignificant impact on dominant eigenmodes. Hence, 

the proposed control strategy with feed-forward compensation in the DC-link 

voltage regulator serves the best purpose for maintaining the stability under vari

ous operating conditions.

B... feed-forward compensation.is disabled.-5 
4-15 
% -25 
6 -35

-45

—= feed-forward compensation is enabled(b)-207
P -209 
« -211 
6 -213 

-215

-53

7 -54

.#.. feed-forward compensation is enabled.-{c)

6 -55
-56

1 .01 1.03 1.05 1.07 1.09
VdcO

Figure 4.4: Patterns of variation for the PV system eigenvalues as a function of DC-link voltage 

both in the presence and absence of feed-forward compensation

Figs. 4.5 to 4.8 illustrate the patterns of variation of the real-part of the system 

eigenvalues, as a function of various parameters. Thus, only the eigenvalues with 

noticeable variations are considered; the other eigenvalues are found to be almost 

fixed at their original locations. Fig. 4.5 illustrates the eigenvalue variations as 

a function of the load distance from the PV system, i.e. df. Thus, a value very 
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close to zero (unity) df corresponds to the case where the load is at the PV system 

(substation) terminals.

Fig. 4.5 shows that (only) one of the eigenvalues of the network subsystem 

gets closer to the imaginary axis of the s-plane, as the distance between the load 

and the PV system increases. Nonetheless, the corresponding mode remains sta

ble and fast.

2 -170 
6

-143 -

-200

-120 -

:::::: : ===== induction Machine Load
-_____ I_____ I_____L_____ I_____ 1 ---
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9d/

Figure 4.5: Eigenvalue location for a network mode as a function of the load distance from the substation

Fig. 4.6 illustrates the movements of a network eigenvalue and a PV sys

tem eigenvalue as functions of the line length le, ranging from 5 to 40 km. As 

Fig. 4.6 indicates, as the line length increases the network eigenmode becomes 

more stable whereas the PV system eigenvalue moves slightly to the right. This 

mode of the PV system is very far from the imaginary axis of the s-plane, and its 

movement to the right cannot cause any instability issues. The change of the PV 

system eigenvalue is less than 10% as Fig. 4.6 shows.

Fig. 4.7 shows the loci of a network eigenvalue and a PV system eigenvalue, 

as a function of the line X/R ratio. Fig. 4.7 illustrates that one of the modes 

become more stable as the X/R ratio increases, whereas the other one exhibits 

an opposite pattern. As understood from Table 4.1, when the feed-forward com

pensation is activated none of the corresponding eigenmodes is a dominant one.
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Nevertheless, both of modes remain stable and very fast, irrespective of the line

X/R.
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Figure 4.7: Eigenvalues loci as a function of line X/R ratio

The impact of the solar insolation level, S, on the eigenvalues of the PV sys

tem is illustrated in Fig. 4.8. Here, (only) two of the PV system modes move as 

the insolation level changes. In this case, the two modes exhibit opposite patterns 

of variation as S increases. The modes remain stable and very fast, regardless 

of the insolation level. There exists no noticeable movement in the eigenvalues 

of the network and load subsystems due to the insolation level variations, and 

therefore they are not plotted here.
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Figure 4.8: Pattern of variation for PV system eigenvalues as a function of insolation level

Conclusion

This chapter presented a modal/sensitivity analysis on a linearized model that in

cludes the PV subsystem, the distribution network subsystem, and the load sub

system. The modal analysis facilitates characterization of dynamic properties of 

the PV subsystem, to evaluate the robustness of the controllers, and to identify the 

interactions between the PV system and the network/loads. The results confirm 

that, under the proposed control strategy, the dynamics of the PV system are de

coupled from those of the distribution network. This, in turn, alternatively means 

that the PV subsystem does not destabilize the distribution network subsystem.
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Chapter 5

Impact of Other Types of Loads on System

Dynamics

5.1 Introduction

Chapter 4 introduced a modal analysis for the PV system interfaced with a distri

bution network which supplied a squirrel-cage induction machine as the load. 

The results of the modal analysis confirmed that, under the proposed control 

strategy, dynamics of the PV system are decoupled from those of the distribu

tion network/load. It was further demonstrated that the PV system dynamics are 

not influenced by the network or the load. This chapter re-evaluates the stability 

of the PV system as when different types of loads are in the proximity of the PV 

system. The loads of consideration are: (i) a series R-L load, and (ii) a controlled 

rectifier load.

70



5.2 Linearized Model of the Series R-L Load

Fig. 5.1 illustrates the schematic diagram of a three-phase, series, R-L load. 

To derive a state-space model for the load, the inductor current, which is also 

the load current, is taken as the state variable. Thus, one can write the equations 

describing dynamics of the R-L load in the dq-frame as: 

dild Rι. . 1
— — —lld + Ollq + —Vld 

LI

diιq R. 1 dr = * L’r
The linearized form of (5.1) and (5.2) is written as:

AC R-L Load
. L∣ R1

Via la,mm
Vlb Ib,mm------- - ,

V∣c ic,MMH

Figure 5.1: Schematic diagram of R-L load

did Ri- ~ 1. .
dt - Li'ld + 00tlq + LVld * 1lq00 

dilq ~. Rii 1~ . . —— = -Oolld - —lq + —Vlq - ldo( at Li Li

(5.1)

(5.2)

(5.3)

(5.4)

Equations (5.3) and (5.4) can re-written in the compact state-space form:

Lx = AX,+B, Vld + C + D[Uι (5.5)
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(5.6)

where

(5.7)

Equations (5.5) and (5.6) constitute a linearized model of the series R-L load. 

In (5.5), there is no free control input as in (2.10), where induction machine, 

the load. This, in turn, means that Dι is a null matrix. In (5.5), Vld and vιq are 

the inputs obtained from the distribution network subsystem, and ω is the input 

obtained from the PV subsystem, ild and lιq, which are also state-variables of the 

series R-L load subsystem, are the outputs delivered to the distribution network 

subsystem. The linearized series R-L load subsystem is incorporated in (4.30) 

to complement the linearized model of the overall system.

5.3 Linearized Model of the Bridge Rectifier Load

Fig. 5.2 illustrates the schematic diagram of a thyristor-controlled rectifier sup

plying a series, R - L, DC load. If the inductor current is picked as the state 

variable, then

T dιrec _ . ι
Lrec — Areclrec T Vrec at

(5.8)

where Vrec is the rectifier DC-side voltage. It is now assumed that the rectifier 

operates in the continuous mode, i.e. irec $ 0, and Lrec is so large that irec is es

sentially ripple-free. Thus, vrec can be approximated by its averaged component,

72



Bridge Rectifier

Vrec
Vila -a.
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Vie lic

Figure 5.2: Schematic diagram of rectifier load

as

__ 3 V3
Vrec & Vrec — -Vcosa

=3V3 V(Re(V2))2+(lm(V)2cosa (5.9) 

where a is the firing angle, and VI is the magnitude of vi. Substituting for Vrec 

from (5.9) in (5.8), one finds

Lpedirec = -Rrecirec + 3V3 (Re(V))2+ (Im(V))2cosa. (5.10)
dt

An expression for the load current can be derived using the principle of power 

balance. Thus

3 >
-Re(Vi iι ) = irecVrec

=iec3.3 Re(VD)2 + (m(V)2cosa (5.11)

Vi

The fundamental component of the phase current of a bridge rectifier is delayed 

by the angle a with respect to the corresponding phase voltage [42]. Therefore, 

73



if iι is approximated by its fundamental component, one can write

7 =7Ve-je (5.12)

where iι is the magnitude of the space-phasor equivalent of the load (fundamental) 

current; vi/Vi is the unit vector collinear with vi. Substitution of i, from (5.12) 

in (5.11), and simplification of the resultant in view of vivi* =V2, yields

- 2√3
iι = -irec (5.13)

Substituting for iι from (5.13) in (5.12), one deduces

W —( )e lrec T Vi
=(21)-"i. (5.14)

" V(Re(ViD)2 + (Im(ViD)2

Equations (5.10) and (5.14) constitute a state-space model of the controlled rec

tifier load in the space-phasor form. Their linearized counterpart can be repre

sented in the dq-frame as:

3√3 
irec H---------- V/ COS a 

π
direc _ Rrec 
dt Lrec

. 2 V3.
lid — lrec 

π
COS Q

. _2 V3.
lla — lrec 

π

(5.15)

(5.16)

(5.17)sin a

Equations (5.15)-(5.17) can be re-written in the form (5.5)-(5.6), for the com

pletion of the overall system model. It should be noted though that the matrices 

Aι, Bι, Cι, Dι, and Eι are different than their counterparts for the series, R - L, 

load of Section 5.2.
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5.4 Eigenvalue Analyses

Figs. 5.3 to 5.6 demonstrate the variation of the real-part of the system eigenval

ues, as a function of various parameters of the series R-L load and the rectifier 

load. The figures include only those eigenvalues that vary noticeably as compared 

to the others. Parameters for the series R-L load and rectifier load are provided 

in Tables A.2 and A.3, respectively. Figs. 5.3(a) and 5.3(b), respectively, illus

trate the variation of dominant eigenmode as a function of the load distance from 

the PV system, i.e. d∕, for series R-L load and rectifier load.

(a)120

143

—==Series R-L Load

% -170

-200

: (b)120

143

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

% -170

-200

Figure 5.3: Patterns of variation for the PV system eigenvalues as a function of insolation level

Figs. 5.4(a) and 5.4(b), respectively, plot the variation patterns of the domi

nant eigenmodes as a function of the line length le, ranging from 5 to 40 km, for 

the series R-L load and the rectifier load. The figures indicate that the eigenval

ues of the distribution network subsystem and the PV subsystem are the ones that 

are mostly influenced by line length, the eigenvalues’ real-parts indicate that the 

network eigenmodes becomes more stable as the length increases whereas the 

PV subsystem eigenmodes move slightly to the right similar to the case where 

induction machine was used as the load. With the variation of the line X/R ratio, 
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the loci of the distribution network and load subsystem eigenmodes are illustrated 

in Figs. 5.5(a) and 5.5(b), for the R - L load and the rectifier load, respectively. 

The impact of the insolation level, S, on the eigenvalues of the PV system is il

lustrated in Fig. 5.6. The figure shows that the modes of the distribution network 

and those of the load remain stable irrespective of variations of the insolation 

level.
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Figure 5.4: Eigenvalues variation as a function of the line length
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5.5 Conclusion

This chapter re-evaluated the stability of a PV system that is connected to a dis

tribution network, when two different types of loads are supplied by the network. 

The results obtained from these two loads are in close agreement with those ob

tained for the induction machine load. Thus, it can be concluded that the PV sys

tem with feed-forward compensation in the DC-link voltage controller maintains 

its stability and dynamic properties in spite of major variation in the line length, 

line X/R ratio, solar insolation level, load distance, and, more importantly, the 

load type.

Although it can be argued that only three types of loads are modeled in this 

thesis. It should be noted that practical loads in utility systems are often consid

ered as a weighted composition of these three types. Therefore, the results can 

be relied upon for a real world scenario.
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Chapter 6

Summary, Conclusions, and Future Work

6.1 Summary and Conclusions

In this thesis:

• a detailed mathematical model for a single-stage, three-phase PhotoVoltaic 

(PV) system is decoupled;

• a novel control strategy is proposed which adopts an inner current-control 

loop and an outer DC-link voltage control loop. The current control mech

anism renders the PV system protected against faults and overloads. The 

DC-link voltage control enables the output power control/maximization;

• a feed-forward compensation mechanism is proposed for the DC-link volt

age control loop to mitigate the impact of nonlinear characteristic of the 

PV matrix, to permit the design and optimization of the DC-link voltage 

controller for a wide range of operating condition. The effectiveness of the 

feed-forward compensation is verified through digital time-domain simula

tions carried out on a detailed switched model of the overall system;
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• performance of the developed PV system as a Distributed Generation (DG) 

is evaluated and most important transients of the PV system are identified;

• a comprehensive modal/sensitivity analysis is conducted for the first time on 

a linearized model of the overall system i.e. the (PV system, the distribution 

network, and the load), to evaluate the robustness of the controllers, and to 

identify potential interactions between the PV system and the network/loads.

The conclusions of the thesis are as follows:

• the feed-forward compensation strategy of the DC-link voltage control loop 

is very effective in maintaining the stability of the PV system. In the absence 

of the feed-forward compensation, it is difficult to design a controller that 

guarantees stability in different power levels;

• the current-control strategy is an effective means of protecting PV system 

against short-circuit faults and overloads. More importantly, it virtually de

couples the dynamics of the PV system and those of distribution network;

• under proposed control strategy, there is a weak dynamic coupling between 

the PV system and the distribution network. Thus, an otherwise stable PV 

system does not destabilize the distribution network or itself when it is con

nected to a distribution network;

• the proposed control strategy enables the control/maximization of the PV 

system output power. It also enables the operation of the PV system at 

different power factor including the unity power-factor;

• the modal analysis indicates that, under proposed control strategy, the load 

type has no appreciable impact on dynamic properties of the PV system and 
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those of the overall system; and

• the modal analysis further confirmed that the PV system dynamics are not 

influenced by the distribution line length, the line X∣R ratio, and the distance 

between the loads and the PV system.
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6.2 Recommended Future Work

The following topics are suggested for future research in this area:

• the islanding behavior of the PV system under proposed control strategy is 

worth investigating in a future research. Thus, the adoption and incorpora

tion of a suitable islanding detection scheme may be necessary in a practical 

system;

• a more detailed analysis and examination of the PV system behavior under 

faults is suggested. The result would be of interest to distribution system 

planners and utility companies; and

• the developed model can be augmented with a Maximum Power-Point Track

ing (MPPT) strategy, and the model analysis repeated to investigate the im

pact of MPPT scheme on the PV system dynamics.
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Appendix A

System Parameters

The Parameters of the PV system, distribution line, induction machine, series 

R-L load, and rectifier load are presented in Tables A.1-A.6.

Table A.1: PV System Parameters

Parameter Value Comments

Trl nominal power 1.7 MVA

Trl voltage ratio 6.6/0.48 kV Y/Delta

Trl leakage inductance 0.1 pu

on-state resistance of valves 3 mQ2

interface inductance, L 100 uH

interface resistance, R 3.0 mQ

filter capacitance, C/ 300 uF

switching frequency 3060 Hz 51× 60 Hz

DC-link capacitance, C 5000 μF

# of PV cells per string, ns 1500

# of PV strings, np 176

ideality factor, A 1.92

temperature coefficient, ka 0.0017 A/K

cell short circuit current, Iscr 8.03 A at T, = 300 K

reverse saturation current, Irs 1.2 × 10-7 A
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Table A.2: Controller Parameters

Parameter Value Comments

kp (for τi = 0.5 ms ) 0.2 Ω

k; (for τi = 0.5 ms ) 0.6 Ωs^1

Bi 307.3 1/Vs2

B2 202.9 1/Vs3

Ba 600 s-1

a -0.77 As~l∕V2

Q2 -328.2 As-2/V2

a3 909 s-1

Table A.3: Distribution Line Parameters

Parameter Value Comments

grid voltage 

line inductance, Li + L2 

X/R ratio 

line resistance 

line length, le

6.6 kVrms

0.105 mH per km 

0.6

based on £ & X/R 

15 km

1-1
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Table A.4: Induction Machine Parametrs

Parameter Value Comments

nominal power 373 kVA

nominal voltage 6.6 kVrms ι-ι
nominal frequency 60 Hz

rotor/stator turns ratio 1.0

stator resistance, Rs 0.0184 pu

rotor resistance, R, 0.0132 pu

magnetizing inductance, Lm 3.8 pu

stator leakage factor, os 0.0223

rotor leakage factor, o, 0.0223

inertia constant, H 2.1 s

mechanical damping, D 0.135 pu

Table A.5: R-L Load Parametrs

Parameter Value Comments

nominal power 373 kVA

nominal voltage 6.6 kVrms ι-ι
Inductance, L1 95 mH

Resistance, R 1112

Power Factor 0.95

Table A.6: Rectifier Load Parameters

Parameter Value Comments

nominal power

nominal voltage 

DC Inductance, Lrec 

DC Resistance, Rrec

373 kVA

6.6 kVrms

2.0 H

212 Ω

ι-ι
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Appendix B

PV System Start-Up and Normal Operation 

for series R-L load and Rectifier Load

of : —...........:..........
0 0.1 0.2 0.3 0.4

time (s)

— 0.7

2.14
(C)

0 0.1 0.2 0.3 0.4
time (s)

Figure B.1: PV system transient response during the start-up process with series R-L load

0
-o.5E

0

Figure B.2: PV system transient response during the start-up process with series R-L load
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Figure B.3: PV system transient response during the start-up process with rectifier load
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Figure B.4: PV system transient response during the start-up process with rectifier load
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Appendix C

Linearized Equations of the PV Subsystem

the closed-loop transfer functions of d- and q-axis current controllers are,

= 1 

Idref Tis + 1 
(C.1)

4= —— (C.2) 
Iqref Tis +1

Equations (C.1) and (C.2) can be written in time-domain form as follows, 

did 1.1. N — — ld -| ldref (C.3) 
dt Ti Ti 

di. 1 1 
- =-iq +-iqref (C.4) 
dt Tit Ti J

If a small perturbation around steady-state is assumed, then the final perturbed 

state is 
d(ido+id) 1. . 1. - 

, = (ido + id) + (idrefo + idref) (C.5) 
dt Ti Ti 

d(iqo+iq) 1.1. . 
— = (iqo + iq) + (iqref0 + iqref) 
dt Ti

(C.6)
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(a + b)

(0-9)

Equalizing the perturbed form on the left hand side and right hand side of

equations (C.5) and (C.6) one deduces,

did 
dt

1.-11 
τi (C.7)

diq 
dt

1.
-I1
Ti

(C.8)

tref = £ 1 (k,(s)) * (v2eref ~ v2c}+ y’gyde
2Vsd

(C.9)

Assuming a small perturbation around the steady-state, idref0, one obtains,

^drefQ + ^dref = € (ky (s)} * (VdcrefO + ^dcrefj - (VdcO + Vdc) 7

HY-
(ipvo + ipv) (Vaco + Vdc)

3(vsdo + Vsd)
(C.10)

Equation C.10 can further be simplified to

. ≈ —1 2 - 2)^drefQ ^ ^dref =€ {ky (s)} * (VdcrefO + ^dcrefJ - (dco ^ Vdc2 J

⅛, t Che j 43 V 
go) 0

+^Λ+^⅛+ω∕"M V,3o 11
3Vsdo ∖ Vsdo) 0330

Jdo LL-S

Neglecting second and higher-order terms of Vdcref and Vdc,as well as the product 

IpvVdc and equalizing the perturbed states of the both sides of Equation (C.10), 

one deduces

^dref ~ ^ (k. (s)) + (2VdcrefoVdcref 2VdcoVac}+y,

‘ 2VsdO
Vdco’pv , 2ipvoVdco"sd

AVsdo . 3v240
(C.12)
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Defining ui = 2VdcrefoVdcref, u4 = sd, and K2 = 2Vdcodc Equation (C.12) is 

re-written as,

Tdref == £ 1 (k, (s)) * (ü-*2}+yIPV0X2
3VsdoVdc0

2Vdcoipv 2ipvoVdc0
+ γ ----- — + Y-----------'

DVsd0 3v240
W4(C. 13)

substituting for ky(s) = ^ in (C.13), one finds

~ I + Q2 . _ ipvO2 2Vdcolpv
tdref = £ —---------- - * (ui - X2) + Y-----------+ Y-------

1 (s(s + Œ3)) 3VsdOVdcO SVsdo
2ipvoVdco .

+Y-2- - - U4. (C.14)

Let us define

and

then

X3 =
(1-X2)
s(s + Q3)

— = X4 at

d.4
— = —Q3X4 -X2 + U1. 
at

Moreover, (C. 14) can be rewritten as:

- _ ipv0 . 2Vdc0~ 21pvOVdcO.
tdref = Q1X4 + Q2 3 + Y-----------X2 + Y.----- lpv + Y2---- U4

X 3VsdoVdcO 3Vsd0 3Vsdo

(C.15)

(C.16)

(C.17)

(C.18)

To find an expression for ipv, (2.1) is perturbed around the steady-state point.

Thus,

ipvo + Ipv = nplscr(So + S) - npl,s{ exp⅛‰ + ⅜) -1, (C.19)
VL \kl A 7. )
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The exponential term of (C. 19) can be expanded using Taylor’s series expansion.

Thus, neglecting second and higher order term (C.19) is simplified to

~ ~ (q.)'pv = IscrS -Aplrs (ETAdc) (C.20)

Introducing u =GnpIrs(ATA) and multiplying both sides of (C.20) by 2Vdco one 

obtains,

ipv - IserS . X2
2VdcO

Substituting for ipv in (C.18), idref assumes the form:

~ _ ipvo ~ u. , 2ipvoVdcO Nldref = Œ1X4 + Q2X3 + Y--------- X2 “ Y----- X2 +IscrSH Y—2---- U4. (C.22)3VsdoVdcO 3Vsd0 — 3v2
Substituting for idref in (C.7) and defining 5 = id and ü2 = S it becomes /7 •

dxl 1. lpvO. .1.1. (Iscr. 2
— = —Xi+ Y--------------- X2 - Y--------- X2 + — Q2X3 + — &1X4 +-2
dt Ti SVsdydcOTi ^Vsdfi Ti Ti V

0y2pvOYdeQ54 (C.23) 
3T,vS40

Similarly, introducing iq = K5 and iqreff = 3, (C.8) can be re-written as:

dX51 1
— = —X5---- u3 dt Ti Ti

(C.24)

A linearized dynamic model of the DC-link voltage, based on (2.18), is de- 
∖ 

rived as: _

Cd . - 3. ~ _22 (VdcO + Vdc) = (ipvO ^ ipv) (Vdc0 + Vdc) - Z ydθ + Üd) (Vsd0 + Vsd)

3 /. * _ 3L. ~ d/. *
—2 (1q0 + 'q) (Vsq0 + Vsq) 2 (‘do *'d) di (‘do *'d)
3L. ~ d(. %) 3R . *2 2 (4q0 + 'q) dt ('q0 +1q)2 ('do + 'd)
3R. ~22 ('q0 + ‘4) (C.25)
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Introducing Ü5 = Vsq neglecting the second- and higher-order terms of id, iq, and

neglecting the products ipvVdc, and idsd, iqVsq, (C.25) can be simplified as:

Cdx2 3 3L. d% .
2dr = 2Vsd0*A - (2)40dr - 3R4A0*I

ipvo J ~ 3L. dχζ 
12v X2 * VdcO'pv - SKg0X5 - 2"s40X5 — (2)'40dt

3. _ 3. _
2'do"4 - 2'q0"5 (C.26)

Equation (C.26) can be expressed in terms of η, K2, K3, ¾, and ⅜ by substitution

of Ipv, ¾, and ⅞ from (C.21), (C.23) and (C.24). Thus,

Cdx2 3 _ 3Lizo. . _ ipvOJ u.
- = -Vsd0-1 + -—X1 - 3Rld0X1 + •----- X2 - ~X2
2 at 2 ZTi ZVdcO 2

Ligo. ipvoLido . 3LioQ2. 3LioWi.
-,—X2 - Y.------------ X2 ———X3 —X—X4

: 2VsdTi 2VsdOVdcOTi 2Ti 2Ti
3 . 3Ligo. . _ 3L_

-Vsq0X5 - 5 Y5 - 3R1q0X5 + VdcolscrU2 + 03
2 ZTi Zli

- LipvoVdcO. 3.. 3..
. -Y------ 5—U4 — ~1d014 - ~1q0U5TVsdo 2 2

Multiplying the both sides of (C.27) by 2/C, one deduces:

(C.27)

dK2 3 _ 3Ligo. 6Ri0.
— = -VsdoX1 + -X1 - -X1 + 
dt C CTi C 

ipvO. u. Lido _
——X2 - X2 - Y-—X2
CVdco C CVsdTi

ipvoLido . 3LioQ2. 3LidoQ1.
CVsdoVdcoTi 5 CTi CT

3 . 3Li,o. 6Riq0. 2VdcoIscr.
-Vsq0X5 + X5----- X5 + —G—U2— Cti — —

2Vdcolscr- 3. 3. - 2LipvoVdco, 3. - Go+———U2 — ldoU3 - doU Y-—2—U4 - lq0U5 (C.28)
CCC CTiVsdo C

The PLL linearized equations assume the forms: :

dâe — = BX+ Vsq (= «5) (C.29)
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dx = x (C.30) 
at

P = 8R6 + 82R7. (C.31)
at
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Appendix D

Linearized Equations of the Distribution

Network Subsystem

digld Riι % N. 1.
lgld + Wolglq + τ Vsd τ Vld + Olglq0 at L1 L1 L1 (D.1)

(D.2)digiq ~ Ri- N_ 1. J.y. — @olgld τ lglq + , Vsq , Vlq Olgld0at L1 L1

di,2d R2- ~. 1 1. . _.,=, lg2d + (olg2q + τ Vld + , Vg Sin 000 + Wlg240 alL2 L2 L2 . (D.3)

dig2q ~ R2~ 1. 1. -
, = Wolg2d τ lg2q +, Vlq + , Vg COS 800 + Wlg2q0at L2 L2 L2 (D.4)

dvsd 1. N. . _
dt 5c'd c 'sld *OoVsq* Vsgo" (D.5)

dvsq 1. N. - .
,. = ⅛ lglq @oVsd VsdO( at Cf

(D.6)

dvιa 1. 1. 1. ~
dt = ci'gld - ci'82d + WOVlq - cilid + Vlgod (D.7)

dvιq 1. 1, _ 1- .
— = —lglq lg2q — ω0vld lIq + VlqO( at Cl Cl---------------- Cl (D.S)
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Appendix E

Linearized Equations of the Load

Subsystem

diid (1+ or) R,%
dr = (1+0(+c,-1Zme*°0ttq 

1 Rr-. 1
+— I—-—,2d + Vld+ l1qo@)(1+op)(1+T)-1Lm Lm 1

(E.1)

dilq ~ (1+o) R,~
dt - "otid (1+0(+0,-1Lm'q 

1 R,r 1.
+(1 + cp)(1 +0,-1 Lw'2q + LMVlq (E.2)

di2d 1 R,r
dt 5 (1+c,(1+c,)-1Lmd

1

(1+0s) R,~ ~
— —------5------ -—-2d + (@o — Oro) 12q + l2400)r - 12q00)(1+op)(1+os)-1Lm 1 1 1 (E.3)

di2q _ .
dt - (1+c,(1+c,-1Lm°4

(1+os) Rr^ , *
1—01—∖—17 2q ~ (W0 - Wr0) 2d + l2d0Or - 12d00 (1 TOr)(l T Os) ILm

1 R,.

(E.4)
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dûr _ 3Lmi2q0 -, 3Lmi2d0 %
dt - 2J[(1+0,)(1 + o,)-1]'d+ 2J[(1+0,(1 + ,) - 1]129

3Lmilq0 ~ 3Lmild0 D_ Tm
2J[(1+op)(1 +o)-1] 2J[(1+o)(1+ ,) - 1] J'
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