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Abstract 

Naphthenic acids (NAs) are the main toxic component of oil refinery wastewater and require 

special processes to be removed. Harnessing bacterial biodegradation for NA removal has the 

potential to be effective, yet NA-degrading bacteria and pathways are poorly understood and 

uncharacterized. To improve our understanding of NA degradation, I characterize the 

metagenomes of novel NA-degrading bacterial communities seeded in NA-enriched 

granulated activated carbon (GAC) filters. I demonstrate methods that maximize the 

throughput of extraction, sequencing, and annotation of novel metagenomes - producing 72 

MAGs and other 5432 circular contigs - 226 of which were putative phages. I also include 

state-of-the-art protein structure prediction and structure homology search tools, which 

greatly enrich annotations of novel sequences that are below the threshold for homology 

finding by sequence alone. Overall, these approaches unveiled a diverse and constantly 

changing consortium of novel bacteria and many potential NA-degrading genes. 
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Summary for Lay Audience 

The amount of toxic wastewater accumulated by the oil industry has increased exponentially 

since it began its operations, and there is no cost-efficient, sustainable, yet effective way of 

reclaiming this wastewater. The major challenge is naphthenic acids (NAs), which are a 

natural byproduct of crude oil refining. NAs are complex, difficult to remove without special 

processes, and highly toxic. In wastewater treatment, however, there is potential for 

harnessing bacteria that can degrade NAs. These bacteria have been observed before, but 

there is no known bacteria or community that degrades the full range of NAs efficiently, and 

not many NA-degrading genes are known. The study of NA-degrading bacteria and how they 

remove NA will be foundational to creating future bioengineer wastewater treatment 

systems. In this thesis, I characterized NA-degrading microbial communities living in 

granulated activated carbon (GAC) filters from an oil refinery wastewater treatment collected 

over time. I first demonstrated how to collect DNA from these samples and sequence the 

DNA using Nanopore – a state-of-the-art DNA sequencing technology. This technology 

allowed me to develop methods to reconstruct entire bacterial genomes from GAC, and I 

observed a highly diverse bacterial community that is constantly changing over time and is 

mostly composed of bacteria never sequenced before. Also, I annotate these bacterial DNA 

sequences to unveil their biological capabilities and discover several genes likely related to 

NA degradation. Since these bacteria are novel, however, there were still a lot of 

uncharacterized DNA sequences that could be important. I tested a new annotation strategy 

on a small subset of viruses in the GAC community called bacteriophage, where I identified 

unknown sequences by predicting 3D models of the DNA products, the proteins, and 

compared them against other known 3D models of proteins. This approach drastically 

improved the ability to identify what the viruses are biologically capable of since protein 

structure comparisons are generally more reliable than sequence comparisons when inferring 

the functions of proteins. Though more work is needed to confirm NA-degrading bacteria 

and genes, this thesis sets a foundation for future analysis of NA-degrading bacteria and 

pathways.  
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Chapter 1  

1 Introduction 

The oil industry is a multi-trillion-dollar industry and plays a crucial role in the global 

economy and energy needs. Unfortunately, oil has significant environmental impacts that 

begin from the extraction and processing of crude oil to its usage as an energy source. 

Much progress has been made in terms of addressing this issue as alternative clean 

energy sources become increasingly adopted and collective efforts have been made to 

implement green operating regulations in the oil industry (1,2). However, significant 

progress can still be made to reduce the production of oil refinery wastewater, which 

remains an industry-wide challenge. 

1.1 The Substantial Challenge of Naphthenic Acid Removal 
in the Oil Industry 

The process of refining crude oil consumes vast amounts of freshwater and outputs toxic 

wastewater at a rate that outpaces current standard practices to recycle or reclaim this 

wastewater from its major toxic components (2,3). Oil refinery wastewater (ORW) is 

extremely heterogeneous, and its components can vary in content and concentration, but 

consists of inorganic and organic components such as hydrocarbons, phenols, nitrogen, 

sulfur, salts, heavy metals, and other suspended solids. Notably, ORW naturally contains 

naphthenic acids (NAs) - a broad family of alkyl substituted acyclic or cycloaliphatic 

carboxylic acids classically represented by the formula CnH2n-zO2,where z represents the 

degree of cyclization multiplied by 2 (4). NAs are the main toxic component of ORW and 

present significant challenges to refineries. Not only do NAs have corrosive properties 

contributing to equipment wear and tear, highly cyclic or branched NAs are recalcitrant 

to natural degradation or standard ORW treatment methods, requiring special processes 

that have high operational costs and are impractical for widespread use (5,6). These 

treatment methods aim to either degrade NA into less toxic intermediates with advanced 

oxidation processes, or to simply capture NAs either on a membrane filter, through 

coagulation, flocculation or granulated activated carbon beds (7). Advanced oxidation 

processes for example, can risk degrading NAs into more toxic intermediates that cannot 
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be broken down further (8). Methods that rely on capturing NAs instead allow for the 

reclamation of freshwater from wastewater to acceptable standards but generate waste in 

another form as the capture substrate needs to be continually replaced and replenished. 

Though these methods can be sufficient for individual small-scale refineries, they are 

unsustainable as the industry produces ORW generation at a rate that necessitates the 

storage of wastewater in massive reservoirs called tailing ponds, where wastewater can 

be stored for many years before being recycled or treated. Figure 1 displays the total 

estimated area occupied by tailings ponds in the oil sands regions in Alberta, Canada, 

which was 120 square kilometers in 2020. Over the last few decades, the total volume of 

tailings has only been increasing as the oil sands operations expand (3).  

 

Figure 1. Areas affected by fluid tailings (black) as well as associated tailing features 

(yellow) at Fort McKay, Alberta, Canada increased from 2.44 km2 in 1974 (A) to 

307.31 km2 in 2020 (B) (3). Tailing features include dams, berms, end pits that are 

involved with tailings containment or reclamation.  

The storage of ORW in tailings ponds has long-lasting effects to the containment area 

and is a risk factor for the surrounding environment. Though many sustainable practices 

have been put in place to limit the environmental impact of ORW outside the 
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containment area, leakage is the major concern as it could contaminate surrounding 

ecosystems, and contaminated areas remain toxic for many years since natural aging and 

biodegradation of NAs is a slow process. NAs are surfactants and if they leak into 

waterways, soil or groundwater, they cause acute and chronic toxic effects on terrestrial 

and aquatic wildlife, plants, and microorganisms. It has been reported that NA mixtures 

from fresh ORW exhibit neurotoxic effects to aquatic and terrestrial organisms through 

several different mechanisms, leading to deformities and mortality (9–12). These physical 

properties and toxicity of NAs can also vary according to its structure, where NAs with 

cyclic and branched features are generally more difficult to degrade due to their greater 

hydrophobicity and poor bioavailability to NA degraders, while lower molecular weight 

NAs are more toxic (13,14). Higher molecular weight NAs are less common relative to 

other NAs, but still play a significant role in the overall toxicity and recalcitrance of NAs 

(15). Unfortunately, there is still an unmet need for alternative methods to efficiently 

reclaim process affected water and ultimately eliminate the environmental footprint of 

crude oil extraction and refining. 

1.1.1 Investigating Naphthenic Acid Biodegradation for 
Wastewater Remediation 

One promising strategy of NA removal involves NA-degrading microbes, which would 

be more scalable, cost-effective, and environmentally friendly as fully biodegraded NAs 

result in the release of just carbon dioxide, water, and microbial biomass (16). 

Biodegradation of natural NA mixtures, commercially prepared NAs, or surrogate NAs 

by indigenous microbial communities have been observed in ORW (6,17–20). 

Unfortunately, observed natural biodegradation in tailings ponds is a slow process and 

fractions recalcitrant to natural biodegradation can persist, leaving wastewater in storage 

for years before seeing significant changes in toxicity (7). One reason for the low rate of 

biodegradation may be due to the heterogeneity of ORW where NAs are a minor 

constituent and are typically harder to degrade, such that naturally occurring isolates 

identified at tailings ponds generally use NAs as a carbon source of last resort. 

Additionally, the efficacy of biodegradation would be affected by factors that are often 

changing, such as the composition of the ORW, temperature, pH and nutrient availability 
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(20). Though some of these factors can be consistent in a facility, the composition of the 

ORW can differ depending on the petroleum source, leading to significant differences in 

the composition of the bacterial community across samples collected from different 

locations or time points. 

Ideally, the study of naturally occurring NA bacteria or communities can lead to 

important discoveries about which species can be better utilized in specially designed 

biotechnological processes to further improve the efficiency of ORW reclamation from 

NA. With a properly bioengineered ecological treatment system, NA biodegradation can 

be a viable solution to reclaiming these large tailings ponds since the rate of 

biodegradation would scale proportionately to the size or concentration of the NA source 

it is introduced to. Biological systems would require minimal energy or chemical inputs 

and would therefore be cheaper. Additionally, these bioengineered systems can be 

designed to support existing NA degradation methods to improve the rate of NA 

clearance. In methods that aim to capture rather than degrade NAs, bioengineered NA-

degrading bacteria can be used to support NA removal by introducing them into the 

substrate where NAs are captured and concentrated. The benefits would be twofold: the 

rate of NA clearance would improve, and less waste would be produced since the 

substrate could be more readily recycled without having to deal with residual NA 

contamination. Unfortunately, however, there has yet to be a specific bacteria or 

combination of bacteria efficient and robust enough to see widespread use in this type of 

application.  

1.1.1.1 Known Naphthenic Acid Biodegraders 

Individual bacterial species or communities have been identified to biodegrade mixtures 

of NA previously, but those that are characterized to degrade individual NAs have only 

been NA surrogates, including Acinetobacter anitratum, Alcaligenes faecalis and 

Pseudomonas putida, which were all observed to degrade cyclohexancarboxylic acid 

(20). Table 1 lists several bacterial strains identified to be capable of degrading NAs. 

Beyond knowing that these bacteria degrade NAs to an extent by seeing a reduction in 

the toxicity of an NA sample over time, specific NA-degrading mechanisms, genes, and 

bacteria are poorly characterized. Furthermore, no single organism or mixture of 
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organisms has been identified and characterized that can efficiently or fully degrade the 

full spectrum of NAs (17,18,20). It is more likely that, given the high biodiversity of 

observed bacterial communities in ORW, multiple bacterial species in a community 

contributes partially to the full pathway of NA degradation as opposed to the existence of 

a single species that degrades all NAs.  

Table 1 Various examples of NA-degrading bacterial strains identified in the 

literature.  All identified strains listed here degrade NA surrogates. 

Strain NA Surrogate Degraded Citation 

Alcaligenes faecalis Cyclohexanecarboxylic acid (21) 

Acinetobacter anitratum Cyclohexanecarboxylic acid (22) 

Aquamicrobium aestuarii Multiple classical surrogate NAs (23) 

Aquamicrobium terrae Multiple classical surrogate NAs (23) 

Mycobacterium aurum (4′-n-butylphenyl)-4-butanoic acid 

(4′-t-butylphenyl)-4-butanoic acid 

(24) 

Pseudomonas stuzeri Multiple classical surrogate NAs (23) 

Pseudomonas vancouverensis Multiple classical surrogate NAs (23) 

Pseudomonas knackmussi Multiple classical surrogate NAs (23) 

Pseduomonas putida Cyclohexanecarboxylic acid (25) 

Pseudomonas turukhanskensis  Multiple classical surrogate NAs (23) 

Sphingopyxis witflariensis Mostly straight chain NAs and 

single ring NAs 

(23) 

Staphylococcus hominis Multiple classical surrogate NAs (23) 
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1.1.1.2 The Current Understanding of Naphthenic Acid 
Biodegradation is Poor 

Studies have been carried out to elucidate NA-degrading pathways as well, but mainly 

focus on isolates biodegrading NA surrogates rather than individual naturally occurring 

NAs. This is likely a result of naturally occurring NAs being extremely difficult to isolate 

from ORW samples, given the heterogeneity of ORW and the low percentage of NAs 

generally present. By mass, NAs have been observed to comprise up to 3% of crude oil 

(17). Since other studies have proposed differences in toxicity and degradability between 

surrogate NAs and naturally occurring NA fractions, it is possible that results from 

studies that focus on surrogate NA degradation don't fully reflect the true ability of a 

bacteria to biodegrade NAs in ORW (17,18). Regardless, the current understanding of 

NA degradation is that NA-degrading organisms mainly use existing fatty acid catabolic 

pathways, including beta-oxidation, alpha-oxidation and omega-oxidation (21,24,25). 

Biodegradation of NAs is also thought to be a mainly aerobic process, as rates of NA 

degradation have been observed to decrease when oxygen levels are low (18).  

1.1.2 Scope and Objective 

To make significant progress on eventually designing efficient ecological treatment 

systems, a solid understanding of not only what degrades NAs, but also the genes and 

pathways involved with NA degradation is fundamental. In this thesis, I am attempting to 

characterize a NA-degrading bacteria community originating from an oil refinery waste-

water treatment plant in Ontario, in which the last step of a multi-step ORW reclamation 

process is the capture of residual NAs on industrial-scale granulated activated carbon 

(GAC) beds (Fig. 2).  
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Figure 2. A schematic of the oil refinery wastewater treatment facility from which 

the GAC samples collected in this thesis originate. The last step in the process are 

the carbon beds, which contain GAC seeded with a bacterial community. By the last 

step, most toxic contaminants are removed to safe levels and mostly recalcitrant 

NAs remain. 

This serves as a natural experiment since the is environment highly enriched for naturally 

occurring NAs, upon which a bacterial biofilm grows where NAs are the sole carbon 

source. The community is observed to aid in the bioremediation of the NAs, but 

ultimately the accumulation of biomass reduces filtration capacity and necessitates 

periodic exchange with fresh GAC. Regardless, the sample of interest has not been 

studied before, and this presents a unique opportunity to investigate a novel ecosystem 

for its NA-degrading capabilities to fill some knowledge gaps surrounding NA 

biodegradation. By sequencing the metagenomes of GAC samples collected over time 

with next-generation long-read sequencing technologies, I expect to unveil a number of 

novel organisms capable of degrading NAs, NA-degrading genes, and biodiversity in this 

ecosystem. This information can be used in synthetic biology applications to design 

efficient and robust NA ecological treatment systems that address the weakness in 

efficiency and robustness with naturally occurring NA-degrading bacteria. By 

discovering NA-degrading genes and pathways across samples, important genes can be 
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discovered which lay the groundwork for how to engineer a bacterium that can degrade a 

wider spectrum of NAs, more efficiently and under more conditions. Using long-read 

sequencing to sequence and analyze GAC metagenomes could reveal NA-degrading 

genes, which is an approach that has not been utilized often in the literature. 

1.2 Characterizing Bacterial Metagenomes with NGS 

Long-read sequencing is particularly useful for generating complete metagenomically 

assembled genomes (MAGS) of difficult-to-assemble species, and this is commonly 

performed with Oxford Nanopore Technologies' (ONT) Nanopore platform. Nanopore 

sequencing allows for direct, real-time sequencing of DNA or RNA samples by using an 

array of protein complexes embedded in a membrane with a resting potential. These 

protein complexes contain a nanopore, a channel in which one strand of a DNA or RNA 

molecule is fed through by other proteins responsible for the capture and transfer of DNA 

across the nanopore (Fig. 3).  
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Figure 3. A diagram representing a single DNA molecule being unwound and fed 

through a nanopore as a single, uninterrupted sequence (26). As the DNA molecule 

passes through the membrane with a resting potential, characteristic changes in the 

electrical current occur as a result of the specific base passing through. This 

electrical current is then translated to basecalled data by basecalling algorithms. 

As DNA or RNA molecules pass through, each nucleotide base changes the electric 

current across the membrane in a characteristic way, allowing for the identification of 

nucleotide sequences with basecalling algorithms such as Guppy that translate the electric 

signals (27). The main advantage over other popular short-read sequencing methods, such 

as Illumina, is that it allows for the collection of more contiguous and complete sequence 

information, as the sequencing technology behind Illumina imposes technical constraints. 

Illumina sequencing is a massively parallel sequence-by-synthesis method, in which the 

prepared DNA fragments are attached to a flow cell and bridge amplified to produce local 
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clusters of cloned fragments that are used as templates for sequencing-by-synthesis (Fig. 

4).  

 

Figure 4. A diagram of Illumina sequencing steps (28). Unlike Nanopore, Illumina 

requires the initial library to be fragmented prior to attaching its adapters. The 

adapters are captured onto the flow cell and bridge amplified to produce clusters 

representing the same sequence. The actual sequencing then occurs in cycles – in 

which one fluorescently labeled nucleotide is added to each sequence per cycle. The 

fluorescent signal is measured after each cycle to determine which base comes next 

in the sequence. The disadvantage of short-read sequencing is that the assembly of 

contiguous sequences is more difficult given that short-reads contain less overlap 
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information to confidently determine if two sequences are connected, especially if 

the read is not long enough to span features such as repeat regions.  

The templates are sequenced in cycles, where in one cycle, a base is added to each of the 

templates in parallel. An optimal cluster produces a clear and detectable signal that is 

translated into a respective base read, but issues arise when cycles become dephased and 

molecules in a cluster fail to extend or extend too far. As template length increases, the 

number of errors can accumulate, and the signal becomes too noisy to be translated 

reliably (29). Nanopore avoids this read length limitation as DNA or RNA molecules are 

read as a single, uninterrupted sequence. By virtue of this, the main limitation on read 

length is the quality of the fragment itself, as nicks in the DNA will interrupt a read and 

contamination can increase the likelihood of jamming the nanopore. Although Nanopore 

sequencing has the advantage of producing contiguous sequence information, the read 

accuracy is generally lower. Read accuracy is measured by quality scores (Q-score) that 

logarithmically indicate base error probabilities, where (Q = -10 log10P). Raw read 

quality scores of Q30 and above are typical for Illumina sequencing, but the V10 

chemistry based sequencing kits by ONT generally produce raw read scores of Q15. At 

the time of this writing, however, ONT has updated their kits to V14 with new enzymes, 

nanopores and updated basecalling algorithms. With their V14 chemistry, ONT claims 

that raw read accuracies of Q30 or more are possible (30). 

1.2.1 Nanopore-Based Metagenomic Assembly 

1.2.1.1 Major Considerations 

When it comes to assembling high-quality MAGs from metagenomes sequenced with 

Nanopore, there are several other considerations that must be addressed in parallel. These 

considerations can drastically impact downstream analyses in a cumulative way and are 

especially important for environmental samples given their high complexity. First, 

extracting pure and intact high-molecular-weight DNA is a prerequisite for generating 

quality, high-length reads with nanopore. For GAC samples in particular, the extraction 

method must be suitable or optimized for the high concentrations of heavy metals in the 

sample. GAC is also a physical object that can shear DNA, and a method to isolate DNA 
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with minimal movement of the granules is necessary. Second, sufficient data must be 

collected from the sequencing run to be able to characterize species at non-trivial relative 

abundances. Samples that are extremely biodiverse require much more data to be 

collected to capture low abundance, but otherwise potentially important species. Third, 

care must be taken in the assembly to ensure that redundant sequences and low-quality 

reads are excluded from the assembled genomes. These considerations are important to 

obtain sufficient sequence information that is also contiguous and high-quality. Without 

addressing these considerations, the genetic variability and high biodiversity of microbial 

species expected in environmental samples make it difficult to accurately resolve 

complete, individual genomes and will convolute any downstream analyses. High read 

lengths are important as de novo assembly algorithms typically look for overlapping end 

regions of different DNA fragments to link them into contiguous sequences (31). As 

such, highly fragmented datasets lead to a variety of issues. A set of reads that are too 

short to span problematic features such as direct repeat regions may lead to many 

assemblies that never circularize or are only circularly permuted. Trying to reconstruct 

complete genomes is also difficult by virtue of not having enough overlap information to 

confidently determine if two sequences can be linked. A standard way of evaluating the 

quality of a set of reads in terms of their contiguity is with the read N50 metric (32). The 

read N50 indicates that half of the total bases sequenced belong to fragments that are at 

the N50 length or higher, so a dataset with a greater N50 value contains more contiguous 

information and therefore more accurate reconstructed genomes. Equally important to 

high read lengths are high-quality reads, which are essential to reduce the number of 

instances where unrelated sequences are combined to produce chimeric and misleading 

assemblies. Reads with high base accuracy are especially important since chimeric 

assemblies are more likely to appear if there are species in the metagenome that are 

closely related, but not the same.  

1.2.1.2 Assembly and Polishing Strategies 

Reconstructing genomes from a set of reads can be easily done with a number of tools, 

each with their own applications. Flye is one de novo assembly algorithm designed 

specifically for use with long-read nanopore data and for metagenomic assembly and has 
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been shown to perform better than other popular assemblers such as Canu or Miniasm in 

producing a greater number of complete metagenomic assemblies with fewer errors and 

with clean circularization (33). Since nanopore reads are relatively error-prone however, 

additional consensus-building strategies are employed to increase the confidence of de 

novo assemblies and improve base accuracy. Drafts initially produced by the assemblers 

are subject to polishing pipelines in which reads are aligned to the assemblies to generate 

a consensus and determine if there are any consistencies at each position. Flye includes a 

post-assembly polishing step - however, post assembly tools such as Racon, Medaka or 

Minipolish can be used iteratively or in combination for multiple rounds of polishing 

(34–36). Racon in combination with Medaka was frequently used in the past as a 

standard for assemblies generated with nanopore data. It is important to recognize, 

however, that these popular polishers lack intrinsic filtering of alignments, which can be 

detrimental to an assembly's quality post polish since poorly aligned or low-quality reads 

could potentially be used to correct base errors. Given the nature of consensus building 

strategies, it would be ideal use of reads that truly belong to the genome for polishing, 

otherwise differences between the alignments and assembly may be incorrectly attributed 

as errors. Popular polishing tools such as Racon or Medaka do not intrinsically filter 

reads used for polishing, but tools such as Gerenuq can be used to filter alignments based 

on its alignment score, length and q-score prior to polishing in order to prevent the use of 

low quality and poorly aligned reads for polishing (34,35,37).  

1.2.1.2.1 Secondary Assembly Strategy for Long Read 
Assemblers 

Assemblers like Flye have room for optimization; sequences can usually be assembled 

and circularize without extra steps, but many fragments can potentially be truly circular 

when they appear to be linear upon an initial draft. Contigs may fail to assemble and 

circularize for many reasons, including the heterogeneity of metagenomic datasets and 

insufficient coverage. Flye does not natively perform iterative assembly strategies unlike 

short-read assemblers such as IDBA-UD or SPAdes where it has been shown to improve 

assembly quality beyond the primary assembly, yet Flye stands to benefit from such 

strategies (38,39). More circularized assemblies could be generated by implementing a 
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binning strategy in which a second round of assembly is performed on subsets of reads 

that align to binned uncircularized assemblies produced by the first round. Reads that 

map end-to-end are included.  

1.2.2 Quality Control 

Evaluating the quality of resulting assemblies after polishing can be done with additional 

metrics such as coverage, completeness, and contamination.  

1.2.2.1 Completeness and Contamination for MAGs 

Assessing the quality of MAGs follows a well-defined set of rules regarding genome 

gene content and gene redundancy, which are measured by completeness and 

contamination scores, respectively (40). Completeness and contamination scores are 

exclusive to genome assemblies and provide information on whether or not a genome has 

expected gene features. Tools such as CheckM can automatically estimate completeness 

and contamination scores for expected microbial genomes based on the presence and 

copy number of single-copy marker genes in an assembly, which are marker genes 

present in most microbial genomes (41). Completeness is the percentage of expected 

marker genes present in a query assembly, and contamination is the percentage of foreign 

DNA and duplicated or fragmented marker genes in an assembly. High-quality MAGs 

have at least 90% completeness, less than 5% contamination, encode 23S, 16S, 5S 

rRNAs and encode tRNAs for at least 18 of the 20 amino acids.  Furthermore, for a MAG 

to be considered finished, it also requires a consensus error rate of Q50 or better (40). 

Low percentage completeness does not guarantee that an assembly is not a completed 

genome - candidate phyla radiation (CPR) bacteria genomes, for example, have reduced 

sizes. CPR bacteria refers to a diverse group of mostly uncultivated bacteria that have 

been discovered through metagenomic studies of a wide range of ecosystems, including 

soils, sediments, and aquatic systems (42). CPR bacteria are characteristically missing 

single-copy marker genes that are considered universal and often have incomplete 

metabolic pathways. As such, it is common for these species to appear with 60-80% 

completeness, despite being truly complete (43). As a result of its diminished 

biosynthetic potential, CPR bacteria typically have obligate symbiotic or parasitic 
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relationships but nevertheless are believed to have important roles in microbial 

ecosystems given their high abundance in various microbial communities and diverse 

gene content contents in accordance with its niche. For example, a group of CPR bacteria 

collected from aquifer sediment called Zixibacteria was shown to encode genes involved 

in multiple pathways that are beneficial for a changing redox environment - including 

fatty acid oxidation, ferric/ferrous iron reduction, anaerobic respiration via nitrite 

reduction, and fermentation (44). Finally, CPR bacteria have been observed to carry out 

the horizontal transfer of genes between itself and their hosts, further contributing to the 

evolution of the community they are in (42).  

1.2.2.2 Coverage 

Coverage is a metric that represents the consensus built at a given base or base window 

and describes the number of reads that align to or cover the region. A higher coverage 

essentially indicates greater confidence in the accuracy of a base or base window and, 

when evaluated across a genome, can indicate overall assembly quality or highlight 

problematic or ambiguous regions. The coverage at which a nanopore-based assembly is 

considered sufficient can vary depending on the type of analysis intended, the sequencing 

kit used, the pipeline used, and quality of the data. Although there are no universal rules 

for what the minimum coverage should be, a fold coverage of 30x was considered to be 

reliable for purposes such as detecting single nucleotide variants for assemblies that were 

based on ONT's v10 chemistry sequencing kits and were generated and polished with 

Flye and Medaka, respectively (27). 

1.2.3 Identification and Annotation of Novel Microbial Sequences 

Beyond generating quality metagenomic assemblies, it can also be challenging to extract 

useful information from MAGs and other assembled metagenomic fragments, especially 

from novel or unique ecosystems. Assemblies of this nature are problematic simply 

because the sequences obtained can be divergent from any sequence in current reference 

databases. Without any strong similarities to a reference, it becomes difficult to perform 

any identification, gene prediction, or functional annotation of novel sequences. 

Addressing this challenge is bottlenecked by the ability of bioinformatic tools to 



16 

 

accurately detect distant homology and the amount of data available in reference 

databases. 

1.2.4 Taxonomic Classification of MAGs 

To better understand the microbial biodiversity within GAC samples, it is typical to 

extract taxonomic information using taxonomic classification tools, which typically 

compare 16s rRNA percent identity or average nucleotide identity of queries against a 

database. For microbial metagenomes, it is common to use the Genome Taxonomy 

Database Toolkit (GTDBTK). Since GAC samples have seldom been studied and likely 

contain completely novel genomes, it is expected that classifications will not be deep and 

that few, if any, assemblies would have been identified previously (45). Furthermore, it 

was expected that few identified genomes would persist across GAC samples collected 

over time, given the frequent exchange of GAC in filters and the variability of ORW 

composition. Regardless, certain genes and pathways important to the survival of bacteria 

in the community are expected to be common across assemblies collected from GAC 

samples, including naphthenic acid-degrading genes. 

1.2.5 Phage Prediction 

Investigating phages may provide insight into advantageous genes and community 

dynamics in ORW environments, as phages often play a role in the horizontal transfer of 

genes by packaging host genes during their replication cycle and subsequently infecting 

other bacteria. These advantageous genes could involve NA-degrading genes, which 

would help bacteria utilize the only available carbon source in GAC, or other genes such 

as membrane pumps that prevent the accumulation of toxic materials such as heavy 

metals. Given the diversity of NA’s encountered and the variability of NA’s available as 

a carbon source over time, horizontal gene transfer is likely important for the survival of 

the community. Identifying phages is typically done through the alignment of a sequence 

to reference databases or through alignment-free methods, which rely on machine or deep 

learning models. To reap the benefits of both methods, a tool called INHERIT uses both 

deep representation learning and alignment-based methods, which outperforms other 

popular tools such as DeepVirFinder or VirSorter (46).  
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1.2.6 Sequence Homology Based Annotation 

Annotations provide valuable insight into the functional capabilities of a community and 

can provide strong clues to which genes are involved with NA degradation when coupled 

with downstream analyses such as differential expression. The most popular methods for 

annotation are based on nucleotide or protein sequence similarity, but when the query 

sequences are highly novel, it can be difficult to annotate sequences as they may be at or 

below the threshold for homology finding by sequence alignment. Furthermore, sequence 

similarity has been shown to be weakly correlated to functional similarity in many cases 

(47), and this problem could be worsened in environmental samples where many 

annotated sequences likely straddle this threshold. 

In this case, a gene prediction and annotation tool called Bakta was used, as it contains 

certain advantages over popular sequence-based annotation tools such as Prokka or 

Prodigal (48). Bakta uses a taxonomy-independent database based on UniProt's entire 

UniRef protein sequence cluster universe and provides rich database cross-references to 

databases that include Gene Ontology, Pfam, and KEGG, which is favorable for more 

comprehensive annotation of unknown MAGs (48–51). Furthermore, Bakta is adept at 

detecting short open reading frames, which are often overlooked by standard gene 

prediction tools. For this ecosystem, however, the use of Bakta led to poor annotations as 

many of the predicted genes remained hypothetical. 

1.2.7 Protein Structure Prediction and Homology Based 
Annotation 

Since protein structures are often more conserved than their sequence and are often 

correlated to their function, the inclusion of structure-based homology searches into the 

analysis was expected to enrich our annotations and make them more informative 

(52,53). Compared to sequence-based approaches, structure-based approaches are 

expected to be more sensitive as more distant functional relationships can be detected. 

Experimental approaches such as X-ray crystallography and nuclear magnetic resonance 

spectroscopy are typically used to obtain protein structures, but they are expensive, time-

consuming, and simply not feasible for our GAC samples. Therefore, computational 
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approaches are necessary in this case - but obtaining accurate protein structures 

computationally has been a fundamental challenge for computational biologists and 

bioinformaticians for decades. 

Generally, two strategies are employed when predicting protein structures from 

sequences: template-based modeling and de novo modeling (45). Template-based 

modeling relies on the idea that proteins with similar sequences have similar structures. 

Established protein structures are used to model the query if their sequence similarity is 

high, but this strategy is unsuccessful when the sequence is divergent. De novo modeling 

is a template-free method that relies on general protein folding principles and energetics 

to search for the lowest energy conformation out of all the possible conformations that a 

protein sequence can have. Since the conformational search space is so large, querying 

large datasets of thousands of protein sequences is an extremely time-consuming and 

computational task. Furthermore, the usefulness of de novo predicted protein structures in 

biological applications was limited as protein structure prediction tools fell short of the 

accuracy of experimental structures up until AlphaFold was introduced (46). 

The development of AlphaFold represents a significant breakthrough for de novo 

modeling, making a large leap in accuracy and speed by incorporating attention-based 

neural networks to predict protein structures with accuracies comparable to experimental 

methods—a first for any computational approach. It is a machine learning method trained 

on large, validated protein structure datasets to develop a more complex understanding of 

protein sequence-to-structure relationships. Since its introduction to the field, AlphaFold 

has powered its own structure database, which now contains over 200 million publicly 

available protein structure predictions (46,47). AlphaFold has led to the development of 

tools that further improve the accessibility, speed, and accuracy of AlphaFold, such as 

ColabFold, which implements MMSeqs2 in place of AlphaFold's native homology search 

algorithm to accelerate prediction speeds by 40–60 fold without compromising prediction 

quality (48). ColabFold aims to make AlphaFold much more accessible, as it simplifies 

the usage of the tool through command-line interfaces and implements AlphaFold with 

Google Colab notebooks, a cloud-based computing platform that allows users without 

expensive hardware to perform structure predictions. With ColabFold, thousands of 



19 

 

protein structures can be predicted in a day, making it much more feasible to predict 

structures from metagenomes in GAC within a reasonable timeframe while retaining 

structure accuracies comparable to experimental methods. 

Using predicted structures of novel proteins with divergent sequences to perform 

structure homology searches is expected to be a powerful method for inferring functional 

similarities between proteins, but there are caveats when it comes to using 

computationally derived protein structures. The method relies on the assumption that two 

protein structures that are highly similar share similar functions. As such, the confidence 

in which we can say that a query protein shares a similar function to another based on 

structural similarities would only be as good as the quality of the structure prediction 

itself, which can be evaluated with two confidence scores internal to AlphaFold: the 

predicted local distance difference test (pLDDT) and the predicted aligned error (PAE) 

(46). Firstly, pLDDT is an alignment-free score that evaluates the plausibility and 

consistency of atomic local distances and stereochemical properties in a predicted 

structure. Generally, regional scores greater than 70 are considered to have good overall 

backbone predictions, with scores higher than 90 being considered highly accurate. Good 

overall backbone predictions can still reasonably be used for functional inference based 

on structure homology to an already annotated protein, as overall folds are generally 

indicative of function. Secondly, PAE scores are the positional error between residue 

pairs of the predicted model versus a reference model in angstroms. This metric is 

generally used to assess the accuracy of the position and orientation of domains, where a 

smaller score means a closer agreement with position and orientation relative to an 

established model (47). These two scores can give insights into the confidence of a 

predicted structure, which affects the confidence of functional annotations when 

searching for structure homology. If our query-predicted structure shows a high degree of 

structural similarity and aligns well with an annotated protein, there is a stronger case to 

be made that these two proteins have functional similarity. It is still important, however, 

to recognize that structural similarities don't always guarantee similar function since 

proteins that have different functions but similar structures have been identified 

previously (49). 
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1.3 Developing New Approaches for Investigating NA-
degrading Communities 

Naphthenic acid-degrading bacterial communities have been seldom studied, much less 

communities seeded in NA-enriched GAC at the genomic level. The objective of this 

thesis is to characterize the community and potentially identify naphthenic acid-

degrading genes or pathways, but this can be challenging as with any environmental 

sample. Here, I also demonstrate different useful strategies in a custom workflow that 

addresses the aforementioned challenges with NGS sequencing, assembly, and annotation 

to extract the most possible information from GAC samples. I assembled multiple high-

quality MAGs and sub-genomic-sized assembled circular contigs (ACCs) in two rounds 

of assembly, successfully circularizing uncircularized contigs from the first round. I 

characterized the bulk properties of ACCs across 10 GAC samples collected between 

2019 and 2022, assigned taxonomic classifications to them, and annotated them with 

sequence homology-based tools. Since many predicted coding sequences remained 

hypothetical, I attempted to enrich annotations using a structural homology-based 

approach. However, given the limitations of computational resources needed for protein 

structure prediction of an entire metagenome, my current focus for structure-based 

annotations has shifted to my subset of bacteriophage to demonstrate the principle of the 

annotation method. I show that structure-based annotation based on ColabFold and 

Foldseek was able to add substantial annotation power, even for putative bacteriophages, 

which are notoriously hard to annotate. 
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Chapter 2  

2 Methods 

Here, I describe a combination of wet-lab and computational approaches to analyze GAC 

samples including DNA and RNA extraction, sequencing, assembly, and annotation of 

high-quality assembled circular contigs (ACCs) from GAC samples (Fig. 5). 

 

Figure 5. GAC samples were collected from an oil refinery site in Ontario when the 

filters were being exchanged. Ultra-high-molecular-weight DNA was extracted, and 

low-molecular-weight fragments were removed by PVP precipitation. A library was 

prepared from the purified DNA using the Oxford Nanopore LSK109 or LSK110 

kit and was sequenced on r9.4.1 flow cells using the Oxford Nanopore MinION 

platform. The DNA was assembled using a custom workflow that included a post-

assembly filtering step using Gerenuq (37) to remove low-quality and poorly 

mapped reads from the assembly. Only fully closed contigs with an estimated 

minimum coverage of 10 were kept for further analysis. Gene prediction and initial 

annotation were done using Bakta (50) and any open reading frame labeled as 
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hypothetical were kept for structural prediction and annotation via Colabfold (48) 

and Foldseek (51).  

2.1 DNA Extraction 

The preparation of ultra-high-molecular-weight DNA is essential for producing quality 

circularized assemblies. Prior to extraction, GAC samples were collected and frozen at -

80 °C. Approximately 10 g of GAC seeded with bacteria was added to a 50 mL falcon 

tube, followed by 10 mL of lysis buffer (10 mM Tris-HCl, 100 mM NaCl, 25 mM EDTA, 

0.5% (w/v) SDS) and 100 µL of lysozyme (25 mg/mL). The sample and buffers were 

mixed by slowly rotating the tube while trying to minimize granule movement, and then 

incubated for 1 hour at 37 °C. After 1 hour, 5 µL of RNase A (20 mg/mL) was added, the 

sample was mixed gently, then incubated for 1 hour and 30 minutes at 57 °C. Finally, 100 

µL of Proteinase K (800 units/mL) was added to the tube, gently mixed, and the sample 

was incubated for another 1 hour and 30 minutes at 57 °C. 

The lysate was decanted into a new 50 mL falcon tube, without transferring the carbon 

granules. Then, 1 volume of 25:24:1 phenol:chloroform:isomayl alcohol was added to the 

lysate, the mixture was rocked gently for 8 minutes, then spun at 3000 x rcf for 3 

minutes. The aqueous phase was transferred to a new 50 mL falcon tube using wide-bore 

pipette tips. This process was repeated twice with 1 volume of chloroform instead of 

phenol:chloroform:isomayl alcohol, for a total of 2 chloroform washes. 

To precipitate the DNA, 1/10 volume of 3 M sodium acetate at pH 4.5 was added, 

followed by 2 volumes of ice cold 100% ethanol. DNA that precipitated immediately was 

spooled out into an Eppendorf tube with a sterile Pasteur pipette that had been melted 

into a hook. The DNA was washed twice with nuclease free 75% ethanol and 

resuspended in 500 µL to 1 mL of Tris buffer (10 mM, pH 8) overnight, depending on the 

size of the pellet. 

2.2 DNA Size Selection 

Prior to library preparation, 60 µL of the DNA sample was added to 60 µL of 3% PVP 

360000 solution (1.2 M NaCl, 20 mM Tris-HCl, pH 8) and mixed thoroughly by 
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inverting. The mixture was spun at 10000 x rcf for 30 minutes at RT to preferentially 

precipitate high-molecular-weight DNA. The supernatant was discarded, then the DNA 

pellet was washed twice with 75% nuclease free ethanol. The DNA was resuspended in 

60 µL of Tris buffer (10 mM, pH 8).  

2.3 Sequencing Library Preparation 

The DNA library was prepared using the ONT LSK109 or LSK110 kit according to the 

manufacturers protocol, with the following changes. The repair and end prep steps were 

extended to 15 minutes at 20°C and 15 minutes at 60°C instead of the recommended 5 

minutes at each temperature. Additionally, Omega Biotek Mag-Bind beads were used in 

place of Ampure XP beads. The libraries were sequenced on a MinION, with 9.4.1 flow 

cells for libraries prepared with the LSK109 kit or LSK110 kit. 

2.4 Primary and Secondary Assembly  

Raw reads were basecalled with Guppy v6.3.8 using the arguments '-c 

dna_r9.4.1_450bps_sup.cfg --min_qscore 7'. Basecalled reads were checked for length 

and q-score using PycoQC (v2.5.2) (52) to determine a cutoff for lower quality data to 

discard. The minimum length was always greater than 500 nt with a minimum read q-

score of 7. Once a cutoff was determined, NanoFilt (v2.8.0) (53) was used to filter the 

reads with the length and q-score parameters set to the cut off, as well as the argument `--

headcrop 50`. The filtered reads were then assembled with Flye (v2.9-b1768) (31) in `--

nano-hq –meta` mode. After the initial assembly, additional assemblies were yielded 

using a secondary assembly pipeline. Briefly, reads for a given sample were aligned to 

uncircularized contigs obtained from the same sample with Minimap2 v2.24 (54) and 

were binned using MetaBAT2 v2.12.1 (55). Reads aligned to a bin were filtered using 

Gerenuq v0.2.3 (37) on default settings to keep only alignments over 1000 bp, with a 

score of 1 and at least 50% identity. For each bin, Gerenuq filtered reads were passed on 

to Flye with the genome size set to the total size of the bin. Only assemblies that had an 

estimated coverage of at least 10 and that were tagged as circularized by Flye were 

extracted from the assembly graphs as a GFA file and passed on to the polishing pipeline. 

The naming of the ACCs were retained from the names assigned by Flye. 
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2.5 Polishing and QC 

Before polishing, all metagenomic reads from a given sample were aligned to each 

assembly obtained from the same sample using Minimap2. Mapped reads were filtered 

with Gerenuq to keep alignments that are at least 1000 bases long, with a score of at least 

1 and at least 90% identity. Then, draft GFA assemblies were polished with Minipolish 

v0.1.2 (36) using the Gerenuq filtered reads that were converted to fasta format. In order 

for Minipolish to accept Flye assemblies however, minor changes were made to the file 

format of Flye's outputs - namely by changing converting the GFA file format to GFA2 

with GFAKluge  (56) and by adding "l" as a suffix to sequence names. Additionally, 

Minipolish was run with the '--skip-intial' argument as the initial step requires non-

standard data unique to the Miniasm assembler. The polished assemblies were converted 

to fasta format, then underwent a second round of polishing with Medaka v1.6.1 (35) 

using the same Gerenuq filtered reads. To assess the coverage of polished assemblies, 

Gerenuq filtered reads were mapped back to the polished assemblies and put through 

Mosdepth v0.3.3 (57) to calculate coverage by 1000 base windows. Polished assemblies 

that were greater than 1 mb in size were checked for completeness and contamination 

using Checkm v1.2.2 (41), and those that had greater than 90% completeness and less 

than 10% were considered high-quality MAGs.  

2.6 Annotation 

Bakta v1.5.1 (50) with the '--complete' argument was used to annotate the polished 

assemblies. The assemblies were subset further based on Bakta annotations - assemblies 

that contained ribosomal related proteins were discarded, and those that also had 

annotated bacteriophage related proteins were passed to INHERIT (58) to identify 

potential bacteriophage genomes using their pre-trained model. From each bacteriophage 

predicted by INHERIT, all amino acid sequences from Bakta annotations were passed to 

Colabfold v1.3.0 (48) with the arguments '--amber --templates --num-recycle 3 --use-

gpu-relax --num-models 1' to predict the structure of each protein. For each protein that 

had a structure prediction with a mean pLDDT score greater than 70, the relaxed model 

was taken and queried against the AlphaFold/Uniprot database using Foldseek v90b (51) 

with the 'easy-search' function. Functional annotations including KEGG and GO terms 
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were retrieved using Uniprot's API by querying only the best Foldseek hits, which are 

filtered for an e-value greater than 1e-10 and for an LDDT score greater than 0.7, for 

each predicted protein structure. Pathway information for KEGG KOs retrieved with 

Foldseek was obtained using the KEGGREST 1.38.0 package (59). 

2.7 Singleton and Recurring Assemblies 

Singleton and recurring ACCs were determined by performing an all-versus-all BLAST. 

A pair of assemblies from different samples were counted as identical if they had a 

percent identity of 98%, a query coverage that is within 10% of the query length, and a 

query length that is at least 90% of subject length. Each set of ACCs that were considered 

singleton or recurring were subset further if they were predicted bacteriophage.  

To detect pairs of MAGs that have regions of high similarity between samples, an all-

versus-all BLAST was performed for all high-quality MAGs, where hits were filtered for 

99% identity and a query coverage length of at least 10 kb.  

To observe the presence of structural bacteriophage proteins across samples, the total set 

of protein structures from each recurring predicted bacteriophage ACC was collected and 

clustered with Foldseek using the greedy set cover algorithm, and alignments where 80% 

of the sequence is covered by the alignment are kept. The clusters were subset based on 

keywords in their representative's Foldseek annotations - "head/tail/capsid/plate". For 

each cluster in which the representative is a putative head, tail, capsid or baseplate related 

protein, the protein structure of the cluster representative was aligned with its members to 

obtain a TMScore using Foldseek. 
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Chapter 3  

3 Characterization of Assembled Circular Contigs from 
GAC Metagenomes 

This chapter follows up on the ACCs generated from the methods outlined in the 

previous chapter. As these GAC samples have not been sequenced before, it is important 

to analyze the quality of the ACCs and perform bulk characterization on the ACCs 

collected to unveil the microbial diversity within this ecosystem and their potential roles 

in the degradation of naphthenic acid. In this chapter, I assess the quality and analyze 

these ACCs to identify genomes, perform annotations, and discuss other broad features or 

dynamics of the community that may be relevant to understanding NA degradation in 

GAC samples. 

3.1 Sequencing and Assembly Results 

In total, 10 samples of the microbial biofilm growing on the granulated activated carbon 

(GAC) beds were collected from the refinery's wastewater treatment plant between 2019 

and 2022. The first sample, GAC0, was collected in 2019, but the day and month were 

not noted. Ultra-high-molecular-weight DNA was isolated from these samples and 

sequenced on r9.4.1 flow cells using ONT’s MinION platform, then base-called and 

assembled as outlined in the Methods and summarized in Figure 5. ACCs that were fully 

closed, non-repetitive circular DNA sequences with an estimated coverage of greater than 

10 were selected for polishing. Across the 10 GAC samples collected, 112 ACCs greater 

than 1 mb were assembled, although only 80 were more than 90% complete and less than 

5% uncontaminated, according to CheckM (Appendix A). Out of the complete and 

uncontaminated MAGs, 72 were considered high-quality as they encoded 16S, 23S, and 

5S rRNA genes, as well as the full complement of tRNAs. The remaining 8 were missing 

5S rRNA genes but fulfilled all the other criteria for high-quality MAGs by being 

complete, uncontaminated, and encoding all tRNAs. In total, 5432 ACCs less than 1 mb 

in size were collected. 423 ACCs smaller than 100 kbs had at least one putative 

bacteriophage-related protein in their Bakta annotations, and these were passed on to the 

INHERIT package to score their likelihood of being true phages. Of the 423 ACCs, 227 
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bacteriophages were predicted. Table 1 summarizes the collection dates and statistics 

from the sequencing and assembly results for each individual GAC sample. In each of the 

10 samples, multiple high-quality MAGs were collected, and the secondary assembly 

pipeline yielded additional high-quality MAGs for all samples except GAC1 and GAC9. 

For ACCs smaller than 1 mb, the secondary assembly pipeline also yielded additional 

assemblies across all samples. Although it is generally expected that a higher quantity of 

more contiguous reads would lead to more MAGs being produced, the trend is not fully 

clear, as some samples like GAC7 with a lower quantity of quality and contiguous reads 

produced a greater quantity of high-quality MAGs than in GAC9, for example. Thus, the 

minimum amount of data needed, and the quality needed to capture the full biodiversity 

of GAC samples are not yet established. 

Table 2. Sequencing and Assembly Statistics of the 10 GAC samples collected from 

the oil refinery wastewater treatment facility. All samples were sequenced using 

ONT’s MinION platform with r9.4.1 flow cells, and the number of gigabases (gbs) 

collected, the mean q-score and rN50 of basecalled reads are shown here. The 

assembly statistics demonstrate the number of assemblies produced in the primary 

and secondary assembly steps (P+S). Metagenomic assembled genomes (MAGs) are 

assembled circular contigs (ACCs) that are estimated to be complete (>90%) and 

uncontaminated (<5%) by CheckM.   

Sample Date 

Collected 

Gbs Mean Q-

Score 

rN50 MAGs 

(P+S) 

ACCS < 1 

mb  (P+S) 

Putative 

Phage (P+S) 

GAC0 xx/xx/2019 14.54 13.5 8.1 2 + 1 195 + 101 5 + 1 

GAC1 27/01/2020 9.88 13.8 4.5 1 + 0 314 + 31 10 + 0  

GAC2 14/02/2020 19.96 13.6 20 6 + 5 453 + 76 27 +15 

GAC3 02/03/2020 22.71 14.3 17.9 10 + 6 624 + 114 37 + 1 

GAC4 06/10/2020 26.65 13.2 12.4 2 + 7 405 + 69 9 + 0 
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GAC5 03/05/2021 15.06 13.3 12.3 3 + 4 561 + 98 35 + 3 

GAC6 07/05/2021 19.95 13.4 9.5 4 + 7 405 + 72 14 + 4 

GAC7 14/05/2021 24.40 13.3 6.4 2 + 10 746 + 110 32 + 5 

GAC8 10/08/2021 35.20 14.5 30.1 5 + 3 445  +  38 16 + 2 

GAC9 21/04/2022 33.52 13.6 9.7 2 + 0 494 + 81 24 + 0 

3.2 Most Putative Bacteriophage have Comparable 
Standard Deviations and Coverages to High-quality 
MAGs 

Currently, the scope of assembly quality evaluation is limited to MAGs and putative 

phages. The coverage for the 72 high-quality MAGs and 227 putative phages was 

calculated per base with Mosdepth (57).  

High-quality MAGs greatly varied in mean coverage—from 6-fold to over 500-fold. 

Although some MAGs have lower than ideal coverages, a relatively low or uneven 

coverage does not guarantee that a MAG is of poor quality when it is complete and 

uncontaminated. Complete and uncontaminated MAGs have almost all expected genes 

and no foreign genes, indicating that the MAG is likely representative enough to be used 

for taxonomic and functional characterization. 

Since standard metagenomic quality control metrics like completeness and contamination 

are not available for the predicted bacteriophage, I assessed the assembly quality of 

putative phage by examining the relationship between the coverage depth and uniformity 

of high-quality MAGs to compare with putative bacteriophage ACCs. In Figure 6, I 

plotted the per-base mean coverage and the per-base standard deviation for quality MAGs 

and putative phage ACCs. There was a linear relationship in which the SD/cov ratio was 

less than 1 for almost all high-quality MAGs. For most of the putative phages, the vast 

majority also had an SD/cov ratio less than one, which was consistent with the coverage 

characteristics observed for high-quality MAGs. However, there was a subset of putative 
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phage ACCs that had higher than expected SD/cov ratios, which warrants manual 

inspection for validation. Some high-standard deviation phages can be validated by 

having full-length alignments, as represented by enlarged symbols in Figure 6A or 

denoted by ** in Figure 6B. 

Figure 6A reveals the evenness of coverage calculated in 1% bins for high-quality MAGs 

collected across all samples, and few MAGs have very even coverage. MAGs such as 

5322 from GAC2, however, have very high and even coverage distributions, and these 

are candidates for being finished, high-quality MAGs. ONT claims that with their “nano-

hq” basecalling option, consensus accuracies of Q50 can be consistently achievable with 

100-fold coverage with their basic recommended pipeline. Given that basecalling was 

also performed with the “nano-hq” mode and that the pipeline I used includes additional 

filtering steps as outlined in the methods section, it follows that MAGs with high and 

even coverage likely reach consensus accuracies of that level.  
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Figure 6. Evaluating the quality of high-quality MAGs and putative phages using a 

coverage-based metric. The mean coverage in 1% bins was calculated for MAGs 

with higher than 90% completeness and less than 5% contamination (A). MAGs 

highlighted in yellow represent those with missing ubiquitous bacterial genes 

outlined by Bowers et al. that are required to be present for a MAG to be 
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considered high-quality (40). MAGs with standard deviation (SD) versus coverage 

(cov) ratios greater than 1 are colored in red. Plotting the SD of the per-base cov as 

a function of the mean per-base coverage reveals a linear relationship for high-

quality MAGs (red) in which almost all MAGs have ratios less than 1, and most 

predicted bacteriophage (blue) ACCs follow this trend (B). The ovals also show the 

95% confidence interval for each group. However, several phages had SD:cov ratios 

higher than 1 (triangle). A plot of mean coverages was also calculated in 1% bins for 

putative bacteriophage ACCs with standard deviations higher than 50, ordered 

from highest SD to lowest (C). These heatmap visualizations help identify potential 

problematic regions that lead to high standard deviations and inflated mean 

coverages. Most bacteriophage ACCs in this subset have one or more coverage 

spikes that span 1-5% of the genome. Conversely, there are few bacteriophage 

ACCs with relatively even coverage for most of the genome but have drops in 

coverage over broad regions. ACCs denoted with ** contain at least one read that 

aligns over its full length with at least 90% sequence identity to the reference. 

Labels in red indicate those ACCs with SD/cov ratios greater than 1. 

Figure 6B shows the coverage distribution along putative phages with standard deviations 

over 50. The ACCs are ordered from highest to lowest ratio, and this shows where there 

are small regions along the sequence that have much higher or lower mean coverages, 

leading to a high standard deviation. These could represent chimeric assemblies between 

closely related bacteriophages, direct repeats, or circular permuted sequences where the 

end sequences were not perfect direct repeats.  

In general, lower coverages over broad or even smaller regions may be a result of the 

depletion of DNA fragments smaller than 10 kb during the DNA extraction and 

sequencing library prep steps, which was originally done since analyzing bacterial 

genomes and plasmids was the initial goal. Without the size selection step, there may 

have been more full-length reads from phage to help validate suspicious ACCs, and there 

may have been a higher quantity of phage ACCs recovered. 
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Regardless, for some assemblies highlighted in Figure 6C such as ACC 5539, there exists 

at least 1 full-length read alignment with a minimum 90% sequence identity that can be 

used to provide some validity to the assembly. However, for other ACCs, it is not yet 

clear if the coverage spikes or drops indicate misassemblies or not. It was concluded that 

the majority of the putative phage ACCs were assembled and polished to a standard 

generally consistent with that observed for high-quality MAGs. Furthermore, in the 

absence of a reference sequence and other information, the SD:cov ratio can be used as a 

proxy to help identify poorly assembled sub-genomic circles from a large dataset.  

3.3 Sequence Homology Based Annotations 

3.3.1 Gene Prediction and Annotation with Bakta 

All ACCs assembled across all GAC samples were annotated with Bakta, a state-of-the-

art sequence-based annotation tool. Across all ACCs assembled, a total of 966992 coding 

sequences were predicted, and 592730 remained hypothetical. For high-quality MAGs, 

285982 coding sequences were predicted and 96671 remained hypothetical. For phages, 

there were 18099 predicted coding sequences (CDS) with 16606 remaining hypothetical.  

3.3.2 Hydrocarbon Degradation Genes in High-Quality MAGs 

Common hydrocarbon degradation genes were searched for in high-quality MAGs using 

the built-in CANT-HYD HMMs in HMMER. MAGs with hits to hydrocarbon 

degradation genes with a minimum e-value of 1e-10 are summarized in Appendix B. In 

total, 78 MAGs across all sequenced GAC samples contained at least 1 hydrocarbon 

degradation gene, and there was at least 1 MAG with an identified hydrocarbon 

degradation gene in each sample. 123 out of 823 CDS that were identified as 

hydrocarbon degradation genes with CANT-HYD were previously hypothetical, 

according to Bakta. Notably, acyl-CoA dehydrogenase was found in ACCs across all 

samples except GAC1. This enzyme is part of the fatty acid beta-oxidation pathway and 

was shown previously to have the highest level of overexpression relative to other 

dehydrogenases in Pseudomonas fluorescens Pf-5 when grown on 4′-n-butylphenyl-4-

butanoic acid, which is a surrogate NA (19). This suggests that acyl-CoA dehydrogenase 

plays a significant role in degrading branched and aromatic NAs, which are features that 



33 

 

typically increase the recalcitrance of NAs to biodegradation. Glu and Leu 

dehydrogenases were also found in ACCs across 3 and 4 GAC different samples, 

respectively. In the same study by McKew et al., these amino acid degrading enzymes 

were also upregulated and are likely to be involved with NA degradation (19). Other 

hydrocarbon degradation genes include 3-octa-prenyl-4-hydroxybenzoate carboxy-lyase, 

which is found in every sample except GAC9. This enzyme has not been implicated in 

NA degradation before, but is only known to catalyze a decarboxylation reaction in 

ubiquinone biosynthesis in E.coli (60). The protein also requires manganese as a cofactor, 

which is common in ORW. Since it is known that existing pathways in NA-degrading 

bacteria can be adopted for NA biodegradation and that the substrate of 3-octa-prenyl-4-

hydroxybenzoate carboxy-lyase shares structural similarities to known NAs (61), it can 

be reasonably speculated that the enzyme could be important to the degradation of NAs 

with carboxy groups attached to aromatic groups. Regardless, given that NA is the most 

abundant carbon source in GAC, it is possible that many of these hydrocarbon 

degradation genes could also be involved in NA degradation – especially genes that 

appear in multiple samples. 

3.3.3 GO Terms in High-Quality MAGs 

GO terms were collected from Bakta annotations, and GO labels were retrieved using the 

GO BioLink API. The top 10 GO terms across GAC samples are represented by Figure 

7A, and GO terms related to metabolic processes are also shown in Figure 7B. A majority 

of the terms are related to basic functioning in bacteria, with the top two terms being 

related to the ribosome. Metabolic GO terms were underrepresented, with only 6 total 

metabolic GO terms across all samples: 3 involved carboxylic acids; 1 was for amino 

acids, 1 for carbohydrates, and 1 for one-carbon molecules.  

3.3.3.1 No Annotated Genes Attached to GO Terms Were Known 
NA-degrading Genes in High-quality MAGs 

Genes associated with lipid or amino acid metabolism have been identified in the past as 

likely being involved with naphthenic acid degradation. Alpha, beta, and gamma 

oxidation pathways have been shown to be upregulated in NA-degrading bacteria, and as 
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a result, it is expected that metabolic GO terms related to fatty acid metabolism would be 

found (19,20). However, the 3 annotations containing carboxylic metabolic GO terms 

were all from malate dehydrogenase genes, which is a widely distributed enzyme known 

to be involved with the conversion of malate to oxaloacetate by reducing NAD to NADH 

in the citric acid cycle. Whether or not it is involved with NA degradation has not been 

experimentally determined, although it has been noted that microbial malate 

dehydrogenases demonstrate much more diversity among prokaryotes relative to malate 

dehydrogenases between eukaryotes (62). Furthermore, malate dehydrogenases catalyze 

an oxidation reaction much like another protein on the same pathway, succinate 

dehydrogenase, which has been observed to be overexpressed in a NA-degrading 

bacterial strain (19). Although they are both mainly known for being key enzymes in the 

Kreb cycle pathway, existing evidence hints that it is not implausible for malate 

dehydrogenases in GAC bacteria to have evolved to degrade NAs, especially since 

existing pathways are often also used in NA biodegradation (17,63).  

Other metabolism-related GO annotations include an aspartate carbamoyltransferase 

catalytic subunit as part of amino acid metabolism, 3-hexulose-6-phosphate synthase in 

carbohydrate, and one-carbon metabolism. It might be important to recognize that all 

metabolic GO annotations were retrieved from ACCs that have relatively low coverage 

and occur in only one sample with low relative abundance, suggesting that these genes 

were not particularly significant for fitness in ORW or that they were erroneous. 

Regardless, none of these enzymes with attached GO terms from Bakta annotations have 
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been implicated in NA degradation previously but may still be of interest.

 

Figure 7. Top 10 GO terms (A) and all metabolic related GO processes (B) retrieved 

from Bakta annotations of high-quality MAGs. Metabolic GO terms originated 

from contigs with relatively low coverage. 

It may not be sufficient to rely on GO terms from Bakta annotations when it comes to 

narrowing down the search for likely NA-degrading genes. Oddly, proteins such as Acyl-

CoA dehydrogenase were confirmed to be present in multiple ACCs with CANT-HYD 

HMMs and with Bakta, but Bakta does not attribute GO terms to the annotations despite 

the existence of GO terms for it (GO:0003995). This could indicate that the annotations 

are based on homology to protein sequences that are poorly characterized and have yet to 

be assigned a GO term. 

3.3.4 KEGG Pathways Reveal Potential NA-degrading Genes 

To observe which KEGG pathways are present in MAGs from each sample, KEGG KOs 

were collected from Bakta annotations, and all related KEGG pathways were retrieved 
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(Appendix C). A pathway's completeness was estimated by the proportion of KOs 

observed in MAGs versus the total KOs in a KEGG pathway. All pathways and modules 

were estimated to have low completeness across all samples.  

KEGG pathways in Bakta annotations of high-quality MAGs that may have a role in 

hydrocarbon or NA degradation include the following broadly defined pathways, ordered 

from highly ubiquitous across samples to uncommon: “Microbial metabolism in diverse 

environments”, “Carbon metabolism”, “Fatty acid metabolism”, “Degradation of 

aromatic compounds”, “2-oxyocarboxylic metabolism” and “D-amino acid metabolism”. 

Fatty acid metabolism related genes appear in all samples but GAC0 and GAC01. 

Comparatively, fatty acid metabolism genes were found in all samples except GAC1 with 

CANT-HYD.  

However, there were many unexpected pathways that were common across samples but 

should only appear in eukaryotes, including “GABAergic synapse”, “Diabetic 

cardiomyopathy” and “Ribosome biogenesis in eukaryotes”. This could indicate that 

there are several Bakta annotations that are spurious, perhaps due to high sequence 

divergence. 

3.4 GAC Samples Contain a Diverse, Everchanging 
Consortium of Bacteria  

High-quality MAGs were assigned taxonomic classifications with GTDB-TK, and the 

classifications were diverse but mostly dominated by one particular phylum. Most MAGs 

had classifications to the genus level, while all had classifications to at least the order 

level. Only 9 had classifications at the species level. Figure 8 shows the relative 

abundances of MAGs within each sample, which were calculated based on their mean 

coverages relative to the total coverage of MAGs in a sample after polishing. As such, 

many species that were lower in abundance or simply missed from the assembly pipeline 

are not shown, and therefore, the full biodiversity of the samples is likely not represented. 

Based on the ACCs that could be readily reconstructed from the method used in this 

thesis, MAGs from the 10 GAC samples consistently appear to be dominated mainly by 

those belonging to the phylum Pseudomonadota. A class of Pseudomonadota, 
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Gammaproteobacteria, was observed to be the most common in the first 4 samples 

collected but became less common as time went on. Alphaproteobacteria, another class of 

Pseudomonadota, conversely surged in abundance in GAC5 after being relatively rare in 

the first 4 samples and unretrievable in the first 2. Pseudomonadota have been observed 

previously to be common in ORW, which makes these observations unsurprising (63). 

Other bacteria belonging to phylum previously observed in ORW that were also 

identified here include Bacteroidota and Actinobacteriota. Pseudomonadota, 

Bacteroidota, and Actinobacteriota have been reported to contain members involved with 

anaerobic degradation of hydrocarbons and degradation of NAs in ORW moving bed 

biofilm reactors (63).  

Regardless, no previously identified NA-degrading bacterial strains have been sequenced 

from these samples. At least one MAG (bin.1128_3) is related at the family level to 

Sphingopyxis witflariensis and another (bin.402_8) at the order level to NA-degrading 

Pseudomonas strains - but any resemblance to identified NA-degrading bacterial strains 

was mainly at the class level. Several previously identified strains such as ones belonging 

to the genus Pseudomonas, Sphingopyxis, Aquamicrobium, or Bosea all belong to the 

phylum Proteobacteria where the prior 2 belong to the class Gammaproteobacteria and 

the latter 2 to Alphaproteobacteria.  
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Figure 8. High-quality MAGs generated from nanopore-sequenced GAC 

metagenomes were taxonomically classified by GTDBTK, and their relative 

abundances within samples were calculated based on their mean coverage divided 

by total coverage. The reconstructed MAGs are dominated by those belonging to the 

Pseudomonadota phylum, with Gammaproteobacteria being the most prominent 

class in samples collected early on, while Alphaproteobacteria became more 

prominent in later samples. It is important to recognize, however, that these only 

represent MAGs that could be reconstructed using the outlined methods – meaning 

that this is likely not fully representative of the full biodiversity of bacteria in GAC.  

3.4.1 MAGs Identified at the Species Level Were Found in Other 
Wastewater Metagenomes – but not Oil Refinery 
Wastewater 

9 high-quality MAGs were identified at the species level with GTDBTK and information 

regarding the isolated species was collected directly from the GTDB (64). 8 unique 

species were identified and collected previously from other wastewater metagenomes in 

separate studies. 

OLB10_sp001567275 are chemolithoautotrophs that originate from a partial-nitritation 

anammox (PNA) reactor in a wastewater treatment facility for the potato processing 

industry. PNA bacteria can anaerobically convert ammonium and nitrite to dinitrogen gas 
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without a carbon source, making this process ideal for treating sludge with low dissolved 

oxygen and high ammonium levels (62). JAJVID01 sp022072205 was another identified 

species that is also an anammox organism, but its sample of origin was not disclosed. 

Accumulibacter similis was found in activated sludge from a lab-scale Enhanced 

Biological Phosphorus Removal (EBPR) enrichment culture. Ferruginibacter 

sp017303335 was also sequenced from an EBPR bioreactor. EBPR is part of activated 

sludge systems to remove phosphate in wastewater treatment facilities by phosphate 

accumulating organisms (PAO), in which the PAO would accumulate phosphate as 

polyphosphate for energy storage. Accumulibacter are also often identified in EBPR 

systems and are typically the most dominant in those systems (65). Notably, PAOs 

typically use carbon sources and only accumulate phosphate during times of low nutrient 

availability. Coincidentally, the ACC (GAC2-1038) identified in this study to be this 

putative PAO does contain multiple hydrocarbon-degrading genes according to CANT-

HYD, including Acyl-CoA dehydrogenase, 4-hydroxy-3-polyprenylbenzoate 

decarboxylase and molybdopterin-dependent oxidoreductase. This could hint that this 

organism is utilizing these genes to use NAs as an energy source since it’s the sole carbon 

source in GAC, and its survival is further propagated by having polyphosphate as an 

alternate energy source. Unfortunately, this particular species has only appeared in one 

GAC sample. There are 3 other related ACCs identified to be in the same genus, 

however. 

Maganitrophus morganii is another chemolithoautotroph from a manganese oxidizing 

enrichment culture inoculated with an iron oxide mat. This is part of the Candidatus 

Maganitrophus genus that is characterized by performing Mn(II) oxidation, whereas most 

species identified previously to be manganese chemolithotrophs use Mn(III/IV). 

Members from this genus are found in freshwater and marine environments globally and 

since manganese can be found in ORW, it is not surprising to find them in GAC filters. In 

fact, this species was identified in two different samples – GAC0 and GAC4.  

CAINVI01 sp016713765 was previously collected from an activated sludge metagenome 

in a wastewater treatment facility in Denmark but is not well characterized (66).  
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Macondimonas sp021783685 originated from an acid mine tailings metagenome. 

Although this strain is not characterized well, another study identified this genus as 

phylogenetically narrow and noted how it is highly abundant in crude oil and coastal 

marine ecosystems. Furthermore, they are known petroleum hydrocarbon degraders and 

nitrogen fixators (67). In this study, multiple hydrocarbon degradation genes were 

identified in both ACCs under this taxonomic classification using CANT-HYD. This 

species was observed in GAC6 and was relatively higher in abundance but could not be 

reconstructed in any other sample.  

Other than Macondimonas sp021783685, the nature of the sample from which most of 

these species originate seems to suggest that multiple species observed in GAC 

metagenomes may not necessarily be NA-degrading, but rather are chemolithotrophs – 

bacteria that rely on oxidizing inorganic compounds that also exist in ORW such as 

ammonium, nitrate, sulfur, manganese, methane, etc. Given the toxicity and nutrient 

scarce environment of GAC filters, there may be other genes in these species that allow 

them to tolerate the toxic environment in ORW rather than survive off of NAs as a carbon 

source. This could include membrane transporter proteins that pump out heavy metals or 

simply NAs, since they can potentially be toxic to bacteria. Long-chain fatty acid 

transport proteins and ABC transporters have been observed to increase in relative 

expression with exposure to NAs (19). Interestingly, GAC are at the last stage of 

filtration and GAC is not suitable for the removal of dissolved inorganics. The removal of 

dissolved inorganics is typically performed earlier in the process, meaning that these 

chemolithotrophs are likely surviving on trace amounts. Despite this, most MAGs 

identified at the species level are relatively abundant relative to other MAGs in their 

respective samples.  

3.5 Genome-Sized ACC Sequences Were Essentially 
Unique Across Samples 

To identify if any of the same ACC sequences larger than 1 mb appear independently 

over time, an all-versus-all BLAST was performed to look for MAGs that had 98% 

sequence identity, had sequence lengths within 10% of each other, and had 90% query 

coverage. Only 1 was identified to be the same in both GAC3 and GAC8 – but not in any 
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of the GAC samples collected between those two samples. It is possible that the 

abundance of these species was too low to be captured between those points where they 

were identified, but given that the filtering criteria used captured ACCs that do not 

change over time, it is possible that events where certain genetic elements were gained or 

lost over time were missed. Given the variability and heterogeneity of the environment 

from which these MAGs originate, it would be unsurprising to see a high turnover rate of 

bacterial species across samples or a high rate of genetic diversification events.  

3.5.1 Large Regions of High Sequence Similarity Still Exist 
Between Few Genome-Sized ACCS 

When performing an all-versus-all BLAST for ACCs having at least 99% identity but 

only a minimum alignment length of 10000 bases, 12 groupings of related MAGs across 

samples were identified. Interestingly, the ACCs within groups have the same taxonomic 

assignment and are very consistent in size, deviating by only a few thousand bases at 

most (Fig. 9). These related ACCs share large regions of very high similarity, but not 

along the entirety of their sequence. This could imply that various genetic elements in 

these species are being exchanged or replaced over time, suggesting that there are 

conserved core genomes that cause the observed sizes to be relatively stable. 

Furthermore, tiles that contain two size values indicate that there were hits between a 

primary ACC and a secondarily assembled ACC within a sample. Since these pairs do 

not align in their entirety, it is possible that they could represent closely related but 

distinct genomes that coexist in the same sample. 

It might be worth noting that of the 12 groupings, 5 belonged to the class 

Gammaproteobacteria, 4 to the class Alphaproteobacteria, 1 to Blastocatellia and 1 to the 

species Maganitrophus morganii (Appendix D). For whatever reason, 

Gammaproteobacteria (LNEJ01, SBBG01, CAKKSB01, Accumulibacter) and 

Alphaproteobacteria (Sphingobium, UBA9219, JACADY01, UBA11222) appear to be 

well adapted to wastewater environments relative to other bacteria in the community, as 

they make up the majority of recurring MAGs and represent the majority of GTDB 

classifications in general. All ACCs grouped here contain hydrocarbon degradation genes 

according to CANT-HYD except 2, which is shown in Appendix D. 
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Figure 9. All ACCs larger than 1 mb were grouped by performing an all-versus-all 

BLAST, where reciprocal best hits of 99% identity and a minimum alignment 

length of 10000 bases were retrieved. All ACCs within each group shared the same 

taxonomy classification by GTDBTK, and ACC sizes are shown within each square. 

The lack of high similarity along the full length of genomes between samples yet 

consistent taxonomic classification suggests the existence of a core genome and 

accessory genome for these MAGs, in which the latter is often exchanged 

throughout time. ACCs belonging to each taxonomic group here are summarized in 

Appendix D. 
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Regardless, most groups persist only in 2-3 consecutive samples; LNEJ, JACADY01, and 

CAKKSB01 are the only groups that appear in multiple samples widely separated by 

time. MAGs belonging to CAKKSB01 appear in almost every sample, except GAC0 and 

GAC4. SBBG01 appears in GAC2 and GAC3 but does not appear until GAC8, which is 

approximately 2 years later. LNEJ01 was observed in GAC0 and GAC7, which are 

separated by approximately 2 years, but only appeared between those samples in GAC2 

and GAC5. Given that MAGs belonging to CAKKSB01 persisted for the longest and had 

a relatively high abundance, it may be important to search for both the core and accessory 

genomes of ACCs in this group and compare them to other genomes in the sample. Its 

core genome likely contains genes that allowed for its long-term survival, and its 

accessory genome could potentially have genes that were beneficial for survival at each 

point in time. 

Looking into MAGs with higher mean coverage would be of interest, as high coverage 

indicates more accurate assemblies and can also be a proxy for relative abundance within 

samples. The higher or lower presence of a particular MAG suggests better or worse 

fitness at a certain point in time, and when paired with metadata regarding the ORW 

composition at each timepoint, it could indicate pathways relevant to those environmental 

changes. CAKKSB01, for example, did persist the longest but was mainly dominant in 

GAC3 and became less prominent as time went on. This could indicate some 

compositional change in the crude oil source that took place between the collection of 

GAC3 and GAC5. 

3.6 The Size Distribution of Smaller ACCs in GAC 
Metagenomes are Bi-Modal 

Examining the size distribution of all ACCs reconstructed across all samples showed that 

there was no density in the interval greater than 100 kbs and that most ACCs fall under 

the size range of 100 kbs or less. Interestingly, there was a bimodal size distribution with 

the highest densities at approximately 10 and 42 kbs, with a smaller peak at 60 kbs – and 

this was consistent across ACCs generated from each individual sample (Fig. 10).  
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Figure 10.  Size distributions of assembled circularized contigs (ACCs) were 

obtained from the metagenomes of 10 GAC samples. Each density curve represents 

the subset of draft assemblies under 100 kbs that are circularized in each of the 10 

GAC samples. Each curve follows a bimodal distribution across the 10 GAC 

samples that were sequenced, with the majority of contigs in this range appearing at 

approximately 8 and 42 kbs. (B) ACCs that appeared only in 1 sample follow a 

similar bimodal distribution. Most polished assemblies fall into this category. (C) A 

subset of polished ACCs that appeared in more than 1 sample follows the same 

bimodal distribution but with a higher density at the 42 kbs size. (D) The 
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distribution of predicted bacteriophage ACCs that only appeared in a single sample 

differed in that bacteriophage in this subset were mainly 40 kbs and up. (E) 

Predicted bacteriophage that appeared in more than one sample were mainly those 

in the 42 kbs range, but also in the 85 and 12 kbs ranges. 

This observation remains true even after subsetting small ACCs further into those that are 

seen only in one sample, and those seen in more than one sample. The determination of 

whether ACCs across samples were the same was done by performing an all-versus-all 

BLAST to find reciprocal best hits with a percent identity of at least 98%, 90% query 

coverage or more, and a query length that was at least 90% of the subject length. The 

resulting two subsets of singleton and recurring small ACCs had the same bimodal 

distribution with peaks at approximately 10 and 42 kbs, although slightly higher densities 

were seen in the 42 kbs peak for recurring ACCs. 

In contrast, ACCs that were predicted to be phages had different size distributions. The 

subset of 227 circularized ACCs that contained at least one putative bacteriophage 

protein annotation by Bakta and that were predicted to be bacteriophage by INHERIT 

demonstrated different size distributions as shown in Figure 10D and E for those 

observed in one sample and those observed in multiple samples. The greatest density of 

putative bacteriophage in the single sample category was approximately at 40 kbs, with 

smaller peaks at 65, 80 and 95 kbs. The size distribution of putative bacteriophages in the 

recurring category had a major density peak at 42 kbs, with smaller peaks at 12, 35 and 

85 kbs. 

The consistency in size distribution for most subgenomic-sized ACCs across samples 

could either be due to a particular set of selectively advantageous genes, or even type of 

plasmid mobility. Previous studies that have also observed bi-modal distribution of 

plasmids within species observed correlations between mobility type and plasmid sizes 

(68). Additionally, it is possible that size constraints can result from bacteriophage 

transduction of plasmids which are limited by size compatibility - and similar to the 

observation of bacteriophage and plasmid size distributions made in the study by (68). 

Interestingly, the largest peak in our putative bacteriophage ACCs matches the largest of 
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the two peaks observed for all ACCs at approximately 42 kbs. Though it is not yet clear, 

this may be a mechanism that explains the bimodal distribution of ACCs up to 100 kbss 

seen here. 
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Chapter 4  

4 Improving Annotations with a Structure-Based 
Approach 

Discovering functional information about novel MAGs and other ACCs from GAC 

metagenomes is imperative to discovering NA-degrading genes, although this is 

challenging when we are working with the sequences only, and they are too novel. As 

mentioned in the last chapter, a large proportion of CDS predicted with sequence-based 

annotation tools remained hypothetical when annotated with Bakta. This is especially the 

case for putative phages, which is unsurprising as phages are notoriously difficult to 

annotate. In this chapter, I discuss a way in which we can improve our annotations 

greatly by using protein structure homology detection withs state-of-the-art tools.  

Since protein structures are more conserved than sequence, it was expected that more 

informative annotations could be generated by identifying many of these hypothetical 

CDS’ using structure homology. Hypothetical CDS were first passed to Colabfold (48) to 

predict their protein structures. Under the assumption that proteins with similar folds 

have similar functions, these structures were queried against the AlphaFold structure 

database to look for structural homology, and annotations of a query’s best hit would be 

inherited.  

Due to the sheer number of hypothetical CDS, limitations on computational resources, 

and lack of time, only CDS from putative phages were used as proof of principle for this 

annotation method.  

4.1 Colabfold Produces High Confidence Structures 

For this subset of predicted CDS' from novel putative phages, Colabfold was able to 

produce structures with most having mean pLDDT scores in the acceptable range of 

above 70 (Fig. 11). Mean PAE scores for predicted structures were higher than expected 

since a score of 5 or below is considered very confident, but since Foldseek considers 
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local similarities, correct domain positioning and orientations are likely to be less 

important for detecting significant structural similarities (51).  

 

Figure 11. The majority of protein structures predicted with Colabfold from 

putative phage CDS' have pLDDT scores in the acceptable ranges of what is 

considered confident, which is a pLDDT score above 70. An average pLDDT score 

above 90 signifies a highly confident model. Though PAE scores for a large group of 

predicted structures are higher than 5, which is beyond the threshold for what is 

considered high confidence, it is not expected to significantly affect homology 

detection since Foldseek considers local similarities rather than simply global 

similarities. 

Though it seems that most protein structure predictions were generally good, it is 

important to note that the evaluation of structure prediction quality with summarized 

pLDDT scores may mask inaccuracies in local regions of a structure with a higher mean 

score, or conversely, be too sensitive to small, disordered regions that significantly lower 
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the mean score. It would be more rigorous to evaluate the per-residue scores of each 

protein structure prediction to identify if regions are likely to be true errors, but mean 

pLDDT scores can still be a sufficient indicator of the quality of the overall fold. Overall, 

a majority of the structures produced by Colabfold were considered confident and usable 

for structure homology searching. 

Quality predicted structures, which I considered to be structures with a mean pLDDT 

greater than 70, were then used to assess structural homology vs. the entire universe of 

known and predicted protein structures with Foldseek. Structural homology searching is 

much more sensitive than sequence homology searching, as only the fold and not the 

sequence need to be conserved (69). If a queried predicted structure’s best hit has a high 

confidence homology to an annotated protein in the AlphaFold database where the e-

value is less than 1e-10, the annotation was inherited by the predicted protein. 

4.2 Foldseek Detects Structural Homology for 
Hypothetical Proteins and Enriches Annotations 

Using this approach, a substantial increase in identifiable proteins and annotations with 

GO or KEGG terms was observed for all CDS in all putative phage ACCs across all 

samples when compared to sequence homology annotation alone (Fig. 12). In total, 5726 

out of the 16606 hypothetical putative phage CDS had confident hits to structures in the 

AlphaFold database. While Bakta provided an annotation for an average of 10%-15% of 

CDS in all samples, the structural homology search approach gave confident predictions 

for approximately 30% to 40% of CDS (Fig. 12A). Furthermore, this approach revealed 

KEGG and GO terms that were otherwise nonexistent with Bakta annotations alone (Fig. 

12B). Structure prediction and homology search with Colabfold and Foldseek enrich 

these annotations, providing an average of approximately 10% of CDSs with KEGG or 
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GO functional terms for each putative phage. 

 

Figure 12. Using protein structure prediction and structure homology search 

methods (Colabfold and Foldseek) consistently increases the proportion of predicted 

CDS' that are annotated in bacteriophage across all samples versus sequence 

homology alone (Bakta). (A) A large proportion of proteins that remained 

hypothetical with Bakta were able to be identified using Colabfold and Foldseek. (B) 

The proportion of annotations that also include KEGG or GO terms increased 

consistently across all predicted bacteriophage across each sample. Whereas Bakta 

annotations had no KEGG/GO terms for most bacteriophage ACCs, Foldseek led to 

KEGG or GO annotations in all bacteriophage ACCs. 

4.2.1 Structure Homology Approach Was More Performant Than 
Sequence Homology Across All CDS Sizes 

The structural-based annotation approach identified more putative homologs than 

sequence-based annotation for all size classes of CDS up to 5.5 kb, with the greatest 
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number of putative homologs being identified in CDS between 500 bases and 1 kb (Fig. 

13A). The count and proportion of CDS annotated by either method is summarized across 

500 base bins in Figure 13A and 13B respectively. The sequence homology approach was 

able to annotate between 5% and 25% of predicted CDS' up to 5 kbs in size, whereas the 

structural homology method was able to annotate between 5% and 70% of CDS' up to 5.5 

kb in size. Bakta was most efficient in annotating CDS of sizes 1 to 1.5 kbs and sizes 4.5 

to 5 kbs – where about 25% of proteins in these size ranges were identifiable by this 

method. On the other hand, the structural homology approach was particularly efficient 

for CDS between 0.5 and 3 kbs, where between 50 and 70% of CDS in this size range 

were annotated by this approach.  Although the proportion of CDS annotated by Foldseek 

was drastically lower outside this size range, there were still improvements in the 

proportion of annotated CDS across all size ranges in comparison to the sequence 

homology approach, except for the 4.5 to 5 kbs size range. Regardless, CDS 

identification using Bakta predicted CDS of up to 12 kbs in size, although both methods 

struggled to produce many annotations for CDS sizes 5 to 5.5 kbs and above.  

 

Figure 13. Including protein structure predictions and homology search based 

methods result in a larger proportion predicted CDS' of up to 5.5 kbs being 

annotated in predicted bacteriophage. (A) There is a universal increase in the 

proportions of CDS' annotated of sizes up to 5.5 kbs when using structure 
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homology.  CDS' between 5.5 and 12 kbs were also predicted by Bakta but could not 

be annotated with either method. (B) The number of CDS' predicted and annotated 

is related to CDS size. While the number of identifiable proteins more than doubled 

when including structure homology methods for CDS' of sizes less than 5 kbs, an 

overwhelming proportion of proteins from CDS less than 0.5 kbs CDS size range 

remained unannotated. 

4.2.2 GO and KEGG Terms 

With the improvement in annotations, several functions and pathways present in putative 

bacteriophage ACCs in this sample were identified, many of which were functions and 

pathways expected to be found in bacteriophage (Fig. 14). 

 

Figure 14. Foldseek revealed many functional pathways and processes present in 

putative bacteriophage ACCs, many of which were expected bacteriophage 

pathways. (A) The top 10 GO terms across all putative bacteriophage included 

mainly GO terms relevant to the bacteriophage life cycle, including DNA related 

functions and functions related to host infection and interaction. (B) Proteins 

involved in a variety of metabolic processes were identified across all the putative 

bacteriophages. Though carboxylic acid and lipid metabolic processes represent the 

minority, they may potentially be related to NA degradation based on past proposed 
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mechanisms of NA degradation. (C) The presence of KEGG pathways were 

identified from Foldseek annotations for the entire set of predicted protein 

structures in all putative bacteriophage in each sample. Some pathways common to 

bacteriophage, including mismatch repair and homologous recombination, were 

expected and present in most samples. All the pathways annotated in our samples 

were incomplete - KOs in putative bacteriophage Foldseek annotations across each 

sample represented only a small fraction of the total unique KOs from each KEGG 

pathway. 

As expected for phages, the most common GO terms included processes related to DNA 

metabolism, repair, recombination, and replication processes, in addition to host infection 

or interaction such as hydrolase activity or membrane-related activity (Fig. 14A and Fig. 

14B). KEGG pathways that appeared in Foldseek annotations also included expected 

pathways in most samples, including homologous recombination and mismatch repair 

pathways (Fig. 14C) . 

The number of metabolic GO terms produced was diverse, but their relation to 

naphthenic acid degradation was not yet clear (Fig. 14B). The most common metabolic 

GO term was for carbohydrate-related metabolic processes. There were only 2 GO 

annotations in lipid metabolic processes that are unlikely to be involved with NA 

degradation, as the GO annotation is attached to glycerophosphoryl diester 

phosphodiesterase (GP-PDE) and a GP-PDE subunit, and this enzyme targets ester bonds 

between glycerol and phosphate. GP-PDE enzymes are known to be evolutionarily 

conserved proteins that are ubiquitous among eukaryotes and prokaryotes. In bacteria, 

they are typically involved with phospholipid membrane remodeling in Gram-positive 

bacteria, but also in bacterial pathogenicity. (70). GP-PDEs are also implicated in the 

removal of organophosphate esters in wastewater treatment plants (71), but these 

compounds are not typical in ORW. Regardless, many of these observations regarding 

the functional capabilities of our bacteriophage ACCs would not have been possible with 

a sequence homology-only approach. 
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4.2.3 PFAM Concordance 

PFAM is a database of protein families that is useful for the identification of conserved 

domains. In Figure 15, I examined the concordance of PFAM annotations between the 

sequence and structural homology search approaches, including data from all samples. 

All PFAM annotations generated by either the sequence or structural homology approach 

were compared, and the latter was able to identify 583 PFAM annotations whereas the 

prior found only 296, with 183 (26%) of these being in common. Thus, the total PFAM 

identifications found by the structural approach was not a strict superset of all PFAM 

identifications found by sequence homology (Fig. 15A). A more rigorous way of 

comparing the annotation methods was to examine the overlap when both approaches 

provided an annotation for the same CDS shown in Figure 15B. Of the 194 CDS where 

both approaches predicted a CDS, 141 or 72% were concordant for PFAM 

identifications. Determining which approach was more accurate cannot be done in the 

absence of orthogonal evidence, but given the extremely high sequence divergence 

between the data collected here and the sequence databases it is possible that many of the 

sequence-only annotations may be spurious or of low confidence. 

 

Figure 15. PFAM annotations were compared between Foldseek and Bakta. (A) All 

PFAMs annotations of predicted bacteriophage were pooled from all samples and 

compared for matches. (B) Pairwise comparisons were performed between Foldseek 

and Bakta PFAM annotations for each predicted CDS, to see if results from both 

methods agree. Matches are counted if at least one PFAM obtained from one 

method agrees with the other for a given CDS that was predicted by Bakta. 
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4.2.4 Skipping AMBER Relaxation in Structure Prediction 

In generating the protein structures, there is an optional step to refine the predicted 

structure in which additional molecular dynamic simulations are performed by Colabfold 

based on AMBER force fields (72). AMBER describes a set of parameters needed to 

generate plausible bond lengths, angles, and side chain formations. These changes are 

often minor and target amino acid side chain positioning. Though useful in relaxing 

protein structures to their lowest energy state and eliminating side chain clashes, it is 

highly computational, even with GPU acceleration. To see how AMBER relaxation could 

affect homology detection with Foldseek, the best hits with relaxed and unrelaxed 

versions of a predicted structure were compared. Approximately 40% of best hits differed 

between unrelaxed and relaxed versions of a predicted protein, although unrelaxed and 

relaxed proteins were always assigned to the same PFAM. This suggests that there are 

several structures in which AMBER relaxation causes enough structural variation to alter 

homology detection slightly, but a good backbone prediction is enough to infer related 

functions. Therefore, a feasible strategy to reduce computational time could be to first 

perform structure predictions without the AMBER relax step, then subsequently perform 

relaxation to refine only proteins that are part of protein families with our functions of 

interest.  

4.3 Detecting Phage Structural Proteins in Recurring 
Phages 

All proteins of the bacteriophage head, tail, capsid or baseplate categories that the 

Foldseek annotations identified were clustered from all putative bacteriophage by 

structural alignments (Fig. 16). Near perfect TM scores within most clusters show that 

the same putative best structural homolog was often seen in samples widely separated by 

time, suggesting that similar bacteriophage genomic sequences were being captured on 

different collection dates. Unfortunately, however, relating bacteriophage in GAC 

samples to known families of bacteriophage based on the cluster representative was not 

possible due to the lack of bacteriophage specific taxonomic information in the UniProt 

entries, and the high sequence divergence precluded phylogenetic inference. However, 

future investigations considering factors such as the morphology of bacteriophage 
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structures, bacteriophage hosts and functional proteins to classify our bacteriophage can 

be done with the annotation methods highlighted in this thesis. 

 

Figure 16. Structural bacteriophage proteins, which are often used for classification 

of bacteriophage, were identified via Foldseek and were shared between putative 

bacteriophage across samples. All predicted proteins structures belonging to 

recurring putative bacteriophage ACCs were clustered using Foldseek, and each 

cluster containing representatives that were annotated by Foldseek to be head, 

capsid, baseplate or tail related proteins had its representative (outlined black) 

structurally aligned to its members to generate a TM-score. Most clusters have 

members that strongly resemble its representative, having near perfect alignment 

scores close to 1 for the entire cluster. Clusters are named according to the UniProt 

recommended name for the representative protein structure, followed by its 

accession number. 
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Chapter 5 

5 Discussion 

In the previous chapters, I was able to sequence and characterize some features of MAGs 

and putative phages of GAC metagenomes – including taxonomic classifications, some 

interesting community dynamics and features, and some potential NA-degrading genes 

from annotations. I also discussed a new method for enriching annotations by using 

protein structure prediction and structural homology tools on novel sequences that are 

divergent from known sequences in current sequence databases. However, there are still 

many potential optimizations in the methods used and many unanswered questions from 

the data collected, which is what will be discussed in this chapter.  

5.1 Further Work is Needed to Confirm NA-degrading 
Genes and Other Important Genes 

Communities seeded in GAC from this oil refinery are diverse, with a seemingly high 

turnover rate of bacterial species, where very few predicted ACCs persist across samples. 

Based on the mean coverages of MAGs across all samples, the community appears to be 

mostly dominated by bacteria belonging to the Pseudomonadota phylum, where its 

subclasses Gammaproteobacteria were prominent in samples up to GAC3 and 

Alphaproteobacteria were more dominant in all samples afterwards. This is an 

observation that is often shared by other studies done on wastewater communities (63). 

These bacterial species that persist across samples or are exceedingly abundant relative to 

others in the community are likely to be important to NA degradation and long-term 

survival in ORW. Since ORW composition can be variable, changes in community 

biodiversity likely reflect those changes in composition. It is difficult, however, to make 

any inferences about specific factors that influenced the changes observed in the 

community since no data regarding the ORW composition was accessible for each time 

point. If changes in the toxicity or NA concentrations were correlated to the increase or 

decrease in abundance of a certain species across samples, a stronger case could 

potentially be made that a certain species is involved with NA degradation. 

Understanding which genes make a particular species robust to those changes in ORW is 
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also important if the goal in the future is to engineer ecological treatment systems for 

ORW. Genes apart from NA degradation to look out for can include membrane 

transporters or pumps, which were previously seen to be overexpressed in NA-exposed 

bacteria and were proposed to prevent NAs and other inorganic contaminants in ORW 

from accumulating in bacteria to toxic levels (19). 

Although CANT-HYD identified a number of hydrocarbon degradation genes in high-

quality MAGs including in those that persist across multiple samples, only two genes 

were manually confirmed to be previously identified NA degradation genes. Since there 

is a lack of specific databases or automated ways to help identify NA degradation genes 

in our samples, there may be more genes annotated that are actually involved with NA 

degradation but were not pointed out. Conversely, there are also some genes previously 

implicated with NA degradation that were absent in GAC samples. One majorly 

upregulated gene in P. fluorescens degrading a model NA is acyl-CoA thioesterase II, 

which does not appear at all from the CANT-HYD and Bakta annotations of all MAGs 

collected here (19). Either the enzyme remains unannotated by sequence homology 

methods and could potentially appear after enriching annotations with structure 

prediction and homology search, or the gene is simply not necessary or present in the 

samples collected here. Regardless, these GAC samples are exposed to a large variety of 

naturally occurring NAs and it would be expected that likely NA-degrading genes 

identified from a single isolate growing on NA models or commercial mixtures would be 

present at the very least in a bacterial community that degrades NA. As such, the lack of 

previously identified genes such as acyl-CoA thioesterase II could indicate some 

differences between model NAs and naturally occurring NAs.  

ACCs that were smaller than 1 mb or were not identified as phages represented most 

ACCs collected from GAC, and these are yet to be analyzed. The remaining ACCs could 

likely be extrachromosomal elements such as plasmids that often carry advantageous 

genes, including potential NA-degrading genes. Finally, it is expected that many phages 

remain unidentified since phage prediction with INHERIT was only done on ACCs that 

had phage proteins in their Bakta annotations. This was initially done as a rough way to 

create a small subset of data to test the protein structure prediction and homology search 
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methods. Given the high sequence divergence observed in these samples and 

consequently poor Bakta annotations in many small ACCs, it is likely that a lot of phage 

proteins in ACCs went unannotated, as well as any potential linear phage chromosomes. 

In the future, it might be viable to use both INHERIT to predict if an ACC is a phage 

sequence and its structure homology-enriched annotations to confirm the presence of 

proteins unique to phages, such as the head, tail, baseplate, or capsid.  

5.1.1 Comprehensive Annotations Supports Future Discovery of 
NA-degrading Genes  

Initial annotations revealed many pathways in assembled MAGs, but there was a large 

proportion of unannotated sequences that could potentially be important to NA 

degradation or fitness in ORW. I was able to demonstrate a strategy to predict the protein 

structure of coding sequences unannotated by a sequence homology-based method using 

Colabfold and subsequently produce annotations for them by searching for structure 

homology with Foldseek. 

Being able to generate more comprehensive annotations not only improves our general 

understanding of biological processes that occur in GAC samples but also opens the way 

to further analysis necessary to confidently predict NA-degrading genes. Comprehensive 

annotation data paired with metatranscriptomic data can allow for gene expression 

analysis, in which highly expressed genes could indicate genes important to the survival 

of bacteria in GAC. It is expected that a number of novel upregulated genes will be 

identified in GAC from this refinery relative to past studies since GAC is collected 

directly from ORW and is enriched in naturally occurring NAs, which contrasts the use 

of single species isolates growing on NA models for most studies. 

However, there is the challenge of selecting a proper baseline of expression since ORW 

can be very dynamic and heterogeneous,  and the proportion of NA types in ORW is not 

something that can be measured. One solution could be to use samples in which the NA 

concentrations are the lowest as the baseline and attempt to observe how gene expression 

changes over time with respect to NA concentrations.  



60 

 

5.2 Strategies for Reducing the Compute Time of 
Structure Prediction  

Computationally predicting protein structures from sequences is the most time-

consuming step of the pipeline, as Colabfold produces approximately 100 structures a 

day, depending on the size of the proteins being predicted. Over the 10 GAC samples 

collected in this study, 592730 structure predictions would be needed if every 

hypothetical CDS was to have its structure predicted – meaning that it would take years 

to process these samples.  

5.2.1 Reducing Dataset Size by Clustering 

Reducing the size of the dataset could be done by clustering protein sequences with 50% 

identity and at least 80% aligned residues, then subsequently predicting the structures of 

the representative sequences as a general model for its representatives. Though it is 

known that proteins with similar sequences often adopt similar structures, the inverse is 

not always true. Previous studies have identified that as sequence similarity decreases 

between proteins within the same family, the structural similarities exponentially get 

worse at the 50% threshold (73). Other studies have identified that protein pairs with 

sequence identities as low as 35-40% are still very likely to be structurally similar, and 

anything below that is referred to as the “twilight zone”, where protein pairs almost never 

share similar structures (74).   

MMseqs2 (75) with the arguments “--min-seq-id 0.5 -s 7.5 -c 0.8 --cov-mode 1” was 

used to cluster all hypothetical CDS by at least 50% sequence identity, 80% aligned 

residues and a sensitivity level of 7.5. The sensitivity level is the average length of the 

lists of similar k-mers per query sequence position, so higher levels help identify 

sequence pairs with lower sequence identities in the prefiltering steps. Performing this 

clustering reduced the dataset by more than half – from 592730 to 248028 CDS.  

Since there is still ambiguity in this sequence identity to structure relationship, clustering 

sequences under the assumption that members within the same cluster will have generally 

the same structure could still lead to a lot of false positives and negatives. Regardless, 

given the size of the dataset and the significant size reduction of the dataset after 



61 

 

clustering, it may be worth it to use this strategy simply to narrow down and prioritize 

proteins to predict and study.  

5.3 Capturing Potential Missing Genomes 

Many high-quality MAGs collected across GAC samples have particularly low mean 

coverages, which reduces the confidence of the assembly and consequently its 

annotations. Despite being complete and uncontaminated, those metrics do not account 

for chimeric assemblies containing closely related sequences. Manual inspection would 

be ideal to confirm the quality of low-coverage genomes, as gaps in coverage could 

indicate points where these sequences could have joined. 

Apart from manual inspection, resequencing GAC samples to improve coverage and 

potentially uncover more genomes would be beneficial. Subsequent sequencing runs can 

be further optimized with adaptive sequencing to extract only the most necessary 

information. ONT’s MinKNOW program allows for the depletion or enrichment of 

certain reads, so reads that belong to MAGs or assemblies that have already been 

assembled with sufficient coverage can be discarded. This would theoretically improve 

the throughput for reads belonging to genomes not yet recovered and would help with the 

recovery of additional genomes. 

Furthermore, ONT offers other library preparation kits that may be highly beneficial to 

the recovery of additional genome assemblies. The latest v14 library preparation kits 

allow for raw read accuracies of Q20 and higher, which is a large improvement from the 

Q13 scores seen with the v10 chemistry kits used in this thesis. ONT also offers an ultra-

long DNA sequencing kit that adopts their new v14 chemistry but also produces read 

N50’s of over 50 kb. With the updated kits, the recovery of MAGs and other ACCs from 

GAC samples is likely to be much greater due to the greater base accuracy and more 

contiguous sequencing data. 

It is also important to recognize that the number of phage genomes collected may be 

underrepresentative due to the inclusion of a size selection step after DNA extraction, 
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which depletes fragments smaller than 20 kilobases. This could have an impact on the 

coverage and recovery of phage genomes or other ACCs smaller than 20 kb. 

Furthermore, the ACCs determined to be phages were limited to phage genomes that are 

circular or are circularly permuted, and the distinction between the two has yet to be 

made for the putative phages collected from GAC here. Phages can also contain linear 

genomes, and as such, many phages could potentially have gone unacknowledged.  

5.3.1 “Incomplete” Genomes Could be Complete CPR Genomes 

Although 80 out of the 112 ACCs greater than 1 mb were considered complete and 

uncontaminated, 17 ACCs had completeness values between 60 and 80% - which can be 

characteristic of CPR genomes. Furthermore, no ACC had completeness levels lower 

than 60%, or contamination levels higher than 5.22%. Though it is entirely possible that 

these contigs could simply be incomplete, circularly permuted fragments, it is also 

possible that these ACCs are CPR genomes, which characteristically have reduced 

genome sizes and many absent “universal” single copy marker genes. It would be 

unsurprising as well to find CPR genomes as they are relatively common in metagenomic 

samples.  

Apart from identifying CPR by comparing its sequence against a reference database, CPR 

genomes could potentially be predicted by searching for both the presence and absence 

patterns of certain single-copy genes. CPR genomes have also been observed to have a 

lower GC ratio, as well as lacking certain ribosomal proteins such as uL1, bL9 and/or 

uL30 which are essentially universal for non-CPR genomes. In looking for potential CPR 

genomes, ACCs smaller than 1 mb must be included as well. CPR genomes have been 

observed to range from 0.3 to 1.7 mb, so there could be more than the 17 potential CPR 

genomes identified here (76).  

Regardless, with CPR genomes typically having reduced metabolic capacities and thus 

relying on host organisms for exchanging metabolites, they may still play another 

important role in NA degradation. They are known to be involved with biogeochemical 

cycling and evolution within similar ecosystems, as a previous metagenomic study done 
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on CPR in activated sludge systems identified carbon cycling genes and horizontal 

transfer genes within CPR genomes (42). Since they adopt symbiont lifestyles, their role 

within the system or metabolic capabilities likely directly depends on their host. 

5.4 Identifying and Pairing Phage to MAGs  

Temperate lysogenic phages can integrate their DNA into bacterial chromosomes as 

prophage without immediately undergoing the lytic cycle (77). These genes could confer 

new functions, referred to as lysogenic conversion functions, and persist for multiple 

generations until the prophage is triggered to either enter the lytic cycle and kill the host, 

enter the chronic cycle. Prophage can be triggered as a response to changes in the 

environment, and as previously mentioned, ORW can be highly variable. Thus, phages 

can have a large impact on the dynamics of the community and may be important to 

continue to study. The existence of prophages could potentially be captured by mapping 

phage genomes back to MAG genomes. This way, it becomes possible to identify 

temperate phages, pinpoint their hosts and detect genes that are being horizontally 

transferred.  

5.5 Comparison to Other Structure-Based Annotation 
Tools 

In bridging the sequence to function gap, using the structure prediction and structure 

homology search tools Colabfold and Foldseek may be viable to enrich poor annotations 

of predicted gene sequences that are divergent from sequence databases, which is typical 

of environmental metagenomic samples. Even though Colabfold can mostly produce 

confident structures from this dataset, it is difficult to assess the accuracy of these 

annotations without orthogonal evidence – and while structure often correlates to 

function, inheriting annotations from a structure homolog is not perfect. Still, sequence 

similarity has been shown to be weakly correlated to functional similarity (78), while 

protein structures are often more conserved and correlated to function (69,79). In 

addition, benchmarking of structural alignments based on AlphaFold’s predicted 

structures against sequence alignments show that the prior is much more accurate in 

detecting homology, especially when the sequence identities between sequences fall 
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under 40% (80). Structural alignments appear to be the next step in homology detection, 

and it would be interesting to compare the results of the structure-based methods used 

here to enrich annotations, with other structure-based methods for annotation.  

One such tool that is older but was widely used to perform sequence to structure 

functional annotation is DeepFRI, which uses a Graph Convolutional Network (GCN) 

with language model features (81). Very briefly, a language model is trained on domain 

sequences from Pfam to identify sequence features or patterns in relation to its functions 

and input them to a GCN. The GCN uses the language model to understand how those 

sequence features are related to each other in terms of their positions in a protein's 3D 

structure. By considering the physical proximity of residues in the 3D structure and 

propagating information between nearby residues, the GCN can identify long distance 

relationships between residues. The model then uses a gradient-weighted Class 

Activation Map which identifies specific residues in the protein's structure that are crucial 

for predicting its functions. Though DeepFRI was a relatively popular tool, the largest 

concern now would be that the sequence to structure steps could be highly inaccurate 

relative to AlphaFold-based tools, given that DeepFRI has not been validated in CASP 

and was only benchmarked against other sequence-based annotation methods. Thus, 

functional annotations from DeepFRI may be better than other sequence-based methods 

but are unlikely to be better than state-of-the-art annotations based on tools utilizing 

AlphaFold and structural aligners such as Foldseek. 

5.6 Summary and Conclusion 

Despite the scale at which wastewater is produced by the oil industry, its impact, and the 

promise of bioecological treatment systems for the remediation of wastewater, very little 

research on NA-degrading bacterial communities has been done previously, especially on 

the genomic level. The overall goal of this thesis project was to utilize state-of-the-art 

sequencing technologies and bioinformatic tools to better understand what a microbial 

community living in NA-enriched GAC filters looks like and how the community might 

be degrading NAs. Here, I demonstrated methods to extract, sequence, taxonomically 

assign, and annotate metagenomes from 10 GAC samples collected over two years. 

Based on its taxonomic classifications, I observed a diverse microbial community with a 
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lot of novel sequences and a high degree of species turnover across samples. Though no 

previously identified NA-degrading species were sequenced here, the 9 MAGs identified 

at the species level suggest the presence of chemolithotrophs, indicating that there is a 

population that does not degrade NA but is able to survive off other trace inorganic 

elements. Furthermore, most MAG sequences were unique across samples, but 10 groups 

of MAGs shared high sequence similarities in large regions and the same taxonomic 

classification across samples, which suggests the existence of a core genome and an 

accessory genome that changes often. Almost all MAGs that do persist across samples 

contain a number of hydrocarbon degradation genes identified by CANT-HYD that could 

potentially be involved with NA degradation, although KEGG or GO terms from Bakta 

annotations revealed no potential NA-degrading genes. Only 2 putative NA-degrading 

genes that have been identified before were seen in MAGs here, but it is expected that 

with the collection of metatranscriptome information, for example, more potential NA-

degrading genes can be identified with gene expression analysis. There may also be more 

previously identified NA-degrading genes in GAC samples since the presence of these 

genes was confirmed by manually searching the literature since there is no collection or 

database of NA-degrading genes. 

Another goal of the thesis was to enrich poor annotations to obtain more comprehensive 

overviews of the metabolic capabilities of the community, which would also support 

future analysis of gene expression. Typical annotation methods rely on sequence 

homology, but this can be difficult with novel sequences. Here I show on a subset of 

putative phages that annotations can be significantly improved on highly divergent 

sequences by predicting the structures of CDS and detecting structure homology. For 

putative phages, the proportion of CDS remaining hypothetical decreased approximately 

5-fold on average, and at least 1 GO or KEGG term was produced for each phage. Most 

GO and KEGG terms produced were also expected to be phage-related processes. 

Predicting protein structures also allowed for the clustering of structural phage proteins, 

which helps support the fact that related phages are being captured independently across 

samples. 
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Using this strategy to annotate the rest of the ACCs collected and the MAGs would allow 

for the identification of many of the remaining hypothetical CDS, which represent more 

than half of all total CDS. However, there is much room for improvement. The estimated 

computational time of predicting structures for all the hypothetical CDS with Colabfold is 

approximately 2 years, but this could be reduced with less potential impact on annotation 

quality by clustering sequences by 50% identity and skipping AMBER relaxation. Other 

optimizations and improvements could be made by exploring other complementary 

function prediction tools, such as DEEPFRI. 

Overall, this thesis demonstrates methods to characterize metagenomes from GAC, a 

unique environmental sample important to understanding NA biodegradation in ORW 

remediation. Functional information collected from these communities will be the 

foundation of ecological treatment systems that may one day be the industry standard for 

ORW remediation, given their potential for being the most cost-effective, efficient, and 

scalable treatment option. 

  



67 

 

References 

1. Green SJ, Demes K, Arbeider M, Palen WJ, Salomon AK, Sisk TD, et al. Oil sands 

and the marine environment: current knowledge and future challenges. Front Ecol 

Environ. 2017;15(2):74–83.  

2. Finkel ML. The impact of oil sands on the environment and health. Curr Opin 

Environ Sci Health. 2018 Jun 1;3:52–5.  

3. Chow-Fraser G, Rougeot A, Gagnon E, Cheng R. 50 Years of Sprawiling Tailings - 

Mapping decades of destruction by oil sands tailings. Ross A, Gray P, editors. 

Environ Def Can CPAWS North Alta. 2022 May;  

4. Brient JA, Wessner PJ, Doyle MN. Naphthenic Acids. In: Kirk-Othmer Encyclopedia 

of Chemical Technology [Internet]. John Wiley & Sons, Ltd; 2000 [cited 2023 Apr 

19]. Available from: 

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471238961.1401160802180905.a01 

5. Chakravarti R, Patrick BN, Barney M, Kusinski G, Devine TM. Toward the 

Mechanism of Corrosion in Crude Oil: A Study Using Vibrational Spectroscopic 

Techniques at Elevated Temperatures. Energy Fuels. 2013 Dec 19;27(12):7905–14.  

6. Misiti T, Tezel U, Pavlostathis SG. Fate and effect of naphthenic acids on oil refinery 

activated sludge wastewater treatment systems. Water Res. 2013 Jan 1;47(1):449–60.  

7. Quinlan PJ, Tam KC. Water treatment technologies for the remediation of naphthenic 

acids in oil sands process-affected water. Chem Eng J. 2015 Nov;279:696–714.  

8. Afzal A, Drzewicz P, Pérez-Estrada LA, Chen Y, Martin JW, Gamal El-Din M. 

Effect of Molecular Structure on the Relative Reactivity of Naphthenic Acids in the 

UV/H 2 O 2 Advanced Oxidation Process. Environ Sci Technol. 2012 Oct 

2;46(19):10727–34.  

9. Marentette JR, Frank RA, Bartlett AJ, Gillis PL, Hewitt LM, Peru KM, et al. Toxicity 

of naphthenic acid fraction components extracted from fresh and aged oil sands 

process-affected waters, and commercial naphthenic acid mixtures, to fathead 

minnow (Pimephales promelas) embryos. Aquat Toxicol Amst Neth. 2015 

Jul;164:108–17.  

10. Bartlett AJ, Frank RA, Gillis PL, Parrott JL, Marentette JR, Brown LR, et al. 

Toxicity of naphthenic acids to invertebrates: Extracts from oil sands process-

affected water versus commercial mixtures. Environ Pollut Barking Essex 1987. 2017 

Aug;227:271–9.  

11. Wang J, Cao X, Sun J, Chai L, Huang Y, Tang X. Transcriptional responses of 

earthworm (Eisenia fetida) exposed to naphthenic acids in soil. Environ Pollut. 2015 

Sep 1;204:264–70.  



68 

 

12. Hughes SA, Mahaffey A, Shore B, Baker J, Kilgour B, Brown C, et al. Using 

ultrahigh-resolution mass spectrometry and toxicity identification techniques to 

characterize the toxicity of oil sands process-affected water: The case for classical 

naphthenic acids. Environ Toxicol Chem. 2017 Nov;36(11):3148–57.  

13. Frank RA, Kavanagh R, Kent Burnison B, Arsenault G, Headley JV, Peru KM, et al. 

Toxicity assessment of collected fractions from an extracted naphthenic acid mixture. 

Chemosphere. 2008 Jul;72(9):1309–14.  

14. Pourrezaei P. Physico-Chemical Processes for Oil Sands Process-Affected Water 

Treatment [Internet] [Ph.D.]. [Canada -- Alberta, CA]: University of Alberta 

(Canada); [cited 2023 Jul 16]. Available from: 

https://www.proquest.com/docview/1353365453?pq-

origsite=gscholar&fromopenview=true 

15. Hsu CS, Dechert GJ, Robbins WK, Fukuda EK. Naphthenic Acids in Crude Oils 

Characterized by Mass Spectrometry. Energy Fuels. 2000 Jan 1;14(1):217–23.  

16. Grady CPL, Daigger GT, Love NG, Filipe CDM. Biological Wastewater Treatment. 

CRC Press; 2011. 994 p.  

17. Clemente JS, Fedorak PM. A review of the occurrence, analyses, toxicity, and 

biodegradation of naphthenic acids. Chemosphere. 2005 Jul;60(5):585–600.  

18. Clemente JS, MacKinnon MD, Fedorak PM. Aerobic Biodegradation of Two 

Commercial Naphthenic Acids Preparations. Environ Sci Technol. 2004 Feb 

1;38(4):1009–16.  

19. McKew BA, Johnson R, Clothier L, Skeels K, Ross MS, Metodiev M, et al. 

Differential protein expression during growth on model and commercial mixtures of 

naphthenic acids in Pseudomonas fluorescens Pf‐5. MicrobiologyOpen. 2021 Jul 

19;10(4):e1196.  

20. Whitby C. Chapter 3 - Microbial Naphthenic Acid Degradation. In: Advances in 

Applied Microbiology [Internet]. Academic Press; 2010 [cited 2023 Jun 11]. p. 93–

125. (Advances in Applied Microbiology; vol. 70). Available from: 

https://www.sciencedirect.com/science/article/pii/S0065216410700034 

21. Blakley ER. The microbial degradation of cyclohexanecarboxylic acid by a β-

oxidation pathway with simultaneous induction to the utilization of benzoate. Can J 

Microbiol. 1978 Jul;24(7):847–55.  

22. Rho EM, Evans WC. The aerobic metabolism of cyclohexanecarboxylic acid by 

Acinetobacter anitratum. Biochem J. 1975 Apr 1;148(1):11–5.  

23. Arslan M, Müller JA, Gamal El-Din M. Aerobic naphthenic acid-degrading bacteria 

in petroleum-coke improve oil sands process water remediation in biofilters: DNA-



69 

 

stable isotope probing reveals methylotrophy in Schmutzdecke. Sci Total Environ. 

2022 Apr 1;815:151961.  

24. Johnson RJ, West CE, Swaih AM, Folwell BD, Smith BE, Rowland SJ, et al. Aerobic 

biotransformation of alkyl branched aromatic alkanoic naphthenic acids via two 

different pathways by a new isolate of Mycobacterium. Environ Microbiol. 

2012;14(4):872–82.  

25. Blakley ER, Papish B. The metabolism of cyclohexanecarboxylic acid and 3-

cyclohexenecarboxylic acid by Pseudomonas putida. Can J Microbiol. 1982 

Dec;28(12):1324–9.  

26. Beckett A, Cook K, Robson S. A pandemic in the age of next-generation sequencing. 

The Biochemist. 2021 Dec 16;43.  

27. Khrenova MG, Panova TV, Rodin VA, Kryakvin MA, Lukyanov DA, Osterman IA, 

et al. Nanopore Sequencing for De Novo Bacterial Genome Assembly and Search for 

Single-Nucleotide Polymorphism. Int J Mol Sci. 2022 Aug 2;23(15):8569.  

28. Esposito A, Esposito M, Ptashnik A. Phylogenetic Diversity of Animal Oral and 

Gastrointestinal Viromes Useful in Surveillance of Zoonoses. Microorganisms. 2022 

Sep 10;10:1815.  

29. Slatko BE, Gardner AF, Ausubel FM. Overview of Next Generation Sequencing 

Technologies. Curr Protoc Mol Biol. 2018 Apr;122(1):e59.  

30. Oxford Nanopore Technologies [Internet]. 2021 [cited 2023 Jun 14]. The power of 

Q20+ chemistry. Available from: https://nanoporetech.com/q20plus-chemistry 

31. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. 

metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat 

Methods. 2020 Nov;17(11):1103–10.  

32. Alhakami H, Mirebrahim H, Lonardi S. A comparative evaluation of genome 

assembly reconciliation tools. Genome Biol. 2017 May 18;18:93.  

33. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole 

genome sequencing. F1000Research. 2019;8:2138.  

34. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly 

from long uncorrected reads. Genome Res. 2017 May;27(5):737–46.  

35. Medaka [Internet]. Oxford Nanopore Technologies; 2018. Available from: 

https://nanoporetech.github.io/medaka/index.html 

36. Wick R. rrwick/Minipolish: Minipolish v0.1.3 [Internet]. Zenodo; 2020 [cited 2023 

Jul 16]. Available from: https://zenodo.org/record/3752204 



70 

 

37. Bacheli A. Gerenuq [Internet]. 2020 [cited 2021 Apr 4]. Available from: 

https://github.com/abahcheli/gerenuq 

38. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for 

single-cell and metagenomic sequencing data with highly uneven depth. 

Bioinformatics. 2012 Jun 1;28(11):1420–8.  

39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 

SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell 

Sequencing. J Comput Biol. 2012 May;19(5):455–77.  

40. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy 

TBK, et al. Minimum information about a single amplified genome (MISAG) and a 

metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 

2017 Aug 1;35(8):725–31.  

41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: 

assessing the quality of microbial genomes recovered from isolates, single cells, and 

metagenomes. Genome Res. 2015 Jul;25(7):1043–55.  

42. Wang Y, Zhang Y, Hu Y, Liu L, Liu SJ, Zhang T. Genome-centric metagenomics 

reveals the host-driven dynamics and ecological role of CPR bacteria in an activated 

sludge system. Microbiome. 2023 Mar 22;11(1):56.  

43. Lui LM, Nielsen TN, Arkin AP. A method for achieving complete microbial 

genomes and improving bins from metagenomics data. PLOS Comput Biol. 2021 

May 7;17(5):e1008972.  

44. Castelle CJ, Banfield JF. Major New Microbial Groups Expand Diversity and Alter 

our Understanding of the Tree of Life. Cell. 2018 Mar 8;172(6):1181–97.  

45. Deng H, Jia Y, Zhang Y. Protein structure prediction. Int J Mod Phys B. 2018 Jul 

20;32(18):1840009.  

46. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly 

accurate protein structure prediction with AlphaFold. Nature. 2021 

Aug;596(7873):583–9.  

47. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. 

AlphaFold Protein Structure Database: massively expanding the structural coverage 

of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021 Nov 

17;50(D1):D439–44.  

48. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 

ColabFold: making protein folding accessible to all. Nat Methods. 2022 

Jun;19(6):679–82.  



71 

 

49. Orengo CA, Todd AE, Thornton JM. From protein structure to function. Curr Opin 

Struct Biol. 1999 Jun;9(3):374–82.  

50. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: 

rapid and standardized annotation of bacterial genomes via alignment-free sequence 

identification. Microb Genomics. 2021 Nov;7(11):000685.  

51. Kempen M van, Kim SS, Tumescheit C, Mirdita M, Söding J, Steinegger M. 

Foldseek: fast and accurate protein structure search [Internet]. bioRxiv; 2022 [cited 

2023 Apr 26]. p. 2022.02.07.479398. Available from: 

https://www.biorxiv.org/content/10.1101/2022.02.07.479398v1 

52. Leger A, Leonardi T. pycoQC, interactive quality control for Oxford Nanopore 

Sequencing. J Open Source Softw. 2019 Feb 28;4:1236.  

53. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: 

visualizing and processing long-read sequencing data. Bioinformatics. 2018 Aug 

1;34(15):2666–9.  

54. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 

Sep 15;34(18):3094–100.  

55. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive 

binning algorithm for robust and efficient genome reconstruction from metagenome 

assemblies. PeerJ. 2019 Jul 26;7:e7359.  

56. Dawson ET, Durbin R. GFAKluge: A C++ library and command line utilities for the 

Graphical Fragment Assembly formats. J Open Source Softw. 2019;4(33):1083.  

57. Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and 

exomes. Bioinformatics. 2018 Mar 1;34(5):867–8.  

58. Bai Z, Zhang Y zhong, Miyano S, Yamaguchi R, Fujimoto K, Uematsu S, et al. 

Identification of bacteriophage genome sequences with representation learning. 

Bioinformatics. 2022 Sep 15;38(18):4264–70.  

59. Tenenbaum D, Volkening J, Maintainer BP. KEGGREST: Client-side REST access 

to the Kyoto Encyclopedia of Genes and Genomes (KEGG) [Internet]. Bioconductor 

version: Release (3.17); 2023 [cited 2023 Jul 16]. Available from: 

https://bioconductor.org/packages/KEGGREST/ 

60. Leppik RA, Young IG, Gibson F. Membrane-associated reactions in ubiquinone 

biosynthesis in Escherichia coli. 3-Octaprenyl-4-hydroxybenzoate carboxy-lyase. 

Biochim Biophys Acta. 1976 Jul 15;436(4):800–10.  

61. Cunha RD, Ferreira LJ, Orestes E, Coutinho-Neto MD, de Almeida JM, Carvalho 

RM, et al. Naphthenic Acids Aggregation: The Role of Salinity. Computation. 2022 

Oct;10(10):170.  



72 

 

62. Takahashi-Íñiguez T, Aburto-Rodríguez N, Vilchis-González AL, Flores ME. 

Function, kinetic properties, crystallization, and regulation of microbial malate 

dehydrogenase. J Zhejiang Univ Sci B. 2016 Apr;17(4):247–61.  

63. Ahad JME, Pakdel H, Gammon PR, Siddique T, Kuznetsova A, Savard MM. 

Evaluating in situ biodegradation of 13C-labelled naphthenic acids in groundwater 

near oil sands tailings ponds. Sci Total Environ. 2018 Dec;643:392–9.  

64. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly 

classification with the genome taxonomy database. Bioinformatics. 2022 Dec 

1;38(23):5315–6.  

65. Bunce JT, Ndam E, Ofiteru ID, Moore A, Graham DW. A Review of Phosphorus 

Removal Technologies and Their Applicability to Small-Scale Domestic Wastewater 

Treatment Systems. Front Environ Sci [Internet]. 2018 [cited 2023 Jul 19];6. 

Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2018.00008 

66. Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, 

Andersen MH, et al. Connecting structure to function with the recovery of over 1000 

high-quality metagenome-assembled genomes from activated sludge using long-read 

sequencing. Nat Commun. 2021 Mar 31;12:2009.  

67. Karthikeyan S, Rodriguez-R LM, Heritier-Robbins P, Kim M, Overholt WA, Gaby 

JC, et al. “Candidatus Macondimonas diazotrophica”, a novel gammaproteobacterial 

genus dominating crude-oil-contaminated coastal sediments. ISME J. 2019 

Aug;13(8):2129–34.  

68. Ares-Arroyo M, Coluzzi C, P.C. Rocha E. Origins of transfer establish networks of 

functional dependencies for plasmid transfer by conjugation. Nucleic Acids Res 

[Internet]. 2022 Nov; Available from: https://doi.org/10.1093/nar/gkac1079 

69. Gibrat JF, Madej T, Bryant SH. Surprising similarities in structure comparison. Curr 

Opin Struct Biol. 1996 Jun;6(3):377–85.  

70. Wang F, Lai L, Liu Y, Yang B, Wang Y. Expression and Characterization of a Novel 

Glycerophosphodiester Phosphodiesterase from Pyrococcus furiosus DSM 3638 That 

Possesses Lysophospholipase D Activity. Int J Mol Sci. 2016 May 30;17(6):831.  

71. Pantelaki I, Voutsa D. Occurrence and removal of organophosphate esters in 

municipal wastewater treatment plants in Thessaloniki, Greece. Environ Res. 2022 

Nov;214(Pt 2):113908.  

72. Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular 

simulation package. WIREs Comput Mol Sci. 2013;3(2):198–210.  

73. Chothia C, Lesk AM. The relation between the divergence of sequence and structure 

in proteins. EMBO J. 1986 Apr;5(4):823–6.  



73 

 

74. Rost B. Twilight zone of protein sequence alignments. Protein Eng Des Sel. 1999 Feb 

1;12(2):85–94.  

75. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for 

the analysis of massive data sets. Nat Biotechnol. 2017 Nov;35(11):1026–8.  

76. Tsurumaki M, Saito M, Tomita M, Kanai A. Features of smaller ribosomes in 

candidate phyla radiation (CPR) bacteria revealed with a molecular evolutionary 

analysis. RNA. 2022 Aug;28(8):1041–57.  

77. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: 

mechanisms, impact and ecology of temperate phages. ISME J. 2017 Jul;11(7):1511–

20.  

78. Clark WT, Radivojac P. Analysis of protein function and its prediction from amino 

acid sequence. Proteins Struct Funct Bioinforma. 2011;79(7):2086–96.  

79. Illergård K, Ardell DH, Elofsson A. Structure is three to ten times more conserved 

than sequence--a study of structural response in protein cores. Proteins. 2009 Nov 

15;77(3):499–508.  

80. Rajapaksa S, Konagurthu AS, Lesk AM. Sequence and structure alignments in post-

AlphaFold era. Curr Opin Struct Biol. 2023 Apr;79:102539.  

81. Gligorijević V, Renfrew PD, Kosciolek T, Leman JK, Berenberg D, Vatanen T, et al. 

Structure-based protein function prediction using graph convolutional networks. Nat 

Commun. 2021 May 26;12(1):3168.  

 

  



74 

 

Appendices 

Appendix A: CheckM Results for all ACCs greater than 1 mb across all GAC 

samples. Completeness (Comp) percentages greater than 90 and contamination 

(Contam) percentages less than 5 are considered complete MAGs. 

Sample Contig Name Marker Lineage Comp Contam 

GAC8 bin.944 p__Bacteroidetes(UID2605) 100 0.48 

GAC7 bin.756_6 c__Alphaproteobacteria(UID3305) 99.13 0 

GAC2 1038 c__Betaproteobacteria(UID3971) 98.93 0.03 

GAC5 bin.596_1 c__Alphaproteobacteria(UID3305) 98.7 0 

GAC8 bin.321_1 c__Alphaproteobacteria(UID3305) 98.69 0 

GAC8 419 c__Gammaproteobacteria(UID4267) 98.59 0.56 

GAC6 bin.618_2 p__Bacteroidetes(UID2605) 98.57 0.71 

GAC6 bin.616_1 c__Alphaproteobacteria(UID3305) 98.57 0 

GAC2 595 c__Gammaproteobacteria(UID4267) 98.51 0.56 

GAC6 2268 c__Betaproteobacteria(UID3971) 98.5 0 

GAC8 2304 c__Gammaproteobacteria(UID4267) 98.47 0.52 

GAC6 bin.472_3 c__Betaproteobacteria(UID3971) 98.29 0 

GAC5 5304 p__Bacteroidetes(UID2591) 98.28 0 

GAC3 13374 c__Gammaproteobacteria(UID4274) 98.22 1.42 

GAC3 2150 k__Bacteria(UID3187) 98.21 0.89 

GAC7 bin.526_1 o__Sphingomonadales(UID3310) 98.16 0.94 

GAC5 1636 c__Gammaproteobacteria(UID4274) 98.16 1.42 

GAC1 466 c__Gammaproteobacteria(UID4274) 98.14 1.42 

GAC2 5322 c__Gammaproteobacteria(UID4274) 97.87 1.42 

GAC6 2932 c__Gammaproteobacteria(UID4274) 97.79 1.25 

GAC8 bin.1128_3 o__Sphingomonadales(UID3310) 97.75 0.94 

GAC6 bin.302_1 c__Gammaproteobacteria(UID4201) 97.7 0 

GAC8 bin.778_1 k__Bacteria(UID3187) 97.67 3.64 

GAC3 1330 o__Cytophagales(UID2936) 97.6 0.6 

GAC8 6081 c__Gammaproteobacteria(UID4274) 97.56 1.18 

GAC3 694 c__Gammaproteobacteria(UID4267) 97.5 0.56 

GAC7 bin.442_1 c__Gammaproteobacteria(UID4267) 97.47 0.79 

GAC7 7443 c__Gammaproteobacteria(UID4274) 97.47 1.42 

GAC2 1044 c__Gammaproteobacteria(UID4267) 97.42 1.7 

GAC3 bin.747_1 c__Alphaproteobacteria(UID3305) 97.4 0.43 

GAC5 bin.229_2 c__Gammaproteobacteria(UID4267) 97.39 0.67 

GAC0 4282 k__Bacteria(UID3187) 97.22 2.73 

GAC7 bin.1152_1 c__Betaproteobacteria(UID3971) 97.14 0 

GAC7 bin.595_13 c__Gammaproteobacteria(UID4267) 97.12 3.55 

GAC7 bin.915_2 c__Betaproteobacteria(UID3888) 97.09 0 
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GAC3 476 c__Gammaproteobacteria(UID4267) 97 0.44 

GAC5 3168 c__Betaproteobacteria(UID3971) 96.8 0 

GAC0 10 c__Gammaproteobacteria(UID4267) 96.65 0.79 

GAC6 bin.113_1 c__Gammaproteobacteria(UID4274) 96.65 1.42 

GAC8 2786 k__Bacteria(UID3187) 96.58 1.71 

GAC8 3901 k__Bacteria(UID3187) 96.58 5.22 

GAC2 bin.525_1 c__Gammaproteobacteria(UID4267) 96.56 0.91 

GAC0 bin.402_8 c__Gammaproteobacteria(UID4443) 96.05 0.37 

GAC8 bin.228_38 c__Gammaproteobacteria(UID4267) 96.03 2.17 

GAC2 bin.191_3 c__Alphaproteobacteria(UID3305) 95.85 1.09 

GAC3 bin.780_3 f__Rhodobacteraceae(UID3340) 95.83 0 

GAC8 bin.666_4 k__Bacteria(UID3187) 95.73 3.85 

GAC6 1770 k__Bacteria(UID3187) 95.73 3.85 

GAC2 bin.761_3 k__Bacteria(UID2565) 95.64 3.76 

GAC2 bin.666_1 c__Alphaproteobacteria(UID3305) 95.61 0.43 

GAC3 bin.1013_1 k__Bacteria(UID2495) 95.6 0.1 

GAC3 bin.670_11 f__Xanthomonadaceae(UID4214) 95.59 1.15 

GAC5 bin.252_9 c__Alphaproteobacteria(UID3305) 94.98 0.44 

GAC3 1384 k__Bacteria(UID3187) 94.84 0.91 

GAC6 bin.867_1 c__Alphaproteobacteria(UID3305) 94.76 0.44 

GAC7 bin.732_1 k__Bacteria(UID2495) 94.38 1.1 

GAC3 632 c__Gammaproteobacteria(UID4267) 94.25 0.83 

GAC7 bin.837_11 k__Bacteria(UID3187) 94.18 1.71 

GAC8 24942 k__Bacteria(UID2495) 93.96 1.1 

GAC2 bin.405_1 c__Alphaproteobacteria(UID3305) 93.92 0 

GAC5 bin.182_6 c__Alphaproteobacteria(UID3337) 93.63 0 

GAC8 1413 o__Sphingomonadales(UID3310) 93.43 0.94 

GAC7 bin.1232_1 p__Bacteroidetes(UID2591) 93.32 0.66 

GAC6 309 k__Bacteria(UID2495) 93.16 1.1 

GAC8 bin.73_1 c__Gammaproteobacteria(UID4267) 93.15 3.79 

GAC6 bin.888_1 k__Bacteria(UID2565) 93.11 3.41 

GAC3 bin.878_2 c__Deltaproteobacteria(UID3216) 92.9 1.29 

GAC3 4050 c__Alphaproteobacteria(UID3305) 92.61 1.3 

GAC7 397 c__Alphaproteobacteria(UID3305) 92.59 0.44 

GAC7 bin.516_1 c__Alphaproteobacteria(UID3305) 92.42 0.44 

GAC2 1115 c__Gammaproteobacteria(UID4267) 92.39 0.4 

GAC8 bin.257_2 k__Bacteria(UID3187) 92.26 0.85 

GAC3 5308 k__Bacteria(UID3187) 92.14 4.32 

GAC3 bin.914_3 k__Bacteria(UID2565) 91.98 2.27 

GAC3 11397 c__Gammaproteobacteria(UID4266) 91.82 0 

GAC9 13052 c__Alphaproteobacteria(UID3305) 91.74 0.88 

GAC8 bin.1065 k__Bacteria(UID2565) 91.51 3.23 

GAC2 11871 c__Alphaproteobacteria(UID3305) 91.21 0 
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GAC9 178 k__Bacteria(UID3187) 90.55 4.27 

GAC8 bin.719_1 k__Bacteria(UID2565) 90.52 0 

GAC2 1852 c__Deltaproteobacteria(UID3216) 89.84 1.29 

GAC0 4784 c__Deltaproteobacteria(UID3216) 89.77 0.65 

GAC5 bin.531_1 f__Rhodocyclaceae(UID3972) 88.07 0 

GAC2 bin.547_3 k__Bacteria(UID2565) 88 1.14 

GAC3 7970 k__Bacteria(UID3187) 87.87 0.23 

GAC3 bin.90_1 k__Bacteria(UID2565) 87.29 0 

GAC3 4180 k__Bacteria(UID2565) 86.33 2.33 

GAC7 245 k__Bacteria(UID2565) 85.76 3.41 

GAC8 bin.941 k__Bacteria(UID3187) 85.18 0.85 

GAC9 17507 k__Bacteria(UID203) 84.61 0 

GAC8 5287 k__Bacteria(UID1452) 84.56 0.33 

GAC6 bin.663_1 k__Bacteria(UID2565) 84.02 0 

GAC8 bin.279 k__Bacteria(UID3187) 82.46 0 

GAC3 4966 k__Bacteria(UID1452) 82.14 1.1 

GAC8 7304 k__Bacteria(UID203) 81.4 0 

GAC9 5178 k__Bacteria(UID3187) 81.33 0.85 

GAC2 690 k__Bacteria(UID3187) 80.37 0.96 

GAC7 288 k__Bacteria(UID2565) 79.69 2.27 

GAC8 4444 k__Bacteria(UID203) 79.44 0 

GAC8 5562 k__Bacteria(UID2565) 77.7 0.57 

GAC7 14392 k__Bacteria(UID203) 77.43 0 

GAC5 3791 k__Bacteria(UID203) 77.27 0 

GAC6 3344 k__Bacteria(UID203) 75.71 0 

GAC3 3758 k__Bacteria(UID2329) 75.04 0.16 

GAC5 bin.353_1 k__Bacteria(UID2565) 74.36 0.57 

GAC8 5819 k__Bacteria(UID203) 73.12 1.72 

GAC9 3209 k__Bacteria(UID2495) 72.22 0 

GAC3 bin.771_10 c__Gammaproteobacteria(UID4267) 71.27 0 

GAC8 4053 k__Bacteria(UID1452) 70.83 1.85 

GAC5 3906 k__Bacteria(UID1452) 70.83 0.93 

GAC3 2748 k__Bacteria(UID1452) 70.3 0 

GAC6 3120 k__Bacteria(UID1453) 68.95 0.85 

GAC7 11047 k__Bacteria(UID1453) 68.95 0.85 

GAC8 bin.560_1 k__Bacteria(UID1452) 68.48 0 

GAC8 4482 k__Bacteria(UID1452) 68.48 0 

GAC3 14643 k__Bacteria(UID1452) 67.73 1.98 

GAC8 15073 k__Bacteria(UID1452) 66.01 0 

GAC7 1113 k__Bacteria(UID2565) 64.27 1.14 

GAC3 13560 k__Bacteria(UID1453) 64.25 0 

GAC3 4258 k__Bacteria(UID1453) 64.07 0 

GAC3 4773 k__Bacteria(UID1452) 63.86 0 
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GAC5 bin.222_2 k__Bacteria(UID2565) 63.69 0 

GAC8 1565 k__Bacteria(UID2565) 61.94 2.27 
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Appendix B: CANT-HYD hydrocarbon degradation genes were found in various 

high-quality MAGS across GAC samples. The number of MAGs containing a given 

hydrocarbon degradation gene is shown across each sample. Blank entries have no 

annotated genes. 

Hydrocarbon Degradation Gene 
GAC 

0 1 2 3 4 5 6 7 8 9 

(2Fe-2S)-binding_protein   1 1 1  1    
2-halobenzoate_1,2-dioxygenase_large_subunit     2   1 1  
3-ketosteroid-9-alpha-hydroxylase_oxygenase_subunit         1  
3-octaprenyl-4-hydroxybenzoate_carboxy-lyase 1 1 4 5 4 3 5 3 2  
3-

phenylpropionate/cinnamic_acid_dioxygenase_subunit_alph

a   1        
3-

phenylpropionate/cinnamic_acid_dioxygenase_subunit_beta   1 2       
4-(Gamma-L-glutamylamino)butanoyl-[BtrI_acyl-

carrier_protein]_monooxygenase_BtrO     1  1    
4Fe-4S_Mo/W_bis-MGD-type_domain-containing_protein 1  3 2 2   4   
4-hydroxy-3-polyprenylbenzoate_decarboxylase   1   1 2 1   
4-hydroxyacetophenone_monooxygenase   1 1 1 1 1 2   
4-hydroxybenzoate_decarboxylase_subunit_C   1 1 2 1 1 2 1  
6-

phosphogluconate_dehydratase_Phosphogluconate_dehydra

tase_protein   1        
Acryloyl-CoA_reductase_(NADH)    1 1   1   
Acyl-CoA/acyl-ACP_dehydrogenase    1       
Acyl-CoA_dehydrogenase 1  4 5 7 2 4 6 3 1 

Acyl-CoA_dehydrogenase,_short-chain_specific   1        
Acyl-CoA_dehydrogenase_3    1       
Acyl-CoA_dehydrogenase_AcdA   1        
Acyl-CoA_dehydrogenase_domain-containing_protein         1  
Acyl-CoA_dehydrogenase_family_protein   1  1 2 2 2   
Acyl-

CoA_dehydrogenase_related_to_the_alkylation_response_p

rotein_AidB   1   1 2 1   
Acyl-CoA-dh-2_domain-containing_protein     1      
Acyl-coenzyme_A_dehydrogenase         1  
Alkane_1-monooxygenase   1 2 1 2 3 2   
Alkanesulfonate_monooxygenase        2 1  
Alkylation_response_protein_AidB-like_acyl-

CoA_dehydrogenase     1      
Anthranilate_1,2-dioxygenase_large_subunit    1 1      
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Anthranilate_1,2-

dioxygenase_large_subunit/terephthalate_1,2-

dioxygenase_oxygenase_component_alpha_subunit   1        
Aromatic_ring_hydroxylation_dioxygenase_C   1 1       
Aromatic_ring-hydroxylating_dioxygenase_subunit_alpha   2  1 1     
Aromatic-ring-hydroxylating_dioxygenase     1      
Aromatic-ring-hydroxylating_dioxygenase_subunit_beta   1  1      
Assimilatory_nitrate_reductase_catalytic_subunit    1 2  1 1 2  
Assimilatory_nitrate_reductase_large_subunit        1   
Bac-luciferase_domain-containing_protein   2 2 1   1   
Baeyer-Villiger_monooxygenase     1      
Benzene_1,2-dioxygenase   1 1       
Benzene_1,2-dioxygenase_subunit_alpha   1        
Benzene_1,2-dioxygenase_subunit_beta   1        
Benzylsuccinate_synthase_alpha_subunit    1       
Biotin_biosynthesis_cytochrome_P450   1 1    1   
Biotin_sulfoxide_reductase   1        
Biphenyl_2,3-dioxygenase_subunit_alpha        1 1  
Biphenyl_dioxygenase_subunit_beta   2 1    1 1  
Choline_monooxygenase    1       
Cyclohexanone_1,2-monooxygenase     1      
Cyclohexanone_monooxygenase   2 2 1   1   
Cyclohexanone_monooxygenase/acetone_monooxygenase     1   1   
Cyclopentanone_1,2-monooxygenase   1  2 1 1 1   
Cytochrome_P450   3 3 2 1 1 2   
D504   1 1       
D513   1 1       
D516    1       
Dibenzothiophene_monooxygenase   1  1      
Dioxygenase    1       
DszA       1    
DszC       1    
F420-dependent_glucose-6-phosphate_dehydrogenase   1        
FAD-containing_monooxygenase_EthA   3 2 3 2 3 2   
FA-desaturase_domain-containing_protein    1  1 1    
FdhF/YdeP_family_oxidoreductase       1 1   
Flavin-containing_monooxygenase_FMO     1      
formate_dehydrogenase   1 1 1      
Formate_dehydrogenase,_alpha_subunit_(FdhA1)   1 2 2  1  2  
Formate_dehydrogenase,_nitrate-inducible,_major_subunit   1        
Formate_dehydrogenase_H   1    1    
formate_dehydrogenase_subunit_alpha   2 2 2 1 2 2   
Glutaryl-CoA_dehydrogenase    1 1  1    
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hypothetical_protein   5 2 4 2 4 5 2  
Isovaleryl-CoA_dehydrogenase   2   1  1 1  
Linalool_8-monooxygenase   1   1     
LLM_class_F420-dependent_oxidoreductase   1        
LLM_class_flavin-dependent_oxidoreductase     1   1   
Long-chain_alkane_monooxygenase        1   
L-prolyl-[peptidyl-carrier_protein]_dehydrogenase          1 

Menaquinone_biosynthesis_decarboxylase 1    1  1    
Methane_monooxygenase/ammonia_monooxygenase_subu

nit_A       1    
Methane_monooxygenase/ammonia_monooxygenase_subu

nit_B     1  2 1   
Methane_monooxygenase/ammonia_monooxygenase_subu

nit_C     1  1 1   
Molybdopterin_oxidoreductase    1       
Molybdopterin_oxidoreductase,_Psr/Psh_family,_PsrA-

like_catalytic_subunit          1 

Molybdopterin_oxidoreductase_family_protein   1        
Molybdopterin-

containing_oxidoreductase_catalytic_subunit    1       
Molybdopterin-dependent_oxidoreductase 1  2  1 1 2 2   
Monooxygenase   1 2 1  1 2 1  
NAD(P)/FAD-dependent_oxidoreductase   3 2 1   1   
NADH-quinone_oxidoreductase_subunit_G     1 1  1   
Neopentalenolactone_D_synthase    1    1   
Nitrate_reductase  1 5 6 2 2 3 3 4  
nitrate_reductase_(quinone)   1  1  2    
Nitrate_reductase_alpha_chain    1    4 1  
nitrate_reductase_catalytic_subunit_NapA   1        
Nitrilotriacetate_monooxygenase    1       
Nitrilotriacetate_monooxygenase_component_A_(NTA_mo

nooxygenase_component_A)_(NTA-MO_A)   1     1   
Ortho-halobenzoate_1,2-dioxygenase_alpha-

ISP_protein_OhbB     1      
Oxidoreductase_alpha_(Molybdopterin)_subunit     1  1    
Particulate_methane_monooxygenase_A-subunit     1   1   
p-cumate_2,3-

dioxygenase_system,_large_oxygenase_component   1     1   
p-cumate_2,3-

dioxygenase_system,_small_oxygenase_component        1   
p-cumate_dioxygenase   1 2       
Perchlorate_reductase_subunit_alpha     1      
Periplasmic_nitrate_reductase     1      
Phenazine_N-monooxygenase_PhzNO1     1   1   
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Phenol_2-monooxygenase,_oxygenase_component_DmpN     1      
Phenol_hydroxylase     1      
Phenoxybenzoate_dioxygenase_subunit_alpha   1        
Phenylacetone_monooxygenase   1 1 1      
Phenylpropionate_dioxygenase_or_related_ring-

hydroxylating_dioxygenase,_large_terminal_subunit   1  1 1 1 2   
propane_2-monooxygenase        1   
Putative_ABC-

type_transport_system_involved_in_lysophospholipase_L1_

biosynthesis    1       
Putative_dimethyl_sulfoxide_reductase_chain_YnfE      1 2 1   
Putative_dimethyl_sulfoxide_reductase_chain_YnfF   1  2      
Putative_flavoprotein_involved_in_K+_transport   1 1       
Putative_Nitrate_reductase        1   
Putative_oxidoreductase     1      
Putative_oxidoreductase_YoaE     1  1    
putative_vanillate_O-

demethylase_oxygenase_subunit_oxidoreductase_protein   1        
Pyrimidine_monooxygenase_RutA     1   1   
Pyrogallol_hydroxytransferase_large_subunit          1 

Respiratory_nitrate_reductase_2_alpha_chain   1        
Respiratory_nitrate_reductase_alpha_chain    1 1      
Respiratory_nitrate_reductase_subunit_alpha        1   
Rieske_2Fe-2S_domain-containing_protein        2   
Rieske_domain-containing_protein   4 4 5 2 3 3   
Ring-hydroxyl-A_domain-containing_protein   1        
Ring-hydroxylating_dioxygenase_subunit_beta   2 2       
Ring-hydroxylating_oxygenase_subunit_alpha   1        
Salicylate_5-hydroxylase,_large_oxygenase_componen    1       
SidA/IucD/PvdA_family_monooxygenase         1  
Tert-butanol_monooxygenase_/_tert-

amyl_alcohol_desaturase_oxygenase_subunit     1      
TIGR03619_family_F420-

dependent_LLM_class_oxidoreductase   1        
Tnp-DNA-bind_domain-containing_protein     1      
Toluene-4-

monooxygenase_system,_hydroxylase_component_subunit_

alpha     1      
Toluene-4-

monooxygenase_system,_hydroxylase_component_subunit_

beta     1      
Toluene-4-monooxygenase_system_protein_B     1      
Toluene-4-sulfonate_monooxygenase_system_iron-

sulfur_subunit_TsaM1   1  2 2 2 3   
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Trimethylamine-N-oxide_reductase_(Cytochrome_c)   1  2   1   
UbiD_family_decarboxylase   2 2       
UbiD2:_3-octaprenyl-4-hydroxybenzoate_carboxy-lyase        1   
Vanillate_O-demethylase_monooxygenase_subunit        2   
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Appendix C: KEGG Pathways retrieved from Bakta annotations of MAGs collected 

in each sample. Completeness of a pathway is determined by the number of KOs in 

a sample divided by the total number of KOs in a pathway. 
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Appendix D: An all-versus-all BLAST was performed with ACCs larger than 1 mb. 

ACCs that aligned to each other with 99% sequence identity and a minimum 

alignment length of 10000 bases were grouped. Each ACC was taxonomically 

classified by GTDBTK, and any ACC that had at least one hydrocarbon 

degradation (HD) gene according to CANT-HYD is indicated. ACCs that are 

underlined are complete (>90%) and uncontaminated (<5%) MAGs that are 

missing one or more ubiquitous bacterial rRNA or tRNA genes that are required to 

be classified as high-quality. No incomplete ACC larger than 1 mb had any hits.  

ACC Sample HD Gene Full Taxonomy (GTDBTK) 

10 GAC0 Y 
d__Bacteria;p__Pseudomonadota;c__Gammaprot

eobacteria;o__Ga0077554;f__Ga007554;g__LNE

J01;s__ 

bin.525_1 GAC2 Y 

bin.229_2 GAC5 Y 

bin.442_1 GAC7 Y 

1115 GAC2 Y d__Bacteria;p__Pseudomonadota;c__Gammaprot

eobacteria;o__Ga0077554;f__Ga007554;g__SBB

G01;s__ 

632 GAC3 N 

2304 GAC8 Y 

466 GAC1 Y 

d__Bacteria;p__Pseudomonadota;c__Gammaprot

eobacteria;o__CALZJG01;f__CALZJG01;g__CA

KKSB01;s__ 

5322 GAC2 Y 

13374 GAC3 Y 

1636 GAC5 Y 

bin.113_1 GAC6 Y 

2932 GAC6 Y 

7443 GAC7 Y 

6081 GAC8 Y 

bin.526_1 GAC7 Y 
d__Bacteria;p__Pseudomonadota;c__Alphaproteo

bacteria;o__Sphingomonadales;f__Sphingomonad

aceae;g__Sphingobium;s__ 

1413 GAC8 Y 

bin.1128_

3 

GAC8 N 

bin.666_4 GAC4 Y d__Bacteria;p__Acidobacteriota;c__Blastocatellia

;o__RBC074;f__RBC074;g__JAJVID01;s__JAJ

VID01 sp022072205 
1770 GAC6 Y 

3168 GAC5 Y 

d__Bacteria;p__Pseudomonadota;c__Gammaprot

eobacteria;o__Burkholderiales;f__Rhodocyclacea

e;g__Accumulibacter;s__ 

2268 GAC6 Y 

bin.472_3 GAC6 Y 

bin.1152_

1 

GAC7 Y 

309 GAC6 Y d__Bacteria;p__CLD3;c__CLD3;o__SB21;f__SB

21;g__JABWBZ01;s__ bin.732_1 GAC7 Y 

595 GAC2 Y d__Bacteria;p__Pseudomonadota;c__Gammaprot

eobacteria;o__Ga0077554;f__Ga007554;g__SBB476 GAC3 Y 
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419 GAC4 Y G01;s__ 

bin.778_1 GAC4 Y d__Bacteria;p__Nitrospirota;c__Nitrospiria;o__S

BBL01;f__Manganitrophaceae;g__Manganitroph

us;s__Manganitrophus morganii 
4282 GAC0 Y 

bin.252_9 GAC5 Y d__Bacteria;p__Pseudomonadota;c__Alphaproteo

bacteria;o__UBA9219;f__UBA9219;g__;s__ bin.867_1 GAC6 Y 

bin.405_1 GAC2 Y 

d__Bacteria;p__Pseudomonadota;c__Alphaproteo

bacteria;o__Micropepsales;f__Micropepsaceae;g_

_JACADY01;s__ 

bin.321_1 GAC4 Y 

bin.596_1 GAC5 Y 

bin.616_1 GAC6 Y 

bin.756_6 GAC7 Y 

bin.666_1 GAC2 Y d__Bacteria;p__Pseudomonadota;c__Alphaproteo

bacteria;o__UBA11222;f__UBA11222;g__UBA1

1222;s__ 
bin.747_1 GAC3 Y 
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