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Abstract 

Metal loss corrosions and dents are two major threats to the integrity of oil and natural gas 

pipelines.  In the pipeline industry, the Fitness-For-Service (FFS) assessment is commonly 

employed for pipelines containing these defects.  However, FFS assessment usually assumes 

that a defect has a simple shape, and such a simplification may significantly affect the 

accuracy of the assessment.  Therefore, retaining the actual shapes of defects and 

incorporating them into the FFS assessment can improve assessment accuracy.  The main 

objective of the present thesis is to extract key information about the sizes, directions, and 

shapes of corrosions and dents from the measurement of in-service and excavated pipelines, 

and then improve the accuracy of FFS assessment based on the extracted information. 

The first study develops a wavelet transform-based denoising method for the measured inner 

surface of in-service dented pipelines obtained from caliper tools.  Since the inner surface is 

differently sampled along the longitudinal and circumferential directions, the commonly used 

denoising methods cannot sufficiently remove measurement errors from the signal.  The 

proposed method is based on overcomplete expansion, and the overcomplete dictionary is 

constructed from the hyperbolic wavelet transform and stationary transform.  The strain 

estimated from the signal denoised by the proposed method is closer to the actual strain than 

the other denoising method.  An overcomplete dictionary that can effectively denoise the 

dent signal is then constructed based on the statistics of the measurement of in-service dented 

pipelines. 

The second study explores the vital directional features and length scales of natural corrosion 

clusters that govern the burst capacity of corroded pipelines.  The corrosion depths in a 

cluster are measured by high-resolution laser scans, and two-dimensional (2D) discrete 

wavelet transform (DWT) with a suitable wavelet function is employed to decompose the 

corrosion cluster.   A methodology is proposed to determine level- and sub-band-dependent 

thresholds such that those wavelet coefficients below the thresholds have a negligible impact 

on the burst capacity predicted by the widely used RSTRENG model and can be ignored for 

the reconstruction of the cluster.  The preserved wavelet coefficients show that longitudinally 
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orientated features with 4 – 32 mm in length have a greater influence on the remaining burst 

capacity than other features.  This facilitates FFS assessment of corroded pipelines. 

The third study aims to simulate the corrosion fields whose morphology and marginal 

distribution are close to the actual corrosion fields from limited information summarized 

from the ILI data.  The corrosion field containing multiple corrosion anomalies is modelled 

as a nonhomogeneous non-Gaussian random field, where the spatial correlation and marginal 

distribution of anomalies are estimated from their sizes. The proposed methodology provides 

realizations of corrosion fields with the RSTRENG-predicted burst capacity closer to the 

actual burst capacity than the commonly used methodology that idealizes anomalies as 

cuboids. 

The fourth study presents a framework to analyze and simulate nonhomogeneous non-

Gaussian corrosion fields on the external surface of buried in-service pipelines by using 

continuous and discrete wavelet transforms.  Continuous wavelet transform (CWT), dual-tree 

complex discrete wavelet transform (DT-CDWT), and dual-tree complex discrete wavelet 

with hyperbolic wavelet transform scheme (DT-CHWT) are incorporated into the iterative 

power and amplitude correction (IPAC) algorithm to extract the features of the natural 

corrosion field measured by a high-resolution laser scan and generate synthetic corrosion 

fields.  The results indicate that the proposed framework can generate synthetic corrosion 

fields that effectively capture probabilistic characteristics of the measured corrosion field in 

terms of the scalogram, textural features, and burst capacity of the pipe segment containing 

the corrosion field. 

 

Keywords 

Pipeline, corrosion, burst capacity, dent, wavelet transform, denoise, nonhomogeneous non-

Gaussian random field, inline inspection. 
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Summary for Lay Audience 

Pipelines are widely considered the most efficient and safest way to transport large quantities 

of oil and gas products over long distances.  However, the integrity of pipelines is often 

threatened by corrosion and mechanical damage such as dent.  The fitness-for-service (FFS) 

assessment is generally employed in the pipeline industry to assess a pipeline segment 

containing corrosions or dents.  The characteristics of naturally occurring corrosions and 

dents are essential to the accuracy of FFS assessment, and these characteristics can be 

summarized from the measurement of the in-service and excavated pipelines.  This thesis 

aims at improving the accuracy of FFS assessment models for pipelines containing 

corrosions or dents using the wavelet transform and random field. 

The pipeline industry usually runs inline inspection (ILI) tools to detect and size defects 

along the in-service pipelines.  After denoising the ILI signals, the sizes and locations of 

detected defects are incorporated into some FFS assessment models to determine if the 

pipeline can work safely with these defects.  The present study involves different stages of 

this process.  Some modifications are introduced to the wavelet transform-based denoising to 

better distinguish the actual shape of dents from the noise caused by measurement errors.  

The size and direction of the corrosion anomalies that significantly affect the burst capacity 

are extracted and summarized by the discrete wavelet transform.  Based on the statistics of 

corrosion anomalies, the corrosion defects summarized by ILI tools are modelled as random 

fields rather than simple deterministic shapes.  Introducing uncertainties will make the 

modelled corrosion defects similar to the actual corrosion defects, thus improving the 

accuracy of the burst capacity of corroded pipes.  If the naturally corroded pipeline surface is 

detailly measured, a methodology incorporating wavelet transforms and random field 

modelling can capture the main characteristics of the measured surface and generate 

synthetic surfaces with these characteristics.  These improvements to the different stages 

provide more accurate assessment results than the commonly used methods in the pipeline 

industry. 
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Chapter 1  

1 Introduction 

1.1 Background 
Pipelines are widely considered the most efficient and safest way to transport large 

quantities of oil and gas products over long distances.  According to statistics provided by 

the Government of Canada (NRCan, 2020), there are more than 840,000 kilometres (km) 

of transmission, gathering and distribution pipelines in Canada.  About 8% of the 

pipelines are regulated by the Canada Energy Regulator (CER, 2021), including 48,338 

km of operating gas pipelines and 19,142 km of operating oil pipelines.  With the 

increased pipeline service life, pipelines may be threatened by different damage 

mechanisms.  Metal-loss corrosions and dents are two major threats to the integrity of oil 

and natural gas pipelines. Metal-loss corrosion is an electrochemical process caused by 

the interaction between the local environment and pipelines that results in a reduction in 

pipe wall thickness.  The data collected by the Pipeline and Hazardous Materials Safety 

Administration (PHMSA) of the United States indicate that corrosion is a major damage 

mechanism, causing about 32% of the incidents on onshore gas transmission pipelines in 

the US between 2002 and 2013 (Lam and Zhou 2016).  The report from the European 

Gas Pipeline Incident Data Group (EGIG 2020) has shown that 27% of the incidents on 

onshore gas transmission pipelines in Europe were caused by corrosion between 2010 

and 2019.  Dents are a common type of mechanical damage caused by a foreign object 

impacting the external surface of pipelines and may result from third-party excavation 

activities and rock impact.  Dents are usually included in external interference in 

technical reports.  It was the cause of 27.17% of onshore gas transmission pipeline 

incidents in Europe in the period from 2010 to 2019 (EGIG 2020).  According to the 

report provided by the United Kingdom Onshore Pipeline Operators' Association 

(UKOPA), 21.5% of the product loss incidents between 1962 to 2019 were caused by 

external interference (Goodfellow 2021).  Examples of indented and corroded pipelines 

are shown in Fig. 1 .  To assess whether the pipeline containing defects is deemed 
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adequate for its purpose, the fitness-for-service (FFS) assessment is commonly carried 

out in the pipeline industry once the defects are detected. 

 

Figure 1.1 (a) indented pipeline; and (b) corroded pipeline 

 

Defects on in-service pipelines are usually located and sized by the in-line inspection 

(ILI).  ILI is a non-destructive evaluation technique that uses a pipeline inspection gauge 

(PIG) based on various inspection techniques to collect data of different defects.  PIGs 

are propelled by the product in the pipeline, and the sensors on PIGs will collect different 

signals along the in-service pipelines.  The commonly used technologies of ILI sensors 

(Xie and Tian 2018; Vanaei et al. 2017) for metal-loss defects include magnetic flux 

leakage (MFL), ultrasonic (UT), Electromagnetic acoustic transducers (EMAT), and 

Eddy current (EC).  As the most widely used ILI technique for different types of defects 

(Xie and Tian 2018), MFL tools detect pipeline defects from the local change in a 

saturating magnetic field near the defects.  Although the distribution and amount of flux 

leakage depend on the geometry of defects, reconstructing the detailed shapes of the 

defects from the MFL signals is a challenging work that requires heavy computation 

(Joshi et al. 2006).  Therefore, the defects detected by MFL tools are usually summarized 

by their locations (longitudinal and circumferential coordinates) and sizes (longitudinal 

length, circumferential width, and maximum depth).  In addition to MFL tools, UT is 

considered the most reliable ILI technology compared with lower measurement error 
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(Goedecke 2003) with the other technologies. UT tools measure the locations of the inner 

and outer surfaces by recording the time of reflected ultrasonic signal.  Therefore, the  

geometry of defects can be obtained directly from the ultrasonic signal. The deformation 

of pipelines is usually measured by caliper tools, which measure the change in the 

pipeline’s inner radii (Revie 2015).  Some technologies, such as optical sensors (Sampath 

et al. 2019; Feng et al. 2016), are proposed to achieve better defect detection.  However, 

these technologies have not yet been widely applied in the pipeline industry due to the 

operating environment and cost. 

 

Figure 1.2 In-line inspection tool 

 

In practice, the ILI signals contain non-negligible noise due to the accuracy of the sensors 

and the complex measurement environment, etc.  Before extracting and summarizing 

information about defects from the ILI signal, an essential step is denoising the ILI signal.  

Most of the valuable information in the signal is included in the low-frequency 

(wavenumber) component, while the high-frequency components are mainly noise.  It 
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follows that a simple denoising method is removing the high-frequency components from 

the measured signal, which can be achieved by the Fourier transform or convolving the 

signal by a low-pass filter (Lukasiewicz et al. 2006; Okoloekwe et al. 2018; Ergezinger et 

al. 2020; Zhang et al. 2022b).  However, the Fourier transform is a global representation 

of the signal, which means that modifications to any frequency component (e.g. reducing 

the amplitude of the component) may change the values of all grid points in the signal.  

Therefore, some features in the signal corresponding to localized high-frequency 

components can be lost or distorted by removing high-frequency components.  As a 

widely used tool in time-frequency analysis, the wavelet transform has been extensively 

employed to denoise a signal containing local features.  A frequently used wavelet-based 

denoising method is thresholding (Afzal and Udpa 2002; Siqueira et al. 2004; Kathirmani 

et al. 2012; Sampath et al. 2019).  In thresholding, the signal is decomposed to multiple 

components constructed from wavelet functions with different scaling factors and 

translations, and the low energy components are considered as noise and removed.  In 

addition to thresholding, researchers have explored other wavelet-based denoising 

methods.  Liang et al. (2008) constructed an overcomplete dictionary to suppress the 

noise of the ultrasonic echoes reflected from the inner surface of an offshore pipeline.  

Wu et al. (2022) incorporate wavelets and neural networks to denoise the pipeline defect 

detection signal.  Although wavelet-based denoising has been commonly used in ILI 

signal processing, only a few studies (Belanger and Narayanan 2008; Liu et al. 2022) 

have employed wavelets to denoise the dent signals collected by caliper tools.  The ILI 

signal can be considered as a two-dimensional (2D) signal whose sampling frequencies 

and lengths along two directions are significantly different: the longitudinal resolution of 

the ILI signal is governed by the sampling frequency of sensors, while the circumferential 

resolution is determined by the number of sensors arranged along the circumferential 

direction (Revie 2015).  Therefore, the wavelet-based denoising methods applicable to 

other 2D signals may not have a good performance on the ILI signal.  

After denoising, pipeline engineers need to extract defect information from the ILI signal.  

Dents are quantified by their types (e.g. kinked, plain and complex), maximum depths, 

circumferential widths, and longitudinal lengths (POF 2021).  For corrosions, a pipe wall 

thickness (wt) reduction threshold, usually between 5% and 10% wt (Siraj and Zhou 2019; 
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Amaya-Gómez et al. 2022), is determined such that only if the metal loss at the measured 

point exceeds such a threshold, the point is considered a corrosion point.  Adjacent 

corrosion points are grouped as isolated individual corrosion anomalies.  Since it is 

challenging to obtain the detailed measurement of corrosion anomalies from the ILI data 

directly, an anomaly is usually characterized by its location and sizing parameters.  

Besides anomaly dimensions, researchers have also tried to obtain more information from 

the ILI signal through quantitative or qualitative analysis.  Accurately classifying 

anomalies is crucial to the corrosion risk evaluation (Zhang et al. 2022a).  Based on the 

longitudinal length and circumferential width of a detected corrosion anomaly, this 

anomaly can be included in one of the seven anomaly dimension classes: general, pitting, 

axial grooving, circumferential grooving, pin hold, axial slotting, and circumferential 

slotting (POF 2021). 

Wavelet transform is a commonly used method for analysing signal components.  A 

signal can be considered as a combination of scaling and wavelet functions with different 

scaling factors and translations.  Figure 1.3 illustrates the scaling and wavelet functions 

of DB2 (Daubechies 1992), one of the Daubechies wavelets.  Compared to the Fourier 

transform, another commonly used signal processing method that represents the signal in 

terms of global and periodic functions, the wavelet transform enables one to focus on the 

local information of the signal, which facilitates the localization and description of the 

defects.  Tucker et al. (2003) and Kercel et al. (2003) decomposed the raw 

electromagnetic acoustic transducer data using the Daubechies wavelets and calculated 

the feature vector based on the Shannon entropy and energy of the wavelet coefficients 

for defect classification.  Duong and Kim (2018) considered the entropy of the wavelet 

coefficients as the feature of an acoustic emission signal and employed neural networks 

to classify surface defects on pipelines.  If the features in the ILI signal that have a 

significant impact on the FFS assessment can be effectively extracted at a low cost (low 

computational and storage cost) and incorporated into the FFS assessment, the risk of 

pipelines with defects can be more accurately evaluated. 
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Figure 1.3 Scaling and wavelet functions of DB2 wavelet 

 

Once the defect information in the ILI signal is extracted, many semi-empirical models 

are available to assess the pipelines with defects.  For dents, the strain of pipe wall can be 

estimated from the shape of dents.  As shown in Fig. 1.4 (Gao and Krishnamurthy 2015), 

if the inner radii of indented pipelines are available, we can calculate the membrane and 

bending strains of the pipe wall in both longitudinal and circumferential directions from 

the dent shapes.  The effective strains, which will be used in some strain-based 

assessments, can then be calculated from these strain components.  For corrosions, 

usually the closely spaced corrosion anomalies will be grouped as corrosion clusters 

based on some interaction rules (Lamontagne 2002; ASME 2019; CSA 2019), and the 

remaining burst capacity of a corroded pipeline is estimated based on the corrosion 

clusters.  Besides the outside diameter and wt of the corroded pipeline, many well-known 

burst capacity models, including B31G (ASME 2012), B31G Modified (Kiefner and 
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Vieth 1989), DNV model (DNV 2017), SHELL92 (Ritchie and Last 1995), and 

PCORRC (Leis and Stephens 1997), only consider the maximum corrosion depth and 

longitudinal length of the corrosion cluster.  Some semi-empirical models, such as 

RSTRENG model (Kiefner and Vieth 1989), CSA model (CSA 2019), and Psqr model 

(Zhang et al. 2018), consider the morphology of corrosion clusters and incorporate the 

detailed three-dimensional (3D) profiles into the burst capacity prediction.  Figure 1.5 

illustrates the river-bottom profile employed in the RSTRENG model.  The prediction 

errors associated with these models are lower than other models (Zhou and Huang 2012; 

Zhang et al. 2018).  However, it is very difficult to obtain the detailed profiles of 

corrosion anomalies from the ILI data, and the corrosion morphology is not included in 

the anomaly locations and sizes.  Therefore, the detected corrosion anomalies are usually 

idealized as simple shapes (e.g. cuboids) if the detailed profiles are required in the burst 

capacity prediction.  Such a simplification will overestimate the metal loss volume and 

inevitably introduces prediction errors. 

 

Figure 1.4 Strain components of indented pipelines 
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Figure 1.5 River-bottom profile of a corrosion defect 

 

The development and validation of semi-empirical models employed in the FFS 

assessment are based on the full-scale burst tests of corroded pipe specimens, which are 

costly and time-consuming.  In addition to the high costs, most of the burst tests involved 

to validate and develop these models employ artificially induced corrosion defects.  

Unlike the irregular shape of naturally occurring corrosion, artificially induced corrosion 

defects generally have a regular shape.  Such a difference can cause considerable model 

errors. Since the finite element analysis (FEA) has a high accuracy in estimating the burst 

capacity of pipe specimens containing artificially induced or naturally occurring 

corrosion defects (Abdalla Filho et al. 2014; Bao et al. 2018; Mok et al. 1991; Zhang and 

Zhou 2020), using FEA to improve the existing semi-empirical models is cost-effective.  
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Some studies that model corrosion fields as random fields instead of using simplified 

anomalies have been reported in the literature. Aryai and Mahmoodian (2017) modeled 

the corrosion depths on cast iron water pipes as homogeneous Gaussian random fields.  

Garbatov and Soares (2019) characterized the corroded surface of steel bottom plates of 

ballast tanks in double-hull tankers as homogeneous lognormal random fields. Zhou et al. 

(2021) considered the corroded external surfaces of buried steel pipelines as 

nonhomogeneous non-Gaussian fields and employed the discrete orthogonal S-transform 

(DOST) (Stockwell et al. 1996) to characterize and simulate the corrosion field.  Bao and 

Zhou (2021) considered the intermingling between corroded and corrosion-free areas on 

the external surface of buried pipelines and used a latent Gaussian field to characterize 

and simulate the corrosion field. Since naturally corroded external surfaces of buried 

pipelines are highly nonhomogeneous and non-Gaussian (Bao and Zhou 2021), it is 

essential to develop a method that can effectively extract the probabilistic characteristics 

of the natural corrosion fields and use them to generate nonhomogeneous non-Gaussian 

random fields. It will facilitate the development and validation of burst capacity models 

for corroded pipelines. 

1.2 Objective 
The support of the present research is financially provided by the Natural Sciences and 

Engineering Research Council of Canada (NSERC). The main objectives of this thesis 

are summarized as follows. 

1) Propose a denoising methodology to sufficiently remove noises in the measured dent 

signals that significantly affect the strain assessment. 

2) Propose a methodology to extract features that are crucial to predicting the remaining 

burst capacity of a corroded pipe segment, and investigate how different features in a 

natural corrosion cluster affect the burst capacity. 

3) Propose a methodology to simulate nonhomogeneous non-Gaussian corrosion fields 

on the external surface of buried steel pipelines if only a few anomaly parameters 

obtained from the ILI data are available. 



10 

 

4) Presents a framework to analyze and simulate nonhomogeneous non-Gaussian 

corrosion fields on the external surface of buried in-service pipelines if detailed 

measurement is available. 

This research will improve the FFS assessment employed in pipeline integrity 

management for pipelines containing naturally occurring corrosions and dents. 

1.3 Scope of the study 
This thesis consists of four main topics presented in Chapters 2 to 5, respectively. 

Chapter 2 proposes a denoising methodology based on the wavelet transform to remove 

noises in the measured dent signals that significantly affect the strain assessment.  The 

proposed method is based on the overcomplete expansion, whereby the overcomplete 

dictionary is constructed by the stationary wavelet transform and hyperbolic wavelet 

transform.  Finite element analysis is employed to obtain the noise-free inner radius 

signal and the corresponding strain of an indented pipe to validate the effectiveness of the 

proposed denoising method under different levels of noise.  Suitable wavelet functions as 

well as the optimal decomposition levels for the dictionary are determined from real 

noisy dent signals measured by caliper tools. 

Chapter 3 applies the two-dimensional discrete wavelet transform to analyze naturally 

occurring corrosion clusters on external surfaces of in-service gas transmission pipelines.  

A methodology is proposed to determine level- and sub-band-dependent thresholds such 

that those wavelet coefficients below the thresholds have a negligible impact on the burst 

capacity and can be ignored for the reconstruction of the cluster.  The key directional 

features and length scales of a corrosion cluster that govern the burst capacity prediction 

are revealed by statistical analysis of the preserved wavelet coefficients.  

Chapter 4 presents a methodology to simulate nonhomogeneous non-Gaussian corrosion 

fields on the external surface of buried steel pipelines by using inline inspection (ILI) 

data.  The nonhomogeneous non-Gaussian corrosion field is assumed to consist of 

multiple homogeneous non-Gaussian anomalies that can be characterized by the marginal 

distribution and spatial autocorrelation function of the corresponding corrosion depth.  
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After generating realizations of corrosion anomalies, the generated anomalies are then 

merged into a single nonhomogeneous field by applying a spatial modulating function to 

each anomaly.  Based on corrosion data collected from in-service pipelines, empirical 

relationships are developed to estimate parameters of the marginal distribution and 

autocorrelation function from the ILI information of corrosion anomalies.  The 

advantages of the proposed methodology are investigated in comparison with the 

accuracy of the burst capacities of the corroded pipelines containing the synthetic 

corrosion field or the idealized corrosion field obtained from the ILI data. 

Chapter 5 presents a framework to analyze and simulate nonhomogeneous non-Gaussian 

corrosion fields on the external surface of buried in-service pipelines by using continuous 

and discrete wavelet transforms.  The considered transforms are the two-dimensional 

continuous wavelet transform (CWT) using the complex Morlet wavelets, dual-tree 

complex discrete wavelet transform (DT-CDWT), and dual-tree complex discrete wavelet 

with hyperbolic wavelet transform scheme (DT-CHWT); the natural corrosion field is 

measured using a high-resolution laser scan. Scalograms and marginal distribution of the 

measured corrosion field are incorporated into the iterative power and amplitude 

correction (IPAC) algorithm to generate synthetic corrosion fields.  The scalogram, 

textural features, and burst capacity of the pipe segment containing the corrosion field are 

employed to validate whether the proposed framework can generate synthetic corrosion 

fields that effectively capture the probabilistic characteristics of the measured corrosion 

field. 

1.4 Thesis format 
This thesis is prepared in an Integrated-Article Format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada.  Six 

chapters are included in the thesis.  The first chapter presents the introduction of the 

thesis, including the research background, objective of this thesis, scope of the study, and 

the thesis format.  Chapters 2 to 5 are the main body of the thesis, where each chapter 

addresses one individual topic.  Concluding remarks and recommendations for future 

research of these topics are given in Chapter 6. 
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Chapter 2  

2 A Wavelet-based Denoising Methodology for Pipeline 
Dent Assessments 

2.1 Introduction 
Dents are a common type of mechanical damage on buried steel pipelines and may result 

from excavation activities near the pipeline right of way and rock impact.  Since dents 

cause stress and strain concentrations and facilitate the initiation and growth of surface 

cracks (He & Zhou 2021), many codes and standards such as ASME B31.8 (ASME 

2018), CSA Z662 (CSA 2019) and API RP 1183 (API 2020) have specified the strain-

based or depth-based assessment and acceptance criteria for dents. 

The strain-based criterion is considered more accurate than the depth-based criterion for 

the dent assessment (Okoloekwe et al. 2020; Zhao et al. 2022) and has been widely used 

in the pipeline industry.  The widely used ASME B31.8 standard recommends a 

methodology to evaluate the equivalent strain at the dent apex based on the pipe wall 

thickness, and the dent depth, length, and curvature.  A dent with the equivalent strain 

exceeding a critical strain of 6% is considered unacceptable and requires mitigation.  

Lukasiewicz et al. (2006) and Czyz et al. (2008) developed an algorithm based on the 

finite element analysis (FEA) and large deformation thin shell theory to estimate the 

tangential displacements of the indented pipe inner surface based on measurements 

obtained from the in-line caliper tools.  This algorithm allows engineers to estimate the 

bending and membrane strains at the dent with complex geometry.  Gao et al. (2008) 

introduced three improvements to the ASME B31.8 methodology to reduce the non-

conservatism in the strain assessment.  Noronha et al. (2010) considered the effects due to 

the number of sensors and resolution of the in-line inspection (ILI) tool on the strain 

estimation, and improved the accuracy of the strain estimation by applying the fourth-

order B-spline curves to interpolate the dent contour.  Okoloekwe et al. (2018a) 

introduced some modifications to the ASME B31.8 formulations to estimate the strain of 

the entire field rather than the dent apex.  The accuracy of the modifications is validated 

by FEA.  Considering the noise in the ILI data, Zhang et al. (2022) proposed a Fourier 
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transform-based denoising method to estimate the strains within the entire dented area 

from the ILI data.  Zhao and Cheng (2022) employed FEA to determine the equivalent 

strain and introduced a ductile damage failure indictor for the dent assessment. 

Accurately estimating strains of an indented pipe requires the detailed deformation 

profile of the dent.  In practice, due to the vibration and measurement error of the caliper 

tools used for the dent measurement, the obtained signal contains non-negligible noises.  

The dent sizing tolerance estimated from the tool vendor’s data varies from ±0.51%OD to 

±1.10%OD, where OD denotes the pipe outside diameter, at a confidence level of 95% 

(Gao & Krishnamurthy 2015).  To eliminate or minimize the influence of the noise, 

denoising the measured signal is necessary.  The Fourier transform-based denoising and 

filtering are viable options: by removing the high frequency (frequency is used 

interchangeably with wavenumber in the following) components from the measured 

signal or convolving the signal by a filter, engineers can easily obtain a smoothed signal 

that retains the dent shape (Lukasiewicz et al. 2006; Okoloekwe et al. 2018b; Ergezinger 

et al. 2020; Zhang et al. 2022).  However, there are some potential issues associated with 

the Fourier transform-based filtering.  Since the noises associated with different caliper 

tools vary, there is a lack of a rigorous, general method to determine the cut-off 

frequency or filter parameters.  Second, the Fourier transform is a global representation 

of the signal, which means that modifications to any wavenumber component (e.g. 

reducing the amplitude of the component) may change the values of all data points in the 

reconstructed signal.  Therefore, some features in the signal corresponding to localized 

high-wavenumber components (e.g. girth welds) can be lost or distorted by the removal 

of high-wavenumber components. 

The wavelet transform is commonly employed to denoise signals containing local 

features.  The wavelet transform-based thresholding method has been widely used to 

denoise ILI signals (Afzal & Udpa 2002; Siqueira et al 2004; Kathirmani et al. 2012; 

Sampath et al. 2019).  In addition to thresholding, researchers have explored other 

wavelet-based denoising methods.  Liang et al. (2008) constructed an overcomplete 

dictionary to suppress the noise of the ultrasonic echoes reflected from the inner surface 

of an offshore pipeline.  Wu et al. (2022) incorporated wavelets and neural networks to 
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denoise the pipeline defect detection signal.  Although the wavelet-based denoising has 

been commonly used to process the ILI signals obtained using magnetic flux leakage and 

ultrasonic tools, only a few studies (Belanger & Narayanan 2008; Liu et al. 2022) have 

employed wavelets to denoise the dent signals collected by caliper tools.  Therefore, it is 

valuable to explore the use of the wavelet transform to better denoise the dent signals 

such that the dent strains can be more accurately estimated. 

In the present study, we propose a denoising method based on the wavelet transform to 

remove noises in the measured dent signals that significantly affect the strain assessment.  

The proposed method is based on the overcomplete expansion (Goodwin & Vetterli, 

1999), whereby the overcomplete dictionary is constructed by the stationary and 

hyperbolic wavelet transforms (Nason & Silverman 1995; DeVore et al. 1998).  Suitable 

wavelet functions as well as the optimal decomposition levels for the dictionary are 

determined based on real dent signals measured by caliper tools.  FEA is further carried 

out to numerically simulate both noise-free and noisy dent signals, which allow us to 

compare the effectiveness of different denoising methods and demonstrate that the 

proposed method results in better denoising results for the strain assessment than the 

commonly used wavelet transform-based thresholding. 

The rest of the paper is organized as follows.  In Section 2.2, we first introduce noisy 

signals for indented in-service pipelines collected from caliper tools, and then present the 

finite element model for extracting the noise-free dent signal and methodologies for 

evaluating strains of an indented pipe segment.  Section 2.3 presents fundamentals and 

different variations of the wavelet transform, and the denoising method based on the 

overcomplete dictionary constructed from the stationary and hyperbolic wavelet 

transforms.  The effectiveness of the denoising using the proposed overcomplete 

dictionary-based method and thresholding method commonly reported in the literature is 

compared in Section 2.4.  A small overcomplete dictionary suitable for the dent signal 

denoising is constructed based on the statistics of the real dent signal decomposition.  

Concluding remarks are presented in Section 2.5. 
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2.2 Dent morphology and strain assessment 

2.2.1 Noisy dent signals measured from in-service pipelines 

In practice, the inner radii of in-service pipelines are measured by the in-line caliper tool 

to detect and size dents (Zhang et al. 2022).  The caliper tool measures the distance 

between the inner surface of the pipeline and centre of the tool (it is usually assumed that 

the centre coincides with that of the pipeline before deformation and does not change 

during the measuring process).  Sensors on the caliper tool are arranged along the 

circumferential direction, and each sensor measures the inner radii along the pipelines at 

a specific orientation angle (assuming that the tool does not rotate during measuring 

process) as the tool is moving along the in-service pipeline (Zhang et al. 2022). 

Forty-two noisy signals corresponding to measured inner radii of indented pipeline 

segments are provided by a Canadian pipeline operator to the present study.  The outside 

diameters (OD) and wall thicknesses (wt) of these pipelines are between 609.6 and 

1066.8 mm, and 7.80 and 9.88 mm, respectively.  All the dents are located on the base 

metal and away from girth and seam welds.  The noise-free measurements corresponding 

to these noisy signals are however unavailable.  The data of each of the signals are 

organized in a matrix format.  Each row of the matrix represents the inner radii measured 

by a particular sensor, i.e. the inner radius at a specific orientation angle along the 

pipeline segment.  Each column of the matrix represents the inner radii of the pipeline 

segment along the circumferential direction at a particular longitudinal coordinate.  Let 

R(x, θ) (mm) denote the measured inner radius at the longitudinal coordinate x (in mm) 

and the circumferential coordinate θ (in rad).  The dent-free inner radius Rdf is given by 

Rdf = OD/2 – wt, and the maximum dent depth dmax is defined as Rdf minus the minimum 

value of the measured inner radii, i.e. dmax = Rdf – min{R}.  The values of dmax of the 

signals are between 0.6% and 5.7%OD.  The longitudinal sampling spacing Δx, i.e. the 

distance between two longitudinally neighbouring measurement points, in these signals is 

between 1 and 3 mm.  The circumferential sampling spacing Δθ is determined by the 

number of sensors on the caliper tool.  The arc length of the circumferential sampling 

spacing (RdfΔθ) of the inner radii measured by the caliper tools are between 30 and 35 

mm as governed by the number of sensors in the tool. 
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Figure 2.1 illustrates three of the collected noisy signals from pipe segments with 

different values of OD and wt.  The number of sensors corresponding to the three signals 

are 68, 60, and 100, respectively.  Some characteristics of the dent data employed in the 

present study are revealed by Fig. 2.1.  First, the measured inner radii are contaminated 

by the noise.  Although the inner surface of a pipeline can be inherently rough, the 

roughness is generally too small to be picked up by the caliper tool.  Therefore, the 

roughness in the measured inner radii is considered as the noise in the signal.  Second, a 

dent may only be captured by a very small number of sensors.  If an indented area is 

defined, somewhat arbitrarily, to correspond to (Rdf – R)/Rdf > 1%, then the 

circumferential width of a dent is generally less than one rad.  The majority of the 42 

dents are captured by only three or four sensors, and in the most extreme case only one 

sensor captured the dent.  As a comparison, most of the 42 dents have a longitudinal 

length greater than 100 mm, i.e. over 30 grid points, with the minimum length of 50 mm 

(25 grid points).  Therefore, a dent signal may have a dent over 30 grid points along the 

longitudinal direction, but only one or two grid points along the circumferential direction.  

The significant differences in the lengths and resolutions along the longitudinal and 

circumferential directions of the dent signals represent a significant challenge to the 

signal denoising. 
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Figure 2.1 Three noisy signals of the inner radii measured from in-service pipelines: 

(a) OD = 762 mm, wt = 9.53 mm, dmax = 1.63% OD; (b) OD = 609.6 mm, wt = 7.8 mm, 

dmax = 1.36% OD; and (c) OD = 1066.8 mm, wt = 9.88 mm, dmax = 1.80% OD 

 

2.2.2 Noise-free dent morphology and strain in FEA 

The three-dimensional (3D) elasto-plastic FEA has proven to be an effective tool for the 

strain and fatigue analyses of a pipe segment subjected to indenters of different shapes 

(Bao et al. 2022).  To obtain the noise-free dent morphology and corresponding strain of 

an indented pipeline segment, the 3D FEA is employed in this study to evaluate the 

equivalent strain of a pipe segment (OD = 609.6 mm, wt = 7.6 mm, length = 1200 mm) 
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subjected to a rigid hemispherical indenter (diameter = 25 mm = 4.1%OD).  The diameter 

and displacement of the indenter are selected based on, respectively, the minimum length 

and maximum depth of the 42 dent signals described in Section 2.2.1 such that the 

maximum strain calculated from the FEA is higher than the strains of all the measured 

dents.  The finite element model is developed and implemented using the commercial 

package ABAQUS 2018.  The eight-node hexahedral (C3D8) element with full 

integration is employed in the model.  The radial and circumferential mesh resolutions 

are 1.5 and 16 mm, respectively.  Five layers of elements are used along the pipe wall 

thickness (radial) direction.  The longitudinal mesh resolution in the dented area is 1.5 

mm, and coarse meshes with the longitudinal resolution of 10 mm are employed at the 

dent-free area at both ends.  The total number of nodes and elements are 251,099 and 

208,576, respectively.  One end and the bottom of the pipe segment are considered as a 

fixed support, and the longitudinal displacement is constrained at the other end.  A 

vertical displacement of 35 mm (about 5.7%OD) is assigned to the top surface of the 

hemispherical indenter, and the pipe is unpressurized.  The finite element model is 

illustrated in Fig. 2.2. 

 

Figure 2.2 The full 3D FEA model of a pipeline segment subjected to dent 
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The elastic modulus E = 200 GPa, yield strength σy = 369 MPa and tensile strength σu = 

540 MPa are assigned to the pipe steel.  The von Mises yield criterion, isotropic strain 

hardening and finite-strain formulation for the large deformation are adopted in the model.  

The following true stress - true strain (σ - ε) relationship is adopted in FEA: 

𝜎𝜎 = �
𝐸𝐸𝐸𝐸, 𝜎𝜎 < 𝜎𝜎𝑦𝑦

𝐾𝐾𝜀𝜀𝑛𝑛ℎ , 𝜎𝜎 ≥ 𝜎𝜎𝑦𝑦
 (2.1) 

where 𝐾𝐾 = 𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛ℎ
(𝑛𝑛ℎ)𝑛𝑛ℎ  is the strength coefficient, and nh is the strain hardening exponent.  

The value of nh is estimated using the following empirical equation (Zhu and Leis, 2005): 

𝑛𝑛ℎ = 0.244 �𝜎𝜎𝑢𝑢
𝜎𝜎𝑦𝑦
− 1�

0.604
 (2.2) 

The cylindrical coordinate and plastic equivalent strain εpe of the inner pipe surface are 

extracted after computation.  The stress analysis is not considered in the present study. 

2.2.3 Strain assessment based on dent morphology 

In ASME B31.8, the equivalent strain in a dent is calculated from the circumferential 

bending strain, longitudinal bending strain, and longitudinal extensional (membrane) 

strain.  In the present study, only plain dents (i.e. dents without co-existing damages such 

as gouges and corrosion) are considered, and the equivalent strain is calculated from the 

bending and membrane strains along both the longitudinal and circumferential directions.  

The information required for the strain assessment is extracted from the denoised inner 

radius signals (Lukasiewicz et al. 2006; Okoloekwe et al. 2018a; Zhang et al. 2022). 

The bending strain at a given point on the external or internal surface of the pipe wall is 

estimated from the curvature of the pipe surface at this point.  For a point in a cylindrical 

coordinate system R(x, θ), the longitudinal and circumferential curvatures, 𝜅𝜅𝑙𝑙(𝑥𝑥,𝜃𝜃) and 

𝜅𝜅𝑐𝑐(𝑥𝑥,𝜃𝜃), are calculated by (Okoloekwe et al. 2018b; Zhang et al. 2022): 

𝜅𝜅𝑙𝑙(𝑥𝑥,𝜃𝜃) =
𝑑𝑑2𝑅𝑅(𝑥𝑥,𝜃𝜃)
𝑑𝑑𝑥𝑥2

�1+�𝑑𝑑𝑑𝑑(𝑥𝑥,𝜃𝜃)
𝑑𝑑𝑑𝑑 �

2
�
3/2   (2.3) 
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𝜅𝜅𝑐𝑐(𝑥𝑥,𝜃𝜃) =
𝑅𝑅2(𝑥𝑥,𝜃𝜃)+2�𝑑𝑑𝑑𝑑(𝑥𝑥,𝜃𝜃)

𝑑𝑑𝑑𝑑 �
2
−𝑅𝑅(𝑥𝑥,𝜃𝜃)𝑑𝑑

2𝑅𝑅(𝑥𝑥,𝜃𝜃)
𝑑𝑑𝜃𝜃2

�𝑅𝑅2(𝑥𝑥,𝜃𝜃)+�𝑑𝑑𝑑𝑑(𝑥𝑥,𝜃𝜃)
𝑑𝑑𝑑𝑑 �

2
�
3/2   (2.4) 

The cubic spline is employed in this study so that the partial derivatives in the above 

equations can be calculated from the piecewise polynomial functions (Okoloekwe et al. 

2018a).  Once the curvatures are calculated by Eqs. (2.3) and (2.4), the bending strains 

along the longitudinal and circumferential directions, 𝜀𝜀𝑙𝑙
(𝑏𝑏)(𝑥𝑥, 𝜃𝜃) and 𝜀𝜀𝑐𝑐

(𝑏𝑏)(𝑥𝑥, 𝜃𝜃), can be 

calculated by (Zhang et al. 2022): 

𝜀𝜀𝑙𝑙
(𝑏𝑏)(𝑥𝑥, 𝜃𝜃) = 𝑤𝑤𝑤𝑤

2
𝜅𝜅𝑙𝑙(𝑥𝑥,𝜃𝜃) (2.5) 

𝜀𝜀𝑐𝑐
(𝑏𝑏)(𝑥𝑥, 𝜃𝜃) = 𝑤𝑤𝑤𝑤

2
� 1
𝑅𝑅𝑑𝑑𝑑𝑑

− 𝜅𝜅𝑐𝑐(𝑥𝑥,𝜃𝜃)�  (2.6) 

Note that the plane section assumption is implied in the bending strain calculation.  Since 

the calculation of bending strains involves the first- and second-order derivatives of the 

inner radii, the noise, especially the high-wavenumber components of the noise, in the 

dent signals will significantly affect the strain calculation.  If the noise is not effectively 

removed, the bending strains can be greatly overestimated. 

The membrane strain quantifies the extension in the mid-plane of the pipe wall due to the 

dent deformation.  In the cylindrical coordinate system, the membrane strains along the 

longitudinal and circumferential directions, 𝜀𝜀𝑙𝑙
(𝑚𝑚)(𝑥𝑥,𝜃𝜃) and 𝜀𝜀𝑐𝑐

(𝑚𝑚)(𝑥𝑥,𝜃𝜃), can be calculated 

as follows (Zhang et al. 2022): 

𝜀𝜀𝑙𝑙
(𝑚𝑚)(𝑥𝑥,𝜃𝜃) = �1 + �𝑑𝑑𝑑𝑑(𝑥𝑥,𝜃𝜃)

𝑑𝑑𝑑𝑑
�
2
− 1 (2.7) 

𝜀𝜀𝑐𝑐
(𝑚𝑚)(𝑥𝑥,𝜃𝜃) =

�𝑅𝑅2(𝑥𝑥,𝜃𝜃)+�𝑑𝑑𝑑𝑑(𝑥𝑥,𝜃𝜃)
𝑑𝑑𝑑𝑑 �

2
−𝑅𝑅𝑑𝑑𝑑𝑑

𝑅𝑅𝑑𝑑𝑑𝑑
 (2.8) 

Thin-walled pipes are usually assumed to be in a plane stress condition such that the 

radial strain (i.e. change of the pipe wall thickness) is neglected.  It follows that the 

effective strain εeff can be calculated by (Zhang et al. 2022; Lukasiewicz et al. 2006): 
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𝜀𝜀𝑒𝑒𝑓𝑓𝑓𝑓 = 2
√3
�𝜀𝜀𝑙𝑙2 + 𝜀𝜀𝑙𝑙𝜀𝜀𝑐𝑐 + 𝜀𝜀𝑐𝑐2 (2.9) 

where 𝜀𝜀𝑙𝑙 = 𝜀𝜀𝑙𝑙
(𝑚𝑚) + 𝜀𝜀𝑙𝑙

(𝑏𝑏)  and 𝜀𝜀𝑐𝑐 = 𝜀𝜀𝑐𝑐
(𝑚𝑚) + 𝜀𝜀𝑐𝑐

(𝑏𝑏) .  Equation (2.9) is similar to the 

methodology used in ASME B31.8 to estimate the dent strain, but the circumferential 

membrane strain is ignored and the longitudinal membrane strain is calculated from the 

dent length and depth in ASME B31.8.  Compared with the plastic equivalent strain 

calculated in the FEA, the effective strain calculated using Eq. (2.9) takes into account 

the elastic strain as well as the plastic strain.  However, since the plastic strain at the dent 

apex is much higher than the elastic strain, the maximum effective strain calculated using 

Eq. (2.9) is close to the plastic equivalent strain obtained in FEA.  This will be 

demonstrated in Section 2.4. 

2.3 Wavelet transforms and denoising 

2.3.1 Continuous and discrete wavelet transform 

Let v(x) denote a one-dimensional (1D) signal.  The coefficients of continuous wavelet 

transform (CWT) of v(x), 𝑣𝑣𝑤𝑤(𝑠𝑠, 𝜏𝜏), are given by (Daubechies 1992): 

𝑣𝑣𝑤𝑤(𝑠𝑠, 𝜏𝜏) = 1
�|𝑠𝑠|∫ 𝑣𝑣(𝑥𝑥)𝜓𝜓∗ �𝑥𝑥−𝜏𝜏

𝑠𝑠
� 𝑑𝑑𝑑𝑑∞

−∞   (2.10) 

where s is the scaling factor; τ is the translation; 𝜓𝜓(𝑥𝑥) is the so-called mother wavelet 

function, and * denotes the complex conjugate.  If 𝜓𝜓(𝑥𝑥)  satisfies the admissibility 

condition, i.e. 𝐶𝐶𝜓𝜓 = ∫ �𝜓𝜓� (𝑓𝑓)�2

|𝑓𝑓|
𝑑𝑑𝑑𝑑 < ∞∞

−∞ , where 𝜓𝜓�(𝑓𝑓) denotes the Fourier transform of 

𝜓𝜓(𝑥𝑥) with f (Hz) being the frequency, the function v(x) can be reconstructed from vw(s, τ) 

by the inverse CWT: 

𝑣𝑣(𝑥𝑥) = 1
𝐶𝐶𝜓𝜓
∫ ∫ 𝑣𝑣𝑤𝑤(𝑠𝑠,𝜏𝜏)

�|𝑠𝑠|
𝜓𝜓 �𝑥𝑥−𝜏𝜏

𝑠𝑠
� 1
𝑠𝑠2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∞

−∞
∞
−∞  (2.11) 

In CWT, s and τ are continuous, and both the forward and inverse transforms need to 

calculate the integral.  The high computational cost limits the value of CWT for 

engineering applications.  The non-redundant DWT is more commonly used in practice 

when processing a discrete signal.  Let v(x) (x = 0, 1, 2, …, 2n - 1) denote a 1D discrete 



28 

 

signal, where n is a positive integer.  In 1D DWT, v(x) can be decomposed into 

components constructed with wavelets and scaling functions as follows (Daubechies 

1992): 

𝑣𝑣(𝑥𝑥) = ∑ 2−
𝑛𝑛
2𝐿𝐿𝑛𝑛(𝑘𝑘)𝜑𝜑(2−𝑛𝑛𝑥𝑥 − 𝑘𝑘)𝑘𝑘 + ∑ ∑ 2−

𝑖𝑖
2𝐻𝐻𝑖𝑖(𝑘𝑘)𝜓𝜓�2−𝑖𝑖𝑥𝑥 − 𝑘𝑘�𝑘𝑘

𝑛𝑛
𝑖𝑖=1  (2.12) 

where 𝜑𝜑(𝑥𝑥) denotes the scaling function (i.e. the low-pass filter); 𝜓𝜓(𝑥𝑥) is the mother 

wavelet function (i.e. the high-pass filter); k denotes translation; i is the decomposition 

level, and L and H are the approximation and detail coefficients, respectively.  The square 

of the absolute value of a coefficient is considered the energy of the component 

corresponding to this coefficient (Mallat 1989).  Usually 𝜑𝜑(𝑥𝑥)  and 𝜓𝜓(𝑥𝑥)  are well 

designed so that 2−
𝑛𝑛
2𝜑𝜑(2−𝑛𝑛𝑥𝑥 − 𝑘𝑘)  and 2−

𝑖𝑖
2𝜓𝜓�2−𝑖𝑖𝑥𝑥 − 𝑘𝑘�  in all terms are orthonormal 

bases with compact support and fast frequency decay.  The approximation coefficients 

𝐿𝐿𝑛𝑛(𝑘𝑘)  and detail coefficients 𝐻𝐻𝑖𝑖(𝑘𝑘)  are obtained by convolving v(x) and the 

corresponding analysis filters.  The approximation coefficients 𝐿𝐿𝑛𝑛(𝑘𝑘)  and detail 

coefficients 𝐻𝐻𝑖𝑖(𝑘𝑘) can be simply considered as the high- and low-frequency components 

of the signal, respectively. 

In 1D DWT, the signal is decomposed to two sub-bands (high-frequency and low-

frequency) at each level by the high-pass and low-pass filters, and the coefficients at 

higher levels are calculated by decomposing the approximation coefficients at lower 

levels.  Given a 2D discrete signal z(x, y) (x = 0, 1, 2, …, 2n – 1; y = 0, 1, 2, …, 2m – 1), 

the 2D DWT is similar to 1D DWT but with four sub-bands at each level.  The wavelet 

coefficients in 2D DWT, 𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦�, is given by (Daubechies 1992): 

𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� = 1

2𝑖𝑖
∑ ∑ 𝑧𝑧(𝑥𝑥,𝑦𝑦)𝜓𝜓(𝛼𝛼) �

𝑥𝑥−𝜏𝜏𝑥𝑥
2𝑖𝑖

, 𝑦𝑦−𝜏𝜏𝑦𝑦
2𝑖𝑖
�𝑦𝑦𝑥𝑥  (2.13) 

𝜓𝜓(𝛼𝛼)(𝑥𝑥,𝑦𝑦) =

⎩
⎨

⎧
𝜑𝜑(𝑥𝑥)𝜑𝜑(𝑦𝑦), 𝛼𝛼 = 𝐿𝐿𝐿𝐿
𝜑𝜑(𝑥𝑥)𝜓𝜓(𝑦𝑦), 𝛼𝛼 = 𝐿𝐿𝐿𝐿
𝜓𝜓(𝑥𝑥)𝜑𝜑(𝑦𝑦), 𝛼𝛼 = 𝐻𝐻𝐻𝐻
𝜓𝜓(𝑥𝑥)𝜓𝜓(𝑦𝑦), 𝛼𝛼 = 𝐻𝐻𝐻𝐻

 (2.14) 
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where 𝜓𝜓(𝛼𝛼)(𝑥𝑥, 𝑦𝑦) denotes the wavelet function corresponding to the α sub-band; LL, LH, 

HL, and HH denote the one approximation sub-band and three detail sub-bands in 2D 

DWT: i.e. approximation (low-pass and low-pass), horizontal detail (low-pass and high-

pass), vertical detail (high-pass and low-pass) and diagonal detail (high-pass and high-

pass), respectively.  These sub-bands characterize different properties of the signal: LL 

can be considered as the 2D signal in a lower resolution; LH , HL and HH represent 

horizontal, vertical, and diagonal patterns of the 2D signal, respectively.  Let β denote the 

number of data points of a signal.  DWT can provide a good approximation with sparse 

wavelet coefficients, and the numerical complexity is only O(β) (Mallat 2008).  Therefore, 

it is widely used in data compression and feature detection.  Details of the forward and 

inverse DWT are given in (Daubechies 1992; Mallat 2008; Torrence and Compo 1998). 

Many well-developed wavelet functions are available for DWT, such as the Daubechies 

wavelets (denoted as DBγ, where γ is the order of vanishing moment of the wavelet 

function), Daubechies symlets (denoted as Symlets γ), coiflets, and biorthogonal wavelets 

(Mallat 2008).  In the present study, we select wavelet functions from the Daubechies 

wavelets and symlets (γ = 1, 2, …, 10) for denoising because these wavelets have the 

minimum support given the vanishing moment. 

2.3.2 Modifications to the discrete wavelet transform 

Although DWT has been widely employed in signal denoising and data compression due 

to the low numerical complexity, it has some disadvantages (Coifman and Donoho 1995; 

Chen et al. 2013).  One of the disadvantages is that DWT with dyadic decimation is shift-

variant due to its down-sampling: all the wavelet coefficients may change significantly if 

a signal is slightly shifted.  To address the shift variance issue, some modifications have 

been introduced to DWT, one of which is the stationary wavelet transform (SWT) (Nason 

and Silverman 1995).  SWT can be considered as the undecimated DWT with continuous 

translation at each sub-band, i.e. the 𝜏𝜏𝑥𝑥 and 𝜏𝜏𝑦𝑦 in Eq. (2.13) are continuous.  In DWT, the 

higher is the decomposition level, the fewer are the wavelet coefficients.  However, the 

number of wavelet coefficients in all sub-bands in SWT is identical to the number of data 
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points in the original signal.  SWT addresses the shift variance issue and improves the 

spatial resolution of locating features of the signal, albeit at a higher computational cost. 

Another disadvantage of DWT is that the decomposition strategy of 2D DWT in two 

dimensions is inflexible.  In 2D DWT, the bases 𝜓𝜓(𝛼𝛼)(𝑥𝑥,𝑦𝑦) are constructed from the 

scaling and wavelet functions with identical scales in both dimensions.  Therefore, the 

maximum 2D DWT decomposition level of a 2D signal is constrained by the shorter 

dimension of the signal.  If a signal has dozens of rows but thousands of columns, the 

maximum decomposition level is constrained by its row number.  This may result in that 

the decomposition along the column direction is insufficient to highlight the 

characteristics of the signal.  This inflexibility can be addressed by using independent 

scales along two dimensions to generate anisotropic wavelet bases, which is known as the 

hyperbolic wavelet transform (HWT) (DeVore et al. 1998; Roux et al. 2013).  The 

wavelet coefficients in HWT are calculated by (Farouj et al. 2016): 

𝑧𝑧𝜓𝜓
(𝛼𝛼)�𝑖𝑖𝑥𝑥, 𝑖𝑖𝑦𝑦, 𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� = 1

2
𝑖𝑖𝑥𝑥+𝑖𝑖𝑦𝑦
2

∑ ∑ 𝑧𝑧(𝑥𝑥,𝑦𝑦)𝜓𝜓(𝛼𝛼) �
𝑥𝑥−𝜏𝜏𝑥𝑥
2𝑖𝑖𝑥𝑥

, 𝑦𝑦−𝜏𝜏𝑦𝑦
2𝑖𝑖𝑦𝑦

�𝑦𝑦𝑥𝑥  (2.15) 

where ix and iy are the decomposition level along the x and y directions, respectively.  

Similar to the 2D DWT, usually the translations 𝜏𝜏𝑥𝑥 and 𝜏𝜏𝑦𝑦 in HWT are discrete, and the 

total number of HWT coefficients is identical to the number of data points in the signal.  

Compared to 2D DWT, HWT has more sub-bands, but the number of translations is 

limited in each sub-band.  Therefore, HWT has a higher wavenumber resolution but a 

poorer spatial resolution than DWT.  As modifications to the 2D DWT, SWT and HWT 

are theoretically compatible.  One can combine SWT and HWT by simply assigning 

continuous 𝜏𝜏𝑥𝑥 and 𝜏𝜏𝑦𝑦 to Eq. (2.15). 

2.3.3 Denoising and overcomplete dictionary 

Let 𝑧𝑧𝑛𝑛(𝑥𝑥,𝑦𝑦) = 𝑧𝑧(𝑥𝑥, 𝑦𝑦) + 𝜀𝜀𝑛𝑛(𝑥𝑥,𝑦𝑦)  denote a noisy 2D signal, where 𝜀𝜀𝑛𝑛  represents a 

Gaussian white noise with variance 𝜎𝜎𝑛𝑛2, i.e. 𝜀𝜀𝑛𝑛 ~ N(0, 𝜎𝜎𝑛𝑛2).  It can be inferred from Eqs. 

(2.13) and (2.15) that the wavelet transform of 𝑧𝑧𝑛𝑛 is the sum of the wavelet transforms of 

𝑧𝑧 and 𝜀𝜀𝑛𝑛 .  Since 𝜀𝜀  at different locations are independent identically distributed (i.i.d.) 
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standard Gaussian random variables and ∬�𝜓𝜓(𝛼𝛼)�
2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1, the wavelet transform of 𝜀𝜀 

is a quasi-white noise with the corresponding wavelet coefficients also following N(0, 𝜎𝜎𝑛𝑛2) 

(Donoho 1995).  Therefore, the basic idea of the wavelet-based denoising is transforming 

the noisy signal from the time or space domain to the wavelet domain where main 

components of the noise-free signal are included in a small portion of the coefficients 

with high energy, and then discarding most of the wavelet coefficients with low energy.  

If the noise-free signal can be sparsely represented in the wavelet domain, most of the 

removed wavelet coefficients are calculated from the noise, and the variance of the noise 

can be estimated from the removed wavelet coefficients (Donoho 1995; Berkner & Wells 

1998; Mallat 2008).  Typically the fewer wavelet coefficients are needed to represent a 

noise-free signal, the more effective is the denoising.  The commonly used DWT-based 

denoising methods are soft- and hard-thresholding.  A universal threshold η for the 

thresholding is estimated by (Donoho 1995): 

𝜂𝜂 = 𝑀𝑀𝑀𝑀𝑀𝑀
0.6745�2 ln(𝛽𝛽) (2.16) 

where MAD is the median absolute value of the wavelet coefficients in the first level 

detail sub-bands.  In hard-thresholding, all the wavelet coefficients with absolute values 

below η are set to zeros.  In soft-thresholding, also known as the wavelet shrinkage, the 

coefficients with the absolute value below the threshold are set to zeros, while the other 

coefficients are adjusted toward zero by subtracting η from their modes (Donoho 1995; 

Mallat 2008). 

A signal can be represented as a linear combination of multiple components, which are 

called atoms.  In signal processing, the set of all the atoms employed in the 

decomposition or reconstruction is called a dictionary (Rubinstein et al. 2010).  Given a 

signal with β data points, if a dictionary includes β orthogonal atoms, this dictionary is 

complete.  Regardless of the value of any point in the original signal, a complete 

dictionary can always use its atoms to uniquely represent the signal.  The process of 

performing 2D DWT on a 2D signal can be considered as decomposing this signal by a 

complete dictionary, whose atoms are calculated from the wavelet and scaling functions 

with different translations and scaling factors.  The advantage of using a complete 
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dictionary is any signal can be uniquely decomposed and perfectly reconstructed, which 

makes the computation and interpretation convenient.  However, the unique 

decomposition does not imply that it is the sparsest decomposition (i.e. the signal is 

represented by the minimum number of atoms).  It is possible that a signal can be 

represented with only one atom in one complete dictionary, but requires dozens of atoms 

in another complete dictionary. 

A dictionary including more than β atoms is overcomplete if it can perfectly reconstruct 

any signal with β points.  Since an overcomplete dictionary has more atoms than the 

minimum number of atoms required for the perfect reconstruction, there are infinite ways 

to decompose a signal by an overcomplete dictionary.  An overcomplete dictionary can 

be constructed by adding extra atoms to a complete dictionary with the extra atoms 

obtained by translating, rotating, or stretching the atoms in the complete dictionary, or 

from another dictionary (Rubinstein et al. 2010).  Suppose that all the atoms of a 

complete dictionary are included in an overcomplete dictionary.  In the overcomplete 

dictionary-based signal decomposition, the number of used atoms can be less than that in 

the complete dictionary-based decomposition, because the decomposition based on the 

complete dictionary is only one of the cases of the decomposition based on the 

overcomplete dictionary.  In other words, using an overcomplete dictionary allows a 

signal to be represented by fewer atoms, which facilitates operations such as signal 

denoising and compression.  However, since the representation is not unique, seeking a 

sparse representation of the signal becomes a challenging task.  Although searching the 

global optimal solution for the overcomplete dictionary is very complicated, the local 

optimal solution obtained using some greedy algorithm (e.g. matching pursuit) is 

satisfactory in many cases (Goodwin and Vetterli, 1999).  Unlike thresholding, the 

overcomplete dictionary-based denoising can be achieved by extracting the major 

components from the noisy signal one by one until the residual part is considered as pure 

noise. 

As will be shown in Section 2.4, the large differences in the number of rows and columns 

and the grid spacing in both directions of the measured dent signals lead to poor 

denoising results and severely overestimated dent strains if the commonly used DWT 
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thresholding methods are employed.  Since a dent signal is not morphologically 

complicated and may be represented by a very small number of wavelet bases, properly 

constructing an overcomplete dictionary is a possible solution to the abovementioned 

problem.  As described in Section 2.2.2, the measured inner radii of in-service pipelines 

are noisy and have different spacing along two directions.  This results in that the DWT-

based denoising cannot effectively remove the noise.  An overcomplete dictionary 

constructed from HWT and SWT can overcome the deficiencies of DWT.  To achieve a 

sparser representation, different wavelet functions can be selected in the two directions.  

The following procedure is proposed to extract the dent morphology from the noisy 

signal zn: 

(1) Select the wavelet functions for the signals.  The wavelet functions along both 

directions can be different.  Suppose that NL and NC wavelet functions are selected in 

the longitudinal and circumferential directions, respectively. 

(2) Estimate the variance of the noise.  Performing one level 2D DWT on the noisy signal, 

where the wavelet function in each direction is selected as the wavelet with the 

shortest support length among all the wavelet functions selected in that direction in 

Step (1).  For example, suppose that DB5 and DB7 are selected for the longitudinal 

direction, and DB4 and DB6 are selected for the circumferential direction.  In this 

case, DB5 and DB4 are selected as the wavelet functions for the longitudinal and 

circumferential directions, respectively, in the noise variance estimation.  The 

variance is estimated as 𝜎𝜎𝑛𝑛2 = � 𝑀𝑀𝑀𝑀𝑀𝑀
0.6745

�
2
 (Donoho 1995), where MAD is the median 

absolute value of the wavelet coefficients in the LH, HL, and HH sub-bands. 

(3) Estimate the energy of the noise-free signal z: 𝐸𝐸𝑧𝑧 = ∑ ∑ �𝑧𝑧(𝑥𝑥,𝑦𝑦)�2𝑦𝑦𝑥𝑥 ≈

∑ ∑ �𝑧𝑧𝑛𝑛(𝑥𝑥, 𝑦𝑦)�2𝑦𝑦𝑥𝑥 − 𝛽𝛽𝜎𝜎𝑛𝑛2, where β is the number of data points in zn. 

(4) Determine the maximum decomposition levels along two directions.  Suppose that ML 

and MC decomposition levels are assigned to the longitudinal and circumferential 

directions, respectively. 
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(5) Calculate all the 2D analysis and synthesis filters for different sub-bands.  The total 

number of 2D analysis filters is 4NLNCMLMC. 

(6) By convolving the noisy signal and all the analysis filters, all the wavelet coefficients 

can be calculated.  For each analysis filter, β wavelet coefficients are calculated.  To 

ensure the number of the wavelet coefficients corresponding to each analysis filter is 

the same as the number of data points of the signal, the signal will be periodically 

extended before convolution. 

(7) Select the wavelet coefficient with the greatest absolute value.  Perform the inverse 

wavelet transform on the selected wavelet coefficient to calculate the corresponding 

component 𝑧𝑧𝑟𝑟
(𝑗𝑗), where 𝑧𝑧𝑟𝑟

(𝑗𝑗) denotes the component calculated at the jth (j = 1, 2, …) 

iteration.  Subtract 𝑧𝑧𝑟𝑟
(𝑗𝑗) from the noisy signal.  The residual signal will be used to 

calculate the wavelet coefficients in the next iteration. 

(8) Let jc denote the number of components that have been subtracted in the current 

iteration.  Let 𝑧𝑧𝑟𝑟 = ∑ 𝑧𝑧𝑟𝑟
(𝑗𝑗)𝑗𝑗𝑐𝑐

𝑗𝑗=1 denote the reconstructed signal based on all the 

calculated components in the current iteration.  If ∑ ∑ �𝑧𝑧𝑟𝑟(𝑥𝑥, 𝑦𝑦)�2𝑦𝑦𝑥𝑥 < 𝐸𝐸𝑧𝑧 , repeat 

Steps (6)-(7) on the residual signal. 

(9) Once ∑ ∑ �𝑧𝑧𝑟𝑟(𝑥𝑥, 𝑦𝑦)�2𝑦𝑦𝑥𝑥 > 𝐸𝐸𝑧𝑧, 𝑧𝑧𝑟𝑟 is considered as the noise-free dent signal and can 

be used to estimate the maximum effective strain. 

The aforementioned procedure extracts the main components from the noisy signal based 

on an overcomplete dictionary constructed by HWT, SWT, and specific wavelet 

functions.  Most of the noise are suppressed, as the total number of extracted components 

is typically less than 0.01β.  However, to extract one component, 4NLNCMLMCβ wavelet 

coefficients are calculated, which is computationally expensive.  To reduce the 

computational cost, it is necessary to reduce the size of the overcomplete dictionary.  To 

this end, we first construct a large overcomplete dictionary by assigning multiple wavelet 

functions and high decomposition levels along two directions.  The large overcomplete 

dictionary is then used to decompose 32 of the 42 real dent signals described in Section 
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2.2.1.  The statistics of the extracted components (i.e. wavelet coefficients) for the 32 

signals provide insights into the actual dent morphology, whereas the remaining ten 

signals are used for validation.  Based on such insights, we then construct a smaller 

overcomplete dictionary by limiting the decomposition levels and selecting the suitable 

wavelet functions while ensuring that the dent signals can still be sparsely represented.  

The small overcomplete dictionary is then employed to denoise all 42 noisy dent signals 

to investigate its adequacy. 

2.4 Results and discussion 

2.4.1 Results based on FEA 

The FEA and denoising are carried out by using a server with two Intel(R) Xeon Gold 

5218R CPU @2.10 GHz (20 cores and 40 threads) and 768 GB RAM.  The cylindrical 

coordinates and the plastic equivalent strains of the inner surface of the pipe model 

shown in Fig. 2.2 after indentation are illustrated in Fig. 2.3.  The dent apex is located at 

x = 600 mm and θ = π.  The maximum plastic equivalent strain εpe,max = 28.70% appears 

at the dent apex.  Although the dent is small, it leads to a high curvature around the dent 

apex, and the high bending strain results in a high plastic equivalent strain.  Therefore, 

the strain at the dent apex is much greater than the critical strain of 6% specified in 

AMSE B31.8. 
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Figure 2.3 The cylindrical coordinate and the plastic equivalent strain of the pipe 

inner surface after denting: (a) 2D plot of R(x, θ); (b) inner radii at x = 600 mm 

(crossing the dent apex); (c) inner radii at θ = π (crossing the dent apex); (d) plastic 

equivalent strain; (e) noisy inner radii (σn = 0.5 mm) at θ = π (crossing the dent 

apex); and (f) noisy inner radii (σn = 0.5 mm) at x = 600 mm (crossing the dent apex) 

 

To simulate the inner radii measured by caliper tools in practice, the inner surface from 

the FEA result is sampled with a longitudinal sampling spacing Δx = 3 mm and a 

circumferential sampling spacing Δθ = 2π/60.  Let R0(x, θ) denote the noise-free dent 

signal.  The effective strains of this indented pipe segment estimated by the method 
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described in Section 2.2.3 are shown in Fig. 2.4.  The maximum effective strain εeff,max = 

26.97% also appears at the dent apex.  The strain is slightly lower than εpe,max = 28.70% 

calculated by FEA.  This difference is due likely to the sampling spacing used to simulate 

the measurements of the caliper tool.  In FEA, the longitudinal and circumferential 

spacing of the nodes near the dent are 1.5 and 16 mm, respectively, which is about half of 

the corresponding sampling spacing used to simulate the caliper measurements.  

Although the values of R0(x, θ) are accurate at the sampled grid points in the simulated 

caliper measurements, the curvature at the grid points may be underestimated due to the 

larger spacing, leading to slightly underestimated bending strains.  However, εeff,max 

obtained using Eq. (2.9) is only marginally lower than εpe,max calculated in FEA, which 

demonstrates the validity and accuracy of Eq. (2.9). 

 

Figure 2.4 The effective strains estimated from the measured inner surface 
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The effective strains shown in Fig. 2.4 are calculated based on the noise-free R0(x, θ), 

which is extremely difficult, if not impossible, to obtain from in-service pipelines.  Let 

Rn(x, θ) = R0(x, θ) + ε(x, θ) and Rd(x, θ) denote the noisy and denoised signals, 

respectively, where ε ~ i.i.d. N(0, 𝜎𝜎𝑛𝑛2).  The DWT-based hard- and soft-thresholding are 

employed to denoise Rn with σn assumed to be 0.1, 0.3, and 0.5 mm.  The root mean 

square error 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �Σ𝑥𝑥Σ𝜃𝜃[𝑅𝑅𝑑𝑑(𝑥𝑥,𝜃𝜃)−𝑅𝑅0(𝑥𝑥,𝜃𝜃)]2

𝛽𝛽
, and the strain of the indented pipe 

estimated from the denoised signal are employed to quantify the effectiveness of 

denoising.  The denoising results and estimated strains are compared in Fig. 2.5.  The 

selected wavelet function in Fig. 2.5 for each scenario has the lowest RMSE among all 

the wavelet functions mentioned in Section 2.3.1.  However, neither the hard-

thresholding nor soft-thresholding leads to satisfactory denoising results.  Although 

RMSE for all the denoised signals are low, the effective strains estimated from the 

denoised signals are much higher than the actual strain; for example, the maximum 

effective strains εeff,max calculated from signals denoised using the hard- and soft- 

thresholding (σn = 0.5 mm) equal 135.40% and 44.38%, respectively, compared with 

εpe,max = 28.70% obtained in FEA. 
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Figure 2.5 Denoising based on the hard- and soft-thresholding and the effective 

strain estimation based on the denoised signals 

 

Figure 2.6 depicts results of the proposed overcomplete dictionary-based denoising 

method.  The wavelet functions for the longitudinal and circumferential directions are 

DB10 and Symlet 4, respectively.  The maximum decomposition levels in the 

longitudinal and circumferential directions are 8 and 3, respectively.  Table 2.1 compares 

the RMSE and εeff,max corresponding to the proposed denoising method, hard- and soft-

thresholding.  The RMSE of the proposed denoising method is higher than those of the 

hard- and soft-thresholding for σn = 0.1 mm but lower for σn = 0.3 mm and 0.5 mm.  
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Since a noise-free signal can be decomposed into several components with different 

energies, there are two parts of RMSE during denoising: (1) the energies of the 

misestimated components, and (2) some components are excluded due to their low 

energies.  For the proposed denoising method, the numbers of extracted components and 

associated atoms corresponding to the three assumed values of the noise variance are 

identical, which suggests that part (2) of RMSE is unchanged for the above example.   

 

Figure 2.6 Denoising and effective strain assessment based on the overcomplete 

dictionary constructed from HWT and SWT 

 

Table 2.1 RMSE and εeff,max of the three denoising method (εpe,max = 28.70%) 

 
σn = 0.1 mm σn = 0.3 mm σn = 0.5 mm 

 RMSE 
(mm) εeff,max RMSE 

(mm) εeff,max RMSE 
(mm) εeff,max 

Proposed 
method 8.48×10-2 25.93% 9.07×10-2 23.27% 9.77×10-2 23.26% 

Hard-
thresholding 3.49×10-2 54.96% 9.72×10-2 59.44% 1.54×10-1 135.40% 

Soft-
thresholding 7.93×10-2 47.38% 1.88×10-1 50.11% 2.74×10-1 44.38% 
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To quantify part (2) of RMSE associated with the proposed method, we calculate the 

noise-free coefficients corresponding to these extracted components, where the noise-free 

coefficients are obtained from the noise-free signal.  These noise-free coefficients are 

then used to reconstruct a new signal.  By calculating the RMSE between the new signal 

and the noise-free signal, part (2) of RMSE can be quantified.  For the above example, it 

is estimated to be 8.41×10-2 mm, which is higher than the RMSE of the thresholding-

based denoising for σn = 0.1 mm.  It follows that the denoising performance of the 

proposed method is not as good as the thresholding-based denoising methods in terms of 

RMSE if the variance of the noise is low.  However, RMSEs of the thresholding-based 

denoising methods are more sensitive to the variance of the noise than that of the 

proposed method.  The variance of the noise mainly affects part (2) of RMSE associated 

with the proposed method, while it affects both parts of RMSE for the thresholding-based 

methods.  For the thresholding-based denoising methods, as the variance of the noise 

increases, fewer wavelet coefficients are preserved, and the differences between the 

values of preserved coefficients and those of noise-free coefficients increase.  Therefore, 

for σn ≥ 0.3 mm, the proposed method leads to a better denoising performance in terms of 

RMSE than the thresholding method. 

The maximum effective strain estimated from the signal denoised by the proposed 

method is in excellent agreement with the actual effective strain.  Since the maximum 

effective strain is usually governed by the longitudinal bending strain, this implies that 

the proposed method can better suppress the noise that causes high bending strains.  Note 

that the maximum effective strain corresponding to the proposed method is consistently 

slightly lower than the actual equivalent strain.  This can be explained by noting that the 

proposed method extracts the high energy components from the noisy signal one by one 

until the total energy of the reconstructed signal reaches the target energy level, as 

opposed to removing the low energy components in the thresholding-based method.  

Most of the high-energy components of the noise-free dent signal are mainly low-

wavenumber components, which means that some low-energy high-wavenumber 

components of the noise-free signal that can cause high strain may be excluded. 
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2.4.2 Results based on real dent signals 

The 42 collected noisy dent signals are denoised by the proposed method.  The estimated 

values of σn for these signals are between 0.09 and 0.53 mm.  The wavelet functions for 

both directions include all the Daubechies wavelets and Daubechies symlets with no 

more than 10 vanishing moments.  The maximum decomposition levels are determined 

by the number of grid points of the signals in both directions.  The size of the 

overcomplete dictionary depends on the number of grid points of the signal, number of 

wavelet functions involved and the maximum decomposition levels in both directions.  It 

follows that each component extracted from the noisy signal requires the calculation of 

tens of millions of wavelet coefficients.  Although using such a large overcomplete 

dictionary ensures that the signal can be represented by as few components as possible, 

the computational cost is high: it takes several hours to denoise a 120×4800 signal using 

the server described in Section 2.4.1. 

To improve the computational efficiency of the proposed denoising method, we seek to 

reduce the size of the overcomplete dictionary.  To this end, we first analyze the statistics 

of the components extracted from 32 of the 42 real dent signals to gain a better 

understanding of the effectiveness of the considered different wavelet functions and 

decomposition levels.  Figure 2.7 compares the statistics of the components extracted 

from the 32 signals, including the numbers and energy of the components corresponding 

to different wavelet functions and decomposition levels along both directions.  In terms 

of the numbers of extracted wavelet coefficients along the longitudinal direction, the 

mostly used wavelet function is DB10, followed by Symlet 5, Symlet 7, and Symlet 9.  In 

the circumferential direction, Symlet 4 and DB4 are the mostly used wavelet functions.  

Most of the extracted components are constructed by the wavelet filters with a 

longitudinal decomposition level between 5 and 7, and a circumferential decomposition 

level of 2 or 3. 
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Figure 2.7 Statistics of the components extracted from the noisy dent signals: (a) the 

energy of components (longitudinal wavelet functions); (b) the number of 

components (longitudinal wavelet functions); (c) the energy of components 

(circumferential wavelet functions); (d) the number of components (circumferential 

wavelet functions); (e) the number of components (longitudinal decomposition level); 

and (f) the number of components (circumferential decomposition level) 

 

The above-described statistics of the extracted components provide the basis to construct 

a smaller dictionary.  Based on the results in Fig. 2.7, we can consider employing fewer 

wavelet functions and limiting the maximum decomposition level along two directions to 
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construct an overcomplete dictionary.  DB10 is selected as the wavelet function for the 

longitudinal direction, and a maximum decomposition level of 7 is considered adequate.  

For the circumferential direction, Symlet 4 is a suitable choice, and a maximum 

decomposition levels of 3 is considered adequate.  The number of atoms in a small 

dictionary constructed by using one wavelet function in each of the two directions, and 7 

and 3 decomposition levels in the longitudinal and circumferential directions, 

respectively, is on average only 1/550 of that in the large dictionary employed to generate 

the results shown in Figs. 6 and 7.  The denoising results based on this dictionary for the 

three dent signals shown in Fig. 1 are illustrated in Fig. 8 below.  Compared to Fig. 2.1, a 

significant change in Fig. 2.8 is that the denoised signals are smoother than the noisy 

signals.  The differences between the longitudinal locations of the dent apexes before and 

after denoising are between 2 and 6 mm.  The differences between the dent depths of the 

denoised and noisy signals are 0.33 to 1.09 mm, which are within the caliper tools’ 

measurement tolerance of 0.51%OD.  Results in Fig. 2.8 suggest that the proposed 

denoising method based on the small dictionary can adequately preserve the depth, 

location, and shape of the dent. 
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Figure 2.8 Using the small dictionary to denoise the three noisy dent signals shown 

in Figure 1: (a) εeff,max = 1.80%, dent apex longitudinal location difference = 2 mm, 

dent apex depth difference = 1.09 mm; (b) εeff,max = 1.37%, dent apex longitudinal 

location difference = 3 mm, dent apex depth difference = 0.11 mm; and (c) εeff,max = 

3.11%, dent apex longitudinal location difference = 6 mm, dent apex depth 

difference = 0.33 mm 

 

If both the large and small dictionaries are applied to all the 42 collected noisy dent 

signals, the number of extracted components based on the small dictionary is on average 

1.56 times that based on the large dictionary.  If we assume the energy of the residual 
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noise in the denoised signals is proportional to the number of extracted components, the 

residual noise energy based on the small dictionary is 56% higher than that based on the 

large dictionary.  However, the time required to denoise a signal using the small 

dictionary is on average 1/48 of that using the large dictionary.  The number of the 

extracted components using the small dictionary is on average 13% of the number of 

wavelet coefficients preserved by the hard- and soft-thresholding.  Therefore, it is 

feasible to denoise the noisy dent signals and estimate the strain using the proposed 

method based on the small dictionary.  Let 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝐿𝐿)  and 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝑆𝑆)  denote the maximum 

effective strains calculated from the signal denoised by the large and small dictionaries, 

respectively.  Figure 2.9 compares 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝐿𝐿)  and 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝑆𝑆)  of the 42 dent signals, and the 

mean and standard deviation of 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝑆𝑆) − 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝐿𝐿)  are -0.24% and 2.52%, respectively.  

For the 10 dent signals used for validation purpose, the mean and standard deviation of 

𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝑆𝑆) − 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝐿𝐿)  are -0.95% and 1.53%, respectively.  These results indicate that the 

effective strains estimated from the signal denoised using the small dictionary are on 

average in a good agreement with those from the signals denoised using the large 

dictionary. 
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Figure 2.9 The maximum effective strains calculated from 42 dent signals denoised 

by the proposed method based on the small and large dictionaries 

 

For some dent signals, there is a large difference in the effective strains obtained from the 

two dictionaries.  One reason for the large difference in the effective strains is that the 

locations corresponding to 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝑆𝑆)  and 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝐿𝐿)  are different.  Among the sixteen dent 

signals with an estimated maximum effective strain difference greater than 1% (i.e. 

�𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝐿𝐿) − 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝑆𝑆) �>1%), ten signals have 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝑆𝑆)  and 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝐿𝐿)  at different locations 

(longitudinal or circumferential location difference > 50 mm).  Figure 2.10 compares the 

denoised signals based on the two dictionaries for one dent signal with OD = 609.6 mm, 

wt = 7.8 mm and dmax = 1.1%OD.  The maximum effective strains estimated from the two 

denoised signals occur at different locations: 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝑆𝑆)  occurs near the dent apex whereas 

𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝐿𝐿)  occurs outside of the dented area.  If we only focus on the dented area, 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max

(𝐿𝐿)  
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= 5.58%, which is close to 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝑆𝑆)  = 4.16%.  For the denoised signal based on the large 

dictionary, one of the extracted components at the position of 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒,max
(𝐿𝐿)  is constructed by 

the 1st level wavelet function of Symlet 4, which may be the reason for the high strain.  

Since the noise-free signal is not available, we cannot determine whether this component 

should be considered as noise.  It is possible that some atoms in the large dictionary are 

very unlikely to be used in the noise-free signals.  However, these atoms may construct 

some noise components with high energy, leading to the noise components being 

extracted during denoising and inaccurately estimated strains. 

 

Figure 2.10 Denoised signals based on: (a) the large dictionary; and (b) the small 

dictionary 

 

The proposed denoising method based on the overcomplete dictionary constructed by 

SWT and HWT is shown to be more effective than the commonly used thresholding-

based methods; however, there are certain limitations associated with the proposed 

method. First, the proposed method is in general computationally expensive.  If we 

assume that the number of extracted components is proportional to the size of the signal, 

the numerical complexity of the proposed method based on either the large or small 

dictionary is O(β2logβ).  Therefore, even with a small dictionary, denoising a given signal 

can be a lengthy process if the signal is large.  Second, the proposed method mainly 

retains low-wavenumber components, while the majority of high-wavenumber 



49 

 

components, whether they are noise or actual features of the dent, are removed during the 

denoising process.  It follows that the effectiveness of the proposed method may be 

reduced if there are narrow features, e.g. the girth and seam welds on the pipeline, 

overlapping with the dent.  Therefore, further studies are needed to improve the 

computational efficiency of the proposed method and effectiveness of the method for 

denoising dent signals containing high-wavenumber features. 

2.5 Conclusion 
Denoising the signal of dents in steel pipelines obtained from the caliper inspection tool 

is critical to the strain-based fitness-for-service pipeline dent assessment.  The present 

study investigates the wavelet transform-based denoising method for dent signals .  It is 

demonstrated that the commonly used wavelet transform-based hard- and soft-

thresholding denoising methods are ineffective due to the characteristics of dent signals 

measured from the caliper tool, i.e. the lengths and sampling spacings of the signal along 

the longitudinal and circumferential directions differ markedly.  To overcome the 

deficiencies of the thresholding-based denoising method, we propose to denoise the dent 

signals by the overcomplete expansion, whereby the overcomplete dictionary is 

constructed by SWT and HWT.  The effectiveness of the proposed denoising method is 

validated by using FEA to simulate a dent on a pipe segment and generating simulated 

dent signals based on results of FEA.  Under all the considered noise levels, the 

maximum effective strain in the dent estimated from the signals denoised using the 

proposed method are markedly closer to the actual strain than that based on the 

thresholding method. 

To reduce the size of the overcomplete dictionary employed in the proposed method to 

improve its computational efficiency, we denoise 42 real dent signals collected from in-

service pipelines using a large overcomplete dictionary constructed by all the Daubechies 

wavelets and Daubechies symlets with no more than 10 vanishing moments.  The 

statistics of components of the actual dent morphology extracted from 32 of 42 signals 

provide the basis to construct a small dictionary using DB10 and Symlet 4 along the 

longitudinal and circumferential directions, respectively.  The computing time to denoise 

a dent signal using the small dictionary is on average only 1/48 of that using the large 
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dictionary.  The maximum effective strains of the indented pipe segments estimated from 

the signal denoised by using the small dictionary are on average in good agreement with 

those estimated from the signals denoised using the large dictionary for the 42 real dent 

signals.  Future studies are recommended to further improve the computational efficiency 

of the proposed denoising method and effectiveness of the method for denoising dent 

signals containing high-wavenumber features such as girth and seam welds. 
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Chapter 3  

3 Discrete Wavelet Analysis of External Corrosion 
Clusters on Pipelines for Burst Capacity Prediction 

3.1 Introduction 
Pipelines are a safe and economical way to transport large quantities of oil and gas 

products over long distances.  With the increased pipeline service life, pipelines may be 

threatened by different damage mechanisms.  The data collected by the Pipeline and 

Hazardous Materials Safety Administration (PHMSA) of the United States indicate that 

external corrosion is a major damage mechanism, causing about 24% of the incidents on 

onshore gas transmission pipelines in the US between 2002 and 2013 (Lam & Zhou 

2016).  The report from the European Gas Pipeline Incident Data Group (EGIG 2020) has 

shown that 27% of the incidents on onshore gas transmission pipelines in Europe were 

caused by corrosion between 2010 and 2019.  Corrosion reduces the pipe wall thickness 

and consequently the pressure containment capacity, i.e. burst capacity, of the pipeline.  

Therefore, corrosion assessment and mitigation are essential components of the pipeline 

integrity management program. 

As will be explained in Section 3.2.1, a corrosion cluster can be considered to consist of 

multiple anomalies with irregular shapes (Vanaei et al. 2017).  Not all the anomalies in a 

cluster affect the burst capacity of the corroded pipeline segment.  When assessing a 

pipeline segment containing a corrosion cluster, ignoring some of the anomalies in the 

cluster may introduce negligible errors in the predicted burst capacity because the stress 

concentration caused by shallow anomalies is likely to be less severe than those caused 

by deep anomalies.  However, simply ignoring corrosion anomalies with depths below a 

specific threshold depth may not be adequate for the burst capacity evaluation.  For 

example, a shallow anomaly with large longitudinal length and circumferential width 

may have a non-negligible effect on the burst capacity.  Furthermore, anomalies with the 

same size and shape but oriented in different directions may not have the same impact on 

the burst capacity.  Therefore, it is valuable to analyze the directional features and length 

scales of the corrosion clusters to gain insights into their effects on the burst capacity of 



57 

 

corroded pipelines.  The analysis of directional features and length scales can be achieved 

by using the wavelet transform to perform the so-called multi-resolution analysis 

(Daubechies 1992; Li et al. 2003; Mallat 2008; Walker 2008; Walnut 2002) of corrosion 

clusters. 

The wavelet transform has been applied to signals from inline inspections of corroded 

pipelines. Siqueira et al. (2004) improved the signal-to-noise ratio of the pipe inspection 

signals by first thresholding the discrete wavelet transform (DWT) coefficients of the 

noisy signal and then using the thresholded coefficients to reconstruct the signal.  

Sampath et al. (2019) employed the wavelet packet and different wavelets to analyze the 

corrosion signal measured by non-contact optical sensor array for noise cancelation and 

feature extraction.  Afzal and Udpa (2002) proposed an algorithm for detecting corrosion 

pits and mechanical damage in pipelines based on signals obtained from inspection tools 

using the magnetic flux leakage technique.  This algorithm employs soft-thresholding to 

remove the additive white noise from the signal.  Qi et al. (2010) used DWT to extract 

the peak shape and position of the signal reported by the ultrasonic pipeline inspection 

tool to accurately locate the corrosion defects on the pipe wall.  Zajam et al. (2019) 

developed a pipeline health monitoring technique by measuring the vibration response of 

the pipeline and then using the wavelet transform of the measured response to locate the 

corrosion defects on the pipe wall.  Tucker et al. (2003) and Kercel et al. (2003) 

decomposed the raw electromagnetic acoustic transducer data using the Daubechies 

wavelets and calculated the feature vector based on the Shannon entropy and energy of 

the wavelet coefficients for defect classification.  Duong and Kim (2018) considered the 

entropy of the wavelet coefficients as the feature of an acoustic emission signal and 

employed the neural networks to classify surface defects on pipelines.  However, the 

application of the wavelet transform to extract the information of directional features and 

length scales of the corrosion clusters in the context of their impact on the pipeline burst 

capacity has, to our best knowledge, not been reported in the literature. 

Employing DWT with different thresholds for different sub-bands allows one to extract 

the directional features and length scales of corrosion clusters that have a large impact on 

the burst capacity prediction.  In the DWT-based denoising analysis, the thresholds are 
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usually developed by minimizing the sum of the squares of the difference between the 

noise-free and denoised signals.  Since the purpose of DWT-based denoising is to remove 

as much measurement error from the noisy signal as possible, the signal reconstructed 

based on the remaining wavelet coefficients after thresholding may still include many 

features that have little influence on the burst capacity prediction.  In the present study, 

we propose a method to estimate the threshold values for different sub-bands of the 2D 

DWT of the natural corrosion clusters.  The proposed method enables one to retain a 

small number of wavelet coefficients while ensuring that the difference in the predicted 

burst capacities of the original and reconstructed corrosion clusters is negligible.  To this 

end, high-resolution laser scan data of natural corrosion clusters on the external surfaces 

of in-service buried pipe segments are collected and analyzed using the wavelet transform.  

Based on the preserved wavelet coefficients of the corrosion clusters, we gain further 

insights into the key directional features and length scales that govern the burst capacity 

prediction. 

The rest of the paper is organized as follows.  In Section 3.2, the corrosion cluster 

measurements obtained from the high-resolution laser scan are presented.  The 

RSTRENG model for predicting the burst capacity of a pipe segment containing a 

corrosion cluster is also described in Section 3.2.  Section 3.3 presents the fundamentals 

of the wavelet transform and selection of the wavelet function for the analysis in the 

present study.  A methodology is then proposed in this section to estimate the thresholds 

for the wavelet coefficients in different sub-bands.  In Section 3.4, we determine the 

optimal values of some empirical parameters in the proposed methodology from the 

wavelet analysis of a relatively large number of natural corrosion clusters.  By analyzing 

the number, energy, and impact on the burst capacity prediction of the wavelet 

coefficients preserved by the thresholds estimated from the proposed methodology, we 

explore the key directional features and length scales of natural corrosion clusters that 

govern the burst capacity prediction in this section.  Concluding remarks are presented in 

Section 3.5. 
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3.2 Corrosion clusters and burst capacity prediction 

3.2.1 Scanned data of corrosion clusters 

The corrosion measurement data employed in the present study are provided by a 

Canadian pipeline operator.  Zhang et al. (2018) reported the burst tests of 14 full-scale 

corroded pipe specimens removed from in-service transmission pipelines.  The outside 

diameters (OD) of these pipe specimens are between 407.4 and 764.1 mm, and wall 

thicknesses (wt) are between 5.9 and 8.5 mm.  The dimensions and material properties of 

the pipe steel are summarized in Bao et al. (2018).  These specimens have extensive, 

naturally-occurring corrosions on their external surfaces.  After excavation, each pipe 

segment was scanned by a high-resolution laser-scanning device.  The device measures 

corrosion depths on the pipe external surface at uniformly spaced points (grid points), 

with a grid spacing of 1 mm (arc length) along the pipe circumferential direction and 

either 1 mm or 2 mm along the longitudinal direction, i.e. a 1 × 1 mm or 1 × 2 mm grid.  

In the present study, 106 corrosion clusters are collected from the laser scan data.  These 

corrosion clusters are randomly divided into two groups: 95 corrosion clusters are used to 

estimate the thresholds for different sub-bands, while the remaining 11 clusters are used 

to validate the adequacy of the thresholds.  The collected corrosion clusters have at least 

40 grid points in both the longitudinal and circumferential directions, and the maximum 

corrosion depths of different clusters are between 12.3% and 78.7%wt. 

Let z(x, y) denote the corrosion depth (in the unit of %wt) at the grid point (x, y) of a 

corrosion cluster, where x and y are the longitudinal and circumferential coordinates, 

respectively, and 𝑑𝑑max
(𝑐𝑐) = max{z} denote the maximum corrosion depth of the corrosion 

cluster, respectively.  Figure 3.1 shows the two- and three-dimensional (2D and 3D) plots 

of three collected corrosion clusters.  There are some common features of the clusters: the 

majority of the measured corrosion depths within a given cluster are quite small, and grid 

points with large corrosion depths are non-uniformly distributed within the cluster.  To 

have more insights into the composition of the corrosion cluster, we apply different 

threshold depths to the corrosion cluster shown in Fig. 3.1(a) such that any corrosion 

depths less than the threshold are considered corrosion-free, i.e. zero corrosion depth.  

Threshold depths of 5%wt, 10%wt, and 15%wt are applied.  The corrosion cluster shown 
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in Fig. 3.1(a) after being subjected to such threshold depths is depicted in Fig. 3.2.  It can 

be observed from this figure that the corrosion cluster now consists of a series of 

corrosion “islands” - referred to corrosion anomalies - with varying sizes.  There are 

some drawbacks in applying threshold depths directly to identify anomaly features within 

a corrosion cluster.  Figure 3.2 indicates that the number of corrosion anomalies and their 

sizes are sensitive to the threshold depth applied.  A single threshold depth may not be 

adequate to identify all the anomalies that greatly influence the burst capacity of the 

pipeline at the corrosion cluster.  On the other hand, applying different thresholds to the 

DWT coefficients associated with different sub-bands can more effectively extract the 

main directional features and length scales of the corrosion cluster and identify anomalies 

that significantly influence the burst capacity by retaining a small number of coefficients. 

 

Figure 3.1 Corrosion depths measured by the laser scan on the external surfaces of 

in-service pipelines: (a) OD = 408.2 mm, wt = 6.2 mm, 𝒅𝒅𝐦𝐦𝐦𝐦𝐦𝐦
(𝒄𝒄)  = 33.0%wt; (b) OD = 

407.7 mm, wt = 5.9 mm, 𝒅𝒅𝐦𝐦𝐦𝐦𝐦𝐦
(𝒄𝒄)  = 54.2%wt; and (c) OD = 407.4 mm, wt = 5.9 mm, 𝒅𝒅𝐦𝐦𝐦𝐦𝐦𝐦

(𝒄𝒄)  

= 56.9%wt 
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Figure 3.2 Corroded and corrosion-free areas in a given corrosion cluster by 

applying different threshold depths: (1) 5%wt; (2) 10%wt; and (3) 15%wt 

 

3.2.2 RSTRENG model 

The RSTRENG model (Kiefner and Vieth 1989) is a well-known semi-empirical model 

for predicting the burst capacities of corroded pipelines considering the corrosion 

morphology.  The model employs the river-bottom profile of the corrosion cluster, which 

is determined by projecting the deepest points (i.e. the “river bottom”) within the 

corrosion cluster onto a longitudinal plane that is perpendicular to the pipe wall. 

The model evaluates the burst capacity p at a corrosion cluster as follows: 

𝑝𝑝𝑏𝑏 = 2∙𝑤𝑤𝑤𝑤∙�𝜎𝜎𝑦𝑦+69�
𝑂𝑂𝑂𝑂

1− 𝐴𝐴𝑒𝑒
𝑙𝑙𝑒𝑒∙𝑤𝑤𝑤𝑤

1− 𝐴𝐴𝑒𝑒
𝑀𝑀𝑒𝑒∙𝑙𝑙𝑒𝑒∙𝑤𝑤𝑤𝑤

 (3.1) 
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𝑀𝑀𝑒𝑒 = �
�1 + 0.6275 𝑙𝑙𝑒𝑒2

𝑂𝑂𝑂𝑂∙𝑤𝑤𝑤𝑤
− 0.003375 � 𝑙𝑙𝑒𝑒2

𝑂𝑂𝑂𝑂∙𝑤𝑤𝑤𝑤
�
2

, 𝑙𝑙𝑒𝑒2

𝑂𝑂𝑂𝑂∙𝑤𝑤𝑤𝑤
≤ 50

3.3 + 0.032 𝑙𝑙𝑒𝑒2

𝑂𝑂𝑂𝑂∙𝑤𝑤𝑤𝑤
, 𝑙𝑙𝑒𝑒2

𝑂𝑂𝑂𝑂∙𝑤𝑤𝑤𝑤
> 50

 (3.2) 

where σy is the yield strength of the pipe steel in MPa; Ae and le are the effective area and 

length, respectively, of the river bottom profile of the corrosion cluster, and Me is the so-

called Folias factor corresponding to the effective length of the corrosion cluster.  The 

determination of Ae and le involves an iterative process to identify the particular 

contiguous sub-portion of the river-bottom profile that leads to the lowest predicted burst 

capacity.  Details of the RSTRENG model have been well described in many references 

(e.g. Kiefner and Vieth 1989; Zhang et al. 2018). 

 

3.3 Discrete wavelet transform-based thresholding 

3.3.1 Wavelet transform 

Let v(x) denote a one-dimensional (1D) signal.  The coefficients of continuous wavelet 

transform (CWT) v(x), 𝑣𝑣𝑤𝑤(𝑠𝑠, 𝜏𝜏), are given by (Daubechies 1992): 

𝑣𝑣𝑤𝑤(𝑠𝑠, 𝜏𝜏) = 1
�|𝑠𝑠|∫ 𝑣𝑣(𝑥𝑥)𝜓𝜓∗ �𝑥𝑥−𝜏𝜏

𝑠𝑠
� 𝑑𝑑𝑑𝑑∞

−∞   (3.3) 

where s is the scaling factor; τ is the translation; 𝜓𝜓(𝑥𝑥) is the so-called mother wavelet 

function, and * denotes the complex conjugate.  If 𝜓𝜓(𝑥𝑥)  satisfies the admissibility 

condition, i.e. 𝐶𝐶𝜓𝜓 = ∫ �𝜓𝜓� (𝑓𝑓)�2

|𝑓𝑓|
𝑑𝑑𝑑𝑑 < ∞∞

−∞ , where 𝜓𝜓�(𝑓𝑓) denotes the Fourier transform of 

𝜓𝜓(𝑥𝑥) with f (Hz) being the frequency, the function v(x) can be reconstructed from vw(s, τ) 

by the inverse CWT: 

𝑣𝑣(𝑥𝑥) = 1
𝐶𝐶𝜓𝜓
∫ ∫ 𝑣𝑣𝑤𝑤(𝑠𝑠,𝜏𝜏)

�|𝑠𝑠|
𝜓𝜓 �𝑥𝑥−𝜏𝜏

𝑠𝑠
� 1
𝑠𝑠2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∞

−∞
∞
−∞  (3.4) 

In CWT, s and τ are continuous, and both the forward and inverse transform need to 

calculate the integral.  The high computational cost limits the value of CWT for 

engineering applications.  The non-redundant DWT is more commonly used in practice 
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when processing a discrete signal.  Let v(x) (x = 0, 1, 2, …, 2n - 1) denotes a 1D discrete 

signal, where n is a positive integer.  In 1D DWT, v(x) can be decomposed in terms of 

wavelet and scaling functions as follows (Daubechies 1992): 

𝑣𝑣(𝑥𝑥) = ∑ 2−
𝑛𝑛
2𝐿𝐿𝑛𝑛(𝑘𝑘)𝜑𝜑(2−𝑛𝑛𝑥𝑥 − 𝑘𝑘)𝑘𝑘 + ∑ ∑ 2−

𝑖𝑖
2𝐻𝐻𝑖𝑖(𝑘𝑘)𝜓𝜓�2−𝑖𝑖𝑥𝑥 − 𝑘𝑘�𝑘𝑘

𝑛𝑛
𝑖𝑖=1  (3.5) 

where 𝜑𝜑(𝑥𝑥) denotes the scaling function (i.e. the low-pass filter); 𝜓𝜓(𝑥𝑥) is the mother 

wavelet function (i.e. the high-pass filter); k denotes translation; i is the decomposition 

level, and L and H are the approximation and detail coefficients, respectively.  Usually 

𝜑𝜑(𝑥𝑥) and 𝜓𝜓(𝑥𝑥) are well designed so that 2−
𝑛𝑛
2𝜑𝜑(2−𝑛𝑛𝑥𝑥 − 𝑘𝑘) and 2−

𝑖𝑖
2𝜓𝜓�2−𝑖𝑖𝑥𝑥 − 𝑘𝑘� in all 

terms are orthonormal bases with compact support and fast frequency decay.  The 

approximation coefficients 𝐿𝐿𝑛𝑛(𝑘𝑘)  and detail coefficients 𝐻𝐻𝑖𝑖(𝑘𝑘)  are obtained by 

convolving v(x) and the corresponding analysis filters. 

In 1D DWT, the signal is decomposed to two sub-bands (high-frequency and low-

frequency) at each level by the high-pass and low-pass filters, and the coefficients at 

higher levels are calculated by decomposing the approximation coefficients at lower 

levels.  Given a 2D discrete signal z(x, y) (x = 0, 1, 2, …, 2n – 1; y = 0, 1, 2, …, 2m – 1), 

the 2D DWT is similar to 1D DWT but with four sub-bands at each level.  The wavelet 

coefficients in 2D DWT, 𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦�, is given by (Daubechies 1992): 

𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� = 1

2𝑖𝑖
∑ ∑ 𝑧𝑧(𝑥𝑥,𝑦𝑦)𝜓𝜓(𝛼𝛼) �

𝑥𝑥−𝜏𝜏𝑥𝑥
2𝑖𝑖

, 𝑦𝑦−𝜏𝜏𝑦𝑦
2𝑖𝑖
�𝑦𝑦𝑥𝑥  (3.6) 

𝜓𝜓(𝛼𝛼)(𝑥𝑥,𝑦𝑦) =

⎩
⎨

⎧
𝜑𝜑(𝑥𝑥)𝜑𝜑(𝑦𝑦), 𝛼𝛼 = 𝐿𝐿𝐿𝐿
𝜑𝜑(𝑥𝑥)𝜓𝜓(𝑦𝑦), 𝛼𝛼 = 𝐿𝐿𝐿𝐿
𝜓𝜓(𝑥𝑥)𝜑𝜑(𝑦𝑦), 𝛼𝛼 = 𝐻𝐻𝐻𝐻
𝜓𝜓(𝑥𝑥)𝜓𝜓(𝑦𝑦), 𝛼𝛼 = 𝐻𝐻𝐻𝐻

 (3.7) 

where 𝜓𝜓(𝛼𝛼)(𝑥𝑥, 𝑦𝑦) denotes the wavelet function corresponding to the α sub-band; LL, LH, 

HL, and HH denote the one approximation sub-band and three detail sub-bands in 2D 

DWT: i.e. approximation (low-pass and low-pass), horizontal detail (low-pass and high-

pass), vertical detail (high-pass and low-pass) and diagonal detail (high-pass and high-

pass), respectively.  These sub-bands characterize the properties of the signal: LL can be 
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considered as the 2D signal in a poorer resolution; LH, HL, and HH can represent 

horizontal, vertical, and diagonal patterns of the 2D signal, respectively.  Different sub-

bands may have different influences on the burst capacity prediction.  DWT can provide 

a good approximation with sparse wavelet coefficients, and the numerical complexity is 

only O(N) (Mallat 2008).  Therefore, it is widely used in data compression and feature 

detection.  Details of the forward and inverse DWT are given in (Daubechies 1992; 

Mallat 2008; Torrence&Compo 1998). 

DWT-based thresholding is achieved by setting the low-energy wavelet coefficients to 

zeros, where the energy associated with a coefficient is defined as the square of the 

absolute value of this coefficient.  The commonly used wavelet thresholding includes 

hard- and soft-thresholding.  In hard-thresholding, all the coefficients with an absolute 

value below the threshold are set to zeros.  In soft-thresholding, also known as the 

wavelet shrinkage, coefficients with an absolute value below the threshold are set to zeros, 

while the other coefficients are adjusted toward zero by subtracting the threshold from 

their mode (Chang et al. 2000; Donoho 1995; Mallat 2008).  Usually the soft-

thresholding is employed to denoise a signal containing additive Gaussian white noises.  

Since the corrosion clusters in this study are measured by the laser scan device, which 

can be considered noise-free, hard-thresholding is employed in the present study.  In the 

following sections, z(r) denotes the corrosion depth in the reconstructed corrosion cluster 

by applying the hard-thresholding to the wavelet coefficients.  Since the corrosion depth 

must be non-negative, negative values of z(r) in the reconstructed cluster are set to zeros. 

3.3.2 Wavelet functions for pipeline corrosion clusters 

Many well-developed wavelet functions are available for DWT, such as the Daubechies 

wavelets (denoted as DBN, where N is the vanishing moment of the wavelet function), 

Daubechies symlets (denoted as Symlets N), coiflets, and biorthogonal wavelets (Mallat 

2008).  We select a wavelet function from the Daubechies wavelets and symlets for 

feature extraction because these wavelets have the minimum support given a vanishing 

moment.  Let q0 denote the number of grid points within a corrosion cluster, and qw 

denote the number of non-zero wavelet coefficients after hard-thresholding.  Define E0 = 

ΣxΣy|z(x, y)|2 and Er = ΣxΣy|z(r)(x, y)|2 as the total energies of a corrosion cluster before and 
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after processing (i.e. thresholding), respectively.  Let p0 and pr denote the burst capacities 

corresponding to the cluster before and after processing, respectively.  Both p0 and pr are 

predicted by using the RSTRENG model.  If the maximum decomposition level, the 

wavelet function, and the wavelet threshold ηw are specified, z(r) can be determined from z 

for a given cluster, and the value of qw, Er, and pr can also be determined.  The maximum 

decomposition level is constrained by the size of the signal.  In the present study, the 

measured corrosion clusters are decomposed up to the 5th level, since some clusters are 

relatively small and therefore cannot be decomposed to higher levels.  Bao and Zhou 

(2021) have shown that ignoring corrosion depths that are less than 10%wt has a 

negligible impact on the burst capacity evaluation.  We therefore consider for now the 

corrosion depths deeper than ηd = 10%wt to be essential for the burst capacity prediction.  

Table 3.1 compares the mean values and the coefficient of variation (COV) of qw/q0, 

Er/E0, and pr/p0 under the maximum decomposition level of five and a decomposition 

level-independent threshold ηw = ηd = 10%wt for the 106 collected corrosion clusters 

described in Section 3.2.1. 

 

Table 3.1 Statistics of qw/q0, Er/E0, and pr/p0 in the case of maximum decomposition 

level of five, and a constant threshold ηw = 10%wt 

Wavelet 
function 

Mean of 
qw/q0  (%) 

Mean of 
Er/E0  (%) 

Mean of 
pr/p0 (%) 

COV of 
pr/p0 (%) 

DB1 (Haar) 1.80 89.11 101.19 0.78 

DB2 1.63 89.78 100.38 0.64 

DB6 1.68 89.90 101.01 0.71 

DB10 1.69 89.62 101.14 0.78 

DB20 1.76 88.94 101.34 0.89 

Symlets 6 1.61 90.24 100.86 0.68 

Symlets 10 1.61 90.29 100.93 0.70 

Symlets 20 1.62 90.06 100.99 0.72 
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Table 3.1 indicates that the eight different wavelets considered all result in an excellent 

compression performance on the raw data.  In addition to the values of the wavelet 

coefficients, one also needs to store the information about the wavelet filters 

corresponding to these coefficients.  Therefore, the storage requirement of these wavelet 

coefficients will be 2qw.  On average, about 90% of the total energy of the raw data is 

preserved by the wavelet coefficients that require only about 1/30 of the storage 

requirements of the raw data.  Besides the low storage requirement, the RSTRENG-

predicted burst capacities based on the corrosion cluster reconstructed from the preserved 

coefficients are very close to those based on the actual corrosion cluster.  Since the mean 

value of pr/p0 corresponding to DB2 is the closest to unity of all the wavelets included in 

Table 3.1, DB2 appears to perform better in retaining the defect profile information in the 

context of the burst capacity prediction.  Although Symlets 6, Symlets 10, and Symlets 

20 are slightly better than DB2 in terms of the data compression (i.e. lower values of 

qw/q0 and higher values of Er/E0), the means of pr/p0 corresponding to these wavelets are 

not as close to unity as that corresponding to DB2.  In general, identifying corrosion 

anomalies requires a high resolution in the spatial domain.  However, symlets 6, symlets 

10, and symlets 20 have higher vanishing moments than DB2, which means that they 

have longer filter lengths that may not be able to separate and capture closely spaced 

corrosion features.  Therefore, DB2 is selected for the subsequent analyses. 

3.3.3 Thresholds for the burst capacity prediction 

The previous section considers a constant, sub-band-independent threshold to preserve 

the wavelet coefficients for reconstructing the corrosion cluster.  However, such a 

constant threshold may not be optimal as it does not consider the different effects on the 

burst capacity due to wavelet coefficients at different decomposition levels and in 

different sub-bands.  We therefore propose a threshold ηi,α for the ith level wavelet 

coefficients of the α sub-band: 

ηi,α = Gα∙(G1)i∙(G2ηd) (3.8) 
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where Gα is the sub-band parameter; G1 is the level parameter, and G2ηd can be 

considered as the threshold depth such that corrosion depths below the threshold are 

considered to have a negligible impact on the burst capacity prediction.  Gα, G1, and G2 

are to be determined to optimize ηi,α.  If Gα = G1 =1, ηi,α is a constant threshold that 

applies to all wavelet coefficients.  The thresholds estimated by Gα = 1 and G1 ≠ 1 are 

level-dependent, while they are sub-band-dependent if Gα depends on the sub-band of the 

wavelet coefficients.  Different thresholds provide different characteristics of the natural 

corrosion clusters.  The level-dependent thresholds account for the influence of the length 

scales of the features in the corrosion clusters.  With the same corrosion depth, features of 

larger sizes have greater influence on the burst capacity than features of smaller sizes, 

and such an influence of the length scales is reflected by the level-dependent thresholds.  

In addition to the size, the impact of the directional features on the burst capacity is 

accounted for in the sub-band-dependent thresholds. 

The sub-band parameter Gα is determined based on the impact of different sub-bands on 

the burst capacity prediction.  Wavelet coefficients from different sub-bands can be 

interpreted as patterns with different orientations and sizes in the corrosion cluster.  In the 

RSTRENG model, the burst capacity is governed by the effective area of the river-bottom 

profile.  Since the river-bottom profile is the projection of the deepest point on a 

longitudinal plane, the influence of an elongated longitudinally orientated corrosion 

anomaly on the burst capacity is much stronger than other orientations under the same 

volume of metal loss and the maximum corrosion depth.  Therefore, coefficients from the 

LH sub-band have a greater impact on the burst capacity than the other sub-bands. 

The influence of a wavelet coefficient on the burst capacity prediction can be quantified 

by the increase in the area of the river-bottom profile caused by this coefficient.  Consider 

that a 2D signal reconstructed by a wavelet coefficient with a value of unity.  By 

projecting the maximum values of such a 2D reconstructed signal to the longitudinal 

plane, the area Ainc enclosed by the projection is the maximum area change contributed by 

this wavelet coefficient to the river-bottom profile area of the corrosion clusters.  Figure 

3.3 compares the 2D reconstructed signals based on the DB2 wavelet coefficients with 

the same values and decomposition levels but in different sub-bands, and the 
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corresponding projections on the longitudinal plane.  The projected area depends on the 

selected wavelet function.  The signal reconstructed by the LH coefficient has the greatest 

projected area, followed by HH and LL, while the HL coefficient leads to the smallest 

projected area.  The ratios of the projected areas of the LL, LH, HL, HH coefficients are 

approximately 1.5:2:1:1.8, which suggests that the LH coefficient has twice the influence 

on the river-bottom profile as the HL coefficient with the same values.  It should be noted 

that this is the ratio of the maximum area change wavelet coefficients in different sub-

bands may contribute to the river bottom profile.  The projected area ratio does not 

represent the actual change of the effective area of the river-bottom profile, as the 

effective area is determined by multiple wavelet coefficients.  Nevertheless, the projected 

area ratio can be employed to quantify the influence of the wavelet coefficients and 

therefore determine the threshold ratio for different sub-bands.  If the thresholds are 

dependent on the sub-band, the threshold ratios for LL, LH, HL, HH can be taken as 

4/3:1:2:10/9, i.e. the inverse of the projected area ratios.  Therefore, the values of Gα for 

LL, LH, HL, and HH are recommended to be 4/3, 1, 2, and 10/9, respectively. 
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Figure 3.3 Signals reconstructed based on wavelet coefficients in different sub-bands: 

(a) 2D signals of LL (approximation), LH (longitudinal feature), HL (circumferential 

feature), and HH (diagonal feature); and (b) signals’ projections on the longitudinal 

plane 

Suppose that there are two features corresponding to two wavelet coefficients of the same 

value in the same detail sub-band (e.g. both belong to the HL sub-bands) but different 
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decomposition levels (the level difference is Δi).  The feature corresponding to the high-

level wavelet coefficient is flatter than the feature corresponding to the low-level wavelet 

coefficient: the longitudinal length and circumferential width of the former are 2Δi times 

as long as those of the latter, but the corrosion depth of the former is only 1/2Δi that of the 

latter.  Since the decomposition level i is reflected in the form of an exponent on the sizes 

of the features, the decomposition level i is introduced in the form of an exponent in Eq. 

(3.8). 

It is necessary to estimate the upper bound of the threshold for each sub-band to 

determine a reasonable range of values for G1 and G2.  Suppose that corrosion depths 

deeper than ηd in a corrosion cluster have non-negligible influences on the burst capacity 

prediction.  To ensure that all the grid points with depths greater than ηd are retained in 

the reconstructed corrosion cluster, the wavelet coefficients calculated from these grid 

points should be preserved.  Therefore, the upper bound of the threshold can be defined 

as follows.  If the amplitude of a wavelet coefficient is above the upper bound, then 

among all the grid points involved in the calculation of such a wavelet coefficient, there 

must be at least one grid point whose corrosion depth is greater than ηd.  Let 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢) denote, 

respectively, the upper bounds of the normalized wavelet coefficients 𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦�/𝜂𝜂𝑑𝑑 in 

the ith level and α sub-band.  Since the corrosion clusters are non-negative, and the 

analysis filters used to calculate the wavelet coefficients for different sub-bands are 

known for a given wavelet function, one can compute the values of 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢) based on the 

taps of the analysis filters (see Appendix A).  The numerical values of 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢) for the first 

five decomposition levels based on DB2 are summarized in Table 3.2.  Note that directly 

employing 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢)𝜂𝜂𝑑𝑑  as the threshold for the ith level α sub-band will lose considerable 

important features.  Based on the values of 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢) given in Table 3.2, the values of G1 and 

G2 are limited to G1 < 2 and G2 < 1, respectively. 
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Table 3.2 𝜼𝜼𝜶𝜶,𝒊𝒊
(𝒖𝒖𝒖𝒖) for 𝒛𝒛𝝍𝝍

(𝜶𝜶,𝒊𝒊)�𝝉𝝉𝒙𝒙, 𝝉𝝉𝒚𝒚�/𝜼𝜼𝒅𝒅 of different sub-bands based on DB2 

Decomposition 

level 

Sub-bands α 

LL  LH  HL HH  

1 2.34 1.4 1.4 1.4 

2 4.78 2.72 2.72 2.66 

3 9.58 5.39 5.39 5.21 

4 19.15 10.39 10.39 9.68 

5 38.32 20 20 17.92 

 

3.4 Results and discussion 
To determine the appropriate values of G1 and G2, parametric analyses are carried out 

whereby ranges of G1 and G2 values are substituted into Eq. (3.8) to determine ηi,α, which 

is then employed as the threshold to retain the wavelet coefficients for reconstruction.  

For the constant threshold (i.e. both Gα and G1 fixed at unity), the mean and COV of pr/p0 

computed for the 95 corrosion clusters described in Section 3.2.1 corresponding to 

different values of G2 are summarized in Fig. 3.4(a) and (b), respectively.  Figure 3.4 

indicates that the error in the burst capacity prediction of the reconstructed corrosion 

clusters increases linearly with the increase of G2.  A lower value of G2 results in a higher 

number of wavelet coefficients being retained, the mean value of pr/p0 being closer to 

unity, and the COV of pr/p0 being closer to zero, i.e. more effective reconstruction of the 

corrosion cluster in terms of the burst capacity prediction.  The mean values of qw/q0 and 

Er/E0 for the 95 clusters corresponding to different values of G1 and G2 are shown in Figs. 

3.4(c) and 3.4(d).  The value of qw/q0 rapidly decreases as G2 increases from 0.5 to 1.0, 

and then decreases more slowly as G2 increases beyond 1.0.  This means that increasing 

the constant threshold is efficient up to a certain point in terms of removing wavelet 

coefficients.  The optimal values of G2 can be selected by limiting, somewhat arbitrarily, 
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the mean value of pr/p0 to be within 1% of unity, COV of pr/p0 to be less than 1%, and 

having the lowest mean of qw/q0.  Based on these criteria, the optimal value of G2 for the 

constant threshold is determined to be 1.8.  In other words, if one aims to quickly identify 

the features in the corrosion clusters that influence the burst capacity prediction by a 

constant threshold, ηi,α = 18%wt is a good choice. 

 

Figure 3.4 Statistics of applying a constant threshold on the corrosion clusters: (a) 

mean of pr/p0; (b) COV of pr/p0; (c) mean of qw/q0; and (d) mean of Er/E0 

 

Figures 3.5 and 3.6 compare the statistics of pr/p0, qw/q0, and Er/E0 resulting from 

applying level-dependent (with Gα fixed at unity) and sub-band-dependent (Gα is 

assumed to be 4/3, 1, 2, and 10/9 for LL, LH, HL, and HH, respectively) thresholds on the 
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corrosion clusters, respectively.  Since the thresholds are exponentially affected by G1, 

these statistical indicators exponentially increase or decrease with G1.  As shown in Figs. 

3.5 and 3.6, larger values of G1 and G2 result in fewer wavelet coefficients being retained 

for reconstruction, i.e. more efficient data compression.  For the level-dependent and sub-

band-dependent thresholds, the optimal values of G1 and G2 can be obtained following 

the same procedure as described above.  For the level-dependent thresholds, the optimal 

values of G1 and G2 are selected to be 1.2 and 1.0, respectively, i.e. ηi,α = 1.2i∙(10%wt).  

For the sub-band-dependent thresholds (Gα is 4/3, 1, 2, and 10/9 for LL, LH, HL, and HH, 

respectively), the optimal values of G1 and G2 are selected to be 1.2 and 0.8, respectively, 

i.e. ηi,α = Gα∙1.2i∙(8%wt). 

 

Figure 3.5 Statistics of applying the level-dependent thresholds on the corrosion 

clusters: (a) mean of pr/p0; (b) COV of pr/p0; (c) mean of qw/q0; and (d) mean of Er/E0 
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Figure 3.6 Statistics of applying the sub-band-dependent thresholds (G0 = 4/3, 1, 2, 

and 10/9 for LL, LH, HL, and HH) on the corrosion clusters: (a) mean of pr/p0; (b) 

COV of pr/p0; (c) mean of qw/q0; and (d) mean of Er/E0 

 

Table 3.3 summarizes the optimal expressions of the constant, level-dependent, and sub-

band-dependent thresholds.  The effectiveness of selected G1 and G2 in terms of the mean 

and COV of pr/p0 as well as the mean value of qw/q0 for the 95 corrosion clusters are also 

summarized in Table 3.3.  Furthermore, the mean value and COV of pr/p0 as well as the 

mean value of qw/q0 for the 11 corrosion clusters excluded from the parametric analysis 

are summarized in Table 3.3 to further demonstrate the effectiveness of the selected 

values of G1 and G2. 
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Table 3.3 Optimal expressions and performance of the constant, level-dependent, 

and sub-band-dependent thresholds 

Threshold Optimal 
expression 

95 clusters (parametric 
analysis)  11 clusters (validation) 

mean 
of pr/p0 

COV 
of pr/p0 

mean of 
qw/q0 

mean 
of pr/p0 

COV 
of pr/p0 

mean of 
qw/q0 

Constant 18%wt 101.0% 0.96% 0.70% 101.0% 0.92% 0.70% 

Level-
dependent 1.2i(10%wt) 101.0% 1.00% 0.70% 100.8% 0.92% 0.69% 

Sub-band-
dependent 

Gα1.2i(8%wt) 

101.0% 0.85% 0.58% 100.9% 0.79% 0.57% Gα = 4/3, 1, 
2, or 10/9 

 

From the optimal expressions of the three thresholds, one can gain further insights into 

some properties of the features that greatly affect the burst capacity prediction.  First, the 

optimal value of G1 in both level-dependent and sub-band-dependent thresholds is 1.2, 

which implies that the influence of the longitudinal length of a feature on the burst 

capacity prediction should not be ignored.  In 2D DWT, if the length and width of a 

feature are doubled (i.e. the decomposition level of the corresponding wavelet coefficient 

increased by one) while the depth remain the same, the value of the wavelet coefficient 

corresponding to this feature becomes twice the original.  Therefore, if the burst capacity 

prediction only depends on the depth of the features, the optimal value of G1 should be 

two.  However, the optimal value of 1.2 means that the length of the features is important 

to the burst capacity prediction.  This also supports the hypothesis mentioned in Section 

3.2.1, i.e. using a constant threshold depth to extract anomalies as the main features of the 

corrosion cluster may not be adequate.  Second, the direction of the anomaly features has 

a non-negligible impact on the remaining burst capacity.  The number of wavelet 

coefficients retained based on the sub-band-dependent thresholds is on average only 83% 

of those retained based on the constant (18%wt) and level-dependent thresholds while 

still resulting in a lower COV of pr/p0.  This suggests that the coefficients retained by the 
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sub-band-dependent thresholds can more effectively capture the part of the corrosion 

cluster that has a great impact on the burst capacity prediction. 

Figure 3.7 compares the reconstructed corrosion clusters of the three clusters shown in 

Fig. 3.1 based on four different thresholds.  Employing a constant threshold of 18%wt 

mainly retains some large size features of the natural corrosion clusters, while many 

minor anomalies are lost.  By contrast, more small-sized anomalies are preserved in the 

reconstruction using level-dependent thresholds.  The reconstructions based on the sub-

band-dependent thresholds are the most visually different from the natural corrosion 

clusters among the four thresholds, as many circumferential patterns in the natural 

corrosion clusters are removed.  However, the RSTRENG-predicted burst capacities of 

these reconstructions are almost identical to those of the corresponding natural corrosion 

clusters.  It follows that although they may introduce a large visual difference, the 

discarded details have little effect on the burst capacity prediction. 

 

Figure 3.7 Reconstructed corrosion clusters based on different thresholds: (a) 

constant 18%wt; (b) level-dependent; and (c) sub-band-dependent 
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The numbers and energy proportions of wavelet coefficients in different sub-bands reveal 

the statistics of the directional features and length scales of the natural corrosion clusters.  

Figure 3.8 illustrates the numbers of preserved wavelet coefficients in each sub-band, 

which reflects the proportion of directional features of different length scales in the 

natural corrosion clusters that have a significant impact on the burst capacity prediction.  

Results from the constant (18%wt) and level-dependent thresholds show that about half 

of the preserved wavelet coefficients are HL coefficients.  In comparison, the number of 

LH coefficients (corresponding to longitudinal features) is approximately half that of HL 

coefficients, and the proportion of HH coefficients is even lower.  This suggests that the 

features in both longitudinal and diagonal directions are in general fewer than the 

circumferential features in natural corrosion clusters.  The number of HL coefficients 

preserved by the sub-band-dependent thresholds is halved compared to those preserved 

by the constant and level-dependent thresholds.  However, the accuracy of the predicted 

burst capacity is unaffected.  This further suggests the low importance of the 

circumferential features for the burst capacity prediction.  In terms of the numbers of 

preserved wavelet coefficients at decomposition levels, coefficients for the 3rd and 4th 

levels account for 50~60% of the preserved coefficients if level-dependent or sub-band-

dependent thresholds are employed.  This proportion suggests that in natural corrosion 

clusters, corrosion anomalies that have an impact on the burst capacity prediction are 

approximately 4 – 16 mm in width and 4 – 32 mm in length.  Figure 3.9 compares the 

energy proportion of preserved coefficients in each sub-band.  The energy of LL 

coefficients usually occupies the majority (68 - 76%) of the energy of preserved wavelet 

coefficients.  This is expected, since the corrosion clusters are non-negative, and for each 

directional feature, at least one LL coefficient with energy no lower than this feature’s 

energy is required to ensure that the reconstructed corrosion cluster is also non-negative.  

One may propose to preserve the LL coefficients at the 5th decomposition level only so 

that over 70% of the total energy of the corrosion cluster can be retained by about 0.1% 

of the total wavelet coefficients.  However, if only the 5th level LL coefficients are 

employed to reconstruct the corrosion cluster, the mean of pr/p0 is 105.3%.  This 
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indicates that the information included in the other sub-bands is essential for the burst 

capacity prediction. 

 

Figure 3.8 The number of preserved wavelet coefficients in each sub-band 

 

 

Figure 3.9 The energy proportion of preserved wavelet coefficients in each sub-band 

 

After employing the constant, level-dependent, and sub-band-dependent thresholds, the 

influence of the sub-bands on the burst capacity prediction can be quantified by further 

removing the corresponding wavelet coefficients.  Table 3.4 compares the errors in the 

predicted burst capacities of the reconstructions after removing all the wavelet 

coefficients from some detail sub-bands.  It can be inferred from Table 3.4 that most of 

the coefficients preserved by the optimal sub-band-dependent thresholds are important to 

the burst capacity prediction: discarding the coefficients may result in significant errors.  

Furthermore, the error in the predicted burst capacity introduced by removing the 

coefficients in the 5th decomposition level is lower than that by removing the 4th 

decomposition level.  This suggests that a higher level of decomposition of the corrosion 
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clusters may not be necessary as much of the information critical to the burst capacity 

prediction is included in the 4th and the lower decomposition levels.  Since the 

longitudinal resolution of the corrosion clusters involved in the present study is either 1 

mm or 2 mm, the 4th decomposition level represents a length scale between 16 and 32 

mm.  This suggests that it is unnecessary to decompose the natural corrosion cluster to a 

scale greater than 32 mm.  Furthermore, longitudinal and circumferential features have 

greater influence on the burst capacity prediction than diagonal features.  The results in 

Table 4 suggest that accurately identifying longitudinally orientated corrosion anomalies 

with lengths between 4 and 16 mm is crucial for accurately predicting the remaining burst 

capacity of a corroded pipeline segment. 

 

Table 3.4 Mean of (pr/p0 – 100%) after removing some sub-bands 

Threshold Optimal 
expression 

Remove decomposition  

level (%) 

Remove detail  

sub-bands (%) 

1st  2nd  3rd  4th  5th  LH HL HH 

Constant  18%wt 1.60 1.91 2.80 3.20 3.08 3.49 3.53 2.42 

Level-
dependent 1.2i(10%wt) 1.67 2.00 2.78 3.07 3.00 3.41 3.63 2.34 

Sub-band-
dependent 

Gα1.2i(8%wt), 

Gα= 4/3, 1, 2, or 
10/9 

1.60 2.22 3.05 3.38 3.37 3.96 3.39 2.76 

 

The above discussion explores the directional features and length scales essential for the 

burst capacity prediction.  The corrosion clusters employed in the present study is 

measured by a high-resolution laser-scanning device; such data may not be widely 

available in practice.  In the pipeline industry, the commonly used in-line inspection (ILI) 

for the in-service pipeline corrosion detection may have a comparable scanning 
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resolution along the longitudinal direction (e.g. ILI tools employing the ultrasonic 

technology), but the scanning resolution along the circumferential direction is limited by 

the number of sensors in the inspection tool.  The circumferential scanning spacing may 

be dozens of times longer than the longitudinal scanning spacing, resulting in 

measurements with more longitudinal patterns rather than circumferential patterns.  This 

is one of the limitations of the present study as the proposed method to estimate the 

threshold cannot be directly applied to the ILI data.  However, this limitation can be 

simply addressed by adjusting Gα and G2 based on the resolutions of the ILI data in both 

directions.  Some ILI tools, e.g. those employing the magnetic flux leakage (MFL) 

technique, indirectly measure the corrosion depth.  In this case, further studies are needed 

to investigate if the observations and insights obtained in the present study are also 

applicable to the MFL ILI data.  The empirical parameters G1 and G2 in Eq. (3.8) are 

determined by minimizing the number of the preserved wavelet coefficients under the 

constraint of limiting the expected error of the burst capacity prediction.  The thresholds 

estimated by these empirical parameters can preserve most of the wavelet coefficients 

that have an impact on the burst capacity prediction, but some minor corrosion anomalies 

are excluded in the reconstructions.  Although the influence of these small anomalies on 

the burst capacity is negligible, ignoring them may lead to errors in estimating the 

corrosion growth rate.  Finally, the measurement errors associated with the ILI data 

should also be considered if the wavelet analysis is applied to the ILI data. 

3.5 Conclusion 
High-resolution laser scan data for 106 natural corrosion clusters identified on the 

external surfaces of buried in-service natural gas transmission pipelines in Canada are 

collected.  The 2D DWT using DB2 is employed to decompose the collected natural 

corrosion clusters and reconstruct the clusters after removing some of the wavelet 

coefficients.  The RSTRENG model, which is widely used in the pipeline industry, is 

employed to evaluate the burst capacities of the pipe segment containing the natural and 

reconstructed corrosion clusters.  A thresholding methodology is proposed to retain a 

small number of wavelet coefficients essential to the burst capacity prediction. The 
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proposed method allows one to predict the burst capacity of the corrosion cluster with an 

error of no more than 1% while retaining less than 1% of the wavelet coefficients. 

The statistics of the wavelet coefficients preserved by the thresholds estimated from the 

proposed methodology provide insights into the properties of the natural corrosion cluster 

in the context of the burst capacity prediction.  Features with different directions and 

length scales have different influences on the burst capacity prediction.  In the natural 

corrosion clusters, longitudinal features are observed to have lower energy than 

circumferential and diagonal features, but have a larger impact on the burst capacity 

prediction.  The features having the largest impact on the burst capacity are 

approximately 4 – 16 mm in size.  Decomposing the corrosion cluster by more than five 

levels is unnecessary as the wavelet coefficients at the 5th and lower levels contribute 

most to the burst capacity prediction.  Further studies are recommended to investigate the 

potential application of the proposed methodology to ILI data. 
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Chapter 4  

4 Simulating Nonhomogeneous Non-Gaussian Corrosion 
Fields on Pipelines Based on In-line Inspection Data 

4.1 Introduction 
Metal-loss corrosion is one of the main threats to the structural integrity of buried oil and 

gas pipelines.  According to the report from the European Gas Pipeline Incident Data 

Group (EGIG 2020), 27% of the incidents on onshore gas transmission pipelines in 

Europe were caused by corrosion between 2010 and 2019.  The data collected by the 

Pipeline and Hazardous Materials Safety Administration (PHMSA) of the United States 

indicate that about 24% of the incidents on onshore gas transmission pipelines in the US 

were caused by external corrosion between 2002 and 2013 (Lam and Zhou 2016).  

Therefore, corrosion assessment and mitigation are essential components of the pipeline 

integrity management program. 

Corrosion is a stochastic process (Zhang and Zhou, 2014; Zhou et al., 2017; Zhou et al., 

2021), and a corrosion defect on a pipeline is a field of random metal loss.  The spatial 

modeling of corrosion on steel pipelines or steel plates on ships has been reported in the 

literature.  Garbatov and Soares (2019) proposed two models to simulate the corroded 

surface of steel bottom plates of ballast tanks in double-hull tankers.  One model 

considers that corrosion pits with uncorrelated corrosion depth are uniformly distributed 

on the steel plate.  The other employs randomly-located elliptic paraboloids with 

uncorrelated shape coefficients to characterize the corroded surface.  Aryai and 

Mahmoodian (2017) consider the corrosion depths on cast iron water pipes as 

homogeneous Gaussian random fields.  Bao and Zhou (2021) proposed a model that 

captures the spatial intermittency between corroded and corrosion-free regions to 

characterize and simulate the nonhomogeneous non-Gaussian corrosion field on the 

external surface of buried pipelines based on high-resolution data obtained from the laser 

scan device.  Hong et al. (2021a; 2021b) proposed an iterative power and amplitude 

correction (IPAC) algorithm to simulate nonstationary and non-Gaussian processes.  This 

algorithm was employed by Zhou et al. (2021) to simulate the corroded external surfaces 
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of buried steel pipelines based on the discrete orthogonal S-transform (Stockwell et al. 

1996).  However, it may be difficult in practice to collect from in-service pipelines the 

high-resolution laser scan data needed in the models proposed by Bao and Zhou (2020) 

and Zhou et al. (2021). 

In the pipeline industry, a widely used method to collect the corrosion data of an in-

service pipeline is the in-line inspection (ILI).  ILI is a non-destructive evaluation 

technique that uses a pipeline inspection gauge (PIG) to detect and size corrosion defects 

on in-service pipelines.  The commonly used technologies for ILI include magnetic flux 

leakage, ultrasonic, and electromagnetic acoustic transducers (Xie and Tian, 2018; 

Vanaei et al., 2017).  Isolated individual corrosion anomalies reported by ILI are 

characterized by three sizing parameters and two location parameters.  Anomalies 

shallower than a detection threshold, typically 5–10% of the pipe wall thickness (Siraj 

and Zhou 2019), are not reported.  ILI has the capability of detecting relatively large 

anomalies and estimating the maximum depth (dmax, in the through-wall thickness 

direction) length (l, in the pipe longitudinal direction) and width (w, in the pipe 

circumferential direction) of each anomaly.  These data greatly facilitate various tasks 

involved in the pipeline corrosion management practice such as the evaluation of the 

remaining burst capacities of a pipeline at given corrosion anomalies and estimating the 

corrosion growth over time (Al-Amin and Zhou, 2014; Zelmati et al., 2022).  The 

majority of engineering critical assessment models used in practice to evaluate the 

remaining burst capacity of corroded pipelines require the length and maximum depth of 

the corrosion anomaly as part of the model input (Zhou and Huang, 2012); such 

information of the corrosion anomaly can be readily obtained from the ILI data.  

However, the model error associated with such burst capacity models can be high 

because they do not take into account detailed three-dimensional profiles of the corrosion 

anomaly (Zhou and Huang, 2012).  While assessment models that incorporate detailed 

corrosion profiles have been shown to have a higher predictive accuracy (Zhou and 

Huang, 2012; Zhang et al., 2018), it is very difficult, if not impossible, to obtain the 

detailed corrosion profile from the ILI data directly.  This suggests that a methodology to 

generate corrosion profiles based on the ILI data will be highly beneficial to the corrosion 



87 

 

assessment practice.  However, to our best knowledge, such a methodology has not been 

reported in the literature. 

In the present study, we propose a methodology to simulate corrosion fields on the 

external surface of buried pipelines based on the corresponding ILI data.  The corrosion 

field is assumed to consist of multiple homogeneous non-Gaussian corrosion anomalies 

whose marginal distributions and spatial correlations are estimated from the ILI data.  We 

apply a non-Gaussian simulation algorithm proposed by Masters and Gurley (2003) in 

conjunction with the ILI data to generate multiple realizations of corrosion anomalies and 

then merge them into a synthetic field after modulation.  The local extreme values of the 

corrosion depth in the synthetic field match the ILI data.  The advantages of the proposed 

methodology is demonstrated by comparing probabilistic characteristics and burst 

capacities of the synthetic corrosion fields with those of the actual corrosion fields and 

fields idealized based on the ILI data.  It is worth noting that Brennan et al. (2002) 

employed a similar approach to study corrosion fields on pipelines by modelling the 

corrosion flaw (i.e. cluster) to be a non-homogeneous random field that consists of a 

series of homogenous Gaussian random fields.  The mean, variance and correlation of 

each homogeneous Gaussian field are then estimated based on the corrosion inspection 

data. 

In Section 4.2, the corrosion fields measurement obtained from the high-resolution laser 

scan are presented.  The ILI data, obtained from a virtual ILI process, corresponding to 

these corrosion fields are also presented in this section to demonstrate the disadvantages 

of estimating the burst capacity based directly on the ILI data.  In Section 4.3, we first 

describe the proposed methodology to simulate the nonhomogeneous non-Gaussian 

corrosion fields based on the ILI data.  We then introduce the procedures to develop the 

marginal distribution, autocorrelation function (ACF), and spatial modulator 

corresponding to corrosion anomalies based on the ILI data.  Section 4.4 presents 

synthetic corrosion fields generated from the proposed methodology, and compares the 

burst capacities of natural corrosion fields, ILI idealizations, and synthetic fields.  

Concluding remarks are given in Section 4.5. 
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4.2 Practical background 
A corrosion defect on a buried pipeline is a random field of metal loss.  In the following 

sections, the term “corrosion defect” refers to a corrosion field consisting of two or more 

anomalies, where the concept of corrosion anomaly is introduced in conjunction with the 

ILI data.  Figure 1 shows the three-and two-dimensional (3D and 2D) plots of a corrosion 

field (defect) on the external surface of a buried in-service natural gas pipeline in Canada 

with an outside diameter (D) of 407.7 mm and a wall thickness (wt) of 6.2 mm.  These 

plots are generated from data obtained from a laser scanning device that measures 

corrosion depths at uniformly spaced points (grid points) on the pipe surface, with a 

circumferential (arc length) spacing of 1 mm and a longitudinal spacing of 2 mm, i.e. 1 × 

2 mm.  Given the laser scan data, the so-called river-bottom profile (Kiefner & Vieth, 

1989) of the defect can be obtained, as depicted in Fig. 4.1(a) and 4.1(c).  The river-

bottom profile is commonly employed in the practical fitness-for-service (FFS) 

assessment of corrosion defects and generated by projecting the deepest points (i.e. the 

“river bottom”) within a corrosion defect onto a longitudinal plane that is perpendicular 

to the pipe wall, thus creating a two-dimensional profile of the three-dimensional 

corrosion field (Kiefner and Vieth, 1989).  Given the river-bottom profile, the RSTRENG 

model (Kiefner and Vieth, 1989), considered one of the most accurate FFS assessment 

models for corroded pipelines, is typically employed to estimate the burst capacity of the 

pipeline at the defect.  However, laser scan data for corrosion defects are not commonly 

available in practice because one can only perform the laser scan after a corroded pipe 

segment has been excavated for repair or replacement.  The FFS assessment is therefore 

most often performed based on the ILI data. 
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Figure 4.1 Corrosion depths measured by the laser scan on the external surface of 

an in-service pipeline with wt = 6.2 mm: (a) two-dimensional plot with highlighted 

river-bottom profile, (b) three-dimensional plot, and (c) river-bottom profile 

 

Consider again the corrosion defect shown in Fig. 4.1.  The pipe segment containing the 

defect has been subjected to an ILI employing the magnetic flux leakage technology; 

however, the corresponding ILI data were not provided to the present study.  To illustrate 

the FFS assessment based on the ILI data, a virtual ILI is performed in this study to 

derive the ILI data from the laser scan data.  The virtual ILI process consists of the 

following steps. 

1) A threshold depth is applied to the laser scan data such that any grid points with the 

corrosion depths less than the threshold are considered corrosion-free, i.e. the 

corresponding corrosion depths set to zero (Fig. 4.2(a)).  The grid points (highlighted 

in red) with corrosion depths greater than the threshold are identified as corrosion 

points.  The threshold is equivalent to the detection limit of the ILI tool (Siraj and 
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Zhou, 2019; Smart et al., 2018).  In this study, the threshold is set at 5%wt, consistent 

with typical practice. 

2) By applying the threshold depth (detection limit), the corrosion field is now divided 

into multiple “islands” of corrosion points, as depicted in Fig. 4.2(b); each island is 

referred to as an individual corrosion anomaly.  Two corrosion points are considered 

part of the same anomaly if they are longitudinally or circumferentially connected (i.e. 

two points are adjacent to each other longitudinally or circumferentially). 

3) Let x and y denote the longitudinal and circumferential coordinate, respectively, of a 

given point.  Each anomaly is characterized in ILI by two location parameters xc and 

yc, i.e. longitudinal and circumferential coordinates of the centre of the anomaly, and 

three sizing parameters, i.e. the length l, width w, and maximum depth dmax, as 

depicted in Fig. 4.2(b). 
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Figure 4.2 A corrosion field on the external surface of an in-service pipeline with wt 

= 6.2 mm: (a) three-dimensional plot; and (b) two-dimensional plot and the 

definition of ILI parameters for an anomaly 

 

Since ILI does not provide detailed 3D profiles of individual anomalies, each anomaly is 

typically idealized as a cuboid in ILI.  It follows that a corrosion defect consists of one or 

more cuboids in ILI.  The corrosion defect shown in Fig. 42(a) consists of 115 detected 

anomalies after the virtual ILI process.  In this study, an anomaly is ignored if either its 

length or width is less than five grid points.  Neglecting small anomalies with the length 

or width less than five grid points slightly reduces the estimated volume of metal loss, but 

the influence is negligible as such anomalies are in general shallow with dmax marginally 

greater than 5%wt.  Bao and Zhou (2021b) have shown that ignoring corrosion depths 

that are less than 10%wt has a negligible impact on the burst capacity evaluation.  For the 
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105 corrosion clusters included in the present study, the RSTRENG-predicted burst 

capacities are on average 91.4% of the actual burst capacities if all the anomalies are 

preserved and idealized as cuboids.  This ratio increases only slightly to 91.5% if the 

anomalies with the length or width less than five grid points are neglected. 

After removing small anomalies, only 24 anomalies are preserved.  These preserved 

anomalies and the corresponding river-bottom profile based on the cuboid idealization 

are illustrated in Fig. 4.3.  The cuboid idealization of individual corrosion anomalies 

leads to the conservative characterization of the corrosion defect: the total volumes of 

metal loss of the defect are estimated to be 3295.0 and 6380.2 mm3, respectively, based 

on the laser scan data and corresponding (virtual) ILI idealizations, respectively.  The 

ILI-based river-bottom profile of the defect is depicted in Fig. 4.3(c).  For comparison, 

the river-bottom profile of the defect based on the laser scan data is also shown in the 

figure.  The area enclosed by the ILI-based profile is 44.20% greater than that enclosed 

by laser scan-based profile.  If the RSTRENG model is applied to evaluate the burst 

capacity of the pipeline at the corrosion defect (assuming the yield strength (σy) of the 

pipe steel to equal 369 MPa), the evaluated burst capacities equal 11.25 and 12.03 MPa 

corresponding to the ILI-based and actual river-bottom profiles, respectively: a difference 

of 6.5%.  The above illustrates the deficiency of carrying out FFS assessment based on 

the ILI idealization of the corrosion defect.  While a difference of 6.5% does not seem 

particularly large, it is important to note that failures of corroded pipelines can have 

severe consequences and that repair of corroded pipelines is costly (it costs more than 

$200,000 in Canada to excavate and repair a single corroded pipe joint that is about 12 m 

long based on information provided by industry experts).  It follows that even a relatively 

small improvement in the accuracy of the FFS assessment could have significant 

implications for improving the pipeline safety and reducing the cost of maintenance.  A 

methodology that provides more accurate burst capacity prediction based on ILI data is 

therefore of great practical value. 
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Figure 4.3 Natural corrosion field and the corresponding ILI cuboid idealization: (a) 

the natural corrosion field, where the preserved ILI-detected anomalies are 

highlighted by the red dashed line; (b) two-dimensional plot of the ILI-idealized 

corrosion field; and (c) the river-bottom profiles of the natural corrosion field and 

its ILI cuboid idealization 

 

4.3 Simulation of corrosion fields based on ILI data 

4.3.1 General methodology 

As explained in Section 4.2, a corrosion anomaly reported by ILI is represented by two 

location parameters and three sizing parameters.  Suppose that n (n = 1, 2, …) corrosion 

anomalies are identified in a given corrosion defect in the ILI data.  The field is 

represented by 5n parameters, and they are the only information available to pipeline 

integrity engineers in addition to the basic pipeline attributes (e.g. D, wt, and σy).  The 
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methodology proposed in the present study is aimed at simulating corrosion fields based 

on these available parameters. 

The main idea behind the proposed methodology is that a corrosion defect can be 

considered as a nonhomogeneous non-Gaussian random field consisting of multiple 

anomalies.  Each anomaly is assumed to be a homogeneous non-Gaussian random field 

with the marginal probability distribution and ACF estimated based on the sizing 

parameters of the anomaly obtained from ILI.  These homogeneous non-Gaussian 

anomalies are then spatially modulated based on the location parameters of the anomalies 

obtained from ILI and merged to form the nonhomogeneous non-Gaussian field that 

characterizes the corrosion defect. 

 

4.3.2 Marginal distribution, ACF, and spatial modulator of 
corrosion anomalies 

The marginal distribution and ACF of the homogeneous non-Gaussian random field that 

characterizes the individual corrosion anomaly are evaluated based on the laser scan data 

of 105 corrosion defects on 14 naturally corroded pipe specimens removed from in-

service natural gas pipelines in Canada (Zhang et al., 2018; Bao and Zhou, 2021a).  

These corrosion defects have the maximum depths ranging from 10 and 80% of the pipe 

wall thickness.  Note that the laser scanner applied to 6 of the 14 specimens has a 

scanning resolution of 1 × 2 mm, and the laser scanner applied to the remaining 8 

specimens has a resolution of 1 × 1 mm.  A total of 3408 corrosion anomalies are then 

identified from the 105 corrosion fields through the virtual ILI process described in 

Section 2 (the actual ILI data for the 14 pipe segments are not provided to the present 

study).  The 3408 anomalies range in sizes from w × l = 5 × 6 mm to w × l = 349 × 642 

mm. 

The empirical probability distributions of the corrosion depths in 3408 anomalies are 

developed.  Ideally the empirical distribution for a given anomaly should be estimated 

using corrosion depths at well separated grid points within the anomaly such that the 

samples can be considered approximately independent.  For small anomalies that contain 
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less than 100 grid points, this will markedly reduce the number of samples available for 

evaluating the empirical distribution.  However, such anomalies are generally shallow 

with dmax less than 14%wt and therefore have a small impact on the burst capacity 

evaluation.  For the 2158 anomalies that contain more than 100 grid points, it is observed 

that the mean and standard deviation of the corrosion depth estimated using well-

separated samples (with the longitudinal separation greater than 0.3l or the 

circumferential separation greater than 0.3w) are very close to those estimated using all 

the samples.  Therefore, the marginal distribution is estimated using all the sample points 

within the anomaly in the following. 

The beta distribution with the lower and upper bounds equal to zero and maximum 

corrosion depth (dmax) of the anomaly, respectively, is found to fit the empirical 

distribution well.  As an illustration, the empirical probability density function (PDF) and 

corresponding fitted beta distributions for four anomalies with dmax/wt ranging from 20% 

to 50% are illustrated in Fig. 4.4.  The empirical PDF is estimated by the kernel density 

estimation (Li and Ng, 2010).  One hundred equally spaced points in the range of depth 

values are assigned, and the probability of corrosion depths within each interval are 

calculated.  The empirical probability values are then smoothed by a Gaussian kernel 

with details given in (Li & Ng, 2010). This method has been coded in the MATLAB 

build-in function “ksdensity”. 
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Figure 4.4 The empirical PDF and fitted beta distributions for four corrosion 

anomalies 

 

As described in Section 4.3.1, the goal of the proposed methodology is to simulate 

corrosion fields based only on the ILI data associated with the corrosion anomalies.  It 

follows that one needs to estimate the parameters of the marginal distribution (i.e. the 

fitted beta distribution) of the corrosion depths in the anomaly from the three ILI sizing 

parameters (i.e. l, w and dmax).  Let σd and d  denote the standard deviation and mean 

value, respectively, of corrosion depths in a given anomaly.  The quantity 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑙𝑙 ∙ 𝑤𝑤 ∙

𝑑̅𝑑 (mm3) quantifies the actual volume of the metal loss in the anomaly.  It is observed 

from the data corresponding to the 3408 anomalies (Fig. 4.5) that there is a moderately 

strong linear relationship between σd and dmax, and that there is a strong linear 

relationship between ln(Vreal) and ln(VILI), where 𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙 ∙ 𝑤𝑤 ∙ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (mm3) is the volume 
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of the ILI-idealized cuboid-shaped anomaly.  Therefore, the linear regression analysis is 

employed to estimate the moments of the marginal distribution from the ILI sizing 

parameters.  The following two equations are then proposed based on Fig. 4.5 

𝜎𝜎𝑑𝑑 = 0.179𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 + 0.027 (4.1) 

𝑑̅𝑑 = 1.130 (𝑙𝑙∙𝑤𝑤∙𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚)0.811

𝑙𝑙∙𝑤𝑤
 (4.2) 

where l, w, dmax, σd and 𝑑̅𝑑 are all in the unit of mm.  The coefficients of determination for 

Eqs. (4.1) and (4.2) are 0.758 and 0.977, respectively.  Once the lower bound (zero), 

upper bound (dmax), σd and 𝑑̅𝑑 are determined, the parameters of the marginal distribution 

(i.e. beta distribution) of the corrosion depths within the anomaly can be estimated by the 

method of moments (Ang and Tang, 2006). 

 

Figure 4.5 (a) Anomaly depth versus the standard deviation of actual corrosion 

depth; and (b) the cuboidal volume loss of anomalies versus the real volume loss (in 

logarithm) 

 

In addition to the marginal distribution, the ACF or equivalently the power spectral 

density (PSD) function of the corrosion anomaly needs to be evaluated.  Since the 

corrosion anomaly is characterized as a homogeneous random field in the present study, 

its PSD and ACF are connected through the Wiener-Khinchin theorem (Ponomarev, 
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2020).  The empirical ACF ρ(τx, τy) for a given set of longitudinal and circumferential 

distances (τx and τy) is calculated by evaluating the correlation coefficient between the 

corrosion depths at two sets of grid points separated by τx and τy.  In the present study, 

the empirical ACF for each of the 3408 anomalies are calculated from the laser scan data, 

and the following exponential function is used to fit the ACF: 

𝜌𝜌�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� = exp �− �𝜏𝜏𝑥𝑥
𝑙𝑙𝐿𝐿
�
𝑎𝑎𝐿𝐿
− �𝜏𝜏𝑦𝑦

𝑙𝑙𝐶𝐶
�
𝑎𝑎𝐶𝐶
� (4.3) 

where lL and lC are the longitudinal and circumferential correlation lengths (mm), 

respectively; aL and aC are the longitudinal and circumferential decaying rates, 

respectively.  For each reported anomaly, lL, lC, aL, and aC are fitted using the least 

squares method.  Equation (4.3) is justified in that the exponential-type autocorrelation 

function is widely employed in the literature (Schulz et al., 2018; Williams and 

Rasmussen, 1995).  Furthermore, the anisotropic correlation lengths and decaying rates in 

Eq. (4.3) provide flexibility for fitting the empirical ACF.  The histogram of fitted 

parameters of ACF of 3408 anomalies are shown in Fig. 4.6.  As an illustration, the 

empirically calculated and corresponding fitted ACF for three anomalies with different 

ILI sizing parameters are shown in Fig. 4.7. 
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Figure 4.6 Histogram of fitted parameters of ACF of 3408 anomalies 
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Figure 4.7 Empirical (red points) and corresponding fitted ACF for three anomalies 

with different ILI sizing parameters (l×w×dmax): (a) 66 mm×80 mm×1.055 mm; 

(b) 60 mm×49 mm×1.293 mm; and (c) 37 mm×59 mm×1.086 mm 
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Similar to the marginal distribution of the corrosion depth, the goal is to estimate lL, lC, aL, 

and aC from the three ILI sizing parameters (i.e. l, w, and dmax).  To this end, the 

correlation coefficients between the ILI sizing parameters and parameters of ACF for the 

3408 anomalies are summarized in Tables 4.1 and 4.2.  The correlation coefficients 

shown in Tables 4.1 and 4.2 suggest that one can use ln(l) and ln(w) to estimate ln(lL) and 

ln(lC), respectively.  The values of ln(lL) (ln(lC)) are plotted versus ln(l) (ln(w)) for the 

3408 anomalies in Fig. 4.8(a) (4.8(b)).  Based on Fig. 4.8, the following linear regression 

equations, represented by the red lines in the figure, are then proposed: 

ln(𝑙𝑙𝐿𝐿) = 0.630 ln(𝑙𝑙) − 0.352 (4.4) 

ln(𝑙𝑙𝐶𝐶) = 0.654 ln(𝑤𝑤) − 0.555 (4.5) 

where l, w, lL, and lC are all in mm.  Since aL and aC do not have sufficiently strong 

correlations with any of the three ILI sizing parameters, fixed values of aL and aC that 

equal corresponding mean values of the 3408 anomalies are proposed, i.e. aL = 2.25 and 

aC = 1.19.  After substituting Eqs. (4.4) and (4.5) into Eq. (4.3), the ACF employed in the 

present study is given below 

𝜌𝜌�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� = exp �− �1.421𝜏𝜏𝑥𝑥
𝑙𝑙0.630 �

2.25
− �1.741𝜏𝜏𝑦𝑦

𝑤𝑤0.654 �
1.19

� (4.6) 

where l, w, τx, and τy are all in mm. 

 

Table 4.1 The correlation coefficients of the ILI sizing parameters and the fitted 

ACF parameters 

ILI sizing parameters 

(mm) 

Parameters of ACF  

lL (mm) lC (mm) aL aC 

l 0.545 0.420 0.030 -0.024 

w 0.639 0.591 0.172 -0.092 

dmax 0.368 0.354 0.322 -0.177 
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Table 4.2 The correlation coefficients of the logarithm of the ILI sizing parameters 

and the fitted ACF parameters (l, w, dmax, lL, and lC are in mm) 

Logarithm of ILI sizing 
parameters 

Logarithm of parameters of ACF  

ln(lL) ln(lC) ln(aL) ln(aC) 

ln(l) 0.759 0.502 0.150 -0.007 

ln(w) 0.519 0.734 0.347 -0.015 

ln(dmax) 0.328 0.562 0.421 0.169 

 

 

Figure 4.8 (a) Anomaly length l versus the fitted correlation length lL (in logarithm); 

and (b) anomaly width w versus the fitted correlation length lC (in logarithm) 

 

Once the ACF and marginal distribution are estimated, they can be employed to generate 

non-Gaussian homogeneous fields corresponding to individual corrosion anomalies.  To 

this end, a spatial modulator M(x, y) is  employed to ensure that the non-zero corrosion 

depths are localized in the anomaly’s region.  The spatial modulator is essentially the 

window function that is commonly used in the signal processing to focus on a specific 

segment of the signal such as analyzing the localized frequency of a nonstationary signal 

(Sejdić et al., 2009).  A rectangular window function M(x, y), whose value is unity if (x, y) 
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is inside the anomaly and zero if (𝑥𝑥,𝑦𝑦) is outside the anomaly, can be selected as M(x, y). 

However, this leads to discontinuities at the anomaly’s edges, which is incompatible with 

real anomalies.  Moreover, the discontinuity will lead to significant stress concentrations 

if the finite element analysis is employed to evaluate the burst capacity of the synthetic 

corrosion field.  Therefore, a Gaussian tapered rectangular window function is selected in 

this study to allow a smooth transition of the corrosion depth from the inside to outside of 

a corrosion anomaly.  Such a function has been employed in signal processing studies to 

extract the local information and calculate the correlation between different portions of 

the signal (Allen et al., 2014; Yang et al., 2014). The width of the smooth transition is 

approximately three times the standard deviation of the Gaussian function, which is 

selected to be 3 mm.  This allows the transition width to be slightly shorter than the 

length of the smallest anomaly considered, which is 10 mm.   The boundaries of an 

anomaly with location parameters (xc and yc) and sizing parameters (l and w) are defined 

as: xmin = xc – l/2, xmax = xc +l/2, ymin = yc – w/2, and ymax = yc + w/2.  Based on the above, 

the spatial modulator M(x, y) for the anomaly is defined by 

𝑀𝑀(𝑥𝑥,𝑦𝑦) = exp �−�𝑇𝑇𝑥𝑥
3
�
2
− �𝑇𝑇𝑦𝑦

3
�
2
� (4.7) 

𝑇𝑇𝑥𝑥 = max{0, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥, 𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚} (4.8) 

𝑇𝑇𝑦𝑦 = max{0, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦, 𝑦𝑦 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚} (4.9) 

where Tx and Ty are in mm.  The 2D plot and the profile M(x, yc) of the spatial modulator 

for an anomaly with xc = yc = 50 mm and l = w = 20 mm are illustrated in Fig. 4.9. 
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Figure 4.9 The spatial modulator M(x, y) constructed from an ILI reported anomaly: 

(a) the boundaries and centre of the anomaly; (b) the 2D modulator M(x, y) based on 

the location and sizing parameters (xc, yc, l, and w) of this anomaly; and (c) the 

profile M(x, yc) of this modulator 

 

4.3.3 Simulation procedure 

Consider a corrosion defect consisting of n anomalies.  The following procedure is 

employed to simulate the corrosion depths within the ith (i = 1, 2, …, n) anomaly based 

on the two location parameters (xc,i and yc,i) as well as three sizing parameters (li, wi and 

dmax,i). 

(1) Estimate the mean 𝑑̅𝑑𝑖𝑖 and standard deviation σd,i of the corrosion depths from li, wi 

and dmax,i using Eqs. (4.1) and (4.2).  Define the marginal distribution of the corrosion 

depths to be a beta distribution with the above-determined 𝑑̅𝑑𝑖𝑖 and σd,i, a lower bound 

of zero and an upper bound of dmax,i. 

(2) Define the ACF using Eq. (4.6) and evaluate the corresponding PSD function using 

the Wiener-Khinchin theorem. 

(3) Based on the marginal distribution and the PSD function obtained from previous steps, 

use the algorithm proposed by Masters and Gurley (2003) to generate a homogeneous 

non-Gaussian field 𝑧𝑧𝑖𝑖
(𝐻𝐻)(𝑥𝑥, 𝑦𝑦).  The details of Masters and Gurley’s algorithm are 

summarized in Appendix B. 
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(4) Define the spatial modulator Mi(x, y) from xc,i, yc,i, li and wi using Eqs. (4.7) – (4.9).  

The nonhomogeneous non-Gaussian field 𝑧𝑧𝑖𝑖
(𝐵𝐵)(𝑥𝑥,𝑦𝑦) = 𝑧𝑧𝑖𝑖

(𝐻𝐻)(𝑥𝑥, 𝑦𝑦) ∙ 𝑀𝑀𝑖𝑖(𝑥𝑥,𝑦𝑦)  is 

obtained from 𝑧𝑧𝑖𝑖
(𝐻𝐻)(𝑥𝑥,𝑦𝑦) modulated by Mi(x, y).  The corrosion depth on any grid 

point in 𝑧𝑧𝑖𝑖
(𝐵𝐵)(𝑥𝑥, 𝑦𝑦) is set to zero if it is less than 0.001 mm. 

(5) Estimate the empirical cumulative distribution function 𝐹𝐹𝑍𝑍𝑖𝑖(𝐵𝐵)(𝑧𝑧)   of the non-zero 

value of 𝑧𝑧𝑖𝑖
(𝐵𝐵)(𝑥𝑥, 𝑦𝑦) .  Let 𝐹𝐹𝑍𝑍𝑖𝑖(𝑧𝑧)  denote the target marginal distribution for this 

anomaly.  The non-zero value of 𝑧𝑧𝑖𝑖
(𝐵𝐵)(𝑥𝑥,𝑦𝑦)  is then replaced by 

𝐹𝐹𝑍𝑍𝑖𝑖
−1 � 𝐹𝐹𝑍𝑍𝑖𝑖(𝐵𝐵) �𝑧𝑧𝑖𝑖

(𝐵𝐵)(𝑥𝑥,𝑦𝑦)��, where 𝐹𝐹𝑍𝑍𝑖𝑖
−1 (•) denote the inverse of 𝐹𝐹𝑍𝑍𝑖𝑖 (•).  Define the 

random field after matching the marginal distribution as a spatially modulated field 

𝑧𝑧𝑖𝑖(𝑥𝑥,𝑦𝑦). 

Although Masters and Gurley's algorithm ensures that the marginal distribution of the 

homogeneous field 𝑧𝑧𝑖𝑖
(𝐻𝐻)(𝑥𝑥,𝑦𝑦) matches the target distribution obtained in Step (1), the 

marginal distribution of non-zero corrosion depth of 𝑧𝑧𝑖𝑖
(𝐵𝐵)(𝑥𝑥, 𝑦𝑦) may deviate from the 

target distribution after Step (4), especially for small anomalies that do not have many 

grid points.  Therefore, Step (5) is introduced to ensure that the spatially modulated field 

𝑧𝑧𝑖𝑖(𝑥𝑥,𝑦𝑦) has non-zero corrosion depths consistent with the target marginal distribution.  

The entire corrosion field is then obtained by 𝑧𝑧(𝐵𝐵)(𝑥𝑥, 𝑦𝑦) =

max{𝑧𝑧1(𝑥𝑥, 𝑦𝑦), 𝑧𝑧2(𝑥𝑥,𝑦𝑦), … , 𝑧𝑧𝑛𝑛(𝑥𝑥,𝑦𝑦)}.  That is, the corrosion depth at a given grid point of 

the synthetic corrosion field 𝑧𝑧𝑖𝑖
(𝐵𝐵)(𝑥𝑥,𝑦𝑦) is the maximum value of the n spatially modulated 

fields 𝑧𝑧𝑖𝑖(𝑥𝑥, 𝑦𝑦) (i = 1, 2, …, n) at this point.  The procedure of simulating the corrosion 

field 𝑧𝑧(𝐵𝐵)(𝑥𝑥, 𝑦𝑦) based on ILI parameters is illustrated in Fig. 4.10 for a field consisting of 

three anomalies. 
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Figure 4.10 Procedures of simulating corrosion fields based on ILI parameters 
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4.3.4 Burst capacities of pipe segments containing corrosion field 

To illustrate the practical value of the simulation methodology described in Section 4.3.3, 

the burst capacity of the synthetic corrosion field based on the ILI information is 

evaluated and compared with those of the actual and ILI-idealized cuboid-shaped 

corrosion fields.  The burst capacities of the 105 natural corrosion defects described in 

Section 4.3.2 and the corresponding synthetic fields are computed using the well-known 

RSTRENG model (Kiefner and Vieth, 1989).  The RSTRENG model is a semi-empirical 

model for predicting the burst capacities considering the corrosion morphology.  The 

model evaluates the burst capacity pb at a corrosion defect as follows: 

𝑝𝑝𝑏𝑏 = 2∙𝑤𝑤𝑤𝑤∙𝜎𝜎𝑓𝑓
𝐷𝐷

1− 𝐴𝐴𝑒𝑒
𝑙𝑙𝑒𝑒∙𝑤𝑤𝑤𝑤

1− 𝐴𝐴𝑒𝑒
𝑀𝑀𝑒𝑒∙𝑙𝑙𝑒𝑒∙𝑤𝑤𝑤𝑤

 (4.10) 

𝑀𝑀𝑒𝑒 = �
�1 + 0.6275 𝑙𝑙𝑒𝑒2

𝐷𝐷∙𝑤𝑤𝑤𝑤
− 0.003375 � 𝑙𝑙𝑒𝑒2

𝐷𝐷∙𝑤𝑤𝑤𝑤
�
2

, 𝑙𝑙𝑒𝑒2

𝐷𝐷∙𝑤𝑤𝑤𝑤
≤ 50

3.3 + 0.032 𝑙𝑙𝑒𝑒2

𝐷𝐷∙𝑤𝑤𝑤𝑤
, 𝑙𝑙𝑒𝑒2

𝐷𝐷∙𝑤𝑤𝑤𝑤
> 50

 (4.11) 

where σf is the flow stress of the pipe steel and defined as σy + 69 (MPa); Ae and le are the 

effective area and length, respectively, of the river bottom profile of the 3D corrosion 

field, and Me is the so-called Folias factor corresponding to the effective length of the 

corrosion field.  The procedure to determine Ae and le is not presented for the sake of 

brevity as it has been well described in many references (e.g. Kiefner and Vieth, 1989; 

Zhang et al., 2018).  As the 105 corrosion defects are identified on 14 different pipe 

segments (Zhang et al., 2018), the values of D, wt and σy employed in RSTRENG for a 

given defect are those of the pipe segment that contains the defect as reported in Zhang et 

al. (2018). 

The three-dimensional (3D) elasto-plastic finite element analysis (FEA) has proven to be 

highly accurate in evaluating the burst capacity of corroded pipelines (Bao et al., 2018; 

Zhang and Zhou, 2020).  To provide a benchmark for the burst capacity evaluation and 

validate the accuracy of the RSTRENG model, the 3D FEA is also employed to evaluate 
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the burst capacities of the pipeline segment (D = 407.7 mm and wt = 6.2 mm) containing 

one of the 105 natural corrosion fields, the corresponding ILI idealization, and synthetic 

fields.  The edges of anomalies in ILI idealizations are smoothed by a Gaussian function 

with a standard deviation of 3 mm to avoid severe stress concentrations in FEA.  The 

finite element model is developed and implemented using the commercial package 

ABAQUS 2018.  The elastic modulus E = 167 GPa, σy = 369 MPa and the tensile 

strength σu = 540 MPa are obtained from the coupon test results.  The von Mises yield 

criterion, isotropic strain hardening and finite-strain formulation for the large deformation 

near burst are adopted in the model.  The following true stress - true strain (i.e., σ - ε) 

relationship is adopted in FEA: 

𝜎𝜎 = �
𝐸𝐸𝐸𝐸, 𝜎𝜎 < 𝜎𝜎𝑦𝑦

𝐾𝐾𝜀𝜀𝑛𝑛ℎ , 𝜎𝜎 ≥ 𝜎𝜎𝑦𝑦
 (4.12) 

where 𝐾𝐾 = 𝜎𝜎𝑢𝑢𝑒𝑒𝑛𝑛ℎ
(𝑛𝑛ℎ)𝑛𝑛ℎ  is the strength coefficient, and nh is the strain hardening exponent.  

The value of nh is estimated using (Zhu & Leis, 2005): 

𝑛𝑛ℎ = 0.244 �𝜎𝜎𝑢𝑢
𝜎𝜎𝑦𝑦
− 1�

0.604
 (4.13) 

The eight-node hexahedral (C3D8) element with full integration is used in this study.  

The pipeline segment is extended by three times of outside diameter corrosion-free at 

both ends to avoid the end effect.  The mesh resolution at corroded area is identical to the 

resolution of the corrosion field.  Coarse meshes are employed at the transition area and 

corrosion-free area outside the corrosion field.  Four layers of elements are used along the 

pipe wall thickness direction.  An example of an FEA model used in this study is 

illustrated in Fig. 4.11.  The mesh resolution at the corroded area is 2 mm in the 

longitudinal direction and 1 mm in the circumferential direction.  The mesh resolution at 

the transition area is 4 × 2 mm, while it is 8 ×4 mm in the corrosion-free area.  The total 

number of nodes and elements are 183,120 and 146,208, respectively.  One end of the 

pipe segment is considered as a fixed support, and longitudinal displacement is 

constrained at the other end.  The burst capacity is defined as the internal pressure at 

which the maximum nodal von Mises stress within the corrosion field reaches the true 
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stress corresponding to the ultimate tensile strength (Zhang and Zhou, 2020).  The 

simulation of corrosion fields and FEA are carried out on a desktop with Intel(R) 

Core(TM) i7-8700 CPU @3.20 GHz and 16 GB RAM 

 

Figure 4.11 FEA model of the corroded pipe segment 

 

4.4 Results and discussion 
The computation time to generate a sample of the synthetic corrosion field depends on 

the size of the field and the number of anomalies in the field, and it usually takes less 

than ten seconds for one realization.  The time to simulate the corrosion fields based on 

the (virtual) ILI information of the natural corrosion field shown in Fig. 1 is 0.28 second 

per realization.  Figure 4.12 compares the natural corrosion field, ILI idealization, and 

two synthetic fields. 
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Figure 4.12 Two-dimensional plot of corrosion fields:(a) natural corrosion field; (b) 

ILI idealization; and (c) two synthetic fields 

 

As shown in Fig. 4.13, the synthetic fields match the reported ILI data: grid points in the 

corrosion-free area (i.e. not reported by ILI) have corrosion depths below 5%wt, and the 

corrosion depth of each grid point does not exceed the corresponding ILI idealization.  

The ILI idealization can be considered as the envelope of synthetic fields.  Since the 

textural information of the corrosion fields is not included in the ILI parameters, the 

generated synthetic fields are not visually similar to the natural corrosion field.  If the 

detailed profile (such as the laser scan data) of the entire corrosion cluster is available, 

one can generate the synthetic samples of the cluster that are visually similar to the actual 

cluster, as demonstrated in previous studies by Bao and Zhou (2021) and Zhou et al. 

(2021).  However, detailed corrosion profiles are usually unavailable in practice.  We 

assume in the present study that the only known information about an individual 
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corrosion anomaly is its length, width and maximum depth, and two location parameters, 

as reported by ILI.  The profile of the synthetic corrosion anomaly is generated based on 

such information.  Therefore, it is not unexpected that the synthetic corrosion clusters are 

visually different from the corresponding actual cluster. 

 

Figure 4.13 Empirical PDF of the burst capacity of pipe segment containing the 

synthetic fields, natural fields, and ILI idealization: (a) predicted by the RSTRENG 

model; and (b) predicted by FEA 

 

Let p0, pILI, and ps denotes the burst capacities corresponding to the natural corrosion 

field, ILI idealization, and synthetic field, respectively.  The values of p0 and pILI, and 

PDF of the ps of 100 realizations of the synthetic field corresponding to the natural 

corrosion field shown in Fig. 4.1 are compared in Fig. 4.13.  Note that both the 

RSTRENG model and FEA are employed to predict p0, pILI and ps.  The figure indicates 

that for this particular corrosion field, the RSTRENG-predicted burst capacities for the 

synthetic fields are 1.6% - 2.9% lower compared with p0.  The burst capacities of the 

synthetic fields are closer to p0 than pILI regardless if the RSTRENG model or FEA is 

employed: the mean of RSTRENG (FEA)-predicted ps is 2.4% lower than p0, whereas the 

RSTRENG (FEA)-predicted pILI is 6.5% lower than p0.  Furthermore, the variability of ps 

is generally small: the coefficients of variation (COV) of RSTRENG- and FEA-predicted 

ps are 0.3% and 1.0%, respectively. 
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The RSTRENG-predicted burst capacities of 105 natural corrosion fields, as well as the 

corresponding ILI idealizations and synthetic fields are compared in Fig. 4.14.  For each 

corrosion field, 100 synthetic fields are generated.  The error bar in Fig. 4.14 corresponds 

to the lower and upper bounds of burst capacities of the 100 realizations.  Since the ILI 

idealizations typically overestimate the volume loss of the pipe wall due to corrosion, pILI 

are conservative compared with p0 for most of the 105 corrosion fields.  Only two 

corrosion fields have pILI slightly higher than the corresponding p0.  The corrosion depth 

of most grid points in these two natural corrosion fields are around 5%wt.  Since ILI does 

not record the corrosion depth below 5%wt, the effective area of the river-bottom profile 

of the ILI idealization is slightly smaller than that of the natural corrosion field, resulting 

in the non-conservative prediction of the burst capacity.  Let 𝑝𝑝𝑠𝑠�  denote the mean of ps for 

a specific natural corrosion field.  The mean value of pILI/p0 of the 105 corrosion fields is 

91.5%, while it is 97.4% for 𝑝𝑝𝑠𝑠� / p0.  This demonstrates the effectiveness of the proposed 

methodology for simulating synthetic fields. 
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Figure 4.14 RSTRENG-predicted burst capacity of pipe segment containing the 

synthetic corrosion fields, natural corrosion fields, and ILI idealizations 

 

Although the synthetic and natural fields are visually different, the statistics of the 

corrosion depths in both fields are similar.  This is critical for the burst capacity 

prediction.  We observe that the marginal distribution of the corrosion depth has a larger 

effect on the burst capacity than the spatial correlation of the corrosion depth, while the 

visual similarity between the synthetic and actual corrosion fields depends largely on the 

spatial correlation.  Since the marginal distribution of corrosion depths is effectively 

captured through the empirical models (i.e. Eqs. (4.1) and (4.2)) proposed in this study, 

the burst capacity of the synthetic field is similar to that of the actual corrosion field. 

It is worth noting that pILI is highly conservative compared with p0 for a few corrosion 

fields.  For example, one of such fields is depicted in Fig. 4.15.  The corrosion pits are 
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densely distributed in this field.  Since the grid points between corrosion pits have a 

corrosion depth slightly deeper than 5%wt, these pits are grouped and identified as a few 

large anomalies, resulting an extremely conservative prediction of the burst capacity 

based on the ILI idealization.  Although the predictions based on the synthetic fields are 

also conservative, they are much more accurate than the ILI idealization: pILI/p0 = 50.9%, 

whereas 𝑝𝑝𝑠𝑠� /p0 is 82.5%. 

 

Figure 4.15 Two-dimensional plot of corrosion fields:(a) natural corrosion field; (b) 

ILI idealization; and (c) synthetic field 
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In Section 4.3.2, fixed values of aL and aC are suggested, which equal the respective mean 

values obtained from the fitted values of the ACFs of 3408 anomalies, because the 

correlation coefficients between these two parameters and the ILI sizing parameters are 

low.  However, the histograms in Fig. 4.6 indicate that the fitted aL values range mostly 

between 0 and 6, and aC values range mostly between 0 and 2.5.  If different values of aL 

and aC are employed in Eq. (4.6), the burst capacity corresponding to the synthetic fields 

may change.  Table 4.3 summarizes the mean ratio  𝑝𝑝𝑠𝑠� /p0 under different values of aL and 

aC.  Each of the mean ratio is calculated from 3150 synthetic fields (i.e. 30 realizations of 

the synthetic field for each of the 105 natural corrosion fields) using the RSTRENG 

model.  As the values of aL and aC vary, the mean ratio varies between 0.968 and 0.985.  

If both aL and aC are greater than one, the mean ratio is almost invariant.  The 

insensitivity of the mean ratio to aL and aC suggests that the use of fixed values of aL and 

aC does not have a significant influence on the prediction of the burst capacity of the 

synthetic field. 

 

Table 4.3 The mean ratio 𝒑𝒑𝒔𝒔���/p0 for 3150 synthetic fields under different values of aL 

and aC 

aC aL 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

0.5 0.978 0.983 0.984 0.984 0.985 0.985 0.985 0.985 0.985 0.985 0.985 

1.0 0.969 0.974 0.974 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 

1.5 0.968 0.972 0.973 0.973 0.973 0.973 0.973 0.973 0.974 0.974 0.974 

2.0 0.968 0.972 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 

2.5 0.968 0.972 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 

 

Since we do not have the actual ILI data, the ILI parameters are obtained by performing a 

virtual ILI process on the laser scan data without considering the measurement 
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uncertainties associated with ILI in practice.  Therefore, the ILI parameters used in the 

present study are noise free.  This is a limitation of the proposed method as ILI data in 

practice inevitably contain measurement errors.  Further studies are therefore needed to 

investigate to what extent the measurement error in ILI influences the accuracy of the 

burst capacity predicted using the proposed method.  It will be also interesting to 

compare the degrees to which the measurement error affects the accuracy of the 

assessments based on the simple cuboid idealization of the corrosion cluster and proposed 

method.  Another limitation of the proposed method is that although the empirical 

equations proposed in this study (i.e. Eqs. (4.1) – (4.6)) quantify the general trend in the 

data, they may not adequately capture the characteristics of corrosion clusters with 

complex morphologies.  Therefore, more detailed profiles of corrosion clusters and real 

ILI data corresponding to the clusters need to be collected in the future to address these 

limitations. 

4.5 Conclusion 
We propose a methodology to simulate corrosion fields on the external surface of buried 

pipelines based on the ILI data.  The methodology treats natural corrosion fields as 

nonhomogeneous non-Gaussian random fields and individual anomalies within the 

corrosion field as homogeneous non-Gaussian random fields.  High-resolution laser scan 

data for 3408 anomalies within 105 natural corrosion fields identified on buried natural 

gas transmission pipelines in Canada are used to evaluate the marginal probability 

distributions and autocorrelation functions of corrosion depths within the anomalies.  A 

virtual ILI process is also employed to generate the ILI data corresponding to the 

anomalies.  Empirical equations are then developed to predict the parameters of the 

marginal distribution and autocorrelation function of the corrosion depths from the ILI-

reported corrosion depth, length and width for a given anomaly. 

To simulate the corrosion field given ILI data, the Masters and Gurley’s algorithm is 

employed to generate realizations of homogeneous non-Gaussian fields representing 

corrosion anomalies.  A Gaussian spatial modulating function is then applied to the 

simulated corrosion anomalies such that each anomaly is localized at the corresponding 

position reported by ILI.  Finally, all the simulated anomalies within the corrosion field 
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are combined to generate the synthetic corrosion field.  The effectiveness of the proposed 

methodology is demonstrated by comparing the burst capacities of the pipeline 

corresponding to the actual corrosion field, synthetic corrosion field and ILI-idealized 

field.  The RSTRENG model, which is widely used in the pipeline industry, and 

elastoplastic FEA are employed to evaluate the burst capacity. 

Compared with the commonly used ILI idealization with cuboidal anomalies, the burst 

capacities of synthetic fields generated using the proposed methodology are less 

conservative. For the 105 natural corrosion fields considered in the present study, the 

burst capacity of the synthetic field is on average 97.4% of that of the actual corrosion 

field, whereas the burst capacity of the ILI-idealized field is on average 91.5% of that of 

the actual field.  For corrosion fields with densely distributed corrosion pits, the burst 

capacity predicted based on the ILI idealization can be substantially lower than the actual 

burst capacity; such an issue is largely resolved by using the synthetic field to predict the 

burst capacity.  The proposed methodology provides a practical tool for practitioners to 

more effectively utilize the ILI data to improve the pipeline corrosion management 

practice. 
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Chapter 5  

5 Application of Wavelet Transforms to the Simulation of 
Corrosion Fields on Buried Pipelines 

5.1 Introduction 
Onshore and offshore pipelines are safe and effective means to transport large quantities 

of hydrocarbons and are vital to the economic well-being and security of modern society.  

Historical incident data reveal that metal-loss corrosion is one of the most significant 

threats to the structural integrity of pipelines.  Twenty-seven percent of the incidents on 

onshore gas transmission pipelines in Europe were caused by corrosion between 2010 

and 2019 (EGIG 2020).  According to the data collected by the Pipeline and Hazardous 

Materials Safety Administration (PHMSA) of the United States, about 24% of the 

incidents on onshore gas transmission pipelines in the US were caused by external 

corrosion between 2002 and 2013 (Lam and Zhou 2016).  Therefore, corrosion 

assessment and mitigation are essential components of the pipeline integrity management 

program. 

Corrosion causes localized pipe wall thickness loss and thus reduces the burst capacity of 

the pipeline.  Simple-to-use semi-empirical models, such as the well-known ASME 

B31G (ASME 1991) and RSTRENG models (Kiefner and Vieth 1989), are widely 

employed in the pipeline industry to evaluate the burst capacity of corroded pipelines.  

The development and validation of such models are based on the full-scale burst tests of 

corroded pipe specimens, which are costly and time-consuming to carry out.  Many 

studies have demonstrated the high accuracy of elasto-plastic finite element analysis 

(FEA) to evaluate the burst capacity of pipe specimens containing artificially induced or 

naturally occurring corrosion defects (Abdalla et al. 2014; Bao et al. 2018; Cronin 2000; 

Mok et al. 1991; Zhang and Zhou 2020).  It follows that FEA can be employed to carry 

out full-scale burst tests of corroded pipe specimens numerically, resulting in significant 

cost savings and improved efficiency.  In this regard, it is desirable to simulate synthetic 

corrosion defects to be incorporated into FEA that capture the inherent probabilistic 
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properties of naturally-occurring corrosion features observed from the corroded pipe 

surfaces. 

Probabilistic models for corrosion fields have been reported in the literature.  Aryai and 

Mahmoodian (2017) modeled the corrosion depths on cast iron water pipes as 

homogeneous Gaussian random fields.  Garbatov and Soares (2019) characterized the 

corroded surface of steel bottom plates of ballast tanks in double-hull tankers as 

homogeneous lognormal random fields.  Zhou et al. (2021) considered the corroded 

external surfaces of buried steel pipelines as nonhomogeneous non-Gaussian fields and 

employed the discrete orthogonal S-transform (DOST) (Stockwell et al. 1996) to 

characterize and simulate the corrosion field.  Bao and Zhou (2021) considered the 

intermingling between corroded and corrosion-free areas on the external surface of buried 

pipelines and used a latent Gaussian field to characterize and simulate the corrosion field.  

Laser scan data of naturally corroded external surfaces of buried pipelines (Bao and Zhou 

2021) indicate that the corresponding corrosion field is nonhomogeneous.  This combined 

with the non-negative nature of the corrosion depth suggests that the corrosion field on 

buried pipelines is a nonhomogeneous non-Gaussian field. 

The wavelet transform is a suitable tool to analyze signals and has been widely used in 

the civil engineering field.  Casavola et al. (2018) detected the corrosion area on bronze 

plates by performing a one-dimensional (1D) continuous wavelet transform (CWT) of the 

scan data using the Morlet wavelet and thresholding the fringe intensity calculated from 

the resulting wavelet coefficients.  Ferreira et al. (2021) employed the discrete wavelet 

transform (DWT) to analyze corrosion fields on buried pipelines and incorporate the 

coefficients from DWT into a deep neural network to predict the burst capacity of 

corroded pipelines.  Song et al. (2002) and Xu et al. (2009) performed two-dimensional 

(2D) DWT of scans of corroded metal plates to classify and predict corrosion by 

calculating the energy and entropy of different components.  Roux et al. (2013) proposed 

a framework to study images (or fields) and estimate self-similarity with rotation and 

anisotropy parameters based on the hyperbolic wavelet transform (HWT).  After 

screening for the useful information from the magnetic flux leakage signals obtained 

from the in-line inspection of in-service pipelines, Kathirmani et al. (2012) performed 
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DWT using the Daubechies wavelets for data compression.  Based on the spectra 

information of the ultrasonic signal obtained from the in-line inspection of pipelines, 

Song and Que (2006) used the Gaussian wavelet to construct a bank of band-pass filters 

to suppress the noise in the collected ultrasonic data.  Combining features extracted from 

the statistical techniques and the wavelet transform, Zadkarami et al. (2016) developed a 

multi-layer perceptron neural network classifier to detect pipeline leakages.  Saadatmorad 

et al. (2022) performed the 1D DWT on the quasi-Pearson-based correlation signal 

between the mode shapes of intact and damaged steel beams to improve the accuracy and 

robustness of damage detection. 

The wavelet transforms have also been used to simulate random processes and fields.  A 

practical approach for simulation is the inverse DWT using modified or generated 

wavelet coefficients.  Gurley and Kareem (1999) suggested multiplying coefficients from 

the DWT of nonstationary records by a Gaussian white noise of unit variance to generate 

signals with time-frequency characteristics similar to those of the parent signals.  Otsuka 

et al. (2018; 2020) applied 2D DWT based on several real-valued wavelet families to the 

scan records of surfaces machined by the turning or milling process and generated 2D 

records by replacing nonessential wavelet coefficients with random numbers.  Based on 

the orthonormality of wavelet functions, some researchers (Dijkerman and Mazumdar 

1994; Nychka et al. 2002; Spanos and Rao 2001; Zeldin and Spanos 1996) defined the 

expectation and covariance of wavelet coefficients and generated wavelet coefficients for 

realizations of nonhomogeneous processes.  Chavez and Cazelles (2019) performed CWT 

using the complex Morlet wavelet to evaluate the time-frequency spectrum, also known 

as the scalogram, in the wavelet transform of nonstationary series and randomized the 

phases of wavelet coefficients to simulate surrogates aimed at hypothesis testing.  Hong 

et al. (2021a) proposed an iterative power and amplitude correction (IPAC) algorithm to 

simulate nonstationary non-Gaussian stochastic processes.  The IPAC algorithm 

incorporates the amplitude or spectrum obtained from a suitable time-frequency or time-

scale transform and has been extended to multi-dimensional fields (Zhou et al. 2021; 

Hong et al. 2021b).  However, the use of the IPAC algorithm with highly redundant 

transforms such as CWT and S-transform can be computationally intensive for multi-

dimensional fields. 
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While DWT is computationally more efficient than CWT, real-valued critically sampled 

DWT has some drawbacks such as the shift variance (i.e. a small shift in the signal 

markedly perturbs the wavelet coefficients around singularities) and susceptibility to 

aliasing (Kingsbury 2001; Selesnick et al. 2005).  To overcome the drawbacks of real-

valued critically sampled DWT and without introducing too much redundancy, 

Kingsbury (2021) (see also Selesnick et al. (2005)) proposed the dual-tree complex 

discrete wavelet transform (DT-CDWT).  DT-CDWT employs separable filter banks that 

are designed to result in the transform with near shift-invariance, perfect reconstruction, 

and reduced aliasing, while maintaining a relatively low degree of redundancy (the 

redundancy is four for two-dimensional decomposition as explained in Section 2.2.2) and 

thus high computational efficiency.  In addition to DWT, these DT-CDWT filters could 

also be extended and used in other transform schemes, such as wavelet packet transform 

(Bayram and Selesnick 2008) and HWT (Roux et al. 2013; DeVore et al. 1998; Oulhaj et 

al. 2017).  A few developments (Selesnick 2001; Selesnick 2004) closely related to DT-

CDWT are also noteworthy.  Motivated by the undecimated DWT, Selesnick proposed 

the double-density DWT (2001) to reduce the shift sensitivity.  The double-density DWT 

uses one scaling function and two distinct wavelet functions to approximate the CWT and 

is nearly shift invariant.  Selesnick (2004) further proposed the so-called double-density 

dual-tree CDWT by combining the double-density DWT with DT-CDWT.  Such a 

transform has been shown to lead to excellent performance in imaging processing 

(Chitchian et al. 2012; Adam et al. 2018), although at a markedly higher computational 

cost than that of DT-CDWT (the redundancy of the former is four times that of the latter). 

To our best knowledge, the use of redundant transforms such as the CWT and DT-

CDWT to simulate 2D nonhomogeneous non-Gaussian random fields has not been 

reported in the literature. 

In the present study, we propose a framework to analyze and simulate nonhomogeneous 

non-Gaussian corrosion fields on the external surface of buried in-service pipelines by 

using the discrete and continuous complex wavelet transforms.  More specifically, we 

employ three transforms, namely CWT with the complex Morlet wavelets, DT-CDWT, 

and the decomposition scheme that is consistent with HWT but using the same filter as 

that used in DT-CDWT (denoted as DT-CHWT for simplicity), to analyze high-
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resolution corrosion measurements obtained from the external surface of buried in-

service pipelines.  By treating the corrosion depth on the pipe surface as a 2D 

nonhomogeneous non-Gaussian random field, we apply the IPAC algorithm in 

conjunction with CWT, DT-CDWT, and DT-CHWT to generate realizations of the 

corrosion field.  The probabilistic characteristics of the simulated corrosion fields are 

compared with those of measured fields to investigate the suitability of wavelet-based 

IPAC techniques for simulating corrosion on pipelines.  While the present study and 

Zhou et al.’s study (2021) both employ the IPAC algorithm to simulate corrosion fields 

on buried pipelines, there are key differences between these two studies.  The DOST in 

conjunction with IPAC is adopted in Zhou et al.’s study (2021).  The DOST is a non-

redundant transform and computationally efficient; however, its resolution of the space-

wavenumber characteristics of the corrosion field is lower than that of the redundant 

transforms.  Therefore, certain features of the natural corrosion field might not be 

captured in the synthetic fields generated based on the DOST.  The present study 

employs CWT and DT-CDWT, both being redundant transforms, to better capture the 

characteristics of the corrosion field.  In particular, we focus on DT-CDWT (and DT-

CHWT) as it is a moderately redundant transform and is designed to capture directional 

features in two and higher dimensions without a heavy computational burden.  While the 

double-density DT-CDWT is also a viable transform for the purpose of the present study, 

it will be considered in the future. 

In Section 5.2, an example of corrosion field measurement that is used to aid the 

exposition of the framework is described. The fundamentals of CWT, DT-CDWT, and 

DT-CHWT, as well as methodologies to incorporate them into IPAC to simulate 

corrosion fields, are also presented in Section 5.2.  Section 5.3 presents corrosion fields 

generated from the wavelet-based IPAC algorithm, and analyses of the probabilistic 

characteristics of the simulated fields in comparison with those of the measured field.  

The performances of IPAC algorithms based on CWT, DT-CDWT, and DT-CHWT are 

further assessed in terms of the errors in iterations and computational cost in Section 5.3.  

Concluding remarks are presented in Section 5.4. 
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5.2 Data and methodology 

5.2.1 Scanned corrosion fields 

Figure 5.1 depicts the laser-scanned corrosion field with a length (in the pipe longitudinal 

direction) of 512 mm and a width (in the pipe circumferential direction) of 256 mm on 

the external surface of a naturally corroded in-service buried pipeline in Canada with an 

outside diameter (D) of 763.4 mm and a wall thickness (wt) of 8.5 mm.  The 

measurement is performed on-site using the HandyScan 3D laser scanner after the 

corroded pipe segment has been excavated, de-coated, and cleaned.  The laser scanner 

measures the corrosion depth on the pipe surface with a resolution of 1 mm in both the 

longitudinal and circumferential directions, i.e. a grid of 1 × 1 mm on the pipe surface.  

The corrosion depth (z) in the unit of mm at a given grid point represents the loss of the 

pipe wall thickness at this point.  Following Bao and Zhou (2021) and Zhou et al. (2021), 

by considering the measurement error of the laser scan device and the negligible effect of 

shallow corrosion depths on the pipe burst capacity (Bao and Zhou 2021), grid points 

with corrosion depths below a threshold depth of 5%wt are assumed to be corrosion free 

(i.e. corrosion depths set to zero at such points).  The empirical cumulative distribution 

function (CDF) of the corrosion depths and the empirical probability density function 

(PDF) of the non-zero corrosion depths are shown in Fig. 5.2.  Only 23.3% of the grid 

points in the scanned area have corrosion depths greater than 5%wt; therefore, the area of 

PDF shown in Fig. 5.2b is 0.233.  Figures 5.1 and 5.2 illustrate the nonhomogeneous 

non-Gaussian characteristics of the corrosion field 
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Figure 5.1 Corrosion depths measured by the laser scan on the external surface of 

an in-service pipeline: (a) two-dimensional plot, and (b) three-dimensional plot 

 

Figure 5.2 Marginal distribution of corrosion depths on the external surface of a 

naturally corroded buried pipe segment: (a) empirical CDF; and (b) empirical PDF 

of non-zero corrosion depths 

 

5.2.2 Wavelet analysis 

5.2.2.1 Continuous and discrete wavelet transforms for signals in 
2D 

Let z(x, y) denote a real-valued 2D function indexed on x and y.  The coefficient of CWT 

of z(x, y), zw(sx, τx; sy, τy), is given by (Daubechies 1992): 



129 

 

( ) *1, ; , ( , ) ,
| |

y
x y y

x y

x
w x

x y

yxz s s z x y dxdy
s ss s

τττ τ ψ
∞ ∞

−∞ −∞

 −−
=   

 
∫ ∫  (5.1) 

where sx and sy are the scaling factors along the x and y directions, respectively; τx and τy 

are the translations along the x and y directions, respectively; ψ(x, y) is the so-called 

mother wavelet function, and * denotes the complex conjugate.  If ψ(x, y) satisfies the 

admissibility condition, the function z(x, y) can be reconstructed from zw(sx, τx; sy, τy) by 

the inverse CWT. 

Many different mother wavelet functions, which can be real- or complex-valued, are 

available for CWT (Kankar et al. 2011).  The Morlet wavelet has been extensively used 

in feature extraction, textual analysis, pattern recognition, anomaly detection, and 

location (Lin and Qu 2000; El Hassani et al. 2012; Lin and Lu 2010; Huang and Hsieh 

1999).  The complex Morlet wavelet function is selected in the present study for its 

robustness, sensitivity to directional features of the 2D signal, and computational 

efficiency achieved by incorporating the fast Fourier transform in coding (Chopra and 

Marfurt 2015; Antoine et al. 1996; Cohen 2019).  Specifically, the 2D complex Morlet 

function with the central wavenumber 3/π and smallest scale smin = 2.6 is employed.  

Details of the 2D complex Morlet function are given in (Lilly and Olhede 2009; Lee 1996; 

Farge 1992; Torrence and Compo 1998). 

It follows from Eq. (5.1) that the coefficient of the (2D) CWT is defined by four variables: 

two translations (τx, τy) and two scales (sx, sy).  In CWT, all these variables are continuous, 

and the quantity 2
( , ; , )yw x yxz s sτ τ  is related to the energy density of the field z(x, y) at the 

wavenumber (f0/sx, f0/sy) and translation (τx, τy) (Mallat 1989).  Although CWT has an 

excellent resolution for data analysis, its computational cost could be very high especially 

if the repeated use of CWT and inverse CWT for the 2D field is required. 

DWT (Daubechies 1992; Mallat 1989) markedly reduces the computational burden as 

compared to CWT.  DWT that uses Mallat’s tree algorithm is often referred to as the 

standard DWT with a good balance between resolution and computational cost.  If the 

standard DWT employs real-valued filters, it is non-redundant.  Given a signal in 2D, the 
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2D DWT produces different sub-records that emphasize different directional features.  

The standard 2D DWT of a signal in 2D, z(x, y) (x = 0, 1, 2, …, 2n - 1; y = 0, 1, 2, …, 2m - 

1), ( ) ( , , )x yz iα
ψ τ τ , is given by (Daubechies 1992): 
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where i is the level of 2D DWT; ( ) ( , )x yαψ  denotes the wavelet function constructed 

from the tensor product of different filter combinations; φ(·) and ψ(·) are the low-pass 

and high-pass filters, respectively; LL, LH, HL, and HH denote the combinations of filters 

as illustrated in Fig. 5.3: i.e. approximation (low-pass and low-pass), horizontal features 

(low-pass and high-pass), vertical features (high-pass and low-pass) and diagonal features 

(high-pass and high-pass), respectively.  The DWT coefficients can be arranged in a 

matrix of the same size as the original 2D record.  z(x, y) can be reconstructed based on 
( ) ( , , )x yz iα
ψ τ τ  by the inverse DWT if the wavelet filters satisfy the perfect reconstruction.  

Details of the forward and inverse DWT are given in (Daubechies 1992; Mallat 1989; 

Mallat 1999). 
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Figure 5.3 Standard 2D DWT of a signal in 2D 

 

A signal in multi-dimension can be decomposed in different ways based on different 

definitions of the wavelet function and decomposition schemes used in the multi-

dimensional DWT.  In the standard 2D DWT, the 2D DWT bases ( ) ( , )x yαψ  are 

constructed from the scaling and wavelet functions with identical scales at both 

dimensions.  If multi-dimensional wavelet bases, such as the bases used in HWT, are 

constructed by functions with independent scales or dilation factors along different 

dimensions, this forms the anisotropic wavelet bases that are more flexible in texture 

analysis (Roux et al. 2013; DeVore et al. 1998).  The coefficients of HWT of a signal in 

2D are given by (Farouj et al. 2016): 
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where ix and iy are the decomposition level along the x and y directions, respectively, and 

,( ) ( , )A x yαψ  denotes the wavelet function for different combinations of filters but 

possibly include the anisotropic effect.  Because the HWT coefficients can be calculated 

from HiLi or LiHi from 2D DWT, HWT can also be considered as an extension of DWT 

that provides anisotropic analysis.  HWT has higher resolutions in the wavenumber 

domain but lower resolutions in the spatial domain than the standard 2D DWT.  z(x, y) 

can be reconstructed based on ( ) ( , , , )x yy xz i iψ
β τ τ  using the inverse HWT if the wavelet 

filters satisfy the perfect reconstruction. 

In this study, the HWT scheme is performed as illustrated in Fig. 5.4.  Similar to the 

standard 2D DWT, the HWT coefficients can also be arranged in a matrix of the same 

size as the original 2D record.  In Fig. 4, 
yxi iH H  represents the coefficients from the 2D 

wavelet function 2
, ( , ) 2 (2 ) (2 )

x y

x y

x y

i i
ii

i i x y x yψ ψ ψ
+

− −−=  constructed by the ixth (ix = 1, 2, …, 

n) level horizontal wavelet function and the iyth (iy = 1, 2, …, m) level vertical wavelet 

function, and Ln denotes that the scaling function φ(·) at the nth level is employed instead 

of the wavelet function ψ(·).  Details of the forward and inverse HWT are given in (Roux 

et al. 2013; DeVore et al. 1998). 
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Figure 5.4 The HWT scheme used in this study 

 

5.2.2.2 Dual-tree complex discrete wavelet transform 

As mentioned in the introduction, the real-valued DWT has some drawbacks such as the 

shift variance and susceptibility to aliasing.  To overcome these drawbacks, Kingsbury 

(2001) proposed DT-CDWT.  In DT-CDWT, a real-valued 1D record v(x) is represented 

by complex wavelet coefficients obtained from two wavelet trees (i.e. the real and 

imaginary trees).  The wavelet function ( )c xψ  used in the DT-CDWT can be expressed 

as follows: 

ψc(x) = ψre(x) + jψim(x) (5.6) 

where 1j = −  is the imaginary unit; ψre(x) is an even function for the real tree; ψim(x) is 

an odd function for the imaginary tree, and ψre(x) and ψim(x) are an approximate Hilbert 

transform pair (Selesnick et al. 2005).  Both ψre(x) and ψim(x) are real-valued wavelet 

functions.  When applying DT-CDWT to a real-valued 1D record v(x) with length 2n, one 

can obtain 2n real-valued coefficients cre from the real tree using ψre(x), and 2n real-

valued coefficients cim from the imaginary tree using ψim(x).  By assigning c = cre + j⋅cim, 

v(x) can be represented by 2n complex coefficients c.  It follows that the redundancy of 

DT-CDWT for 1D records is two.  Since DT-CDWT filters satisfy the prefect 

reconstruction condition, v(x) can be reconstructed from c. 
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If DT-CDWT is applied to a 2D field, two complex matrices, c1 and c2, of the same size 

as the original 2D record are obtained.  The real and imaginary parts of c1 consist of 

coefficients obtained using 1, ( ) ( ) ( ) ( )mre r re ime ix y x yψ ψ ψ ψ ψ= −  and 

1, ( ) ( ) ( ) ( )mim r im ree ix y x yψ ψ ψ ψ ψ= + , respectively.  The real and imaginary parts of c2 

consist of coefficients obtained using 2, ( ) ( ) ( ) ( )mre r re ime ix y x yψ ψ ψ ψ ψ= +  and 

2, ( ) ( ) ( ) ( )im re ri imm ex y x yψ ψ ψ ψ ψ= − , respectively.  These 2D dual-tree wavelet functions 

are designed to better distinguish positive and negative spectral features in the 

wavenumber domain, thus avoiding ambiguity in the spatial domain.  Since wavelet 

coefficients of the 2D decomposition using DT-CDWT can be considered a combination 

of wavelet coefficients using four sets of real-valued wavelet functions, the 2D record is 

obtained by summing reconstructions from four sets of real-valued coefficients.  The 

redundancy of 2D decomposition using DT-CDWT is four.  The decomposition scheme 

used for DT-CDWT is generally carried out using that shown in Fig. 5.3.  More 

implementation details of DT-CDWT can be found in Selesnick et al. (2005). 

In the present study, the use of the decomposition scheme shown in Fig. 4 but with the 

same filters is also considered.  For simplicity of reference, in such a case, it is referred to 

as DT-CHWT.  Filters used in DT-CDWT and DT-CHWT are summarized in Appendix 

C. 

5.2.2.3 IPAC-based simulation of corrosion fields 

To generate realizations of a corrosion field z(x, y) with the prescribed amplitude of the 

transform coefficient or energy distribution (i.e., power spectral density function) and 

marginal CDF, the IPAC algorithm proposed by Hong et al. (2021a) is employed in this 

study.  This algorithm has been extended to sample random fields (Zhou et al. 2021) 

based on the S-transform (Stockwell et al. 1996).  In the present study, the amplitude (or 

the scalogram) obtained from the three wavelet transforms mentioned in the previous 

section is employed as the prescribed condition in the IPAC algorithm to simulate 

corrosion fields. 



135 

 

Applying the CWT using the complex Morlet wavelet, DT-CDWT or DT-CHWT to a 2D 

real-valued record produces complex coefficients.  Let Tf(•) denote a forward transform, 

and ITf(•) denote the corresponding inverse transform.  In this study, the transform pair 

(Tf(•), ITf(•)) could be (CWT, inverse CWT), (DT-CDWT, inverse DT-CDWT) and 

(DT-CHWT, inverse DT-CHWT).  The wavelet scalogram based on the selected 

transform pair is defined as |zt|2 = |Tf(z(x, y))|2 (Mallat 1999), which represents the 

intensity of local waves defined by the corresponding wavelet functions, and |zt| = |Tf(z(x, 

y))| denotes the amplitude of the transform coefficient. 

To simulate a field with a size N ×M (i.e., a field with N point and a sampling interval ∆x 

along the x-axis and with M point and a sampling interval ∆y along the y-axis), where N 

and M are powers of two, the wavelet-based IPAC procedure consists of the following 

steps. 

1) Generate a sample with size N ×M from the prescribed target marginal distribution 

and rearrange the sample into a sequence ζ of ascending order. 

2) Select a transform pair (Tf(•), ITf(•)) from the above-indicated three options. 

3) Sample an N × M white noise, w(x, y).  Apply the selected forward transform on w(x, 

y) and obtained complex wavelet coefficients wf =Tf(w(x, y)).  The phase information 

θ = arg(wf). 

4) Calculate the power corrected field ( , ) (| | )j
pc tz x y ITf z e= ⋅ θ  based on the prescribed 

amplitude of transform coefficient |zt| (or scalogram |zt|2).  Find the rank of zpc(x, y) in 

the ascending order, denoted as r(x, y), for all x and y. 

5) Assign the amplitude corrected field (i.e. distribution matching) zac(x, y) = ζ(r(x, y)), 

and calculate the phase information θ = arg(Tf(zac)). 

6) Repeat steps 4) and 5) until the convergence criterion is satisfied. 

We first consider the sequence ζ to be obtained from the measured field directly, which 

means all the simulated fields are surrogates with identical probability levels.  The 
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convergence is tracked based on ( ) ( )2 2( ) ( 1) ( 1)/r r r
r x cy x yac a acz z zε − −= −∑ ∑ ∑ ∑ , where zac(r) 

denotes zac of the rth (r ≥ 2) iteration.  For the numerical analysis carried out in the present 

study, ε < 0.1% is employed as the convergence criterion.  Note that the above IPAC 

procedure ensures that the generated samples have the same scalogram that is identical to 

the target scalogram.  Alternatively, one may argue that each sample should have its own 

scalogram with the average scalogram of all the samples matching the target scalogram 

(Dolan and Spano 2001).  In this case, the IPAC procedure can be slightly revised by 

including a digital filter in Steps 1) and 4).  That is, in Step 1), a homogeneous Gaussian 

noise field with the power spectral density equal to unity, wG(x, y), is sampled.  The 

simulation of the wG(x, y) is carried out by sampling independent Gaussian distributed 

random variables at all grid points with zero mean and variance equal to 1/(∆x∆y), where 

∆x and ∆y are the sampling intervals.  In Step 4), | |tz  is then replaced by the amplitude 

that includes the effect of the digital filter through wG(x, y).  The amplitude of wG(x,y) is 

zGTf = Tf(wG(x, y)).  The equation zpc(x, y) = ITf(|zt|∙ejθ) in step 4) is then replaced by zpc(x, 

y) = ITf(|zt|∙|zGTf |∙ejθ).  Figure 5.5 presents a flowchart of the steps of the IPAC algorithm. 
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Figure 5.5 Flowchart for the IPAC algorithm to simulate corrosion fields 

 

5.2.3 Metrics adopted for comparing simulated and measured 
fields 

Since the IPAC algorithm shown in Step 5) uses the inverse CDF to assign samples zac(x, 

y), the marginal distribution of the simulated corrosion field given by zac(x, y) matches 

the prescribed CDF that is assigned based on the measured field.  Therefore, the 

simulated and measured fields are compared in terms of the amplitude or scalogram 

obtained from the selected transform pair, texture features extracted from the gray level 

co-occurrence matrix (GLCM) (Hall-Beyer 2017), and the burst capacity (Pb) of the 

pipeline containing the corrosion field.  Let εr(i) denotes εr of the ith realization, 
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performances of different transform pairs are also assessed by the mean error 

)
100

1 ( /100iir rε ε
=

=∑  at each iteration step and the total computation time. 

In CWT, the scalogram |zt|2 = |zw(sx, τx; sy, τy)|2 is a four-dimensional function used in both 

the IPAC procedure and result comparison.  In DT-CDWT and DT-CHWT, the wavelet 

coefficients can be arranged into two complex matrices c1 and c2, and |zt|2 = |c1|2 + |c2|2 is 

used for the scalogram comparison.  After specifying the transform pair, 100 realizations 

are generated based on the selected transform pair and the corresponding target 

scalogram.  The mean scalogram 2
tz and the standard deviation of the scalograms from 

the 100 realizations, and the correlation between the target scalogram |zt|2 and the mean 

scalogram 2
tz  are used to assess the performance of the selected transform pair. 

The GLCM of a 2D field is a square matrix with the number of rows (columns) equal to 

the number of gray levels in the 2D record.  The matrix element P(q, l|Δx, Δy) (q, l = 1, 

2, …) is the joint probability function of the gray levels of a pair of grid points separated 

by the distance (Δx, Δy), with q and l denoting the gray levels of the two grid points, 

respectively.  One hundred gray levels are considered in this study: the gray level G at the 

grid point (x, y) is defined as G(x, y) = 100z(x, y)/wt, where • represents rounding up 

to the nearest positive integer that is greater than •.  Three grid separations are considered, 

i.e. (Δx, Δy) = (1, 0), (0, 1), and (1, 1), which correspond to horizontally (longitudinally), 

vertically (circumferentially), and diagonally neighbouring pairs of grid points, 

respectively.  Five textural features, including the normalized Shannon entropy (NSE), 

angular second moment (ASM), normalized contrast ratio (NCR), correlation (COR), and 

inverse difference moment (IDM), are extracted from GLCM [46].  NSE quantifies the 

disorder of the record, while ASM represents the orderliness.  NCR quantifies the gray 

level difference between the separated grid points, while IDM quantifies the homogeneity 

of the record.  COR denotes the predictable and linear relationship between the two grid 

points.  If a 2D record is highly irregular, this record has high values of NSE and NCR, 

and low values of ASM, COR, and IDM.  Details of the evaluation of these features are 

given in Appendix D. 
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The well-known RSTRENG model is used to evaluate Pb as follows (Kiefner and Vieth 

1989): 
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where σf is the flow stress of the pipe steel and defined as σy + 69 (MPa) with σy being 

the yield strength of the pipe steel; Ae and le are the effective area and length, respectively, 

of the 2D longitudinal profile of the 3D corrosion field, which is generated by projecting 

the corrosion field onto a longitudinal plane that is perpendicular to the pipe wall 

thickness, and Me is the so-called Folias factor corresponding to the effective length of 

the corrosion field.  The procedure to determine Ae and le is not presented for the sake of 

brevity as it has been well described in many references (Kiefner and Vieth 1989; Zhang 

et al. 2018). 

5.3 Results and discussion 
The wavelet coefficients are calculated by applying the CWT, DT-CDWT, and DT-

CHWT to the measured corrosion field shown in Fig. 5.1.  The scalograms constructed 

from these coefficients are illustrated in Figs. 5.6 and 5.7.  Due to the difficulty in 

visualizing the four-dimensional CWT scalogram, Fig. 5.6 only includes the CWT 

scalogram for specific scaling factors.  In CWT, the quantity 2
( , ; , )yw x yxz s sτ τ  is related 

to the energy density of the field z(x, y) at the wavenumber (f0/sx, f0/sy) and translation (τx, 

τy) domain.  In DT-CDWT and DT-CHWT, the energy is defined as the square of the 

amplitude of the transform coefficient as discussed in the previous section.  As observed 

from Figs. 5.6 and 5.7, most of the energy is concentrated at large scales (low 



140 

 

wavenumbers), and the energy is not homogeneously distributed in the spatial domain.  

The results shown in the figure indicate that over 90% of the total energy is concentrated 

in 0.4% of the amplitude square of the transform coefficients at long scales. 

 

Figure 5.6 CWT scalogram of the measured corrosion field 
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Figure 5.7 Scalogram of the measured corrosion field defined according to different 

transforms: (a) DT-CDWT; and (b) DT-CHWT 

 

The prescribed marginal distribution includes a 76.7% probability mass of zero corrosion 

depth (see Section 5.2.1) and a 23.3% weight of the non-zero depth distribution as 

depicted in Fig. 5.2b, and the square root of the scalograms shown in Figs. 5.6 and 5.7 are 

employed as the prescribed amplitude of the transform in the IPAC algorithm.  The 

simulation is carried out by using a server with 2 Intel(R) Xeon Gold 5218R CPU @2.10 

GHz (20 core and 40 threads) and 768 GB RAM, where the computing time will be 

reported shortly.  Figure 5.8 depicts four samples of the simulated corrosion field using 

each of the three transform pairs.  The mean and standard deviation of the scalograms of 

the 100 simulated fields based on CWT, DT-CDWT, and DT-CHWT are shown in Figs. 

5.9, 5.10, and 5.11, respectively. 



142 

 

 

Figure 5.8 Simulated corrosion fields based on: (a) CWT; (b) DT-CDWT; and (c) 

DT-CHWT 
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Figure 5.9 Scalograms of simulated corrosion fields based on CWT: (a) mean 

scalogram of 100 realizations; (b) standard deviation of scalograms of 100 

realizations 
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Figure 5.10 Scalograms of simulated corrosion fields based on DT-CDWT: (a) mean 

scalogram of 100 realizations; (b) standard deviation of scalograms of 100 

realizations 

 

Figure 5.11 Scalograms of simulated corrosion fields based on DT-CHWT: (a) mean 

scalogram of 100 realizations; (b) standard deviation of scalograms of 100 

realizations 

 

Inspection of the results presented in Figs. 5.8 to 5.11 indicates that simulated corrosion 

fields are similar to the measured corrosion field.  The spatial information, such as 

shallow corrosion areas and locations of deep corrosion pits, is well preserved in the 

realizations and their scalograms.  Compared with DT-CHWT, realizations from DT-
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CDWT appear more similar to the measured field.  The wavelet bases used in DT-CDWT 

have a higher spatial resolution in the spatial domain than DT-CHWT, resulting in DT-

CDWT better representing the spatial features of the signal. 

The similarity between the mean of the scalograms and target scalograms is reflected by 

the high correlation coefficient between them, which is greater than 0.99 corresponding 

to the CWT, DT-CDWT, and DT-CHWT.  This indicates that the simulated field matches 

the target scalogram on average.  Although some standard deviations of scalograms of the 

realizations are as high as 300 mm2, these high standard deviations are usually found in 

part of the scalograms with high mean values.  As mentioned before, over 90% of the 

total energy is concentrated in 0.4% of the amplitude square of the transform coefficients 

at long scales in DT-CDWT and DT-CHWT.  The coefficient of variations (COV) of the 

scalograms at the positions and scales corresponding to these coefficients is less than 

50%. 

The results of the texture analysis based on GLCM are summarized in Table 5.1.  The 

texture characteristics of the realizations from DT-CDWT are closest to those of the 

measured field, but the texture characteristics associated with the realizations from 

different methods are only marginally different.  The mean values of NCR corresponding 

to the simulated fields are about 35% higher than that of the measured field, indicating 

that simulated fields tend to have higher energy at high wavenumbers (short scales in the 

wavelet transform).  However, such a discrepancy has little impact on the similarity 

between the simulated and measured fields because the energy of the field is 

predominantly concentrated in wavelet coefficients corresponding to long scales (i.e. low 

wavenumbers). 
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Table 5.1 Mean texture features of simulated and measured corrosion fields 

(Δx, Δy) 
Corrosion  

samples 
NSE 

(×10-1) 
ASM 

(×10-1) 
NCR 

(×10-4) 
COR 

(×10-1) 
IDM 

(×10-1) 

(1, 0) 

Measured field 1.792  5.718  1.318  9.778  9.098  

CWT 1.864  5.663  1.574  9.734  8.773  

DT-CDWT 1.796  5.750  1.757  9.703  9.066  

DT-CHWT 1.852  5.701  1.756  9.703  8.870  

(0, 1) 

Measured field 1.840  5.676  1.636  9.724  8.978  

CWT 1.908  5.621  1.913  9.678  8.645  

DT-CDWT 1.837  5.718  2.189  9.631  8.967  

DT-CHWT 1.890  5.666  2.173  9.633  8.782  

(1, 1) 

Measured field 1.965  5.570  2.717  9.543  8.597  

CWT 2.003  5.526  3.032  9.490  8.381  

DT-CDWT 1.930  5.632  3.570  9.398  8.738  

DT-CHWT 1.992  5.562  3.502  9.408  8.491  

 

RSTRENG is employed to evaluate the burst capacity of the pipeline corresponding to 

the measured corrosion field as well as each of the simulated corrosion fields by 

considering D = 763.4 mm, wt = 8.5 mm, and the yield strength of the pipe steel ξy equal 

to 535 MPa.  The PDFs of the capacities corresponding to the corrosion fields generated 

using different wavelet transforms are compared in Fig. 5.12.  The mean burst capacities 

of the 100 realizations corresponding to the CWT, DT-CDWT, and DT-CHWT are 11.17, 

11.10, and 11.11 MPa, respectively, all very close to the burst capacity corresponding to 

the measured corrosion field (11.25 MPa).  The values of COV of all three distributions 

are less than 0.6%, indicating that the variability of the burst capacities corresponding to 

the simulated corrosion fields is low.  The close mean values and small variability imply 
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that the scalograms considered in the present study capture the specific characteristics of 

the measured corrosion field that govern the burst capacity. 

 

Figure 5.12 Empirical PDF of the burst capacities of the pipe segment containing 

realizations of the simulated corrosion fields 

 

The convergence rates in the IPAC iterations corresponding to different transform pairs 

are compared in Table 5.2 in terms of the mean error rε  at the rth iteration step.  As 

shown in Table 5.2, the difference between subsequent iterations is negligible (< 1%) 

after only five iterations.  The average numbers of iteration steps required to achieve ε < 

0.1% are 10, 18, and 17 corresponding to CWT, DT-CDWT, and DT-CHWT, 

respectively.  Although it can be inferred from Table 5.2 that the application of the IPAC 

algorithm with CWT converges within fewer iterations than that with DT-CDWT and 

DT-CHWT, the computing time needed for CWT is much longer than the other two 

transforms.  Table 5.3 compares the CPU time of the IPAC iterations corresponding to 

different transform pairs.  The table clearly demonstrates the computational efficiency of 

DT-CDWT and DT-CHWT as compared with CWT. 
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Table 5.2 Mean error at different iteration steps corresponding to different 

transform pairs 

Transform 5ε  10ε  20ε  30ε  

CWT 0.33% 0.10% 0.04% 0.03% 

DT-CDWT 0.77% 0.23% 0.07% 0.04% 

DT-CHWT 0.66% 0.18% 0.06% 0.03% 

 

Table 5.3 CPU time of simulation corresponding to different transform pairs 

Transform 
5 iterative steps 30 iterative steps 

1 sample 100 samples 1 sample 100 samples 

CWT 2144 s ≈18 h 12475 s >150 h 

DT-CDWT 0.6 s 6 s 3 s 31 s 

DT-CHWT 1 s 11 s 5 s 77 s 

 

Besides the computation time, the high computational cost of CWT is also reflected in 

the high requirement of the computer hardware.  The minimum RAM required to 

generate samples of 256×512 grid points with CWT is about 130 GB.  The required 

RAM will increase exponentially to simulate a larger field.  Although CWT has better 

spatial and wavenumber resolution than DT-CDWT and DT-CHWT, the extremely high 

redundancy and computational cost severely could limit its application.  Discussions in 

the previous sections suggest that high space-wavenumber resolution is generally 

unnecessary for the simulation of corrosion fields on pipelines.  It follows that DT-

CDWT and DT-CHWT are well suited to simulate synthetic corrosion fields on pipelines 

whereas CWT is not a practically viable option.  For completeness, additional analysis 
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was carried out by using three additional scanned corrosion fields as the target fields.  

The obtained results are summarized in Appendix E.  It is also worth mentioning that 

although the burst capacities corresponding to the simulated fields are estimated by 

RSTRENG in the present study for computational efficiency, FEA can be employed to 

evaluate the burst capacity with higher accuracy, as shown in Zhou et al (2021). 

Modifications of the input to the IPAC algorithm can be introduced for specific purposes.  

For example, to reduce the amount of IPAC input data, we can generate the sequence ζ 

based on a fitted distribution of corrosion depths.  Besides, to increase the variability of 

the sampled field, the amplitude used in the IPAC algorithm can be replaced by the 

amplitude that includes a digital filter.  The beta distribution with a lower bound of 5%wt 

and an upper bound of 95%wt is employed to fit the non-zero depth distribution depicted 

in Fig. 5.2b.  To illustrate the effect of using the fitted distribution and digital filtering, 

we repeat the analysis but use DT-CDWT and DT-CHWT for the example considered 

with the target scalogram of the measured corrosion field shown in Fig. 5.7.  Typical 

sampled fields, in this case, are shown in Fig. 5.13a.  The mean and standard deviation of 

the scalogram estimated based on 100 samples generated by using DT-CDWT or DT-

CHWT are calculated and shown in Figs. 5.13b and 5.13c, respectively.  The CDF of the 

fitted beta distribution is illustrated in Fig. 5.14, and the distribution of the calculated 

burst capacity by using the simulated samples is shown in Fig. 5.15.  A comparison of the 

results presented in Fig. 5.13 with those shown in Figs. 5.10 and 5.11 indicates that the 

mean of the scalogram is not affected by considering the fitted distribution and digital 

filter, whereas the standard deviation of the scalogram increases as compared to that 

without considering the digital filter.  The latter is expected and has the desired effect of 

increasing the variability of the sampled field.  A comparison of Figs. 5.15 and 5.12 

indicates that the consideration of the fitted distribution and digital filter can maintain the 

mean value and increases the variability of the burst capacity corresponding to the 

sampled fields.  The COVs of the burst capacity under different conditions are 

summarized in Table 5.4.  Although the flexibility of selecting the marginal distribution 

and amplitude of the scalogram in this framework enables us to study how some 

statistical characteristics of the corrosion field affect the accuracy of semi-empirical burst 

capacity models, the parameter of the marginal distribution and amplitude of the 
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scalogram are related.  For example, the variance of the marginal distribution can be 

estimated from the scalogram; therefore, the consistency in assigning the marginal PDF 

and scalogram should be considered when introducing modifications and carrying out the 

parametric assessment. 

 

Figure 5.13 Simulated corrosion fields based on DT-CDWT (left column) and DT-

CHWT (right column), considering the fitted corrosion depth distribution and 

digital filter: (a) typical sampled corrosion fields; (b) mean of the scalogram 

estimated from 100 sampled fields; and (c) standard deviation of the scalogram 

estimated from 100 sampled fields 
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Figure 5.14 CDF of the empirical distribution and fitted beta distribution of 

corrosion depth 

 

Figure 5.15 Empirical PDF of the burst capacity of pipe segment obtained from 

realizations of the simulated field considering: (a) surrogate and amplitude with 

digital filter; (b) fitted beta distribution and amplitude without digital filter; and (c) 

fitted beta distribution and amplitude with the digital filter 
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Table 5.4 COVs of the burst capacity under different conditions 

Marginal 
distribution 

Scalogram 
modification 

Transform 

DT-CDWT DT-CHWT 

Surrogate 
No digital filter 0.59% 0.57% 

With digital filter 0.86% 0.77% 

Beta 
distribution 

No digital filter 0.58% 0.55% 

With digital filter 0.81% 0.80% 

 

5.4 Conclusion 
In the present study, we present a framework to analyze and simulate nonhomogeneous 

non-Gaussian corrosion fields on the external surface of buried in-service pipelines by 

using the discrete and continuous wavelet transforms.  The considered wavelet transforms 

include the CWT using the complex Morlet wavelet, DT-CDWT, and DT-CHWT.  The 

natural corrosion field, which is measured by a high-resolution high-accuracy laser 

scanner and is used as the target field, is on the external surface of an in-service buried 

pipeline.  The IPAC algorithm is employed to simulate the corrosion fields with the 

prescribed amplitude of the transform defined based on the considered wavelet 

transforms and the empirical marginal distribution of the corrosion depth.  The simulated 

fields are assessed by comparing scalograms of the selected transform pair, textural 

characteristics extracted from the GLCM, and burst capacities of the pipeline containing 

the corrosion field estimated by the RSTRENG model.  Scalograms of the measured 

corrosion field indicate that most of the energy of the field is conserved by components at 

long scales (low wavenumber).  In DT-CDWT and DT-CHWT, over 90% of the total 

energy is concentrated in 0.4% of the amplitude square of the transform coefficients at 

long scales.  The energy is not homogeneously distributed in the spatial domain.  

Simulation results indicate that the corrosion fields generated by using the IPAC 

algorithm together with the CWT, DT-CDWT, and DT-CHWT capture probabilistic 

characteristics of the natural corrosion field.  The burst capacities of the simulated 
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corrosion fields are almost the same as that of the natural corrosion field, and the 

variability of the burst capacities corresponding to the simulated corrosion fields is low.  

Introducing a digital filter to the amplitude information can slightly increase the 

variability of the simulated fields, but the COVs of the burst capacities are less than 1%.  

Although the resolution of DT-CDWT and DT-CHWT in the spatial-wavenumber 

domain is lower than that of CWT, these moderately redundant transforms can capture 

most of the textural information of the natural corrosion fields and preserve such 

information in the synthetic fields with markedly lower computational costs than CWT.  

The burst capacities corresponding to the synthetic fields generated based on DT-CDWT 

and DT-CHWT differ by less than 0.5% from those of the synthetic fields corresponding 

to CWT.  The application of this framework can be used to generate synthetic corrosion 

fields based on the target measured corrosion field with empirical distribution or fitted 

distribution and with or without a digital filter.  Since the use of DT-CDWT and DT-

CHWT is associated with significantly reduced computing time as compared to that 

associated with CWT, they are excellent candidates for simulating synthetic corrosion 

fields that can be used to facilitate the development and validation of burst capacity 

models for corroded pipelines. 
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Chapter 6  

6 Summary, Conclusions and Recommendations for 
Future Study 

6.1 General 
From measuring in-service pipelines to predicting pipeline status, pipeline assessment 

includes multiple stages.  The accuracy of pipeline assessment is affected by the accuracy 

of the respective assessments at these stages.  Small improvements at multiple stages may 

be more effective in improving the accuracy of the final assessment results than 

optimizing the assessment at one single stage.  A pipeline containing defects can 

therefore be assessed more effectively and maintained in a timely and cost-effective 

manner.  Thus, the present study attempts to improve the methods commonly used in 

different stages of pipeline assessment by introducing a few practical assumptions, given 

the limited available information. 

This research employs wavelet transforms and random field analysis to address four 

major issues in the context of the fitness-for-service (FFS) assessment of integrity 

management of buried steel pipelines containing dents and corrosions.  Conclusion drawn 

from the four individual studies are summarized as follows. 

6.2 A Wavelet-based Denoising Methodology for Pipeline 
Dent Assessments 

Chapter 2 proposed a denoising method for the dent signals of indented pipelines 

measured using caliper tools.  The proposed method is based on the overcomplete 

expansion, whereby the overcomplete dictionary is constructed by the stationary wavelet 

transform (SWT) and the hyperbolic wavelet transform (HWT).  Finite element analysis 

(FEA) is employed to obtain the noise-free morphology and equivalent strain of the inner 

surface of an indented pipe segment.  By artificially adding different levels of Gaussian 

white noise to the noise-free dent signal and denoising such a noisy signal, we compare 

the denoising performance of the commonly used wavelet transform-based thresholding 

methods and the proposed method.  The proposed method achieves lower root mean 
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square error (RMSE) if the standard deviation of the noise is above 0.3 mm.  The 

maximum effective strains in the dent estimated from the signal denoised using the 

proposed method are markedly closer to the actual strain than that based on the 

commonly used thresholding methods. 

To improve the computational efficiency of the proposed method, we construct a large 

overcomplete dictionary by all the Daubechies wavelets and Daubechies symlets with no 

more than ten vanishing moments and then denoise 42 noisy dent signals collected from 

in-service pipelines using such a dictionary.  The statistics of extracted components 

indicate that most extracted components of the natural dent signals are constructed by 

DB10 along the longitudinal direction and Symlet 4 along the circumferential direction.  

The decomposition levels along the longitudinal and circumferential directions of most 

extracted components are 7 and 3, respectively.  Differences in the wavelet functions and 

decomposition levels along two directions further support that the commonly used 

thresholding is inadequate for the dent signals.  Based on the statistics of extracted 

components, we construct a small overcomplete dictionary that uses DB10 and Symlet 4 

along the longitudinal and circumferential directions, respectively.  On average, 

employing the small dictionary will extract 56% more components than employing the 

large dictionary, but the computation time is reduced to 1/48.  Most of the estimated 

maximum effective strains based on the large and small dictionaries are close.  This 

research will improve the fitness-for-service assessment of pipelines containing dents. 

6.3 Discrete Wavelet Analysis of External Corrosion 
Clusters on Pipelines for Burst Capacity Prediction 

Chapter 3 applies the two-dimensional discrete wavelet transform (2D DWT) to analyze 

106 naturally occurring corrosion clusters on external surfaces of in-service gas 

transmission pipelines.  The Daubechies wavelet with two vanishing moments (DB2) is 

adopted in the analysis, and the widely used RSTRENG model is employed to compute 

the burst capacity of pipelines with corrosion clusters.  A methodology is proposed to 

determine constant, level- and sub-band-dependent thresholds such that those wavelet 

coefficients below the thresholds have a negligible impact on the burst capacity and can 

be ignored for the cluster reconstruction.  The proposed methodology enables one to 
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predict the burst capacity of the corrosion cluster with an error of no more than 1% while 

retaining less than 1% of the wavelet coefficients.  Although the corrosion clusters 

reconstructed by the retained wavelet coefficients may have a large visual difference 

compared to the original corrosion clusters, the discarded details have little effect on the 

burst capacity prediction. 

Statistical analysis of the preserved wavelet coefficients shows that most of the features 

in the natural corrosion clusters are circumferential features, but their influence on the 

burst capacity prediction is not as significant as longitudinal features.  Features that 

greatly impact the burst capacity prediction are approximately 4 – 16 mm in width and 4 

– 32 mm in length.  It is unnecessary to decompose the natural corrosion cluster to a scale 

greater than 32 mm because the wavelet coefficients at higher levels have a negligible 

impact on the burst capacity prediction.  This research allows one to quickly extract 

information that has a large impact on the burst capacity prediction from the measured 

corrosion clusters. 

6.4 Simulating Nonhomogeneous Non-Gaussian Corrosion 
Fields on Pipelines Based on In-line Inspection Data 

Chapter 4 presents a methodology to simulate nonhomogeneous non-Gaussian corrosion 

fields on the external surface of buried steel pipelines by using inline inspection (ILI) 

data.  We assume that the nonhomogeneous non-Gaussian corrosion field consists of 

multiple homogeneous non-Gaussian anomalies that can be characterized by the marginal 

distribution and spatial autocorrelation function of the corresponding corrosion depth.  

High-resolution laser scan data for 3408 anomalies within 105 natural corrosion fields 

identified on buried natural gas transmission pipelines in Canada are used to evaluate the 

marginal probability distributions and autocorrelation functions of corrosion depths 

within the anomalies, and the ILI parameters of anomalies are obtained from a virtual ILI 

process.  Empirical relationships between the sizing parameters of these anomalies and 

the marginal probability distributions as well as the autocorrelation functions of corrosion 

depths within the anomalies are developed.  An algorithm proposed by Masters and 

Gurley is employed to generate homogeneous non-Gaussian corrosion fields representing 

corrosion anomalies.  Spatial modulators constructed from the ILI location parameters are 
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then employed to localized the synthetic corrosion anomalies.  The synthetic corrosion 

fields are generated by combining these simulated anomalies.  For the 105 natural 

corrosion fields considered in this chapter, the burst capacity of the synthetic field is, on 

average, 97.4% of that of the actual corrosion field, whereas the burst capacity of the ILI-

idealized field is, on average, 91.5% of that of the actual field.  Compared with the 

commonly used ILI idealization with cuboidal anomalies, the burst capacities predicted 

by the synthetic corrosion fields are less conservative.  The proposed methodology will 

improve the accuracy of the fitness-for-service assessment of corroded pipelines in 

practice and reduce the cost of maintenance. 

6.5 Application of Wavelet Transforms to the Simulation of 
Corrosion Fields on Buried Pipelines 

Chapter 5 presents a framework to analyze and simulate nonhomogeneous non-Gaussian 

corrosion fields on the external surface of buried in-service pipelines by using continuous 

and discrete wavelet transforms.  The considered transforms are the two-dimensional 

continuous wavelet transform (CWT) using the complex Morlet wavelets, dual-tree 

complex discrete wavelet transform (DT-CDWT), and dual-tree complex discrete wavelet 

with hyperbolic wavelet transform scheme (DT-CHWT); the natural corrosion field is 

measured using a high-resolution laser scan.  Scalograms and marginal distribution of the 

measured corrosion field are incorporated into the iterative power and amplitude 

correction (IPAC) algorithm to generate synthetic corrosion fields.  The framework is 

explained and illustrated using a numerical example.   

The simulated fields are assessed by comparing scalograms of the selected transform pair, 

textural characteristics extracted from the gray-level co-occurrence matrix (GLCM), and 

burst capacities of the pipeline containing the corrosion field estimated by the RSTRENG 

model.  Scalograms of the measured corrosion field show that most energy of the field is 

conserved by components at long scales.  Results of textual features and burst capacity 

indicate that the proposed method can capture the probabilistic characteristics of the 

natural corrosion field, and these characteristics are well-preserved in the synthetic fields.  

The differences in these probabilistic characteristics between the CWT-based synthetic 

fields and the synthetic fields based on the other two transforms are small, while the 
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computation time differs significantly.  It follows that DT-CDWT and DT-CHWT, which 

require less computation time, are recommended for simulating synthetic corrosion fields 

that can be used to facilitate the development and validation of burst capacity models for 

corroded pipelines. 

6.6 Limitations of Current Studies and Recommendations 
for Future Study 

The limitations of current studies and recommendations for future study are summarized 

as follows. 

1. The denoising performance of the proposed method in Chapter 2 depends on the 

selected overcomplete dictionary.  Although employing a large dictionary with many 

atoms enables one to represent a signal with as few components as possible, some of 

the components from such a large dictionary may be very unlikely to be found in the 

natural dent morphology.  Therefore, to achieve a better denoising performance, it is 

necessary to construct an overcomplete dictionary consisting of atoms that are 

commonly seen in the natural dent morphology.  To this end, noise-free 

measurements of the inner radii of in-service indented pipelines are required.  Besides, 

the computation time needs to be further shortened to achieve higher practicality.  

Reducing iterations in the matching pursuit or employing other algorithms to seek an 

optimal solution for the overcomplete expansion can be involved in future studies. 

2. The study presented in Chapter 3 is based on the RSTRENG model, as FEA is too 

time-consuming.  Therefore, the model error of the RSTRENG model may affect the 

empirical parameters (i.e. Gα, G1, and G2) obtained in the present study.  Besides, the 

proposed method is developed based on detailed corrosion depth measurements, 

which may not be available in some ILI technologies such as the magnetic flux 

leakage.  FEA can be involved in future studies to obtain better empirical parameters, 

and different information extraction methods should be developed for different ILI 

signals. 
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3. In Chapter 4, since the ILI data corresponding to the corrosion clusters is unavailable, 

a virtual ILI process is employed to obtain ILI parameters for anomalies.  However, 

the virtual ILI process is not the real ILI process, which means the ILI parameters 

obtained from the virtual process may significantly differ from the actual ILI 

parameters (e.g. uncertainty of parameters due to measurement error).  Besides, the 

beta distribution and exponential autocorrelation function are employed, while they 

significantly differ from the empirical marginal distribution and autocorrelation 

function of some anomalies.  Therefore, analysis based on the real ILI parameters 

should be considered in future studies to improve the practicality of the proposed 

method.  Additionally, selecting different forms of autocorrelation functions and 

distributions based on the value range of ILI parameters may better simulate the 

corrosion field. 

4. The variability of synthetic fields generated by the framework presented in Chapter 5 

may be too small.  In other words, the synthetic fields are too similar to the natural 

corrosion fields.  Besides, to generate synthetic fields by the proposed framework, 

detailed scalograms are required.  These issues may be solved by extracting and 

summarizing essential information in the scalograms.  By keeping only the parts of 

the scalogram with high energy or summarizing the scalogram as several or dozens of 

quantities, we can introduce more uncertainties into the simulation.  Furthermore, it is 

promising to introduce or develop a transform with an arbitrary choice of redundancy 

and can be incorporated into IPAC, so that the relation between the redundancy of the 

transform and the resolution of synthetic fields in the time (spatial) and frequency 

(wavenumber) domains can be further investigated.  This can be involved in the 

future study so that one can choose a more suitable transform according to the 

requirements (e.g. variability, spatial or wavenumber resolution, computational cost) 

of generating synthetic fields. 
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Appendices 

Appendix A: Determination of the upper bounds of wavelet 
thresholds 
Let 𝐹𝐹𝑖𝑖,𝛼𝛼(𝑗𝑗1, 𝑗𝑗2) (j1, j2 = 1, 2, …, Amax,i are the integer index of filters, and Amax,i is the 

length of the 1D filter at the ith level) denote the 2D analysis filter used to calculate the ith 

level wavelet coefficients of the α sub-band.  A wavelet coefficient is calculated by 

convolving the analysis filters and the original signal: 

𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� = ∑ ∑ 𝑧𝑧(𝑥𝑥,𝑦𝑦)𝐹𝐹𝑖𝑖,𝛼𝛼�𝜏𝜏𝑥𝑥 − 𝑥𝑥, 𝜏𝜏𝑦𝑦 − 𝑦𝑦�𝑦𝑦𝑥𝑥  (A.1) 

Equation (3.6) and Eq. (A.1) are equivalent, because 𝐹𝐹𝑖𝑖,𝛼𝛼 is the non-zero part of 1
2𝑖𝑖
𝜓𝜓(𝛼𝛼) 

arranged in reverse order in both directions.  In Chapter 3, a corrosion cluster z is 

periodically extended at four bounds when calculating the wavelet coefficients.  Let 𝑧𝑧(𝑃𝑃𝑃𝑃) 

denotes the periodically extended z.  Let 𝐵𝐵𝑖𝑖,𝛼𝛼,𝜏𝜏𝑥𝑥,𝜏𝜏𝑦𝑦(𝑥𝑥,𝑦𝑦) = 𝑧𝑧(𝑃𝑃𝑃𝑃)(𝑥𝑥, 𝑦𝑦) ≥ 0, where 𝜏𝜏𝑥𝑥 −

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝜏𝜏𝑥𝑥 − 1  and 𝜏𝜏𝑦𝑦 − 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 ≤ 𝑦𝑦 ≤ 𝜏𝜏𝑦𝑦 − 1 .  𝐵𝐵𝑖𝑖,𝛼𝛼,𝜏𝜏𝑥𝑥,𝜏𝜏𝑦𝑦  can be considered as a 

part of z near �𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� for calculating 𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦�.  Since 𝐹𝐹𝑖𝑖,𝛼𝛼 is determined if a wavelet 

function is selected, the wavelet coefficient 𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� only depends on the grid point 

values in 𝐵𝐵𝑖𝑖,𝛼𝛼,𝜏𝜏𝑥𝑥,𝜏𝜏𝑦𝑦. 

Based on the definition of 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢), if �𝑧𝑧𝜓𝜓

(𝛼𝛼,𝑖𝑖)� > 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢)𝜂𝜂𝑑𝑑, at least one gird point in 𝐵𝐵𝑖𝑖,𝛼𝛼,𝜏𝜏𝑥𝑥,𝜏𝜏𝑦𝑦 

have a corrosion depth greater than ηd.  Let J(+) and J(-) denote sets of points that 

𝐹𝐹𝑖𝑖,𝛼𝛼(𝑗𝑗1, 𝑗𝑗2) > 0 if (j1, j2)∈J(+) and 𝐹𝐹𝑖𝑖,𝛼𝛼(𝑗𝑗1, 𝑗𝑗2) < 0 if (j1, j2)∈J(-), respectively.  Consider 

the positive and negative taps of 𝐹𝐹𝑖𝑖,𝛼𝛼, respectively denoted as 𝐹𝐹𝑖𝑖,𝛼𝛼
(+) and 𝐹𝐹𝑖𝑖,𝛼𝛼

(−), as follows: 

𝐹𝐹𝑖𝑖,𝛼𝛼
(+)(𝑗𝑗1, 𝑗𝑗2) = �𝐹𝐹𝑖𝑖,𝛼𝛼(𝑗𝑗1, 𝑗𝑗2),      (𝑗𝑗1, 𝑗𝑗2) ∈ 𝐉𝐉(+)

0,      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
 (A.2) 

𝐹𝐹𝑖𝑖,𝛼𝛼
(−)(𝑗𝑗1, 𝑗𝑗2) = �𝐹𝐹𝑖𝑖,𝛼𝛼(𝑗𝑗1, 𝑗𝑗2),      (𝑗𝑗1, 𝑗𝑗2) ∈ 𝐉𝐉(−)

0,      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
 (A.3) 
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For the LL sub-band, �Σ𝑗𝑗1Σ𝑗𝑗2𝐹𝐹𝑖𝑖,𝛼𝛼
(+)(𝑗𝑗1, 𝑗𝑗2)� > �Σ𝑗𝑗1Σ𝑗𝑗2𝐹𝐹𝑖𝑖,𝛼𝛼

(−)(𝑗𝑗1, 𝑗𝑗2)�.  For LH, HL, and HH 

sub-bands, �Σ𝑗𝑗1Σ𝑗𝑗2𝐹𝐹𝑖𝑖,𝛼𝛼
(+)(𝑗𝑗1, 𝑗𝑗2)� = �Σ𝑗𝑗1Σ𝑗𝑗2𝐹𝐹𝑖𝑖,𝛼𝛼

(−)(𝑗𝑗1, 𝑗𝑗2)�.  It follows that if all the grid points 

in 𝐵𝐵𝑖𝑖,𝛼𝛼,𝜏𝜏𝑥𝑥,𝜏𝜏𝑦𝑦 corresponding to J(+) have a corrosion depth ηd while other grid points are 

zeros, the wavelet coefficient 𝑧𝑧𝜓𝜓
(𝛼𝛼,𝑖𝑖)�𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦� = 𝜂𝜂𝛼𝛼,𝑖𝑖

(𝑢𝑢𝑢𝑢)𝜂𝜂𝑑𝑑 .  Therefore, 𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢)  can be 

calculated by: 

𝐵𝐵𝑖𝑖,𝛼𝛼,𝜏𝜏𝑥𝑥,𝜏𝜏𝑦𝑦(𝑥𝑥,𝑦𝑦) = �𝜂𝜂𝑑𝑑 ,      𝑥𝑥 = 𝜏𝜏𝑥𝑥 − 𝑗𝑗1,𝑦𝑦 = 𝜏𝜏𝑦𝑦 − 𝑗𝑗2, (𝑗𝑗1, 𝑗𝑗2) ∈ 𝐉𝐉(+)

0,      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
 (A.4) 

𝜂𝜂𝛼𝛼,𝑖𝑖
(𝑢𝑢𝑢𝑢) = �∑ ∑ 𝐵𝐵𝑖𝑖,𝛼𝛼,𝜏𝜏𝑥𝑥,𝜏𝜏𝑦𝑦(𝑥𝑥,𝑦𝑦)𝐹𝐹𝑖𝑖,𝛼𝛼�𝜏𝜏𝑥𝑥 − 𝑥𝑥, 𝜏𝜏𝑦𝑦 − 𝑦𝑦�𝑦𝑦𝑥𝑥 � /𝜂𝜂𝑑𝑑 = Σ𝑗𝑗1Σ𝑗𝑗2𝐹𝐹𝑖𝑖,𝛼𝛼

(+)(𝑗𝑗1, 𝑗𝑗2) (A.5) 

If the wavelet function for 2D DWT is selected, 𝐹𝐹𝑖𝑖,𝛼𝛼(𝑗𝑗1, 𝑗𝑗2) is determined.  The values in 

Table 3.2 are calculated by Eqs. (A.2), (A.4), and (A.5) with 𝐹𝐹𝑖𝑖,𝛼𝛼(𝑗𝑗1, 𝑗𝑗2) determined by 

DB2. 
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Appendix B: Master and Gurley’s algorithm for non-Gaussian 
simulation 
Masters and Gurley (2003) proposed an algorithm for non-Gaussian simulation.  This 

method enable researchers to generate synthetic record x(t) with target power spectral 

density function 𝑆𝑆𝑥𝑥𝑥𝑥𝑇𝑇  and cumulative distribution function 𝐹𝐹𝑋𝑋𝑇𝑇.  The algorithm is presented 

as follows: 

1) Generate a Gaussian record ( )x j t∆  using the following equation: 

 𝑥𝑥(𝑗𝑗Δ𝑡𝑡) = 2∑ �𝑆𝑆𝑥𝑥𝑥𝑥𝑇𝑇 (𝑘𝑘Δ𝜔𝜔)Δ𝜔𝜔 ∙ 𝑒𝑒𝑖𝑖𝜙𝜙𝑘𝑘 ∙ 𝑒𝑒𝑖𝑖(𝑘𝑘Δ𝜔𝜔)(𝑗𝑗Δ𝑡𝑡)𝑀𝑀−1
𝑘𝑘=0  (B.1) 

where Δt is the time increment; M is the index of the highest contributing frequency; 

k is the index of contributing frequency; Δω is the frequency increment; e is the base 

of the natural logarithms; 𝑖𝑖 = √−1 is the imaginary unit; and ϕk are phase angles that 

uniformly and independently distributed over [0 2π].  Denote 𝑥𝑥(𝑗𝑗Δ𝑡𝑡) as 𝑥𝑥𝑝𝑝𝑝𝑝(𝑗𝑗Δ𝑡𝑡).  

𝑥𝑥𝑝𝑝𝑝𝑝(𝑗𝑗Δ𝑡𝑡) matches 𝑆𝑆𝑥𝑥𝑥𝑥𝑇𝑇  but the marginal distribution will deviate from 𝐹𝐹𝑋𝑋𝑇𝑇. 

2) Denote the cumulative distribution function (CDF) of 𝑥𝑥𝑝𝑝𝑝𝑝(𝑗𝑗Δ𝑡𝑡)  as 𝐹𝐹𝑋𝑋� .  Let 

𝑥𝑥𝑎𝑎𝑎𝑎(𝑗𝑗Δ𝑡𝑡) = (𝐹𝐹𝑋𝑋𝑇𝑇)−1 �𝐹𝐹𝑋𝑋� �𝑥𝑥𝑝𝑝𝑝𝑝(𝑗𝑗Δ𝑡𝑡)��.  𝑥𝑥𝑎𝑎𝑎𝑎(𝑗𝑗Δ𝑡𝑡)matches 𝐹𝐹𝑋𝑋𝑇𝑇 but deviate from 𝑆𝑆𝑥𝑥𝑥𝑥𝑇𝑇 . 

3) Apply Fourier transform on 𝑥𝑥𝑎𝑎𝑎𝑎(𝑗𝑗Δ𝑡𝑡) and obtain the phase ϕk for each frequency 

component.  𝑥𝑥𝑝𝑝𝑝𝑝(𝑗𝑗Δ𝑡𝑡)is generated using Eq. (A1), where the phase ϕk are replaced by 

the phases calculated from𝑥𝑥𝑎𝑎𝑎𝑎(𝑗𝑗Δ𝑡𝑡). 

4) Repeat step (b) and (c) until the error 𝜀𝜀 =
∑ �𝑥𝑥𝑎𝑎𝑎𝑎(𝑗𝑗Δ𝑡𝑡)−𝑥𝑥𝑝𝑝𝑝𝑝(𝑗𝑗Δ𝑡𝑡)�

2
𝑗𝑗

∑ �𝑥𝑥𝑎𝑎𝑎𝑎(𝑗𝑗Δ𝑡𝑡)�2𝑗𝑗
 reaches the user-

determined tolerance. In this study, ε = 0.1% is employed. 

Usually 𝑥𝑥𝑎𝑎𝑎𝑎(𝑗𝑗Δ𝑡𝑡) will be used as the output.  This algorithm can be used to generate 

multi-dimensional signals, if the multi-dimensional power spectral density function is 

given. 
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Appendix C: DT-CDWT filters used in this study 
In 1D DT-CDWT, a 1D signal is decomposed by two separable trees (i.e. the real tree 

ψre(∙) and the imaginary tree ψim(∙)), and the complex coefficients are calculated by 

assigning wavelet coefficients from the real tree as the real part, and wavelet coefficients 

from the imaginary tree as the imaginary part.  The first level decomposition is 

undecimated, and coefficients at odd and even positions are considered as coefficients 

from the real and imaginary trees, respectively.  The filters used at the first level can be 

any filters with the perfect reconstruction.  In this study, the (5,7)-tap near-orthogonal 

filters used at the first level are listed in Table C.1 (Antonini et al. 1992).  The number of 

taps is the number of coefficients in a filter. 

 

Table C.1 The (5,7)-tap near-orthogonal filters 

Analysis filter Synthesis filter 

Low-pass High-pass Low-pass High-pass 
 

3/280 -3/280 
 

-1/20 -3/56 -3/56 -1/20 

1/4 -73/280 73/280 -1/4 

3/5 17/28 17/28 3/5 

1/4 -73/280 73/280 -1/4 

-1/20 -3/56 -3/56 -1/20 
 

3/280 -3/280 
 

 

For the second and higher level of 1D DT-CDWT, the shift invariance is achieved by the 

Q-shift filters proposed by Kingsbury (2001).  The 10-tap Q-shift filters for the real and 

imaginary trees are listed below: 
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Table C.2 The 10-tap Q-shift filters for the real tree 

Analysis filter Synthesis filter 

Low-pass High-pass Low-pass High-pass 

0.05113041 -0.00618188 -0.00618188 -0.05113041 

-0.01397537 0.00168968 -0.00168968 -0.01397537 

-0.10983605 -0.10023122 -0.10023122 0.10983605 

0.26383956 -0.00087362 0.00087362 0.26383956 

0.76662847 0.56365571 0.56365571 -0.76662847 

0.56365571 -0.76662847 0.76662847 0.56365571 

0.00087362 0.26383956 0.26383956 -0.00087362 

-0.10023122 0.10983605 -0.10983605 -0.10023122 

-0.00168968 -0.01397537 -0.01397537 0.00168968 

-0.00618188 -0.05113041 0.05113041 -0.00618188 
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Table C.3 The 10-tap Q-shift filters for the imaginary tree 

Analysis filter Synthesis filter 

Low-pass High-pass Low-pass High-pass 

-0.00618188 -0.05113041 0.05113041 -0.00618188 

-0.00168968 -0.01397537 -0.01397537 0.00168968 

-0.10023122 0.10983605 -0.10983605 -0.10023122 

0.00087362 0.26383956 0.26383956 -0.00087362 

0.56365571 -0.76662847 0.76662847 0.56365571 

0.76662847 0.56365571 0.56365571 -0.76662847 

0.26383956 -0.00087362 0.00087362 0.26383956 

-0.10983605 -0.10023122 -0.10023122 0.10983605 

-0.01397537 0.00168968 -0.00168968 -0.01397537 

0.05113041 -0.00618188 -0.00618188 -0.05113041 

 

Denoting the complex filters in 1D DT-CDWT as ( (( ) ) )c re imt t j tψ ψ ψ= + , filters of 2D 

DT-CDWT are calculated from tensor product: 

[ ] [ ]1( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )re im im im ec c c r r re imex y x y x y x y j x y x yψ ψψ ψ ψ ψ ψ ψ ψ ψ ψ= ⊗ = − + +
 (C.1) 

[ ] [ ]*
2 ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )re re im im im re rc e imc cx y x y x y x y j x y x yψ ψψ ψ ψ ψ ψ ψ ψ ψ ψ= ⊗ = + + −

 (C.2) 
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Appendix D: GLCM features 
Let k denote the number of gray levels of a 2D record.  The GLCM Pij, 0 ≤ i, j ≤ k-1, can 

be calculated if the pixel separation (Δx, Δy) is specified.  The following five textural 

features can be obtained from Pij (Hall-Beyer 2017): 

1) Shannon entropy: 2log
i ijj ijP P−∑ ∑ . Define 2log 0ij ijP P =  if Pij = 0. 

Normalized Shannon entropy (NSE): 
2

2

log

2log
i ijj ijP P

NSE
k

= −
∑ ∑

 

2) Angular second moment (ASM): 2
ji j iASM P=∑ ∑  

3) Contrast ratio: 2( )
i ijj

P i j− ⋅ −∑ ∑  

Normalized contrast ratio (NCR): 
2

2

( )

( 1)
iji j

P i j
NCR

k

⋅ −
= −

−
∑ ∑

 

4) Correlation (COR): 
( ) x y

y

j

x
i j

ii j P
COR

µ µ
σ σ

 ⋅ ⋅ −
=  

  
∑ ∑  

5) Inverse difference moment (IDM, local homogeneity): 21 ( )j
ij

i

P
IDM

i j
=

+ −∑ ∑  

These textural features quantify the irregularity of the record: a record with high values of 

NSE and NCR, and low values of ASM, COR and IDM is usually irregular. 
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Appendix E: Additional corrosion fields modelling 
Additional examples for simulating the corrosion fields are presented based on the target 

scanned corrosion features.  In all cases, the conclusions drawn from the example shown 

in the main text are equally applicable to the results for the examples presented in this 

appendix. 
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Figure E. 1 Measured and simulated corrosion fields based on three transforms 

(unit: mm) 
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Figure E. 2 Empirical PDF of the burst capacity of pipe segment obtained from 

realizations of the simulated field: (a) Corrosion field #1; (b) Corrosion field #2; and 

(c) Corrosion field #3 
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Figure E. 3 Target, mean, and standard deviation of CWT scalograms of 100 

simulated corrosion fields (unit: mm2): (a) sx/sx,min = 1, sy/sy,min = 1; (b) sx/sx,min = 16, 

sy/sy,min = 1; (c) sx/sx,min = 1, sy/sy,min = 16; and (d) sx/sx,min = 16, sy/sy,min = 16 
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Figure E. 4 Target, mean, and standard deviation of DT-CDWT scalograms of 100 

simulated corrosion fields (unit: mm2) 
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Figure E. 5 Target, mean, and standard deviation of DT-CHWT scalograms of the 

100 simulated corrosion fields (unit: mm2) 

 

The COVs of the burst capacities of simulated fields obtained from corrosion field #1 

using DT-CDWT and DT-CHWT are about 1.3%, while the COV of other cases are 

below 1% (the same pipe geometric and material properties as described in Section 5.3 

are employed in RSTRENG to evaluate the burst capacity). 

 

 



180 

 

 

Table E.1 Mean texture features of simulated and measured corrosion fields. (Δx, Δy) 

= (1, 0) 

Corrosion samples NSE 
(×10-1) 

ASM 
(×10-1) 

NCR 
(×10-3) 

COR 
(×10-1) 

IDM 
(×10-1) 

Corrosion 
field #1 

Measured field 1.731  6.367  0.901  9.095  8.433  

CWT 1.759  6.313  1.012  8.981  8.345  

DT-CDWT 1.650  6.533  0.873  9.116  8.735  

DT-CHWT 1.711  6.418  0.947  9.040  8.538  

Corrosion 
field #2 

Measured field 1.617  5.868  0.319  8.686  8.462  

CWT 1.657  5.837  0.374  8.455  8.367  

DT-CDWT 1.567  6.058  0.316  8.694  8.770  

DT-CHWT 1.620  5.913  0.381  8.421  8.587  

Corrosion 
field #3 

Measured field 2.284  4.432  1.141  7.069  7.334  

CWT 2.303  4.399  1.213  6.882  7.250  

DT-CDWT 2.212  4.665  1.149  7.037  7.771  

DT-CHWT 2.282  4.440  1.287  6.675  7.435  
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Table E.2 Mean texture features of simulated and measured corrosion fields. (Δx, Δy) 

= (0, 1) 

Corrosion samples NSE 
(×10-1) 

ASM 
(×10-1) 

NCR 
(×10-3) 

COR 
(×10-1) 

IDM 
(×10-1) 

Corrosion 
field #1 

Measured field 1.667  6.479  0.589  9.408  8.670  

CWT 1.700  6.427  0.679  9.317  8.500  

DT-CDWT 1.628  6.559  0.686  9.304  8.764  

DT-CHWT 1.670  6.485  0.670  9.318  8.609  

Corrosion 
field #2 

Measured field 1.568  5.975  0.262  8.921  8.695  

CWT 1.625  5.902  0.322  8.672  8.475  

DT-CDWT 1.542  6.097  0.282  8.831  8.839  

DT-CHWT 1.584  5.980  0.329  8.634  8.696  

Corrosion 
field #3 

Measured field 2.125  4.774  0.594  8.475  7.858  

CWT 2.166  4.711  0.682  8.246  7.691  

DT-CDWT 2.093  4.898  0.665  8.287  8.103  

DT-CHWT 2.126  4.792  0.713  8.158  7.955  
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Table E.3 Mean texture features of simulated and measured corrosion fields. (Δx, Δy) 

= (1, 1) 

Corrosion samples 
NSE 

(×10-1) 

ASM 

(×10-1) 

NCR 

(×10-3) 

COR 

(×10-1) 

IDM 

(×10-1) 

Corrosion 

field #1 

Measured field 1.788  6.253  1.325  8.677  8.321  

CWT 1.812  6.205  1.476  8.522  8.229  

DT-CDWT 1.717  6.418  1.370  8.607  8.560  

DT-CHWT 1.774  6.291  1.420  8.547  8.346  

Corrosion 

field #2 

Measured field 1.701  5.707  0.455  8.131  8.232  

CWT 1.735  5.662  0.526  7.841  8.130  

DT-CDWT 1.645  5.909  0.461  8.090  8.539  

DT-CHWT 1.700  5.736  0.545  7.738  8.325  

Corrosion 

field #3 

Measured field 2.337  4.301  1.391  6.446  7.173  

CWT 2.358  4.242  1.491  6.183  7.059  

DT-CDWT 2.265  4.536  1.385  6.437  7.583  

DT-CHWT 2.330  4.298  1.554  5.979  7.240  
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