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ABSTR ACT

This thesis is concerned with problems arising when one wants to apply flexible non- 
parametric local regression models to data when there is additional qualitative in
formation. It is also concerned with nonparametric regression problems involving 
interval-censored responses. These problems are studied via asymptotic theory where 
possible and by simulation.

Iterated conditional expectation methods and local likelihood estimation for 
nonparametric interval-censored regression are developed. Simulation results show 
that local likelihood estimation is often superior to local regression estimators when 
observations have been imputed using either interval midpoints or iterated conditional 
expectations when the censoring intervals are wide or of varying width. When the 
intervals are smaller and of fixed width, none of the imputation approaches dominate 
the others.

Constrained data sharpening for nonparametric regression is applied to new 
situations such as where constraints are defined by convexity, concavity, and in terms 
of differential operators. Data sharpening is compared with competing kernel methods 
in terms of bias, variance and MISE. It is proved that the constrained data sharpening 
estimator has the same rate of convergence as the constrained weighting estimator of 
Hall and Huang (2001). Also, penalized data sharpening is proposed as a new form of 
constrained data sharpening. The sharpened responses can be computed analytically 
which makes the method very convenient, both for studying theoretically and for 
applying practically.

KEYWORDS: interval-censored responses, iterated conditional expectation, local 
likelihood, data sharpening, qualitative constraint, penalized data sharpening.
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Chapter 1

INTRODUCTION

In the forests covering most of Canada, the timing of the first appearance of as
pen leaves signifies the end of a short spring wildfire season that occurs after the 
snow melts. Before the leaves appear, the forest floor can become very dry creating 
favourable conditions for ignition and spread. After the leaves appear, the sun cannot 
dry the forest floor as quickly, and the young leaves act as a form of fire retardant.

From a fire management point of view, it is desirable to predict the time of flush 
in advance. Times of first leaf appearance (referred to as the “aspen flush dates” ) 
were recorded at 74 weather stations in Alberta. Monitoring times were sporadic so 
often the exact time of flush was not observed directly: the time of flush is interval- 
censored. Since daily temperature measurements are available at all 74 stations, and 
since higher temperatures would be expected to correlate with an earlier flush date, 
it is natural to ask whether flush date can be predicted in advance, given earlier 
temperature information.

The plot of aspen flush date (in number of days after January 1) versus aver
age March temperature is presented in Figure 1.1 for one of the years of data. It is 
unreasonable to expect a strictly linear relationship between flush date and March 
temperature. Thus, we face a problem of estimating a nonlinear functional relation
ship. However, we have additional qualitative information: the flush date should 
decrease as the temperature increases. Thus, we aim to model the interval-censored 
flush date as a nonlinear function of the earlier temperature, subject to a monotonicity 
constraint.

In this thesis, we consider observations on two or possibly more variables, where 
it is assumed that one of the variables may be predicted from the others. In some 
cases, the response variable is not directly observed but rather is reported in the 
form of an interval which contains the true observation. The other variables are 
assumed to be completely observed without error. We will focus on the case of one 
predictor variable though our methods can be generalized to the cases of more than 
one predictor variable.
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To this kind of data, we seek to fit the regression model

Vi =  g{xi) =  1,2, ...,n (1.1)

where the e ’̂s are independent and identically distributed, and have marginal density 
f £, and they are independent of the predictors x%. When the y^s are interval-censored, 
they are observed as I±, I2 , . . . ,  In, where y% G Lt =  [L,i, Rj], The xt \s are assumed 
exactly observed without measurement error. We assume further that g(x) is a smooth 
function, possessing at least a second derivative.

Monotonicity is only one of many possible qualitative restrictions that could be 
imposed on a regression function. We will consider other possibilities as well, such as 
convexity, periodicity and so on.

Data sharpening is one way to impose such restrictions. It has not been studied 
thoroughly so one of our objectives is to study the properties of this methodology 
and to check its performance in a variety of situations.

Figure 1.1: Aspen flush dates versus average March temperature (at 74 weather
stations in Alberta, 2006). Vertical bars correspond to the time intervals in which
flush is thought to have occurred.
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The remainder of this thesis is constructed as follows. Chapter 2 provides a 
brief summary of background material on kernel-based nonparametric regression. It 
briefly surveys the literature on interval-censoring and on nonparametric regression 
with qualitative constraints. In Chapter 3, imputation via conditional expectation 
and local likelihood methods are contrasted with a midpoint imputation method for 
bivariate regression involving interval-censored responses. Although the methods can 
be extended in principle to higher order polynomials, our focus is on the local con
stant case. Chapter 4 develops a kernel regression method based on data sharpening 
which can impose many kinds of qualitative constraints and incorporate functional in
formation. Simulation results show that imposing qualitative constraints can lead to 
substantial improvements in accuracy. We derive the asymptotic rate of convergence 
for this class of estimators. A reweighting procedure suggested in the literature for 
monotonie regression is also considered, adapted for use with more general forms of 
constraints and compared with the data sharpening procedure. In Chapter 5, we show 
that data sharpening can be used as a convenient way to subject kernel regression to 
roughness penalties as well as many other penalties such as may arise in functional 
data analysis. This form of data sharpening is highly tractable, allowing us to study 
its properties in a more direct way than in other forms of data sharpening. The final 
chapter summarizes the thesis and outlines a number of research questions that arise 
from the work.
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Chapter 2

PRELIMINARIES AN D  BACKGRO UN D  MATERIAL

2.1 Kernel Regression

In this thesis, we consider the nonparametric regression problem for bivariate data of 
the form (aq, y\), (̂ 2> 2/2)> • • •, {xn, yn) where it is assumed that

Vi =  g{xi) +  £i-

The £{ s are independent of each other and of the X{ s, and have mean 0 and variance 
cr2. The function g(x) is assumed to be smooth. The design points xt may have been 
fixed in advance or generated randomly.

Kernel methods, such as local polynomial regression (e.g., Fan and Gijbels 
(1994)) are popular methods for estimating g(x). Briefly, a polynomial model of 
degree p is fit to data in a neighbourhood of x using weighted least squares. Local 
regression coefficients, ¡3X =  [Px0> Pxh ■ ■ ■ > Arp]T• are chosen to minimize

n ( p
Vi ~ ' 5 2 P x j { z i - x ) j 

i=1  ̂ j =0

for each value of x, where Ky(x) =  K(x/h)/h. Here K(x)  is usually a symmetric 
probability density function, and h is the smoothing parameter -  the bandwidth which 
determines the size of the neighbourhood of x. For example, the normal density with 
mean 0 and standard deviation h is often used as a kernel function, though there are 
other densities which provide slightly better performance.

The local least-squares solution is given by

Px =  (XTW X ) -1X TW y
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where y is the n-vector with zth element z/}, X  is an n x (p +  1) matrix with (i. j)th  
element (xj —x)J, and W  is the n x n diagonal matrix with (i. z)th element K^Xj — x). 
The estimator for g(x) is given by

9(x) =  Pox-

This technique originated in work by Nadaraya (1964) and Watson (1964) who 
considered the p =  0 (local constant) case. Fan & Gijbels (1996) advocate the use of 
p =  1 (local linear) or other odd positive integers. They also note the use of a binning 
procedure, which, when used with the Fast Fourier Transform (FFT), leads to fast, 
efficient computations of estimates. The methods studied in this thesis are amenable 
to this procedure.

A convenient kernel function is the normal or Gaussian kernel. Often, theo
retical results are easier to obtain for compactly supported kernel functions, such as 
the biweight function which provides very similar performance to the normal kernel 
function.

Kernel regression estimators can also be derived from local likelihood considera
tions. We refer to Loader (1999) for details of the theory and methods. For regression 
with normally distributed errors, local log-likelihood modelling leads to maximization 
of

1
2 ^

n
- p ( x i ) ) 2K h( x -

i= 1
Xi) (2.2)

with respect to the coefficients of a polynomial p(x); for example, when p(x) =  
00, maximizing (2.2) with respect to /3q leads to the Nadaraya-Watson regression 
estimator

9(x) =  Â) T , K hix -  x i)vi
E  K h{ x - X i )

(2.3)

This entire class of estimators is linear in the responses, i.e.

n
g (x) =  ^ 2 M x )vi

i—1

for a sequence of functions (A j(x )} which are related to the kernel and are functionally
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independent of the y ’s. For example, when p =  0,

Ai{x) Kh{x -  Xj)
Y!j=\Kh{x -  x jY

(2.4)

since in that case, it is well known that

=  E "= i K h(x -  x i)Vi
9U  E]=i Kh( x - Xj)-

Although the quality of the resulting estimate does not depend crucially on 
the kernel, choice of bandwidth is important (e.g. Wand and Jones (1995)). Several 
methods of bandwidth selection have been suggested, including cross-validation, ad
vocated for example by Loader (1999). Others, including Wand and Jones (1995), 
have recommended a direct-plug-in approach which is an attempt to minimize the 
asymptotic mean integrated squared error (AMISE) of the estimator; this is done 
by “plugging-in” estimates of higher order derivatives of the regression function and 
an estimate of the error variance into an expression for the AMISE, and applying 
calculus. The selector of Ruppert et al. (1995) is an example; it is conveniently im
plemented in the R package KemSmooth (Wand and Ripley (2009)), and it will be 
employed at various points in this thesis.

A fixed bandwidth works best only when the second derivative of the regression 
function does not change rapidly. It is well-known that peaks in the regression func
tion are usually underestimated (e.g. Choi et al, 2000). If the bandwidth is taken 
small enough to minimize this kind of bias, the resulting estimator often exhibits 
excessive fluctuations in regions where the regression function should be flat. Allow
ing the bandwidth to vary with x is one way to solve this problem, in principle, but 
it leads to the practical problem of determining this adaptive bandwidth. Doksum 
et al. (2000) provide a solution, but the numerical efficiency of the FFT is no longer 
available.

Choi et al. (2000) propose a procedure they refer to as “data sharpening” . In 
fact, their paper describes a number of techniques for adjusting data before applying 
a Nadaraya-Watson estimator or local linear estimator. The bias of the resulting 
estimate is reduced to some extent. The first approach involves slightly shifting 
the design points (i.e., the values of the explanatory variable) so that they become 
more concentrated in places where the original design density had been relatively
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low and more sparse where the concentration had been high. The second approach, 
which involves adjusting response variables rather than explanatory variables, reduces 
the bias of the Nadaraya-Watson estimator by an order of magnitude; and a third 
method, which perturbs both explanatory and response variables before substituting 
them back into the conventional Nadaraya-Watson estimator, achieves bias reductions 
of the same order as the second method, but in a different manner.

2.2 Interval-censoring

Linear regression with censored responses has been considered in the papers by 
Schmee and Hahn (1979), Miller (1976) and Buckley and James (1979).

The literature on nonparametric regression when responses are interval-censored 
is not extensive. A nonparametric maximum likelihood method has been employed by 
Rabinowitz et al. (1995) to linearly model log survival times with several covariates 
where the survival times were interval-censored and few assumptions were made about 
the error distribution.

A simple way of handling interval-censored responses is to replace each interval 
with its midpoint. A local regression procedure is then applied to these imputed 
responses as in the procedure at (2.3):

9{x)
S i ^ K h( x  -  X j )  

'E iK h(x ~ x i)
(2.5)

Midpoint imputation is only reasonable when the intervals are fairly short. When the 
width of the interval is large, we may run into problems. Law and Brookmeyer (1992) 
show that the statistical properties of midpoint imputation depend strongly on the 
width of the interval between monitoring times. They note that midpoint imputation, 
used to estimate the regression parameter in a proportional hazards model, might 
result in a biased estimate if the intervals are wide and varied. Also the standard 
error of the estimator is underestimated since midpoint imputation assumes that the 
failure times are exactly known when in fact they are not (see Kim (2003)). Similar 
discussion on midpoint imputation approach can found on P.34-37 in Sun (2006).

Local likelihood methods for estimation of the hazard function with interval- 
censored responses have been developed by Betensky et al. (1999) and Betensky et al. 
(2002). Local likelihood methods also have been adapted for density estimation with
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interval-censored data using conditional expectation and smoothed EM algorithm by 
Braun et al. (2005). The iteration is based on the fixed point equation

Here, the random variables X  have not been observed directly; instead the data are in 
the form of intervals: I\,...  , In, each of which contains the true underlying random 
quantity.

2.3 Incorporating Qualitative Information

There is often interest in estimating the unknown mean function g(x) not only with 
smoothness but also subject to a given set of qualitative constraints, such as mono
tonicity, convexity, and so on.

2.3.1 Constrained Weighting

Inspired by the biased-bootstrap techniques of Hall and Presnell (1999), Hall and 
Huang (2001) have proposed a smooth, monotonically constrained kernel-type esti
mator, which involves tilting the empirical distribution of the responses by the least 
possible amount, subject to enforcement of the constraint. We shall refer to this 
approach as the “constrained weighting” method.

The basic idea is to view the nonparametric regression estimator in the form

i= 1
(2.6)

(2.7)

Then the re-weighted form of (2.7) is

n (2 .8)
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where p =  (pi, • • • ,pn) is a probability distribution on the set ■ ■ ■ ,xn. In order to 
impose the nondecreasing constraint, Hall and Huang (2001) choose p =  p to minimize 
the distance D(p) between p and the uniform distribution, pu =  (1/n, ••• ,1/n), 
subject to g, (-\p) >  0. The Kullback-Leibler divergence measure introduced by Cressie 
and Read (1984) has been used to compute to D(p).

In order to make the problem easier and to reduce the restriction on the weights 
Pi s, the ¿2 metric is considered by Racine and Parmeter (2009). Specifically, p is 
chosen to minimize

D{P) =  ¿ ( P *  -  ^ )2 
i—1

subject to any number of constraints which take the form

n

^ 2  nBi(x )ViPi -  c (x ) >  0 (2-9)
i=1

5 ^  nBi (x )ViPi - C { x )  =  0. (2.10)
¿=1

Here Bi(x) is defined as follows:

Bi{x) =  ^2Di{x)A\s\x),  
seS

(5)where S is a finite set of nonnegative integers, A ) J (x) is the s-th derivative of the 
function Ai(x) and Dj(x) and C(x) are functions of x. The sum of the weights 
is 1, i.e., Y^i=\Pi =  1- This leads to a quadratic programming problem with linear 
constraints. The probability vector p can be calculated using the s o lv e . QP () function 
in the quadprog R library (Turlach and Weingessel (2007)).

2.3.2 Data Sharpening

The data sharpening procedure of Braun and Hall (2001) provides another way of 
imposing qualitative constraints. The data are perturbed in a minimal way so that 
the local regression estimator applied to the perturbed data satisfies the constraints 
at a grid of m points in the domain of the regression function.
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To achieve monotonicity, one might impose the constraint g'{x) > 0. Let y*, i =  
1,2,. . .  ,n denote the perturbed responses, defined to minimize

n

\yi ~  yi\p
i=1

subject to
g'(zj) >  0 j  =  1,2 ,. . .  ,m

where g{x) =  Yli=1 Ai(x )yf ■ The Zj’s may differ from the x^s. In this chapter, the 
choice of z ’s has not been studied at all. This is addressed in Chapter 5.

This is a convex programming problem with linear constraints, thus, possessing 
a unique solution when p > 1. When p =  2, this is a quadratic programming problem 
which is straightforward to solve with publicly available software, even for fairly large 
values of n. For these reasons, we will focus on the quadratic case for the remainder 
of the thesis.

Data sharpening has the same goal as that of the constrained weighting scheme 
of Hall and Huang (2001); the data are pre-processed, so as to enhance the perfor
mance of a statistical procedure while preserving the advantages of relatively simple, 
low-order techniques, when substituting the new data into the conventional estimator.

The original idea behind data sharpening is due to Choi and Hall (1999) who 
were seeking to reduce bias in density estimation. The idea also has roots in the bias- 
bootstrap techniques of Hall and Presnell (1999) as does the approach of constrained 
weighting of Hall and Huang (2001). The difference between data sharpening and 
constrained weighting is that the former alters the data while keeping the weights 
associated with each point fixed, whereas the latter changes the weights associated 
with each data point, but keeps the data points fixed.

2.4 Other Methods and Tests

The earliest constrained nonparametric regression estimators subject to monotonicity 
is isotonic regression, proposed by Brunk (1955). The estimated curve is not smooth. 
A smooth version has been proposed by Mukerjee (1988) and Mammen (1991a). An 
alternative estimator, which is a slight modification of an estimator introduced by 
Friedman and Tibshirani (1984) was proposed by Mammen (19916).
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Dette et al. (2006) have suggested another method to impose monotonicity on 
a nonparametric regression function. This approach estimates the regression function 
by inverting a particular monotonic function.

Spline-based methods provide an alternative way to estimate the regression 
mean function g(x) under the imposition of qualitative constraints. Some refer
ences here include Ramsay (1988), Dierckx (1980), Mammen (19916), Mammen and 
Thomas-Agnan (1999) and Mayer (2008).

Statistical tests for the monotonicity of a regression function have also been 
proposed. This literature is reviewed briefly by Racine and Parmeter (2009). Testing 
the validity of other qualitative constraints has also been considered. For example, 
Yatchew and Hardle (2006) employ a residual-based test to check for monotonicity 
and convexity. The test of Yatchew and Bos (1997) is closest in spirit to the method 
we apply in the thesis, having the ability to test general smoothness constraints, 
though it is based on a series estimator instead of a kernel estimator.
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Chapter 3

LOCAL REGRESSION W H EN  THE RESPONSES ARE
INTERVAL-CENSORED

3.1 Introduction

The purpose of the present chapter is to propose and study methods for estimating 
a regression function in the presence of interval-censoring. One of the proposals 
applies the iterated conditional expectation method of Braun et al. (2005) to intervals 
estimated to contain the regression errors. The other approach is to apply conditional 
expectation to the local likelihood directly, assuming a normal error distribution. 
Both approaches are compared with the midpoint method using simulation.

This chapter will proceed as follows. In Section 3.2, we will describe the ap
proaches that we are studying. Section 3.3 is concerned with estimation of the residual 
variance. A simulation study will be carried out in Section 3.4, followed by a discus
sion of the results in Section 3.5. In Section 3.6, some illustrative examples will be 
provided.

3.2 Methods

As mentioned in Chapter 2, a simple method to handle interval-censored responses 
in nonparametric regression is midpoint imputation. However, it was pointed out 
there that under many circumstances, midpoint imputation can be very inaccurate, 
see Law and Brookmeyer (1992), Kim (2003)) and Sun (2006)

In this section, we will propose two methods for handling nonparametric re
gression problems where the responses are interval-censored. We will consider them 
in the context of the local constant (Nadaraya-Watson) regression estimator.
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3.2.1 Iterated Conditional Expectation Imputation

Our first proposal is to impute interval-censored responses using E(Y)|Yj € /¿]. Ap
plying the local constant regression estimator then leads to the form:

, S i E K K e  Ij]Kh(x 
S[ 1 JL iK k ix -X i )

XÙ
(3.1)

The conditional expectation must itself be estimated, because the conditional distri
bution of Y  given Y  G i) is generally unknown. A previously obtained estimate g(x) 
can be used to estimate E[Y)|Y) 6 It\, since

r , , h . y f e i y -  g{xi))dy 
Si{ M y  -  9(xi))dy

(3.2)

f le . zfs (z )dz
=  g{Xi) +  r 1 f , X , Jls . fe{z)dzcl

(3.3)

=  g{xi) +  e [£ì \i£ì\, (3.4)

where I£{ =  [Li -  g fa ) ,  Rx -  g(xi)\.
We will consider two cases: one where specific parametric distribution assump

tions on the error are made and one where a nonparametric estimate of the error 
density is used. Although we focus on the nonparametric assumption for g(x), in the 
literature there are numerous examples of papers where g(x ) is parametric but no 
specific form for error density is assumed, e.g., Komrek et al. (2005), Yu et al. (2006) 
and Zeng et al. (2006), etc.

When the error density is assumed normal, the expectation of Yx conditional 
on the censored interval IL is

V[Yl\Il] = g { x l)
j  0(/<) -  <f>{l!.) 

% ( R ' l) -  $ ( L ' ) ’
(3.5)

where I, =  [Lh Rx], l \ =  l̂ A  and R{ =
It is only necessary to estimate the dispersion parameter cr2. Various methods 

are available for estimating cr; these are described and compared in the next section. 
When we do not assume any parametric form for the errors, a local constant
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regression estimate for g(x) is based on the fact that

9(x)

^  fi.vfs(v-g(xi))dy 
^  S^feiv-^Xi^dy h X̂ X' 

E j K h( x - X j )
(3.6)

where the relation
1 _  / / , .  K h(z -  u ) f £(u)dLJ

* 4  . A M * *
(3.7)

leads to the local likelihood (constant) density estimate of the errors given by Braun 
et al. (2005).

The algorithm starts with an initial error density estimate and an initial re
gression function (chosen from interval midpoints, for example). Iterate the second 
relation (i.e. the density) to convergence at each iteration of the first relation. The 
specific algorithm we have employed is as follows:

1. Compute the interval midpoints of the Y{ s: y®.

2. Compute the initial regression function estimate:

. , \ E i K h(x -  Xi)yf 
9o\x ) =  ^  v  .--------- T“ '

E i Kh(x -  H)

Choose h, using a direct-plug-in method Ruppert et al. (1995), for example.

3. Estimate the noise density using the iterated conditional expectation procedure 
given by Braun et al. (2005).

(a) The interval-censored errors are estimated as I£i =  Ii — go(xi).

(b) The error density is estimated by the fixed point of

f s M  = n z—'i=l
1 "  I k . K h(z -  w)f£{w)dw 

__ _1 \ ________________________________

n  f l£ . fe {w )d w

where the initial guess at f £(w) is taken as a uniform density on the range 
of the observed intervals. In this step, the integrals over intervals are
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computed using trapezoid rule, and direct plug-in methodology is used to 
select the bandwidth of a kernel density estimate.

-  fl£. zf£(z)dz
4. Compute the conditional expectation, E[ej|/£J =  * -■*. — , of the £j’s.

JiF. fe{z)dz

5. Set E[yi\Ii] =  g(xi) +  E[sj|/e.], where g fa )  =  ^  ' The band‘
width h is recomputed using a direct plug-in approach. The expectation integral 
is computed using the integrate () function in R (Team (2008)).

6. Set go(x) =  g(x) and return to step (3) or stop when iteration has achieved 
convergence.

Note that the kernels do not have to be the same, nor the bandwidth. A density 
other than the uniform can be used for the initial guess at f £(w), though its support 
should contain the range of the observed intervals.

3.2.2 Local Likelihood

An alternative procedure which does not require direct imputation can be obtained 
if we model the censoring mechanism directly in the local likelihood. Here, we are 
making explicit use of an assumption that the censoring mechanism is independent 
of the responses.

If we assume normal errors, then the log-likelihood function for model (1.1) is 
given by

Knx,a 2) =  f 2 h g U (— P S ) )  (3.8)

when g(x) can be modelled as a polynomial px - We can make this a local log-likelihood 
function by inserting a kernel:

¿ l o g  U ( Ri ~ VX> ) ~  <HL{ ~ Pxi) )  K h(x -  i ,) .  (3.9)

Maximizing this expression with respect to the coefficients of the polynomial px gives 
the local polynomial estimator of g(x). This estimator is consistent even if g(x) is 
not a polynomial, but is sufficiently smooth.

When we set px =  Po, maximizing (3.9) with respect to ¡3q and a gives the local 
constant likelihood estimator for g(x).
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Comparing this method to that of Rabinowitz et al. (1995) we note that they 
allowed for non-normal errors, while we are allowing for a nonlinear regression func
tion. By replacing the normal cdf above with an empirical cdf, we would obtain a 
generalization of their method, but that is beyond the scope of the present chapter.

Again, we select band widths using the direct plug-in approach of Ruppert et al. 
(1995) using interval midpoints as the responses.

3.3 Estimation of a

A critical component of the parametric version of the iterated conditional expectation 
imputation approach is the estimation of a. For this reason, as well as the fact that 
uncertainty estimates for the other estimators will require some form of standard 
deviation estimate, we devote the present section to a study of some of the possible 
estimators of cr.

We consider three estimators.

3.3.1 Method 1

The first was proposed in Schmee and Hahn (1979) for simple linear regression with 
interval-censored responses, yi G [Lt. R?], The estimate arises from an iteration on 
the imputed responses. Starting with an initial guess at the responses yi,i  =  1, . . . ,  n, 
the intercept (3q, slope , and residual variance er1 2 3 are repeatedly estimated leading 
to successive adjustments of the imputed responses as follows:

1. Set L( =  (Li — (3q — PiXi)/a and 
R'i =  (Ri -  A) -  PlXi)/a.

2. Set Ci

3. Set yi =  A) +  PiXi -  îq .

3.3.2 Method 2

We can develop a second estimator in the following way. Note that for simple regres-
c\

sion with complete data, an unbiased estimator for a is given by

1
n — 2 E ê2Cl

i=l
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where £{ is the ith residual. 
Replace by E[e?|YJ G

n E Ei'
i= 1

7 k e h

We then use

E[e?|iï g h ] =
f,

Ri-E[yd 2
hj E[î/j £z4>{e)d£

Ri-Hvi
h-^[yi

(¡){£)d£

and integration by parts to obtain the relation

n — 2
g ^ K j )  -  L’̂ L y  

m 'i)  -  «(¿') .

and where, again, L' — L j -1 and R' =  ^ JJl ■
This last relation can be turned into a self-consistency algorithm or fixed-point 

iteration for an estimator, upon replacing all occurrences of a with a.

3.3.3 Method 3

Another self-consistency algorithm can be developed using the fact that

Var(Ej) =  Var (E[Ŷ  |/¿]) +  E ^ a r ^ /* ) ] .

We thus consider an estimator of the form

1 n 1 n

î 2 4 e « - « ) 2+ ^ I > . 2
i= 1 i= 1

where
Vi =  P0 +  Pi xi -  PCi

1 n
E[ÿi] =  Po +  Plxi - - ^ ^ 2

TX
i =  1

and
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Method n =  25 n =  50 n =  100
a =  .2 1 .00341 .00231 .00182

2 .00127 .00063 .00033
3 .00139 .00066 .00034

a =  .5 1 .0142 .01159 .01010
2 .0027 .00122 .00061
3 .0034 .00139 .00064

Table 3.1: Mean-squared error estimates when estimating a using the three methods 
applied to linear regression data where a =  .2

where, again,
•KR’i) -  <KL'i) 

c' $ ( « ' )  -  «>(£')

and
- 2 = S 2 ( ,  _  r m )  -  <KL'i) \ 2 _  m K )  -
j v 1 ■*(«;)-*(d)i «(B')-iu') ) '

The algorithm presented above is reminiscent of the approach used in general
ized estimation equation (GEE) (see, Liang and Zeger (1986)) inference: there the 
variance/covariance parameters are nuisance parameters and are fixed so that mean 
parameters can be estimated, which yields new residuals that can be used to estimate 
new values of the covariance parameters, and these two processes are iterated until 
convergence.

3.3.4 Comparing the Methods by Simulation

In order to determine which of these approaches to use when estimating a, we con
ducted a small simulation experiment in which 1000 bivariate samples each of size 
25, 50 and 100 were generated with normal errors, an intercept of 0 and a slope of 1,
i.e., g(x) =  x. Two values of the error standard deviation were considered: .2 and 3.

We interval-censored the responses by adding and subtracting independent ran
dom exponential amounts to each response; mean values (a) for the exponential vari
ates considered were .2 and .5 for the cases when a =  .2, and a mean value of .8 was 
considered when a =  3. Results in the form of estimated mean-squared errors are 
given in Tables 3.1 and 3.2.

Based on these simulations, we observe that all three methods give broadly 
similar results, but that the second approach is consistently slightly better than either
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Method n =  25 n =  50 n =  100
a =  .8 1 .2273 .1056 .05498

2 .2105 .0994 .04968
3 .2233 .0996 .05023

Table 3.2: Mean-squared error estimates when estimating a using the three methods 
applied to linear regression data where a =  3

Figure 3.1: The three target functions considered in the simulation study

of the two approaches. Thus, we have adapted the second method to the kernel 
regression problem we are considering.

3.4 A Simulation Comparison of the Imputation 

Approaches

In this section, we describe a simulation study that was conducted in order to compare 
the four estimation methods described in Section 3.2. The four methods to be com
pared are midpoint imputation, normal-based and nonparametric iterated conditional 
expectation imputation and the local likelihood approach.

3.4.1 Study Designs

We considered the following target functions (see Figure 3.1) in our simulation studies:
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1. Growth Curve: He and Shi (1998)

X{ ~  i.i.d.

Y  = 1 -  .42(log(xj))
Uniform [0,10], Ei ~ i.i.d.

+  1.5 Ei,

N( 0,1),

where X % and E{ were independent.

2. Logistic Curve: He and Shi (1998)

Xj ~  i.i.d. Uniform[—5,5],
* 1 +  exi

~  i.i.d.

+  0.1 Ei,

N { 0,1),

where Xj and £{ were independent.

3. Polynomial Function: Fan and Gijbels (1994).

Yi =  4.5 -  64X?(1 -  X i f  -  16(X { -  .5)2 +  0.25^, 

Xi ~  i.i.d. Uniform[0,1], £{ ~  i.i.d. N (0,1),

where Xj and £t were independent.

We considered two forms of censoring: one with exponentially distributed in
terval widths and one with fixed interval widths (for the growth curve target only).

For the exponential intervals, the upper and lower interval limits were obtained 
by evaluating Y{ in model (1.1) and adding and subtracting independent random 
variates from the exponential distribution with a specific rate:

Li = Y i-  Cn

and
Ri — Yi +  C j2

where Cn and C -t2 are independent exponential random variables with rate A. This 
form of interval would arise, for example, when evaluating current status at moni
toring times which follow a stationary Poisson process. Note that small values of A 
correspond to relatively wide censoring intervals.
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Fixed interval limits were obtained by evaluating the product of w and the 
ceiling or floor function of Yi/w, in which w is the fixed width of the interval:

Li =  [Yi/w]w

Ri =  [Yi/w +  1 }w.

We simulated 1000 sets of data for each target function. In each case, n =  50, 
100 and 200 observations were simulated. The design points x and the responses 
y were obtained from the above three settings. For the growth curve function, the 
regression curve was estimated at 9 equally spaced grid points (not the same as the de
sign points) on the interval [1,9]. For the logistic curve function, the regression curve 
was estimated at 9 equally spaced grid points (not the same as the design points) on 
the interval [—4,4]. For the polynomial function, the regression curve was estimated 
at 9 equally spaced grid points (not the same as the design points) on the interval 
[0.1,0.9]. For the growth curve, we used values of A G {0 .2,1 ,5} for the exponentially 
distributed censoring mechanism, and we used A G {0.8, 2, 8} for the logistic curve. 
For the polynomial target, we used a censoring mechanism which is similar in spirit 
to that used by Fan and Gijbels (1994). In particular, the censoring intervals were 
exponentially distributed with mean G {(c(r)), 3c(x)/5, 3c(m)/10}, where

c(x) =  (1.25 — |4r — 1 j), if 0 < x <  0.5,

=  (1.25 — |4x — 3|), if 0.5 < x < 1.

For the growth curve, we also censored responses using the fixed-width mecha
nism, where the width w took values in {0.5,2,4}.

For each set of data, we calculated the local constant regression estimate using 
midpoint imputation ( Page.7) , normal and nonparametric iterated conditional ex
pectation imputation (Page. 12-14), and the local likelihood approach (Page. 15). All 
computations were done in R (Team (2008)).

3.4.2 Comparisons of Bias, Variance and MSE

The estimates of the bias, variance and the square root of the mean squared error 
(y/MSE) were obtained at each grid point for each simulation run.
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3.4.2.1 Variable Censoring Interval Widths

The results from exponential censoring are displayed in Tables 3.5 through 3.13. These 
tables show the square root of MSE, bias and variance estimates for the 9 selected 
points of each target function for each imputation method. The columns headed by 
the abbreviation MP contain results for the midpoint method, LLS (normal) refers 
to the normal-based iterated conditional expectation imputation method, LLS (NP) 
refers to the nonparametric iterated conditional expectation imputation method, and 
LMLE refers to the local likelihood method.

As would be expected, in all cases, the MSE decreases as A increases. In the 
case of the growth curve and the polynomial function, we do not see a substantial 
decrease as the rate increases from its 2nd highest setting to its highest setting; this is 
likely due to the censoring intervals tending to be very small relative to the range of 
the target function. The MSE behaviour is similar for all methods when the intervals 
tend to be small.

Most of the decrease in MSE is attributable to a decrease in variance. The bias 
is fairly constant (and small) for different values of A. In fact, the small bias is an 
indication that the bandwidth selector may be choosing bandwidth values that are 
somewhat smaller than optimal.

The MSE also decreases as a function of n for all imputation methods. In 
particular, we see that, for the growth curve and polynomial function, the rate of 
decrease in MSE is roughly proportional to n- '8, while for the logistic curve, the rate 
of decrease is roughly proportional to n-1 .

The local likelihood method appears to give smaller values of MSE than the 
other methods in most situations. In the case of the logistic model, the local likeli
hood method is substantially better than any of the other methods. The only occa
sion where we see inferior MSE behaviour is at the boundaries with the polynomial 
function. The midpoint imputation method is almost always inferior and sometimes 
substantially so. The other two methods usually give intermediate values of MSE, 
giving slightly better results at the boundaries in the case of the polynomial function.

3.4.2.2 Fixed Censoring Interval Widths

The results for fixed width intervals are displayed in Tables 3.14 to 3.16. Here only 
the growth curve target function is considered.

Again, we see that MSE decreases with interval width for all methods, and it 
is roughly proportional to n-1 , for this range of sample sizes.
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In this case, no method clearly dominates the others. MSE for the midpoint 
method can vary with x a lot, depending on the true value of the regression function. 
The quality of the local least-squares methods also depends to some extent on the 
value of the regression function. The local likelihood method appears to depend less 
on the regression function, but it can result in larger MSE values than the other 
methods.

3.5 Discussion

The simulation results show that the methods behave similarly when the interval 
widths are small. When the interval widths are large and varied, the local likelihood 
method outperforms other methods. All methods outperform the midpoint imputa
tion approach in this case.

For large fixed-width intervals, midpoint imputation can outperform the other 
methods when the true mean is close to the mid point of the interval. Otherwise, the 
local likelihood method often behaves best. We will now examine the results a little 
more closely.

3.5.1 Asymptotic Bias and Variance for Midpoint Imputation

When the censoring intervals arise from a homogeneous Poisson monitoring process, 
an asymptotic analysis of the midpoint imputation method is possible. The imputed 
responses can be viewed as having additional error, as follows. Let the zth interval 
midpoint be given by

Mi =
Lj +  Rj 

2

for i =  1,2, ,n. Then
Mi =  Yi ci2 - ai 1

so that
E [Mj] =  E ft] =  g(Xi)

and
Var (M^ =  a2 +

1
2A2-

Well-known results for the Nadaraya-Watson estimator with bandwidth h can 
then be applied to see that the asymptotic bias of the local constant regression esti-
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5 15

T ru e  D erivative Ratio

5 15

T ru e  D erivative Ratio

5 15

T ru e  Derivative Ratio

T ru e  Derivative Ratio T ru e  D erivative Ratio

T ru e Derivative Ratio T ru e  D erivative Ratio

T ru e  Derivative Ratio T ru e  D erivative Ratio

Figure 3.2: Bias ratios for the growth curve when the exponentially distributed cen
soring mechanism is operative. Sample size increases as one moves down the panels
and mean censoring interval size decreases from left to right.
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T ru e  D erivative Ratio T ru e D erivative Ratio T ru e  D erivative Ratio

T ru e  D erivative Ratio T ru e D erivative Ratio T ru e  D erivative Ratio

Figure 3.3: Bias ratios for the logistic curve when the exponentially distributed cen
soring mechanism is operative. Sample size increases as one moves down the panels
and mean censoring interval size decreases from left to right.
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Growth Curve at x =  5
Asymptotic A =  .2 A =  1 A =  5

VR(ni =  50, n2 =  100) 0.574 0.573 0.583 0.562
VR(ni

ooCMIIeoor—1II 0.574 0.622 0.551 0.525
Logistic Curve at x =  0

Asymptotic A =  .8 A =  2 A =  8
VR(ni =  50, n2 =  100) 0.574 0.545 0.583 0.667
VR(ni =  100, n2 =  200) 0.574 0.472 0.429 0.500

Polynomial Curve at x =  .5
Asymptotic 3/c(x) 5/c{x) 10/c(:r)

VR(ni =  50, n2 =  100) 0.574 0.533 0.500 0.556
VR(ni =  100, n2 =  200) 0.574 0.625 0.600 0.600

Table 3.3: Variance Ratios. Second column is the ratio of the theoretical asymptotic 
variances, and the third, fourth and fifth columns are the ratios of the variances from 
the simulations.

mator g{x) applied to the interval midpoints is

B{g(x))  y / ( z )

and the asymptotic variance is

u  ^ u2 +  1/(2A2)Va,r(g(x)) cx -------— ------- , (3.11)

where the conditions that h —»■ 0, and nh —>• oo as n —>■ oc, and the kernel function K  
has compact support. The latter can be relaxed if more moments are assumed. See 
Wand and Jones (1995).

Thus, we have a theoretical argument for consistency of the midpoint impu
tation method when the response interval widths are exponentially distributed. In 
Figures 3.2, 3.3 and 3.4, we compare the theory with our simulations by plotting the 
ratio of the bias at x with the bias at 5 versus the ratio g"{x)/g"{5). The ratio is used 
to remove the proportionality constant in (3.10). If the asymptotics are operative, 
the plotted points should appear near a straight line having slope 1. In fact, we see 
this in the cases where the mean interval size is very small (large A) but not always 
when the mean interval size is larger. Thus, the asymptotic approximation to the bias 
sometimes requires a very large sample. We can also compare our empirical results 
with the asymptotic variance predicted by the above theory again computing ratios

(3.10)
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T ru e  D erivative Ratio

-2  0

T ru e  D erivative Ratio
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T ru e Derivative R atio T ru e  D erivative Ratio

True Derivative R atio T ru e D erivative Ratio

Figure 3.4: Bias ratios for the polynomial curve when the exponentially distributed
censoring mechanism is operative. Sample size increases as one moves down the panels
and mean censoring interval size decreases from left to right.
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Growth Curve at x =  5
Asymptotic 77. =  50 77 =  100 77 =  200

VR(Ai =  1,A2 =  .2) 0.068 
VR(Ai =  5, A2 =  1) 0.736

0.269 0.274 0.243 
0.871 0.840 0.799

Logistic Curve 
Asymptotic

at x =  0
77 =  50 77 =  100 77 =  200

VR(Ai =  2, A2 =  .8) 0.059 
VR(Ai =  8, A2 =  2) 0.039

0.182 0.194 0.176 
0.250 0.286 0.333

Polynomial Curve 
Asymptotic

; at x =  .5
77 =  50 77 =  100 77 =  200

VR(Ai =  5, A2 =  3) 0.681 
VR(Ai =  10, A2 =  5) 0.823

0.667 0.625 0.600 
0.900 1.000 1.000

Table 3.4: Variance Ratios. Second column is the ratio of the theoretical asymptotic 
variances, and the third, fourth and fifth columns are the ratios of the variances from 
the simulations.

to remove the proportionality constants. In this case, we computed the ratios of the 
variances of the regression estimated at the midpoints of the sampling intervals only 
(e.g. x — 5 for the growth curve, etc.). The results are given in Tables 3.3 and 3.4. 

The ratio of the asymptotic variances in Table 3.3 is calculated from

4/5Tt
VR(ni,n2) = -W .

n2

This is displayed in the second column of the table. The third, fourth and fifth 
column of the table contain the ratios of the variances of the simulated estimates at 
sample sizes n\ and n2, while holding A constant. With the exception of the logistic 
curve at the larger sample size and larger mean censoring interval size where we see a 
mild difference between the asymptotic approximation and the simulated value, the 
simulations match the asymptotics fairly well.

When the sample size is held constant, and A is varied, the results are somewhat 
different as seen in Table 3.4. The ratio of the asymptotic variances in this table is 
calculated from

VR(Ai ,A2)
(<72 +  1 /(2A 2))8/5

(<t2 +  l/(2A=))S/5 ■

The asymptotic ratio does not match the simulated ratio for the logistic curve at all
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nor for the growth curve when the mean censoring interval size is large. Again, the 
larger intervals are having the effect of delaying the asymptotics, at least in these 
cases.

3.5.2 Estimating a Constant Mean from Fixed-Width Censoring 

Intervals

In order to more closely investigate the phenomenon whereby the MSE varies with the 
value of the regression function leading to the occasions where midpoint imputation 
can outperform the other methods, we considered the simpler situation of estimating 
the constant mean of a normally distributed population under censoring of both 
types considered above. We considered only the midpoint imputation method and 
the maximum likelihood method. The bias, variance and y/MSE are listed in Table 
3.17 for the case where exponentially distributed intervals are censoring standard 
normal observations, for samples of size 50, 100 and 200. These results are consistent 
with the results observed above for estimation of nonlinear regression functions: the 
likelihood method is superior to the midpoint imputation method when the censoring 
intervals are of variable width.

For fixed width interval censoring applied to standard normal data, the results 
are given in Table 3.18. When the interval width is small, the three methods be
have similarly. When the interval width is larger, the local likelihood method often 
performs better.

The results for different mean assumptions are listed in Table 3.19. When the 
interval width is 4, the local likelihood method has smaller variance than the midpoint 
based method at /i =  0. However, at p =  2, the reverse is true. This is because of 
the way in which the data are coarsened: with a bin width of 4, the interval midpoint 
happens to coincide with the mean when /x =  2. Thus, midpoint imputation will have 
excellent behaviour at that location, but only at that location.

When the interval width is 6, the local likelihood method has a smaller variance 
than the midpoint-based method at p =  0 and /j =  1 and vice versa at /x =  2 and 
H =  3. When the interval width is 8, the local likelihood method has a smaller 
variance than the midpoint-based method at fi =  0 and /i =  7, and vice versa at 
/.i =  3 and ¡j, =  4.
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3.6 Applications

In this section, we illustrate the use of the imputation methods on several data sets, 
some of which have variable interval sizes and some which have fixed interval sizes.

3.6.1 Example: Aspen Flush Date

Figure 3.5 shows the regression function estimates that can be obtained when applying 
the four approaches to the aspen flush date data set which was described in the 
introduction to this thesis. The interval sizes are variable, so it is likely that the 
local likelihood method offers the most accurate curve. In order to see the imputed 
points more clearly, 3.6 shows a “close-up” view of part Figure 3.5. This shows 
that the conditional expectation imputation leads to different values from midpoint 
imputation.

3.6.2 Examples: Fire Rate versus Slope

Figures 3.7 and 3.8 are based on data collected from burning waxed paper experi
ments. In the first case, the burned area was measured as a function of time for a 
single fire which burned under very stable conditions (no wind, no slope, homoge
neous fuel). This data set can be found at
h ttp ://w w w .stats.uwo. ca /fa cu lty /brau n /d atasets /firearea .R

Because the flame often obscured the image, the true area could not be measured 
precisely, resulting in interval-censored responses. As can be seen in the figure, the 
response intervals are highly autocorrelated. This sets this example outside the scope 
of the simulation study conducted in the previous section.

Figure 3.8 is based on a set of 33 independently burned waxed paper fires at 
differing slopes. The rate of spread of the fire was obtained from a measure of the 
distance traveled by one edge of the fire in 2 seconds. The data can be found in 
Table 3.20. The interval widths are highly variable leading to some differences among 
the different imputed values. The local likelihood method is likely the most accurate 
rendering of the true regression curve.

3.6.3 Examples: Temperature

Two sets of temperature data were collected outside a London, Ontario house in late 
winter 2008 and in early summer 2007 using a DS1921G Thermochron iButton (see 
http://www.embeddeddatasystems.com/page/EDS/CTGY/TCTC). The first (plotted

http://www.stats.uwo.ca/faculty/braun/datasets/firearea.R
http://www.embeddeddatasystems.com/page/EDS/CTGY/TCTC
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in Figure 3.9) is two days of temperature data collected at hourly intervals and the 
second (plotted in Figure 3.10) is one day of temperature measurements collected 
every 3 minutes. The censoring intervals are all of width .5 degrees Celsius. These 
data sets can be found at
http ://w w w .stats.uw o.ca /faculty/braun/datasets/tem peraturel.R  and 
h ttp : //www. s ta ts .uwo. ca/faculty/braun/datasets/tem perature2.R.

The three imputation approaches all yield similar results which is consistent 
with the observations made in the simulation study. The resulting local constant 
regression estimates are all very similar.

3.7 Conclusions

In this chapter, we have studied smoothing methods for interval-censored data and 
have shown that local likelihood estimation is often superior to local regression es
timators where observations have been imputed using either interval midpoints or 
iterated conditional expectations when the censoring intervals are wide or of varying 
width. The fact that the midpoint imputation method is inferior to the other methods 
when the interval widths are variable but that it still enjoys consistency properties 
strengthens the argument in favor of the usefulness of the other methods, at least 
when the censoring intervals are variable.

When the intervals are smaller and of fixed width, none of the imputation 
approaches dominate the others.

We have only discussed local regression and local likelihood estimators with one 
covariate and with normal errors in this chapter. The methods can be extended to 
include multiple covariates. Replacing the normal cdf in the local likelihood method 
with a nonparametric estimate of the cdf as employed by Rabinowitz et al. (1995) is 
also worth investigating.

The example involving correlated fire area intervals is also motivation to study 
these methods more closely when the data exhibit serial dependence. Another form of 
dependence arises from the way in which data such as the aspen flush date data have 
been sampled. In order to handle multiple years of data, it will likely be necessary to 
use random effects models.

http://www.stats.uwo.ca/faculty/braun/datasets/temperaturel.R
http://www.stats.uwo.ca/faculty/braun/datasets/temperature2.R
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Figure 3.5: Top panel: flush date intervals, together with imputed values from three 
imputation methods studied in this chapter: circles are from midpoint imputation; 
triangles are from iterated conditional expectation imputation under the normal error 
assumption; crosses are from the iterated conditional expectation with a nonparamet- 
ric estimate of the error distribution. Bottom panel: Local constant estimate of the 
regression curve for aspen flush date data using three imputation methods. Long 
dashed line is from midpoint imputation; dashed line is from iterated conditional ex
pectation imputation under the normal error assumption; dotted line is from iterated 
conditional expectation with a nonparametric estimate of the error distribution; solid 
line is from local likelihood estimates.



33

Figure 3.6: A “close-up” view of Figure 3.5 in the region of x between 7.5 and 8.5. 
Flush date intervals, together with imputed values from three imputation methods: 
circles are from midpoint imputation; triangles are from iterated conditional expec
tation imputation under the normal error assumption; crosses are from the iterated 
conditional expectation with a nonparametric estimate of the error distribution.
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o

T im e

Figure 3.7: Top panel: Fire area intervals versus time, together with imputed values 
from three imputation methods studied in this chapter: circles are from midpoint 
imputation; triangles are from iterated conditional expectation imputation under the 
normal error assumption; crosses are imputed from the iterated conditional expecta
tion with a nonparametric estimate of the error distribution. Bottom panel: Local 
constant estimate of the regression curve for aspen flush date data using three impu
tation methods. Long dashed line is from midpoint imputation; dashed line is from 
iterated conditional expectation imputation under the normal error assumption; dot
ted line is from iterated conditional expectation with a nonparametric estimate of the 
error distribution; solid line is from local likelihood estimates.
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S lo p e

Figure 3.8: Top panel: rate of spread intervals, together with imputed values from 
three imputation methods studied in this chapter: circles are from midpoint imputa
tion; triangles are from iterated conditional expectation imputation under the normal 
error assumption; crosses are imputed from the iterated conditional expectation with 
a nonparametric estimate of the error distribution. Bottom panel: Local constant es
timate of the regression curve for fire rate data using three imputation methods. Long 
dashed line is from midpoint imputation; dashed line is from iterated conditional ex
pectation imputation under the normal error assumption; dotted line is from iterated 
conditional expectation with a nonparametric estimate of the error distribution; solid 
line is from local likelihood estimates.
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T im e  (in  h o u r s )

Figure 3.9: Top panel: Hourly temperature data collected in winter. Date inter
vals (in grey), together with imputed values from three imputation methods studied 
in this chapter: circles are from midpoint imputation; triangles are from iterated 
conditional expectation imputation under the normal error assumption; crosses are 
imputed from the iterated conditional expectation with a nonparametric estimate of 
the error distribution. Bottom panel: Local constant estimate of the regression curve 
for temperature data using three imputation methods. Long dashed line is from mid
point imputation; dashed line is from iterated conditional expectation imputation 
under the normal error assumption; dotted line is from iterated conditional expecta
tion with a nonparametric estimate of the error distribution; solid line is from local 
likelihood estimates.
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T im e  (in  m in u t e s )

T im e  (in  m in u t e s )

Figure 3.10: Top panel: Temperature data collected every 3 minutes. Intervals, to
gether with imputed values from three imputation methods studied in this chapter: 
circles are from midpoint imputation; triangles are from iterated conditional expec
tation imputation under the normal error assumption; crosses are imputed from the 
iterated conditional expectation with a nonparametric estimate of the error distribu
tion. Bottom panel: Local constant estimate of the regression curve for temperature 
data using three imputation methods. Long dashed line is from midpoint impu
tation; dashed line is from iterated conditional expectation imputation under the 
normal error assumption; dotted line is from iterated conditional expectation with 
a nonparametric estimate of the error distribution; solid line is from local likelihood 
estimates.



Table 3.5: VMSE estimates when estimating the three target curves where the responses are censored with exponential intervals
(n =  50)

X g (x )

A =

T arget F u n ction  1:

0.2

G row th  C u rve (H e and Shi (19 9 8 )) 

A =  1 A = 5

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 1.287 1.060 1.039 0 .856 0.638 0.627 0.627 0.626 0.613 0.613 0.613 0.613
2 1.411 1.210 0.976 0.948 0 .777 0.645 0.628 0.629 0.629 0.603 0.603 0.603 0.603
3 1.857 1.235 0.988 0.951 0 .782 0.655 0.640 0.643 0.642 0.604 0.604 0.604 0.604
4 2.394 1.275 1.010 0.983 0 .785 0.627 0.612 0.615 0.618 0.598 0.597 0.598 0.598
5 3.086 1.247 1.002 0.971 0 .789 0.646 0.626 0.629 0.626 0.605 0.604 0.604 0.604
6 4.041 1.312 1.077 1.043 0 .823 0 .626 0.611 0.612 0.620 0.575 0.575 0.575 0.575
7 5.473 1.311 1.067 1.039 0.882 0.696 0.688 0.690 0.689 0.626 0.626 0.626 0.626
8 7.897 1.388 1.253 1.208 1.148 0.789 0.789 0.787 0.782 0.766 0.768 0.768 0 .767
9 12.959 2.045 2.050 2.005 1.972 1.456 1.495 1.485 1.444 1.392 1.395 1.394 1.386

X g (x )

A =

T arget F u n ction  2:

0 .8

L og is t ic  C u rve (H e and Shi (19 9 8 )) 

A =  2 A = 8

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

-4 0.018 0.290 0.230 0.201 0.109 0.109 0.088 0.082 0.061 0.044 0.041 0.041 0.039
-3 0.047 0.247 0.196 0.169 0.103 0.109 0.088 0.083 0 .065 0.044 0.041 0.041 0.041
-2 0.119 0.242 0.197 0.170 0.112 0.115 0.095 0.087 0 .072 0.049 0.048 0.048 0 .047
-1 0.269 0.249 0.198 0.172 0.111 0.118 0.097 0.091 0 .078 0.055 0.054 0.053 0 .052
0 0.500 0.257 0.204 0.181 0.114 0.109 0 .094 0.087 0 .069 0.054 0.054 0.053 0.051
1 0.731 0.244 0.193 0.166 0.108 0.113 0.096 0.090 0 .076 0.054 0.053 0.053 0.052
2 0.881 0.252 0.203 0.172 0.115 0.114 0.096 0.091 0.074 0.051 0.050 0.050 0.049
3 0.953 0.241 0.194 0.170 0.100 0 .110 0.089 0.079 0.065 0.042 0.040 0.040 0.039
4 0.982 0.273 0.219 0.193 0.105 0.111 0.091 0.084 0.062 0.044 0.042 0.042 0.040

T arget F u n ction  3:

A =  3 / c ( x )

F u n ction  (F an  and  G ijb e ls  (1 9 9 4 )) 

A =  5 / c ( x ) A =  10/ c ( x )

X g (x ) M P LLS LLS L M L E  
(N orm a l) (N P )

M P  LLS LLS L M L E  
(N orm a l) (N P )

M P LLS L L S L M L E  
(N orm a l) (N P )

0.1 1.422 0.224 0.202 0.203 0.219 0.174 0.164 0.165 0.181 0.151 0.150 0.150 0.158
0.2 1.422 0.262 0.217 0.211 0.167 0.184 0.161 0.161 0.143 0.138 0.132 0.132 0.126
0.3 1.038 0.255 0.209 0.197 0.159 0.183 0.156 0.153 0.137 0.136 0.127 0.127 0.123
0.4 0.654 0.182 0.157 0.154 0.126 0.140 0.130 0.128 0.116 0.111 0.113 0.112 0.106
0.5 0.500 0.139 0.125 0.123 0.119 0.112 0.111 0.110 0.108 0.103 0.104 0.104 0.102
0.6 0.654 0.192 0.167 0.162 0.128 0.146 0.133 0.131 0.116 0.115 0.115 0.114 0.109
0.7 1.038 0.260 0.214 0.204 0.162 0.181 0.154 0.151 0.139 0.130 0.124 0.123 0.120
0.8 1.422 0.256 0.213 0.208 0.169 0.184 0.160 0.160 0.143 0.136 0.129 0.129 0.124
0.9 1.422 0.225 0.205 0.206 0.215 0.181 0.172 0.174 0.189 0.148 0.148 0.148 0.156

CO
o c



Table 3.6: Bias estimates when estimating the three target curves where the responses are censored with exponential intervals
(n =  50)

X g (x )

A =

T arget F u n ction  1:

0 .2

G row th  C u rve (H e and Shi (19 9 8 )) 

A =  1 A = 5

M P LLS
(N orm al)

LLS
(N P )

LM L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 -0 .0 67 -0 .0 48 -0 .034 -0 .033 0 .027 0.029 0.027 0.028 0.013 0.013 0.012 0.013
2 1.411 0.021 0.015 0.018 0.020 0.001 0.005 0.002 0.007 -0 .013 -0 .013 -0 .0 13 -0 .013
3 1.857 -0 .025 -0 .0 19 -0 .009 -0 .009 0 .007 0 .013 0.009 0.014 0.043 0.043 0.043 0.043
4 2.394 0.079 0.066 0.066 0.046 0.010 0 .009 0.008 0.009 0.001 0.001 0.001 0.000
5 3.086 0.086 0.078 0.085 0.091 0.016 0 .017 0.014 0.018 0.053 0.053 0.053 0.053
6 4.041 0.112 0.120 0.122 0.127 0.022 0 .027 0.025 0.024 0.015 0.016 0.015 0.015
7 5.473 0.282 0.257 0.261 0.260 0 .087 0 .097 0.094 0.090 0.134 0.134 0.133 0.134
8 7.897 0.478 0.475 0.457 0.521 0 .218 0.239 0.232 0.222 0.241 0.243 0.242 0.240
9 12.959 0.535 0.591 0.596 0.669 0 .574 0.584 0.582 0.577 0.556 0.556 0.556 0.544

X S (x )

A =

T arget F u n ction  2:

0 .8

L og is t ic  C u rve (H e and Shi (1 9 9 8 )) 

A =  2 A = 8

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N oi inai)

LLS
(N P )

L M L E

-4 0.018 0.034 0.029 0.029 0.020 0 .013 0 .012 0.012 0.012 0.008 0.008 0.008 0.009
-3 0 .047 0.010 0.014 0.018 0.027 0 .020 0 .019 0.019 0.022 0.012 0.012 0.012 0.013
-2 0.119 0.039 0.039 0.038 0.043 0 .027 0.027 0.026 0.034 0.019 0.019 0.018 0.020
-1 0.269 0.039 0.036 0.030 0.041 0 .025 0.024 0.024 0.034 0.017 0.017 0.017 0.019
0 0 .500 0.011 0.008 0.006 0.005 0 .000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
1 0.731 -0 .023 -0 .023 -0 .024 -0 .036 -0 .030 -0 .0 29 -0 .0 28 -0 .0 34 -0 .022 -0 .020 -0 .020 -0 .022
2 0.881 -0 .024 -0 .026 -0 .0 27 -0 .0 40 -0 .028 -0 .0 27 -0 .027 -0 .035 -0 .023 -0 .022 -0 .022 -0 .024
3 0.953 -0 .0 07 -0 .013 -0 .0 17 -0 .0 26 -0 .022 -0 .021 -0 .019 -0 .026 -0 .013 -0 .013 -0 .013 -0 .013
4 0.982 -0.021 -0 .0 19 -0 .0 17 -0 .0 17 -0 .012 -0 .012 -0 .012 -0 .015 -0 .0 07 -0 .008 -0 .0 07 -0 .008

X g (x )

T a rget F u n ction  3:

A =  3 / c (x )

F u n ction  (Fan an d  G ijb e ls  (19 9 4 )) 

A =  5 / c (x ) A — 10 / e (x )

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

0.1 1.422 -0 .115 -0 .1 14 -0 .112 -0 .121 -0 .0 90 -0 .0 87 -0 .090 -0 .1 17 -0 .088 -0 .088 -0 .089 -0 .101
0.2 1.422 -0 .067 -0 .0 75 -0 .0 87 -0 .0 82 -0 .046 -0 .0 53 -0 .059 -0 .051 -0 .047 -0 .050 -0 .052 -0 .0 44
0.3 1.038 -0.011 -0 .0 10 -0 .023 -0 .0 39 -0 .003 -0 .0 04 -0 .011 -0 .023 0.005 0.004 0.002 -0 .007
0.4 0.654 0.043 0.038 0.027 0.011 0 .027 0.023 0.019 0.009 0.031 0.030 0.029 0.021
0.5 0.500 0.068 0.049 0.042 0.054 0 .049 0.042 0.038 0.046 0.041 0.037 0.036 0.039
0.6 0.654 0.053 0.050 0.038 0.022 0 .032 0.029 0.024 0.013 0.029 0.029 0.027 0.019
0.7 1.038 -0 .003 -0 .001 -0 .016 -0 .031 -0 .005 -0 .005 -0 .012 -0 .024 0.002 -0 .000 -0 .002 -0 .011
0.8 1.422 -0 .0 77 -0.081 -0 .092 -0 .087 -0 .061 -0 .0 64 -0 .069 -0 .069 -0 .051 -0 .055 -0 .0 57 -0 .047
0.9 1.422 -0 .108 -0 .109 -0 .1 17 -0 .154 -0 .0 98 -0 .0 96 -0 .101 -0 .1 27 -0 .088 -0 .090 -0 .090 -0 .103



Ri

Table 3.7: 
intervals (n

Variance estimates when estimating the three target curves where the responses are censored with exponential
=  50)

X g (x )

A =

T arget F u n ction  1:

0 .2

G row th  C u rve (H e an d  Shi (19 9 8 )) 

A =  1 A = 5

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 1.652 1.121 1.078 0.732 0 .407 0.392 0.392 0.392 0.376 0.375 0.375 0.376
2 1.411 1.465 0 .953 0.899 0.603 0.416 0.394 0.396 0.395 0.364 0.363 0.364 0.364
3 1.857 1.525 0.975 0.905 0.612 0.429 0.409 0.413 0.412 0.363 0.363 0.363 0.363
4 2.394 1.619 1.016 0.962 0.615 0.393 0.375 0.378 0.382 0.357 0.356 0.357 0.357
5 3.086 1.548 0.998 0.936 0.615 0 .417 0.392 0.395 0.392 0.363 0.362 0.363 0.362
6 4.041 1.709 1.146 1.073 0.661 0.392 0 .373 0.373 0.383 0.331 0.331 0.331 0.331
T 5.473 1.641 1.073 1.012 0.709 0 .477 0 .464 0.467 0.466 0.374 0.374 0.374 0.374
8 7.897 1.697 1.345 1.252 1.047 0.575 0.5649 0.565 0.562 0.529 0.530 0.531 0.530
9 12.959 3.896 3.853 3.665 3.439 1.790 1.895 1 . 8 6 6 1.753 1.630 1.638 1.635 1.624

X g ( x )

A =

T a rget F u n ction  2:

0 . 8

L og is t ic  C u rve (H e and Shi (1 9 9 8 )) 

A =  2 A = 8

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

-4 0.018 0.083 0.052 0.039 0.012 0.012 0 .008 0.007 0.004 0.002 0.002 0.002 0.001
-3 0.047 0.061 0.038 0.028 0.009 0.012 0.007 0.006 0.004 0.002 0.002 0.002 0.001
-2 0.119 0.057 0 .037 0.028 0.011 0.013 0.008 0.007 0.004 0.002 0.002 0.002 0.002
-1 0.269 0.061 0.038 0.029 0.011 0.013 0.009 0.008 0.005 0.003 0.003 0.003 0.002
0 0.500 0.066 0.041 0.033 0.013 0.012 0.009 0.008 0.005 0.003 0.003 0.003 0.003
1 0.731 0.059 0.037 0.027 0.010 0.012 0.008 0.007 0.005 0.002 0.002 0.002 0.002
2 0.881 0.063 0.040 0.029 0.012 0.012 0.008 0.008 0.004 0.002 0.002 0.002 0.002
3 0.953 0.058 0.038 0.029 0.009 0.012 0 .007 0.006 0.004 0.002 0.001 0.001 0.001
4 0.982 0.074 0 .047 0.037 0.011 0.012 0.008 0.007 0.004 0.002 0.002 0.002 0.002

X g (x )

A — 3 /c i

T a rget F u n ction  3:

(x )

F u n ction  (Fan an d  G ijb e ls  (19 9 4 )) 

A =  5 / c { x ) A =  1 0 / c (x )

M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

0.1 1.422 0.037 0.028 0.026 0.023 0.022 0.019 0.019 0.019 0.015 0.015 0.015 0.015
0.2 1.422 0.064 0.041 0.037 0.021 0.032 0.023 0.022 0.018 0.017 0.015 0.015 0.014
0.3 1.038 0.065 0.043 0.038 0.024 0.033 0.024 0.023 0.018 0.018 0 .016 0.016 0.015
0.4 0.654 0.031 0.023 0.023 0.016 0 .019 0.016 0.016 0.013 0.011 0 .012 0.012 0.011
0.5 0.500 0.015 0.013 0.013 0.011 0.010 0.011 0.011 0.010 0.009 0.010 0.009 0.009
0.6 0.654 0.034 0.025 0.025 0.016 0.020 0.017 0.017 0.013 0.012 0.012 0.012 0.012
0.7 1.038 0.068 0.046 0.041 0.025 0.033 0.024 0.023 0.019 0.017 0.015 0.015 0.014
0.8 1.422 0.060 0.039 0.035 0.021 0.030 0.021 0.021 0.017 0.016 0.014 0.014 0.013
0.9 1.422 0.039 0.030 0.029 0.022 0.023 0.020 0.020 0.020 0.014 0.014 0.014 0.014

o



Table 3.8: vM SE estimates when estimating the three target curves where the responses are censored with exponential intervals
(n =  100)

X g (x )

A =

T arget F u n ction  1:

0.2

G row th  C u rve (H e and Shi (19 9 8 )) 

A =  1 A = 5

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 1.006 0.793 0.772 0.636 0 .487 0.477 0.477 0.475 0 .469 0.469 0 .469 0.469
2 1.411 0.899 0.727 0.702 0.581 0.479 0.478 0.468 0.470 0.435 0.435 0.435 0.435
3 1.857 0.910 0.720 0.710 0.582 0.463 0.452 0.453 0.453 0 .459 0.459 0.459 0.459
4 2.394 0.932 0.743 0 .716 0.591 0.492 0.487 0.487 0 .484 0.458 0.458 0.458 0.458
5 3.086 0.943 0.757 0 .735 0.618 0 .493 0.487 0.487 0.485 0.452 0.452 0.452 0.452
6 4.041 0.952 0.767 0.753 0.629 0 .494 0.489 0.490 0 .486 0.453 0.453 0.454 0.454
7 5.473 0.971 0.797 0.782 0.679 0.505 0.497 0.500 0 .497 0 .447 0.447 0 .447 0.447
8 7.897 1.137 0.967 0 .950 0.876 0.598 0.596 0.594 0.585 0 .549 0.549 0 .549 0.549
9 12.959 1.4777 1.400 1.375 1.427 1.035 1.058 1.053 1.032 0.944 0.944 0.945 0.938

X g (x )

A =  i

T arget F u n ction  2:

0.8

L og is t ic  C u rve (H e and  Shi (19 9 8 )) 

A =  2 A = 8

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

-4 0.018 0.207 0.167 0.141 0.071 0.083 0.065 0.059 0.043 0.031 0.029 0.029 0.029
-3 0 .047 0.206 0.170 0 .143 0.078 0 .080 0.064 0.083 0.059 0.034 0.031 0.031 0.030
-2 0.119 0.185 0.150 0.131 0.080 0 .087 0.071 0.087 0.065 0 .038 0.036 0.036 0.036
-1 0.269 0.181 0.147 0.125 0.083 0 .087 0.072 0.067 0.059 0.042 0.040 0.040 0.039
0 0.500 0.190 0.154 0.132 0.075 0.082 0.068 0 .064 0.050 0 .040 0.039 0.039 0.037
1 0.731 0.193 0.158 0.134 0.079 0 .086 0.072 0.066 0.059 0.041 0.040 0.040 0.040
2 0.881 0.184 0.146 0.123 0.080 0.089 0.072 0.091 0.066 0 .037 0.035 0.035 0.035
3 0.953 0.184 0.148 0.124 0.074 0.080 0.064 0.058 0.045 0.031 0.030 0.030 0.029
4 0.982 0.203 0.168 0 .144 0.075 0.085 0.068 0.063 0.046 0.032 0.031 0.031 0.029

X g (x )

T a rget F u n ction  3: 

A =  3 / c ( x )

F u n ction  (Fan and  G ijb e ls  (1 9 9 4 )) 

A =  5 / c (x ) A =  1 0 /c (cc )

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

0.1 1.422 0.176 0.150 0.151 0.166 0.131 0.122 0.123 0.136 0.111 0.109 0.110 0.117
0.2 1.422 0.210 0.168 0.162 0.122 0 .143 0.122 0.123 0.107 0.101 0.095 0.095 0.091
0.3 1.038 0.198 0.157 0.145 0.112 0 .139 0.116 0 .114 0.104 0.099 0.093 0.093 0.091
0.4 0.654 0.135 0.115 0.110 0.092 0.105 0.097 0.096 0.085 0.086 0.085 0.084 0.081
0.5 0.500 0.100 0.093 0.091 0.086 0.082 0.084 0.083 0.079 0.075 0.078 0.077 0.075
0.6 0.654 0.136 0.116 0.111 0.091 0 .104 0.096 0.095 0.084 0.082 0.081 0.081 0.077
0.7 1.038 0.199 0.161 0.152 0.118 0 .139 0.116 0.114 0.102 0.094 0.088 0.088 0.087
0.8 1.422 0.206 0.170 0.165 0.130 0.143 0.122 0 . 1 2 2 0.106 0.099 0.093 0.094 0.089
0.9 1.422 0.168 0.147 0.149 0.166 0.130 0.121 0.123 0.138 0.112 0.110 0.111 0.118



Table 3.9: Bias estimates when estimating the three target curves where the responses are censored with exponential intervals
(n -  100)

X g ( * )

A =

T a rget F u n ction  1:

0 .2

G row th  C u rve (H e and Shi (19 9 8 )) 

A =  1 A - 5

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 -0 .007 0.006 0.006 0.007 0.017 0 .020 0 .017 0.020 -0 .013 -0 .013 -0 ,013 -0 .013
2 1.411 0.007 0.005 0.011 0.009 -0 .0 16 -0 .0 15 -0 .016 -0 .0 16 0.006 0.006 0.006 0.006
3 1.857 0.072 0.055 0.055 0.042 -0 .0 00 -0 .003 -0 .0 06 -0 .0 05 0.007 0.007 0.006 0.007
4 2.394 0.040 0.025 0.031 0.023 0.024 0.020 0.019 0.021 0.017 0.017 0.017 0.017
5 3.086 0.042 0.034 0.033 0.031 0.020 0.021 0.018 0.020 0.021 0.022 0.022 0.021
6 4.041 0.121 0.117 0.124 0.111 0.015 0.020 0.017 0,017 0.052 0.051 0.051 0.051
7 5.473 0.198 0.180 0.181 0.188 0.071 0.075 0.072 0.075 0.049 0.049 0.049 0.049
8 7.897 0.351 0.372 0.380 0.448 0.220 0.223 0.230 0.215 0.167 0.167 0.167 0.166
9 12.959 0.666 0.658 0.673 0.832 0.546 0.555 0.552 0.544 0.509 0.509 0.509 0.499

X g (x )

A =

T arget F u n ction  2:

0.8

L og is t ic  C u rve (H e an d  Shi (1 9 9 8 )) 

A =  2 A = 8

M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

-4 0.018 0.003 0.006 0.007 0.014 0.012 0.011 0.010 0.012 0.005 0.005 0.005 0.005
-3 0.047 0.024 0.022 0.019 0.023 0.017 0 .018 0.017 0.021 0.008 0.008 0.007 0.008
- 2 0.119 0.035 0.031 0.031 0.036 0.023 0 .022 0.021 0.029 0.016 0.015 0.015 0.017
-1 0.269 0.033 0.031 0.030 0.038 0.026 0 .023 0.022 0.030 0.015 0.014 0.014 0.016
0 0.500 0.000 0.000 0.000 0.001 -0 .0 03 -0 .003 -0 .002 0.000 -0.001 -0 .002 -0 .002 -0 .001
1 0.731 -0 .019 -0 .018 -0 .0 17 -0 .031 -0 .026 -0 .024 -0 .023 -0 .032 -0 .016 -0 .0 16 -0 .016 -0 .0 18
2 0.881 -0 .034 -0 .031 -0 .032 -0 .039 -0 .022 -0 .021 -0 .0 20 -0 .0 29 -0 .015 -0 .0 14 -0 .0 14 -0 .016
3 0.953 -0 .025 -0 .025 -0 .023 -0 .026 -0 .018 -0 .0 16 -0 .015 -0 .0 17 -0 .009 -0 .009 -0 .009 -0 .009
4 0.982 -0.011 -0 .012 -0 .014 -0 .0 17 -0 .014 -0 .012 -0 .011 -0 .011 -0 .004 -0 .004 -0 .0 04 -0 .004

X g (x )

A =  3 /c i

T a rget F u n ction  3:

;x )

F u n ction  (Fan an d  G ijb e ls  (19 9 4 )) 

A — 5 / c ( x ) A =  1 0 /c (x )

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

0.1 1.422 -0 .086 -0 .078 -0 .0 86 -0 .121 -0 .075 -0 .071 -0 .0 74 -0 .0 98 -0 .070 -0 .068 -0 .069 -0 .080
0.2 1.422 -0 .058 -0 .056 -0 .066 -0 .052 -0 .0 40 -0 .042 -0 .048 -0 .033 -0 .029 -0 .0 34 -0 .035 -0 .0 29
0.3 1.038 0.011 0.008 -0 .004 -0 .052 -0 .0 00 -0 .002 -0 .008 0.019 0.001 0.000 -0 .002 -0 .0 09
0.4 0.654 0.031 0.027 0.017 0.007 0.025 0.023 0.019 0.010 0.019 0.019 0.018 0.012
0.5 0.500 0.044 0.031 0.025 0.037 0 .037 0.027 0.025 0.032 0.023 0.019 0.019 0.022
0.6 0.654 0.039 0.033 0.024 0.011 0.026 0.023 0.019 0.009 0.020 0.019 0.017 0.012
0.7 1.038 -0.001 -0 .003 -0 .014 -0 .0 27 0.003 -0 .0 00 -0 .005 -0 .013 0.000 0.000 -0 .002 -0 .0 08
0.8 1.422 -0 .060 -0 .061 -0 .071 -0 .056 -0 .048 -0 .0 50 -0 .055 -0 .042 -0 .036 -0 .038 -0 .0 40 -0 .032
0.9 1.422 -0 .0 87 -0 .079 -0 .086 -0 .1 23 -0 .073 -0 .0 69 -0 .073 -0 .099 -0 .068 -0 .068 -0 .0 67 -0 .078

CO



Table 3.10: Variance estimates when estimating the three target curves where the responses are censored with exponential
intervals (n =  100)

X g ( x )

A =

T a rget F u n ction  1:

0 .2

G row th  C u rve (H e and Shi (19 9 8 )) 

A =  1 A = 5

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 1.012 0.629 0.595 0.405 0 .237 0.227 0.228 0 .225 0.220 0.220 0 .220 0.220
2 1.411 0.808 0.529 0.492 0 .338 0.229 0.219 0.220 0 .218 0.189 0.189 0 .189 0.189
3 1.857 0.822 0.515 0.501 0 .337 0.215 0.205 0.205 0 .205 0.211 0.211 0.211 0.211
4 2.394 0.867 0.551 0.511 0 .242 0.236 0.237 0.234 0 .382 0.210 0.210 0 .210 0.210
5 3.086 0.887 0.571 0.539 0.381 0.243 0.236 0.237 0 .235 0.204 0.203 0 .203 0.204
6 4.041 0.892 0.574 0.551 0 .384 0.244 0.238 0.239 0 .236 0.203 0.203 0 .203 0.203
7 5.473 0.903 0.603 0.579 0.425 0 .250 0.241 0.245 0.241 0.198 0.197 0 .198 0.198
8 7.897 1.170 0.797 0.758 0 .566 0 .309 0.305 0.304 0 .296 0.274 0.274 0 .274 0.274
9 12.959 1.739 1.526 1.439 1.345 0.772 0.812 0.804 0 .770 0.631 0.634 0 .634 0.632

X g (x )

A =

T a rget F u n ction  2:

0 . 8

L og is t ic  C u rve (H e an d  Shi (1 9 9 8 )) 

A =  2 A = 8

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

-4 0.018 0.043 0.028 0.020 0.005 0.007 0.004 0.003 0.002 0.001 0.001 0.001 0.001
-3 0.047 0.042 0.028 0.020 0.006 0.006 0.004 0.003 0.002 0.001 0.001 0.001 0.001
-2 0.119 0.033 0.022 0.016 0.005 0 .007 0.005 0.004 0.002 0.001 0.001 0.001 0.001
-1 0.269 0.032 0.021 0.015 0.005 0.007 0.005 0.004 0.003 0.001 0.001 0.001 0.001
0 0.500 0.036 0.024 0.017 0.006 0 .007 0.005 0.004 0.002 0.002 0.002 0.002 0.001
1 0.731 0.037 0.025 0.018 0.005 0 .007 0.005 0.004 0.002 0.001 0.001 0.001 0.001
2 0.881 0.033 0.020 0.014 0.005 0 .007 0.005 0.004 0.002 0.001 0.001 0.001 0.001
3 0.953 0.033 0.021 0.015 0.005 0.006 0.004 0.003 0.002 0.001 0.001 0.001 0.001
4 0.982 0.041 0.028 0.021 0.005 0 .007 0.005 0.004 0.002 0.001 0.001 0.001 0.001

X g (x )

A =  3 /c i

T a rget F u n ction  3:

(x )

F u n ction  (Fan and  G ijb e ls  (1 9 9 4 )) 

A — 5 / c ( x ) A -  1 0 / c (x )

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

0.1 1.422 0.024 0.016 0.015 0.013 0.011 0.010 0.010 0.009 0.007 0.007 0.007 0.007
0.2 1.422 0.041 0.025 0.022 0.012 0.019 0.013 0.013 0.010 0.009 0.008 0.008 0.007
0.3 1.038 0.039 0.024 0.021 0.012 0.019 0.014 0.013 0.011 0.010 0.009 0.009 0.008
0.4 0.654 0.017 0.012 0.012 0.008 0.010 0.009 0.009 0.007 0.007 0.007 0.007 0.006
0.5 0.500 0.008 0.008 0.008 0.006 0.005 0.006 0.006 0.005 0.005 0.006 0.006 0.005
0.6 0.654 0.017 0.012 0.012 0.008 0.010 0.009 0.009 0.007 0.006 0.006 0.006 0.006
0.7 1.038 0.039 0.026 0.023 0.013 0.019 0.013 0.013 0.010 0.009 0.008 0.008 0.008
0.8 1.422 0.039 0.025 0.022 0.014 0.018 0.012 0.012 0.010 0.009 0.007 0.007 0 .007
0.9 1.422 0.021 0.015 0.015 0.012 0.012 0.010 0.011 0.009 0.008 0.008 0.008 0.008 4̂

CO



Table 3.11: y /M SE  estimates when estimating the three target curves where the responses are censored with exponential intervals
(n -  200)

X g ( x )

A =

T a rget F u n ction  1:

0.2

G row th  C u rve (H e and Shi (1 9 9 8 )) 

A =  1 A = 5

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 0.727 0.570 0.551 0.446 0.370 0.363 0.364 0.361 0.330 0 .330 0.330 0.330
2 1.411 0.722 0.563 0.546 0.444 0.362 0.353 0.354 0.354 0.346 0 .347 0.346 0.346
3 1.857 0.721 0.556 0.538 0.430 0.381 0.372 0.373 0.373 0.330 0.330 0.330 0.330
4 2.394 0.726 0.571 0.558 0.445 0.374 0 .370 0.371 0.370 0.341 0.341 0.341 0.341
5 3.086 0.743 0.590 0.565 0.468 0.366 0.363 0.363 0.363 0.327 0.327 0.327 0.327
6 4.041 0.698 0.549 0.536 0.441 0.362 0.354 0.354 0.352 0.349 0.349 0.349 0.349
7 5.473 0.715 0 .577 0.560 0.473 0.386 0.381 0.381 0.379 0.342 0.343 0.343 0.343
8 7.897 0.802 0 .667 0.648 0.591 0.403 0 .398 0.398 0.393 0.383 0.383 0.383 0.383
9 12.959 1.163 1.067 1.050 1.149 0.725 0.747 0.744 0.725 0.703 0.705 0.704 0.699

X « ( * )

A =

T arget F u n ction  2:

0 .8

L og is t ic  C u rve (H e 

A

and Shi (19 9 8 )) 

=  2 A =  8

S M I SM 2 SM 3 SM 4 S M I SM 2 SM 3 SM 4 S M I 2SM SM 3 SM 4

-4 0.018 0.140 0.114 0.093 0.047 0.062 0.048 0.044 0.033 0.023 0.022 0.022 0.021
-3 0.047 0.133 0.110 0.093 0.052 0.058 0.046 0.043 0.032 0.025 0.023 0.023 0.022
-2 0.119 0.134 0.110 0.092 0.063 0.066 0 .054 0.049 0.043 0.028 0 .026 0.026 0.026
-1 0.269 0.129 0.105 0.088 0.062 0.066 0 .054 0.050 0.043 0.031 0.029 0.029 0.029
0 0.500 0.129 0.106 0.088 0.051 0.059 0 .050 0.046 0.036 0.027 0.026 0.027 0.025
1 0.731 0.128 0.106 0.090 0.062 0.062 0.052 0.048 0.045 0.030 0.029 0.028 0.028
2 0.881 0.133 0.110 0.092 0.060 0.063 0.051 0.047 0.042 0.028 0.026 0.026 0.026
3 0.953 0.130 0.106 0.089 0.051 0.058 0.046 0.042 0.033 0.025 0.022 0.022 0.022
4 0.982 0.131 0.106 0.088 0.049 0 .059 0.047 0.043 0.033 0.025 0 .024 0.023 0.023

X g (x )

T a rget F u n ction  3: 

A =  3 / c ( x )

F u n ction  (Fan an d  G ijb e ls  (1 9 9 4 )) 

A =  5 / c ( x ) A =  1 0 /c (x )

SM I SM 2 SM 3 SM 4 S M I SM 2 SM 3 SM 4 S M I 2SM SM 3 SM 4

0.1 1.422 0.129 0.112 0.116 0.137 0.103 0.095 0.097 0.112 0.083 0.081 0.082 0.088
0.2 1.422 0.148 0.117 0.115 0.087 0.105 0 .085 0.086 0.073 0.072 0.068 0.069 0.066
0.3 1.038 0.151 0.120 0.113 0.088 0.105 0.084 0.083 0.076 0.071 0.067 0.067 0.066
0.4 0.654 0.106 0.088 0.084 0.067 0.078 0.071 0.070 0.063 0.064 0.063 0.063 0.061
0.5 0.500 0.077 0.071 0.070 0.067 0.061 0.062 0.061 0.060 0.058 0 .060 0.060 0.058
0.6 0.654 0.110 0.084 0.081 0.066 0.077 0.071 0.070 0.063 0.063 0.063 0.063 0.060
0.7 1.038 0.147 0.115 0.109 0.086 0.102 0.083 0.081 0.074 0.071 0.065 0.065 0.065
0.8 1.422 0.156 0.125 0.123 0.090 0.107 0.090 0.091 0.079 0.073 0.068 0.069 0.064
0.9 1.422 0.131 0.110 0.114 0.134 0.104 0.095 0.097 0.111 0.084 0.082 0.083 0.089



Table 3.12: Bias estimates when estimating the three target curves where the responses are censored with exponential intervals
(n =  200)

T a rget F u n ctiou  1: G row th  C u rve (H e and Shi (19 9 8 ))

A =  0 .2  A =  1 A =  5

X g ( x ) M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 -0.021 -0 .0 23 -0 .0 07 -0 .019 -0 .001 -0 .001 -0 .003 -0 .001 0.013 0,013 0.013 0.013
2 1.411 0.008 0.008 0.019 0.008 -0 .015 -0 .0 17 -0 .018 -0 .0 17 -0 .009 -0 .0 09 -0 .009 -0 .0 09
3 1.857 0.012 0.005 0.016 0.011 0.023 0.025 0.025 0.025 0.017 0.017 0.017 0.017
4 2.394 0.024 0.028 0.040 0.028 0.000 -0 .002 -0 .003 -0.001 0.020 0.020 0.020 0.020
5 3.086 0.006 0.010 0.018 0.015 0.012 0.012 0.011 0.012 0.015 0.015 0.015 0.015
6 4.041 0.038 0.052 0.063 0.058 0.015 0.017 0.015 0.016 0.028 0.028 0.028 0.028
7 5.473 0.089 0.085 0.092 0.092 0.054 0.058 0.057 0.057 0.062 0.062 0.064 0.065
8 7.897 0.269 0.261 0.263 0.291 0.132 0.132 0.131 0.127 0.098 0.099 0.099 0.098
9 12.959 0.662 0.624 0.623 0.836 0.461 0.474 0.471 0.466 0.445 0.446 0.445 0.437

T a rget F u n ction  2: L og is t ic  C u rve (H e and Shi (19 9 8 ))

A =  0 .8  A =  2______________________ ______________________ A — 8

X g (x ) M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

-4 0.018 0.014 0.012 0.008 0.011 0.011 0.009 0.009 0.010 0.004 0.004 0.004 0.004
-3 0.047 0.013 0.013 0.013 0.021 0.010 0.010 0.010 0.013 0.008 0.007 0.007 0.008
-2 0.119 0.024 0.023 0.025 0.034 0.025 0.022 0.021 0.025 0.012 0.012 0.012 0.013
-1 0.269 0.028 0.026 0.025 0.035 0.023 0.021 0.019 0.027 0.012 0.012 0.012 0.013
0 0.500 -0 .005 -0 .005 -0 .0 05 -0 .002 0.000 0.001 0.001 0.000 0 .000 0.001 0.001 0.001
1 0.731 -0 .030 -0 .028 -0 .0 27 -0 .0 34 -0 .022 -0 .021 -0 .0 19 -0 .0 2 7 -0 .012 -0 .011 -0 .011 -0 .012
2 0.881 -0.031 -0 .028 -0 .024 -0 .033 -0 .023 -0 .021 -0 .021 -0 .0 26 -0 .013 -0 .013 -0 .013 -0 .0 13
3 0.953 -0 .010 -0 .012 -0 .013 -0 .021 -0 .012 -0 .012 -0 .011 -0 .015 -0 .007 -0 .0 07 -0 .0 07 -0 .007
4 0.982 -0 .014 -0 .013 -0 .011 -0 .0 14 -0 .0 10 -0 .0 09 -0 .009 -0 .011 -0 .003 -0 .003 -0 .002 -0 .003

X g<*)

A =  3/c\

T a rget F u n ction  3: F u n ction  (Fan an d  G ijb e ls  (19 9 4 )) 

fx )  A =  5 / c (x ) A =  1 0 /c (x )

M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

0.1 1.422 -0 .080 -0 .071 -0 .0 78 -0 .1 13 -0 .064 -0 .0 60 -0 .064 -0 .0 87 -0 .053 -0 .050 0.051 -0.061
0.2 1.422 -0 .035 -0 .037 -0 .0 48 -0 .0 36 -0 .029 -0 .031 -0 .036 -0 .0 24 -0 .026 -0 .028 -0 .029 -0 .022
0.3 1.038 0.001 -0.001 -0 .0 12 -0 .021 -0 .001 -0 .0001 -0 .006 -0 .013 0 .000 0.000 -0 .002 -0 .007
0.4 0.654 0.023 0.021 0.012 0.004 0.022 0.019 0.015 0.007 0.018 0 .017 0.016 0.012
0.5 0.500 0.036 0.025 0.020 0.031 0.025 0.018 0.017 0.022 0 .020 0.018 0.017 0.019
0.6 0.654 0.032 0.027 0.018 0.008 0.022 0.020 0.016 0.009 0.018 0 .017 0.016 0.012
0.7 1.038 0.008 0.006 -0 .005 -0 .016 0.006 0.003 -0 .003 -0 .0 12 -0 .002 -0 .0 03 -0 .005 -0 .010
0.8 1.422 -0 .045 -0 .045 -0 .056 -0 .040 -0 .0 36 -0 .0 36 -0.041 -0 .0 28 -0 .026 -0 .0 27 -0 .029 -0 .021
0.9 1.422 -0 .075 -0 .065 -0 .072 -0 .109 -0 .0 65 -0 .0 58 -0 .061 -0 .085 -0 .054 -0 .052 -0 .053 -0 .063



m

Table 3.13: 
intervals (n

Variance estimates when estimating the three target curves where the responses are censored with exponential
= 200)

T arget F u n ction  1: G row th  C u rve (H e an d  Shi (19 9 8 ))

A =  0 .2  A =  1 A =  5

X g ( x ) M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 0.529 0.324 0.304 0.199 0.137 0.132 0.133 0.131 0.108 0.109 0.109 0.109
2 1.411 0.521 0.317 0.298 0.197 0.131 0.124 0.125 0.125 0.120 0.120 0.120 0.120
3 1.857 0.520 0.309 0.290 0.185 0.215 0.205 0.205 0.205 0.108 0.108 0.108 0.108
4 2.394 0.527 0.326 0.309 0.198 0.140 0.137 0.137 0.136 0.116 0.116 0.116 0.116
5 3.086 0.552 0.348 0.318 0.218 0.134 0.132 0.131 0.132 0.107 0.107 0.107 0 .107
6 4.041 0.486 0.300 0.283 0.191 0.131 0.125 0.126 0.124 0.121 0.121 0.121 0.121
7 5.473 0.503 0.326 0.305 0.215 0.146 0.142 0.142 0.141 0.113 0.114 0.114 0 .114
8 7.897 0.570 0.377 0.351 0.265 0.145 0.141 0.142 0.139 0.137 0.137 0.137 0 .137
9 12.959 0.913 0.750 0.715 0.622 0.314 0.333 0.332 0.309 0.297 0.299 0.298 0.298

X g ( x )

A =

T a rget F u n ction  2:

0 .8

L og is t ic  C u rve (H e and Shi (1 9 9 8 )) 

A =  2 A = 8

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm a l)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

-4 0.018 0.019 0.013 0.009 0.002 0.004 0.002 0.002 0.001 0.001 0.000 0.000 0.000
-3 0.047 0.017 0.012 0.008 0.002 0 .003 0.002 0.002 0.001 0.001 0.000 0.000 0.000
-2 0.119 0.017 0.012 0.008 0.003 0.004 0 .002 0.002 0.001 0.001 0.001 0.001 0.001
-1 0.269 0.016 0 .010 0.007 0.003 0.004 0 .003 0.002 0.001 0.001 0.001 0.001 0.001
0 0.500 0.017 0.011 0.008 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001
1 0.731 0.016 0.010 0.007 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001
2 0.881 0.017 0.011 0.008 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001
3 0.953 0.017 0.011 0.008 0.002 0.003 0.002 0.002 0.001 0.001 0.000 0.000 0.000
4 0.982 0.017 0.011 0.008 0.002 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001

X g (x )

A — 3 /c i

T a rget F u n ction  3:

{x )

F u n ction  (Fan and G ijb e ls  (1 9 9 4 )) 

A — 5 /c (a :) A =  1 0 /c (x )

M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

0.1 1.422 0.010 0.008 0.007 0.006 0.007 0.005 0.005 0.005 0.004 0 .004 0.004 0.004
0.2 1.422 0.021 0.012 0.011 0.006 0.010 0.006 0.006 0.005 0.004 0.004 0.004 0.004
0.3 1.038 0.023 0.014 0.013 0.007 0.011 0 .007 0.007 0.006 0.005 0.004 0.004 0.004
0.4 0.654 0.011 0 .007 0.007 0.005 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.004
0.5 0.500 0.005 0.004 0.005 0.004 0.003 0 .004 0.003 0.003 0.003 0.003 0.003 0.003
0.6 0.654 0.009 0.006 0.006 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.003
0.7 1.038 0.021 0.013 0.012 0.007 0.010 0 .007 0.007 0.005 0.005 0.004 0.004 0.004
0.8 1.422 0.022 0.014 0.012 0.006 0.010 0 .007 0.007 0.005 0.005 0.004 0.004 0.004
0.9 1.422 0.012 0 .008 0.008 0.006 0 .007 0.006 0.006 0.005 0.004 0.004 0.004 0.004

05



Table 3.14: Bias, Variance and MSE Estimates when estimating the Growth Curve where the responses are censored with fixed 
width intervals (n =  50)

X g ( x )

w  — 0.5

Bias

w  =  2 ■w = 4

M P LLS
(N orm al)

LLS
<NP)

L M L E M P LL S LLS 
(N orm a l) (N P )

L M L E M P LLS
(N orm a l)

LLS
(N P )

L M L E

1 1.000 0.017 0 .017 0.016 0.017 -0 .0 02 -0 .001  -0 .004 -0 .0 02 0.114 0.087 0.086 0.058
2 1.411 -0.011 -0 .011 -0 .011 -0.011 0.021 0.021 0.018 0.021 0.066 0.048 0.043 0.023
3 1.857 -0 .014 -0 .0 14 -0 .014 -0 .014 0 .008 0 .008 0.005 0.008 0.032 0.029 0.017 0.023
4 2.394 0.024 0.024 0 .024 0.024 0 .040 0 .042 0.038 0.040 -0 .039 -0 .019 -0 .038 -0 .0 06
5 3.086 0.043 0.043 0.043 0.043 0 .039 0 .036  0.036 0.039 -0 .023 0.008 -0 .0 10 0.030
6 4.041 0.041 0.041 0.041 0.041 0 .094 0 .097  0.091 0.094 0.075 0.075 0.072 0.066
7 5.473 0.070 0.071 0.070 0.070 0 .117 0 .123  0.119 0.118 0.170 0.183 0.174 0.153
8 7.897 0.215 0 .217 0 .216 0.214 0 .246 0.261 0.253 0.248 0.264 0.314 0.302 0.292
9 12.959 0.612 0.612 0.612 0.605 0.631 0 .642  0 .638 0.646 0.577 0.615 0.611 0.640

V ariance

w  — 0.5 w  — 2 w — 4

X g (x ) M P LLS LLS L M L E M P LL S LLS L M L E M P LLS LLS L M L E
(N orm al) (N P ) (N orm a l) (N P ) (N orm al) (N P )

1 1.000 0.359 0.359 0.359 0.360 0 .414 0 .408  0.411 0.413 0.481 0.467 0.461 0.472
2 1.411 0.376 0.376 0.376 0.376 0 .409 0 .403  0 .405 0.408 0.436 0.438 0.432 0.478
3 1.857 0.356 0.356 0.357 0.357 0 .386 0 .380  0 .383 0.386 0.433 0.456 0.446 0.507
4 2.394 0.358 0.359 0.358 0.359 0.392 0 .386  0 .389 0.392 0.412 0.423 0.425 0.461
5 3.086 0.372 0.371 0.371 0.372 0.389 0 .383  0 .386 0.388 0.515 0.491 0.512 0.494
6 4.041 0.373 0.373 0.373 0.373 0.369 0 .364  0 .368 0.368 0.650 0.599 0.621 0.562
7 5.473 0.402 0.402 0.403 0.402 0.430 0 .430  0 .432 0.429 0.527 0.546 0.537 0.577
8 7.897 0.535 0.536 0.536 0.535 0.565 0 .575  0 .583 0.562 0.772 0.795 0.806 0.693
9 12.959 1.777 1.788 1.783 1.775 1.770 1.894 1.866 1.748 1.922 2.314 2.268 1.858

' / M S E

xu — 0.5 w  =  2 w  = 4

X g (x ) M P LLS LLS L M L E M P LL S LLS L M L E M P LLS LLS L M L E
(N orm al) (N P ) (N orm a l) (N P ) (N orm al) (N P )

1 1.000 0.600 0.559 0.600 0.600 0.643 0 .639  0.641 0.643 0.703 0.689 0.685 0.690
2 1.411 0.613 0.613 0.613 0.613 0.645 0 .640  0 .635 0.637 0.664 0.663 0.659 0.692
3 1.857 0.597 0.597 0.597 0.597 0.622 0 .617  0 .619 0.621 0.659 0.676 0.668 0.713
4 2.394 0.599 0.599 0.599 0.599 0.627 0 .622  0 .625 0.627 0.643 0.651 0.653 0.679
5 3.086 0.611 0.611 0.611 0.611 0.625 0 .620  0 .622 0.624 0.718 0.701 0.716 0.703
6 4.041 0.612 0.612 0.612 0.612 0.615 0.611 0 .613 0.614 0.810 0.777 0.791 0.753
7 5.473 0.638 0.638 0.638 0.638 0.666 0 .667  0 .668 0.666 0.746 0.762 0.753 0.775
8 7.897 0.762 0.763 0.763 0.762 0.791 0.802 0 .804 0.790 0.917 0.945 0.947 0.882
9 12.959 1.467 1.471 1.469 1.463 1.473 1.519 1.507 1.471 1.501 1.641 1.626 1.506

4̂
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Table 3.15; Bias, Variance and MSE Estimates when estimating the Growth Curve where the responses are censored with fixed
width intervals (n — 100)

B ias

w  =  0 .5  w  =  2 tv — 4

X e ( x ) M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1 . 0 0 0 -0 .015 0.015 0.015 0.015 -0 .0 25 -0 .025 -0 .029 -0 .025 0.068 0.039 0.044 0 .017
2 1.411 -0 .012 -0 .012 -0 .012 -0 .012 -0 .0 22 -0 .022 -0 .025 -0 .023 0.024 - 0 . 0 0 1 0.002 -0 .0 23
3 1.857 0.014 0.014 0.014 0.014 0.016 0.016 0 . 0 1 1 0.016 0.034 0.031 0.024 0.028
4 2.394 0.030 0.030 0.030 0.030 0.016 0.016 0.012 0.016 -0 .0 19 0 . 0 0 1 -0 .0 16 0.016
5 3.080 0.037 0.037 0.037 0.037 0.046 0.048 0.043 0.046 -0 .0 46 -0 .015 -0.031 -0 .006
6 4.041 0 . 0 1 1 0 . 0 1 1 0 . 0 1 1 0 . 0 1 1 0.055 0.057 0.053 0.055 0.018 0.019 0.016 0.014
7 5.473 0.065 0.066 0.065 0.065 0.088 0.093 0.088 0.089 0 .114 0 . 1 1 1 0.108 0.086
8 7.897 0.168 0.168 0.168 0.168 0.243 0.259 0.250 0.245 0 .176 0.203 0.196 0.190
9 12.959 0.520 0.520 0.520 0.511 0.643 0.656 0.653 0 .657 0.613 0.644 0.640 0 .658

V ariance

w  — 0.5 w  — 2 w  — 4

X g (x ) M P LLS LLS L M L E M P LLS LLS L M L E M P LLS LLS L M L E
(N orm a l) (N P ) (N orm al) (N P ) (N orm al) (N P )

1 1 . 0 0 0 0.195 0.195 0.195 0.195 0.409 0.403 0.407 0.409 0.327 0 .319 0.315 0.320
2 1.411 0.198 0.197 0.197 0.198 0.374 0.367 0.371 0.373 0.264 0 .274 0 .267 0.291
3 1.857 0.199 0.199 0.199 0.199 0.371 0.365 0.370 0.371 0.270 0.289 0 .280 0.314
4 2.394 0.192 0.192 0.192 0.192 0.381 0.375 0.379 0.381 0.227 0.246 0.246 0.264
5 3.086 0.201 0.201 0.201 0.201 0.421 0.417 0.420 0.421 0.313 0.306 0.313 0.308
6 4.041 0.215 0.215 0.215 0.215 0.404 0.398 0.401 0.403 0.346 0 .317 0 329 0.295
7 5.473 0.192 0.192 0.192 0.192 0.434 0.433 0.436 0.433 0.284 0.304 0.296 0.313
8 7.897 0.246 0.246 0.246 0.246 0.567 0.584 0.586 0.564 0.274 0 .274 0.274 0.274
9 12.959 0.670 0.674 0.673 0.672 1.790 1.932 1.883 1.755 0.751 0.872 0.863 0.738

V M S E

w  = 0.5 w  — 2 U)  = 4

X g (x ) M P LLS LLS L M L E M P LLS LLS L M L E M P LLS LLS L M L E
(N orm al) (N P ) (N orm al) (N P ) (N orm al) (N P )

1 1 . 0 0 0 0.441 0.441 0.442 0.442 0.640 0.635 0.639 0.640 0.576 0.566 0.563 0.566
2 1.411 0.445 0.445 0.445 0.445 0.612 0.606 0.609 0.611 0.514 0.524 0.517 0.540
3 1.857 0.446 0.446 0.446 0 .446 0.610 0.605 0.608 0.609 0.459 0.459 0.459 0.459
4 2.394 0.439 0.439 0.439 0 .439 0 .617 0.612 0.615 0.617 0.477 0.496 0.497 0.514
5 3.086 0.463 0.464 0.464 0.464 0.651 0.647 0.650 0.650 0.562 0.554 0.560 0.555
6 4.041 0.952 0.767 0.753 0 .629 0.638 0.633 0.635 0.637 0.589 0.563 0.474 0.543
7 5.473 0.443 0.443 0.443 0.443 0.665 0.664 0.666 0.664 0.545 0.563 0.555 0.566
8 7.897 0.524 0.524 0.524 0.524 0.791 0 .807 0.805 0.790 0.549 0.549 0.549 0.549
9 12.959 0.970 0.972 0.972 0.966 1.485 1.537 1.520 1.479 1.061 1.134 1.128 1.082

4̂
00



Table 3.16: Bias, Variance; and MSE Estimates when estimating the Growth Curve; whe;re the; responses are censored with fixed
width intervals (n =  200)

Bias

w  =  0 .5  w  ~  1 w =  4

X g (x ) M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E M P LLS
(N orm al)

LLS
(N P )

L M L E

1 1.000 0.002 0.002 0.002 0.002 -0 .0 03 -0 .003 -0 .005 -0 .003 0.013 0.013 0.013 0.013
2 1.411 -0 .016 -0 .016 -0 .016 -0 .016 0.002 0.002 0.001 0.002 -0 .009 -0 .009 -0 .009 -0 .009
3 1.857 -0 .001 -0 .002 -0 .0 02 -0 .002 0.002 0.002 0.001 0.002 0.017 0.017 0.017 0.017
4 2.394 0.010 0.010 0.010 0.010 -0 .0 12 -0 .011 -0 .012 -0 .012 0.020 0.020 0.020 0.020
5 3.086 0.011 0.011 0.011 0.011 0.018 0.018 0.017 0.018 0.015 0.015 0.015 0.015
6 4.041 0.031 0.031 0.030 0.031 0 .017 0.018 0.017 0.017 0.028 0.028 0.028 0.028
7 5.473 0.062 0.062 0.062 0.062 0 .027 0.029 0.028 0 .027 0.062 0.062 0.064 0.065
8 7.897 0.205 0.206 0.206 0.205 0.114 0.121 0.119 0.116 0.098 0.099 0.099 0.098
9 12.959 0.576 0.576 0.576 0.568 0.426 0.426 0.439 0.426 0.445 0.446 0.445 0.437

V ariance

VJ — 0.5 w  = 2 w — 4

X g ( x ) M P LLS LLS L M L E M P LLS LLS L M L E M P LLS LLS L M L E
(N orm al) (N P ) (N orm al) (N P ) (N orm al) (N P )

1 1.000 0.212 0.212 0.212 0.212 0.131 0.130 0.131 0.131 0.108 0.109 0.109 0.109
2 1.411 0.212 0.212 0.212 0.212 0.124 0.123 0.123 0.124 0.120 0.120 0.120 0.120
3 1.857 0.205 0.205 0.205 0.205 0.128 0.127 0.128 0.128 0.108 0.108 0.108 0.108
4 2.394 0.206 0 .206 0.206 0.206 0.139 0.138 0.138 0.139 0.116 0.116 0.116 0.116
5 3.086 0.198 0.198 0.198 0.198 0.136 0.135 0.135 0.136 0.107 0.107 0.107 0.107
6 4.041 0.191 0.192 0.193 0.191 0.123 0.122 0.122 0.123 0.121 0.121 0.121 0.121
7 5.473 0.213 0 .213 0.213 0.213 0.131 0.130 0.131 0.131 0.113 0.114 0.114 0.114
8 7.897 0.254 0.254 0 .254 0.254 0.144 0.146 0.146 0.143 0.137 0.137 0.137 0.137
9 12.959 0.687 0.691 0 .690 0.687 0 .314 0.335 0.333 0.313 0.297 0.299 0.298 0.298

s / M S E

w  — 0.5 w  — 2 w = 4

X g (x ) M P LLS LLS L M L E M P LLS LLS L M L E M P LLS LLS L M L E
(N orm al) (N P ) (N orm al) (N P ) (N orm al) (N P )

1 1.000 0.460 0.460 0.461 0.461 0.362 0.360 0.362 0.362 0.330 0.330 0.330 0.330
2 1.411 0.460 0.460 0 .460 0.460 0.352 0.350 0.351 0.352 0.346 0.347 0.346 0.346
3 1.857 0.452 0.452 0.452 0.453 0.358 0.356 0.358 0.358 0.330 0.330 0.330 0.330
4 2.394 0.454 0.454 0 .454 0.454 0.372 0.372 0.372 0.373 0.341 0.341 0-341 0.341
5 3.086 0.445 0.445 0.446 0.446 0.369 0.368 0.368 0.369 0.327 0.327 0.327 0.327
6 4.041 0.438 0.439 0 .440 0.439 0.351 0.349 0.350 0.351 0.349 0.349 0.349 0.349
7 5.473 0.466 0.466 0.466 0.466 0.362 0.362 0.363 0.362 0.342 0.343 0.343 0.343
8 7.897 0.544 0.545 0 .544 0.544 0.396 0.400 0.400 0.396 0.383 0.383 0.383 0.383
9 12.959 1.009 1.011 1.011 1.005 0.704 0.728 0.726 0.703 0.703 0.705 0.704 0.699

eo
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Table 3.17: Behaviour of midpoint imputation and maximum likelihood estimation 
on estimation of a constant mean with exponential intervals, for different sample sizes 
and exponential rates.

(n  =  50, fj, -= 0, a  -= i )

A = 0.2 A =  1 A =  5

M eth od M P M L E M P M L E M P M L E

Bias 0.033 0.020 0.003 0.001 0.002 0.002
V ariance 0.283 0.077 0.031 0.027 0.021 0.021

a/M S E 0.533 0.278 0.176 0.163 0.144 0.143

(n  =  100, f i =  0, cr =  i )

A = 0.2 A =  1 A =  5

M eth od M P M L E M P M L E M P M L E

Bias -0.012 -0.002 -0.003 -0.003 0.003 0.003
V ariance 0.128 0.036 0.014 0.013 0.011 0.011

v/ M SE 0.358 0.190 0.120 0.114 0.103 0.103

(n  =  200, (i =  0, cr =  i )

A = 0.2 A =  1 A =  5

M eth od M P M L E M P M L E M P M L E

Bias -0.005 0.001 -0.004 -0.003 0.003 0.003
V ariance 0.066 0.017 0.007 0.006 0.005 0.005

V M S E 0.256 0.129 0.086 0.081 0.073 0.073
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Table 3.18: Behaviour of midpoint imputation and maximum likelihood estimation 
on estimation of a constant mean with fixed width intervals, for different sample sizes 
and interval widths.

(n  =  50, /x =  0, a  == i )

w  = 0.5 w == 2 w =  4

M eth od M P M L E M P M L E M P M L E

B ias 0.001 0.001 0.007 0.005 0.017 0.006
V ariance 0.020 0.020 0.028 0.027 0.077 0.011

V M S E 0.142 0.142 0.167 0.158 0.279 0.106

(■n =  100, fj, =  0, a  -=  i )

w  = 0.5 w  == 2 w =  4

M eth od M P M L E M P M L E M P M L E

Bias 0.006 0.006 0.005 0.004 -0.004 -0.002
V ariance 0.011 0.011 0.013 0.012 0.039 0.006

V M S E 0.103 0.103 0.115 0.113 0.199 0.076

(n  — 200, /x — 0, a  -=  i )

w = 0.5 w -= 2 w =  4

M eth od M P M L E M P M L E M P M L E

B ias -0.003 -0.003 0.001 0.001 0.002 0.001
V ariance 0.005 0.005 0.007 0.006 0.020 0.003

V M S E 0.070 0.070 0.082 0.080 0.139 0.055

I



Table 3.19: Behaviour of midpoint imputation and maximum likelihood estimation 
on estimation of a constant mean with fixed width intervals, for different settings of 
the mean value and interval widths.

M eth od

=  0

(n  =  50, w  =  4, <j  - 

M =  1

= 1)

V =  2 =  3

M P M L E M P  M L E M P M L E M P M L E

Bias -0.013 -0.005 0.360  -0.421 0.002 0.017 -0.372 0.415
V ariance 0.072 0.011 0.045 0.043 0.015 0.566 0.044 0.045

V m s e 0.269 0.104 0.418  0.469 0.124 0.752 0.428 0.467

(n  =  50, w = 6, a  == i )

=  0 M =  1 =  2 V =  3

M eth od M P M L E M P  M L E M P M L E M P M L E

Bias 0.006 0.002 1.038 -0 .192 0.858 -0.198 -0.001 -0.008
V ariance 0.193 0.028 0.092 0.021 0.016 0.600 0.002 0.306

n/M S E 0.439 0.166 1.081 0.241 0.867 0.800 0.043 0.553

(n  =  50, w = 8, cr == i )

=  0 /x =  3 =  4 V =  7

M eth od M P M L E M P  M L E M P M L E M P M L E

B ias -0.017 -0.006 0.990 0.867 0.000 0.000 -1.731 -0.080
V ariance 0.314 0.045 0.002 0.266 0.000 0.018 0.156 0.038

V M S E 0.561 0.212 0.990 1.009 0.010 0.135 1.775 0.210
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Burn No. Slope ROS (lower) ROS (upper)
1 0.00 0.35 1.95
2 0.00 0.40 0.85
3 0.03 0.05 0.55
4 -0.03 0.65 2.20
5 0.03 1.90 3.00
6 0.03 1.10 1.35
7 0.03 2.15 2.70
8 0.03 1.10 2.60
9 0.03 0.95 1.95

10 -0.03 1.30 1.95
11 0.03 0.75 2.90
12 0.07 1.05 1.80
13 -0 .07 1.00 1.60
14 -0 .07 0.90 1.35
15 - 0.02 0.95 1.80
16 - 0.02 1.10 1.55
17 -0.03 0.75 1.50
18 -0.03 0.60 1.50
19 -0.05 1.10 1.35
20 -0.05 1.00 1.50
21 -0.08 0.50 1.15
22 -0.13 1.00 1.70
23 -0.13 0.65 1.00
24 -0.13 0.30 0.80
25 0.17 2.10 2.35
26 -0.17 0.50 0.85
27 -0.17 0.10 0.90
28 -0.17 0.40 0.75
29 -0.17 0.40 0.65
30 -0.17 0.25 0.55
31 0.00 0.90 1.55
32 0.00 0.90 1.55
33 0.00 1.30 2.00

Table 3.20: Rate of spread (ROS) measurements for a set of waxed paper fires at 
a variety of slopes. ROS (lower) denotes the left endpoint of the interval and ROS 
(upper) denotes the right endpoint of the interval containing the actual rate of spread.
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Chapter 4

LOCAL REGRESSION SUBJECT TO CONSTRAINTS  
USING DATA SHARPENING

4.1 Introduction

Consider the regression model

V i= 9 {x i)+ £ i , i =  (4.1)

where the e^s are independent of each other and of the x^s, and have mean 0 and 
variance <r2. The mean function g(x) is assumed to be smooth but also subject to a 
given condition or set of conditions, such as monotonicity, convexity, and so on.

Let n
g{x) =  g(x\y) =  Y  Ai(x)yi (4.2)

i= 1

denote the kernel regression estimator for g(x). For example, it can be a local con
stant, local linear or higher order local polynomial regression estimator. The form of 
Ai(x) for the Nadaraya-Watson estimator was given at (2.4). Other estimators could 
also be considered as long as they can be written as a linear combination of the y's, 
the responses. The Priestley-Chao and Gasser-Miiller estimators (see, e.g., Hall and 
Huang (2001)) fit into this category as do certain spline regression estimators.

The data-sharpened estimator of g(x) is given by

n

g*(x ) =  g(x\y*) =  Y  Ai(x )yti (4-3)
i=l

where the y*’s are chosen to minimize the ¿2  distance

D(  y*) =  ¿ ( m  -  Vi )2
i—1
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subject to any number of constraints which take the form

n

RWy*) = E  v* -  C(x) > o (4.4)
i= 1

or n

R(*|y1  =  E  ~  <4-5)
i=l

Here Bi(x) is defined as follows:

Bi(x) =  ^ D i{x)A {f\ x ) ,  
seS

where S is a finite set of nonnegative integers, A- (x) is the s-th derivative of the 
function Ai(x) and Dj{x) is a function of x.

We restrict our attention to problems where the constraint on the estimated 
function can be expressed as linear functions of the responses.

If we further require that n
i= 1 zi.

Vi
= n, then we obtain an analogue to the

constrained weighting method of Hall and Huang (2001) where it is required that

E&=iPi =  i-
This is a quadratic programming problem with linear constraints. We can use 

the solve.Q P() function in the quadprog library (Turlach and Weingessel (2007)), 
which makes the method very convenient. This estimator was first studied by Braun 
and Hall (2001), where most of the focus was on ensuring monotonicity of the regres
sion function.

In this chapter, we will explore other possibilities and develop the theory. We 
will consider not only monotonicity and convexity constraints, but also point con
straints, as well as functional and differential constraints, provided that these con
straints are linear functions of the y's, i.e., they can be written in the form of (4.4) or 
(4.5). We will also make some comparisons with the constrained weighting approach 
proposed by Hall and Huang (2001); this partly meets a need identified by Racine 
and Parmeter (2009) since no one has compared these methods. We will refer to the 
Hall and Huang method as the HH method from now on.

The structure of the rest of the chapter is as follows. Section 4.2 is concerned 
with theoretical properties of the data sharpening method, including the problem of
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existence of solutions and the rate of convergence of estimators to the true regression 
function. Simulation work is reviewed in Section 4.3, and the analysis of some real 
data sets will be discussed in Section 4.4.

4.2 Theoretical Properties

In this section we develop some theoretical properties of the estimator g(x\y*). Much 
of this material follows Hall and Huang (2001) in their treatment of the HH method 
and gives parallel results for the class of data sharpening estimators we are studying.

In what follows, we assume C(x) = 0  in the constraint on R(x). When C(x) is 
not identically 0, analogous results can be obtained. Thus

the data sharpening optimization problem.

Theorem  4.2.1 Assume that the set { l , - - -  , n } contains an increasing sequence 
il, ■ ■ ■ , ir with the properties:

(a) Ujil, Ui2, . . . ,  Uir is a sequence of (possibly extended) real numbers, and
Viv  V)2, . . . ,  V{r is an increasing sequence of real numbers where, for each k € 
{ 1 , . . . ,  r }, the differences I are strictly positive (but may be infinite, if 
Ulk =  ~oc).

(b) The function Bjk(x) is strictly positive and continuous on (t/^, Vik), and van
ishes on (—oo, Uik\.

(d) For 1 < i < n, B i(x) is continuous on (—oo, oo).
(e) Each yik > 0 .

Then there exists a vector y* =  (y , yff) such that y* >  0, i =  1, ■ • • , n and

The first result provides sufficient conditions for the existence of a solution to

(c) la,b]cUl= 1(Uik,Vik).

n

R M y*) =  £ Bi(Vto* > 0

for all x £ J .
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Proof. By properties (a), (b) and (c), there must be at least one ik for which 
U{k < a. Let j i denote the largest such value. Clearly, VJl =  V%k > a.

For l — 1 ,2 ,..., inductively define jp+ i to be the largest ik such that < Vje, 
as long as a <  < b. Note that jp+i > jp-

Let s =  # {jp  : Vĵ  < b} +  1. Thus, the sequence { j i , . . . , j s} is strictly increas
ing.

Set 8 =  min^tfiJk uh + l) Because r is finite, 8 > 0 and

M  =  min(V -̂1 — a, Vjs — b, i)  > 0.

Let e E (0, M ) be given, and set y*̂  =  yjx. Then

Bh  (x)^ji > 0

for x E [a, Vj^, by strict positivity of B j1 on {Ujv  V^) (which contains [a, V^). 
Now, take a sequence y^ , • • • , y* , where l < s, such that

E Bi 8 x K > 0
k<l

on [a, Vjt — e], Note the following three facts:
1 . £7j < Vjl — e, (by definition of j i+ i and the choice of e)

2- Bji+1 > 0 on lUji+ v Vji+1]i (by property (a))
3‘ BJk (x) is bounded away from — oo (there exists a constant c such that — oo < 

c < Bik(x)), uniformly in k < l and in — oo < x < oo, (by property (c)). 
Therefore, we can choose y j sufficiently large and positive so that

E Bh <-x '> y i > 0
k<l+l

on [a, Vjl+1 — e]. This can be achieved by the following arguments: because we have 
T,k<l Bjk(x )Vjk > 0 on [a, Vjt -  e] and Ujl+1 < Vk  -  e, Efc</ Bh ^ ) k > 0 on 
[a, Ujl+1}. From the third fact, there exists a constant c such that —oc < c < J5jfc(x) 
in k < l and in — oo < x <  oo. So even if ^2k<l Bjk(x )yjk — 0 f°r some x E
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(Uji+i,Vji+1), the number can be chosen sufficiently large and positive such

that Y .k<l+lBjk(x )yjk > °-

Using mathematical induction on l, we have proved the existence of integers 
j\ <  • • • < js  and values of y * , • • • , yjs such that { j i ,  • • • , j s } C {1, • ■ • ,n }. These 
y*j ’s satisfy the condition that

J rC

£ BW > 4 >0
k

on [a,Vjs — e]. By the definition of e, the interval [a,Vjs — e] contains the interval 
J  =  [a, &]■ Since { j i , ••• , j s} Q {1, • • • , n}, for each , j s }, we take y* =  0,
yielding a sequence y*, ■ • • , which satisfies

R(®|y*) =  > o.
i

By property (d), we can obtain the result even with all y* positive, for each 
i ^ { j i , • ■ • , j s}, as long as these values are sufficiently small. Thus, we can construct 
a sequence of positive numbers ?/*,■•• , y^ such that

R M y*) =  > o.
i

□

In the next theorem, we constrain g(x\y*) to be monotone increasing and con
sider the case where the bandwidth h is chosen in a way that would be “asymptotically 
optimal” for g. That is , we take h =  0 (n - 3).

This result will also depend on the following conditions.
1 . The estimator is of Gasser-Müller, Nadaraya-Watson, Priestley-Chao or local 

linear type.
2. J  and F  — [c, d] are compact intervals with J  C F  for the local linear estima

tor, and J  C [c +  6, d — S], for some 5 >  0, for the other 3 estimators.

)
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3. The design points are either equally spaced on J , or they are independent 
random variables coming from a distribution whose density f [x )  is continuous 
and nonvanishing on T .

4. K (x ) is a symmetric, compactly supported with Holder continuous derivative. 
5- infx e j9 (x )  =  B x > 0.
6. Ei^e^) is bounded, for some t >  0.
7 spn V±_ _
7‘ ^ * = 1  Vi ™

Let g(x) =  g(:r|y) denote the unconstrained estimator.

Theorem  4.2.2 Assume conditions 1-7 given above, and suppose t >  4 in condition 
6, and the functions f(x )  and g(x) have two continuous derivatives on J  =  [a, b], 
and h =  0 (n -1 / 5) as n —> oo. We take the distance D =  D(y*).

(a) If g'(x) >  0 for all x in J , then with probability 1, y* — y  for all sufficiently 
large n. Hence, g (x|y*) =  g(x) on J , for all sufficiently large n.

(b) Suppose that g'(x) >  0 for all x in J  except at a single point xq at one of the 
endpoints of the interval J  =  [a, b\. Further suppose g'(xq) =  0 and g"(xo) 0 
at this single point xq . Then

l?(^|y*) ~ 9 (x )\ = 0 P (h2)

uniformly on the interval J .

(c) There exist random variables A  =  A(n) and Z\ — Z\(n) > 0, satisfying A =
5

Op(h^) and Z\ — O p(l), such that

9{z\y*) =  (1 +  A  )g(x)

uniformly in x G J  such that \x — xq \ > Z\h. This means that for a random 
variable Z2 =  £ 2(71) > 0 that satisfies Z2 =  Op( 1), we have y* =  (1 +  A)yi for 
all indices i such that both \X{ — xo| > ^2  ̂ and A fx )  7̂  0 for some x € J  ■

Before proving the theorem, we need the following results from Hall and Huang
(2001).
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Proposition  4.2.3 Under the conditions 1-6 stated above,

sup A ^ \ x )2 =  O p(n_ 1 /t_2j_1),
x^J ¿= i

(?)where AU ’ (x) is the j-th derivative o fA ^ x).

This result is stated in step (ii) of the proof of Theorem 4.3 of Hall and Huang (2001).

Proposition  4.2.4 Assume conditions 1-6 above. For any constant C\ > 0, and for 
each 6 >  0, there exists C2 =  6 2 (5) such that for sufficiently large n,

P {g '(x ) > C\g'{x) for all x > a +  C2/1}  > 1  — 5. (4.6)

The proof of this result is embedded in the proof of Theorem 4.3 statement (v) in 
Hall and Huang (2001).

Proposition  4.2.5 Assume conditions 1 — 6 above and g'{x) > 0 for x €E [a, b] and 
g'{a) =  0. Then the following results hold.

1. Given 6 > 0, we may choose C >  0 large enough so that for all sufficiently large 
n,

P {g f(x) >  3h, for all x G [a +  Ch, b]} >  1 — -6.
o

2. Given both C and 6 we may define a fixed compactly supported, twice differ
entiable function L to be linearly decreasing, at a sufficiently fast rate, on a 
sufficiently wide interval containing the origin, and returning sufficiently slowly 
to 0 on either side of the interval where it is decreasing, such that

P {g (x )  +  hCkL'C^——- )  > 2h for all x G [a, a +  Ch]} >  1 — ^5
h 3

and
hCkL\ > _ h f or au x e  [a +  Ch, b],

! v

where Ck =  JyK '(y)dy.

These results are embedded in the proof of Theorem 2.2 in the appendix of Racine 
and Parmeter (2009). We also need the following additional result.
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Lemma 4.2.6 Assume conditions 1-7 above and g'(x) >  0 for x G [a, b] and g'(a) =  
0. For any S > 0, there exists a random vector y* =  y*(S) such that

P {g  (z|ÿ*) > 0 for all x G J }  >  1 — Ô,

and D (y*) =  Op( 1).

Proof. Let
y* =  yi ( l  +  & + !l(X ir 1h2L {X̂ f 7 f j ,  (4.7)

y*where L is the function defined by Prop 4.2.5 and A is defined by the equality =y%
n. Here A is a random variable which does not depend on i and is given by A =

, 2 L(xK Xi)
~1T E iL i g(x-) • Then we compute

n

s/{x\r) =  Y . /t w #
i= 1

=  ^ 2 Ai(x )yi i 1 +  A +  g{X i)~ l h2L {— -~ - 1-)
i= 1 
n

=  E  A M  M M ) +  £¡1 [ i  +  A + U 2 r iX0 ~ X i )
i= 1

=  (1 +  A )g'(x) +  h2 A i(x) +  h2A 2 (x),

where
M x ) = Y : t 1L (S ^ k )A'i (x),

A 2(z ) =  E ? = l 9 ( ^ i ) 'R ( S^ a ) ^ ( ^ i -

As in Hall and Huang (2001), it is true that

i= 1
— ) =  0 P (nh).

h
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y.
By definition of A, we obtain that Yli jh =  n îov A, and

A =  Op(h3). (4.8)

Similarly, it is true that sup2.ej-|^(x)| =  Op( 1). 
Using the Cauchy-Schwarz, we have

sup
x

- 1 r /^0
h

)A'i {x)£i -  ŝ p xlY^9^  2L2(
\ 2

h

T > r a _ 2 i2 (
^0__ 2

h
)ejO p{n l h 3)

-* slE\g(Xi) ^ L ‘i ( X̂ ) e } } 0 P (h -^

E[g(Xt)-^LH^i)]E[el]Op{h-3)
h

0 p ( l J 2 ^ 2(xim ^ T ^))0p(h-3)

=  \jOp(K)Op(h 3) 

=  0 P(h -1) (4.9)

Thus
SUpx e j \ A 2 (x)\ =  Op(/l - 1 >

For A i(x ), we have

A i(x ) =  h / n

=  V 1 J  K '(y )l(

W +-2^,-1 K r(X ~ \ t rx0 ~ x , z - X *
Z=1

xq — x

s * ' «  h -  *  ■ ft
Z=1

h
+  y)dy +  Op( 1 ).

A Taylor expansion of L gives

r / X Q — X  . r / X 0 ~  X x  ̂ . X Q  X  v
i ( - ! V —  +  y) =  +  vL ( - p p - )  +  O p(l). (4.10)
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Since f  K '(y)dy =  0, substituting (4.10) into the formula of A i(x ), we get

A i(z ) =  ft" 1 J +  y L i ^ Y 1 ) +  Op(l)]dy +  Op( 1 )

h~l L {X<i u X) f K  (y)dy +  h~l L (X° k X) J yK'(y)dy +  h~l
h h

K  (y)dy +  0 P ( 1)

/ yK \y)d y + 0 p (h - l ) + O p( 1 ).

Let Ck =  f  yK'(y)dy, we get

2 u- i n  t' , x q - x9 {Ad ) = 9  (x) +  h h CkL ( h
) +  Op(Ji) +  Op(h  ) +  A  g (x) +  h A 2(^)

=  g\x) +  hCkL ( X° h X) + A 3(i ) (4,11)

where A 3(x) =  Op(h) +  Op(h2) +  A g'(x) +  h?^2{x ) =  Op(h ) uniformly in x € J . 
Furthermore, for all C  and 5 > 0 in Proposition 4.2.5 and all sufficiently large

n,

P {A 3(x) > — h for all x G [a, 6]} > 1 — -5.
o

Combining (4.11), Proposition 4.2.5 and the above results on A 3, we see that

P {g  (x|y*) > 0 , for all x G J }  > 1  — 5,

for sufficiently large n.
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For the order of D (y*), we compute from (4.7):

n n , , v

E®- K)2 = E (« (A + s(Jfj)-1*a£(i^ )
2=1 2 =  1 

n
= E ŵ i)+s.o2 (A+»( )̂_1fc2i(

i= 1 '

— 1 l.2 r / ̂ 0 -  ^
h

n

a 2 E  s M 2 +  A E  4  +  2A 2 E  » W > £i
2=1 2=1 2 = 1

\ — 1 T ( *̂0
n n

2A/i2 E s ( * i ) £ ( f t j j - i ) +  2Aft2 E i ( A i ) _1i ( :
2 =  12=1

n

+ 4A/l2E i ( i^ f e  + ft4E i (
2=1 2 =  1

?7- 2  n
+ 2/!4E s (A :,) -1i ( i2^  )e, + ft4E f f « ) “2i(  h

,Xo ~~ X,(2 x 2

- 2 r / x0 ~ X i2. 2

2=1

=  O p i1)-

2 =  1

The above equality can be proved using Chebyshev’s inequality and Condition 6 with 
t =  4. □

P ro o f o f  Theorem  4.2.2.
(a) As pointed out in the proof of Theorem 4.3(a) of Hall and Huang (2001), g'(x) =  
g'(x) +  o(l) uniformly on I ,  with probability 1 , i.e.,

P( Inn sup |g (x )  — gr(x) | =  0) =  1.

So for any e > 0, there exists a N  such that when n > N

sup \g'n(x) - g \ x ) | < e-
X

Since g'(x) is continuous function, it has a minimum on the interval J . Denote this 
as min. Thus g'(x) >  min > 0 for all x € J . Take e < min, then we have

gn{x) > g'(x) -  e >  min -  e > 0,



65

when n > N  and for all x e J . Hence, the constraint is satisfied by the original data 
with probability 1, for large enough n. Therefore, y* =  y, with probability 1, for 
large enough n.
(b) First from Lemma 4.2.6, we have

D ( y * ) = 0 P (l) .

From Proposition 4.2.3, we have

suPxgj ¿ ( A Ü)W>2 =  O p {n -l h~2j- 1 3 =  0,1.

Hence, using the Cauchy-Schwarz inequality, we have

Y  A ïj ) (x )(yî
i=1

1 
2

1n \ 7

0 ) /'™\\2 '
-  ~V i)2j  • (x))

(4.12)

where j  =  0,1 and (j) means that the j-th  derivative. This is true uniformly in 
x e J .

Letting j  =  0, we have |<7(x|y*) — g(x)\ =  Op{h2), uniformly in the interval J .

(c) Since K(-) is continuous with compact support, there exists a number M  such 
that

Aj(x) = 0 , ii \x — Xj\ > Mh.

Suppose that 77 is a random variable such that rj =  a +  Op(h) and

y* — (1 +  A )yi, for all i with Xj > y,
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where A is a random variable satisfying — 1 < A < oo and is not depending on i. 
So if x > Mh +  r) we have y* =  (1 +  A )yi for each i such that A i(x ) ^  0. Thus 
<7(z|y*) =  Y,i A (x )y *  means that

g(x |y*) =  (l +  A)g(x)

if x > Mh +  r). Then from Proposition 4.2.4, we can find a 6*2 such that for any 
Ci >  0 and 5 > 0, the following is true:

P {g /(x|y*) > 6*i(l +  A )g'{x) for all x > max(a +  6*2/7, Mh +  77)}  (4.13)

=  P {(1 +  AJ^^Iy) > 6*i(l +  A)g'(x) for all x >  max(a +  6*2/1, Mh +  77)}

=  P {g '(x |y) > Cig'(x) for all x >  max(a +  6*2/1, Mh +  77)}

> P {g '(x|y) > C\g'(x) for all x >  a +  6*2/1)}

> 1 -S ,  (4.14)

P ig '(x|y*) > 6*i(l +  A)g'(x) for all x >  max(a +  62 /1, Mh +  77)} > 1 — 8. (4.15)

From the results in the proof of (b) (4.12), we have

svpxej\i?(x\y*) -  g(x)\ =  0 P {h).

Then there exists a random variable Z2 such that

Z2/1 =  inf{z > 0 : y* =  (1 +  A )yi, for all i such that |x q  — Ay| > z }

and Z2 =  Op( 1). Then we have y* =  (1 +  A)yj for each i such that |xq — Xi\ > Z2/1}.
Let

Z\h =  inf{z > 0 : for all x G J , for which x >  a + z , Ai(x) =  0 whenever y* ^  (1+ A )^ }.
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Then Z\ =  Op( 1), and
g{x\y*) =  (l +  A )g(x)

uniformly on x G J  such that x > a +  Z\h. From the above argument, we have

-  v i f  =  (t1 + -  yi)2 = a 2  yi-
¿=1 i= 1

Since we have D(y*) =  J2i=i(Vi ~ Vi)2 =  O p(l) and y  has a finite second moment, 
we see that

A 2 =  O p(n~1).

Therefore,
A =  0 P (hh) .

□

4.3 A  Simulation Study

In this section, we will apply the data sharpening method and competing kernel 
regression methods to simulated data for which the regression function is known to 
satisfy particular conditions. In particular, we will simulate from models which exhibit 
monotonicity, convexity, and concavity; later in the section, we consider models where 
the qualitative information comes in the form of functional or differential operators.

Comparisons among the estimation methods will be made on the basis of bias, 
variance, pointwise MSE and MISE (mean integrated squared error).

4.3.1 M odel H: M onotonicity

For an example of monotonic regression, we consider the monotonic example studied 
by Hall and Huang (2001):

g(x) — —x3 +  3x (Model H)

This function is monotonically increasing on the interval [—.9, .9].
In order to make comparisons with their results, we have used the same sim

ulation settings as they used. To do this, we simulated 250 samples of size n =  50.
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X

Figure 4.1: Constrained and unconstrained local linear estimates of the monotonic 
regression function (Model H, dotted curve) for a typical realization of simulated 
data (open circles). Pictured are the unconstrained estimate (short dashed curve), 
the HH estimate (long dashed curve), and the sharpened estimate (solid grey curve). 
Sharpened observations are represented by triangles.

The design points were randomly uniformly distributed on [—1,1]. The errors were 
independent normal random variates with a standard deviation of 0.4.

For each simulated data set, we estimated the regression function using a local 
linear estimator without the monotonicity constraint as well as with the monotonicity 
constraint. To impose the constraint, we considered both the constrained weighting 
method of Hall and Huang (2001) (HH) and the data sharpening method (DS). In all 
cases, the biweight kernel function

K (x ) =  - x2)2l {|x|<l}

was employed with bandwidth h =  0.25. As in Hall and Huang (2001), we took 
100 equally spaced grid points on [—.9, .9] when either imposing the constraints or 
plotting the curves.

Figure 4.1 demonstrates the estimates for a typical sample realization. It shows 
the simulated data points (open circles), sharpened data points (triangles), the true 
function (dotted curve), the local linear estimate (dashed curve), the data sharpened 
local linear estimate (solid curve) and the HH estimate (long dashed curve) under the 
monotonicity constraint. Most of the sharpened points coincide with original data so
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only four unsharpened responses are visible.
The figure shows that the two constrained curves correct for the non-monotonicity 

displayed in the original estimator. The two constrained methods appear to be com
petitive with each other.

Figure 4.2 shows the weights used in the local linear HH estimator with con
strained weighting. It also gives some summary information for the three estimators: 
pointwise squared bias, variance and mean squared error. If we compare with Figure 
2 of Hall and Huang (2001), the most obvious feature is a marked decrease in the 
variance over most of [—.9, .9]. The bias of the constrained estimators is larger than 
for the unconstrained estimator. However, there is an overall smaller MSE; this is in 
agreement with the results of Hall and Huang (2001).

We also considered three versions of the bias-reduced data sharpening method 
of Choi et al. (2000) (to be denoted as CHR, from now on):

1 . local constant regression, perturbing the design points only.

2 . local linear regression, perturbing the design points and responses.

3. local linear regression, perturbing the responses only.

We did not include the performance results for these methods in Figure 4.2 in order 
to avoid clutter. However, we tabulated some summary information in Table 4.1 in 
order to make comparisons with the constrained estimators. MISE was computed for 
each method, as well as MSE values at the design points x =  — .1 and x =  .7.

The table shows that the CHR estimators tend to produce larger values of 
MISE than the unconstrained method. The constrained methods appear to give 
slightly better MISE and MSE performance than their unconstrained counterpart.

4.3.2 Models M l and M2: Convexity Followed by Concavity

For this case, we aim to compare the unconstrained local linear estimators with 
the local linear estimator of two functions which are known to be convex in one 
region and concave in another. The regression functions we study are those that 
Mammen (1991a) considered when he proposed a constrained spline estimator to 
handle qualitative constraints:

g(x) =  15x(x — 0.5)(1 — x) (Model M l)
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Figure 4.2: MSE Comparison of local linear estimators for Model H. Top left panel: 
HH weights for the responses pictured in Figure 4.1, plotted against the design points. 
The other panels give squared bias, variance and MSE of the unconstrained estima
tor (short dashed curve), HH estimator (long dashed curve), and data sharpened 
estimator (solid curve).
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Table 4.1: MISE and MSE (at two design points) comparisons of local estimates 
of the monotonic regression function (Model H). CHR constant: local constant with 
perturbed design points; CHR linear-xy: local linear with perturbed design points and 
responses; CHR linear-y: local linear with perturbed responses; DS: data sharpening; 
HH: the method of Hall and Huang (2001).

Target Function: Monotone Function (Model H)

Mean squared error

Estimator MISE at x =  —0.1 at x — 0.7

local linear estimate 0.040 0.024 0.025
CHR constant 0.063 0.038 0.041
CHR linear-xy 0.061 0.037 0.038
CHR linear-y 0.056 0.035 0.035
DS 0.035 0.023 0.021
HH 0.036 0.023 0.022

and
10 25 25

9(x) =  ~ y x +  y  (x “  °-3)+ -  y ( z  -  0.7)+ (Model M2)

These models are referred to as /¿i(x) and in Mammen (1991a). In order to
compare the constrained data sharpening method with Mammen’s estimator, we used 
his simulation settings. Thus, we simulated 1000 samples of size 200. Design points 
were taken to be equally spaced in [0,1]. Two noise models were considered: both 
are normal with a =  .1 and with a =  .5.

Kernel regression estimates were calculated using the biweight kernel. The 
MISE-optimal bandwidth h was used in each case.

Data sharpening proceeded as follows. The sharpened responses were chosen 
as the minimizers of n

£ ( w  -  V i)2 (4.16)
i =1

subject to the constraints
g " ( z |y*) > 0 , z <  I

and
g " { z |y*) < 0 , z > l
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where 2 was one of 401 equally spaced grid points in the interval [0,1]. In order 
to select / ,  the above minimization was conducted for the 41 grid points in the 
neighbourhood of 0.5 (the true value). The grid point that gave the smallest value of 
the distance at (4.16) was taken as the estimate of I.

For a typical simulation run, constrained and unconstrained local linear esti
mates of and H2 (x) have been plotted in Figures 4.3 to 4.6. Figures 4.7, 4.8, 4.9 
and 4.10 give the weights used in the HH estimator for typical simulated samples for 
each pair of cases under Models M l and M2. The pointwise squared bias, variance 
and mean squared error are also plotted, in each case, for the sharpened constrained 
estimator, the HH estimator, and their unconstrained local linear estimator. Note
worthy are the difficulties with bias near .2 and .8, for Model Ml (the constrained 
estimators provide some reduction here). For Model M2, the discontinuities in the 
derivative at .3 and at .7 render the bias very large in all cases, and the constrained 
estimators are unable to cope with this any better than the unconstrained estimator. 
However, the constrained estimators are less biased in the region immediately sur
rounding these problem points. Variance is also smaller in this region, so the overall 
MSE is reduced almost everywhere when the constraints are imposed.

Again, we computed the CHR estimates, as described in Section 4.3.1, and we 
computed the HH estimate under the same constraint as was used for data sharpening, 
but performance measures on these estimators were not included in the above figures 
in order to avoid clutter.

Table (4.2) gives the MSE at x =  0.5 and x =  0.8 and the MISE over the 
interval [0.1, 0.9] for all estimators under consideration, including the constrained, 
unconstrained, CHR and Mammen’s estimator.

As we can see, the constrained data sharpening local linear estimator has the 
smallest MISE among all the estimators for the smooth function ii\(x). The local 
linear HH estimator also behaves well but with a slightly larger MISE. Mammen’s 
spline estimator has the smallest MISE among all the estimators for the broken-line 
curve H2 (%) when a =  0.1. This is not a surprising result, since his estimator is the 
only one that allows for discontinuities in the first derivative, among all other estima
tors considered here. When a =  .5, the spline estimator degrades because it tends to 
follow the trends in the noise too closely. As Mammen points out, even though the 
MISE behaviour of the local linear estimate is smaller, it will not necessarily respect 
the shape of the estimator. Here, again, the data sharpening estimator performs rea
sonably well in terms of accuracy at the larger noise level, but it is also successful in 
getting the shape right.
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Figure 4.3: Constrained and unconstrained local linear estimates of the regression 
function (Model M l, a =  .1, dotted curve) for a typical realization of simulated data 
(open circles). Pictured are the unconstrained estimate (short dashed curve), the HH 
estimate (long dashed curve), and the sharpened estimate (solid curve).

x

Figure 4.4: Constrained and unconstrained local linear estimates of the regression 
function (Model M l, a =  .5, dotted curve) for a typical realization of simulated 
data (open circles). Pictured are the unconstrained estimate (dashed curve), the HH 
estimate (long dashed curve), and the sharpened estimate (solid curve).
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Figure 4.5: Constrained and unconstrained local linear estimates of the regression 
function (Model M2, a =  .1, dotted curve) for a typical realization of simulated data 
(open circles). Pictured are the unconstrained estimate (short dashed curve), the HH 
estimate (long dashed curve), and the sharpened estimate (solid curve).

X

Figure 4.6: Constrained and unconstrained local linear estimates of the regression 
function (Model M2, a — .5, dotted curve) for a typical realization of simulated data 
(open circles). Pictured are the unconstrained estimate (short dashed curve), the HH 
estimate (long dashed curve), and the sharpened estimate (solid curve).



75

X X

Figure 4.7: MSE Comparison of local linear estimators for Model Ml (a =  .1). 
Top left panel: HH weights for the responses pictured in Figure 4.3, plotted against 
the design points. The other panels give squared bias, variance and MSE of the 
unconstrained estimator (short dashed curve), HH estimator (long dashed curve), 
and data sharpened estimator (solid curve).
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Figure 4.8: MSE Comparison of local linear estimators for Model Ml (a =  .5). 
Top left panel: HH weights for the responses pictured in Figure 4.4, plotted against 
the design points. The other panels give squared bias, variance and MSE of the 
unconstrained estimator (short dashed curve), HH estimator (long dashed curve), 
and data sharpened estimator (solid curve).
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Figure 4.9: MSE Comparison of local linear estimators for Model M2 (a =  .1). 
Top left panel: HH weights for the responses pictured in Figure 4.5, plotted against 
the design points. The other panels give squared bias, variance and MSE of the 
unconstrained estimator (short dashed curve), HH estimator (long dashed curve), 
and data sharpened estimator (solid curve).
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Figure 4.10: MSE Comparison of local linear estimators for Model M2 (a =  .5). 
Top left panel: HH weights for the responses pictured in Figure 4.6, plotted against 
the design points. The other panels give squared bias, variance and MSE of the 
unconstrained estimator (short dashed curve), HH estimator (long dashed curve), 
and data sharpened estimator (solid curve).
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4.3.3 Incorporating Functional Information

In addition to imposing monotonie and convex/concave constraints, other constraints 
which incorporate qualitative functional information can be accommodated with data 
sharpening.

Sometimes it is known that the regression function is a solution to a differential 
equation. In many circumstances, the differential equation is not solvable analytically, 
and it may be that there are difficulties associated with the numerical solution as 
well. Furthermore, it is possible that the regression function is not exactly equal to a 
solution to the given differential equation, but that the differential equation has been 
set up as an approximation.

In such cases, it is desirable to have an estimation procedure which makes better 
use of sample information than is ordinarily the case when one solves a differential 
equation in practice. It is also desirable to have a regression method which would 
depend on the nature of the differential equation rather than the solution itself. In 
cases where the analytic solution is known, nonlinear least-squares presents itself as 
a natural way of fitting the solution to data; when the analytic solution is unknown 
or only an approximation to the true function, techniques of functional data analysis 
have been developed; these methods typically employ spline functions. One purpose 
of this section is to develop a parallel set of methods for kernel regression estimators. 
Data sharpening appears to be a natural way to achieve this goal.

This idea will be illustrated by two examples.

4.3.3.1 Model N: The Normal Distribution Function

On the basis of physical considerations, the temperature T  of a long narrow object 
(e.g., a rod) at various locations x along the length of the object can be modeled as

T =  g (x )+ e .  (4.17)

where g(x) satisfies the differential equation

9n{x) =
xg'{x)

a *
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Table 4.2: MISE and MSE (at two design points) comparisons of local estimates 
of the regression function (Models M l and M2). CHR constant: local constant with 
perturbed design points; CHR linear-xy: local linear with perturbed design points and 
responses; CHR linear-y: local linear with perturbed responses; DS: data sharpening; 
HH: the method of Hall and Huang (2001).

Target Function: Models M l and M2(Mammen (19916))

Mean squared error

Estimator h a Model
MISE
(xlO 2)

at x — 0.5 
(xlO2)

at x =  0.8 
(xlO2)

linear spline 0.1 Ml 0.063 0.091 0.065
local linear estimate 0.1 Ml 0.044 0.043 0.061
CHR constant 0.1 Ml 0.054 0.064 0.065
CHR linear-xy 0.1 Ml 0.054 0.064 0.065
CHR linear-y 0.1 Ml 0.053 0.064 0.065
DS 0.1 Ml 0.038 0.039 0.057
HH 0.1 Ml 0.049 0.044 0.055
linear spline 0.1 M2 0.059 0.056 0.035
local linear estimate 0.1 M2 0.085 0.059 0.060
CHR constant 0.1 M2 0.084 0.087 0.088
CHR linear-xy 0.1 M2 0.084 0.087 0.088
CHR linear-y 0.1 M2 0.084 0.087 0.088
DS 0.1 M2 0.092 0.050 0.033
HH 0.1 M2 0.170 0.061 0.090
linear spline 0.5 Ml 0.98 1.22 0.96
local linear estimate 0.5 Ml 0.57 0.49 0.84
CHR constant 0.5 Ml 0.64 0.70 0.82
CHR linear-xy 0.5 Ml 0.72 0.70 0.92
CHR linear-y 0.5 Ml 0.63 0.70 0.78
DS 0.1 Ml 0.50 0.39 0.85
HH 0.1 Ml 0.56 0.43 0.96
linear spline 0.5 M2 1.24 1.23 0.83
local linear estimate 0.5 M2 0.69 0.64 0.70
CHR constant 0.5 M2 0.89 0.94 1.06
CHR linear-xy 0.5 M2 0.92 0.94 1.09
CHR linear-y 0.5 M2 0.88 0.94 1.01
DS 0.1 M2 0.73 0.56 0.50
HH 0.1 M2 0.97 0.64 0.59
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with initial conditions <7(0) =  0 and g'(0) =  y^cr. The constant a is related to 
physical properties of the rod, e.g, density and heat capacity, and rate of heat flow at 
a particular location at a particular time. Under some circumstances, it is imaginable 
that a may be a known constant, or measurable to satisfactory precision.

The solution to this equation is given by

g(x) =  2 ( 4 ( i )  -  i ( 0 ) )

where <f>(x) is the normal cumulative distribution function.
We have used this solution to simulate data from the model (4.17) in order to 

study the effectiveness of data sharpening in the estimation of functions such as g(x) 
under a variety of constraint conditions. The possible constraints we considered are:

(Model N)

\g{x) -  2 ($ (^ )  -  $ (0)) | < e (Constraint Nl)

sKx )
2

~3W oe

X
2 ? < e (Constraint N2)

and
30

|g"(x) +  g '(x )—7y\ < e (Constraint N3)
crz

where e is a small value which is to be chosen in some manner.
For our simulation study, we assumed fixed design points which are equally 

spaced in the interval [0, 10], and the standard deviation of the error term was 0.2. 
The parameter a in function (Model N) was taken to be 2. 1000 samples of sizes 30, 
50 and 100 were used in this study.

For each simulated data set, the following estimation procedures were applied: 
local linear estimation, the CHR bias reduction approach, constrained data sharp
ening, the HH weighting method and nonlinear least squares. The bandwidth was 
chosen with the direct plug-in selector d p ill  (see, Sheather and Jones (1986)) which 
is in the R package KernSmooth (Wand and Ripley (2009)). The normal kernel was 
used.

For the data sharpening and HH weighting estimators, each of the three con
straint conditions listed above was tried, in turn. We chose the parameter e using a 
cross-validation criterion.
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Figure 4.11: Constrained and unconstrained local linear estimates of the regression 
function (Model N, dotted curve) for a typical realization of simulated data (open 
circles). Pictured are the unconstrained estimate (short dashed curve), and the sharp
ened estimate (solid grey curve) subject to Constraint Nl.

Typical simulation runs for the n =  50 case are plotted in Figures 4.11, 4.12, and 
4.13. Figure 4.11 allows for comparison of the unconstrained local linear estimate with 
estimates subjected to Constraint Nl. Figure 4.12 shows similar graphs but where 
Constraint N2 is operative, and Figure 4.13 involves Constraint N3.

Point-wise bias, variance and MSE is plotted in Figure 4.14 for the n =  50 case, 
for the unconstrained local linear estimator, together with the three versions of the 
data sharpened estimator and the three versions of the HH estimator. This plots 
show clearly that the qualitative information contained in the differential constraints 
(N2 and N3) is less useful than in the functional constraint (Nl). However, these con
straints are providing some improvement over the unconstrained estimator in terms 
of accuracy.

The same story is told in Table 4.3 where the three CHR methods (described 
in Section 4.3.1) are also being compared. None of the CHR methods appear to offer 
an increase in accuracy over unconstrained local linear estimation, while even the 
weakest constraint information (Constraint N3) provides an improvement. In that 
case, the HH procedure is best, while under Constraints Nl and N2, it is best to use 
data sharpening.
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Figure 4.12: Constrained and unconstrained local linear estimates of the regression 
function (Model N, dotted curve) for a typical realization of simulated data (open 
circles). Pictured are the unconstrained estimate (short dashed curve), and the sharp
ened estimate (solid grey curve) subject to Constraint N2.

x

Figure 4.13: Constrained and unconstrained local linear estimates of the regression 
function (Model N, dotted curve) for a typical realization of simulated data (open 
circles). Pictured are the unconstrained estimate (short dashed curve), and the sharp
ened estimate (solid grey curve) subject to Constraint N3.
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Table 4.3: MISE and MSE (at two design points) comparisons of local estimates of the 
regression function (Model N). CHR constant: local constant with perturbed design 
points; CHR linear-xy: local linear with perturbed design points and responses; CHR 
linear-y: local linear with perturbed responses; DS: data sharpening; HH: the method 
of Hall and Huang (2001).

Target Function: CDF of Normal Distribution

Mean squared error

Estimator n MISE at x =  5 at x =  8

local linear estimate 30 0.015 0.001 0.001
CHR constant 0.020 0.002 0.002
CHR linear-xy 0.021 0.002 0.002
CHR linear-y 0.018 0.002 0.002
DS Case N1 0.003 0.000 0.000
HH Case N1 0.004 0.000 0.000
DS Case N2 0.007 0.001 0.001
HH Case N2 0.010 0.001 0.001
DS Case N3 0.013 0.001 0.001
HH Case N3 0.011 0.001 0.001
local linear estimate 50 0.010 0.001 0.001
CHR constant 0.014 0.001 0.001
CHR linear-xy 0.015 0.001 0.001
CHR linear-y 0.012 0.001 0.001
DS Case N1 0.002 0.000 0.000
HH Case N1 0.003 0.000 0.000
DS Case N2 0.004 0.000 0.000
HH Case N2 0.007 0.001 0.001
DS Case N3 0.009 0.001 0.001
HH Case N3 0.007 0.001 0.001
local linear estimate 100 0.006 0.001 0.001
CHR constant 0.008 0.001 0.001
CHR linear-xy 0.008 0.001 0.001
CHR linear-y 0.007 0.001 0.001
DS Case N1 0.001 0.000 0.000
HH Case N1 0.001 0.000 0.000
DS Case N2 0.002 0.000 0.000
HH Case N2 0.004 0.000 0.000
DS Case N3 0.005 0.000 0.000
HH Case N3 0.004 0.000 0.000
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Figure 4.14: Performance measures for 7 local linear estimators applied to Model 
N. The panels give, respectively, pointwise squared bias, variance and mean squared 
error for the unconstrained estimator (dashed curve), data sharpening subject to 
Constraint N1 (solid curve), subject to Constraint N2 (dotted curve), subject to 
Constraint N3, (thick solid curve); the HH estimator subject to Constraint N1 (long 
dashed curve), subject to Constraint N2 (grey dot-dashed curve), and subject to 
Constraint N3 (black dot-dashed curve).

4.3.3.2 Model D: A  Linear First Order Differential Equation

Assume the mean function g(x) in model (4.1) is the solution of a differential equation 
of the form

gf(x) =  s(x)g(x) +  h(x) (4.18)

where g(0) =  go, and s(ar) =  Sf(x), for some sufficiently smooth function S(x), and 
s(x) and h(x) are assumed to be known functions. Usually, S(x) is unknown, though 
it can be obtained by integration, possibly numerically.

The solution to this differential equation is given by

g(x) =  eS(x  ̂ [  h(t)e~S^d t  +  goeS x̂\ (4.19)
Jo

The integral which is explicitly written into equation (4.19) also needs to be 
computed, again, possibly numerically.

The constrained data sharpening method provides a possible alternative ap
proach to estimating the function g(x) when data are available. To illustrate the
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Figure 4.15: Constrained and unconstrained local linear estimates of the regression 
function (Model D, dotted curve) for a typical realization of simulated data (open 
circles). Pictured are the unconstrained estimate (short dashed curve), and the sharp
ened estimate (solid curve) subject to Constraint Dl.

X

Figure 4.16: Constrained and unconstrained local linear estimates of the regression 
function (Model D, dotted curve) for a typical realization of simulated data (open 
circles). Pictured are the unconstrained estimate (short dashed curve), and the sharp
ened estimate (solid curve) subject to Constraint D2.
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Figure 4.17: Constrained and unconstrained local linear estimates of the regression 
function (Model D, dotted curve) for a typical realization of simulated data (open 
circles). Pictured are the unconstrained estimate (short dashed curve), and the sharp
ened estimate (solid curve) subject to Constraint D3.

method, we consider a simple special case of (4.18):

g'(x) =  9ixdl 1 g(x) +  02 (4.20)

for given constants 9\ and #2- In this case, we know that

g(x) =  exdl [  92e~ t91 dt +  exdlg0, (4.21)
JO

We will consider data coming from the particularly simple case where 91 =  1 and 
#2 =  1:

g(x) =  ex (l +  g0) -  1. (Model D)

We experimented with this model by running 1000 simulations of samples at 
sizes 30, 50 and 100, coming from

V =  ex (l +  go) - 1  +  e

where the noise was assumed to be normally distributed with standard deviation
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cr =  6, and the initial condition was taken as go =  5. The design points were taken 
to be equally spaced on the interval [—2, 2],

For each data set we computed constrained and unconstrained local linear esti
mates of the regression function. The bandwidth was chosen with the direct plug-in 
selector d p il l  which is in the R package KernSmooth (Wand and Ripley (2009)). 
The normal kernel was used.

The following constraints were employed, in turn, in the data sharpening and 
HH procedures:

|g{x) — ex (l +  go) +  1| < e, (Constraint Dl)

|g'{x) — g(x) — 1| < e, (Constraint D2)

and
|g"(x) — gf(x)\ < e (Constraint D3)

To employ Contraint Dl, it is necessary to estimate g$. This was done by 
regressing y — ex +  1 on ex . An alternative procedure would be to use nonlinear least 
squares. The parameter e was selected using a cross-validation procedure.

Constrained and unconstrained local linear estimates of the regression function, 
under each constraint condition, are displayed in Figures 4.15 to 4.17, for typical 
samples coming from the simulation.

Figure 4.18 displays the pointwise squared bias, variance and MSE for the 
unconstrained and constrained estimators. In this case, the HH method is very close 
to the data sharpening method, so we have not included it here. We see that the 
qualitative information provided by each of the constraints leads to an increase in 
accuracy. Noteworthy is the fact that Contraint 2 is essentially as informative as 
Constraint 1. Constraint 3 does not depend on direct knowledge of the value of 62, 
so it is providing less information about g(x) than the other two constraints.

Table (4.4) lists the MISE as well as MSE values at two design points. It also 
includes results for the three versions of the CHR bias-reduction method described 
in Section 4.3.1. Again, this general purpose bias reduction strategy does not give 
an improvement. The HH method and the data sharpening method both give a 
substantial improvement in MISE and MSE accuracy. The degree of improvement 
depends on the type of constraint imposed.
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Table 4.4: MISE and MSE (at two design points) comparisons of local estimates of the 
regression function (Model D). CHR constant: local constant with perturbed design 
points; CHR linear-xy: local linear with perturbed design points and responses; CHR 
linear-y: local linear with perturbed responses; DS: data sharpening; HH: the method 
of Hall and Huang (2001).

Target Function: (Model D)

Mean squared error

Estimator n MISE at x =  0 at x =  1.2

local linear estimate 30 20.475 4.516 6.146
CHR constant 32.222 6.208 7.691
CHR linear-xy 28.700 6.214 8.333
CHR linear-y 25.450 6.180 6.804
DS Case D1 7.862 1.317 2.878
HH Case D1 8.382 1.538 2.970
DS Case D2 7.091 1.127 2.459
HH Case D2 7.791 1.312 2.509
DS Case D3 12.535 2.663 3.445
HH Case D3 13.362 2.893 3.556
local linear estimate 50 13.869 2.951 4.006
CHR constant 22.349 4.078 4.902
CHR linear-xy 19.791 4.080 5.593
CHR linear-y 17.479 4.064 4.419
DS Case D1 5.185 0.791 1.850
HH Case D1 5.249 0.846 1.778
DS Case D2 4.880 0.730 1.649
HH Case D2 4.993 0.750 1.857
DS Case D3 8.081 1.642 2.249
HH Case D3 8.373 1.683 2.566
local linear estimate 100 7.945 1.719 2.414
CHR constant 13.141 2.375 2.817
CHR linear-xy 11.299 2.375 3.194
CHR linear-y 9.967 2.374 2.547
DS Case D1 2.894 0.467 1.064
HH Case D1 2.890 0.508 0.982
DS Case D2 2.574 0.377 0.922
HH Case D2 2.877 0.440 0.987
DS Case D3 4.498 0.909 1.373
HH Case D3 4.984 0.900 1.450
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Figure 4.18: Performance measures for local linear estimators applied to Model D. 
The panels give, respectively, pointwise squared bias, variance and mean squared 
error for the unconstrained estimator (short dashed curve), data sharpening subject 
to Constraint D1 (solid curve), subject to Constraint D2 (dotted curve), and subject 
to Constraint D3 (long dashed curve).

4.4 Applications

In this section, we will illustrate the use of constrained local linear estimation on 
four data sets. These examples illustrate cases of non-decreasing monotonicity, non
increasing monotonicity, concavity and periodicity.

We will also compute point-wise bootstrap confidence bands for the regression 
function, and we will apply a test for the validity of the constraints. The test we will 
use is similar to one proposed by Hall et al. (2001) and further studied by Racine and 
Parmeter (2009).

The null hypothesis corresponds to the case that the true regression function 
satisfies the constraint. We use the objective function D(y*) as the test statistic, and 
we reject the null hypotheis if the observed value of D(y*) is too large. A bootstrap 
procedure enables us to compute the p-value for this test.

For the given data set i =  1, • • • ,n, we compute the sharpened re
sponses y* and the corresponding regression estimates g*(xt) subject to the constraint. 
Sharpened residuals are defined as:

V*i s*Oh)
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We randomly resample the sharpened residuals to approximate a new sample of errors: 
{ i *k}. These bootstrap residuals added to the estimated regression function in order 
to generate the resampled responses.

Vi = 9 k{xi) +  e f .

Because of the way in which the regression function was estimated, these responses 
are from a data set that satisfies the null hypothesis. This new data set can be 
sharpened as well, and the distance measure can again be calculated:

D ( f b) =  ¿(»f - v t f -
i= 1

Repeating this resampling process a large number of times allows us to estimate Pg, 
the proportion of the bootstrap resamples in which P(y*,J) exceeds D(y*).

4.4.1 Radiocarbon Data

These data were originally published by Pearson and Qua (1993), and a subset was 
analyzed by Bowman and Azzalini (1997) and Hall and Huang (2001). We use the 
same subset. The variables are radiocarbon age, predicted from a radiocarbon dating 
process, and the true calendar age.

Figure 4.19 shows the data. Overlaid as a dashed curve is the local linear 
estimate obtained with a normal kernel, using bandwidth h =  30, which was the one 
suggested by Bowman and Azzalini (1997). Also pictured is the local linear estimate 
based on data sharpening subject to the monotonicity constraint; the same bandwidth 
was used. The HH estimate is not plotted, since it is almost indistinguishable from 
the curve obtained by data sharpening.

The original data and the corresponding sharpened data are shown in the left 
panel of Figure 4.20. The weights Pi from the HH approach are shown in the right 
panel. It is clear that the sharpened data points that correspond to s which are 
not in the immediate vicinity of dips and bumps in the unconstrained estimate, are 
coincidental with the original data points. This was predicted by arguments in Section 
4.2. Note the pattern of the weights as well. Where the unconstrained estimate is non-
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Figure 4.19: Subjecting Radiocarbon data to monotonicity. The constrained sharpen
ing local linear estimate (solid line); the unconstrained local linear estimate( dashed 
line).

Calendar.age Calendar.age

Figure 4.20: Subjecting Radiocarbon data to monotonicity. Left panel: original 
responses (open circles) and corresponding sharpened responses (triangles). Right 
panel: corresponding weights p).



93

\t
i Figure 4.21: Bootstrap confidence bands of constrained sharpening estimate for Ra-
! diocarbon data. The constrained sharpening estimate (solid line) and corresponding
f bootstrap confidence bands(dashed line)

i monotonic, the weights are adjusted accordingly: responses which were “too high”
just near 2600 are downweighted, and responses around 2700 are given higher weight.

The bootstrap test for the validity of the constraints gives us a p-value of 0.02. 
This suggests that the constraint of monotonicity may not be appropriate for this 
data set. The decrease near the calendar age of 2700 might need to be investigated 
further.

Pointwise 95% confidence bands are shown in Figure 4.21.

4.4.2 Great Barrier Reef Survey Data

These data derive from a survey of fauna on the seabed between the coast of northern 
Queenland and the Great Barrier Reef. They were analyzed by Bowman and Azzalini 
(1997) and Hall and Huang (2001). The variables are longitude and scorel; the latter 
variable is a score corresponding to the number of prawns caught at a particular 
location.

The data are plotted in Figure 4.22 together with the local linear estimate. A 
normal kernel with bandwidth h =  0.1 was used, as in Bowman and Azzalini (1997)
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Figure 4.22: Subjecting Great Barrier Reef data to monotonicity. The constrained 
sharpening local linear estimate (solid line); the unconstrained local linear estimate( 
dashed line).

and Hall and Huang (2001). Data sharpening subject to the constraint that the 
regression function is non-increasing was also employed. The HH estimator gave an 
almost identical result so it is not pictured.

The original data and the corresponding sharpened data are shown in the left 
panel of Figure 4.23. The weights pi from the HH approach are shown in the right 
panel. Where the unconstrained estimate is non-monotonic, i.e., for longitude be
low 143 , the sharpened data differ from the original and the weights are adjusted 
accordingly.

The bootstrap test for validity of the constraint gives us a p-value of 0.25. We 
also conducted this test using the HH method, and obtained a p-value of 0.64. We 
do not have evidence against the null hypothesis in this case.

The bootstrapped confidence bands of the fitted curve are shown in Figure 4.24.

4.4.3 Canadian High School Graduate Earnings Data

This Canadian cross-section wage data consists of a random sample taken from the 
1971 Canadian Census Public Use Tapes for male individuals having 13 years of public
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Figure 4.23: Subjecting Great Barrier Reef data to monotonicity. Left panel: original 
responses (open circles) and corresponding sharpened responses (triangles). Right 
panel: corresponding weights p̂ .

Figure 4.24: Bootstrap confidence bands of constrained sharpening estimate for Great 
Barrier Reef data. The constrained sharpening estimate (solid line) and corresponding 
bootstrap confidence bands(dashed line)
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education. There are 205 observations in total. There are several studies based on this 
data set. Most of the early work focused on assuming a quadratic relation between 
earnings and age, e.g., Heckman and Polachek (1974). Recent work, such as Chu and 
Marron (1991) and Pagan and Ullah (1999) was based on nonparametric regression 
techniques.

Given that the human capital theory predicts concavity of the logarithm of 
a worker’s wage as a function of age (potential work experience), Henderson and 
Parmeter (2009) fitted a concavity-restricted nonparametric age-earning profile using 
the HH approach.

We also fit a concavity-restricted local linear estimate using the data sharpening 
approach. A normal kernel was used together with a bandwidth selected using the 
d p il l  selector.

Figure 4.25 contains a plot of the data, together with the unconstrained and 
constrained local linear estimates. The HH estimate is indistinguishable from the 
data sharpened estimate.

As noted by Henderson and Parmeter (2009), the local linear estimates are 
quite different from what one would expect from a quadratic model, and the concave- 
restricted estimate does not have the ‘dip’ near age 40 which is visible in the un
constrained estimate. This is consistent with the core interpretation of the human 
capital theory.

The sharpened data and the weights used in the HH approach are plotted 
against the design points in the panels of Figure 4.26. The two concavity-restricted 
local linear estimate behave similarly.

The bootstrap hypothesis test for the concavity constraint gives a p-value of 
0.40. If the HH method is used to compute the p-value, it comes out as 0.55. Thus 
we have no evidence against the concavity constraint.

The pointwise 95% confidence bands are shown in Figure 4.27.

4.5 Conclusions

In this chapter, we studied the constrained data sharpening technique of Braun and 
Hall (2001). This procedure provides a method for imposing may be expressed as 
linear combinations of the responses and where the distance metric is ¿2-
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Figure 4.25: Subjecting Canadian High School Graduate Earnings data to a con
cavity constraint. The constrained sharpening local linear estimate (solid line); the 
unconstrained local linear estimate (dashed line).

Figure 4.26: Subjecting Canadian High School Graduate Earnings data to a concavity 
constraint. Left panel: original responses (open circles) and corresponding sharpened 
responses (triangles). Right panel: corresponding weights pi.



Figure 4.27: Bootstrap confidence bands of constrained sharpening estimate for Cana
dian High School Graduate Earnings data. The constrained sharpening estimate 
(solid line) and corresponding pointwise 95% bootstrap confidence bands(dashed line)

We also adapted the constrained weighting method of Hall and Huang (2001) 
so that it can handle the same kinds of constraints as the data sharpening method 
when using ¿2  metric.

We derived the rate of convergence for data sharpening and showed that it 
is the same as for constrained weighting, under the monotonicity constraint. We 
studied the behaviour of the two methods under several other kinds of constraints 
by simulation. These results show that imposing qualitative constraints on kernel 
regression estimators can lead to substantial reductions in MISE, even when compared 
to the bias-reduced method of Choi et al. (2000).
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Chapter 5

PENALIZED LOCAL REGRESSION

5.1 Introduction

Penalized likelihood methods have been employed in nonparametric regression to 
obtain improved estimates. For example, penalized splines (Eilers and Marx, 1996) 
generalize the smoothing spline, leading to greater flexibility, while continuing to 
reduce reliance on sophisticated knot selection. In this chapter, it is shown that 
kernel regression can be penalized as well, also leading to greater flexibility, while 
mitigating the need for adaptive bandwidth selection.

In the preceding chapter, constrained data sharpening was studied with con
ditions such as —e < g"(x) < e for all x in a specified set. One disadvantage of 
setting the constraint in this way is that it imposes a uniform amount of smoothness 
everywhere. Allowing e to vary with xj  would provide more flexibility but at the 
expense of introducing an excessive number of tuning parameters to choose.

An alternative approach would be to constrain the sum of the squares of the 
second derivative:

TO

¿ ( / ( ^ ) ) 2 <  S '

3 = 1

The required amount of smoothness is no longer determined in the same manner, 
and this form of constraint is not as rigid as the one described above. However, this 
constraint is no longer linear in the y*’s, so the computational simplicity enjoyed in 
the previous chapter is lost. We could employ sequential quadratic programming to 
the methods of the preceding chapter, or we could pursue an alternative approach.

In this chapter, we will pursue the alternative approach: we will propose pe
nalized data sharpening for local regression. The outline of this chapter is as follows. 
In the next section we will describe data sharpening via a roughness penalty. We 
will illustrate the method with some preliminary simulation work in the next section. 
Next, we discuss the effects of penalty grid size. In Section 5.5, the exact bias and 
variance of the penalized local regression estimator is investigated. Specific examples 
will be studied with these tools. In Section 5.6, the relationship between penalized
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local regression and smoothing splines is explored. In Section 5.7, other penalties be
sides the roughness penalty are discussed. In Section 8, the penalized local regression 
approach is illustrated with some examples involving real data.

5.2 Data Sharpening via a Roughness Penalty

Adjoining the constraint to the objective function as a penalty is a computationally 
simpler alternative, when p =  2: choose y*'s to minimize

n m

Y \ v i  -  y*\2 +
i=l j= l

where z\, Z2 , ■ ■ ■ ■ zm are grid points in a given interval, which is usually a subset of 
the range of the design points. Again, g(z) =  ^ ¿ = 1  Ai{z)y*. Now, A > 0 is a tuning 
parameter. This form is analogous to one of the forms used in the penalized splines 
introduced by Eilers and Marx (1996). The connection to smoothing splines will be 
made explicit in the next section.

Let A denote the n x m matrix whose ( i , j )th element is Ai(zj), and let B 
denote the corresponding matrix of second derivative values. Let A(z) denote the 
column vector whose zth entry is Aj(z). and let B(z)  denote the corresponding vector 
of second derivatives. Then

g(z) =  AT(z)y*

and
g"(z) =  B 1 (z)y*

The objective function for the data sharpening problem can then be written in 
vector-matrix notation as

(y -  y*)T(y -  y*) +  Ay*TB B Ty*

m
Minimizing this yields a unique solution, since BB is positive semidefinite.

Proposition 5.2.1 Consider the optimization problem:

Minimize (y -  y*)T (y -  y*) +  Ay*TB B Ty* (5.1)

with respect to y* , where A > 0 and B is any n x m matrix.
This problem has a unique solution.
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Proof: A unique solution to the optimization problem exists if and only if the matrix 
I  +  ABBt  has an inverse.

Since B B t  is clearly positive semidefinite, any eigenvalue /i must be non
negative. Since the eigenvalues of I  +  ABBT must be of the form 1 +  A/i, it follows 
that they must all be positive. Hence, /  +  ABBT is invertible. □

The solution to the minimization problem is given by

y* =  ( /  +  ABBT ) - 1y. (5.2)

Fitted values are given by

y  =  A T (7 +  ABBT ) - 1y,

and the estimated function is

g ( x ) = A ( x ) T (I +  ABBT ) - 1y.

We remark that this is one of only a few instances of data sharpening subject to 
constraints that we are aware of where an explicit formula is available for the sharp
ened data. Under most circumstances, convex programming or sequential quadratic 
programming is required to obtain the sharpened data. Thus, we have a nontrivial 
circumstance here where it is relatively easy to study the properties of the sharpened 
data.

We have chosen to introduce the penalized data sharpening procedure with a 
specific type of penalty. However, many other penalties can be used, each of which 
will lead to an expression of the form (5.2), provided they are quadratic in y*. For 
example, the penalty usually associated with smoothing splines could be imposed:

n rxn
\yi ~ yi i2 + A /  ^ " i z))2dz-

i= 1 Jx1
(5.3)
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Again, (5.2) can be derived but now with the entries of the matrix B given by

Constraints on the regression function g(x) which take other forms can also be con
sidered, though our main focus will be on the roughness penalty. The following list 
of operators on g is suggestive of what is possible, but not exhaustive:

• L\{x) =  g'(x) — kg(x), for some constant k (i.e. exponential behaviour)

• ¿2  (x ) =  g"{x ) +  k2g(x) (i.e. sinusoidal behaviour)

• L^(x) — g(x +  k) — g{x) (i.e. periodic behaviour)

In all of these situations, we would propose to penalize functionals such as f  L2(x)dx 
or L2(xj). The data sharpening problems considered in this chapter are always of 
this form and lead to the optimization problem given at (5.1). Some of these other 
penalties will be considered briefly in Section 5.7.

This penalty method can be applied to local polynomial regression of any order, 
and we have done some experimenting with the method in local linear and local 
quadratic cases without any difficulty. However, we will focus our demonstrations 
on the local constant case, primarily because of its simplicity, but also because of its 
utility in situations where data are sparse (e.g. Choi et al. (2000)).

5.3 Preliminary Simulation Experiments

To attempt to gain some intuition of the penalized kernel regression method, a set of 
simulation experiments was conducted. Two sample sizes n =  25 and n =  50 were 
considered in order to get a sense of the consistency in the estimators.

The initial objective was to compare the performance of the penalized method 
with ordinary local regression using the mean integrated squared error (MISE) as the 
criterion. Since the shape of the estimated regression function may be of as much 
importance as its accuracy, the MISEs of the derivative of the estimates were also 
compared.

The target functions under consideration are 1

1 . sine curve: g(x) =  sin(x)
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Figure 5.1: The target functions for the simulation study. From left to right: sine 
curve, standard normal density curve, asymmetric double exponential curve.

2 . standard normal density curve: g(x) =  ^==e x2/ 2 3

3. asymmetric double exponential curve: g(x) =  e~lxl +  .01 (x +  10 )/^<0)

These three functions are pictured in Figure 5.1.
Additive noise with expected value 0 and constant variance was simulated in 

each case. Error variances were .01, .0001, and .0025, respectively. Sample sizes of 25 
and 50 were simulated for each target function. 500 simulation runs were conducted 
in each case.

Design points were equally spaced. For the first target function, design points 
were taken on the interval [—1.5,1.5]. For the second target function, points were 
on the interval [—2, 2] and for the last example, points were taken on the interval 
[-10,7],

To compare the penalized method with the unpenalized method without the 
influence of boundary effects, we studied the target functions on restricted domains. 
The first function was studied on [—1.2,1.2]. The second function was studied on 
[—1.8,1.8], and the third function was studied on [—9,6]. In each case, 401 equally 
spaced grid points were chosen within these intervals as locations where the target 
functions were estimated.
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For each data set, local constant regression was employed, with and without 
penalty on the squared sum of second derivatives, using the normal kernel. In each 
case, a number of different bandwidths were used, and the penalty parameter A was 
fixed but not optimized in any way.

5.3.1 Example 1: The Sine Curve

For the sine function, a typical realization is exhibited in the left panel of Figure 5.2 
for the case where n =  25. Here, the bandwidth was taken to be h =  .2 for both the 
penalized and unpenalized local constant regression estimates. The constraint on the 
second derivative was imposed by penalizing

where z\, Z2 , . . . ,  2401 were taken to be equally spaced gridpoints in the range of the 
x values. The penalty parameter A was set at .001. The right panel of 5.2 displays 
the corresponding derivatives of the estimates.

For the larger-scale simulation, the bandwidths considered were in the set 
{.1, .15,. . . ,  .6}  and the penalty parameter A was set to the value .001.

The MISE, as a function of bandwidth, is plotted in the left panel of Figure 
5.3, for the case where n =  25. The right panel of the figure displays the MISE for 
the derivative of the estimate as a function of h. Figure 5.4 gives the analogous plots 
for the case where n =  50.

5.3.2 Example 2: The Standard Normal Density Curve

For the standard normal density function, a typical realization is exhibited in the left 
panel of Figure 5.5 for the case where n =  25. Here, the bandwidth was taken to be 
h =  .1 for both the penalized and unpenalized local constant regression estimates. 
The constraint on the second derivative was imposed by penalizing

401

i= 1

401

£  (§ " fe ) )2
2 =  1
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Figure 5.2: Left panel: sine function (dotted curve) estimates using penalized (solid 
curve) and unpenalized (dashed curve) local constant regression, based on a sample 
of size 25. The solid dots represent locations of the sharpened responses. Right 
panel: derivatives of the corresponding estimates (solid and dashed curves) and true 
derivative (dotted curve).

Figure 5.3: MISE estimates for penalized (solid curve) and unpenalized (dashed curve)
local constant estimates of the sine function for various values of h, based on samples
of size 25.
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Figure 5.4: MISE estimates for penalized (solid curve) and unpenalized (dashed curve) 
local constant estimates of the sine function for various values of h, based on samples 
of size 50.

where z\,Z2 , . . .  , 2401 were taken to be equally spaced gridpoints in the range of the x 
values. The penalty parameter A was set at .001. Again, the corresponding derivative 
estimates are supplied in the right panel of Figure 5.5.

For the larger-scale simulation, the bandwidths considered were in the set 
{.05, .07,. . . ,  .25} and the penalty parameter A was set to the value .001.

The MISE, as a function of bandwidth, is plotted in the left panel of Figure 
5.6, for the case where n =  25. The right panel of the figure displays the MISE for 
the derivative of the estimate as a function of h. Figure 5.7 gives the analogous plots 
for the case where n =  50.

5.3.3 Example 3: The Asymmetric Double Exponential Curve

For the asymmetric double exponential function, a typical realization is exhibited in 
the left panel of Figure 5.8 for the case where n =  25. Here, the bandwidth was 
taken to be h =  .25 for both the penalized and unpenalized local constant regression
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Figure 5.5: Left panel: standard normal density function (dotted curve) estimates 
using penalized (solid curve) and unpenalized (dashed curve) local constant regres
sion, based on a sample of size 25. The solid dots represent locations of the sharpened 
responses. Right panel: derivatives of the corresponding estimates (solid and dashed 
curves) and true derivative (dotted curve).

h h

Figure 5.6: MISE estimates for penalized (solid curve) and unpenalized (dashed curve)
local constant estimates of the standard normal density function for various values of
h, based on samples of size 25.
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Figure 5.7: MISE estimates for penalized (solid curve) and unpenalized (dashed curve) 
local constant estimates of the standard normal density function for various values of 
h, based on samples of size 50.

estimates. The constraint on the second derivative was imposed by penalizing

401

E (5"te>)2
¿ = 1,¿£ {200,201,. ..,294}

where z\, Z2 , • •., 2401 were taken to be equally spaced gridpoints in the range of the 
x values. The value of the penalty parameter was A =  .1. Note that in this case, 
the smoothness requirement was relaxed at the location near the peak of the curve. 
Again, the corresponding derivative estimates are supplied in the right panel of Figure 
5.8.

For the larger-scale simulation, the bandwidths considered were in the set 
(.1, .15,. . . ,  .6} and the penalty parameter A was set to the value .1.

The MISE, as a function of bandwidth, is plotted in the left panel of Figure 5.9, 
for the case where n =  25. The right panel of the figure displays the MISE for the 
derivative of the estimate as a function of h. Figure 5.10 gives the analogous plots 
for the case where n — 50.
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Figure 5.8: Left panel: double exponential function (dotted curve) estimates using 
penalized (solid curve) and unpenalized (dashed curve) local constant regression, 
based on samples of size 25. The solid dots represent locations of the sharpened 
responses. Right panel: derivatives of the corresponding estimates (solid and dashed 
curves) and true derivative (dotted curve).

h h

Figure 5.9: MISE estimates for penalized (solid curve) and unpenalized (dashed curve)
local constant estimates of the asymmetric double exponential function for various
values of h, based on samples of size 25.
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Figure 5.10: MISE estimates for penalized (solid curve) and unpenalized (dashed 
curve) local constant estimates of the asymmetric double exponential function for 
various values of h, based on samples of size 50.

5.3.4 Observations

Based on this modest simulation study, it can be seen that the penalty method 
is not guaranteed to give better accuracy in the MISE sense than the unpenalized 
method. Choice of bandwidth is critical as usual. Choice of penalty parameter is also 
important.

The chosen penalty parameter values appear to have led to some over-smoothing. 
Evident in Figures 5.2 and 5.5 is a fairly substantial departure of the penalized curve 
from the true curve (and from the data themselves) near the boundaries of the domain 
of observation. This less satisfactory performance is reflected in the MISE values. As 
will be demonstrated in the next section, this difficulty is connected not only to the 
choice of penalty parameter but also to the choice of gridsize used in constructing the 
penalty function.

On the other hand, the MISE values for the derivatives of the penalized esti
mates can often be much smaller than for the corresponding unpenalized estimates, 
and in cases where they are larger, the difference is not substantial. Thus, applying 
the roughness penalty appears to improve accuracy in the estimation of the shape of 
the regression function, at a given bandwidth.
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5.4 Effect of Penalty Gridsize

First, consider penalties on functions of the form (Lg)(zQ), where L might be a 
differential operator or linear combination of differential operators. For example, 
Lg =  g" . In other words, we are only constraining the function to behave in a 
particular way at the single point zq\ the penalty gridsize is 1 .

In this case, the matrix B induced by the optimization problem at (5.1) reduces 
to a vector so the sharpened y* can be written as

y★ [ i —
\ 1 +  a b t b

_  ABBTy
f i +  a b t b

y

For large A, the constraint will be approximately satisfied by the sharpened 
vector y*. That is,

lim BTy* =  lim BTy — BT — o.
A—>oo A—>oo 1 -)- ABTB

Thus, for large values of A, the penalty is effectively imposing a linear restriction on 
y*, resulting in a reduction in degrees of freedom by 1 .

If the kernel function employed in the regression estimator has compact support, 
it is possible for multiple constraints to act independently, provided the gridpoints 
used to construct the penalty function are separated sufficiently. In other words, 
consider a penalty function of the form

m

£ ( U 9 ) M ) 2
k= 1

where m < n and where the minimum distance between any pair of gridpoints z  ̂
is greater than 2h and the support of the kernel function is assumed to be [—h, h\. 
The gridpoints are, of course, assumed to lie in the domain of the design points. 
In this case, the behaviour of (Lg)(z}e) will be independent of (Lg)(zj) whenever 
j  7̂  k. Thus, the matrix B induced by the optimization problem at (5.1) will have
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independent columns. For large A, this results in an imposition of approximately m 
linear restrictions on y*. Equivalently, n — m eigenvalues of BBT will be 0.

If the constraints are not sufficiently separated, or if a non-compact kernel 
is used, then the constraints will no longer act independently, and it is difficult to 
predict how many eigenvalues, if any, of BBT will be 0. Because a function of the 
form ^¿=1 Ai(x)y* might not have the flexibility required to exactly satisfy particular 
kinds of constraints (defined continuously in x; for example, g"(x) =  0, for all x in 
an interval), inconsistencies may arise.

This is likely what has led to some of the numerical problems with the original
data sharpening method described in the previous chapter. It also leads to a situation 

nrwhere BB has no 0 eigenvalues. In this case, the only solution to the penalized 
optimization problem (for large A) is y* =  0.

However, a number of the eigenvalues of BBT may be close to 0, if the func
tional form J2i=iAi(x)y* can provide a sufficiently good approximation to a func
tion lying in the constrained region. These eigenvalues would be exactly 0, if the 
constraint could be exactly satisfied. The corresponding eigenvectors must then, at 
least approximately, satisfy the constraints.

There are at least three ways to resolve the difficulties described here. The first 
is to reduce the number of grid points used to develop the penalty function. In many 
situations, it will be sufficient to take the number of grid points at or just below the 
number of observed data points. This method will be the main focus of the rest of 
this chapter.

If a refined grid is required, then the above method will not be appropriate. 
This leads to a variant of the penalty method which would be applicable if the grid 
size is large and if large A is desirable (i.e. there is a strong belief that the constraints 
are accurate, for example):

1. Calculate eigenvalues and corresponding eigenvectors of BBT.

2. Identify all “small” eigenvalues and their corresponding eigenvectors.

3. Set y* to be the linear combination of the selected eigenvectors which is closest
to y.

Remarks: Identifying the “small” eigenvalues in step 2 is subjective. Using the 
Z/2 distance in step 3 leads to a linear regression problem: regress y  on the selected 
eigenvectors. This technique has been applied to some simulated data sets with
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reasonable success, but a rigourous examination of this method lies beyond the scope 
of this thesis.

Another way of handling this situation is to use higher order local polynomial 
regression. On the basis of some experiments we have conducted with local constant 
and local quadratic regression, we can assert that the improved accuracy in the local 
quadratic estimates of the second derivative allow for a substantial increase in the 
number of grid points where the penalty function can be imposed.

5.5 Bias and Variance

The expected value of y* is given by

Recall that B  and A do not depend on the responses. We can then find that the exact 
bias in the estimate of the regression function at a point x is

E[y*] =  (I +  ÀBBT ) - 1£[y] =  (I +  ABBT) xg

where

g =  [gi x  1) g ( x 2) ••• g ( x n ) ] T -

Bias(g{x)) =  AT (x)(I +  ABBT ) xg -  g(x). (5.4)

The variance can be calculated using

Var (g(x)) =  a2AT (x)(l +  ABBT )“ 2yl(a:). (5.5)

These forms allow us to study the sharpening procedure without simulation. The 
MISE can be obtained by numerical integration of

Var(<7(x)) +Bias2(^(x))

over the domain containing the design points.
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It is also possible to also study the properties of derivatives of the estimates as 
well. For example,

g,(x) =  ^ A T (x)( I +  ABBT) - 1y

SO

E $ {x ) )  =  - ^ A T (x)(I +  XBBT) - 1g

and
Var (g' (x )) =  a2- ^ A T (x)(l  +  ABB T )_2-^-A(x).

ax ax

Again, we can compute a numerical approximation to the MISE for the derivative of 
the estimated regression function using these expressions.

5.5.1 Revisiting the Simulation Experiments

Using the formulas obtained above, we can replace the simulation experiments con
ducted in Section 5.3 with exact calculations. When we do this, we find that the 
theory matches the simulation results almost perfectly. The exact results allow us to 
make more rapid progress in the study of particular situations.

We consider only the cases where n =  25 here, since the relative effect of the 
doubling of the sample size has already been seen.

5.5.1.1 The Sine Curve

For the first target function, we fixed the bandwidth at h =  .1, because it appears 
to give good MISE performance, according to Figure 5.3. We computed approximate 
MISE values for the regression function estimate and its derivative using penalty 
parameter values in the set {A =  .00001 (2-?) : j  =  0 ,1 , . . . ,  12}.

Figure 5.11 displays the results. The MISE-optimal value of A can be seen (on 
the left-hand panel) to be near .01. It can also be seen that the penalty function 
approach leads to a substantial reduction in MISE compared with the unpenalized 
local constant regression method. Derivative accuracy for the penalized estimator is 
also superior at this bandwidth.

However, this comparison is not quite fair. The bandwidth h =  .1 is not optimal 
for the unpenalized estimator. If we use h =  .25 instead, we find that the MISE for 
the unpenalized estimator is .00437 which is considerably closer to the MISE obtained 
for the penalized estimator using h =  .1 and A =  .01: .00415. A bigger problem is
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Figure 5.11: MISE for penalized (solid curve) and unpenalized (dashed curve) local 
constant estimates of the sine function for various values of A, based on samples of 
size 25, using h =  . 1.

the large size of the MISE of the derivative when using h — .1 and A =  .01 relative to 
the corresponding value when h =  .25 and A — 0: .1382 versus .0294. Thus, using the 
penalty method to improve accuracy in the estimated regression function can incur a 
loss of accuracy in the shape of the function estimate.

Figure 5.12 shows the regression estimate for a typical set of simulated data. 
Here, the smoothing parameters were taken as A =  .01 and h =  .1. The derivative of 
the estimate is also displayed in the figure.

In order to test our theory (given in Section 5.4) regarding the effects of a large 
number of grid points in the penalty computation, we have computed the penalty in 
two ways: with 401 equally-spaced grid points in the interval [—1.2,1.2], and with 
15 equally-spaced grid points in that same interval. The figure 5.12 shows a clear 
difference in the estimates, particularly in terms of the derivative; the larger number 
of grid points has resulted in a very over-smoothed curve.

Note that the 15 equally-spaced grid points were used in the computations that 
Figure 5.11 is based on.

We also computed the estimate using the bandwidth which is optimal for the 
unpenalized method but using a penalty parameter which optimizes the derivative of 
the estimate. We found that if h =  .25 and A =  .02048, the MISE becomes .00467
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Figure 5.12: Left panel: sine function (dotted curve) estimates using penalized local 
constant regression with 401 grid points (dashed curve) and 15 grid points (solid 
curve) for the penalty. The solid dots represent locations of the sharpened responses. 
Right panel: derivatives of the corresponding estimates (solid and dashed curves) and 
true derivative (dotted curve).
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Figure 5.13: Left panel: sine function (dotted curve) estimates using unpenalized local 
constant regression (dashed curve) and penalized local constant regression with 15 
grid points (solid curve) for the penalty. Right panel: derivatives of the corresponding 
estimates (solid and dashed curves) and true derivative (dotted curve).

(which is slightly larger than the MISE for the unpenalized estimator), but the MISE 
of the derivative of the penalized estimator drops to .0156 (which is substantially 
lower than the MISE of the unpenalized estimator). Thus, in this case, we can obtain 
a substantially better shape at a slight expense in accuracy. The result is pictured in 
Figure 5.13.

5.5.1.2 The Normal Density Curve

For the second target function, we fixed the bandwidth at h =  .15, because it appears 
to give good MISE performance, according to Figure 5.6. We computed approximate 
MISE values for the regression function estimate and its derivative using penalty 
parameter values in the set {A =  .00001(2-7) : j  =  0 ,1 , . . . ,  10}. For the penalty 
function, 15 equally-spaced grid points were used in the interval [—1.8,1.8].

Figure 5.14 displays the results. The MISE-optimal value of A can be seen (on 
the left-hand panel) to be near .001 (actually, .00128). It can also be seen that the 
penalty function approach leads to a reduction in MISE compared with the unpe
nalized local constant regression method. For the penalized method, the MISE is
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Figure 5.14: MISE for penalized (solid curve) and unpenalized (dashed curve) local 
constant estimates of the normal density function for various values of A using h =  .15.

.000123 compared with an MISE of .000135 for the unpenalized method.
Derivative accuracy for the penalized estimator is also improved at this band

width. For the penalized method, the MISE is .00112 compared with an MISE of 
.00127 for the unpenalized method.

Figure 5.15 shows the regression estimate for a typical set of simulated data. 
Here, the smoothing parameters were taken as A =  .002 and h =  .15. The derivative 
of the estimate is also displayed in the figure. As another test of our theory (given 
in Section 5.4) regarding the effects of a large number of grid points in the penalty 
computation, we have computed the penalty in two ways: with 401 equally-spaced 
grid points in the interval [—1.8,1.8], and with 15 equally-spaced grid points in that 
same interval. Again, the figure shows a clear difference in the estimates, particularly 
in terms of the derivative; the larger number of grid points has resulted in a very 
over-smoothed curve.

5.5.1.3 The Asymmetric Double Exponential Curve

For the third target function, we fixed the bandwidth at h =  .35, because it appears 
to give good MISE performance, according to Figure 5.9. We computed approximate
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Figure 5.15: Left panel: normal density function (dotted curve) estimates using pe
nalized local constant regression with 401 grid points (dashed curve) and 15 grid 
points (solid curve) for the penalty. Right panel: derivatives of the corresponding 
estimates (solid and dashed curves) and true derivative (dotted curve).

MISE values for the regression function estimate and its derivative using penalty 
parameter values in the set {A =  .00001(2-7) \ j  =  0 ,1 , . . . ,  19}.

For the penalty function, 20 grid points were used, equally-spaced in the union 
of the intervals [—9, —1.5] and [2,6]. This (subjective) choice was made so that the 
obviously sharp peak would not be oversmoothed.

Figure 5.16 displays the results. The MISE-optimal value of A can be seen 
(on the left-hand panel) to be near 3, though there does not appear to be a lot 
of sensitivity to this choice. It can also be clearly seen that the penalty function 
approach leads to a reduction in MISE compared with the unpenalized local constant 
regression method.

Derivative accuracy for the penalized estimator is also improved. For the pe
nalized method, the MISE is .211 compared with an MISE of .283 for the unpenalized 
method.

Figure 5.17 shows the regression estimate for a typical set of simulated data. 
Here, the smoothing parameters were taken as A =  3 and h =  .35. The derivative 
of the estimate is also displayed in the figure. As a final test of our theory (given 
in Section 5.4) regarding the effects of a large number of grid points in the penalty
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Figure 5.16: MISE for penalized (solid curve) and unpenalized (dashed curve) local 
constant estimates of the asymmetric double exponential function for various values 
of A, using h =  .35.

x x

Figure 5.17: Left panel: asymmetric double exponential function (dotted curve) esti
mates using penalized local constant regression with 307 grid points (dashed curve) 
and 20 grid points (solid curve) for the penalty. Right panel: derivatives of the cor
responding estimates (solid and dashed curves) and true derivative (dotted curve).
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computation, we have computed the penalty in two ways: with 307 grid points and 
with 20 grid points as described above. Again, the figure shows a clear difference in 
the estimates. Care needs to be taken when choosing the number of grid points for 
the penalty function.

5.6 Relationship with Smoothing Splines

The form of the relationship between y and y* expressed in (5.2) is strongly rem
iniscent of the relation between y and the associated smoothing spline gss(x) (e.g. 
Chapter 2, Green and Silverman, 1994). Thus, we seek to understand the connection 
between y* and gss(x).

To do this, let us return to the original smoothing spline problem which is to 
find the function s(x), having continuous second derivative, which minimizes

n rxn
£ l w - ( * i ) l 2 +  W  (s"(x) )2dx.
2=1 Jxl

As is pointed out by Green and Silverman (1994), the minimizer is a natural cubic 
spline whose knots are at the locations of the x ’s (assumed to be sorted).

We can view the smoothing spline form of penalized data sharpening given at 
(5.3) as choosing a function h(x) to minimize

n r x n
^2\Vi-h(xi )\2 +  X {g"(x))2dx. (5.6)
i= 1 7xi

where g(x) =  Y^j=i Aj(x)h(xj) .  Here, we have associated the sharpened response y* 
with the function value h{xj).

Now, let {a j (x ) }  denote any sequence of n twice-continuously differentiable 
functions for which aj (x {) =  Aj{xj),  for all i and j.

The minimal property of interpolating splines (de Boor (1978), Chapter XIV) 
tells us that if g{x) =  X^j=i aj ( x i )Hxj), for any sequence h(xi ) , . . . ,  h(xn), then
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where s(x) is a natural cubic spline with knots at x\, X2 , ■ ■ ■ , xn and where

n
s (x i) =  '52Aj(xi)h(xj) .

3= 1

The optimal sequence of h(xi)'s could be computed from the appropriate analogue of 
(5.2).

However, g(x) is constrained to be Y^=i  Aj(x)h(xj)  where the functions Aj(x)  
are induced by the kernel. Thus, the minimizer will not necessarily be the same; in 
fact, in most instances it will be different, since there are few circumstances where 

Aj{x)h{xj)  coincides with a cubic spline.
Thus, the estimator developed from penalized data sharpening bears a resem

blance to a smoothing spline, but it is not necessarily equivalent.

5.7 Other Penalties

In this section, we give an indication as to how the penalty method might be useful 
in other situations where qualitative information about the regression function is 
available. Examples are given in which the regression function satisfies a differential 
equation of the form g" =  —g and where the regression function is known to be 
periodic.

5.7.1 Penalizing J2(9f' (x ) +  g{x ))2

The first target function is well known to satisfy the differential equation

Often, an initial condition would be known as well, and this could easily be handled 
by our methodology, but we will suppose it is unknown in our current treatment.

Again, we will suppose we have a sample of size 25 taken at equally spaced 
design points on [—1.5,1.5]. Instead of a smoothness penalty, we will now use the
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Figure 5.18: MISE values for penalized (solid curve) and unpenalized (dashed curve) 
local constant estimates of the sine function for various values of h, based on samples 
of size 25.

differential equation to construct the penalty by choosing 30 equally spaced grid 
points on the interval [—1.2,1.2]. That is, we penalize

30

^2( g ” (zi) +  g(zi))2 (5.7)
i—1

where z i , . . . ,  z q̂ represent the grid points.
Figure 5.18 shows MISE values for the penalized local constant regression 

estimator and the unpenalized local constant regression estimator for bandwidths 
h G { .1 , . . . ,  .6} and where A =  .3. From this plot, we see that h =  .1 should give 
reasonable performance.

Figure 5.19 shows MISE values for penalized local regression with penalty pa
rameter values taken from the set {A =  .00001(27) : j  =  0 ,1 , . . . ,  16} and where 
h =  .1. From this plot, it appears that there is rapid improvement in MISE as A 
increases away from 0, but that when A > .1, there is not much further sensitivity to 
choice of A.

Figure 5.20 displays penalized and unpenalized local constant regression esti
mates for a typical sample of size 25. The penalty parameter was taken to be 0.6,
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Figure 5.19: MISE for penalized (solid curve) and unpenalized (dashed curve) local 
constant estimates of the sine function for various values of A using h =  .1.

and the bandwidth for both estimates was 0.1. The penalized curve matches the true 
curve almost perfectly on the constrained interval; similarly, the derivative is almost 
perfectly estimated on that interval.

For another example, we consider the same target function, but this time with 
design points taken from a larger domain: [—3.5,1.5]. This time, we penalize a 
functional of the form (5.7) but this time with 40 grid points taken equally-spaced in 
the interval [—3.2,1.2].

Figure 5.21 shows MISE values for the penalized local constant regression 
estimator and the unpenalized local constant regression estimator for bandwidths 
h £ {.05, .1, . . . ,  .6} and where A =  .05. From this plot, we see that h =  .15 should 
give reasonable performance.

Figure 5.22 shows MISE values for penalized local regression with penalty pa
rameter values taken from the set {A =  .00001(2-?) : j  =  0 ,1 , . . . ,  16} and where 
h =  .15. From this plot, it appears that there is rapid improvement in MISE as A 
increases away from 0, but that when A > .4, there is not much further sensitivity to 
choice of A.

Figure 5.23 displays penalized and unpenalized local constant regression esti
mates for a typical sample of size 25. The penalty parameter was taken to be 0.6, and
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Figure 5.20: Left panel: sine function (dotted curve) estimates using penalized (solid 
curve) and unpenalized local regression (dashed curve). Right panel: derivatives of 
the corresponding estimates (solid and dashed curves) and true derivative (dotted 
curve).

h h

Figure 5.21: MISE estimates for penalized (solid curve) and unpenalized (dashed 
curve) local constant estimates of the sine function, over longer range, for various 
values of h, based on samples of size 25.
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Figure 5.22: MISE for penalized (solid curve) and unpenalized (dashed curve) local 
constant estimates of the sine function, over longer range, for various values of A, 
using h =  .15.
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Figure 5.23: Left panel: sine function (dotted curve) estimates using penalized lo
cal constant regression (solid curve) for the penalty and unpenalized local regres- 
sion(dashed curve). Right panel: derivatives of the corresponding estimates (solid 
and dashed curves) and true derivative (dotted curve).
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the bandwidth for both estimates was 0.15. The penalized curve and its derivative 
match the corresponding true curves very well on the constrained interval.

5.7.2 Periodicity

The first target function is also well known to be periodic with period 2tt:

g{x +  2tt) =  g(x).

This time, we will suppose we have a sample of size 200 taken at equally spaced design 
points on [—10,10]. We will construct the penalty by choosing 150 equally spaced 
grid points on the interval [—9.7, 9.7 — 27t] . That is, we penalize

150
Y^(g(zi +  2tt) -  g(Zi))2 (5.8)
¿=1

where z\,. . . ,  ¿150 represent the grid points.
Figure 5.24 shows MISE values for the penalized local constant regression 

estimator and the unpenalized local constant regression estimator for bandwidths 
h E {.05, .1, . . . ,  .6} and where A =  1. From this plot, we see that h =  .2 should give 
reasonable performance.

Figure 5.25 shows MISE values for penalized local regression with penalty pa
rameter values taken from the set {A =  .00001 (2-?) : j  =  0 ,1 , . . . ,  20} and where 
h =  .2. From this plot, it appears again that there is rapid improvement in MISE as 
A increases away from 0, but that when A > 5, there is not much further sensitivity 
to choice of A.

Figure 5.26 displays penalized and unpenalized local constant regression esti
mates for a typical sample of size 200. The penalty parameter was taken to be 10, 
and the bandwidth for both estimates was 0.2.
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Figure 5.24: MISE estimates for penalized (solid curve) and unpenalized (dashed 
curve) local constant estimates of the sine function for various values of h, based on 
samples of size 200.

X X

Figure 5.25: MISE for penalized (solid curve) and unpenalized (dashed curve) local
constant estimates of the sine function for various values of A, based on samples of
size 200, using h =  .2.
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Figure 5.26: Left panel: sine function (dotted curve) estimates using penalized local 
constant regression with 401 grid points (dashed curve) and 150 grid points (solid 
curve) for the penalty, based on a sample of size 200. Right panel: derivatives of the 
corresponding estimates (solid and dashed curves) and true derivative (dotted curve).

5.8 Applications

5.8.1 Great Barrier Reef Survey Data

We again consider the Great Barrier Reef Survey data which featured in the paper of 
Hall and Huang (2001).

The bandwidth, h =  .0414, was chosen using the d p i l l O  function from the 
KemSmooth package (Wand and Ripley (2009)) in R. The dashed curve in Figure 
5.27 represents the local constant regression estimate using this bandwidth.

The solid curve is the result of a penalized local constant estimate. The penalty 
term was based on the sum of squared second derivative estimates. Thus, the goal 
was to increase the smoothness in the estimated curve.

The penalty parameter, A =  .00008, was chosen to minimize the numerical 
approximation to the mean integrated squared error based on the MISE formula 
described in Section 5.5. However, because this formula is based on the true regression 
function, a pilot estimate was needed. We used the local constant estimate for this 
purpose. Minimizing this approximate MISE with respect to A proceeded by grid
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Great Barrier Reef Survey Data

longitude

Figure 5.27: The Score 1 measurements from the Great Barrier Reef Survey plotted 
against longitude. The dashed curve represents the local constant regression esti
mate and the solid curve represents the penalized sharpened local constant regression 
estimate.
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search. In other words, the expression

Var(g(x)) +  Bias (g(x))

was integrated numerically (using a trapezoid rule), where the variance and bias 
estimates were obtained from formulas (5.4) and (5.5) with the unknown function 
g(x) replaced by its local constant estimate g(x).

5.8.2 Titanium Heat Data

Figure 5.28 shows the titanium heat data (e.g. de Boor (1978)) together with local 
constant and penalized local constant curve estimates. The bandwidth chosen here is 
one-third of value selected by the d p i l l O  function. Larger values result in too much 
bias at the peak of the curve when estimated using the local constant estimator.

Again, the goal was to increase smoothness, using the sum of the squares of 
the second derivative, but the penalty was imposed only at values remote from the 
peak. In other words, no constraint was imposed for values of temperature between 
890 and 900 degrees.

The rough approximation to the mean integrated squared error described in 
section 5.8.1 was minimized to obtain a value for the penalty parameter. This gave 
the value A =  8000, and the resulting curve is plotted in Figure 5.28. Both estimated 
curves reach the peak satisfactorily, and there is not a great deal of difference between 
the two curves otherwise. However, it can be noted that the penalized curve does not 
interpolate the data to the same extent as the unpenalized local constant curve.

5.8.3 Winnipeg Temperature Data

Figure 5.29 shows daily maximum temperature data for the city of Winnipeg, Mani
toba for the years 1960, 1961 and 1962. The data exhibit an obvious seasonality, and 
it may be reasonable to suppose that there is a period of 365.25 days. This leads us 
to model this data set using

V =  g(t) +  ^

where g(t +  365.25) =  g(t).
The bandwidth, h =  13.8, was chosen using the d p il lO  function from the 

KemSmooth package (Wand and Ripley (2009)) in R. The dashed curve in Figure
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Figure 5.28: Titanium heat data. The dashed curve represents the local constant 
regression estimate with h =  4.72, and the solid curve represents the penalized sharp
ened local constant regression estimate using the same bandwidth and A =  8000.
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Maximum Daily Temperatures —  Winnipeg

Figure 5.29: Winnipeg daily maximum temperature data for 1960, 1961 and 1962. 
The dashed curve represents the local constant regression estimate and the solid curve 
represents the penalized sharpened local constant regression estimate.
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5.29 represents the local constant regression estimate using this bandwidth. There 
are more bumps in this curve than we should expect. This is mainly due to auto
correlation in the data which is well known to adversely affect bandwidth selector 
performance (Wand and Jones (1995)).

The solid curve is the result of a penalized local constant estimate. The penalty 
parameter, A =  3, was chosen to minimize the rough approximation to the mean 
integrated squared error described in Section 5.8.1

The method for choosing A may be biased downwards somewhat. This observa
tion is based on a very limited number of simulation experiments, in which the target 
function was a sine function (with period chosen to resemble the temperature data 
in this example) and 1096 independent observations were simulated. In all of these 
cases, the selected value of A based on the estimated regression function was less than 
the value based on the true regression curve. Another problem is autocorrelation in 
the measured temperature values. Another simulation experiment revealed that A 
will be substantially underestimated if there is autocorrelation of the type observed 
here (i.e. approximately autoregressive with order 1, with a first lag autocorrelation 
near 0.6).

Figure 5.30 shows what happens when a substantially larger penalty parameter 
is applied to the Winnipeg temperature data. The resulting curve is an improvement, 
since it reveals the periodicity in the data more strongly, and some of the anomalous 
bumps still visible when using the smaller value of A have been removed.

5.9 Conclusions

In this chapter, we studied an alternative constrained sharpening local regression 
estimator by imposing the constraint as a penalty. This penalized kernel regression 
estimator can easily handle constraints which are quadratic in the responses y. Such 
constraints cannot be handled with the original constrained data sharpening using 
ordinary quadratic programming, and are thus less tractable.

Furthermore, the fact that we can express penalized sharpened responses an
alytically has allowed us to investigate finite sample properties for specific cases. 
Simulation and theoretical results demonstrate that the penalized local regression 
estimator can lead to an improvement over the local regression estimator. Although 
not exploited in this thesis, the explicit bias and variance formulas could be used to 
add confidence limits to penalized curve estimates.
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Maximum Daily Temperatures —  Winnipeg

Figure 5.30: Winnipeg daily maximum temperature data for 1960, 1961 and 1962. 
The dashed curve represents the local constant regression estimate and the solid curve 
represents the penalized sharpened local constant regression estimate using the same 
bandwidth as before and A =  30.
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Although much of the focus of the chapter was on roughness penalties, leading 
to a form of smoothing kernel estimator, it was also shown that other penalties can 
be considered. The data examples exhibit some of the flexibility of the method as 
well.
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Chapter 6

CONCLUSIONS AN D  FURTHER W O R K  

6.1 Contributions of this thesis

This thesis has been concerned with problems arising when one wants to apply non- 
parametric local regression subject to qualitative constraints and subject to interval- 
censored responses. These problems were studied via asymptotic theory and by sim
ulation.

In Chapter 3, iterated conditional expectation methods and local likelihood for 
nonparametric interval-censored regression estimators were developed. Estimators for 
the error variance were proposed and compared with previously suggested estimators 
from the literature. Simulation results showed that local likelihood estimation is often 
superior to local regression estimators where observations have been imputed using 
either interval midpoints or iterated conditional expectations when the censoring 
intervals are wide or of varying width. The fact that the midpoint imputation method 
is inferior to the other methods when the interval widths are variable but that it still 
enjoys consistency properties strengthens the argument in favor of the usefulness of 
the other methods, at least when the censoring intervals are variable. When the 
intervals are smaller and of fixed width, none of the imputation approaches dominate 
the others.

In Chapter 4, constrained data sharpening for nonparametric regression was 
applied to new situations such as where constraints are defined in terms of differential 
operators. Data sharpening was compared with competing kernel methods in terms of 
bias, variance and MISE. We proved that the constrained data sharpening estimator 
has the same rate of convergence as the constrained weighting estimator of Hall and 
Huang (2001).

In Chapter 5, penalized data sharpening was proposed as a new form of con
strained data sharpening. The sharpened responses can be computed analytically 
which makes the method very convenient. It is also very easy to study performance 
in terms of bias and variance. It is also possible to understand why the method does 
not perform as well as might have been expected. Also, a new approach based on
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selecting appropriate linear combinations of eigenvectors of a matrix derived from the 
constraints has been introduced, though not yet studied systematically.

6.2 Research Questions Arising from the Thesis

This thesis has explored interval-censored regression estimators and data sharpening 
estimators in detail. However, a number of questions emerge from this thesis.

We have only discussed local regression and local likelihood estimators with one 
covariate. With few exceptions, we have only considered normal errors with constant 
variance. The methods considered can be extended to include multiple covariates 
with normal and non-normal errors. Replacing the normal cdf in the local likelihood 
method for interval-censored data with a nonparametric estimate of the cdf as em
ployed by Rabinowitz et al. (1995) is worth investigating. Meanwhile, the simulation 
study of Chapter 3 does not treat the midpoint imputation and nonparametric it
erated conditional expectation imputation methods fairly, since these two methods 
have to work without the normality assumption that benefits other two methods. It 
would have been interesting to see if the conclusions remain the same when the et 
follows logistic or smallest extreme value distributions. Also since most parametric 
regression models that fit well in survival analysis are log-linear, it would have been 
nice to have a simulation where the log of the response follows model (1.1).

There is scope for much more study of the use of data sharpening to handle dif
ferential constraints. In each of the examples considered in Chapter 4, the regression 
function is the analytic solution to a differential equation. This has made it possible 
to check the accuracy of the methods being applied, but this does not mean it is 
not possible to apply the techniques in situations where only the differential equation 
itself is available. Furthermore, only linear differential equations were considered here 
(with one exception), in order that the data sharpening method can proceed using 
quadratic programming. Using nonlinear programming methods, it is possible, in 
principle, to handle constraints derived from a larger class of differential equations. 
As was seen in Chapter 4, and again in Chapter 4, the data sharpening method is not 
guaranteed to be accurate in all circumstances; it sometimes requires considerable 
care to implement properly. This will likely continue to be the case when nonlinear 
differential constraints are operative; thus, the study of this problem may be large 
enough to generate a whole new thesis.

Data sharpening may be a potential way to mitigate the well-known “curse 
of dimensionality” associated with higher-dimensional kernel smoothing problems.
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Handling a non-constant variance would also be of interest, particularly if there is 
qualitative information available about the nature of the variance as a function of the 
regressor or response. The question of testing the validity of constraints was touched 
on briefly in this thesis, but is an area that requires much more extensive study.

The techniques presented in this thesis can also be applied to other nonpara- 
metric regression estimators, such as regression splines, including the kernel spline 
regression estimator proposed by Braun and Huang (2005). In addition, the conver
gence rate of the data sharpening estimator can be obtained under the more general 
constraints (4.4) or (4.5).

The example involving correlated fire area intervals provides motivation to study 
these methods more closely when the data exhibit serial dependence. Another form 
of dependence arises from the way in which data such as the aspen flush data have 
been sampled. In order to handle multiple years of data, it will likely be necessary to 
use random effects models.

The penalty method should be studied more systematically for higher order 
local polynomial regression. The bandwidth and penalty parameter selectors that 
were proposed in Chapter 5 need to be studied systematically as well. Furthermore, it 
may be possible to provide confidence limits for penalized kernel regression estimates 
using the explicit pointwise bias and variance formulas given in the thesis.

We have also studied, briefly, how combining the data sharpening method of 
Choi et al. (2000) with other data sharpening methods can affect estimation perfor
mance. Incorporating qualitative information into interval-censored regression prob
lems is another way in which combining two or more of these types of procedures may 
help to improve estimation performance. As a final example, we conclude the thesis 
with an illustration as to how this may be done, and show how we can address the 
aspen flush problem stated in the opening chapter of the thesis.

6.2.1 Constrained Data Sharpening for Interval-censored Responses

When the responses are interval-censored, incorporating qualitative information into 
the local polynomial estimator is possible. In this example, we show how monotonicity 
can be incorporated.

When the responses Y{ are interval-censored and observed as intervals /¿ ’s, a 
local constant estimator for g(x) is

~  . =  T . j K h(x -  X jjE (Y i\Y i £ h)
9[ ’  Y . i K h( x - X i )

(6.1)
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where

ÊffiK e h )  =  g ( x i )  +
f i .  x f c(x)dx

Cl_________
he- fz(X)dx ’Cl

and I£i =  [Li -  gfa ) ,  Ri -  gfa)]-
We can incorporate monotonicity into this estimator using a form of data sharp-

enmg.
v _  T , i K h { x - X i ) Y *  

9 {X> £ i  K h(x -  Xi)
( 6 .2 )

where the Y* are sharpened versions of E[YJ|1̂  E /¿] and can be obtained by mini
mizing

Y ,(Y *  -  E[Yi\Ii])2, subject to g'(x) >  0. (6.3)
i

The details of the algorithm are:
(1) Compute the interval midpoints of the Tj’s:
(2) Compute the initial regression function

E  i K h(x ~
YxiKh(x-

x i)Vi

-Xi)

Choose h using a DPI approach, for example.
(3) Estimate the noise density using iterated conditional expectation as in Chapter 

3. The interval-censored errors are estimated as I£i =  Ii — gofa)  and the error 
density is estimated by the fixed point of

he- K h{z -w) f e {w)dw
^l_________________________________

he- fe{w)dw
C l

(4) Compute the conditional expectation, E[e^|/eJ, of the e ’s.

(5) Set E[yi\Ii] =  g fa ) +  E[e»|Jei], where g fa )  =  ^  f v  •

(6) Minimize Yliivt ~  E(Y)|/j))2 subject to g (x) >  0.
(7) Set go(x) =  g(x) and return to step (2) or stop when the iteration has achieved 

convergence.
Although the convergence of this iteration has not been proven, our experience with 
it indicates that under typical conditions, convergence is rapid: one or two iterations 
are sometimes all that is required.

-  f a
1=1
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6.2.2 A  Final Simulation Study

In order to check whether constrained data sharpening can improve estimation when 
responses are interval-censored, we conducted a final simulation study.

We drew 1000 samples (X^, Y)), 1 < i <  n of size n =  30 from the regression 
model with

P5x
g(x) = ------- e—

w  1 +  e5x

with equally spaced design points on [—1,1]. The error distribution was normal with 
standard deviation 0.2. The response intervals were generated according to

L i = Y i ~  exp(n, 10)

and
Ri =  Yi +  exp (n, 10).

For each simulated sample, the following estimators were applied:

1. local linear regression.

2. the bias-reduced data sharpening method of Choi et al. (2000) applied to

(a) local constant regression, perturbing the design points only.

(b) local linear regression, perturbing the design points and responses.

(c) local linear regression, perturbing the responses only.

3. constrained data sharpening under the Cases listed below.

For the data sharpened local linear estimates, we imposed three different con
straints:

Case 1: g{x) is non-negative and monotonically decreasing.

Case 2: g(x) is non-negative, and convex for x < m\ and concave for x > m\.

Case 3: g(x) satisfies the conditions of Cases 1 and 2 and p(l) =  1.

Figures 6.1 to 6.3 show typical realizations from this simulation. Figure 6.1 
shows the result of fitting the data with the unconstrained interval-censored local 
linear estimator as well as the constrained estimator based on the non-negativity and 
monotonicity assumptions. Figure 6.2 compares the unconstrained estimate with the
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Constrained Sharpening Local Linear Estimate: Case 1

x

Figure 6.1: Local linear estimates for interval-censored responses subject to con
straints. True curve (solid grey curve), unconstrained local linear estimate (dashed 
black curve) and constrained (Case 1) estimate (solid black curve).

Constrained Sharpening Local Linear Estimate: Case 2

X

Figure 6.2: Local linear estimate for interval-censored responses subject to con
straints. True curve (solid grey curve), unconstrained local linear estimate (dashed 
black curve), constrained (Case 2) estimate (solid black curve).
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Constrained Sharpening Local Linear Estimate: Case 3

x

Figure 6.3: Local linear estimates for interval-censored responses subject to con
straints. True curve (solid grey curve), unconstrained local linear estimate (dashed 
curve), constrained (Case 3) estimate (solid black curve).

constrained estimate under the further assumption of convexity. Figure 6.3 com
pares the unconstrained estimate with the constrained estimate under the additional 
assumption that g( 1) =  1.

The MISE was computed as well as the MSE at the points x =  0 and x =  0.6, 
for each method. The results are given in Table 6.1.

Table 6.1 shows that imposing qualitative constraints leads to substantial re
ductions in MISE. For the third constraint, the point constraint g(l)  =  1 gives fairly 
accurate information about the function (the true value of g( 1) is 0.9933). The MISE 
for the third case is the smallest among the three kinds of constraints.

The pointwise squared bias, variance and MSE are depicted in Figure 6.4.

6.2.3 Application to the Aspen Flush Data

The aspen flush data introduced at the beginning of this thesis will be investigated 
again here. The local linear estimate subject to a monotonically decreasing constraint 
is applied. The unconstrained and data sharpened local linear estimates are depicted 
in Figure 6.2.3. The same direct plug-in bandwidth h =  0.126 is used for these two 
estimates.

The figure shows that the local linear estimator incorporating the monotonicity 
information is smooth and fits the data set well compared to the unconstrained local 
linear estimator.
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Table 6.1: MISE and MSE (at two design points) comparisons of kernel regression 
estimates when responses are interval-censored. CHR constant: local constant with 
perturbed design points; CHR linear-xy: local linear with perturbed design points 
and responses; CHR linear-y: local linear with perturbed responses; DS Cases 1-3: 
data sharpening subject to Constraint Cases 1-3.

Target Function: Logistic Curve

Mean squared error

Optimal MISE at x =  0 at x = 0.6 
bandwidth n (xlO2) (xlO2) (xlO2)

local linear estimate 30 1.112 0.468 0.564
CHR constant 1.309 0.564 0.660
CHR linear-xy 1.230 0.470 0.658
CHR linear-y 1.160 0.511 0.605
DS Case 1 0.987 0.455 0.508
DS Case 2 0.923 0.423 0.554
DS Case 3 0.773 0.397 0.404
local linear estimate 50 0.746 0.364 0.385
CHR constant 0.808 0.380 0.413
CHR linear-xy 0.786 0.344 0.431
CHR linear-y 0.717 0.346 0.380
DS Case 1 0.636 0.354 0.330
DS Case 2 0.609 0.307 0.383
DS Case 3 0.502 0.301 0.271
local linear estimate 100 0.452 0.193 0.226
CHR constant 0.430 0.176 0.213
CHR linear-xy 0.425 0.158 0.217
CHR linear-y 0.399 0.167 0.200
DS Case 1 0.375 0.189 0.197
DS Case 2 0.365 0.176 0.225
DS Case 3 0.305 0.172 0.173
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Figure 6.4: Local linear estimates for interval-censored responses subject to con
straints. True curve (solid grey curve), unconstrained local linear estimate (dashed 
curve) and constrained (Case 3) estimate (solid black curve).

Figure 6.5: Local linear estimates for aspen flush data. Unsharpened estimate (dashed 
line) and monotonically decreasing estimate (solid line).
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Appendix A

Derivation of the Likelihood under Two Censoring
Mechanisms

Proof of (3.8).
Since X u  and X 2i are exponentially distributed with rate A, the probability density 
function of R% and Lt conditional on y are given respectively by

/i?dy(r) = Ae A(r v\fo*y<r

and
fli\y (r) =  Ae_A(y_^,for y > r.

In addition, y  ~  N(ji, a2). Thus the joint probability density function of 
Li,R i,y  is

fLi,Ri,y(l,r,y) =  f L M y M  fy{y)

=  f L ^ f R i l y i ^ f y i v ) ,
(A.l)

since the random variables Li and Rt are independently distributed conditional on y. 
Thus, we have

2 /o-r2
fLi,Ri,y(l,r,y) =

\2e-\ {r -l)e-{y-yY/2(j

where l <  y < r. And the marginal joint probability density function of Lj and R,L is

(A.2)

where r > l.
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So the likelihood function is

L{A, ¡1 , a2) =  \2e~X(ri~1̂  ( $ ( —— - )  -  $ ( - — - ) )  . (A.3)
¿=1 \ a a )

where for i =  1 , . . . ,  n and the log*likelihood function is

n n n

. n, ° 2) =  log a2 _  A $ Z ( r* _  z*)+  log
¿=i ¿ = 1  j=i

Thus removing the terms which do not involve the unknown parameters /i and a, the 
target log-likelihood function is given in (3.8).

For the fixed width interval, we have

n

K i1 *a 2 ) =  n  p (l* ~ y i ~  r*)> (A*5)
i= 1

(A.4)

where 1̂ and rl are the observations,not random variables and y% is normally dis
tributed with mean n and variance a. So the log-likelihood function in this case can 
be easily obtained as (3.8).
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