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Abstract 

The ever-increasing frequency of occurrence and sophistication of DDoS attacks pose 

a serious threat to network security. Accurate classification of DDoS attacks with 

efficiency is crucial in order to develop effective defense mechanisms. In this thesis, 

we propose a novel approach for DDoS classification using the CatBoost algorithm, on 

CICDDoS2019, a benchmark dataset containing 12 variations of DDoS attacks and 

legitimate traffic using real-world traffic traces. With a developed ensemble feature 

selection method and feature engineering, our model proves to be a good fit for DDoS 

attack type prediction. Our experimental results demonstrate that our proposed 

approach achieves high classification accuracy of 89.5% and outperforms several state-

of-the-art machine learning algorithms in terms of both accuracy and computational 

efficiency. The thesis does not only limit itself to achieving a good prediction score, it 

also uses the recently introduced concept of explainable AI (XAI) as a tool for ensuring 

transparency and interpretability of the proposed approach. Our approach can be 

applied in real-world scenarios to enhance the security of network infrastructure against 

DDoS attacks. 

Keywords 

Cyber-attack, DDoS, Machine Learning, Deep Learning, Boosting algorithm, 

CatBoost, XAI  
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Summary for Lay Audience 

Cyber-attacks have become increasingly sophisticated and can be considered to be a 

growing threat to the technology-dependent world. Distributed Denial of Service 

(DDoS) attack is a type of such attack that has an exponentially growing number of 

occurrences. Briefly, in a DDoS attack, attackers flood a server with traffic to 

overwhelm it, making it unavailable to the legitimate users. The attackers can be in 

different locations and cause chaos from sources difficult to trace.  

To address this problem and to come up with better mitigation strategies, researchers 

have developed machine learning algorithms for classifying DDoS attacks with better 

efficiency. Deep learning is a type of machine learning that uses neural networks to 

learn patterns in data. By analyzing network traffic data, algorithms can learn to 

distinguish between benign traffic and malicious traffic that are sub-types of DDoS 

attack. With an aim to solve this problem, this thesis focuses on developing and 

improving machine learning algorithms by using different data pre-processing and 

selection techniques and examining different neural network architectures to enhance 

the performance of the algorithms.  

The goal of the research is to provide network security professionals with better tools 

to detect and respond to DDoS attacks. By improving the classification of different 

types of attacks, the algorithms can help affected organizations to effectively identify 

and mitigate threats to their networks with specific mitigation techniques. The research 

has the potential to improve the security of computer networks and shield from the 

ever-growing threat of cyber-attacks. The use of machine learning algorithms in 

detecting and classifying DDoS attacks can help organizations to better safeguard their 

networks and ensure the reliability of their services. The developed model in this thesis 

outperforms the existing works on addressing the mentioned problem with stellar 

performance evaluation scores.  
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Chapter 1  

1 Introduction 

In a time where the flow of information is controlling the motion of the world, affecting 

this flow is evidently a reason for concern. Turning towards the device screen and seeking 

solutions for problems has become a reflex action for any individual. But what if you turn 

to the network for information and you are denied the service you are seeking? For solving 

the majority of the problems today related to the important sectors ranging from healthcare 

industry to financial institutions, the probability of one going blank when there is a problem 

with the internet service is undeniably high. The Internet has become irreplaceable, and 

this motivates the growth of a force of resistance. The newest form of attacks to influence 

the world drastically are all cyberattacks. Any unauthorized cyber act aimed at violating 

the security policy of a cyber-asset and causing damage, disruption or disruption of the 

services or access to the information of the said national cyber asset is called cyber-attack 

[1]. Negatively affecting the network that the world is dependent on is no less than a 

weapon of destruction today. Types of cyber-attacks include malware, spyware, denial of 

service, sniffer, trojan etc.  

“Morris Worm”, introduced in 1988 by Robert Morris, a graduate student from Cornell, 

was the first major cyber-attack recorded and it successfully infected computer systems at 

Stanford, Princeton, Johns Hopkins, NASA, Lawrence Livermore Labs, and UC Berkeley, 

among other institutions. Starting from here, the series of attacks on the Air Force’s Rome 

Laboratory using a password sniffer by Kuji in 1994, a successful hacking attempt by 

Vladimir Levin on Citibank’s network in 1995, attack on Motorola and Nokia by Kevin 

Mitnick in 1995, attack on the U.S. government websites by Max Butler in 1998, and the 

incident of Melissa Virus attack on the Microsoft document files are some of the cyber-

attacks that took place in world history [2]. The range of destruction caused by the attacks 

only went ramping up making it a significant problem requiring attention from the world 

scholars. “Mafiaboy” Michael Calse, a 15-year-old hacker launched a series of distributed 

denial of service (DDoS) attacks on world renowned sites like Amazon, Yahoo, CNN, and 

eBay in the year 2000, showing the new century the sight of an incoming war. In 2005, a 
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security breach at a U.S. retailer led to the data leak of 1.4 million HSBC Bank MasterCard 

users and in 2008, Heartland Payment systems were attacked using a combination SQL 

injection, password sniffers, and malware, compromising the data of 134 million users [2] 

– these all reflect on the exponential growth of the destruction caused by cyber-attacks. 

Evidently, cyber-attacks that have only grown powerful over time which leaves us with a 

blank head space when asked the question mentioned at the beginning of the writing – 

“What if you turn to the network for information and you are denied of the service you are 

seeking?” DDoS attack is one of the major types of cyber-attacks that can make an 

individual face this. In November 2021, Microsoft mitigated a DDoS attack targeting an 

Azure customer with a throughput of 3.45 Tbps and a packet rate of 340 million PPS which 

is believed to be the largest DDoS attack ever recorded [3]. According to research from 

NETSCOUT’s ATLAS Security Engineering & Response Team (ASERT), threat actors 

launched approximately 2.9 million DDoS attacks in the first quarter of 2021, a 31% 

increase from the same time in 2020 [4]. As per this source, there were 6,019,888 global 

DDoS attacks in 1st half of 2022 and globally, DDoS attacks are predicted to number over 

15.4 million in 2023 – almost double that of 2018 [5]. This exponential growth is a reason 

enough for concern and it's important to have proper security measures in place to protect 

against DDoS attacks and prevent them from causing significant harm to online services. 

To protect networks against these types of attacks, detecting the attack sub-type accurately 

is a pre-requisite. This generates a new multi-classification problem to solve where the 

classes are the sub-types of the attack. Machine Learning (ML) techniques today have been 

proved to be a useful tool and quite literally, the only tool stands out for solving such multi-

classification problems. Machine learning can be a valuable tool for classifying DDoS 

attacks, providing a scalable, flexible, and automated approach to detecting and mitigating 

these types of attacks.       

The research aimed at solving the multiclass classification problem by investigating many 

of the ‘state-of-the-art’ deep learning models e.g., TabTransformer [6], FastFormer [7], 

Perceiver [8] to uncover the efficacy Attention [9] mechanism for network traffic data. In 

addition, ensemble tree-based approaches like Light Gradient Boosting Machine (LGBM) 

[10], eXtreme Gradient Boosting (XGBoost) [11] and CatBoost [12] were also investigated 
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to solve the multiclass classification problem. Explainable Artificial Intelligence (XAI) 

was used as a tool to interpret model behavior. 

1.1 Thesis Contribution 

The research contributions of this thesis can be presented with the following points -   

1. Applied feature engineering and created new features for the dataset CICDDoS-

2019.  

2. Proposed an ensemble feature selection technique that proved to be generating 

expected outcome while keeping the process computationally efficient. 

3. Developed deep learning based models for tabular data and obtained evaluation 

metrices outperforming the existing related works. 

4. Employed the recently introduced boosting techniques on network traffic data and 

showed improved results compared to the bagging technique employed. 

5. Evaluated and presented comparison of the performance of the developed models, 

with other state-of-the-art machine learning models where the developed best 

performing model had the accuracy score of 0.895, exceeding the performances of 

the existing state-of-the-art models. 

6. Analyzed the effect of the features on model prediction, bringing them under the 

umbrella of explainable AI. 

1.2 Thesis Outline 

The rest of this thesis is organized in 6 chapters and a brief idea on what these chapters will 

focus on is as follows.    

Chapter 2 introduces the terminologies and technologies used for this thesis and contains 

the background knowledge working as a base for this work.   

Chapter 3 records the literature review of the deep learning approaches for solving cyber-

attack classification problems, highlighting mostly the works on DDoS attack 

classification.  
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Chapter 4 portrays the insights gained from the exploratory data analysis and the steps 

followed for pre-processing the data to use for model training.  

Chapter 5 logs the resource requirement for model development and explains the 

development of the models and prediction performance obtained from each model. This 

chapter further evaluates the credibility of the work presenting a comparative analysis 

referencing the research works conducted with the same problem as of this thesis.  

Chapter 6 focuses on interpreting predictions from the machine learning model in the light 

of Explainable AI (XAI).  

Chapter 7 is the concluding chapter for the thesis that summarizes the findings of the 

proposed method and shares a high-level idea for scopes of the continuation of the work in 

future.     
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Chapter 2  

2 Background 

This chapter introduces the technical concepts and terminologies that are necessary for 

comprehending the ideas used as a foundation of the thesis.   

2.1 Reflection on Cyber-Attacks: Threat or not?     

Cyber-attacks are the emerging threats to the world and the impact of such attacks can be 

as devastating as the world being paralyzed. This is one big con of connecting everything. 

Any change in the system can affect the whole. The COVID-19 pandemic played a 

significant role in changing the cyber threat landscape. More organizations have shifted to 

hybrid mode to utilize the available resources to the fullest. 2022 saw cyberattacks reach 

an all-time high in response to the Russo-Ukrainian war - Education and Research remains 

the most targeted sector, but attacks on the healthcare sector registered a 74% increase 

year-on-year [13]. All the critical infrastructure services today are dependent on the mercy 

of the resistive force today. From the invasion of personal space to playing as a vulnerable 

base for the political and economic activities all over the world, cyber-attacks are a 

buzzword everywhere. As per the National Cyber Threat Assessment 2023-2024, it is 

estimated that 95% of all deepfake videos on the Internet contain non-consensual synthetic 

pornography and that about 90% of these depict women [14]. Starting from the attack that 

targeted nearly 500 people’s cryptocurrency wallets stealing approximately $18 million 

worth of Bitcoin and $15 million worth of Ethereum and other cryptocurrencies [15], 2022 

is filled with incidences that shows us how cyber-attacks are a threat and evidently, the 

biggest threat that any sector of the world can face today.      

2.1.1 Attack Taxonomy 

A cyber-attack taxonomy is a classification system that categorizes different types of 

cyber-attacks based on various distinguishable characteristics such as their methods, 

objectives, targets, and impact. There are requirements that need to be met for a taxonomy 
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to be universally accepted. To classify the cyber-attacks, different taxonomies have been 

proposed by Kjaerland [16], Hansman and Hunt [17] and many authors over time. Attack 

Vector, Operational Impact, Defense, Information Impact, and Target (AVOIDIT) [18] 

takes it a step further using five different classifiers and stands out as a complete taxonomy 

for cyber-attacks. The taxonomy classifies the attacks by five major classes or categories 

– Attack Vector, Operational Impact, Defense, Informational impact, Target. Figure 2.1 

shows the cyber-attack taxonomy titled as AVOIDIT. It classifies attacks in a tree-like 

structure, providing the ability to classify the allusive blended attack [18].   

2.1.2 DDoS Attack  

DDoS or the Distributed Denial or Service attacks refer to the type of cyber-attacks in 

which the one attacking overwhelms the target flooding it with service requests. The 

flooding is done from multiple sources targeting a system or a network with a view to 

disrupting the service making it unavailable to the users using the service. Depriving 

legitimate users of the service by attacking using a botnet, which is a network of multiple 

compromised devices, is a reason for concern in a space where everything takes place over 

networks. The attacker exploits the device’s vulnerabilities to establish a botnet that sends 

a massive volume of service request simultaneously ultimately causing the system speed 

to decrease significantly or the overall system to crash. Since the botnets are only 

pretending to be service seekers, it is difficult to differentiate and filter out the malicious 

traffic from the legitimate ones.    

2.1.3 DDoS Attack Types 

Mirkovic et al. [19] proposed a taxonomy that categorizes attacks as automation, 

vulnerability, source address validity, attack rate dynamics, characterization, persistence 

of agents, victim, and impact on the victim. The authors also proposed defense mechanisms 

based on activity level, cooperation, and deployment location. Asosheh et al. [20]  proposed 

a taxonomy based on known potential attacks and they categorized attacks based on these 

eight features- impact, architecture, strategy, degree of automation, attack rate dynamics, 

vulnerability, scanning propagation strategy, and packet content. Bhardwaj et al. [21] took  
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Figure 2.1: Attack Vector, Operational Impact, Defense, Information Impact, and 

Target (AVOIDIT) – A cyber-attack taxonomy[18]. 

the cloud computing paradigm into consideration and proposed a taxonomy having four 

different categories of DDoS attacks - vulnerability, degree of automation, attack rate 

dynamics, and attack impact. Sharafaldin et al. [22] proposed a new taxonomy where the 

DDoS attacks that can be carried out using Transmission Control Protocol (TCP)/ User 
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Datagram Protocol (UDP) at the application layer are classified into two major categories 

– Reflection-based DDoS attacks and Exploitation-based DDoS attacks.  Figure 2.2 sums 

it up.  

  

Figure 2.2: DDoS attack taxonomy [15]. 

Reflection-based DDoS attacks are a type of DDoS attack that exploits the characteristics 

of certain network protocols to amplify the traffic sent to the target system or network. 

These attacks rely on the use of third-party servers or devices to reflect and amplify the 

attack traffic. TCP based attacks include MSSQL, SSDP while UDP based attacks include 

CharGen, NTP and TFTP. There are certain attacks that can be carried out using either 

TCP or UDP like DNS, LDAP, NETBIOS, and SNMP [22].  Exploitation-based DDoS 

attacks, also known as vulnerability-based DDoS attacks, are a type of DDoS attack that 

exploits vulnerabilities in the target system or network to overload or crash it. TCP based 

exploitation attacks include SYN flood and UDP based attacks include UDP flood and 

UDP- Lag [22].  

2.1.4 Mitigation of DDoS Attacks 

DDoS attacks can have a significant impact on the availability and performance of online 

services, applications, and networks and can cause a wide range of issues like website 
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downtime, slow website loading times, and reduced availability of critical online services. 

All these can negatively impact businesses, organizations, and individuals. Implementing 

network security solutions, such as firewalls, intrusion detection and prevention systems 

can help mitigate DDoS attacks. Another strategy can be using content distribution 

networks (CDN) so that the clustered traffic can be distributed across multiple servers 

reducing the effect of DDoS attacks. Another approach is to use anomaly detection and 

behavior analysis to detect and block malicious traffic. This involves monitoring network 

traffic for unusual patterns and anomalies that may indicate a DDoS attack is underway. 

Once detected, the system can take action to block the traffic and mitigate the effects of 

the attack. Machine learning techniques can play a role here in proceeding with this 

approach.  

2.2 Machine Learning Algorithms    

Machine learning models have algorithms at the base level which receives the data it is to 

learn from, analyses the input data and provides a prediction on the basis of learned 

parameters. The data being fed as the learning material is the training data. The models 

learn from this data and optimize performance developing their own idea and intelligence 

on the knowledge provided.   

Machine learning algorithms can be broadly categorized into four types: supervised, semi-

supervised, unsupervised and reinforcement.  

2.2.1 Supervised Learning Algorithms                             

Supervised learning uses labeled training data to learn the mapping function that takes the 

input variables and provides output variables. There are two main types of supervised 

learning algorithms – Classification and Regression and a modified type – Ensembling.  

• Classification is used to predict the outcome of a given sample when the output 

variable is in the form of categories. Unconstrained, individual trees are prone to 

overfitting. Decision tree is a popular classification algorithm.  
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• Regression is used to predict the outcome of a given sample when the output 

variable is in the form of real values. Output values obtained have probabilistic 

interpretation and such algorithms can be regularized in order to avoid overfitting 

problems. Logistic Regression (LR) is an example.  

• Ensembling is another modified algorithm in supervised learning. When a model 

performs good for some features and another performs good for a different set of 

features, combining the predictions of these individually weak models produce a 

more accurate prediction. Bagging and boosting are examples of ensemble 

techniques.    

2.2.2 Classification Algorithms                          

Classification algorithms are a class of machine learning techniques that are used to 

automatically categorize data into predefined classes or categories. These algorithms are 

trained on labeled datasets, where each data point is assigned a target class label. The 

objective of a classification algorithm is to learn a decision boundary that separates 

different classes in the input feature space. Once trained, the algorithm can be used to 

predict the class labels of new, unseen data points based on their features. Decision tree, 

Random Forest (RF), SVM are some of the classification algorithms.     

2.3 Ensemble Learning   

Ensemble techniques are machine learning methods that combine multiple models to 

improve the overall predictive power and robustness of the algorithm. In an ensemble, 

individual models are trained on the same data using different techniques or parameters to 

produce a set of diverse models. The predictions of these models are then combined in 

some way to produce a final output that is often more accurate and less prone to overfitting 

than any individual model. Methods of ensembling include – bagging, boosting, stacking 

and blending.    
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2.3.1 Stacking    

Stacking is an ensemble technique in machine learning that involves combining the 

predictions of multiple models by training a meta-model that learns to make predictions 

based on the output of the individual models. In this approach, multiple base models are 

trained on the training data, and their predictions are then used as input to a higher-level 

meta-model.  

 

Figure 2.3: Schematic illustration of the stacking [23].  

The meta-model is trained on the predictions of the base models and learns to make final 

predictions based on the performance of the base models.   

2.3.2 Blending 

Blending is an ensemble technique in machine learning that is very similar to stacking but 

involves training a meta-model on a validation set rather than the entire training set. In a 

blending approach, the original training data is split into two parts: a training set and a 

validation set. Multiple base models are trained on the training set, and their predictions 

are then used as input to a higher-level meta-model, which is trained on the validation set. 
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The final predictions are then made by the meta-model on a test set that is independent of 

the training and validation sets.  

2.3.3  Bagging 

Bagging, short for Bootstrap Aggregating, is an ensemble technique in machine learning 

that involves training multiple instances of the same base model on  

  

Figure 2.4: Schematic illustration of the stacking [23].  

different random subsets of the training data. In a bagging approach, the training data is 

randomly sampled with replacement to generate multiple subsets of data, and then a base 

model is trained on each subset. The final prediction of the bagging ensemble is made by 

aggregating the predictions of the individual models, typically by averaging or taking a 

majority vote.   

Random Forest is an example of a bagging algorithm.  
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2.3.4 Boosting 

Boosting is an ensemble technique in machine learning that involves training multiple 

weak models sequentially, where each subsequent model is trained to  

 

Figure 2.5: Schematic illustration of the boosting [23].  

improve the weaknesses of the previous model. In a boosting approach, the training data is 

repeatedly reweighted to focus on the examples that are hard to classify, and each new 

model is trained to correctly classify the previously misclassified examples. The final 

prediction of the boosting ensemble is made by aggregating the predictions of the 

individual models, typically by weighted voting, where the weight of each model is 

determined based on its performance on the training data.     
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2.4 Gradient Boosting Algorithms 

Gradient boosting is a machine learning algorithm that builds a predictive model by 

iteratively adding weak learners to a model in a way that minimizes a loss function. The 

"gradient" in gradient boosting refers to the use of gradient descent optimization to update 

the model's parameters. In this algorithm, the loss function is typically the difference 

between the predicted and actual values of the target variable, and the goal is to minimize 

this loss function by iteratively improving the model's predictions. To accomplish this, 

gradient boosting iteratively adds new models to the ensemble and trains them to correct 

the errors of the previous models. Specifically, at each iteration, the algorithm adds a new 

model to the ensemble that is trained on the residuals of the current predictions. The 

residuals are the differences between the predicted and actual values of the target variable. 

By training new models to correct the residuals, the algorithm gradually improves the 

accuracy of the predictions. The models added to the ensemble at each iteration are 

typically "weak learners," such as decision trees or linear regression models, that 

individually have limited predictive power. However, by combining the predictions of 

many weak learners, the algorithm can build a more accurate and robust predictive model. 

The attributes that are tested for gradient boosting are learning rate, maximum depth of the 

tree, maximum number of features to consider, minimum number of samples required, and 

the subsampling rate.   

Examples of such algorithms are, eXtreme Gradient Boosting (XGB), Light Gradient 

Boosting Machine (LGBM), and CatBoost.  

2.5 Classification Tasks in Machine Learning        

Classification tasks need predicting the target, which is the output variable based on the 

input fed which are the features. The output necessarily will not be a single variable for all 

the tasks.   

Some of the commonly seen classification tasks are -   
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• Binary Classification: In this type of classification, the target variable has only two 

possible outcomes, typically represented as 0 or 1. Examples include spam 

detection, fraud detection, and disease diagnosis. 

• Multi-class Classification: In this type of classification, the target variable has more 

than two possible outcomes, typically represented as distinct labels or classes. 

Examples include image classification, sentiment analysis, and speech recognition. 

• Multi-label Classification: In this type of classification, each example can have 

multiple target labels, rather than being limited to a single label. Examples include 

image tagging, music genre classification, and text categorization. 

• Imbalanced Classification: In this type of classification, the target variable has 

imbalanced class distribution, meaning that one class has significantly fewer 

examples than the other class. Examples include rare disease diagnosis, fraud 

detection, and anomaly detection. 

• Hierarchical Classification: In this type of classification, the target variable has a 

hierarchical or nested structure, where the classes are organized in a tree-like 

structure. Examples include species classification and product categorization.   

2.6 Evaluation Methods for Classification Models    

There are several evaluation methods that are used to evaluate the machine learning model 

performance. Depending on the type of data, the evaluations methods to consider with more 

importance may vary. Some of the commonly used model performance indicators are- 

accuracy, ROC and AUC, precision, recall, f1 score, and confusion matrix.   

2.6.1 Accuracy   

This is the proportion of correctly classified examples out of the total number of examples. 

Accuracy is a simple and easy-to-understand evaluation metric, but it can be misleading in 

cases where the class distribution is imbalanced.   

 
Accuracy = 

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+ 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+ 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒊𝒗𝒆+ 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+ 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 

2.1 
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2.6.2  Precision, Recall, and F1-Score   

Precision measures the proportion of correctly classified positive examples out of all the 

positive examples.    

 
Precision = 

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+  𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
 2.2 

Recall measures the proportion of correctly classified positive examples out of all the 

examples that should have been classified as positive.     

 
Recall = 

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+  𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 2.3 

F1-score is the harmonic mean of precision and recall, and it combines both measures into 

a single value.   

 
F1 score =2* 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
 2.4 

 

2.6.3 Confusion Matrix   

This is a table that summarizes the performance of a classification model by counting the 

number of true positives, true negatives, false positives, and false negatives. It can be used 

to calculate various evaluation metrics, such as accuracy, precision, recall, and F1 score. A 

confusion matrix is an easily interpretable visual representation of the model’s performance 

for each feature provided as the input data.     

2.6.4 ROC and AUC    

The receiver operating characteristic (ROC) curve is a plot of the true positive rate 

(sensitivity) against the false positive rate (1 - specificity) at different classification 
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thresholds. The area under the ROC curve (AUC) is a measure of the model's overall 

performance, and it ranges from 0 to 1, with higher values indicating better performance. 

2.6.5 Cross-Validation 

This technique involves splitting the data into multiple subsets and training the model on 

different subsets while testing on the remaining subset. Cross-validation can help to 

evaluate the model's generalization performance and avoid overfitting.  

2.7 Deep Learning for Tabular Data 

Structured data or data organized in a tabular format can be referred to as tabular data. For 

analysis of such, deep learning has grown popularity in the recent years for their ability to 

efficiently learn the hierarchical representations of the input data and handle the complex 

relationships between the input features regardless of these being non-linear or non-

monotonic. Using deep learning models for tabular data can reduce the need for feature 

engineering. Although for larger datasets the overfitting problem can arise, with tuning the 

hyper-parameters in the right direction, these models produce considerably good 

performance score.   

In addition to the traditional deep learning algorithms like DNN, RNN, the recently 

introduced transformer-based models are also a potential fit for the model choice for 

learning from tabular data. Some of such models are TabTransformer, FT-Transformer, 

Perceiver.  
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Chapter 3  

3 Literature Review 

This chapter presents the works on DDoS detection and classification with machine 

learning approaches. Machine learning techniques have been applied to DDoS detection 

for quite some time now, and the first use of machine learning in DDoS detection can be 

traced back to the mid-2000s.   

3.1 Binary Classification  

Mirkovic et al. [19] used a supervised learning algorithm to identify the characteristics of 

DDoS attacks based on packet header information. They trained their algorithm using a 

labeled dataset of benign and attack traffic and evaluated its performance showing a 

satisfactory performance considering the works published around that time.   

Hasan et al. [24] used Deep Convolutional Neural Network (DCNN) on an Optical Burst 

Switching (OBS) Network dataset which outperformed most other machine learning 

techniques performance with the maximum classification accuracy of 99% where k-

Nearest Neighbor (KNN), SVM and NB’s classification accuracy were 93%, 88% and 79% 

respectively. The dataset consists of 21 attributes and 4 class variables which makes it a 

multi-class classification problem. Amma et al. [25]  proposed a Vector Convolutional 

Deep Feature Learning (VCDeepFL) approach, combining Vector Convolutional Neural 

Network (VCNN) and Fully Connected Neural Network (FCNN) for identifying DDoS 

attacks. VCNN downsampled the input vector and FCNN boosted the system performance 

by calculating the best weight set from the training data. On the NSL KDD dataset, 

VCDeepFL (99.3%) exceeded the accuracy of Multi-layer Perceptron (MLP) (98.9%) and 

SVM (99%). In the proposed model, the output layer of FCNN contained 6 nodes as it was 

a 6-class classification problem. On the KDDCUP99 dataset, Virupakshar [26] et al. 

obtained 97% accuracy with Deep Neural Network (DNN) and 96% accuracy with DT 

DAD-MCNN, a multi-channel CNN(MC-CNN) based DDoS attack detection framework 

proposed by Chen et al. [27] showed better performance on CICIDS2017 (83 features) and 
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KDDCUP99 (41 features) datasets than the conventional machine learning models like 

Long Short-Term Memory (LSTM), RF. The accuracy of the MC-CNN for binary 

classification on the CICIDS2017 dataset was 98.87% and for KDDCUP99 dataset it was 

99.18% exceeding the performance of the conventional models. Shaaban et al. [28] used 

CNN  to detect and classify the DDoS traffic into benign and malicious information with 

an accuracy of 99% using two different datasets- one was captures using wireshark on 

Mission control center (MCC) network and another one was NSL-KDD dataset. Wang et 

al. [29] also used on CICIDS2017 and obtained an accuracy of 98.98% in an Software 

Defined Networking (SDN) environment. Sabeel et al. [30] also worked with  binary 

classification of DDoS traffic on a benchmark datasets- CICIDS2017 which resulted in an 

accuracy score of 99.8% and 99.9% DNN and LSTM respectively. Assis et al. [31] used 

CNN on CICDDoS2019 keeping all 12 attack classes present in the dataset but for binary 

classification that led to an accuracy of 95.4%. Even though it was binary classification, 

keeping all the classes influenced the prediction.   

3.2 Multi-Class Classification  

The next level of DDoS detection and classification was not only separating the malicious 

traffic from the benign but also identifying the subtype of the DDoS attack. CICDDoS2019 

[32] dataset, prepared by Sharafaldin et al. [22] is a benchmark dataset for including a lot 

more subtypes of DDoS attacks than the previously mentioned datasets. The author [22]  

used 12 attacks from the training data and 7 attacks from the testing data of the original 

dataset and obtained precisions of 78%, 77%, 41% and 25% for the algorithms Intrusion 

Detection (ID3), RF, NB, and LR respectively. 91.16% precision was achived by Can et 

al. [33] but it was only for 6 classes from the dataset. Ferrag et al. [34] took all the 13 

classes from the CICDDoS2019 dataset and achieved precisions of 72% using RNN and 

66% using DNN. DNN was also used by Chartuni et al. [35] taking all the 13 labels from 

the original dataset which resulted in precision score of 83.1%.  

Shurman et al. [36] used only the reflection based attacks from the dataset (9 attack classes) 

on LSTM and achieved an accuracy of 91.54%. Cil et al. [37] used DNN for the same 

dataset and keeping 12 classes excluding the benign attacks, achieved a precision score of 
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80.49%. an ensemble DNN method was proposed by Sayed et al. [38] stacking CNN, 

LSTM and GRU which resulted in precision of 84.8% for 12 classes.    

From all the reviewed research mentioned here, a scope of improvement could be figured 

as none of these works put emphasis on reading beyond the type-wise feature division from 

the dataset. Moreover, the recently introduced deep learning models based on attention and 

transformer, that understand context from within what apparently looks like mere textual 

information, so far have not been developed and used on network traffic data. This research 

gap led to the aim for this thesis.   

3.3 Research Gap   

Research has been conducted to address DDoS attack classification problem and as seen in 

the previous sections of this chapter,  majority of the existing research uses the supervised 

instance learning models like Deep Neural Network (DNN)[33][34][35][37] and 

Convolutional Neural Network (CNN)[34] or the supervised sequence learning models that 

are Recurrent Neural Network (RNN)[34] e.g., Long Short-Term Memory (LSTM)[36]. 

There are extensive surveys of the existing research addressing the research problem of 

predicting cyber-attacks as accurately as possible. Even though no two works are 

completely similar with regards to how they pre-processed data, they all looked at the data 

from the same point of view i.e., considering the samples as a sequence of numerical 

instances.  This shows a scope of looking at the solution spectrum from a different point of 

view in regard to how the data will be processed for numerical features and categorical 

features. There are features in the network traffic datasets which, even though, are 

represented by numbers, the numbers don't convey meaningful quantitative information. 

Numeric values here represent categories or labels and can be considered as ordinal data. 

Several model architectures have been proposed recently [6][39][8][7], that process 

numerical and categorical features differently. They proved to be effective while 

preserving the interrelation of the categorical feature better than considering them as a 

sequence of numerical input. Attention mechanism paved the direction to capture more 

semantic meaning from these categorical features [9]. The potential of these architectures 

remains unexplored for network traffic data. In addition, ensemble tree-based approaches 
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[10][11][12] that offers an advantage of processing categorical columns differently (i.e., 

generating embeddings) for classification tasks. Also remains uninvestigated.  

Considering the weight and the impact of misclassifying the attack type, the performance 

scores obtained from the existing works directs towards room for improvement. Creating 

new features/ feature engineering proved to have a positive influence on model 

performance [40]. By creating new features that are more meaningful and understandable 

can help to better understand the underlying patterns and relationships in the data. This 

aspect shows potential that was not sufficiently explored. Moreover, combinations of 

feature selection techniques like chi-2 [41], Analysis of Variance (ANOVA) [42], Mutual 

Information (MI) [43] etc. could be leveraged to improve the learning performance, lower 

computational complexity, and build better generalizable models [44].   

For interpreting the machine learning models, interpretation tools [45] like SHapley 

Additive exPlanations (SHAP) [46], Local Interpretable Model-Agnostic Explanations 

(LIME) [47] , Anchors [48] etc. could be leveraged in the existing works but this aspect 

also shows insufficient exploration.  
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Chapter 4 

4 Data 

The set of observation of recorded measurements we feed to the machine learning networks 

for them to learn from and test the gathered knowledge with is referred to as data. Data is 

an integral part of the task utilizing machine learning. The quantity and quality of data has 

a huge role to play when it comes to the performance of the models.   

Data can be collected in any format- textual, visual, audio etc. and various forms like 

numerical, categorical, time- series data, text data; the collected data is later processed 

based on the input requirements of the model to be used. Processed data is usually split 

into training, testing and validation sets for the purpose of training the model, evaluating 

the model performance, and improving model performance by hyperparameter tuning 

respectively. The models learn from the patterns and correlations existing in the data points 

and come up with a relationship between the train and test data to be used for prediction.  

Data can be labeled or unlabeled to be used for supervised and unsupervised machine 

learning respectively. Labeled data includes a target variable that the model is trying to 

predict, unlike unlabeled data.   

Some popular and reliable resources for datasets are Microsoft research open data, 

Google’s dataset search, government datasets, Amazon datasets, UCI machine learning 

repository etc. The dataset used for this thesis is from the University of New Brunswick 

(UNB).    

4.1 Data Description   

The CICDDoS2019 [32] dataset, created by the Canadian Institute for Cybersecurity (CIC), 

is a publicly available benchmark dataset for the evaluation of DDoS detection and 

classification methods. This dataset is a collection of various DDoS attacks that were 

generated in a controlled lab environment to simulate real-world attacks. The 

CICDDoS2019 dataset is one of the largest and most comprehensive DDoS datasets 

available, with over 80 million records and 80 features extracted from network packets.   
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This dataset was gathered over 2 days as both Packet Capture (PCAP) file format and flow 

format based for training and testing evaluation. Training dataset contains 12 different 

types of DDoS attacks- NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-

Lag, WebDDoS, SYN, and TFTP. The testing dataset contains 7 types of DDoS attacks- 

PortMap, NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, and SYN. Total number of attacks 

are 50063112 and 20364525 respectively in the training and testing set. The attacks were 

categorized into two types- reflection-based and exploitation-based attacks from the 

transport and application layer. 80 traffic features were extracted from the PCAP files of 

the dataset using CICFlowMeter-V3 [49][50] and saved as CSV files. CICFlowMeter-V3 

is a open source toolkit written in Java for flow based feature extractor that can extract 80 

features from PCAP files. 

   

Figure 4.1: Attack percentages from the training set of CICDDoS2019.  

Figure 4.1 shows the attack percentages from the training set of the dataset excluding 

WebDDoS which had 439 attacks recorded leading to a negligible percentage. Portmap 

was recorded only on the testing day and the number of such attacks was 186960, which is 
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0.92% of the testing set. The pie chart presented shows that the dataset is an imbalanced 

dataset, which can lead to a biasness of the model.   

4.2 Exploratory Data Analysis    

Exploratory Data Analysis (EDA) refers to the initial investigations on data prior to usage. 

EDA enables data usage in the most efficient way possible giving insights on the potential 

of the data. With this data focused approach, patterns and anomalies are looked for, data is 

visualized for a better understanding of feature significance. The process starts with 

questioning the data, followed by visualizing, analyzing, and modelling data. EDA 

techniques can be broadly classified into 2 types –  

• Graphical Exploratory Data Analysis Techniques i.e., boxplot, histogram, scatter 

plot.  

• Quantitative Exploratory Data Analysis Techniques i.e., variation, hypothesis 

testing.   

The graphical and the non-graphical data analysis techniques can be univariate or 

multivariate, based on the number of variables.   

In the thesis, the benchmark dataset CICDDoS-2019 being a significantly large one with a 

reasonable number of classes representing attack sub-types offered a wide range of scope 

for exploration of the data to gain insight.  

4.2.1 Infinity/ null/ missing value   

Detecting the missing values or the infinity values is a mandatory exploration for EDA. In 

the dataset chosen, among the original features, the feature 'Flow Bytes/s' had 12939 

missing values. ' Flow Packets/s' also had values that are missing and infinite. Missing or 

infinite values are redundant data that can be handled with imputation.   
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4.2.2 Object Type Data   

Two features, ‘SimillarHTTP’ and ‘Label’ had object data type and the rest of the features 

in the dataset were integer or float types. ‘Label’ being of object datatype here raises no 

concern.    

 

Figure 4.2: Datatypes in the dataset CICDDoS2019. 

For the feature ‘SimillarHTTP’, the data being object type indicates potential trouble while 

encoding them with One-Hot Encoding (OHE). In OHE, only 1 element of a finite set has 

an index set to “1” and all other elements are assigned indices within the range of 0 to 1 

less than the number of elements. It is a technique for encoding categorical data to numeric 

data as it is a required format for machine learning models.   

4.2.3 Collinearity     

For a particular dataset when 2 variables are highly correlated and provide similar 

information on the variance of that dataset, it is known as collinearity. Multicollinearity 

involves 3 or more independent variables that are highly correlated. As the seemingly 

independent variables here are influencing each other, it affects the overall output of the 
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model. As the variables are measuring the same thing, it can be seen as the same 

measurement is being taken multiple times which can make the understanding of dependent 

and independent variables a complicated one. Perfect multicollinearity can be thought of 

as an extreme case here which occurs when the relationship between the independent 

variables is exactly linear.   

Detection of multicollinearity in data is important as it significantly reduces the statistical 

significance of the independent variables, even though the explanatory power of the model 

remains somewhat unreduced. Variance Inflation Factor (VIF) is a tool to measure 

multicollinearity. The formula for calculating VIF is,   

 
𝑉𝐼𝐹𝑖 =

1

1 − 𝑅𝑖
2 

4.1 

; where 𝑅𝑖
2 refers to the unadjusted coefficient of determination for regressing the 

independent variable (i) on the remaining variables.   

  

Figure 4.3: Features with perfect collinearity. 
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Variables are considered to be not correlated for VIF has the value of 1, moderately 

correlated for VIF is in the range of 1 to 5 and highly correlated if VIF is greater than 5. If 

VIF has the value of NaN (Not a Number) or undefined, it shows perfect collinearity for 

the independent variables.    

For the dataset used here, measuring VIF gave NaN value for a few features, as shown in 

Figure 4.3.   

4.2.4 Statistical Data Type    

There are 3 types of statistical data – numerical, categorical, and ordinal.   

• Numerical data has meaning as measurement and are also known as quantitative 

data.   

• Categorical data represents characteristics of data and is qualitative. Categorical 

data can be assigned mathematical values, but they don’t have any mathematical 

meaning.   

• Ordinal data mixes numerical and categorical data. The numbers assigned to 

categories are not mere numbers, they have meanings.  

    

Figure 4.4: Countplot for the feature ‘Protocol’.  



28 

 

 

 

The dataset, as shown in figure 4.2, very less data was of object data type. These can be 

counted as categorical features from the initial point of view. However, there is a lot of 

data in the dataset that are ordinal – which had the potential to play a vital role in model 

performance.  

For the feature ‘Protocol’, from figure 4.4, it can be seen that there are only 3 protocols for 

the whole dataset classes. These 3 protocols, although are denoted by numbers, these 

numbers denote to the corresponding protocol categories like 6 for TCP, 17 for UDP and 

0 for none.  

 

Figure 4.5: Countplot for the feature ‘ACK Flag Count’. 

This feature, thus, is an ordinal feature which, for the sake of its meaning, can be considered 

as a categorical feature for training the model.   

Similarly, for the feature ‘ACK Flag Count’, there are 2 categories as shown in Figure 4.5 

– it will be either affirmative (1) or negative (0). This can also be considered as a categorical 

feature while training the model.  

This idea of seeing the potential categories hidden in the guise of numbers was applicable 

for the some other features like, 'Fwd PSH Flags', ' RST Flag Count',  'URG Flag Count', ' 

CWE Flag Count', ' Inbound',  ' Source Port',  ' Destination Port'.  



29 

 

 

 

 ' Source IP', ' Destination IP' were treated as categorical features. As the IPv4 addresses 

are represented by a series of numbers separated by periods in the dataset, they could not 

be counted as numerical. As the numbers separated by periods were not referring to discrete 

classes like the ordinal features, they were considered to be categorical and moving 

forward, categorical embeddings were created from them.  

4.2.5 Data with No Useful Interpretation 

Not all data can be usable regardless of the problem statement. There were 2 columns in 

the dataset with data that didn’t indicate any meaning for the detection of the attack.    

• 'Unnamed: 0': This feature from the original dataset represents IDs for the captured 

packets. An ID is just a mere number for logging record, which logically, cannot 

really play a role as an attack characteristic. 

• 'Flow ID': This feature is a combination of ‘Source IP’, ‘Destination IP’, ‘Source 

Port’, ‘Destination Port’, and ‘Protocol’. All these features have individual columns 

as well; hence the series contains no information that is not otherwise present in the 

data.  

4.3 Input Dataset Preparation    

The benchmark dataset originally was an imbalanced dataset having 12 classes including 

the Benign class, as shown in figure 4.1. For feeding the model in the training stage, the 

dataset was first prepared and converted into an optimum data frame in the following way-   

• Creating a unified balanced data frame: The data was imbalanced data, hence, 

to prepare unbiased learning material for the model, it was converted into a 

balanced data frame. Benign samples were first extracted from the 11 attack data 

files prepared from the recorded training day data of the dataset, merging of which 

produced a tabular data file containing 56,863 benign samples. Since the aim was 

to prepare a balanced dataset, 56,863 samples were randomly taken from each of 

these attack classes – ‘DrDoS_DNS’, ‘DrDoS_LDAP’, ‘DrDoS_MSSQL’, 

‘DrDoS_NetBIOS’, ‘DrDoS_NTP’, ‘DrDoS_SSDP’, ‘DrDoS_SNMP’, ‘Syn’, 
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‘TFTP’, ‘UDPLag’ and ‘Portmap’. The data frames prepared from the random 

sampling [51] was then merged to prepare a unified balanced data frame 

containing 56,863 samples from each of 11 attack classes mentioned above and 1 

benign class, making a total of 682356 samples having 88 features in total    

• Dropping redundant columns: As per the exploratory data analysis mentioned 

in sections 4.2.3 and 4.2.5, the redundant features - 'Unnamed: 0', 'Flow ID', 

'SimillarHTTP', 'Fwd Avg Bytes/Bulk', ' Fwd Avg Packets/Bulk', ' Fwd Avg Bulk 

Rate', ' Bwd Avg Bytes/Bulk', ' Bwd Avg Packets/Bulk', 'Bwd Avg Bulk Rate', ' 

Bwd PSH Flags', ' Fwd URG Flags', ' Bwd URG Flags', 'FIN Flag Count', ' PSH 

Flag Count', and ' ECE Flag Count' were dropped from the unified data frame as 

uncleaned data can lead to poor model performance [52].   

The feature ' Timestamp' indicates the packet capture time. As the data was 

recorded over an interval of time, the dataset could be considered as time-series 

data. For this type of data, gradual change of record is related to the passage of 

time. However, since the objective was to use the data to classify DDoS attack 

sub-types, timestamps were considered to hold little to no value in the prediction 

as the attacks can happen anytime of the day. Hence, this feature was also 

removed for the experiment.    

• Normalizing data: Normalization [53] is a data preparation technique to fit 

numeric data in a common scale without losing any bit of it, with a view to 

improve the training stability and performance. The most commonly used 

normalization techniques are min-max scaling, z-score scaling, and constant 

factor normalization. From the prepared data frame, numerical data was 

normalized using min-max scaler, which transformed the numerical data into 

range 0 to 1. The mathematical formula for min-max scaling is,   

 
𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  

𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 4.2 

• Replacing infinite values: As per section 4.2.1 the infinite values in the features 

'Flow Bytes/s' and ' Flow Packets/s' were replaced with the mode of the respective 

feature column.    
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• Train- test- validation split: Total data was split optimally [54] into 3 parts- 

70% data for training, 20% data for testing and 10% data for validation. 

• Imputing for missing values:  Data imputation [55] refers to substituting 

missing values of a feature with a statistical value of the feature. After the train-

test split, in the training data, the missing values in the features 'Flow Bytes/s' and 

' Flow Packets/s' were imputed with the statistical mode of their respective feature 

column. This was done only on the training data to avoid data leakage.  

• Label encoding: The class labels in the data frame had object data type. Before 

training the model, the labels were encoded into 12 different numeric values using 

Label Encoder.   

4.4 Feature Engineering   

Creating new features from the existing ones with a view to enhancing model performance 

is a feature engineering technique. This technique was used for the experiments of this 

thesis. Since there were no mentionable outliers, finding range was a reasonable decision. 

Statistical range indicates the spread of data distribution and is a measure of variability 

which determines how well the results can be generalized. Backed up by this logic, 8 new 

features were created here from the existing features - ' Fwd Packet Length Range', ' Bwd 

Packet Length Range', ' Flow IAT Range', ' Fwd IAT Range', ' Bwd IAT Range', ' Packet 

Length Range', ' Active Range', and ' Idle Range’, where 𝑅𝑎𝑛𝑔𝑒 (𝑥) = 𝑀𝑎𝑥 (𝑥) −

𝑀𝑖𝑛 (𝑥).  For example, the feature ‘Idle Range’ was created by subtracting the two 

features, ‘Idle Max’ and ‘Idle Min’. Creating these 8 new features provided more attributes 

to the model for distinguishing more accurately amongst the classes.  

4.5 Feature Selection    

Reducing the dimension of input data to a model can play a role in optimization of 

performance. Feature selection refers to selecting relevant data leaving the noise data. It 

reduces overfitting and makes the model more interpretable.   
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As per the taxonomy, the feature selection techniques are classified into wrapper, filter, 

embedded, and hybrid methods. Figure 4.6 shows the appropriate feature selection method 

choices based on the types of input and output variable. The data used in this work had 

both numerical and categorical input and categorical output – which directed to the feature 

selection methods – Analysis of Variance (ANOVA), chi-2, and Mutual Information (MI). 

These 3 fall into the category of filter methods.   

 

Figure 4.6: Appropriate feature selection methods depending on variable types. 

4.5.1 Mutual Information   

MI [43] between two random variables measures the non-linear relationship between the 

variables indicating how much information can be obtained from one random variable from 

observing the other. If the random variables are independent, MI will be 0. When the MI 

is higher, the uncertainty is less. MI helps to select the comparatively relevant features from 

a huge dataset like CICDDoS2019.   

MI scores were calculated for each of the features of the prepared data frame and sorted to 

filter out the top relevant features. The feature selection method from the scikit-learn 

library was used for the purpose.  
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4.5.2 Analysis of Variance    

ANOVA[42] is a tool to determine the influence of independent variables on the dependent 

variable. This statistical technique indicates if 2 or more groups have means significantly 

different from each other. The result obtained from the ANOVA formula is known as the 

F statistic or F-ratio which allows the analysis of multiple data groups with a view to 

determining the variability existing within the data samples and between the data samples. 

This F-ratio will be almost 1 if no true variance exists between the data groups. The formula 

for ANOVA is,    

 
𝐹 =  

 𝑀𝑒𝑎𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝𝑠

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠
 

4.3 

; where F is the ANOVA coefficient.    

ANOVA scores were calculated for each of the features of the prepared data frame and 

sorted to filter out the top relevant features. The feature selection method from the scikit-

learn library was used for the purpose.  

4.5.3 Chi-squared      

It is a statistical test used to examine the differences between categorical variables from a 

random sample. It says whether categorical variables are independent in influencing the 

test results. The formula for chi-2[41] is,   

 
𝑥𝑐

2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
 

4.4 

; where, c = degrees of freedom, O = observed value(s), E = Expected value(s)  

Chi-2 scores were calculated for each of the features of the prepared data frame and sorted 

to filter out the top relevant features. The feature selection method from the scikit-learn 

library was used for the purpose.  
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4.5.4 Ensemble Feature Selection     

From the selected and sorted features from section 4.3.1-4.3.3, an ensemble feature 

selection technique was created. The formula for scaling each feature score was,   

 𝐸𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 4.5 

On the sorted ANOVA, chi-2, and MI scores, min-max scaling was used. The ensemble 

score is the mean of these 3 scaled scores obtained – which, if represented by a 

mathematical equation, will be -   

 
𝐸𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  

𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝐴𝑁𝑂𝑉𝐴) + 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑐ℎ𝑖−2) + 𝐸𝑠𝑐𝑎𝑙𝑒𝑑(𝑀𝐼) 

3
 

4.6 

The features considered for the training of the model and their respecting ensembled 

feature scores are shown in table 4.1.     

Table 4.1: Ensemble feature scores for the top 58 features. 

Feature Ensemble Score 

Min Packet Length 1 

Fwd Packet Length Mean 0.9907251427839014 

Avg Fwd Segment Size 0.9907251427839014 

Average Packet Size 0.9834499082520399 

Fwd Packet Length Min 0.9830263155868882 

Packet Length Mean 0.9433361460239803 

Fwd Packet Length Max 0.6878712657601843 

Inbound 0.48760390825909616 

ACK Flag Count 0.4086757924559665 

Source Port 0.3873849548447954 

Protocol 0.36801084259675126 
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Flow Bytes/s 0.2352942948431845 

Max Packet Length 0.21079465104691222 

Down/Up Ratio 0.0945562998088002 

act_data_pkt_fwd 0.09300034441243475 

URG Flag Count 0.08152834511345072 

Flow Packets/s 0.06831411492958293 

Fwd Packets/s 0.05894352792215577 

Bwd Packet Length Min 0.031809598700893754 

Init_Win_bytes_forward 0.03094544073181942 

CWE Flag Count 0.02647575021996576 

Total Length of Fwd Packets 0.024389535981127877 

Subflow Fwd Bytes 0.024389535981127877 

Bwd Packet Length Mean 0.018941856758371175 

Avg Bwd Segment Size 0.018941856758371175 

Fwd PSH Flags 0.01729783777609373 

RST Flag Count 0.01729783777609373 

Packet Length Std 0.015223092435409862 

Destination Port 0.01413707791134781 

Fwd Packet Length Std 0.013062816676077603 

Init_Win_bytes_backward 0.012106842619165734 

Fwd Packet Length Range 0.012007960842104363 

Bwd Packet Length Std 0.01014794822594065 

Flow IAT Mean 0.009815512288695174 

Flow IAT Std 0.009626448694317816 
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Fwd IAT Mean 0.00945310984681248 

Packet Length Range 0.009201498179249546 

Flow Duration 0.009048521323008873 

Fwd IAT Std 0.008981288588803777 

Bwd Packet Length Max 0.008917014629826903 

Fwd IAT Total 0.008720229687208108 

Flow IAT Max 0.008055900446993522 

Flow IAT Range 0.008020156520650482 

Bwd IAT Total 0.007709172594791566 

Fwd IAT Max 0.0076229117108505455 

Bwd IAT Min 0.007609813613209473 

Fwd IAT Range 0.007593784972966081 

Idle Max 0.007089049560989116 

Idle Mean 0.006972811180315966 

Bwd Packet Length Range 0.006794851560529678 

Idle Min 0.006630827069863016 

Bwd IAT Max 0.0055734844090985294 

Bwd IAT Range 0.005573475806935316 

Idle Range 0.005408933011942262 

Idle Std 0.003925933960304446 

Bwd IAT Std 0.0038414573518576298 

min_seg_size_forward 0.002742690283320585 

Bwd IAT Mean 0.0025586779141427286 
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The 58 features mentioned in the table were considered for training the model. ‘Source IP’ 

and ‘Destination IP’ were also added to the list making a total of 60 features to train the 

model. The reason behind not considering these 2 features for calculation the ensemble 

feature score is, that MI, chi-2 and ANOVA feature selection methods cannot deal with 

categorical data.  
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Chapter 5  

5 Model Development and Evaluation  

This chapter records the required hardware configuration for model development, describes 

the architecture of the developed models and their performance on the input dataset 

prepared in section 4.3. A comparison of the obtained results with the existing works is 

also presented in the concluding section of the chapter. 

5.1 Development Resources    

Server: A dedicated server with high configuration was employed to aid the model 

development and training process. The hardware configuration of the server used is 

presented in table 5.1.  

Table 5.1: Hardware configuration of the server. 

Processor 12th Gen Intel(R) Core (TM) i9-12900K, 3.20 

GHz 

RAM 128 GB 

Operating System  64-bit, x64-based processor 

Windows version Windows 11 Pro 

GPU NVIDIA GeForce RTX 3090 

Dedicated GPU Memory 24 GB 

CUDA Version 12.0  

Personal computer (PC): For carrying out the data analyzing and preprocessing tasks, 

and developing the classic machine learning models, a PC with the hardware configuration 

mentioned in table 5.2 was used.      
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Table 5.2: Hardware configuration of the PC. 

Processor Intel(R) Core (TM) i7-10510U CPU @ 

1.80GHz   2.30 GHz 

RAM 32 GB 

Operating System  64-bit, x64-based processor 

Windows version Windows 10 

GPU NVIDIA GeForce MX250 

Dedicated GPU Memory 4 GB 

CUDA Version 12.0 

5.2 Deep Learning Algorithms     

The tabular data that is being dealt with here is heterogenous data as it has data of multiple 

data types. Even though DL algorithms work best for homogenous data, for the processed 

data frame made for training the model in this thesis, DL algorithms [56] handling the deep 

tabular components like TabMLP, TabResnet, TabPerceiver and the transformers for 

tabular data like TabTransformer, TabFastFormer, FT- Transformer showed promising 

results.   

The sub-sections will focus on the development of these deep learning models and 

highlight the performance of each model. 

5.2.1 TabMLP  

Multi-layer perceptron (MLP) is a fully connected multi-layer neural network algorithm 

for supervised learning in which the mapping between input(s) and output is not linear. It 

is an example of Artificial Neural Network (ANN) that has 1 input layer, 1 output layer, 

and 1 or many hidden layers. The neurons stacked together in the hidden layers can use 
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any arbitrary activation function unlike a perceptron which generates outputs with real 

values in the range of 0 to 1 or -1 to 1. In TabMLP architecture [56], as shown in figure 

5.1, embeddings created to represent the categorical features and batch normalized 

continuous features are concatenated and then passed through MLP.   

 

Figure 5.1: TabMLP model architecture.   

In the TabMLP model developed as a part of this thesis, embeddings of different sizes were 

created for each feature representing categories as mentioned in section 4.2.4, and the 

continuous features or the numerical ones were batch normalized to be concatenated with 

the embeddings created. For the model parameters, the hidden layer dimensions or the 

number of dense layer neurons were taken to be 200 and 100 and 50% neurons were 

randomly dropped in every iteration. Activation functions for the dense layers of MLP was 

chosen to be ‘Leaky ReLU’ having negative slope of 0.01.    

The evaluation metrics obtained are recorded in table 5.3 and figure 5.2 shows the 

confusion matrix for the developed model.  

Table 5.3: Performance metrics for TabMLP. 

Model Precision  Recall Accuracy F1 

TabMLP 0.836 0.800 0.800 0.788 
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Figure 5.2: Confusion Matrix for TabMLP. 

5.2.2 TabResnet                            

TabResnet has a similar architecture to TabMLP, the mentionable difference is the 

additional ResNet blocks in the TabResnet architecture [56]. As shown in figure 5.3, 

embeddings are created from the categorical inputs and concatenated with the batch 

normalized continuous inputs. Batch normalization of the continuous inputs is optional 

here, hence the dotted lines. If batch normalization is not chosen, the continuous inputs are 

concatenated with the embeddings coming out of the Resnet blocks. The MLP block here 

is optional- the final output can be the output from the MLP layer or the output from the 

Resnet Block or the output from the last concatenation layer.   

In the TabResnet model developed as a part of this thesis, embeddings of different sizes 

were created for each feature representing categories as mentioned in section 4.2.4, and the 

continuous features or the numerical ones were batch normalized to be concatenated with 

the embeddings created. Batch normalization was chosen here in the final TabResnet model 

developed as it generated better outcome than when it was not chosen.  
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Figure 5.3: TabResnet model architecture. 

For the model parameters, the hidden layer dimensions or the number of dense layer 

neurons were taken to be 100 and 50 and block dimensions for the Resnet block  

 

Figure 5.4: Confusion Matrix for TabResnet.  

were chosen to be 200, 100 and 100 which gave two blocks with input/output of 200/100 

and 100/100 respectively. Activation functions for the Resnet block was chosen to be  
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‘Leaky ReLU’ having negative slope of 0.01 and for the MLP layer it was chosen to be 

‘ReLU’.   

The evaluation metrics obtained are recorded in table 5.4 and figure 5.4 shows the 

confusion matrix for the developed model.    

Table 5.4: Performance metrics for TabResnet. 

Model Precision  Recall Accuracy F1 

TabResnet 0.856 0.846 0.846 0.833 

5.2.3 TabTransformer                           

TabTransformer[6] is one of the strongly recommended models for tabular data. The 

architecture is similar to TabMLP, the addition in a TabTransformer is the Transformer[57] 

block. Transformer is a neural network that learns context in sequential data. 

It uses the concept of self-attention and consists of a multi-head self-attention layer that is 

followed by feed-forward layer and after each layer element-wise addition  

  

Figure 5.5: TabTranformer model architecture. 

  

and layer-normalization takes place. As shown in figure 5.5, embeddings are created and 

stacked from the categorical inputs that go through a series of transformer blocks. 
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Embeddings here are of the class, shared embeddings- the list of the embedding columns 

share the same weights. The output of the transformer blocks is then concatenated with the 

layer normalized continuous inputs and sent through MLP layer, the output of which is the 

final output.   

In the TabTransformer model developed as a part of this thesis, embeddings of different 

sizes were created for each feature representing categories as mentioned in section 4.2.4, 

and the continuous features or the numerical ones were layer normalized to be concatenated 

with the embeddings created. For the model parameters, the number of transformer blocks 

was 4, the number of attention heads per transformer block was 8. For the transformer, 

multi-head attention dropout had a value of 0.2, feed forward network dropout had a value 

of 0.1 and the activation function was ‘GeLU’. The activation function used for MLP was 

‘ReLU’ and the dropout value for the MLP layer was 0.1.  

 

Figure 5.6: Confusion Matrix for TabTransformer. 

Using the basic TabTransformer model, generated the evaluation metrics presented in table 

5.5. Although it did not exceed the performance of the previous 2 architectures, this led to 



45 

 

 

 

experimenting with the other transformer models that showed promising results, as 

mentioned in the next section.    

Table 5.5: Performance metrics for TabTransformer. 

Model Precision  Recall Accuracy F1 

TabTansformer 0.772 0.771 0.771 0.768 

5.2.4 FT- Transformer 

Like TabTransformers, FT-Transformers also use Transformers and the differences 

between these two are,   

• To pass the continuous features as well to the Transformer block along with the 

categorical embeddings, embeddings of continuous or numeric features are created. 

These embeddings are linear, and each numeric feature has a separate embedding 

layer.    

• A special classification token (CLS) is used for the output in an FT-Transformer. 

The first token of every sequence is always a CLS -The final hidden state 

corresponding to this token is used as the aggregate sequence representation for 

classification tasks[58]. Embeddings are also created for the CLS token.   

The numerical, categorical and CLS embeddings are augmented in the FT-Transformer, as 

shown in figure 5.7.     

In the FT-Transformer model developed as a part of this thesis, embeddings were created 

for each feature representing categories as mentioned in section 4.2.4, and for the 

continuous features.  For the model parameters, the number of FT-Transformer blocks used 

was 6, the hidden layers had a dropout of 0.5 and batch normalization was used in the dense 

layers. The activation function used was ‘ReGLU’. The size of the output tensor containing 

the predictions of the model was 12.  
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Figure 5.7: FT-Tranformer model architecture. 

 

Figure 5.8: Confusion Matrix for FT-Transformer. 

The evaluation metrics obtained are recorded in table 5.6 and figure 5.8 shows the 

confusion matrix for the developed model.    
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Table 5.6: Performance metrics for FT-Transformer. 

Model Precision  Recall Accuracy F1 

FT-Transformer 0.851 0.851 0.851 0.846 

5.2.5 FastFormer    

FastFormer[7] is also another transformer based model that is comparatively 

computationally efficient. In the FastFormer model developed as a part of this thesis, 

embeddings were created for each feature representing categories as mentioned in section 

4.2.4. For the model parameters, the number of FastFormer blocks used was 2 and the 

number of attention heads per FastFormer block was 4. The activation function used was 

‘ReLU’.   

 

Figure 5.9: Confusion Matrix for FastFormer. 

The evaluation metrics obtained are recorded in table 5.7 and figure 5.9 shows the 

confusion matrix for the developed model.    
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Table 5.7: Performance metrics for FastFormer. 

Model Precision  Recall Accuracy F1 

FastFormer 0.830 0.833 0.833 0.828 

 

5.2.6 Perceiver 

Perceiver[8] is also another transformer based model that is comparatively computationally 

efficient. The model uses an asymmetric attention mechanism to iteratively densify inputs 

to allow it to scale to handle very large inputs [8]. In the Perceiver model developed as a 

part of this thesis, embeddings were created for the categorical and continuous inputs. For 

the model parameters, the number of Perceiver blocks used was 1, number of transformer 

encoder blocks per latent  

 

Figure 5.10: Confusion Matrix for Perceiver. 

transformer was 3, number of attention heads per latent transformer was 2, and latent 

dimension was 32. The activation function used was ‘GeGLU’.  
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The evaluation metrics obtained are recorded in table 5.8 and figure 5.10 shows the 

confusion matrix for the developed model.    

Table 5.8: Performance metrics for Perceiver. 

Model Precision  Recall Accuracy F1 

Perceiver 0.836 0.837 0.837 0.828 

5.3 Bagging Algorithms  

Section 2.3.3 describes the architecture and the working mechanism of bagging algorithms 

in general and an example of bagging algorithms is Random Forest (RF). RF is an ensemble 

of a large number of individual decision trees that provide a class prediction and the class 

getting the majority vote becomes the final model prediction.  

 

Figure 5.11: Schematic illustration of Random Forest. 

The ensemble prediction from uncorrelated models is more accurate than the individual 

predictions as the individual trees protect each other from their errors.      
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In the RF model developed as a part of this thesis, for the model parameters, the number 

of trees in the forest was 100, criterion was ‘gini’, minimum number of samples required 

to split an internal node was 2, number of features to consider when looking for the best 

split was the ‘square root’ of the number of total features. For training the model, as per 

the section 4.2.3, all the ordinal features representing categories were considered before 

selecting features as per the ensemble feature selection described in section 4.3, and the 

categorical features ‘Source IP’ and ‘Destination IP’ were dropped for this model.  

 

Figure 5.12: Confusion Matrix for RF. 

The evaluation metrics obtained are recorded in table 5.9 and figure 5.12 shows the 

confusion matrix for the developed model.    

Table 5.9: Performance metrics for RF. 

Model Precision  Recall Accuracy F1 

RF 0.809 0.811 0.811 0.810 
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5.4 Boosting Algorithms      

As mentioned in section 2.4, boosting is an ensemble technique when a series of decision 

trees participates in voting classification. Unlike bagging approach, each tree in boosting 

is developed considering the output from the previous trees. In this thesis, XGBoost, 

LGBM, CatBoost models were developed and trained with the processed data as the tree 

ensemble models (i.e., XGBoost) are usually recommended for solving classification and 

regression problems with tabular data[59].  

5.4.1 XGBoost 

XGBoost (eXtreme Gradient Boosting) is the more powerful version of the gradient boost 

with a significantly higher predictive power.It possesses both a linear model and the tree 

learning algorithm which makes it almost 10 times faster than the other gradient booster 

algorithms [11]. This boosting technique, being a regularized one, reduces model over-

fitting. XGBoost supports both- stochastic and regularized gradient boosting. Sparse 

awareness, block structure, and continued training are some of the key implementation 

features of the algorithm. One of features that makes XGBoost stand out is its scalability. 

It is due to several algorithmic optimizations like handling sparse data as it is a theoretically 

justified weighted quantile sketch procedure that enables handling instance weights in 

approximate tree learning and working for parallel and distributed computing makes 

learning faster which enables quicker model exploration [11].  

In the XGBoost model[60] developed in this thesis, after tuning the hyper-parameters using 

random search[61], the learning rate was taken to be 0.3, value of maximum depth was 

taken to be 6, L2 regularization value was taken to be 1. The grow policy for the model 

was ‘depthwise’, and the learning objective was chosen to be ‘softprob’. For training the 

model, like the RF model, ‘Source IP’ and ‘Destination IP’ were dropped from the 

preprocessed data. 

The evaluation metrics obtained are recorded in table 5.10 and figure 5.13 shows the 

confusion matrix for the developed model.    
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Table 5.10: Performance metrics for XGBoost. 

Model Precision  Recall Accuracy F1 

XGBoost 0.841 0.838 0.838 0.836 

 

Figure 5.13: Confusion Matrix for XGBoost. 

5.4.2 LightGBM 

For larger datasets with higher feature dimensions, the performance of XGBoost is not 

satisfactory as all the data instances of each feature needs scanning for the estimation of 

the information gain of all possible split points which can be very time consuming. To 

solve this problem, Guolin et al. [10] proposed an integration of two novel techniques - 

Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) with 

the existing gradient boosting algorithm. GOSS keeps all the instances with large gradients 

and performs random sampling on the instances with small gradients and EFB bundles the 

mutually exclusive features using a greedy algorithms to reduce the number of features 

[10]. LightGBM uses histogram-based algorithms and supports applications like 

regression, binary classification, multi-classification, cross-entropy, and LambdaRank.  
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Figure 5.14: Tree expansion in LightGBM [62]. 

LightGBM grows trees leaf-wise (best-first) which means will choose the leaf with 

maximum delta loss to grow; such leaf-wise algorithms result in lower loss than level-wise 

algorithms that most of the decision tree algorithms use [62]. In the case of small datasets, 

growing leaf-wise may cause overfitting but this problem can be handled by limiting the 

tree depth. This algorithm has more than 100 control parameters to work with.   

In the LGBM model developed in this thesis, after tuning the hyper-parameters using 

Optuna[63], number of trees was taken to be 100, learning rate was taken to be 0.1 and 

number of leaves was taken to be 31. The objective was ‘multiclass’ and traditional 

gradient boosting tree was used for the model. The features, ‘Source IP’ and ‘Destination 

IP’ were dropped from the preprocessed data.  

Table 5.11: Performance metrics for LGBM. 

Model Precision  Recall Accuracy F1 

LGBM 0.845 0.842 0.842 0.840 

The evaluation metrics obtained are recorded in table 5.11 and figure 5.14 shows the 

confusion matrix for the developed model.  

5.4.3 CatBoost   

Unlike the rest of the gradient boosting algorithms that convert categorical features to 

numbers during pre-processing and before training, CatBoost can handle categorical  
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Figure 5.15: Confusion Matrix for LGBM. 

features successfully - hence the name. It supports implementations to use both CPU and 

GPU. Some of the key features of Catboost-    

• CatBoost builds symmetric (balanced) trees by default, meaning that each level of 

the tree is fully expanded before moving to the next level, and all the leaves are at 

the same depth. This helps to avoid overfitting by ensuring that each split is equally 

important in the tree, and it can improve generalization performance.    

• CatBoost provides native feature support saving pre-processing time. 

• CatBoost uses ordered boosting, which is a variant of gradient boosting that is 

designed to improve the convergence speed and generalization performance of the 

model. In ordered boosting, the trees are trained in a specific order, where each tree 

tries to correct the errors made by the previous trees.  

CatBoost handles the numerical features like the rest of the gradient boosting algorithms 

but handles categorical features using strategies like – one-hot encoding for binary features, 

target encoding with random permutation, and greedy search combinations.     

Catboost also has some brilliant techniques for ranking the features as per importance 
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which have been presented by Anna et al. [12]. Some of these techniques are prediction 

value change, loss function change, internal feature importance, SHapley Additive 

exPlanations (SHAP). on similar sizes of ensembles CatBoost can be scored around 25 

times faster than XGBoost and around 60 times faster than LightGBM [12].    

In the CatBoost model developed in this thesis, after tuning the hyper-parameters using 

Optuna[63], the number of trees was taken to be 1000, learning rate was taken to be 0.1, 

random strength was taken to be 0.1, and depth was taken to be 8. The loss function was 

‘multiclass’ and the leaf estimation method was ‘Newton’. The features, ' Protocol', 'Fwd 

PSH Flags', ' RST Flag Count',' ACK Flag Count', ' URG Flag Count', ' CWE Flag Count', 

' Inbound’, ‘Source Port',  ' Destination Port', ' Source IP', ' Destination IP', were considered 

as categorical features.  

The evaluation metrics obtained are recorded in table 5.12 and figure 5.15 shows the 

confusion matrix for the developed model.    

Table 5.12: Performance metrics for CatBoost. 

Model Precision  Recall Accuracy F1 

CatBoost 0.894 0.895 0.895 0.893 

5.5 Comparative Analysis       

This section presents a comparative analysis of the performance metrices obtained in this 

thesis with the related works using the same dataset, with the same objective.     

Table 5.13 shows the performance comparison of the deep learning algorithms on the 

CICDDoS2019 dataset, for 12 classes. Deep learning models for tabular data, TabResnet 

and transformer based deep learning algorithms, TabPerceiver, FastFormer, and FT-

Transformer have outperformed the existing works that were conducted using deep 

learning.  
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Figure 5.16: Confusion Matrix for CatBoost. 

In the following tables, under the column author, self refers to the experiments done in this 

thesis and all the evaluation metric values scoring higher that the existing related works are 

showed in bold numbers.   

Table 5.13: Performance comparison for deep learning algorithms. 

Approach Model Author Result 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

F1 

Deep 

Learning 

models 

CNN Ferrag 

et al. 

[34] 

0.850 0.600 - 0.550 
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RNN Ferrag 

et al. 

[34] 

0.720 0.620 - 0.570 

DNN 

 

Ferrag 

et al. 

[34] 

0.660 0.620 - 0.560 

Chartun

i et al. 

[35] 

0.831 0.799 

 

0.818 0.815 

Ensemble DNN Sayed 

et al. 

[38] 

0.848 

 

0.834 0.822 0.815 

TabTransformer Self  0.772 0.771 0.771 0.768 

 

TabMLP 0.836 0.800 0.800 0.788 

TabPerceiver 0.836 0.837 0.837 0.828 

FastFormer 0.830 0.833 0.833 0.828 

TabResnet 0.856 0.846 0.846 0.833 

FT-

Transformer  

0.851 0.851 

 

0.851 0.846 

Table 5.14 shows the significant improvement in performance using the gradient boosting 

algorithms in comparison with the deep learning algorithm metrices.  
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Table 5.14: Performance comparison for the boosting algorithms. 

Approach  Model  Author Result 

Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

F1 

Bagging 

algorithm 

 

RF 

Sharafaldin 

et al. [22] 

 

0.770 0.560 - 0.620 

Self 0.809 0.811 0.811 0.810 

Boosting 

algorithm  

XGB Self  0.841 0.838 0.838 0.836 

LGBM 0.845 0.842 0.842 0.840 

CatBoost  0.894 0.895 0.895 0.893 

The best scores from the existing works have already been crossed here for all 3 models 

developed in this thesis utilizing the boosting technique.    

In comparison with all the model performances- of the similar research works and the 

developed models of this thesis- the model CatBoost shows a mentionable improvement 

outperforming all the models by a significant rise in the performance metrices. The reason 

could be the way it handles categorical data, compared to LGBM and XGBoost. CatBoost 

uses an embedding creation technique called "Ordered Boosting", which sorts categorical 

variables by their target statistics within each subset of data during the boosting process. 

This approach enables it to effectively capture relationships between categorical variables 

and the target variable. In contrast, LGBM incorporates categorical variables directly into 

the tree construction process, treating them as separate branches in the decision tree. It uses 

techniques like Gradient-based One-Side Sampling (GOSS) to focus more on the 

categories that are helping the most and Exclusive Feature Bundling (EFB) to group similar 

categories together to efficiently handle the categorical features. On the other hand, 
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XGBoost uses a preprocessing step to convert categorical variables into numerical values 

through techniques like label encoding or OHE. 

However, as proved by this research, CatBoost's categorical encoding approach reduces 

the risk of information loss and allows it to better retain the intrinsic characteristics of 

categorical data. 

The findings from the research can be leveraged in practical scenarios. The benefits of this 

research are two-fold: firstly, it can enhance a business's ability to detect and mitigate 

specific attack vectors quickly, reducing service downtime and minimizing financial 

losses. Secondly, it can contribute to the larger cybersecurity community by advancing the 

state of knowledge in sub-classifying DDoS attacks. 
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Chapter 6 

6 Explainable Artificial Intelligence   

Chapter 5 highlights the evaluation scores obtained from the models developed in this 

thesis and provides a comparison of evaluation metrices obtained from the related works 

which brings CatBoost algorithms at the top of the leaderboard. Since CatBoost 

outperformed all the models developed for solving the multi-classification problem, this 

chapter will focus on explaining the interpretability of the model behavior.  

After the preprocessing of the large dataset used, feature selection was done using an 

ensemble feature selection method mentioned in section 4.3.4. This feature selection 

method was used to aid an efficient training process by reducing the dimension of the data 

to be fed to the model. The pre-notion of which features could be comparatively more 

important was a pre-requisite for filtering the features. Feature importance plot, as shown 

in figure 6.1, could also be used to make an assumption of the important features to keep 

for training the model in the most efficient way. None of these could provide numeric 

values denoting the importance of each feature on the prediction- which, keeps the behavior 

of the model a mystery. Traditionally, machine learning models so far have been treated as 

a ‘black box’. Depending on assumptions, the processed data would be filtered and fed, 

hoping for an extraordinary outcome. The concept of SHapley Additive exPlanations 

(SHAP)[46] is a tool to look beyond the walls of the ‘black box’ to understand model 

behaviour. SHAP values explain how each feature impacts the output or the prediction of 

the model.   

The confusion matrix as shown in figure 6.2 was created to visualize the performance of 

CatBoost shows where the model showed confusion or failed to predict with precision. 
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Figure 6.1: Relative importance of features. 

 

Figure 6.2: Confusion Matrix for the CatBoost model performance. 

The model seemed confused between ‘DDoS LDAP’ and ‘DDoS DNS’ attack types. The 

reason behind cannot be inferred from the confusion matrix.    
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The SHAP summary plot in figure 6.3 explains the average impact of the features on 

making the model prediction output. For the clarity of representation, only the top 20 

features are depicted in the plot. The y-axis of the plot represents the features, and the x-

axis of the plot shows the magnitude of the impact of the features on model prediction. If 

the plot is interpreted for 1 feature as an example, the ‘Min Packet Length’, as it can be 

seen, affects the ‘DDoS LDAP’, ‘DDoS NetBios’ classes the most and ‘DDoS SNMP’, 

‘UDP- Lag’ classes the least.  It is evident from the plot that the classes ‘DDoS LDAP’ and 

‘DDoS DNS’  

 

Figure 6.3: SHAP summary plots. 
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used the majority of features equally. This explains the model being confused between 

these two classes.   

 

Figure 6.4: SHAP summary plot with the feature values. 

Figure 6.4 also is a SHAP summary plot. Each point on this plot represents the Shapley 

value for a feature. The y-axis here is for the features and the x-axis here is for Shapley 

values. The features are shown in order or importance. The colour code represents the 

feature values from high to low. The plot efficiently gives a sense of the distribution of the 

Shapley values per feature. 
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If the plot is interpreted for 1 feature as an example, for the ‘Average Packet Size’, one of 

the top features affecting the model output, it can be seen that for when the SHAP value is 

higher, the model prediction is affected positively. For the feature ‘Fwd Packet Length 

Max’, it can be seen that the lower feature value of the feature affects the model output 

positively.   

Figure 6.5 is the SHAP waterfall plot that is another analysis plot for the prediction for a 

single instance. f(x) here is the model prediction probability value: -5.265 and E[f(x)] is the 

base value, which here is -3.494. The features are on the left and the arrows provide an idea 

of the direction of contribution of the features. Negative values of the units on the x-axis 

refer to probabilities of less than 0.5 as these are log-odds units. The values of the arrow 

headed quadrilaterals represent what role each feature plays in moving the model output 

from the base value or expected model output. For examples, the feature 

‘min_seg_size_value’  

 

Figure 6.5: SHAP summary plot with the feature values. 

having positive value affects the model prediction and moves the prediction line towards 

the base value. The cumulative effect of all the features moving towards or away from the 

base value results in the model output prediction. 
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Chapter 7 

7 Conclusion   

This thesis aimed at filling up a portion of the research gap from existing research by 

looking at the data from a different point of view. It looked beyond the numerical data in 

the chosen network traffic dataset CICDDoS2019 and explored data ordinality. Unlike the 

similar research works mentioned in Chapter 3, this thesis developed and investigated 

transformer-based deep learning models and boosting models aiming at sub-classifying 

DDoS attacks precisely, as accurate detection is necessary for coming up with the solution 

to the widely growing problem. It proved the importance of feature engineering and feature 

selection for optimization of performance and showed stellar performance scores obtained 

from the Catboost model that outperformed the previous models developed.  

This chapter is to represent a summary of the thesis and future research directions to keep 

the flow going.     

7.1 Contributions    

The contributions of the thesis can be summed up as the following –  

• The ensemble feature selection method introduced played a positive role in 

improving model performance. A model giving the same output prediction with 

lesser dimension of training data is computationally efficient and here, with this 

feature selection [44] technique the model generated a higher accuracy score on top 

of being computationally efficient.  

• In addition to the original features mentioned in the CICDDoS2019 dataset, a bunch 

of new features were created as a part of feature engineering which influenced the 

model performance positively.   

• Majority of the existing works for solving the addressed problem 

[22][33][34][35][37][38] were based on deep learning algorithms. The research 

developed some recently introduced transformer [9] based deep learning models 
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like TabTransformer, FTTransformer for solving the problem and exceeded the 

performances of the existing deep learning-based models.   

• The research proved the developed CatBoost model to be the best fit for the 

CICDDoS-2019 [32] network traffic dataset. One key discovery is considering the 

ordinal and categorical features as categorical data and creating embeddings for 

them to handle the categorical features differently than the other bagging and 

boosting algorithms that use OHE. The specialty of CatBoost [12] is handling the 

categorical data in a more intuitive way, that played a significant role in developing 

the model in this thesis that obtained a stellar accuracy score of 89.5%, 

outperforming all the other related existing works.  

• The thesis also goes one step forward, beyond achieving a good score. It explains 

the model behavior and influence of each feature on the model prediction with 

quantitative data, using the tool SHAP [46]. This solves the mystery of why the 

model behaved the way it behaved; this leads to a smarter perspective to look at the 

machine learning models.   

7.2 Limitations 

The research explores a portion of the spectrum of scopes in classifying cyber-attacks, 

more specifically, DDoS Attacks. It is not a study with every corner explored an aced, like 

most other existing research. The limitations are -   

• The confusion matrix even for the best model, showed a confusion differentiating 

the ‘DDoS LDAP’ and ‘DDoS DNS’ classes, regardless of the model used.    

• The training data used for this research is a sampled dataset having a subset of the 

whole data. Future research can uncover the potential of using the whole dataset 

for training/testing or other benchmark datasets containing network traffic data.   

• The scalability of the developed models for larger datasets or multiple 

simultaneous attacks were not investigated. While the findings of this research 

provide valuable insights, the unexplored aspect of scalability could potentially 

impact the applicability of the findings in broader contexts.  
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7.3 Future Research Direction   

The research had mentionable contributions but like any research, it is an ongoing process 

the shows a range of potential future scopes to work on.   

Future research in this field can focus on the following aspects –  

• More research can be done to create engineered features that will differentiate the 

‘DDoS LDAP’ and ‘DDoS DNS’ classes better for the model as the dataset does 

not provide enough differentiable features for differentiating between these two 

classes.  

• The existing works on multiclass prediction problems did not use the recent state-

of-the-art architectures as developed in this thesis like CatBoost or the transformer 

based deep learning models. The thesis proves the capability of these algorithms 

for network traffic data. These can be explored with other benchmark datasets 

containing similar data.   

• The feature ‘Timestamp’ from the CICDDoS2019 dataset can be leveraged for 

time-series analysis in DDoS Classification.   

• Addressing scalability can lead to broader and more practical applications the 

research.  
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