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Abstract

Thanks to recent advances in neurotechnology, waves of activity sweeping across entire cor-
tical regions are now routinely observed. Moreover, these waves have been found to impact
neural responses as well as perception, and the responses themselves are found to be struc-
tured as traveling waves. How exactly do these waves arise? Do they confer any computa-
tional advantages? These traveling waves represent an opportunity for an expanded theory
of neural computation, in which their dynamic local network activity may complement the
moment-to-moment variability of our sensory experience.

This thesis aims to help uncover the origin and role of traveling waves in the visual
cortex through three Works. In Work 1, by simulating a network of conductance-based
spiking neurons with realistically large network size and synaptic density, distance-dependent
horizontal axonal time delays were found to be important for the widespread emergence of
spontaneous traveling waves consistent with those in vivo. Furthermore, these waves were
found to be a dynamic mechanism of gain modulation that may explain the in-vivo result of
their modulation of perception. In Work 2, the Kuramoto oscillator model was formulated in
the complex domain to study a network possessing distance-dependent time delays. Like in
Work 1, these delays produced traveling waves, and the eigenspectrum of the complex-valued
delayed matrix, containing a delay operator, provided an analytical explanation of them. In
Work 3, the model from Work 2 was adapted into a recurrent neural network for the task
of forecasting the frames of videos, with the question of how such a biologically constrained
model may be useful in visual computation. We found that the wave activity emergent in
this network was helpful, as they were tightly linked with high forecast performance, and
shuffle controls revealed simultaneous abolishment of both the waves and performance.

All together, these works shed light on the possible origins and uses of traveling waves in
the visual cortex. In particular, time delays profoundly shape the spatiotemporal dynamics
into traveling waves. This was confirmed numerically (Work 1) and analytically (Work 2).
In Work 3, these waves were found to aid in the dynamic computation of visual forecasting.
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Lay summary

The brain is organized into distinct regions of neurons. Within a single such region, the
neurons connect to one another intricately, forming a web-like network called a recurrent
network. Through our senses, such as vision, these recurrent networks receive stimulation
from the outside world, and use this stimulation to help the organism execute meaningful
actions, such as movement. Exactly how the neurons in a recurrent network orchestrate,
however, is unclear. Often, the electrical neural activity is observed to show waves traveling
across the recurrent network, reminiscent of turbulent water waves that wash up on shore.
It is unknown exactly how these traveling waves arise and how useful they are.

In Work 1, large computer simulations of a recurrent network were performed. The re-
sults showed that a crucial component to include in the simulation is the communication
transmission delays between neuron pairs. With these delays included, the simulated electri-
cal neural activity in the network exhibited traveling waves that agreed with real biological
recordings, thereby shedding light on the potential origins of such waves in the brain.

In Work 2, a mathematical description of these waves was sought, since mathematical
descriptions permit the deepest understanding of physical phenomena. For this purpose, the
Kuramoto model was used. The Kuramoto model is a simple yet powerful mathematical
model capable of describing traveling waves. This model included time delays similar to
those in Work 1. Thus, a mathematical understanding of traveling waves that emerge from
delayed recurrent networks was gained.

In Work 3, we asked how traveling waves in the visual part of brain could help in making
predictions. To answer this, we used networks similar to the ones in the prior two Works,
which are known to cause traveling waves. We then stimulated the network with frames of
a movie, and tasked the network with forecasting what the future movie frames might look
like. The network was able to learn how to predict these movies. Successful predictions were
tightly linked with traveling waves, thereby supporting that these waves are useful for visual
prediction in the brain.
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1 | Introduction

A well accepted hypothesis in computational neuroscience is that cognition emerges from the
collective interaction of many neurons networked together in the brain. Considering the neu-
ron as the atomic unit of cognition, the brain may then be thought of as a high-dimensional
dynamical system in which the membrane potential of each neuron comprises a separate
dimension. The dynamics of neural activity in such a network are called spatiotemporal dy-
namics, reflecting that the neural activity varies in both space and time. It is thus cardinal
to understand both the origins and mechanisms of spatiotemporal dynamics in the brain to
arrive at a systematic understanding of cognition.

The origins of dynamics in neural networks are intricate (Destexhe et al., 2003). At any
given moment in time, a neuron’s membrane potential depends on all the synaptic inputs
it receives from other neurons. The magnitude of these synaptic inputs is proportional to
the number of action potentials fired by the presynaptic neuron. Thus, the postsynaptic
membrane potential may be weakly or strongly modulated. Synaptic inputs may be ex-
citatory or inhibitory, meaning they stereotypically increase or decrease the postsynaptic
membrane potential, respectively. Furthermore, the overall conductance and current of the
postsynaptic neuron depends on the synaptic input, thereby adding another source of vari-
ability. All together, the postsynaptic neuron then "spikes" (fires an action potential) if its
membrane potential exceeds a threshold. These outgoing spikes are responsible for synaptic
inputs to other neurons. At the network level, the complex dynamics of individual neurons
combine via immense recurrent connectivity to give rise to especially nontrivial and complex
spatiotemporal dynamics.

The activity of cortical neurons is highly variable with respect to spontaneous activity as
well as responses to the exact same stimulus. The sources of this variability have been the
subject of study for the past several decades. One potential source is the spike-generating
mechanism, but Mainen and Sejnowski showed that spike timing is highly reliable in vitro,
given realistic input current (Mainen and Sejnowski, 1995). Rather, neural variability is
generally considered to arise in neural circuits predominantly from the dense synaptic input
to individual neurons, which fluctuate from moment to moment. These fluctuations are well
explained by two related sources. First, there is an approximate balance between excitatory
and inhibitory synaptic inputs (Brunel, 2000). Second, the large barrage of spikes impinging
on postsynaptic neurons in neocortex renders conductances to generally remain high, making
membrane potential fluctuations mostly just below threshold (the so-called high-conductance
state, Destexhe et al., 2003), and excursions in this balance toward threshold lead to spiking.
Hence, transient disruptions of the balanced state from changes in the relative proportion of
excitatory and inhibitory input (E-I balance) can modulate spiking activity. For example,
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CHAPTER 1. INTRODUCTION

such dynamics of E-I balance have been found to influence network oscillations (Brunel and
Wang, 2003; Atallah and Scanziani, 2009), and E-I shifts can act as a precise mechanism
for modulating the membrane potential of individual neurons, possibly subserving neural
coding (Denève and Machens, 2016). The mechanisms underlying these shifts in E-I balance
are still unresolved, however. Broadly, excursions from the balanced high-conductance state
have been postulated to be driven by stochasticity (Shadlen and Newsome, 1998) or by
deterministic yet complex dynamics (Van Vreeswijk and Sompolinsky, 1996; Vogels and
Abbott, 2005). In the former case of stochastic neural variability, neural coding has been
hypothesized to follow a rate code, where local populations of tightly coupled neurons (such
as cortical columns) average their spiking activity into stable and reproducible instantaneous
firing rates (Shadlen and Newsome, 1998).

Recent technologies like high-density electrode arrays (Jun et al., 2017) and optical imag-
ing (Demas et al., 2021) can directly record neural activity from hundreds to thousands of
points simultaneously in the brains of awake, behaving mammals, and these numbers are
quickly increasing. These recordings reveal dynamics possessing salient spatiotemporal struc-
ture across neural populations, and on the single-trial level. Perhaps the most intriguing and
curious example is waves of neural activity that travel across entire regions of cortex at the
level of individual trials in awake, behaving mammals. These traveling waves have recently
been observed as part of spontaneous cortical activity that impacts evoked activity and per-
ception (Davis et al., 2020). Since spontaneous traveling waves are a phenomenon apparent
at the spatial scale of the entire network, their effect on perception challenges existing theo-
ries about neural processing at the level of individual neurons, in which different neurons are
posited to possess different specialties with respect to the kind of stimulus (Hubel and Wiesel,
1959). Furthermore, the mechanisms behind and roles of spontaneous traveling waves are
active areas of research. Similarly, traveling waves have also recently been observed in the
activity of evoked responses (Muller et al., 2014), and their origin and computational role
also remain unclear.

This thesis reports on three contributions to the understanding of traveling waves in the
visual cortex of the brain.

In Work 1 (Chapter 2), my coauthors and I employed a high-resolution, conductance-
based spiking network model to investigate the spontaneous activity patterns that emerge
under biologically constrained circuit motifs (Davis et al., 2021). We found that, with
realistic synaptic density, and in networks on the order of millimeters (containing up to one
million neurons), the effects of local connectivity and distance-dependent time delays become
meaningful, resulting in “sparsely spiking” spontaneous traveling waves that statistically
agree with those observed in vivo (Davis et al., 2020) and with the asynchronous-irregular
spiking regime that is known to describe spontaneous cortical activity (El Boustani et al.,
2007). Lastly, we show how the high-conductance state associated with the wave activity
explains a recent experimental result of traveling waves impacting perceptual sensitivity
across the entire marmoset area MT (Davis et al., 2020), and propose it as a mechanism of
gain modulation (Chance et al., 2002).

Work 2 (Chapter 3) makes an abstraction relative to Work 1 (Chapter 2), using
a network of coupled nonlinear oscillators possessing distance-dependent time delays. Such
systems are reminiscent of networked neural systems as they exhibit broadband fluctuations,
self-organization, and possess heterogeneous time delays. Using a novel complex-valued
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CHAPTER 1. INTRODUCTION

formulation of the equation of motion, we obtained a delay operator whose eigenmodes
predict the individual traveling waves in the network. Notably, this result allows for such
predictions at the level of individual realizations of the network rather than averages of
realizations, and was successfully applied to tractography data from the Human Connectome
Project.

In Work 3 (Chapter 4), we studied a model of stimulus-evoked traveling waves in a
single visual cortical area, and asked how such a system might perform short-term prediction
of naturalistic visual inputs (Benigno et al., 2023). We leveraged the analytical insight gained
about traveling waves from Work 2, and studied these dynamics under a formulation of a
single-layer recurrent neural network. Following training of the network, traveling waves
emerge in response to a few input movie frames. These waves facilitate good predictions
several frames into the future due only to the intrinsic network state. After shuffling the
recurrent connections responsible for the waves and retraining the network, both the traveling
waves and prediction performance are lost. These results suggest that traveling waves may
be integral in the visual system for processing spatiotemporal inputs represented on dynamic
spatial maps.

3



2 | Spontaneous traveling waves emerge
from horizontal fiber time delays and
are asynchronous-irregular

In the visual cortex, the spontaneous activity of the neurons displays a high degree of variabil-
ity. This variability is believed to originate from the synaptic inputs in the highly recurrent
networks (Destexhe et al., 2003). Although a time series recording at an individual location
in the network appears stochastic (Shadlen and Newsome, 1994), simultaneous recordings
taken across the network show that the same time series can belong to spatiotemporal dy-
namics structured as waves traveling across the entire area of the cortex; however, these
spontaneous traveling waves were initially only observed while the subject was anesthetized
(Arieli et al., 1996; Kenet et al., 2003; Tsodyks et al., 1999). During wakefulness, neural fluc-
tuations are higher in frequency and lower in amplitude (Destexhe et al., 1999), rendering
the experimental detection of spontaneous traveling waves in this state more challenging.
Lastly, stimulus onset reduces variability in spatiotemporal dynamics (Churchland et al.,
2010), and spontaneous traveling waves had been hypothesized to play a minor part in a
network’s response to stimulus (Sato et al., 2012).

More recently, spontaneous traveling waves have been shown to be present during wakeful-
ness. Moreover, their presence has been shown to impact both the extent of stimulus-evoked
response and the visual perception of the subject (Davis et al., 2020). Yet, their mechanis-
tic origins were uncharacterized, and furthermore, it was unclear how their spatiotemporal
structure could be reconciled with the low-correlation asynchronous-irregular spiking regime
known to pervade cortex during wakefulness (El Boustani et al., 2007). Since the observed
propagation speeds in the spontaneous traveling waves in Davis et al., 2020 agree with the
measured axonal conduction speeds of unmyelinated horizontal fibres in layer 2/3 (Bringuier
et al., 1999; Girard et al., 2001; González-Burgos et al., 2000), we asked whether the spikes
traveling along these fibres are a potential source of these waves. To answer this question, we
conducted a study of a large network of spiking neurons representing a patch of neocortex.
Specifically, we explored this network model at a myriad of physiologically relevant densities
of neurons, connection probabilities that depend on distance, balances of excitation and in-
hibition, and values of synaptic conductance. Notably, these networks possessed time delays
of spike propagation proportional to the distance between the synaptic pair of neurons, rep-
resenting time delays from unmyelinated horizontal axonal fibers. These delays were found
to be responsible for the traveling-wave dynamics observed in the model, which agreed with
the traveling waves found in vivo. Furthermore, these spontaneous traveling waves were
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CHAPTER 2. SPONTANEOUS TRAVELING WAVES EMERGE FROM
HORIZONTAL FIBER TIME DELAYS AND ARE ASYNCHRONOUS-IRREGULAR

robustly present across the parameter space in this model, and the spatiotemporal dynamics
simultaneously exhibited asynchronous-irregular activity.

A priori, the presence of these traveling waves may seem to give rise to spatial correlations
in the network that (1) violate the asynchronous-irregular regime of spontaneous waking
cortex and (2) have been shown to be detrimental to perception (Nandy et al., 2019). From a
coding perspective, spatial correlations of spiking activity may impair perception by limiting
the expressibility of the neural system since correlated variability imposes a redundancy on
the network representation (Huang et al., 2022). The present model provides an explanation
for why traveling waves need not induce correlations in spiking activity. Consistent with the
multi-unit recordings in visual cortex of the marmoset, the results here show that individual
neurons possessed low probabilities of spiking, despite the presence of waves in the network.
Hence, the waves are referred to as sparse waves. In contrast, smaller-scale network models
produce dense waves in which individual neurons have high probability of spiking as the
wave goes past. Thus, sparse traveling waves can propagate across whole regions of cortex
without appreciably increasing spatial correlations at the individual-neuron scale, thereby
respecting the asynchronous-irregular spiking regime in local cortical neighbourhoods.
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ARTICLE

Spontaneous traveling waves naturally emerge
from horizontal fiber time delays and travel through
locally asynchronous-irregular states
Zachary W. Davis 1,4✉, Gabriel B. Benigno2,3,4, Charlee Fletterman1,4, Theo Desbordes1, Christopher Steward3,

Terrence J. Sejnowski 1,5, John H. Reynolds 1,5✉ & Lyle Muller 2,3,5✉

Studies of sensory-evoked neuronal responses often focus on mean spike rates, with fluc-

tuations treated as internally-generated noise. However, fluctuations of spontaneous activity,

often organized as traveling waves, shape stimulus-evoked responses and perceptual sen-

sitivity. The mechanisms underlying these waves are unknown. Further, it is unclear whether

waves are consistent with the low rate and weakly correlated “asynchronous-irregular”

dynamics observed in cortical recordings. Here, we describe a large-scale computational

model with topographically-organized connectivity and conduction delays relevant to biolo-

gical scales. We find that spontaneous traveling waves are a general property of these

networks. The traveling waves that occur in the model are sparse, with only a small fraction

of neurons participating in any individual wave. Consequently, they do not induce measurable

spike correlations and remain consistent with locally asynchronous irregular states. Further,

by modulating local network state, they can shape responses to incoming inputs as observed

in vivo.

https://doi.org/10.1038/s41467-021-26175-1 OPEN

1 The Salk Institute for Biological Studies, La Jolla, CA, USA. 2Department of Applied Mathematics, Western University, London, ON, Canada. 3 Brain and Mind
Institute, Western University, London, ON, Canada. 4These authors contributed equally: Zachary W. Davis, Gabriel B. Benigno, Charlee Fletterman. 5These authors
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V isual cortical neurons exhibit variable fluctuations in their
spontaneous activity and stimulus-evoked responses.
Rather than being due to noise intrinsic to the neural

spiking mechanism1, which is highly reliable2, variability is
thought to emerge from ongoing synaptic activity in the dense
recurrent connectivity of cortical networks3,4. When observed
from a single point in the cortex, spontaneous fluctuations
resemble a broadband temporal noise process4,5. Multisite
recordings have revealed that these temporal fluctuations can be
part of waves traveling across a cortical area6–10. Spontaneous
traveling waves had largely been observed in slow-wave fluctua-
tions associated with anesthesia, sleep, or low arousal11–13. While
traveling waves had been theorized to have an impact on cortical
computation, it was difficult to identify their role since active
cortical states exhibit fluctuations that are more complex, domi-
nated by higher-frequency and lower-amplitude activity14, mak-
ing these waves harder to detect. Further, driving input is believed
to quench variability in ongoing dynamics15, calling into question
the potential impact of traveling waves on evoked activity16.

Recent work has shown that spontaneous traveling waves are
present in the awake state, that they influence the magnitude of
sensory-evoked activity, and that—depending on their retinotopic
alignment with sensory input—they can improve perceptual
sensitivity17. However, the mechanisms that generate them, and
whether they are consistent with the asynchronous-irregular
spiking dynamics characteristic of awake cortex18, are unknown.
Based on their speed of propagation, we hypothesize that these
waves result from action potentials propagating along unmyeli-
nated horizontal fibers. To test this hypothesis, we studied a
spiking network model across a range of biologically realistic
neuronal densities, distance-dependent connection probabilities,
excitatory/inhibitory balances, and synaptic conductance states.
Importantly, this model incorporated axonal time delays from
conduction along unmyelinated horizontal fibers, which shaped
ongoing activity patterns into traveling waves consistent with
those observed in vivo. Spontaneous traveling waves were
apparent in this network model and occurred consistently across
a wide parameter range that produced asynchronous-irregular
dynamics.

One might wonder whether the occurrence of these traveling
waves induces correlated variability, which has been found to
impair perception19. Results from the spiking network model
show this need not be the case. In both the computational model
and multielectrode recordings in the marmoset visual system, we
found the change in spiking probability due to the wave was low,
only sparsely modulating spiking activity. We thus refer to the
model as the sparse-wave model and this regime as the sparse-
wave regime. This is in contrast to smaller-scale network models
where spikes are strongly coupled to the state of traveling waves,
producing strong correlations in spiking activity. Rather, at the
scale of entire cortical areas, spontaneous waves can emerge in
spatially structured shifts in spiking probability and propagate
through sparse spiking activity along horizontal fibers, without
inducing changes in pairwise correlations in the activity of indi-
vidual neurons. Traveling waves can thus coexist with a locally
asynchronous-irregular state, conferring their benefits while
maintaining the computational advantages of this dynamical
regime20,21.

Results
Spontaneous synaptic fluctuations are comparable to those
during stimulus-evoked responses. Previous work has shown
that moment-by-moment fluctuations in synaptic input in the
cortex can be on the same order of magnitude as during the
sustained period of stimulus-evoked responses6,22–24. Fluctuating

synaptic inputs can have a significant impact on neural
excitability25, gain modulation26, and readout of sensory
information7. To understand the impact of the spontaneous
network state on evoked responses in the awake visual cortex, we
recorded spontaneous and stimulus-evoked activity from
chronically implanted multielectrode Utah arrays (Blackrock
Microsystems) in area MT of two common marmosets (Callithrix
jacchus; data previously reported by Davis et al.17). Spontaneous
multiunit activity recorded from a single electrode while a mar-
moset fixated a fixation point was characterized by a low, irre-
gular firing rate. The appearance of a highly salient stimulus (10%
Michelson contrast drifting Gabor) within the multiunit receptive
field evoked a robust response (Fig. 1a). When measured over
many repeated presentations of the stimulus, the mean multiunit
firing rate rose from 13 ± 1.6 sp/s during fixation, to 97 ± 5.7 sp/s
in response to the stimulus (N= 40 trials over three recording
sessions). These evoked spiking responses were variable from trial
to trial (mean fano factor= 1.01 ± 0.01 SEM, 40–240 ms after
stimulus onset), consistent with previous observations15,27,28.

This variability is partly the result of ongoing spontaneous
fluctuations in synaptic activity in the local population at the time
of the evoked spiking response6,7. These fluctuating synaptic
inputs, in turn, contribute to the local field potential (LFP)29,30.
When averaged across high-contrast trials, the LFP had a robust
negative deflection aligned to the stimulus-evoked spiking
response, while the pre-stimulus period was flat (black line,
Fig. 1a). However, at the single-trial level, the stimulus-evoked
LFP response was similar in magnitude to the spontaneous
fluctuations occurring during fixation (right panel, Fig. 1a). The
relative power between the LFP just prior to the stimulus (−200
to 0 ms) and following stimulus onset (+50 to +250 ms) across
single trials had a small but significant difference from 0 dB,
which represents parity between spontaneous and stimulus-
evoked fluctuations (median 1.89 dB, p= 0.00005 two-tailed
Wilcoxon’s rank-sum test).

While strong, high-contrast visual stimulation evoked
slightly stronger LFP fluctuations than intrinsic network
fluctuations, the distinction disappears in the context of weak
visual inputs (Fig. 1b). When the marmoset was presented a
faint stimulus that was detected ~50% of the time (<2%
Michelson contrast), the evoked spiking response was sig-
nificantly weaker and more variable (mean= 68 ± 4.4 sp/s,
p= 0.0009; fano factor= 1.54 ± 0.14, p= 0.002, two-tailed
Wilcoxon’s rank-sum test). This corresponded with a weaker
average LFP response, and the trial-by-trial relative power
between spontaneous and evoked fluctuations was not sig-
nificantly different from 0 dB (median= 1.23 dB, p= 0.07 two-
tailed Wilcoxon’s rank-sum test).

Given the comparable magnitude of spontaneous LFP fluctua-
tions to responses evoked by weak sensory inputs, we
hypothesized that much of the variability in neuronal spiking
could be explained by the state of the local network since the
synaptic drive (manifested in the LFP) during spontaneous and
evoked activity is roughly equal22,23. We recently reported that
spontaneous LFP fluctuations in the awake cortex are organized
into waves that travel across an entire cortical area (Fig. 1c and
Supplemental Movie S1). They modulate spontaneous spiking
probability (Fig. 1d), and they directly impact the magnitude of
stimulus-evoked responses depending on their alignment with
neuronal receptive fields (Fig. 1e). We found that, rather than
acting as a source of noise that impairs perception, spontaneous
waves can—depending on their spatiotemporal alignment with a
visual stimulus—improve the monkeys’ ability to detect the
stimulus. We thus sought to understand what mechanisms might
generate traveling waves in the cortex and test whether they
represent an operating regime either consistent with or distinct

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26175-1
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from the irregular, asynchronous activity patterns classically
observed in silico31,32 and in vivo21,33.

Spontaneous traveling waves can emerge in network models
without altering individual neuron spiking statistics. To
address this question, we studied large-scale spiking network
models composed of leaky integrate-and-fire (LIF) neurons with
balanced excitation and inhibition and conductance-based
synapses. When neuronal interactions are modeled as con-
ductances, taking into account the time-dependent driving forces
and channel activations at the synapse, spiking network models
can enter into states of self-sustained activity34,35. Asynchronous-
irregular activity32 in these self-sustained states, generated with-
out external drive, results naturally from the recurrently gener-
ated fluctuations intrinsic to the dynamics of the system34,35.
These dynamics are characterized by low, variable firing rates,
weak pairwise correlations, and coefficient of variation (CV) near
unity. These self-sustained states provide an opportunity to study
spiking network dynamics that are structured by the recurrent
activity of the network itself, rather than dominated by random
external Poisson synaptic input20, and are well suited to model
the spontaneous background activity observed in the cortex
during active perception.

We first studied a two-dimensional (2D) conductance-based
spiking network model with over 1,000,000 neurons distributed
over a 6 × 6 mm2 area consisting of 80% excitatory and 20%
inhibitory neurons, randomly connected with 3000 synapses per
cell, yielding a sparsely connected network (Fig. 2a). We
eliminated the outer millimeter from analysis, yielding a
4 × 4 mm2 area with 450,000 neurons. These values were selected
to approximate the density and connectivity of neurons in
cortical layer 2/3 of area MT in the common marmoset36,37. This
randomly connected network generated self-sustained activity
with spontaneous spiking fluctuations consistent with the
asynchronous-irregular regime32,38 and lacked any spatiotem-
poral structure (Fig. 2b, c). A simulated LFP was calculated from
summed excitatory and inhibitory synaptic activity over adjacent,
nonoverlapping pools of 10 × 10 neurons (corresponding to
67.8 × 67.8 μm2)39 and was used to estimate the local excitability
state at each point in the network for comparison to the
electrophysiological recordings. The LFP was homogeneous
across the network, as would be expected from pools of neurons
receiving synaptic input from random positions in the network
(Fig. 2c and Supplemental Movie S2).

To test whether topographic connections with transmission
delays were sufficient to generate spontaneous traveling waves in
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Fig. 1 Spontaneous network fluctuations are of similar magnitude to stimulus-evoked responses in vivo. a Spike raster for repeated presentations
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the network, as a refinement to the model described in Fig. 2a,
two key elements were introduced: (1) connection probability
decayed as a Gaussian with the distance between neurons
(σ= 400 µm)40,41 to mimic the topographic connectivity in
cortex and (2) action potentials activated synaptic currents after
a time delay determined by the distance between neurons to
simulate the conduction velocity of horizontal fibers in the cortex
(vc= 0.2 m/s;42 Fig. 2d). This network also produced self-
sustained, spontaneous fluctuations, but spiking activity was
weakly organized into bands that moved across the network as
traveling waves (rasters, Fig. 2e). LFP fluctuations were hetero-
geneous across the network and exhibited organized spatial
structure with localized regions coordinated in amplitude (Fig. 2f
and Supplemental Movie S3).

To test whether the presence of these organized topographic
fluctuations altered the asynchronous-irregular dynamics of
individual neurons in the network, we compared the firing rates
and CV across a randomly selected population of excitatory
neurons (N= 5000). There was no difference in the distribution
of firing rates across the networks (mean rate= 5.23 vs. 5.27 sp/s;
p= 0.28, two-tailed Wilcoxon’s rank-sum test; Fig. 2g) or in the

distribution of CV (mean CV= 0.93 vs. 0.92; p= 0.11, two-tailed
Wilcoxon rank-sum test; Fig. 2h). Therefore, individual neurons
maintained their asynchronous and irregular firing states while
the topographically connected network produced spontaneous
traveling waves.

While one might expect the organized bands of spiking activity
would result in increased correlations across neurons, we found
no evidence that this was the case. The introduction of
topographic connections did not affect pairwise correlations, as
the degree of spike–spike coherence between the randomly and
topographically connected networks was indistinguishable
(Fig. 2i). No change in coherence occurred despite the
topographically connected network producing increased power
in lower frequencies (30–50 Hz) and reduced power in higher
frequencies (>60 Hz) relative to the randomly connected network
(Fig. 2j). The spatiotemporal structure could, therefore, exist in
these networks without disrupting CV or pairwise coherence
because the spiking probability was only weakly modulated by the
presence of traveling waves. The probability of a neuron firing a
spike at any given millisecond was low, and the peak of a traveling
wave only marginally increased spiking probability (2.33%
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Fig. 2 Topographically connected networks produce structured fluctuations without altering neuronal spiking dynamics. a Schematic diagram of a 2D
spiking network model with 80% excitatory (gray) and 20% inhibitory (blue) neurons wired with a uniformly random connection probability. b Spike
rasters from 10,000 excitatory neurons along a 1D slice arranged by linear distance in the network. LFP fluctuations calculated from summed synaptic
currents for a single 10 × 10 neuron pool is plotted in red. The mean spike rate within one neuron pool is shown in black. c Spatial organization of LFP
amplitude for each neuron pool in the network plotted at one time point. d Network schematic as in (a), but the network was topographically connected
with probabilities drawn from a Gaussian (σ= 400 µm), and activity had a distance-dependent transmission delay (0.2 m/s). e Spike rasters as in (b), but
sparse structured fluctuations were apparent across the network. f Spatial LFP amplitude as in (c), but the LFP was heterogeneous across the network with
topographic structure. g The distribution of single-unit mean firing rates did not differ between the random (blue line) and topographic networks (purple
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increase), resulting in only a small fraction of neurons spiking
during the peak of any given wave. We, therefore, refer to this as
the “sparse-wave” network regime. If it were the case that neurons
strongly participated in these fluctuations, then they would show
a degree of coherence in the range of frequencies dominated by
those fluctuations. To demonstrate this, we simulated a smaller
network with fewer neurons and denser connections (model
parameters Table S1), which generated spontaneous fluctuations
that strongly regulated spiking activity. This “dense-wave”
network did strongly modulate spiking activity during traveling
waves (26.48% increase in spiking probability), which produced
strong spike–spike coherence in the frequency band dominated
by fluctuations in the LFP (Fig. S1). This increase in correlation
was greatest for nearby locations in the network and was
negatively correlated with distance (Pearson’s r=−0.72; Fig. S2).
Thus, unlike in the dense-wave network, traveling waves in the
sparse-wave regime do not necessarily induce pairwise correlation
across the network.

Topographic connectivity and distance-dependent delays are
necessary to generate spontaneous waves. As hypothesized, the
addition of topographic connections and conduction delays was
sufficient to produce clear spatiotemporal organization in the
network activity (Fig. 3a). In order to detect traveling waves, we
utilized the property that activity patterns propagating at a fixed
speed in the network will produce a band at a constant slope in
the 2D space–time fast Fourier transform (FFT)43. Importantly,
although the power spectral density at each point in the network
had broad-spectral power (Fig. 2j), the 2D space–time FFT
revealed a clear spectral peak (Fig. 3b), whose slope in relation to
the temporal and spatial frequencies was dependent on the axonal
conduction speed. To classify these activity patterns as traveling
waves and quantify their properties relative to cortical recordings
from the marmoset cortex, we applied the same analysis techni-
que developed for the experimental recordings (generalized
phase, GP17) to the simulated LFP in each 10 × 10 neuronal pool.
We then adapted a technique previously developed for detecting
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Fig. 3 Spontaneous topographic network fluctuations travel as waves. a Time series of simulated LFP activity from the topographically connected
network in Fig. 2. Regional peaks and troughs moved coherently across the network as traveling waves. b 2D (space–time) FFT reveals a concentration of
spatiotemporal energy along temporal (x-axis) and spatial (y-axis) frequencies reflecting the flow of activity across the network. c The presence of
significant wave activity for a linear slice through the large-scale 2D network model. Significant (white) wave values were defined as estimated
wavelengths that exceeded the 99th percentile of the spatially shuffled wavelength distribution (48.53% of network activity). d Cumulative distribution
functions (CDFs) of the observed wavelengths (blue) and wavelengths after spatially shuffling the LFP pool locations (red, 99th percentile, red dashed
line). e The randomly connected network had few points that were classified as traveling waves (1.12% of network activity). f Wavelength CDFs as in (d)
for the randomly connected network and its shuffle.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26175-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6057 | https://doi.org/10.1038/s41467-021-26175-1 | www.nature.com/naturecommunications 5

CHAPTER 2. SPONTANEOUS TRAVELING WAVES EMERGE FROM
HORIZONTAL FIBER TIME DELAYS AND ARE ASYNCHRONOUS-IRREGULAR

10



traveling waves in noisy multielectrode recordings44,45. We esti-
mated the gradient of the phase at each moment in time and
calculated putative wavelengths. We then identified places and
times in the network where there was significant spatial organi-
zation. Significance was determined by comparing the observed
wavelengths to the wavelength distribution after a spatial shuffle
of electrode positions, with the 99th percentile of the shuffle
distribution taken as the threshold criterion (Fig. 3c, d). This
approach provides a sensitive and robust means to detect tra-
veling waves from moment to moment44,45. We found significant
wave activity in the topographically connected network ~50% of
the time, whereas the presence of significantly structured wave
organization was absent from networks with random connections
and no delays (Fig. 3e) as the distribution of putative wavelengths
was similar to the shuffled distribution (Fig. 3f).

We also explored the sufficiency of topographic connections
and conduction delays in generating waves separately (Fig. S3). A
topographic network lacking transmission delays produced
spatially organized activity, but there was no spectral line in the
2D FFT consistent with traveling waves (Fig. S3b). Conversely,
delays in an otherwise randomly connected network did not
generate large-scale spatially organized activity, but did have a
clear spectral line consistent with propagating activity (Fig. S3c).
From this, we conclude that, in our framework, topographic
connectivity is necessary for the emergence of large-scale spatially
organized activity, and transmission delays are necessary for the
regular flow of activity over space and time. Both topography and
delays together are necessary in our network framework to
produce spatiotemporal dynamics that travel over the network
consistent with the traveling waves we observed in our cortical
recordings. These results were consistent in a simpler one-
dimensional (1D) network model where the emergence of
traveling waves required both topographic connections and
transmission delays (Fig. S4).

Spontaneous waves occur throughout the asynchronous-
irregular regime. In the example network, topographic connec-
tions with axonal conduction delays were sufficient to induce large-
scale waves of activity without disrupting the fine-scale asynchro-
nous-irregular dynamics of individual neurons. Does the presence of
traveling waves generalize across all networks with asynchronous-
irregular activity, topographic connections, and axonal conduction
delays35,38? We scanned across 2500 combinations of different
excitatory and inhibitory (E/I) conductances in the topographically
connected model and found 601 combinations that produced self-
sustained spiking activity. We then identified networks with
asynchronous-irregular spiking dynamics, defined as networks with
mean excitatory firing rates between 1 and 25 sp/s and mean CV
between 0.7 and 1.438. Approximately 99% (599 out of 601) of the
networks that generated self-sustained activity were classified as
asynchronous irregular. We then measured the percentage of time
each network’s activity was significantly organized into traveling
waves. Waves were present across the entire range of asynchronous-
irregular networks (Fig. 4a). The strength of wave activity was
negatively correlated with the magnitude of E/I conductance
(Pearson’s r=−0.55 ± 0.002, 95% confidence interval (CI)) indi-
cating weaker synapses led to stronger wave activity. The average
wavelength was positively correlated with synaptic strength (Pear-
son’s r= 0.72 ± 0.001; Fig. 4b), indicating stronger synaptic weights
lead to more synchronous network dynamics. These results
demonstrate that spontaneous traveling waves are a general property
of topographic connectivity and are entirely consistent with locally
asynchronous-irregular states.

How important is network scale in generating traveling waves?
To answer this question, we simulated networks ranging from 0.5

to 4 mm in width, holding neuronal and connection density
constant. For small networks (~0.5 mm), a very limited range of
the E/I space produced self-sustained and asynchronous network
dynamics. As network size grew, the asynchronous-irregular
parameter space grew as well, extending to include smaller and
smaller combinations of E/I synaptic strength18 (Fig. 4c). It was
thus necessary to simulate spiking network models at sufficient
spatial scales (>1 mm) to generate asynchronous-irregular activity
in networks with conductances resembling those estimated
in vivo18. At small network scales, wavelength distributions
during asynchronous-irregular dynamics were not distinct from
the spatial shuffle, and the parameters that favored longer
wavelengths did not produce asynchronous-irregular activity.
Only at larger network scales did wave activity become strongly
apparent (Fig. 4d).

Network connectivity determines wave properties. What effect
did our chosen parameters for connection distance and conduc-
tion velocity have on wave properties? We hypothesized the
spatial extent of connections and the conduction speed of spikes
directly control the wavelength and propagation speed, respec-
tively, of traveling waves in the model. To test these predictions,
we simulated networks with various values of standard deviation
(σs) for the Gaussian connection probability distribution. Con-
sistent with our hypotheses, the distribution of significant wave-
lengths increased with larger connection distances (Fig. 5a and
Supplemental Movies S4 and S5), and increasing the conduction
velocity created a corresponding increase in the propagation
speed reflected in the slope of the spectral line in the space–time
FFT (Fig. 5b). Thus, the macroscopic features of spontaneous
traveling waves were directly related to specific network struc-
tures in the model.

Are these waves only possible with perfectly Gaussian
connection profiles and uniform conduction velocity, or can they
tolerate a broad range of values similar to those observed in vivo?
To test this, we simulated the example model in Fig. 2, with 10%
of the connections randomly rewired with uniform probability
across the network, generating long-range connections46,47. The
conduction velocity along each connection was drawn from the
range of conduction speeds observed for unmyelinated horizontal
fibers in the cortex (0.1–0.6 m/s42,48,49). Spontaneous traveling
waves persisted under these network conditions (Fig. 5c, d),
indicating that the presence of waves was not limited to a fixed or
limited set of homogeneous network properties, but instead also
occurred in networks with large heterogeneity, as in the cortex.

Network simulations are consistent with traveling waves
in vivo. How well do the dynamics observed in our simulations
match the dynamics observed in electrophysiological recordings
of the cortex? To test this, we compared the model results to the
data recorded from marmoset MT, while monkeys fixated a spot
at the center of an otherwise gray computer screen. We measured
the mean firing rates (Fig. 6a) and CV (Fig. 6b) across the
population of single- and multiunit activity over multiple
recording sessions. The distributions of firing rates and CV were
qualitatively similar between the recorded data and the sparse-
wave model, suggesting that the spontaneous dynamics in the
cortical recordings are also consistent with the asynchronous-
irregular regime.

We next measured the distribution of estimated wavelengths in
the data and compared this to the wavelength distribution in the
model. LFP data in the cortex are not independent across
electrodes (as it is in our simulation), but rather pools signals
from a cortical volume of ~250 μm in a radius around the
electrode tip29,30 and has correlations that fall off with distance14.
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To emulate these properties of cortical LFP recordings, we
applied a smoothing kernel that expanded the area of integration
from each simulated LFP point and reduced the independence of
the signal. After smoothing our simulated LFP and quantifying
wave properties, the distribution of simulated wavelengths closely
approximated the distribution observed in the cortex (dotted gray
and blue lines, Fig. 6c). Similarly, the distribution of observed
speeds in both the network simulation and the data covered the
range of conduction velocities in the horizontal fibers, peaking at
~0.2 m/s (Fig. 6d). Thus, across four different measures (spike
rate, spike variability, wave size, wave velocity), the distributions
characterizing activity in the network model were in close
alignment with experimental recordings.

Neurons sparsely participate in waves due to weak coupling to
synaptic fluctuations. How does activity in the sparse- and
dense-wave networks affect the membrane potentials at the level
of individual neurons? To answer this question, we studied the
membrane potential distributions of individual neurons in each
network. In the sparse-wave model, membrane potential fluc-
tuations were Gaussian and close to the spiking threshold, con-
sistent with the fluctuation-driven regime50 (black line, Fig. 7a).
This was in contrast to the skewed distribution of membrane
potentials in the dense-wave network, which was consistent with

a synaptic drive to neurons that is clustered and strongly
correlated51 (purple line, Fig. 7a).

In the sparse-wave network model, stochastic fluctuations in
the membrane potential produced sparse and irregular spiking
activity. These fluctuations were driven by shifts in excitatory-
inhibitory balance across the local population, which, due to the
topographic network connections, were shared by adjacent
populations and carried by spikes across horizontal connections.
These summed currents in our estimate of the LFP reflect the
total synaptic input in the local population, which exhibited a
counter phase relationship with the relative E/I balance: the
inhibition-dominated E/I regime produced positive LFP poten-
tials, and the excitation-dominated E/I regime produced negative
LFP potentials (Fig. 7b, c). This leads to the mechanistic
observation that when the conductances are high, the z-scored
LFP is positive and the balance is dominated by the shunting
effects of inhibition. When the conductances are low, the z-scored
LFP is negative and the balance is shifted to excitation, producing
more spiking activity. This relationship mechanistically accounts
for the phase-dependent relationship of spiking to the LFP in our
cortical recordings.

To demonstrate that simulated neurons are sparsely modulated
by traveling waves, we measured the LFP phase at which each
spike occurred (10 bins from −π to π; Fig. 7d) across network
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Fig. 4 Spontaneous traveling waves emerge in network regimes consistent with asynchronous-irregular dynamics. a The percentage of wave-like
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as described in Fig. 2d, but with the excitatory and inhibitory conductances corresponding to its x and y coordinate, respectively. Networks consistent with
asynchronous-irregular spiking dynamics fall within the black border. White pixels are networks that did not self-sustain or had extremely low/high mean
firing rates (FR < 1 or FR > 25 sp/s). b Same as (a), but the mean of the wavelength distribution is plotted. c The region of the parameter space that
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simulations with varying E/I synaptic conductances. The degree
of spike-phase modulation was significant across the entire
parameter space, with spikes more likely during phases closer to
±π. The magnitude of this modulation was correlated with the
magnitude of E/I conductances (Pearson’s r= 0.78 ± 0.001, 95%
CI; N= 599 simulations), with stronger synaptic weights driving
stronger coupling of spiking activity to LFP fluctuations
indicating denser and more synchronous spiking waves. This
result highlights the importance of large-scale network simula-
tions that can produce stable A–I spiking dynamics with weaker
synaptic weights to see sparse modulations of spiking probability
by traveling waves. We chose a point among these small
conductance values (1 nS Ge, 10 nS Gi; same values for the
topographic network in Fig. 2), to compare the degree of coupling
between the model and the cortical recordings. There was no
difference between the magnitude of spike-phase modulation
observed in the sparse-wave network model and the recorded
data (N= 22 matched resamplings; model spike-phase index=
0.15 ± 0.001 SEM; cortex spike-phase index= 0.16 ± 0.005; p=
0.18, two-tailed Wilcoxon’s rank-sum test), although the preferred
phase-angle differed slightly between the data and model (data-
preferred phase= 3.05 rad, model-preferred phase=−2.27 rad).

While there was a similar degree of spike-phase modulation
between the cortical data and the sparse-wave model (Fig. 7e, f),
the modulation was significantly stronger in the dense-wave
model (N= 10 resamples; spike-phase index= 0.44 ± 0.01,
p= 0.000085, two-tailed Wilcoxon’s rank-sum test; Fig. 7g).
The phase distribution also differed strongly in peak phase angle
(dense-preferred phase=−1.11 rad). In addition, the randomly
connected network showed no spike-phase relationship (N= 22
resamples; spike-phase index= 0.03 ± 0.001 SEM, Fig. S5), as

expected from a network where the neurons in the LFP pool draw
from inputs distributed throughout the entire network. These
results demonstrate that—in the simulated large-scale spiking
networks—spatiotemporal organization emerges from weak
modulations of spiking probability that produces sparse, phase-
modulated spiking activity traveling along topographically
distributed horizontal fibers. The presence of a similar spike-
phase relationship in vivo, particularly for model conductance
states that corresponded to experimental estimates of neuronal
conductance states18, demonstrates that the sparse-wave regime
in the model is consistent with the properties of waves observed
in the experimental recordings.

Spontaneous traveling waves modulate responses to inputs.
Finally, we hypothesized the state of network fluctuations in the
sparse-wave network model would modulate the magnitude of
responses evoked by feed-forward inputs, as previously studied
for synaptic noise4,26 and contextual gain control by visual
stimuli52–55. To test this, we stimulated one 10 × 10 neuron pool
in the sparse-wave network with a 20 Hz Poisson spike train on
100 afferent synapses to each neuron to mimic feed-forward
stimulus input to the network. We stimulated for 10 ms, aligned
either to the depolarized or hyperpolarized state of network
fluctuations defined, respectively, by the most and least probable
phases for spikes to occur according to the network’s spontaneous
spike-phase distribution. When spiking inputs were aligned to the
depolarized state, the evoked spiking responses were boosted
(blue lines, Fig. 8a) relative to weaker responses when inputs were
aligned to the hyperpolarized state (red lines, Fig. 8a). These
effects were consistent with wave-modulated visual responses to
motion stimuli observed in area MT in vivo (cf. Fig. 1e). In
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contrast, equal stimulation in either state of the dense-wave
network produced little effect (red and blue lines, Fig. 8b).

To quantify the effect of the traveling waves on evoked responses
in each network, we then calculated the gain modulation, which is
the ratio of firing rates during the stimulus-evoked response divided
by that of the no-stimulus case (Fig. 8c). Across repeated input
stimulations, input gain was significantly stronger for the depolar-
ized state relative to the hyperpolarized state in the sparse-wave
network (N= 40 stimulations; depolarized state= 3.09 ± 0.09;
hyperpolarized state= 2.11 ± 0.05, mean ± standard deviation;
p= 3.57 × 10−8, two-tailed Wilcoxon’s signed-rank test). In contrast,
in the dense-wave network, the strong spontaneous fluctuations
shunted the incoming spikes, resulting in very weak evoked
responses that did not significantly differ depending on network
state (depolarized state= 1.11 ± 0.05; hyperpolarized state= 1.10 ±
0.04; p= 0.20; two-tailed Wilcoxon’s signed-rank test). The increase
in gain that occurs in the sparse-wave network mirrors our
observations of wave-dependent sensitivity in awake monkeys
performing a threshold detection task17. Thus, the sparse-wave
model offers a mechanistic account for observed phase-dependent
modulations of weak sensory responses by traveling waves measured
in vivo that a network characterized by dense-wave dynamics fails to
replicate.

Discussion
The present work builds on and seeks to explain our recent
finding that spontaneous fluctuations in cortical activity modulate
the moment-to-moment processing of sensory information in a
manner that affects perceptual sensitivity. These fluctuations are
neither synchronous across the cortical surface nor independent
noise processes. Rather, they are often structured as traveling

waves. The model presented here shows that distance-dependent
conduction delays in topographic, conductance-based spiking
network models are sufficient to account for our results in vivo.
Waves occur spontaneously, without requiring a driving input,
and they occur robustly, in the sense that they are generated
across a wide parameter space and in the sense that they occur
across the entire space of E/I conductances that gives rise to
asynchronous-irregular activity dynamics. The properties of these
waves depend systematically on the scales of distance-dependent
connections and the speeds of action-potential propagation. The
waves were well-matched to those observed in cortical recordings
from behaving marmosets17 for speeds consistent with the con-
duction velocity of unmyelinated horizontal fibers. Neurons
sparsely participated in these waves at the scales of neuronal
density and connectivity found in the cortex. The spiking spar-
seness of the waves allowed them to occur without disturbing the
asynchronous-irregular dynamics that are observed in cortical
activity and have advantages for neural computation3,20,21,56,57.
These sparse-wave networks remain sensitive to spiking inputs,
producing evoked responses modulated in a phase-dependent
manner, as observed in vivo. This is in contrast to smaller-scale
networks that exhibit dense waves that drive correlated fluctua-
tions across the population and render the network insensitive to
spiking inputs.

These results demonstrate the importance of considering
distance-dependent time delays in neural systems. When con-
sidered at the scales of entire cortical areas, individual horizontal
fibers can span distances ranging from hundreds of microns to
several millimeters46,47, with axonal conduction delays on the
order of tens of milliseconds42,48. While previous spiking network
models that considered relatively smaller spatial scales (from
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100 µm to 1 mm of cortex) held that the contribution of axonal
delays was negligible in their effects on the temporal properties of
spiking networks58, other studies have found fixed delays can
have profound effects59–67. The effects of fixed and distance-
dependent delays have been extensively studied in neural field
equations68–77; however, in these averaged population models the
connection between single-unit and population activity is difficult
to study because single-unit information is lost. Finally, traveling
waves have been described in smaller-scale topographic spiking
network models that lack distance-dependent delays, but these

networks only produced dense waves of strongly correlated
spiking activity78–80. In this work, our large-scale spiking model
provides the insight that distance-dependent delays on scales
relevant to a large extent of a visual region in the cortex provide a
fundamental mechanism to shape spontaneous activity into
waves throughout the state of balanced excitation and inhibition.
Further, instead of being inconsistent with asynchronous-
irregular states, as with previous models of traveling waves in
spiking networks, spontaneous waves can travel across these
large-scale spiking networks while local networks remain locally
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asynchronous. Thus, not only are spontaneous traveling waves
consistent with the asynchronous-irregular regime, they are a
necessary consequence of topographic connectivity and distance-
dependent delays in cortex across conditions that yield
asynchronous-irregular spiking.

Critically, the waves we observe sparsely modulate the back-
ground spiking probability of neurons in the network, allowing
them to maintain locally asynchronous-irregular dynamics. These
sparse-wave dynamics only become apparent when networks are
modeled at sufficient scales, in particular hundreds of thousands
of neurons over an area a few millimeters across. Our custom
software implementation allowed for the simulation of networks
with ~100,000 to 1,000,000 neurons, each with 3000 outgoing
synapses per cell, addressing in the largest networks over 60 GB of
RAM. Importantly, while the cells in our network models have a
large number of synapses per cell, the number of possible con-
nection partners is high such that the network connectivity
remains sparse. In these networks, the large number of synapses
per cell allows the network to achieve self-sustained asynchro-
nous-irregular activity when synaptic conductances are on the
order observed in cortex35,81. Importantly, the sparse waves we
observe here may be related to the concept of sparse
synchrony82–84, which has been shown to facilitate information
transfer across areas during narrowband oscillations. Sparse
waves may reflect this principle unfolding over both space and
time, while also being consistent with the more generally

occurring broad-spectral fluctuations during spontaneous awake
activity in vivo.

Our findings that traveling waves need not induce pairwise
correlations may at first appear to differ from recent work by
Huang et al. (2019), in which traveling waves emerged from
different spatial and temporal scales of excitation and inhibition
and drove shared variability in ongoing dynamics. We do not
view these findings as mutually exclusive. The work of Huang
et al. offers a mechanistic explanation for a source of shared
variability that occurs particularly in low-frequency fluctuations
in the sensory cortex85. This shared variability has been shown in
theoretical86–88 and experimental studies19 to have deleterious
effects on sensory processing and has been observed experi-
mentally to be reduced by attention85,89. In contrast, our model
does not generate strong low-frequency dynamics, but instead
seeks to describe traveling waves that occupy higher-frequency
ranges (above 10 Hz) that our model suggests propagate through
horizontal connectivity. Separate mechanisms could underlie the
generation of low-frequency correlated variability and higher-
frequency traveling waves, the latter of which have recently been
shown to have phase-dependent benefits for visual detection17.
One critical difference between the two models, however, is their
relative scale, leaving open the question as to whether the dif-
ferences in spiking correlation are due to fundamental mechan-
isms or network size. Additional research is necessary to
understand how such mechanisms may interact in large-scale

Fig. 7 Spontaneous waves reflect structured fluctuations in E/I balance that sparsely modulate spike probability. a Membrane voltage for a simulated
neuron in either the sparse-wave network (black line) or dense-wave network (purple line) calculated from the summed excitatory and inhibitory synaptic
currents received by that neuron. Spiking activity occurred when the voltage crosses the threshold (Vth red line). The distribution of membrane potentials
over the interval for the sparse and dense networks is plotted on the right. b The amplitude of the simulated LFP (blue line) and the relative level of
excitatory and inhibitory conductance (red line) over a 10 × 10 neuron pool were counter phase. c Scatter plot of LFP and ge− gi difference revealed a
significant negative correlation (N= 50,000 time points; Pearson’s r=−0.83; CI test, α= 0.01). d Spike-phase coupling was significant across networks in
the asynchronous-irregular regime, and the degree of coupling was correlated with the magnitude of synaptic conductance (N= 599 simulations; Pearson’s
r= 0.78 ± 0.001, 95% CI). e Histogram showing the fraction of spikes that occurred during each phase of the simulated LFP in the topographically
connected network. Spike probability was modulated by the LFP phase (N= 22 resamples vs. shuffle; spike-phase index= 0.15). f Same as in (e), but for
recorded cortical data. Spike probability was similarly modulated (spike-phase index= 0.16; N= 22 recording sessions vs. shuffle). g The dense-wave
network simulation had a significantly stronger spike-phase relationship (N= 10 resamples; spike-phase index= 0.44, p= 0.0000085, two-tailed
Wilcoxon’s rank-sum test).
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shaded region) as defined by the spike-LFP phase relationship. The dark blue and red lines are the mean evoked firing rate after receiving the spiking input
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the neuron pool when no input was given. b Same as (a), but the inputs were delivered to the dense-wave network. The evoked responses were much
weaker as the network shunted the currents evoked by the incoming spikes. c The response gain between the distributions of spontaneous and evoked
activity across N= 40 presentations of spiking input. In the sparse-wave network (left bars), inputs during the depolarized state had larger relative
responses as compared to inputs during the hyperpolarized state (3.09 ± 0.09 compared to 2.11 ± 0.05 mean ± standard deviation; p= 3.57 × 10−8, two-
tailed Wilcoxon’s signed-rank test). In contrast, the dense-wave network (right bars) responses did not differ in their response gain during the
hyperpolarized and depolarized states (1.10 ± 0.04 and 1.11 ± 0.05, respectively; p= 0.20).
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network models to better recapitulate the broader space of cor-
tical dynamics observed in vivo.

Unlike the outsized conductances typically used in smaller
network simulations, the large-scale networks simulated here
enabled us to incorporate E/I synaptic strengths that were similar
to those observed experimentally, leading to total E/I con-
ductances on the order of the leak conductance18,90. This is
advantageous because the larger conductances needed in smaller
networks yield unrealistic coupling of spiking activity to synaptic
fluctuations and shunt driving inputs91, as illustrated in the
dense-wave model. By scaling our model to realistic neuronal
densities on a spatial scale over several millimeters of the cortex
(450,000 neurons over 16 mm2 in the case studied here), the
sparse-wave model sustains irregular activity, with strengths of
individual synaptic inputs down to 0.5 and 4 nS for excitatory
connections and inhibitory connections respectively. At these
spatial scales and synaptic conductances, waves are present about
50% of the time, similar to what we find in the neocortex, and the
wavelengths closely approximate those we find in vivo.

It is important to recognize that, while our network model of a
cortical sheet generates self-sustained activity intrinsically, cor-
tical circuits in vivo are driven by inputs from other cortical areas
and subcortical structures, particularly the thalamus. Thalamic
inactivation has been shown to severely attenuate the sponta-
neous firing rates of cortical neurons92,93, raising the question as
to whether spontaneous traveling waves in vivo also involve
interactions between cortical and subcortical areas. In this work,
our objective was to study whether or not topographic con-
nectivity with conduction delays was sufficient to generate
spontaneous waves, as well as to ask whether waves were com-
patible with asynchronous-irregular dynamics. We, therefore,
chose to use the simplest model we could to test what parameters
might recapitulate the properties of waves we had observed in the
cortex. Undoubtedly, the massive connectivity across cortical
areas and subcortical structures impact the features of sponta-
neous activity in the cortex, and understanding their contribution
to the properties of intrinsic traveling waves will be an important
avenue of future study.

Traveling waves of neural activity in the awake cortex have
been observed under stimulus-evoked44,94,95, behavior-
evoked96–98, and spontaneous conditions17. The fundamental
neural circuit mechanism for these waves, however, had remained
unclear. Our modeling results suggest that the spontaneous LFP
fluctuations we observe traveling as waves in the cortex during
active vision result from sparse waves of spiking activity traveling
unmyelinated horizontal fibers. The sparse-wave model, which
produces activity patterns consistent with the spiking activity
observed in vivo, posits that these waves arise from the time
delays inherent in communicating spikes across topographic
connections within a cortical area. Further, observations from the
model suggest that as these sparse waves traverse the massive
recurrent connectivity within cortical areas3,36,99,100, they pro-
duce subthreshold shifts in the local E-I balance that, collectively,
modulate cortical excitability. Thus, the model offers an expla-
nation for our empirical finding that perceptual sensitivity varies
over space and time depending on the alignment of wave phase17.
Importantly, these traveling waves need not introduce correlated
variability believed to harm perceptual sensitivity; instead, the
sparse-wave state weakly modulates the background spiking
probability in locally asynchronous-irregular neuron pools.
Rather than a source of noise, as would be predicted if waves
modulated activity akin to the dense-wave regime, the presence of
these sparse waves can boost weak inputs that would otherwise
have been imperceptible. These results indicate these traveling
waves may be a network mechanism that can improve perceptual
processing when aligned to the source of feed-forward signals,

without disrupting the computational benefits of the irregular
spiking dynamics of individual neurons.

Methods
In vivo cortical recordings. The methods for the recordings and behavioral task
used in this work was identical to work previously published17, which provided the
physiology and behavioral data used in this work. Two marmoset monkeys (C.
jacchus), one male (monkey W) and one female (monkey T), were surgically
implanted with a headpost for head stabilization during eye-tracking. The headpost
housed an Omnetics connector for a 64-channel multielectrode recording array
(Utah array, Blackrock Microsystems), which was implanted in a 7 × 10 mm2

craniotomy over area MT (stereotaxic coordinates 2 mm anterior, 12 mm dorsal).
Monkey W was implanted with an 8 × 8 recording array with channel spacing of
400 µm and monkey T was implanted with a 9 × 9 array with alternating channels
removed yielding a channel spacing of 800 µm. Both arrays had a pitch depth of
1.5 mm. The arrays were chronically implanted over area MT using a pneumatic
inserter wand. The craniotomy was closed with Duraseal (Integra Life Sciences,
monkey W) or Duragen (Integra Life Sciences, monkey T), and covered with a
titanium mesh embedded in dental acrylic. All surgical procedures were performed
with the monkeys under general anesthesia in an aseptic environment in com-
pliance with NIH guidelines. All experimental methods were approved by the
Institutional Animal Care and Use Committee (IACUC) of the Salk Institute for
Biological Studies and conformed to NIH guidelines.

Marmosets entered a custom-built marmoset chair that was placed inside a
Faraday box with a liquid crystal display (LCD) monitor (ASUS VG248QE) at a
distance of 40 cm. The monitor refresh rate was 100 Hz and gamma corrected with
a mean gray luminance of 75 cd/m2. Electrode voltages were recorded at 30 kHz
from the Utah arrays using two Intan RHD2132 amplifiers connected to an Intan
RHD2000 USB interface board. The marmosets were headfixed by a headpost for
all recordings. Eye position was measured with an IScan CCD infrared camera
sampling eye position at 500 Hz. Stimulus presentation and behavioral control were
managed through MonkeyLogic (revision date: 4-05-2014, build 1.0.26) in
MATLAB (version R2016b). Digital and analog signals were coordinated through
National Instrument DAQ cards (NI PCI6621) and BNC breakout boxes (NI
BNC2090A). Neural data were broken into two streams for offline processing of
spikes (single- and multiunit activity) and LFPs. Spike data were high-pass filtered
at 500 Hz and candidate spike waveforms were defined as exceeding 4 SDs of a
sliding 1 s window of ongoing voltage fluctuations. Artifacts were rejected if
appearing synchronously (within 0.5 ms) on over a quarter of all recorded
channels. Segments of data (1.5 ms) around the time of candidate spikes were
selected for spike sorting using principal component analysis through the open-
source spike sorting software MClust (ver. 4.3.02; A. David Redish, University of
Minnesota) in MATLAB. Sorted units were classified as single- or multiunit and
single units were validated by the presence of a clear refractory period in the
autocorrelogram. LFP data were low-pass filtered at 300 Hz and down-sampled to
1000 Hz for further analysis.

Receptive field mapping. Receptive fields were mapped using a reverse correlation
technique. The marmoset was trained to hold fixation on an image (marmoset face,
1 degree of visual angle (DVA) square) presented at the center of the LCD monitor.
A drifting Gabor (2° diameter, spatial frequency: 0.5 cycles/degree, temporal fre-
quency 10 cycles/s) appeared at a random position on the monitor between 0° and
18° in azimuth and −15° to 15° in elevation, drifting in one of eight possible
directions for 200 ms, after which it disappeared. A new probe then appeared after
a random delay drawn from an exponential distribution (mean delay= 40 ms). The
sequence repeated until the marmoset broke fixation (defined as an excursion of
1.5° from fixation) or viewed 16 probes. The marmoset was given a juice reward
proportional to the number of probes presented. The receptive field for each unit
recorded on the array was estimated by calculating the spike-triggered average
(STA) stimulus that evoked the maximal response:

STA ¼ 1
N

∑
N

i¼1
xiyi ð1Þ

The STA is the sum of probe location xi weighted by the spike count yi within
the time bin 40–200 ms after probe onset, normalized by the number of all
recorded spikes N. We estimated the relative position of each recording array
in cortex from the location of estimated receptive fields on each spiking channel,
and the known topography of area MT in the marmoset101 (Fig. 1a). We excluded
from the analysis the upper half of monkey W’s array as the recordings did not
appear to be in area MT.

Behavioral task. The marmosets were trained to saccade to a marmoset face to
initiate a trial of a visual detection task. Upon their gaze landing on the face, the
face turned into a fixation point (0.15 DVA). The marmosets held fixation on the
fixation point (1.5° tolerance) for a minimum duration (400 ms monkey W, 300 ms
monkey T) awaiting the appearance of a drifting Gabor. The Gabor target was
4 DVA in diameter, which reliably produced evoked responses in the multiunit
spiking activity on 1–2 adjacent electrodes. The Gabor had a spatial frequency of
0.5 cycles/degree, a temporal frequency of 10 cycles/s, and could drift in one of up
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to 8 possible directions. Spontaneous data were analyzed for the period of fixation
preceding the appearance of a target and excluded a period of at least 100 ms
following the initial saccade to initiate the trial. Early fixation breaks (defined by
the excursion of the eye position from the fixation window) were excluded from the
analysis. The target only appeared if fixation was held for an additional random
duration beyond the minimum duration. The random duration was drawn from an
exponential distribution (mean duration= 200 ms) to generate a flat hazard
function.

Relative power between spontaneous and evoked LFP. We calculated the
relative power between spontaneous and evoked LFP (forward-reverse filtered with
a fourth-order Butterworth at 5–50 Hz) by computing the sum-squared LFP
magnitude in a window just after stimulus onset (0–200 ms) divided by sum-
squared LFP magnitude just before stimulus onset (−200 to 0 ms) on the electrode
retinotopically aligned to the stimulus location in cortex. For LFP values λt at this
electrode, where t∈ {Δt, 2Δt, …, nΔt}, the relative power P is then

P ¼ ∑t3
t2
λ2t

∑t2
t1
λ2t

ð2Þ

where t1=−200 ms, t2= 0, and t3= 200 ms.

Computational simulations. The model consists of N LIF neurons, with Ne= 0.8N
excitatory units and Ni= 0.2N inhibitory. The membrane potential V(i) of the ith
neuron evolves according to the equations

Cm
_V

ið Þ ¼ GL EL � V ið Þ� �þ g ið Þ
e Ee � V ið Þ� �þ g ið Þ

i Ei � V ið Þ� � ð3Þ

τ e;if g _g
ið Þ
e;if g ¼ �g ið Þ

e;if g ð4Þ

where Cm is the membrane capacitance, GL is the leak conductance, EL is the
resting membrane potential, τ{e,i} are the excitatory and inhibitory synaptic time
constants, g{e,i}((i)) are the time-dependent synaptic conductances of the ith neuron,
and E{e,i} are the reversal potentials for excitatory and inhibitory synaptic trans-
mission, respectively.

When V(i) exceeds threshold VT at time ts, the following spike and reset
conditions occur:

V ið Þ 7!V r ð5Þ

tn ¼ ts þ τ i;jð Þ; g jð Þ
e;if g 7! g

jð Þ
e;if g þ G e;if g 8j 2 1;K½ � ð6Þ

where Vr is the reset potential, tn is the time at which the postsynaptic neuron
receives its input following axonal and synaptic delays, G{e,i} are the excitatory and
inhibitory synaptic weights, g{e,i}((j)) are the excitatory and inhibitory conductances
of postsynaptic neuron j ≠ i, respectively, and K is the number of postsynaptic
targets of neuron i. Immediately after neuron i spikes, it undergoes a refractory
period of τr where the membrane potential is not updated.

Network connectivity and axonal conduction delays. We studied spiking net-
work models with unstructured, random connectivity (random networks, Fig. 2a)
or topographic, locally random connectivity (topographic networks, Fig. 2d) or a
dense version of the topographic network (dense network, Figs. 7 and 8). The
Ne= 0.8N excitatory neurons, of indices 1, 2, …, Ne, where Ne is a square number,
are arranged uniformly on a 2D grid. Similarly, the Ni= 0.2N inhibitory neurons,
of indices Ne+ 1, Ne+ 2, …, N, where Ni is also a square number, are arranged
uniformly on a 2D grid. Both grids have side length L and they are concentric,
together forming a 2D sheet of the N neurons.

In the random network, connections were randomly and uniformly drawn, and
the only delay modeled was that relating to synaptic vesicle release, τs, which was
short and homogeneous across the network. In the topographic and dense
networks, connections were randomly drawn from an isotropic 2D Gaussian
probability distribution of zero mean and SD σ in either dimension. σ is 400 µm
except in Fig. 6a, where the effect of this parameter was studied systematically. In
all networks, there were no self- or double-connections. Axonal conduction delays
increased linearly with distance between pre- and postsynaptic cells:

τ i;jð Þ ¼ τs þ
d i;jð Þ

v
i;jð Þ
c

ð7Þ

where τ(i,j) is the delay from neuron i to neuron j, τs is the same delay representing
synaptic vesicle release as in the random network, d(i,j) is the Euclidean distance
between neurons i and j, and vc((i,j)) is the axonal conduction speed for the
connection from neuron i to neuron j. All distances were calculated taking 2D
periodic boundary conditions into account, effectively wrapping the network onto
a toroidal topology58,81. 1D versions of the random and topographic networks were
also simulated. The models were the same as in the 2D cases, except the neurons
were positioned on a ring of length L with periodic boundary conditions.

Self-sustained activity. Instead of initializing self-sustained activity through a
“kick” of external Poisson input spikes34,35,38, which may induce trace activity
correlations, we recorded the state variables of a self-sustained network, including
membrane potential (V(i)) and conductance (g{e,i}((i))), after a long period (10 s) of
simulated self-sustained activity. Taking these distributions as a steady state, we
then used the Gaussian approximation (mean and variance) to initialize the
membrane potentials and conductances with randomly drawn values in the
simulations thereafter. After starting the simulation with these initial conditions,
networks with approximately balanced excitation and inhibition exhibit self-sus-
tained, irregular spiking activity. Each simulation ran for 1.2 s, from which we
eliminated the first 200 ms from our analysis in case of residual initialization
artifacts.

Spike train statistics and the asynchronous-irregular regime. To characterize
basic spike train statistics, we randomly selected 5000 neurons in the simulation
and measured the mean firing rate, CV (defined as the ratio of the standard
variation of the interspike interval to the mean for each neuron that has a mini-
mum of three spikes over the simulation window), and the average pairwise cor-
relation (average Pearson’s correlation between spike trains smoothed with a
100 ms window for 1000 randomly selected pairs). To prevent longer simulations
with high firing rates during our parallel runs, networks that produced mean firing
rates over 25 sp/s had an early exit condition. Simulations were classified as
asynchronous irregular if the mean firing rate across all simulated units was >1 and
<25 sp/s; the mean CV across all units was >0.7 and <1.438,102.

Pairwise spike coherence. Pairwise spike coherence was calculated using multi-
taper methods85. We took the spike trains from the 10 × 10 excitatory neurons
comprising the pool for estimating the LFP and an adjacent LFP pool. The 1000 ms
of simulation time was broken into 500 ms epochs, stepping 125 ms to cover the
full period. The DC component of each unit’s spike train was removed, and tapered
with a single Slepian taper, giving an effective smoothing of 2.5 Hz for the 500 ms
data windows.

To estimate the coherence between two spike trains x= [x1 x2…xi…xn] and
y= [y1 y2…yi…yn], we first calculated their FFT spectra X= [X1 X2…Xj…Xm] and
Y= [Y1 Y2…Yj…Ym], respectively, where j denotes the index of spectral frequency.
The auto- and cross-spectral densities are calculated as

Sxxj ¼ 2Δt2

T
XjX

*
j

ð8Þ

and

Sxyj ¼ 2Δt2

T
XjY

*
j

ð9Þ

respectively, where Δt is the sampling interval, T is the spike train duration, and
superscript * denotes complex conjugation. In practice, x and y each represent
pools of 100 concurrent spike trains across space. The coherence at a given spectral
frequency is calculated as

Cxy
j ¼

Sxyj

���
���

ffiffiffiffiffiffiffiffiffiffiffiffi
Sxxj Syyj

q ð10Þ

This coherence calculation is averaged across ten trials to generate an estimate
of the average coherence at each frequency as well as an estimate of the variance.
For estimating differences in pairwise coherence across networks, we take the
frequency with the maximum coherence in the two networks.

NETSIM software. Simulations were generated using a specialized program called
NETSIM (v0.1), which is ~1500 lines of C code (available at http://mullerlab.github.io).
Equations in the model were integrated using the forward Euler method with a time
step of 0.1ms. Simulation results were additionally point-checked with shorter time-
steps throughout. Random numbers were generated using a C implementation of the
ISAAC algorithm103 (Tom Bartol, personal communication, 2016). To verify the
numerical integration in this program, we confirmed the network displayed the correct
firing rate for unconnected LIF neurons with varying DC-current injections. We also
verified simulations under a simple feed-forward network topology to confirm the
accuracy of the simulations. In addition, to ensure reproducibility of our computational
simulations104, we compared results from NETSIM and Brian2 at specific points in the
(Ge,Gi) parameter space for the balanced random network model, verifying that the
mean firing rate, CV, and cross-correlation were in agreement between the two
simulators.

Network parameter scans. In order to identify the excitatory and inhibitory
synaptic conductance weights that produced self-sustained and asynchronous-
irregular activity, we simulated networks with 50 values of Ge ranging from 0.1 to
5 nS and Gi ranging from 1 to 50 nS for a total of 2500 simulations (Table S2). In
order to determine the effect of network scale on the range of these 2500 simula-
tions that produced self-sustained and asynchronous-irregular activity, we repeated
these simulations five times with varying parameters of network size, neuron
number, and connections per neuron (Table S2). The number of neurons per
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network size was chosen to maintain a density of 28,125 neurons/mm2. The
number of connections was chosen to maintain the density of connections within
the Gaussian used to assign connections across network sizes. For larger networks
(> 2 mm), the connection number did not grow with the size of the network, as
99% of the connections occur within 3 SDs of the Gaussian (σ= 400 μm). In order
to run these simulations across all combinations of network size and conductance
parameters, we utilized the Extreme Science Engineering Discovery Environment
Comet cluster at the San Diego SuperComputer center at UC San Diego. Data
analysis for these simulations was also performed on the Comet cluster running
MATLAB. Circular variables were analyzed using the Circular Statistics Toolbox.

Calculation of LFP estimate. We utilized a previously developed proxy for the LFP
generated by a network of point LIF neurons, which was systematically developed
from a spatially extended model39. The LFP estimate λ(t) is computed as a
weighted sum of the excitatory and inhibitory synaptic currents Ie and Ii across m
excitatory cells in each 10 × 10 neuron pool:

λ tð Þ ¼ ∑
m

j¼1
I

jð Þ
e t � τð Þ � α ∑

m

j¼1
I

jð Þ
i tð Þ ð11Þ

where τ= 6 ms, α= 1.65, and m= 100 excitatory cells. These values of τ and α
were found by the authors to have an optimal agreement with the LFP generated
from a three-dimensional model of spatially extended multi-compartment model
neurons39 and are the values used here. Here, we computed the LFP using the
pooled excitatory and inhibitory synaptic conductances and the driving force
between the mean pooled membrane potential and the synaptic reversal potential
to calculate the average current in the pool. We verified that this approach was
nearly precisely equivalent to the proxy calculated using synaptic inputs to each
individual neuron in the pool. This LFP proxy is then computed for each 10 × 10
neuron pool across the 2D network. The LFP proxy was thus independent across
each spatial pool, unlike cortical recordings where LFP signals show varying
frequency-dependent scales of spatial integration105. We note that excluding these
effects is a conservative step, as the addition of spatial integration would only
increase traveling waves in the LFP. Further, we note that our results do not depend
critically on the choice of LFP proxy and our conclusions are unchanged when
analyzing the mean membrane potentials or excitatory synaptic conductances.

In order to compare the properties of waves in our model, where LFP signals are
independent across space, with waves recorded from the cortex, where electrodes
pool signals across a volume ~250 μm in radius29,106, we convolved the LFP with a
2D Gaussian kernel (with a spatial standard deviation of four LFP bins,
corresponding to a radius of 272 μm) before further analysis.

Analysis of spatiotemporal dynamics. To analyze spatiotemporal dynamics in
the population activity produced by the spiking network model, we used a tech-
nique we recently developed for the wideband analysis of nonstationary data.
Briefly, for each real-valued time series λ(x,y) (t) ∀ x∈ [1,Nc],y∈ [1,Nr], where Nc

and Nr are the numbers of columns and rows, respectively, we compute the GP
ϕ(x,y) of the wideband filtered LFP (fourth-order Butterworth from 5 to 100 Hz) at
each point using the corrected analytic signal representation introduced in recent
work17. We next calculated the gradient of GP gðx;yÞðtÞ at each moment in time:

gx;y tð Þ ¼ �∇ϕx;y tð Þ ð12Þ
For the spatial gradient, derivatives are taken across the two dimensions of space and

are approximated by the appropriate forward and centered finite differences (formulas
and code available in the wave MATLAB toolbox: https://github.com/mullerlab/wave-
MATLAB/blob/master/analysis/phase_gradient_complex_multiplication.m). As in
previous work, phase differences were implemented as multiplications in the complex
plane44,107,

Δϕn ¼ arg Λnþ1Λ
*
n

h i
ð13Þ

so that the unwrapping phase across the two dimensions of the network was not
necessary. Here, Λ is the analytic signal representation of λ(t). Wavelength is the
reciprocal of the phase gradient magnitude at each point in space and time:

νx;y ¼
1

gx;y

���
��� ð14Þ

As specified in the main text, significance was determined at each point in space
and time by comparing observed wavelengths to a spatial shuffle of electrode
positions, with the 99th percentile of the shuffle distribution serving as a threshold.
The fraction of wave state (Fig. 4a) is the ratio between points with detected waves
over all points αw/α, where αw is the number of points with detected waves and α is
the total number of points tested.

Wave speed s(t) was computed as the ratio of instantaneous frequency to phase
gradient magnitude96,

s tð Þ ¼
∂ϕ
∂t

gx;y

���
��� ð15Þ

We further analyzed the spatiotemporal activity patterns using a 2D spectral
decomposition in space and time (Figs. 3b and 5b). To do this, we calculated the

2D FFT of λ(x,y) (t) for each 1D slice through the network by transforming first in
space, and then in time. To account for the spatial and temporal autocorrelation in
the data, each slice’s spectrum was normalized by dividing the spectrum produced
from a spatial and temporal shuffle respectively. This normalization allows
visualization of the spectral line representing traveling waves in the network LFP; it
is important to note, however, that the spectral peak representing traveling waves is
nevertheless clear in the raw spectrum. The normalized spectrum for each slice
through the network was then averaged together.

Calculation of response gain. To quantify the sensitivity of the sparse- and dense-
wave network regimes to incoming stimulation, we first identified depolarized and
hyperpolarized states from the LFP of a 0.2 × 0.2mm2 neuron pool defined by the
spike-phase bins that generated the maximum or minimum spiking probability,
respectively, for each network regime. We then applied feed-forward stimulation of 20-
Hz Poisson spiking inputs to 100 synapses for each neuron within the pool for 10ms,
aligned to the depolarized or hyperpolarized phase in the network. This process was
repeated across 40 trials, yielding a distribution of evoked responses. The same random
seed was used to construct the networks across each trial, so that the simulations were
identical up to the point of stimulation. We calculated the sum of firing rate during
stimulus for the evoked response divided by that of the no-stimulus case.

Calculation of the spike-phase index. The degree of spike-phase coupling was
measured as the mean resultant vector length for the LFP (filtered with a forward-
reverse fourth-order Butterworth filter from 5 to 100 Hz) phase distribution from
observed spike times. This measure was calculated using the circ_r function in the
Circular Statistics Toolbox for MATLAB (P. Berens, CircStat: A MATLAB Toolbox
for Circular Statistics, Journal of Statistical Software, Volume 31, Issue 10, 2009).
The mean resultant r of the spike-phase distribution is the normalized sum over
complex exponentials of the phase angles ϕj,

r ¼ 1
M

∑
M

j¼1
eiϕj ð16Þ

whereM is the number of spikes, the modulus of r (|r|∈ [0,1]) represents the degree of
spike-phase modulation, and i2=−1. The closer r is to 0, the more uniform the phase
distribution. The closer it is to 1, the more concentrated the phases.

Statistics and reproducibility. Experimental results from in vivo electro-
physiology were generated in an initial monkey and replicated in a second monkey
with a similar result. All analyses that stemmed from previous experimental work
were reproduced from newly written analysis code. Network simulations and
subsequent data analysis including statistical tests were initially generated and then
repeated on separate machines across different institutes to ensure the reprodu-
cibility of the results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Access to the raw simulation data and the processed electrophysiology data used in this
study are available at https://github.com/mullerlab/davis2021ncomms. Source data are
provided with this paper.

Code availability
An open-source code repository for all analysis methods is available on https://
github.com/mullerlab/davis2021ncomms. The open-source code for the custom
simulation framework NETSIM is available at https://github.com/mullerlab/NETSIM.
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Supplementary Information 

Supplementary Figure 1 

 

Figure S1. Dense spiking waves induce pairwise correlation in a small-scale spiking network. (a) 

Spike rasters from 10,000 neurons in a small-scale network simulation with random connections 

and no delays producing asynchronous-irregular spiking dynamics. The mean firing rate and 

LFP for a single 100 neuron LFP pool is plotted in black and red respectively. (b) Pairwise spike 

coherence (black line) and power spectral density (red line) for LFP pools in (a). Dotted lines 

denote the 95% confidence interval of the mean. (c) Spike rasters as in (a), but with topographic 

connections and transmission delays (0.2 m/s). (d) Coherence and PSD as in (b) but for the 

network shown in (c). Dense spike participation in waves generates strong coherence at the 

dominant frequency of fluctuations in the network. (e) There was no difference in the distribution 

of unit mean firing rates between the random (black) and topographic (red) small-scale networks 

(N = 5000 units; p = 0.89; two-sided Kolmogorov–Smirnov test). (f) There was no significant 

difference in the distribution of unit C.Vs between the random and topographic small-scale 
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networks (N = 3319 units; p = 0.96; two-sided Kolmogorov–Smirnov test). (g) Comparison of the 

PSD between the random and topographic small-scale networks.   
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Supplementary Figure 2 

 

Figure S2. Distance dependence of pairwise spike coherence. (a) The maximum pairwise spike 

coherence calculated between neuron pools at various distances in the random (black) and 

topographic (red) large-scale networks in Figure 2. There was no change in spike coherence in 

either network at any distance. (b) Same as (a), but for the small-scale networks in Figure S1. 

There was a negative correlation with maximum spike coherence and distance in the small-scale 

topographic model (N = 10 resamples, error bars indicate S. E. M.; Pearson’s r = -0.72).  
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Supplementary Figure 3 

 

Figure S3. Topographic connections and distance-dependent delays combined are necessary 

to generate traveling waves. (a) Significant (white) and non-significant (black) wavelength values 

for each position in a linear slice through a large-scale 2D network simulation with topographic 

connections and no delays. (a’) 2-D (space-time) FFT shows a concentration of spectral power 

corresponding to waves traveling at the velocity corresponding to propagation speeds (0.2 m/s). 

(b, b’) Same as in (a), but for a network with topographic connectivity and no delays. Topographic 

connectivity is sufficient to generate significant spatially organized wavelengths. However, 

without delays, the spectral power does not concentrate along a joint spatial and temporal 

frequency band consistent with traveling waves. (c, c’) Wavelengths and spatiotemporal FFT for 
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a randomly connected network with delays. With random connectivity the network lacks strong 

spatial organization while delays are sufficient for the spatiotemporal flow of activity. (d, d’). 

Wavelengths and spatiotemporal FFT for a randomly connected network without delays. There 

is no spatial or temporal structure in this network suggestive of any wave activity.  
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Supplementary Figure 4 

 

Figure S4. Delays are necessary for robust traveling waves in 1-D spiking network model. (a) 

Schematic of 1-D network model. 450,000 neurons were arranged on a ring with topographic 

connection probabilities and distance dependent delays. (b) 2-D FFT of the spatial (y-axis) and 

temporal (x-axis) frequencies of activity in the topographic network. The clear spectral line is 

consistent with waves traveling at 0.2 m/s. (c) No spectral line appears in a similar topographic 

1D network without delays. (d) Spike rasters and LFP amplitude (pseudocolor) for the 

topographic network displays waves moving across space over time in the 1-D topographically 

connected network with delays. (e) Same as (d), but for the 1-D topographic network without 
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delays. LFP fluctuations do not travel as waves but rather occur synchronously across regions 

of the network.   
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Supplementary Figure 5 

 

Figure S5. Randomly-connected spiking network model has weak spike-LFP phase coupling. (a) 

Histogram showing the fraction of spikes that occurred during each phase of the LFP in the 

randomly connected network shown in Figure 2a (N = 10 resamples; circular-resultant = 0.03). 
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Parameter Random 
Network 

Topographic 
Network 

Dense 
Network 

1-D Network 
 

N       # of neurons 1,012,500 1,012,500 12,500 450,000 

Ne     # of excitatory neurons 810,000 810,000 10,000 360,000 

Ni      # of inhibitory neurons 202,500 202,500 2,500 90,000 

K       out-synapses per neuron  3,000 3,000 100 3,000 

L       network side length 6 mm 6 mm 4 mm 5.66 mm 

Cm     membrane capacitance 200 pF 200 pF 200 pF 200 pF 

GL     leak conductance 10 nS 10 nS 10 nS 10 nS 

EL     resting membrane potential -65 mV -65 mV -65 mV -65 mV 

𝜏e      excitatory synaptic time constant 5 ms 5 ms 5 ms 5 ms 

𝜏i       inhibitory synaptic time constant 5 ms 5 ms 5 ms 5 ms 

Ee     excitatory reversal potential 0 mV 0 mV 0 mV 0 mV 

Ei      inhibitory reversal potential -80 mV -80 mV -80 mV -80 mV 

Vt      threshold potential -50 mV -50 mV -50 mV -50 mV 

Vr      reset potential -70 mV -70 mV -70 mV -70 mV 

Ge     excitatory synaptic weight 1 nS 1 nS 4 nS 1 nS 

Gi      inhibitory synaptic weight 10 nS 10 nS 490 nS 10 nS 

𝜏r       refractory period 5 ms 5 ms 5 ms 5 ms 

σ       standard deviation of Gaussian N/A 400 µm 400 µm 566 µm 

vc      axonal conduction speed N/A 0.2 m/s 0.2 m/s 0.2 m/s 

𝜏s       synaptic vesicle delay 300 µs 300 µs 300 µs 300 µs 

 

Supplemental Table S1. Parameters used in the 

simulations of the random network, topographic 

network, dense network, and 1-D network. 
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Parameter 0.5 mm  
network 

1 mm 
network 

2 mm 
network 

 3 mm 
network 

4 mm 
network 

N    # of neurons 8,000 28,125 112,500  253,125 450,000 

K    out-synapses per neuron 100 375 1500  3,000 3,000 

Ge excitatory synaptic weight 0.1-5 nS 0.1-5 nS 0.1-5 nS  0.1-5 nS 0.1-5 nS 

Gi   inhibitory synaptic weight 1-50 nS 1-50 nS 1-50 nS  1-50 nS 1-50 nS 

L     network side length 0.533 mm 1 mm 2 mm  3 mm 4 mm 

 

Supplemental Table S2. Parameters used in scans across 2-D 

network sizes. N scales with L to maintain a constant neuronal 

density. K scales with N until the point L exceeds the area of the 

Gaussian that determines the probability of neuronal 

connections. The corresponding values of all parameters not 

listed here are found in Table S1 under the topographic network. 
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3 | Analytical prediction of spatiotem-
poral patterns in oscillator networks
with distance-dependent time delays

In the previous chapter, a comprehensive numerical study showed that distance-dependent
time delays are important in generating biologically realistic spontaneous traveling waves in
spiking neural networks. Following that result, we asked what analytical traction could be
gained in a more abstract network, nonetheless possessing distance-dependent time delays. It
is notoriously difficult to gain analytical insight in such systems, but in this work, we utilized
a recent complex-valued approach to the Kuramoto model (Muller et al., 2021; Budzinski
et al., 2022) that enabled us to do so. We used a time-delay operator that gave rise to
traveling waves in the network. This delay operator and the adjacency matrix, representing
network connectivity, collectively influence the eigenmodes of the system. These eigenmodes
characterize the dynamics and therefore give analytical insight into how distance-dependent
delays can shape spatiotemporal dynamics into traveling waves.
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We introduce an analytical approach that allows predictions and mechanistic insights into the dynamics
of nonlinear oscillator networks with heterogeneous time delays. We demonstrate that time delays shape the
spectrum of a matrix associated with the system, leading to the emergence of waves with a preferred direction.
We then create analytical predictions for the specific spatiotemporal patterns observed in individual simulations
of time-delayed Kuramoto networks. This approach generalizes to systems with heterogeneous time delays at
finite scales, which permits the study of spatiotemporal dynamics in a broad range of applications.

DOI: 10.1103/PhysRevResearch.5.013159

I. INTRODUCTION

What is the effect of heterogeneous time delays in net-
worked systems? This question is difficult to treat analytically
in the context of multiple distributed time delays. In recent
work [1], we studied intracranial electrophysiological record-
ings from human clinical patients during sleep. We found
that the 11–15-Hz sleep “spindle” oscillation, a brain rhythm
important for learning and memory [2], was not perfectly syn-
chronized with zero phase difference across the cortex; rather,
sleep spindles are organized into rotating waves that travel in a
preferred direction (see Movie 1 in Ref. [1]). Importantly, the
propagation speed of the observed waves is consistent with
the axonal conduction speed of the long-range fiber network
in the cortex (3–5 m/s [3]). This set of observations raises
an important question: How do these fibers, with no major
anisotropy, create a specific spatiotemporal structure with a
preferred chirality?

In this paper, we analyze a time-delay Kuramoto model
to address this question. Utilizing a recently reported analyt-
ical approach to the Kuramoto dynamics [4], we introduce
a complex-valued delay operator. This operator shapes the
dynamics of the Kuramoto system into waves traveling across
the network. The combination of this delay operator and the
adjacency matrix determines these dynamics through their

*These authors contributed equally to this work.
†lmuller2@uwo.ca

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

effect on eigenvalues in the complex plane, thus providing
mechanistic insights into the effect of heterogeneous time
delays. The approach introduced here offers a mathematical
description for the dynamics of time-delayed networks, an
important open problem in physics [5] with many applica-
tions in neuroscience [6], engineering [7], and technology
[8]. In general, approaches to systems with heterogeneous
time delays center on numerical simulations, and no coherent
analytical approach currently exists [9,10]. Importantly, while
this question first arose from observations of neural dynamics
in the human cortex during sleep, the delay operator we intro-
duce here is general to studying the effect of distributed time
delays in networks at finite scales, potentially allowing insight
into these dynamics in a broad range of systems [11–13].

II. DELAY OPERATOR

We start with the standard Kuramoto model (KM) [14–16]
and then consider the model with distance-dependent time
delays [17–19]. The original KM on a general network of N
nodes is defined by

θ̇i(t ) = ωi + ε

N∑
j=1

Ai j sin(θ j (t ) − θi(t )), (1)

where θi ∈ [−π, π ) represents the state variable (phase) of
oscillator i at time t , ωi is the intrinsic angular frequency,
ε scales the coupling strength, and Ai j ∈ {0, 1} represents
the elements of the adjacency matrix. The coupling of two
connected oscillators i and j causes their phases to attract
[15,16,20,21].

Time delays have been observed to be an important mech-
anism underlying the generation of traveling waves in the
brain [13,22–24]. With this in mind, we consider a time-delay

2643-1564/2023/5(1)/013159(9) 013159-1 Published by the American Physical Society
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Kuramoto model (dKM) with delays τi j that depend on the
distance between two oscillators i and j:

θ̇i(t ) = ωi + ε

N∑
j=1

Ai j sin(θ j (t − τi j ) − θi(t )). (2)

The delay operator approach we introduce here generalizes to
arbitrary adjacency matrices. In order to demonstrate this ap-
proach, we start by considering an undirected ring graph GRG,
where N = 100 nodes are arranged on a one-dimensional
ring with periodic boundary conditions. Each node in GRG is
connected to the k = 25 nearest neighbors in each direction,
and Ai j ∈ {0, 1} is 1 if oscillators i and j are connected, and
0 otherwise. The time delay τi j = di j/ν between two nodes
i and j grows linearly with distance (di j) with respect to
the periodic boundary conditions on the ring [di j = min(|i −
j|, N − |i − j|)]. For the parameters chosen in this paper, the
time delays range from approximately 2 to 62 ms, a timescale
relevant to neural dynamics [10,25,26]. We consider the case
where all oscillators have the same frequency of 10 Hz (ω =
20π ); however, our approach can be applied to the case of
nonidentical natural frequencies [27].

The time-delay term θ j (t − τi j ) can be approximated by
θ j (t ) − ωτi j [17,18,24]. Using this approximation, in combi-
nation with the algebraic approach to the Kuramoto dynamics
[4,28], we introduce a delay operator, which provides analyt-
ical insight into how heterogeneous time delays can create
specific, sophisticated spatiotemporal structures in the re-
sulting nonlinear dynamics. Applying this approximation to
Eq. (2), we arrive at an equation that captures the time-delay
dynamics in the dKM in heterogeneous phase lags [17,18,24].
We can then use our algebraic approach to the Kuramoto
dynamics and arrive at (see Appendix A for details)

x(t ) = eiωt etW x(0), (3)

where x ∈ CN and the matrix W is given by

W = εe−iη ◦ A, (4)

where ◦ represents the Hadamard (elementwise) product. This
matrix has information about the coupling strength ε, the time
delays η = ωτ present in the original dKM, and the connec-
tion scheme of the system on A. In previous work, we have
shown that this complex-valued equation, when evaluated
through the procedure described below, precisely captures the
trajectories of the original, nonlinear Kuramoto model [28].
We now show that this approach generalizes to the case of
heterogeneous time delays.

With this approach, we have two dynamical systems:
the original, nonlinear KM and a complex-valued system
with the explicit solution in Eq. (3) (details on the deriva-
tion can be found in Ref. [28] and in Appendix A). In
the complex-valued system, x ∈ CN has elements xi(t ) ∈ C
whose argument we compare with the numerical solution of
the original Kuramoto model with heterogeneous time delays
(dKM) θi(t ) ∈ R [obtained by Euler integration of Eq. (2)
with high temporal precision]. That is, Arg[xi(t )] is com-
pared with θi(t ). When initialized with unit-modulus initial
conditions |xi(0)| = 1 for all i, with arguments Arg[xi(0)] that
match the initial phases θi(0) in the original dKM, the tra-
jectories in the original and complex-valued KM correspond

FIG. 1. Synchronization level for nondelayed and delayed net-
works. The time-average Kuramoto order parameter 〈R〉 is plotted
as a function of the coupling strength ε for the nondelayed case
(blue circles, original KM; orange diamonds, complex-valued KM)
and for the delayed case (red squares, original dKM; green triangles,
complex-valued dKM). Each point represents one 10-s simulation
with random initial conditions [U (−π, π )], which are the same
for the complex-valued case and for the numerical simulation at
each point.

for a nontrivial window of time [4]. As mentioned above, in
Ref. [28] we found that iterating the explicit expression (3) in
a specific manner produces trajectories in the complex-valued
system that precisely match those in the original, nonlinear
Kuramoto model. Specifically, we can evaluate

x(t + ς ) = 	[eiως eςW x(t )], (5)

where ς is small but finite, t ∈ [0, ς, 2ς, . . . , nς ], and 	 rep-
resents an elementwise operator mapping the modulus of each
state vector element xi(t ) to unity. This approach represents an
iterative analytical procedure, defined by the application of the
linear matrix exponential and 	. Note that Eq. (5) propagates
the solution at discrete time intervals defined by ς , Eq. (3)
can be applied within intervals defined by ς , and ς > dt .
Critically, while this iterative procedure does not represent a
closed-form, all-time solution for the dynamics of the original
nonlinear Kuramoto system, all evolution of the arguments
Arg[xi] [which, again, correspond with θi(t ) ∀ i in the orig-
inal KM] is governed under the linear matrix exponential
operator, and it is clear that the elementwise 	 operator only
changes the moduli. In this paper, we show that this approach
applies also in the case of heterogeneous time delays and
provides analytical insight into how distance-dependent time
delays create specific spatiotemporal patterns.

III. RESULTS

We first study phase synchronization in networks with
(dKM) and without (KM) time delays on GRG, as a function
of the coupling strength ε (Fig. 1). We use the Kuramoto order
parameter,

R(t ) = 1

N

∣∣∣∣∣∣
N∑

j=1

eiθ j (t )

∣∣∣∣∣∣, (6)
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FIG. 2. Analytical and geometric view of the effect of time delays. The spatiotemporal dynamics of the system is represented using
color coding, where the phase of each oscillator is plotted as a function of time for (a) the original KM, (b) the original dKM, (c) and the
complex-valued dKM. Dark colors represent phases close to −π , and light colors represent phases close to π . (a) Without delay, the network
transitions to phase synchronization, which is represented by the horizontal lines. The effect of the delay, however, induces wave patterns in
the system, whose dynamics are represented (b) in the original dKM and also captured (c) by the complex-valued model. (d) These dynamical
characteristics are corroborated by the Kuramoto order parameter R(t ). (e) The eigenmodes offer a geometric perspective to such dynamics,
where the waves are represented by a single eigenmode contribution (third mode in this case). (f) The eigenvalues of W (delayed) and εA
(nondelayed) provide further analytical insights into the effect of the delay in the system: It rotates the eigenvalues in the complex plane, which
allows the system to access different modes. In the nondelayed case, the leading eigenvalue (in the real part) is associated with an eigenvector
with a zero-phase-difference configuration (first mode). In the delayed case, otherwise, there are two leading eigenvalues that are associated
with the eigenvectors v3 and v99, which have phase configurations representing traveling waves.

and its time average 〈R〉 for 10-s simulations to measure the
level of phase synchronization. As the coupling strength ε

increases in the nondelayed case (original KM and complex-
valued KM), 〈R〉 begins at a low value and increases until
approaching unity (representing phase synchronization).

In the case with heterogeneous time delay (original dKM
and complex-valued dKM), the order parameter remains low
(Fig. 1, red squares and green triangles), reflecting the fact
that time delays induce a range of spatiotemporal patterns,
as observed previously [17,18,29–33]. Here, we observe that
the complex-valued model is able to capture the average dy-
namics that the original Kuramoto model depicts, for both the
nondelayed and delayed cases, for different coupling strengths
across different initial conditions (Fig. 1).

We next study dynamics in the KM and dKM consider-
ing an individual realization, for a fixed coupling strength
(ε = 0.5), and compare the dynamics of the original dKM
with the evaluation of the complex-valued approach. With-
out time delays, the original KM exhibits a quick transition
from random initial conditions to a phase-synchronized state
[horizontal lines, Fig. 2(a)]. With time delays, however, phase
synchronization is not reached, and the original dKM exhibits
a transition from random initial conditions to a traveling wave
state [diagonal structures, Fig. 2(b)]. The evaluation of the
complex-valued dKM captures both the transient dynamics

and the traveling wave state exhibited in the original dKM
[Fig. 2(c)], as well as the dynamics of the Kuramoto order
parameter R(t ) [Fig. 2(d)].

Our approach to systems with heterogeneous time delay
provides insight into the mechanism for these dynamics in
terms of the spectrum of W —Eq. (4). If A and τ are circulant,
W is also circulant (see Appendix B); hence W and A share
the same eigenvectors (which form an orthonormal basis). We
can then write Eq. (3) using the eigenspectrum of W , which
results in x(t ) = eiωt (α1eλ1tv1 + · · · + αN eλN tvN ), where αi
can be written in terms of initial conditions. Importantly, we
can also write Eq. (5) in a similar fashion, which results
in x(t + ς ) = 	[eiως (α1eλ1ςv1 + · · · + αN eλN ςvN )], where αi
can again be written in terms of the state of the system at
time t ∈ [0, ς, 2ς, . . . , nς ]. Thus, while it is in general a very
difficult problem to understand the dynamics of nonlinear
networks in terms of eigenspectra, this approach provides a
unique insight into the connection between the spectrum of
W —Eq. (4)—and the spatiotemporal dynamics of the non-
linear oscillator network—Eq. (2). Critically, our approach
uses familiar mathematical techniques from linear algebra
matrix theory in a distinct way: While previous approaches
in nonlinear dynamics have sought to describe the dynamics
using the spectrum of the Laplacian matrix [34–36], the focus
on the complex-valued system in our approach enables the
insight that the argument of the eigenvectors of the matrix W
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provides analytical predictions about the resulting nonlinear
dynamics.

Following this idea, Fig. 2(e) shows the eigenmode contri-
butions, here represented by log |μi|, as a function of time,
for the dynamics in Fig. 2(c). Here, the eigenmode contri-
butions are given by the projection of the complex-valued
approach solution x(t ) onto the eigenvectors of W . The eigen-
mode contributions are obtained as μk (t ) = 〈x(t ), vk〉, where
〈·〉 denotes the standard complex inner product. Figure 2(e)
shows that, when the network exhibits incoherent dynamics,
the eigenmode contributions remain uniform across μi. When
the traveling wave pattern is reached, on the other hand, the
third eigenmode becomes dominant (note the log scale). These
results demonstrate that the change from incoherent dynamics
to a traveling wave can be understood quite directly through
the geometry of the eigenmodes. Furthermore, in the case of
circulant networks, we can evaluate eigenvalues and eigenvec-
tors analytically using the circulant diagonalization theorem
(CDT) [37]; in this case, the first eigenvector represents the
solution where all oscillators have the same phase (phase
synchronization), and higher modes represent wave patterns,
given by Fourier modes (see Appendix C).

The effect of heterogeneous time delays on the dynamics
of the dKM can be understood through the geometry of
eigenvalues in the complex plane. Figure 2(f) illustrates the
eigenvalues of εA (nondelayed) and W (delayed). While
the nondelayed case (blue line and circles) has purely real
eigenvalues, the effect of the heterogeneous time delays (red
line and squares) can be understood in our framework in terms
of the Hadamard (elementwise) product of the delay operator
τ and A [see Eq. (4) and Appendix B]. The effect of this
operation is to provide a specific rotation of the eigenvalues in
the complex plane. This rotation allows the system to access
higher modes and, therefore, to exhibit different traveling
wave patterns. Furthermore, the rotation is not the same for
all eigenvalues because the delays are heterogeneous. In this
particular case, the rotation leads to eigenvalues associated
with the 3rd and 99th modes to have the largest real part,
allowing the system to reach traveling wave states associated
with the 3rd and 99th modes. In the particular example of
Fig. 2, the network evolves to a wave given by the third
mode, but different (random) initial conditions can evolve
to the dynamics described by either the 3rd or 99th mode
[27]. Moreover, when different time delays are considered,
different modes can be dominant, and therefore the system
evolves to a different wave pattern [27].

We can now uncover how the combination of network
structure, time delays, and node state can create specific spa-
tiotemporal patterns. By using our delay operator approach,
we can analytically predict the specific pattern to which the
original dKM evolves. Figure 3(a) shows the wave pattern
given by θ obtained from the original dKM (blue line) and
the argument (elementwise) of the third eigenvector (red line),
which predicts the observed dynamics [27]. In this case,
phases increase in the clockwise direction around the ring,
which we define to be the positive direction (+1). It is im-
portant to note that, in our approach, the argument of each
eigenvector element (Arg[(vk )i] ∀i ∈ [1, N]) directly relates
with the phase offset in the resulting network dynamics.
Because of the correspondence between trajectories in the

FIG. 3. Analytical predictions of specific wave patterns. (a) The
phase configuration for the original dKM (blue line) matches the
argument (elementwise) of the third eigenvector Arg[v3]—the an-
alytical prediction (red dotted line). A representation on the circle
using color coding reveals the wave pattern (right). (b) Different
initial conditions lead to the wave pattern that matches the argument
of the 99th eigenvector Arg[v99]. These waves can propagate either
counterclockwise (negative) or clockwise (positive). (c) With random
initial conditions, due to the dominance of two eigenvalues (3rd and
99th), the system exhibits waves propagating in both directions—
with approximately half of the initial conditions evolving to each
direction (top right). (d) With biased initial conditions, starting from
Arg[v3] (red line, bottom right) and adding uniform random phases
0.8(U (−π, π )), we obtain a preferred direction of propagation.

complex-valued model and the original dKM, this approach
creates a direct link between eigenvectors of the adjacency
matrix and the specific spatiotemporal dynamics that result.
For the dynamics in Fig. 3(a), the eigenmode contribution
is given by μ3 [see Fig. 2(e)], and the phase configuration
matches the argument of v3. In the example considered here,
two eigenvalues are dominant (i.e., having the largest real
part): λ3 and λ99 [Fig. 2(f)]. Different initial conditions can
thus evolve to the phase pattern given by the 99th mode,
which is predicted by v99 [Fig. 3(b)]. In this case, the spatial
frequency is the same as observed in the previous case, but
the direction of the wave pattern is the opposite [27]. These
results show a clear connection between the spectrum of the
network (described by W ) and the dynamics on the original
dKM, where the wave pattern (solution) can be described by
the phase configuration of the eigenvector associated with the
dominant mode.

We take counterclockwise increases in phase to be in the
negative direction, and clockwise increases to be positive.
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(a)

(b)

(c)

(d)

FIG. 4. Analytical predictions of spatiotemporal patterns in brain networks. We use our approach to investigate networks based on the
Human Connectome Project (HCP) [38]. We consider the case without delay in the coupling between nodes and also the case with distance-
dependent delays (heterogeneous delay). We use our delay operator to create the matrix W , which allows analytical predictions of the dynamics.
We show the phase of each node, given by the Kuramoto model, using color coding (dark colors are values close to −π , and light colors are
values close to π ). (a) In the case without delay, the argument of the leading eigenvector depicts zero phase difference, which predicts phase
synchronization. (b) We then study the numerical simulation for the network without delay, given by Eq. (1), which shows a phase-synchronized
state. (c) In the case with heterogeneous time delays, the argument of the leading eigenvector shows a phase offset from the bottom left to the
top right (in the projection), which predicts a wave pattern. (d) We perform the numerical simulation with the delayed Kuramoto model, given
by Eq. (2), and the network depicts the wave pattern that is predicted by our approach. This shows that we are able to predict the dynamics
observed in the simulations using our delay operator.

Because the network considered here has two dominant eigen-
values equal in their real parts, random initial conditions
evolve equally either to the phase pattern of v3 or to the phase
pattern of v99 in individual simulations [Fig. 3(c)]. To quantify
the spatiotemporal dynamics, the spatial frequency, and the
direction of propagation, we compare the phases obtained
from the original dKM and the argument of the eigenvectors
of W . Specifically, we evaluate

ρ (k)(t ) =
∣∣∣∣∣∣

1

N

N∑
j=1

eiθ j (t )e−iArg[(vk ) j ]

∣∣∣∣∣∣, (7)

where θ j (t ) is the phase of the oscillator j at time t obtained
from the original dKM, N is the number of oscillators in the
network, i is the imaginary unit, and vk is the kth eigenvector
of W . Here, we use v3, and ρ (k) = 1 means that the phase
configuration of the network given by the θ(t ) is the same as
the one given by the argument of the eigenvector vk . In the
case shown in Fig. 3(c), approximately half of the simulations
evolve to the positive direction, indicating that the dynamics
matches the argument of v3, and approximately half evolve
to the negative, indicating that the dynamics is given by the
argument of v99. A small fraction of initial conditions exhibit
inner products of approximately ±0.5, corresponding to a
wave with a different spatial frequency.

Using the insights from this approach, we can now de-
sign initial conditions that generate waves in a preferred

direction. To do this, we started from the phase pattern spec-
ified by v3 and randomized the phases by nearly a full cycle
(0.8 U [−π, π ], then wrapped in [−π, π ]). While this initial
condition is nearly random (Fig. 3(d), bottom right, where the
red line represents Arg[v3]; compare with Fig. 3(c), bottom
right), nearly all simulations evolve to the positive direction.
These results demonstrate that the combination of connec-
tivity, time delays, and network state can generate specific
spatiotemporal patterns in oscillator networks—here, travel-
ing waves with a chirality in a preferred direction.

The framework for systems with heterogeneous time de-
lays introduced in this paper generalizes to many types of
networks. This approach can be applied to very sophisticated
networks obtained from experimental data. In particular, this
approach can successfully predict traveling wave patterns
arising in an oscillator network based on connectivity in the
human brain. Figure 4 illustrates simulations and the ana-
lytical prediction resulting from our approach for networks
where the connectivity data are based on the Human Con-
nectome Project (HCP) [38]. In this case, N = 998 cortical
regions are given at a point in 3-space, with connections
between areas derived from neuroimaging data. Connection
weights between regions are determined by the number of
fibers [38,39], which we use to build the adjacency matrix
A. Here, the coupling strength is scaled with ε = 200, and
the initial conditions for each analysis are given by random
phases [−π, π ]. Furthermore, time delays are obtained by
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τi j = di j/ν, where the distances di j are determined by the av-
erage length of these fibers and the known axonal conduction
speed is given by ν = 5 m/s [40]. The dynamics of each node
is represented by the Kuramoto model, given either by Eq. (1)
in the nondelayed case or by Eq. (2) in the delayed case.
The natural frequency of each oscillator is given by 10 Hz
(simulating, for example, a specific drive from the thalamus).
Using the delay operator, we construct the matrix W for these
systems—Eq. (4)—which allows us to obtain analytical pre-
dictions of the spatiotemporal patterns that emerge. First, we
consider the case without time delays, where τi j = 0. We then
obtain the eigenspectrum of the matrix W and plot the ar-
gument (elementwise) of the eigenvector associated with the
leading eigenvalue [Fig. 4(a)]. In this case, this eigenvector
shows a zero phase difference across nodes, predicting phase
synchronization. We then perform the numerical simulation
of the Kuramoto model (without delay), given by Eq. (1), and
plot the phase of each node using color coding [Fig. 4(b)],
where we observe a phase-synchronized behavior [27]. On the
other hand, when we consider time delays in the interaction
between cortical areas, the scenario is different. In this case,
the argument (elementwise) of the eigenvector associated with
the leading eigenvalue depicts a phase offset increasing from
the bottom left to the top right (in this projection), predict-
ing a wave propagating along that direction [Fig. 4(c)]. We
then perform numerical simulations of the Kuramoto model
with heterogeneous time delays—Eq. (2)—and we observe
the wave pattern that is predicted by our approach, as shown
in Fig. 4(d) [27]. This example now clearly demonstrates the
advantage of this analytical approach: When we numerically
evaluate the eigenspectrum of W in this case, the leading
eigenvector for the case without delays predicts phase syn-
chrony, while the leading eigenvector for the case with delays
predicts the precise wave pattern observed in the simulation.
This result shows that our approach is able to predict the
spatiotemporal pattern that results from connectivity and time
delays in a highly relevant, real-world case.

IV. CONCLUSION

In this paper, we have introduced an analytical approach
to the dynamics of nonlinear oscillator networks with hetero-
geneous time delays, an important open problem in physics
with many potential applications. The advance in this paper
is based on an algebraic approach to the Kuramoto model
introduced in Ref. [28]. Importantly, the flexibility of this
framework allowed us to introduce a delay operator, which
provides rigorous analytical predictions for the specific travel-
ing wave patterns induced by distance-dependent time delays.
Using this approach, we can explain the effect of time de-
lays in terms of a rotation of the eigenvalues of the matrix
describing the system, which provides a clear and precise
way to understand heterogeneous time delays in terms of
the geometry of eigenmodes. Our approach therefore allows
analytical predictions for the specific spatiotemporal patterns
exhibited by the original dKM.

This framework allows us to understand how the combi-
nation of isotropic connectivity and time delays can produce
traveling waves propagating in a preferred direction, as
observed in experimental data [1]. Importantly, while this

question first arose in our study of neural dynamics in human
cortex during sleep, the approach we have introduced here is
general to networks of oscillators at finite scales. The results
shown in this paper, together with the results in Refs. [4,28],
represent a coherent and general framework for nonlinear
oscillator networks.

al advance of this framework is to consider the dynamics in
an individual simulation, taking into account both the initial
conditions and the specific connectivity pattern in the net-
work. This framework thus provides an opportunity to connect
an individual adjacency matrix, for example, a single network
taken from experimental data or a single realization of a
random graph model, to the specific spatiotemporal pattern
that results in a simulation. This approach has important po-
tential applications, for example, in linking an experimentally
reconstructed brain network to dynamics and computation
in a neural system [41] or in linking the connections in
a large-scale power grid to potential large and transient
disruptions [42,43]. In this paper, we have generalized this
framework to systems with heterogeneous time delays, which
demonstrates the utility of this algebraic, operator-based
approach to nonlinear dynamical systems at finite scales.

An open-source code repository for this work is available
on GitHub [44].
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APPENDIX A: THE COMPLEX-VALUED APPROACH

We consider the Kuramoto model with heterogeneous time
delays described by Eq. (2) and then use the approximation
given by θ j (t − τi j ) ≈ θ j (t ) − ωτi j [17,18,24], which leads to

θ̇i(t ) = ω + ε

N∑
j=1

Ai j sin(θ j (t ) − θi(t ) − ηi j ), (A1)

where ηi j = ωτi j .
Based on Refs. [4,28], we introduce the complex-valued

approach to the Kuramoto model described by Eq. (A1). To
do that, we introduce a new dynamical system, described by
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the variable ψ ∈ C:

ψ̇i(t ) = ω + ε

N∑
j=1

Ai j[sin(ψ j (t ) − ψi(t ) − ηi j )

− i cos(ψ j (t ) − ψi(t ) − ηi j )]. (A2)

Next, multiplying both sides by i and applying Euler’s formula
yields

iψ̇i(t ) = iω + εe−iψi (t )
N∑

j=1

Ai je
iψ j (t )e−iηi j . (A3)

We define W as

W = εe−iη ◦ A, (A4)

where ◦ represents the Hadamard product (or elementwise
product) and ηi j = ωτi j . This results in the following matrix
form of Eq. (A3):

ψ̇(t ) = ω + 1

i
diag[e−iψ(t )]W eiψ(t ), (A5)

where we note explicitly that ψ = [ψ1, . . . , ψN ]T , ψ̇ =
[ψ̇1, . . . , ψ̇N ]T , and ω = [ω, . . . , ω]T . Furthermore, we can
write the previous equation as

d

dt
eiψ(t ) = (diag[iω] + W )eiψ(t ). (A6)

Lastly, letting x(t ) = eiψ(t ), we have

ẋ(t ) = (diag[iω] + W )x(t ), (A7)

whose general solution is

x(t ) = eiωt etW x(0). (A8)

In this paper, the dynamics of the complex-valued approach is
studied by considering the elementwise argument of x(t ), i.e.,
Arg[xi(t )] ∀ i ∈ [1, N]. As shown in Ref. [28], when |x j |

|xi| ≈ 1,
the dynamics of Arg[x(t )] precisely matches the trajectories
of the Kuramoto model given by Eq. (A1). This allows us
to use the eigenspectrum of W to understand and predict the
dynamics of the Kuramoto model with heterogeneous time
delays.

APPENDIX B: CIRCULANT NETWORKS
AND HADAMARD PRODUCT

The definition of the Hadamard product can be described
as follows.

Definition 1. Let A, B be two n × n matrices. The
Hadamard product A ◦ B is a matrix of dimension n × n with
elements given by

(A ◦ B)i j = (A)i j (B)i j .

For a complex number λ, we also define e◦(λA) to be the
matrix of dimension n × n with elements given by

(e◦λA)i j = eλAi j .

We have the following observation.
Proposition 1. Let A, B be two circulant matrices. Then (1)

A ◦ B is a circulant matrix and (2) eλ◦A is a circulant matrix.
Proof. Assume that A = circ(a), B = circ(b) with a =

(a1, a2, . . . , an) and b = (b1, b2, . . . , bn). Then we can see

FIG. 5. A graphical representation of the matrix with the phase
configuration of the eigenvectors of W . The kth column is the color-
coded argument (elementwise) of the kth eigenvector.

that

A ◦ B = circ((a1b1, a2b2, . . . , anbn))

and

e◦λA = circ((eλa1 , eλa2 , . . . , eλan )).

Therefore we conclude that both A ◦ B and eλ◦A are
circulant. �

APPENDIX C: THE CIRCULANT
DIAGONALIZATION THEOREM

In the case of circulant networks, we can use the circulant
diagonalization theorem (CDT) to obtain the eigenspectrum
of the adjacency matrix analytically [37]. In this paper, both
the nondelayed network εA and the delayed one W are cir-
culant (see Proposition 1). The CDT states that all circulant
matrices, say, H = circ(h), where circ(h) is the circulant ma-
trix constructed from the generating vector h = (h1, . . . , hN ),
are diagonalized by the same unitary matrix U with
components

Uks = 1√
N

exp

[
−2π i

N
(k − 1)(s − 1)

]
, (C1)

where k, s ∈ [1, N], and that the N eigenvalues are given by

Ek (H ) =
N∑

j=1

h j exp

[
−2π i

N
(k − 1)( j − 1)

]
. (C2)

We let Eq. (C2) determine the ordering of the eigenvalues
throughout this paper. The argument of the eigenvectors as-
sociated with these eigenvalues corresponds to the columns
of the discrete Fourier transform (DFT) matrix, which range
from low to high spatial frequencies.

Figure 5 shows the argument of the eigenvectors using
color coding. Here, Arg[(v1)i] = 0 ∀ i ∈ [1, N] (as shown in
Fig. 2), which represents zero phase difference across os-
cillators, or phase synchronization. The other eigenvectors
represent Fourier modes (waves) with different spatial fre-
quencies. Figure 2 shows the cases of the eigenvectors v3

and v99.
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I. OSCILLATORS WITH NON-IDENTICAL NATURAL FREQUENCY

Our approach can be applied to networks of oscillators with non-identical natural frequency. In this example, the

natural frequency is given by ωi ∈ [50, 63], which is obtained from a random, uniform distribution. Figure S1 shows

the analysis of our approach applied to the same network studied in the main text, but with non-identical natural

frequencies. Without delay, the network depicts a high level of phase synchronization, which is represented by the

horizontal structures in the plot (Fig. S1a). When we add heterogeneous time delays to the coupling, the network

transitions to a wave pattern (Fig. S1b), which is captured by our complex-valued approach using the delay operator

(Fig. S1c). The Kuramoto order parameter corroborates this scenario (Fig. S1d), where the network without delay

has R(t) ≈ 1 and the network with heterogeneous time delays has R(t) ≈ 0.

a b c

d e f

Figure S1. Analyses of an oscillator network with nonidentical natural frequency. (a) Without delays, the network transitions

to phase synchronization. (b) With heterogeneous time delays in the coupling, the network transitions to a wave pattern, (c)

which is captured by our complex-valued approach. (d) The Kuramoto order parameter for these three cases. (e), (f) Here,

the oscillators have non-identical natural frequencies.

∗ These authors contributed equally
† lmuller2@uwo.ca
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II. EXAMPLES OF THE DYNAMICS OF TIME DELAYED NETWORKS

Figure S2a shows the eigenvalues λ of the matrix W in the delayed, and non-delayed case (εA). Here, we consider

the same time delays than studied in the main text (Figs. 2 and 3), where τij ∈ [2, 62] ms. In the non-delayed case, the

eigenvalue with the largest real part is related to the eigenvector v1 = (1, 1, · · · , 1)T thus we have Arg[(v1)i] = 0 ∀i ∈
[1, N ]. Therefore the first eigenmode captures the synchronized state (µ1), determining the behavior of the system in

the non-delayed case. In this case, random initial conditions evolve to phase synchronization due to the coupling. On

the other hand, the addition of the heterogeneous delay leads to a rotation of the eigenvalues in the complex plane

(see Fig. 2f in the main text), where each mode has a different rotation due to term ηij in the matrix W . This leads

to the dominance of the 3rd and 99th modes, in terms of the real part of the eigenvalues (here, λ3 = λ99). We then

observe that these modes determine the dynamics of the system. In this case, the system exhibits wave patterns as

time evolves.

3rd mode 99th mode

b c d

e f g

a

Figure S2. (a) Eigenvalues for the matrices εA (non-delayed) and W (delayed) used in the main text. Here, the non-delayed

case shows that the first mode has the eigenvalue with the largest real part, therefore defining the dynamics of the system

and leading the network to reach phase synchronization. On the other hand, the addition of the heterogeneous delay leads

the eigenvalues to rotate in the complex plane (see Fig. 2f in the main text), which results in the eigenvalues associated

with 3rd and 99th modes having the largest real parts. In this case, the addition of delay leads the system to transition from

phase-synchronization to exhibiting wave patterns. Examples of wave patterns induced in this case are depicted for different

initial conditions. (b), (c), (d) In the first case, the system transitions to a wave pattern defined by the 3rd mode. (e), (f),

(g) In the second case, the system depicts a wave pattern defined by the 99th mode.

Further, Fig. S2 also depicts realizations with different initial conditions for the original dKM and complex-valued

dKM. Figures S2b and S2c show examples of wave patterns where the dynamics is determined by the 3rd mode for

the original dKM and the complex-valued dKM, respectively. Moreover, Fig. S2d shows the eigenmodes contribution
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in this case, where one can observe the dominance of the 3rd mode. Otherwise, if different initial conditions are

considered, the system can depict waves patterns where the dynamics is determined by the 99th mode (Figs. S2e and

S2f). The dominant contribution, in this case, is given by the 99th mode (Fig. S2g).

8th mode 94th mode

b c d

e f g

a

Figure S3. (a) Eigenvalues for the matrices εA (non-delayed) and W (delayed) for the case where τij ∈ [6, 160] ms. The non-

delay case has the same structure as shown before. On the other hand, the addition of the heterogeneous delay in combination

with the natural frequency of oscillators leads the eigenvalues to rotate in the complex plane, which results in the eigenvalues

associated with 8th and 94th modes having the largest real parts. Thus, the system transitions to wave patterns defined by

these modes. (b), (c), and (d) In the first case, the system transitions to a wave pattern defined by the 8th mode. (e), (f),

and (g) For different initial conditions, the system depicts a wave pattern defined by the 94th mode.

Furthermore, in order to exemplify how our approach allows us to control and predict the dynamics of the network,

we show a different example of a heterogeneous delayed Kuramoto network. Here, we use the same procedure as

described in the main text, but we change the speed of propagation (ν) in a such way that τij ∈ [6, 160] ms. The

combination of the natural frequency of oscillators ω with the delay matrix τ (which depends on ν) leads to a different

rotation of the eigenvalues in the complex plane, therefore allowing the system to reach different wave patterns. Figure

S3a shows the eigenvalues of the non-delayed matrix (εA), where the 1st eigenvalue has the largest real part, and also

the eigenvalues of the delayed matrix (W , where the 8th and 94th eigenvalues have the largest real parts. Therefore,

the addition of this specific delay matrix in the system allows the network to depict wave patterns related to those

modes. This behavior is shown in the other panels of Fig. S3. First, panels (b) and (c) show the spatiotemporal

dynamics for the original dKM and the complex-valued dKM, respectively, where the wave pattern is defined by the

8th mode – the eigenmodes contribution is depicted in Fig. S3d. On the other hand, when different initial conditions

are considered, the system can reach a wave state defined by the 94th mode, which is depicted in panels (e), (f), and

(g). Moreover, different modes can be accessed when different combinations of the delay matrix (which depends on

ν) and the oscillators’ natural frequency are considered.
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III. MOVIE CAPTIONS

Movie S1: (left) Argument (element-wise evaluated) of the 3rd eigenvector of the matrixW studied in Fig. 2 of the

main text. In this case, this eigenvector is associated with the largest eigenvalue (real part) when we considered the

delayed system. In this case, this represents a wave traveling in the clockwise direction. (right) Numerical simulation

of the Kuramoto network with heterogeneous time delays studied in the main text. Here, each oscillator is represented

on the circle and its phase is plotted as a function of time in color-code varying from black tones (−π) to white tones

(π). In this case, we can observe that the argument of the eigenvector predicts the spatiotemporal pattern observed

in the numerical simulation.

Movie S2: (left) Argument (element-wise evaluated) of the 99th eigenvector of the matrix W studied in Fig. 2 of

the main text. In this case, this eigenvector is associated with the largest eigenvalue (real part) when we considered

the delayed system. In this case, this represents a wave traveling in the counter-clockwise direction. (right) Numerical

simulation of the Kuramoto network with heterogeneous time delays studied in the main text. Here, each oscillator

is represented on the circle and its phase is plotted as a function of time in color-code varying from black tones (−π)

to white tones (π). In this case, we can observe that the argument of the eigenvector predicts the spatiotemporal

pattern observed in the numerical simulation.

Movie S3: (left) Argument (element-wise evaluated) of the eigenvector associated with the largest (real part)

eigenvalue of the matrix W based on the Human Connectome Project (Fig. 5 of the main text) in the case that time

delays are not considered. This represents a zero phase difference across oscillators. (right) Numerical simulation

of the Kuramoto network based on the Human Connectome Project network in the case that time delays are not

considered. Here, each oscillator is represented by a dot in a 3D space and its phase is plotted as a function of time

in color-code varying from black tones (−π) to white tones (π). We can observe that the argument of the eigenvector

predicts the spatiotemporal pattern observed in the numerical simulation.

Movie S4: (left) Argument (element-wise evaluated) of the eigenvector associated with the largest (real part)

eigenvalue of the matrix W based on the Human Connectome Project (Fig. 5 of the main text) in the case that

distance dependent time delays are considered. This represents a traveling wave. (right) Numerical simulation of the

Kuramoto network based on the Human Connectome Project network with distance dependent time delays. Here,

each oscillator is represented by a dot in a 3D space and its phase is plotted as a function of time in color-code

varying from black tones (−π) to white tones (π). We can observe that the argument of the eigenvector predicts the

spatiotemporal pattern observed in the numerical simulation.

IV. CODE AVAILABILITY

An open-source code repository for this work is available on GitHub: http://mullerlab.github.io.
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4 | Waves traveling over a map of visual
space can ignite short-term predic-
tions of sensory input

In the previous chapter, a complex-valued implementation of the Kuramoto model, aug-
mented with distance-dependent delays between connections, provided a reduced description
of the traveling waves of cortex, and enabled analytical insight into their emergence. Here,
we used that dynamical model of traveling waves in a machine-learning framework, treating
it as a recurrent neural network, and we asked how useful the traveling wave dynamics might
be in tasks of visual forecasting.
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Waves traveling over a map of visual
space can ignite short-term predictions
of sensory input

Gabriel B. Benigno1,2,3, Roberto C. Budzinski1,2,3, Zachary W. Davis 4,
John H. Reynolds 4 & Lyle Muller 1,2,3

Recent analyses have found waves of neural activity traveling across entire
visual cortical areas in awake animals. These traveling waves modulate the
excitability of local networks and perceptual sensitivity. The general compu-
tational role of these spatiotemporal patterns in the visual system, however,
remains unclear. Here, we hypothesize that traveling waves endow the visual
system with the capacity to predict complex and naturalistic inputs. We pre-
sent a networkmodel whose connections can be rapidly and efficiently trained
to predict individual natural movies. After training, a few input frames from a
movie trigger complex wave patterns that drive accurate predictions many
frames into the future solely from the network’s connections. When the
recurrent connections that drive waves are randomly shuffled, both traveling
waves and the ability to predict are eliminated. These results suggest traveling
waves may play an essential computational role in the visual system by
embedding continuous spatiotemporal structures over spatial maps.

Five percent of synapses received by a neuron in the visual cortex
arrive through the feedforward (FF) pathway that conveys sensory
input from the eyes1–4. While these FF synapses are strong5, “hor-
izontal” recurrent connections coming from within the cortical region
make up about 80% of total synaptic inputs, with 95% of these con-
nections arising from a very local patch (2mm) around the cell4. The
anatomy of the visual system thus indicates that cortical neurons
interactwith other neurons across the retinotopically organizedmaps6

that assign nearby points in visual space to nearby points in a cortical
region via these horizontal connections. Models of the visual system
predominantly focus only on FF7,8 and feedback (FB)9 connections.
One result of this focus is that, in models of the visual system, neurons
in the visual cortex are often modeled as non-interacting “feature
detectors”with fixed selectivity to features in visual input (driven by FF
connections) that can be modulated by expectations generated in
higher visual areas (driven by FB connections). Neuroscientists have
long been interested in how horizontal connections shape neuronal
selectivity10,11 and “non-classical” receptive fields12–16. More recently,

neuroscientists have also been interested in adding these connections
to deep learning models to understand neuronal selectivity in the
visual cortex17,18. It remains unclear, however, how horizontal connec-
tions shape themoment-by-moment computations in the cortex while
processing visual input.

Recent analyses of large-scale recordings have revealed that hor-
izontal connections profoundly shape spatiotemporal dynamics in the
cortex. Traveling waves driven by horizontal connections have been
observed in the visual cortex of anesthetized animals19–24. The rele-
vance of traveling waves had previously been called into question, as
they were thought to disappear in the awake state25 or to be sup-
pressed by high-contrast visual stimuli22,26. Recent analyses of neural
activity at the single-trial level, however, have revealed spontaneous27

and stimulus-evoked28 activity patterns that travel smoothly across
entire cortical regions in awake, behaving primates during normal
vision. These neural traveling waves (nTWs) shift the balance of exci-
tation and inhibition as they propagate across the cortex, sparsely
modulating spiking activity as they pass29. Because they drive
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fluctuations in neural excitability27,30, nTWs show that neurons at one
point in a visual area (representing a small section of visual space) can
strongly interact with neurons across the entire cortical region. These
results thus indicate that cortical neurons may share information
about visual scenes broadly across the retinotopicmap through nTWs
generated by horizontal connections.

What computations, then, can be done with waves of neural
activity traveling across a map of visual space? To address this ques-
tion, we studied a complex-valued neural network (cv-NN) processing
visual inputs ranging from simple stimuli to natural movies. In these
networks, activity at each node is described by a complex number.
Complex numbers extend the arithmetic of the real number system,
and as with standard, real-valued neural networks, nodes receive
inputs based on connection weights, with the activity of each node
determined by an activation function. The network state is then
described by a vector of complex numbers, each element of which can
represent the activation of a small patch of neurons in a single region
of the visual cortex31,32. cv-NNs exhibit similar or superior performance
to standard, real-valued neural networks in many supervised learning
tasks33 and have been used effectively in explaining biological neural
dynamics34. Here, we modified the standard FF architecture used in
deep learning and computer vision to include horizontal recurrent
connections, where neurons in a single processing layer form a web of
interconnections similar to the horizontal connections in the visual

cortex. Horizontal recurrent connections are thought to provide
advantages17 over the standard FF architecture used in computer
vision tasks8,35; however, current methods for incorporating recurrent
horizontal fibers to convolutional networkmodels of the visual system
severely limit both the time window over which recurrent activity can
be considered and the easewithwhich the networks canbe trained17. In
recent work, we have introduced a mathematical approach to under-
stand the recurrent dynamics in a specific complex-valued model36.
Here, we leverage this understanding to train recurrent complex-
valued networks to process visual inputs, ranging from simple stimuli
to naturalistic movie scenes. The resulting networks can predict
learned movies many frames into the future, entirely from their
internal dynamics alone,without external input. During prediction, the
recurrent network exhibits prominent nTWs, ranging from simple
waves propagating out from a small local input28 to complex traveling
wave patterns37, raising the possibility that nTWs enable continuous
predictions of dynamic and naturalistic visual input.

Results
The cv-NN consists of an input layer sending movie frames to a
recurrently connected neural network. An individual movie frame,
serving as input to the network, is represented by a two-dimensional
grid of pixels (input frame, Fig. 1a), and each pixel projects to the
recurrently connected layer through FF connections (red lines, Fig. 1a).

Fig. 1 | A topographic recurrent network model encodes spatiotemporal
information of video frames via internal wave activity. a Schematic of the
complex-valued neural network (cv-NN) model. Nodes (circles) are arranged on a
two-dimensional grid and are recurrently connected (blue) locally in space like the
cortical sheet. A natural image input projects locally into the network via feedfor-
ward connections (red), mimicking retinotopy. b Example dynamic of the network
model. Due to the spatially local projection of the input image, an imprint of the
image is visible in the grid of network activity. Due to the local recurrent con-
nectivity, intrinsic wave activity is generated alongside the input projection. c Top
row: In a sequence of six frames, exactly one of the first five contains a point
stimulus, and the other frames do not. These frames are sequentially input to the
network. Second row: When the cv-NN has no recurrence, the stimulus projection
remains stationary. Third row: With recurrence, from the time of stimulus, cv-NN

activity contains a projection of the stimulus and a wave radiating outward. Fourth
row: Activity in a randomly connected recurrent neural network (RNN) following
stimulus onset has a spatially disorganized structure, reflecting its lack of topo-
graphy and distance-dependent time delays. Right: A linear classifier that received
the final network state in the no-recurrence case could not predict the time or
location beyond chance-level accuracy (5% overall), and in the random-RNN case,
could predict the time but not the location beyond chance (25% overall). In con-
trast, using the classifierwith the sixth with-recurrence network state allowed 100%
accuracy since the feedforward projection of the point stimulus triggered a
radiating wave that encoded the time and location of the stimulus in the sub-
sequent network states.N = 100 trials for each group.Mean± standard deviation of
5.09 ± 0.94, 100±0, and 24.42 ± 4.13, respectively. Source data are provided as a
Source Data file.
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The recurrently connected layer is arrangedona two-dimensional grid,
analogous to the retinotopic arrangement of neurons in visual regions.
Horizontal interconnections within the cv-NN then drive recurrent
interactions in the network (blue lines, Fig. 1a). Both FF and horizontal
recurrent projections in the cv-NN are matched to the approximate
scale of connectivity in visual cortex38,39 so that a single pixel in an
input movie drives a local patch of neurons, with overlapping hor-
izontal connections, in the cv-NN. Lastly, nodes in the recurrent layer
communicate with time delays approximating axonal conduction
speeds along horizontal fibers40, which have recently been shown to
shape spiking neural activity into nTWs29. The combination of FF input
and dense interconnections generates complex patterns of activity in
the recurrent layer (Fig. 1b). Here, we focus on these recurrent activity
patterns to understand their computational role for movie inputs
ranging from simple to complex.

nTWs can simultaneously encode stimulus position and time of
onset over spatial maps
To illustrate how nTWs propagating over sensorymaps could facilitate
visual computation, we first studied the dynamics generated in
response to a single point stimulus. Without recurrent connections, a
short point stimulus generates a small bump of activity that remains
centered on the point of input (“cv-NN without recurrence”, Fig. 1c).
With recurrent connections, however, the point stimulus generates a
wave that propagates out from the point of input (“cv-NN with recur-
rence”, Fig. 1c). We then studied these stimulus-evoked waves, which
are similar in form to those previously observed in the visual cortex of
awake primate28, in a simple decoding task. Specifically, we let the
point stimulus appear at a random time and stimulus location in a
series of input frames and then trained a linear classifier to decode the
time and location of stimulus onset from the network activity at the
final frame. As expected, in the cv-NN without recurrent connections,
the classifier performed at chance-level accuracy in this task (Fig. 1c,
right; “Methods”—“Stimulus prediction task”). With recurrence, how-
ever, the classifier selects the correct time and location of stimulus
appearance from the final network state with 100% accuracy. Finally,
while standard recurrent neural networks (RNNs) can encode time41, an
RNN with random connections (and hence lacking the local con-
nectivity and distance-dependent time delays in the cv-NN) also per-
forms at chance level in this task, which requires decoding both
stimulus location and onset time (Fig. 1c). This simple illustration
shows that traveling waves of neural activity when propagating on an
orderly retinotopic map can simultaneously encode stimulus location
and onset time, even after the stimulus is no longer present.

nTWs aid forecasting movie inputs from simple to complex
Can nTWs enable the processing of the complex, dynamic, and non-
stationary visual scenes that we encounter in our natural experience?
We approached this question in several steps. We first asked whether,
given an input frame from a movie, the cv-NN could be trained to
accurately predict the following frame. To perform this more com-
plicated task, we introduced a learning rule that requires training only
a linear readout of the recurrent layer (Fig. 2a). This procedure is
analogous to a complex-valued implementation of the reservoir
computing paradigm42, which has recently found wide applications in
nonlinear dynamics and physics. In the reservoir computing frame-
work, an input signal drives activity in a recurrently connected layer.
Activity in the recurrent layer is then decoded by a set of output
weights, which are trained to produce a target output signal. Because
of both its efficacy and relative efficiency in training, this framework
has proven promising for learning predictive models of chaotic
systems43,44, and reservoir computing has recently been used to learn
and predict a range of important systems in physics45,46. This training
process, however, has never before been applied to naturalistic movie
scenes. We find the cv-NN can be reliably and efficiently trained to

predict the next frame in a movie input (Supplementary Table 2,
Moving Bump Input). With a cv-NN trained on a movie, the predicted
next frame can then be provided as input in place of the originalmovie
(Fig. 2b). Recent work on neural networks for processing movies has
focused on predicting the next frame in a video sequence based on
training on a large database of inputs47–49. In some cases, these pre-
dictions can then be fed back as input, allowing the network to
recursively generate predictions from its own internal weights50–58. We
will call this process, where during prediction, a network receives no
external movie input and generates future predictions solely from its
internal structure, closed-loop forecasting (CLF). Previous work has
developed networks that can performaccurate CLF on the order of ten
frames into the future50–58, with predicted frames becoming increas-
ingly blurry. In this work, we asked a cv-NN to learn and perform CLF
on individual movies. We find that cv-NNs trained on an individual
movie can self-generate sharp forecasts of that movie many (25–100)
frames into the future while receiving no external input. This system
can be seen as a simple dynamical autoencoder, where a few input
frames can ignite the self-generation of successive frames from its
internal dynamics alone. This provides a framework that can give
insight into how the visual system could create predictions by con-
tinuously changing weights based on its sensory input to make short-
term extrapolations into the near future. The cv-NN is an effective
model for closed-loop forecasting of entire visual scenes, generating
accurate forecasts formovies of a few thousand pixels per frame using
only a few thousand recurrently connected nodes.

The visual cortex readily processes and operates on dynamic
visual inputs on timescales of milliseconds to seconds. We then asked
whether closed-loop forecasting in this system couldwork on the scale
of tens to hundreds of frames in an input movie. Starting with the first
half of a movie containing a simple moving bump stimulus tracing out
a trajectory in two-dimensional space (Fig. 2c), we find that the trained
cv-NN can produce the entire second half of the movie as output from
its trained synapticweights alone (Fig. 2d and SupplementaryMovie 1).
As in the previous example, activity in the recurrent layer exhibits a
dynamic spatiotemporal pattern extending beyond the immediate FF
imprint of the stimulus and structured by the recurrent connections in
the network (Fig. 2e and Supplementary Movie 1). These results
demonstrate that recurrent cv-NNs can produce simple video inputs
from their recurrent connections through this trainingprocess. Finally,
when we remove the recurrent connections, the cv-NN produces an
activity pattern that represents only the average of FF stimulus
imprints without having learned the underlying spatiotemporal
process47. In this case, the cv-NN no longer produces an accurate
closed-loop forecast (Fig. 2f). These results demonstrate the impor-
tance of both the spatiotemporal patterns in the cv-NN and the hor-
izontal recurrent dynamics generating them.

We find that closed-loop forecast performance in this system
depends on two key factors: (1) the ratio of horizontal recurrent
strength to feedforward input strength and (2) the spatial extent of the
recurrence. To study the first factor in detail, wemeasured closed-loop
forecast performance using an index of structural similarity (SSIM)59,
which quantifies the perceptual match between two images, ranging
between 0 (perfect mismatch) and 1 (perfect match). A threshold on
the SSIM, determined through test comparisons between an original
and noise-corrupted version of a movie, then provides a quantitative
criterion for a successful closed-loop forecast (see Supplementary
Fig. 2). We studied SSIM between movie frames produced by the
closed-loop forecast process and the ground truth atdifferent ratios of
recurrence to input (Fig. 3a; see also Supplementary Fig. 1 and
“Methods”—“Network connectivity” and “Network dynamics”). Once
the stimulus is removed and the closed-loop forecast begins (video
frame 1, Fig. 3a), forecast performance in cv-NNs with low recurrent
strength quickly drops close to zero (light blue line, Fig. 3a). By con-
trast, cv-NNs at optimal recurrent strength sustain closed-loop
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forecasts for long timescales (gray line, Fig. 3a), extending beyond 100
video frames into the future. Importantly, networks where recurrence
is too strong also performpoorly, with SSIMdropping near zerowithin
a short timeframe (copper line, Fig. 3a). Systematic quantification of
SSIM across ratios of recurrent strength to input strength reveals that
performance is best when the recurrence and input are approximately
balanced (Fig. 3b), in general agreement with the ratio of feedforward
to recurrently generated synaptic drive in visual cortex60,61. We next
studied performance as a function of the spatial extent of recurrent
connectivity. The best performance occurs for recurrent lengths on
approximately the same spatial scale as the moving bump stimulus
(Fig. 3c), with performancedropping for recurrent lengths outside this
range. This result demonstrates that recurrent connections aid closed-
loop forecasting when matched to the spatial scale of the input. Hor-
izontal recurrent connections in single visual regions span many dif-
ferent retinotopic scales9,62, which could enable processing stimuli at
multiple spatial scales or moving stimuli with changing scales by the
visual system.

The visual system readily processes richly textured and natur-
alistic visual scenes. To examine this type of stimulus in the cv-NN, we
considered naturalistic video inputs for next-frame prediction and
closed-loop forecasting. To do this, we used videos from the

Weizmann Human Action Dataset63. As above, we trained linear read-
out weights of the cv-NN on these individual naturalistic movie inputs
(Fig. 4a) and then tested whether, given the first half of the input
movie, the network could produce the second half in a closed-loop
forecast (Fig. 4b). Even with a muchmore sophisticated input than the
previous examples, the cv-NN can be trained rapidly and efficiently on
the natural movie inputs (Supplementary Table 2, Walking Person
Input). As in previous examples, at optimal values of the network
parameters (“Methods”—“Parameter optimization”), the cv-NN accu-
rately produces the natural movie using only its connection weights
(Fig. 4c, d and Supplementary Movie 2). In this case, the recurrent
connections in the cv-NN create complex wave patterns (Fig. 4e and
Supplementary Movie 2). The recurrent connections and their result-
ing complex activity patterns are important for success in this task, as
networks without recurrence do not produce accurate closed-loop
forecasts (Fig. 4f).

We then studied what specific features of the recurrent connec-
tions enable predicting naturalistic movie inputs. As in the moving
bump example, networks performbest when recurrence and input are
approximately balanced, and the performance quickly decays when
the recurrence is too weak or too strong (Fig. 5a, b). This result shows
that, as in the simple case of the moving bump, the complex

Fig. 2 | The network can forecast a simple video input many frames into the
future. a As in the classification example (Fig. 1), a video frame projects into the
network in a spatially local manner, and a recurrent network interaction occurs,
generating internal wave activity on top of the projection. The network outputs an
image from its network state via amatrix of trainable weights. Training entails one-
shot linear regression between a set of network states and the corresponding
desired output frames (the one-step-ahead next frames). Shown: a schematic
representation of the one-shot linear regression for one time step. bOnce training

of the readout weights is complete, closed-loop forecasting begins. To properly
test how well the network model learned the underlying spatiotemporal process
from the training data, it is deprived of ground-truth data of any kind during this
step. Instead, the forecast next frame at one time step serves as the input frame for
the following time step. c Video frames of the data: a bump tracing an orbit.
d Corresponding closed-loop forecasts generated by the network model with
optimal recurrence. e Network activity for the optimal-recurrence case. Cosine of
phase of activation is shown. f Closed-loop forecast in the case without recurrence.
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spatiotemporal predictions generated by the network depend on a
sophisticated interplay between input and recurrent connections. We
next studied the role of connection topography and distance-
dependent time delays. To do this, we started with networks that
achieve accurate predictions and randomly shuffled both the con-
nections and time delays, a control that removes the two key factors
for generating nTWs in large-scale spiking network models29 that
matchwaves observed in the visual cortex (Fig. 6a).We then compared
the closed-loop forecast performance and network activity in the
topographic and shuffled cases. In the topographic case, the cv-NN
produces accurate predictions and complex traveling wave patterns,
as before (Fig. 6b, c). The shuffled versions of the cv-NN, however,
produce spatiotemporally unstructured activity in the recurrent layer
(Fig. 6d) and do not achieve accurate closed-loop forecasts, even after
the cv-NN was retrained (Fig. 6e; see also Supplementary Table 3 and
Supplementary Movie 3). This result demonstrates that with all other
architectural features of the network held constant, a randomly con-
nected cv-NN that does not produce nTWs cannot be trained to per-
form CLF using the same procedure that was previously successful.
Shuffling only time delays in the cv-NN and then retraining also sub-
stantially drops closed-loop forecast performance (decreasing total
structural similarity from 0.99 to 0.02). Further, reducing the con-
duction speed in half and then retraining also results in a substantial
drop in performance (from 0.99 to 0.08). These two control analyses
demonstrate that successful closed-loop forecasts depend on a range
of time delays in the cv-NN. Finally, the specific spatiotemporal
structure of the input movie is also important: a cv-NN at the optimal
hyperparameters for a natural movie cannot be retrained to do closed-
loop forecasting on a randomized (phase-shuffled) version of the same
movie (Supplementary Table 1), demonstrating that the cv-NN utilizes
the specific spatiotemporal correlations in the movie to generate its
forecast. Taken together, these results demonstrate that the complex
spatiotemporal patterns generated by horizontal recurrent connec-
tions in the cv-NN enable performance on next-frame prediction and
closed-loop forecasting tasks for sophisticated natural movie inputs.

The nTW network model is capable of forecasting multiple
movies without retraining
We lastly sought to understand whether the cv-NN could perform
closed-loop forecasts onmultiplemovies it hadpreviously learned and
switch flexibly with changing inputs. To do this, we implemented a

simple competitive process (“Methods”—“Movie switching”) so that
the network could adapt its output based on the similarity of its pre-
diction to its input (Fig. 7a). Specifically, output weights for the cv-NN
were trained on individual movies (V1 and V2, cf. “Training” in Fig. 7a)
and stored in an aggregate matrix (V, cf. “Switching” in Fig. 7a). When
performing a closed-loop forecast, this extended network model can
receive new input from this previously learned set, and then rapidly
switch to closed-loop forecasting this new movie input within a few
frames without any retraining of weights in the individual output
matrices Vi (Fig. 7b and Supplementary Movie 4). This result demon-
strates that the process of closed-loop forecasting, mediated by hor-
izontal recurrent fibers in the network, cangeneralize to realistic visual
conditions with multiple, changing input streams.

Discussion
In this work, we have introduced a model to understand whether tra-
veling waves generated by horizontal connections in the visual cortex
may play a computational role in processing natural visual inputs. By
adapting a recurrent neural network model using a specific dynamical
update rule and learning rule, this model learns to forecast video
inputs ranging from simple visual stimuli to complex natural scenes.
We report here a network model that can be trained to produce
quantitatively verified closed-loop forecasts of richly textured natur-
alistic movies many frames into the future. The cv-NN introduced in
this work incorporates the spatial topography and time delays
important for shaping activity dynamics in single regions of the visual
system29 and provides a potential computational role for waves of
neural activity traveling over maps of visual space. Whether similar
principles of spatial topography could benefit RNNs, in general,
remains open but represents an interesting potential direction for
future work. Further, because the recurrent dynamics in the cv-NN are
tractable to detailed mathematical analysis36, this recurrent network
model opens new possibilities for understanding the mechanisms
underlying successful predictions studied here and for designing new
applications in future work.

Closed-loop forecasting in the cv-NN demonstrates a form of
short-term prediction by nTWs that may be relevant to the online
processing of continuous sensory input by the visual system.Consider,
for example, a batter in the game of baseball facing a pitcher who has
just pitched a curveball, now hurtling toward the batter at over 100
miles per hour. In major league baseball, a pitch takes around 400

Fig. 3 | Moving bump forecast performance depends on specific properties of
the recurrent connections. a Structural similarity (SSIM) between a forecast frame
and the ground truth as a function of the closed-loop forecast video frame. Each
curve corresponds to a different network parameter implementation. Curves have
been smoothed by a moving-average filter (filter width of 30 time steps). Shaded
error is the absolute difference between filtered and unfiltered. b Total structural
similarity, in which a single SSIM is calculated for the whole movie as a function of
the recurrence-to-input ratio. In the parameter space, each point differs only in
recurrent strength. Smoothing and error shading is the same as in (a). c Total

structural similarity as a function of recurrent length, which is the fraction of the
network’s side length spanned by one standard deviation of the Gaussian con-
nectivity kernel. In the three-dimensional parameter space comprising the recur-
rent strength (rs), recurrent length (rl), and input strength (is), averages (n = 89)
across rs-is planes at fixed rl were computed (gray curve). Solid gray line: average.
The peak coincides with the standard-deviation width of the Gaussian bump sti-
mulus (dashed vertical line). Shaded area: variance. Solid black curve: maximum
structural similarity at each recurrent length. Source data are provided as a Source
Data file.
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milliseconds to travel 60 feet from the pitcher’s hand to the batter at
home plate. Time is required for the neural computations that enable
the batter to perceive the ball and estimate its trajectory. This includes
both the time required for sensory information to travel from the
retinae to relevant brain areas and the time required for computation
of the ball’s trajectory in space based on these signals. Assuming the
entire computation can be accomplished in 150milliseconds64, during
this time, the ball will have traveledmore than 22 feet. To estimate the
likely current location of the ball based on information that was
available to the visual system 150milliseconds ago, the brainmay form
an internal model of the ball’s trajectory in space, informed by pre-
vious experience. Consistent with this idea, batters often report that,
as the spinning ball travels from the pitcher’s mound to home plate,
the curveball suddenly changes direction, an illusory percept referred

to as the curveball’s “break”65. Short-term predictions by nTWs may
represent one mechanism for rapid estimation of trajectories, as
continuous spatiotemporal structures propagating over the retino-
topicmap. In this way, closed-loop forecasts in the cv-NN could enable
the visual system to estimate the likely trajectory of the ball based on
training from the previous visual experience. The curveball’s “break”
further recalls the process of switching predictions when the input
becomes sufficiently discrepant with incoming sensory data (Fig. 7b).
When themovie switches fromone input to another (top row, “ground
truth”), the network generates a transiently indeterminate activity
pattern before jumping to the correct forecast (bottom row, “closed-
loop forecast”). In this way, the cv-NN may provide a mechanistic fra-
mework for specific hypotheses in futurework about the interactionof
short-term predictions generated by recurrent horizontal fibers and

Fig. 4 | The recurrent network performs next-frame forecasting of a natural
video input. a Training follows as in the moving bump example (Fig. 2a). b Next-
frame closed-loop forecasting follows as in the moving bump example (Fig. 2b).
c Video frames of the data: a person walking. d Corresponding closed-loop

forecasts generated by the network model in the case of optimal recurrence.
e Corresponding network states for the optimal-recurrence case (d). Cosine of
phase is shown. f Same as (d), but in the absence of recurrence.
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continuously incoming sensory input. The cv-NN could also be useful
as a model to explain how the brain encodes, stores, and recovers
episodic memories of richly textured visual scenes, which studies of
visual search66 and vivid recollection67,68 have shown are associated
with activity in visual regions.

Further, while the cv-NN is not intended to be a veridical simula-
tion of the millions of neurons contributing to nTW dynamics in the
visual cortex, this network model is broadly consistent with spatio-
temporal dynamics recently observed in the visual system of the alert
primate. In the case of a single point stimulus (Fig. 1c), the network
produces a traveling wave radiating out from the point of input. This is
similar to nTWs detected in single trials during voltage-sensitive dye
optical imaging in the primary visual cortex (V1) of awake macaques28.
nTWs evoked by small visual stimuli (Gaussian spot, with a standard
deviationof0.5° of visual angle) presented duringfixation consistently
evoked nTWs that propagate over 7.5mm of V1, representing a sig-
nificant portion of this cortical area69. The spatial extent of the nTWs
observed in the experiment provides a point of comparison with the
model, as spatial extent determines the scale at which local popula-
tions in V1 may influence others across the retinotopic map. In the cv-
NN, waves generated by small point stimuli propagate over slightly
more than one-third of the network (decaying to half-amplitude after
traveling over 37.5%of the network; Fig. 1c). These results demonstrate
that nTWsmay propagate over broadly similar spatial extents in visual
cortex and in the cv-NN.

Another point of comparison with measured neural dynamics
centers on the patterns evoked by moving stimuli. In the case of a
moving bump stimulus (Fig. 2), the network produces a bump of
activity, reflecting FF input driven by the movie but also reflecting
recurrently generated activity that extends beyond the feedforward
imprint of the stimulus (Fig. 2e). The radius of this recurrently gener-
ated activity is approximately twice thatof the feedforwardbump. This
result recalls analyses of Utah array recordings in V1 of awake
macaques70. Using a moving bar stimulus (0.5 × 4° of visual angle,
moving horizontally at 6.6° per second), the authors found responses
in V1 before stimuli entered neurons’ classical receptive field (cf.
Fig. 2C in ref. 70). The onset times of these anticipatory responses
became earlier and earlier along the moving bar’s trajectory. These
changes in time were confirmed with computational analyses and
modeling to be consistent with propagation along horizontal fibers in
V1, and the spatial extent of the recurrent interactions is, again,
approximately consistent with dynamics during closed-loop forecast-
ing in the cv-NN.

The dynamics of the cv-NN are thus broadly consistent with
observations of neuronal dynamics during normal processing in
awake, behaving primates. Recent work has demonstrated the
importance of the topographic connection patterns and axonal time
delays matching those found in the visual cortex to generate nTWs in
large-scale spiking network models29. Recent theoretical studies have
developed complex-valued network models that can provide analy-
tical insight into the time-varying dynamics of spiking neural
networks31,71, and future work could directly relate dynamics in the cv-
NN during movie prediction to the fine-scale spiking dynamics of the
networks in the visual cortex. Finally, in the case of naturalistic movie
inputs (Fig. 4), the cv-NN produces complex spatiotemporal patterns
that can be mathematically described in this model as the summation
of multiple traveling waves36,37. Future work analyzing large-scale
recordings will provide opportunities for comparison between activity
patterns in the visual cortex and in the cv-NN during the processing of
naturalistic movie inputs.

Another potential extension of the cv-NN is to consider multiple
recurrently connected layers with specializations similar to those in
different regions of the visual cortex. In this work, we focused on a cv-
NN with a single recurrently connected layer to understand the
potential computational role of nTWs that have recently been
observed in single cortical regions during visual perception in awake
animals. nTWshave been observed inmany visual areas, including V128,
V228, V472, and MT24,27,73. Adding multiple recurrent layers in the cv-NN
may provide opportunities in future work for understanding nTW
dynamics across visual areas, where spatiotemporal activity patterns
have recently been shown to propagate in feedforward and feedback
directions in different frequency ranges74. Finally, closed-loop fore-
casts in this cv-NN are not intended to be robust to arbitrary transla-
tions or rotations of the visual scene, and addingmultiple layers in the
cv-NN may provide a degree of translation invariance, which is
achieved in CNNs through cascading activity through multiple pro-
cessing layers75, and scale invariance, whichmay also bemade possible
through processing in multiple recurrent layers76. In this way,
extending the cv-NN with multiple recurrent layers represents an
important opportunity for understanding the organization and com-
putational role of nTWs occurring in many cortical areas in
future work.

These results provide fundamental insight into the function of
horizontal recurrent connections, whose effect on the moment-by-
moment computations in the visual systemhas remained unexplained.
While there has been much interest in the function of recurrent

Fig. 5 | Natural movie forecast performance depends on specific properties of
the recurrent connections. a Several examples of closed-loop forecast perfor-
mance. Structural similarity (SSIM) between a forecast frame and the ground truth
as a function of video frame during closed-loop forecasting. Each curve corre-
sponds to a different ratio of recurrent strength to input strength. Curves have
been smoothed by a moving-average filter (filter width of 30 time steps). Shaded

error is the absolute difference between filtered and unfiltered. b Total structural
similarity, in which a single SSIM is computed for the whole movie as a function of
the recurrence-to-input ratio. In the parameter space, each point differs only in
recurrent strength. Smoothing and error shading is the same as in (a). Source data
are provided as a Source Data file.
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horizontal fibers in the visual cortex, for example, in explaining
direction and orientation selectivity in V110,11 or in center-surround
models of the receptive field14,16,77, general computational roles for
traveling waves generated by the massive recurrent circuitry in single
cortical areas on the single-trial level remain unknown. Successful
models of the visual system, including feature-basedmodels and deep
convolutional neural networks, have provided insight into how neural

systems could process single image inputs but explain only a fraction
of the variance in neural responses to natural sensory stimuli18,78,79.
Importantly, it is not necessarily the case that all RNNs that can per-
form CLF will also exhibit nTWs; however, when networks possess the
main architectural features found in the visual cortex (local connec-
tions, retinotopically ordered inputs, and communication time
delays), we havedemonstrated that nTWs are tightly linked toCLF. The

Fig. 6 | Randomly shuffling recurrent connections eliminates nTWs and the
ability to forecast. a Left: the topographic network model used throughout this
study, featuring feedforward projections of the image input (red lines) and local
distance-dependent horizontal connectivity (blue lines). There are also synaptic
time delays proportional to a node pair’s separation distance within the horizontal

recurrent circuitry. Right: by randomizing the horizontal connection weights and
time delays, the topography in the network is removed. b Closed-loop forecasts
generated by the topographic network. c The network activity of the topographic
network in response to frames of a natural movie input. d Network activity of the
shuffled network. e Closed-loop forecasts generated by the shuffled network.
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cv-NNmay thus provide new opportunities for understanding how the
visual system processes continuously updated, movie-like visual
inputs, where information is extracted from the visual environment
moment-by-moment as it comes from the eye. The sophisticated
closed-loop movie forecasts produced by this network, and the fact
that this closed-loop forecast process can generalize tomultiplemovie
inputs, represent an important step in explaining the computational
role of recurrent connections and traveling waves in the visual cortex.

Methods
Custom MATLAB (version R2021a) code was used for all data simula-
tion and analysis in this study.

Network connectivity
The recurrent network is arranged on a square grid of N nodes. The
network grid is treated as a discretized Euclidean plane such that the
side lengths span distances of unity. Boundaries are not periodic. The
recurrent weight wij from node j to node i is inversely proportional to
their Euclidean distance dij so as to give local connectivity like that of
the neocortical sheet. Specifically, wij is Gaussian as a function of dij :

wij =α exp �d2
ij=ð2β2Þ

h i
: ð1Þ

The coefficientα is called the recurrent strength, and the standard
deviation β is called the recurrent length. Both are free parameters.
The maximum possible value of dij is

ffiffiffi
2

p
(corner to corner), and, for

example, β = 1 means that the recurrent length equals the network side
length. Further, allN2 suchweights are strictly positive, and theN-by-N
matrix of such weights is symmetric (wij =wji). Diagonal weights (wii)
are not set to zero.

Network dynamics
Network dynamics are given by a complex-valued equation. A complex
number z is of the form z = x + iy, where x is the real part, y is the
imaginary part, and i is the imaginary constant defined as i2 = �1.
Equivalently, z ¼ m exp½iϕ�, where m is the modulus and ϕ is the
argument. A complex number is intuitively visualized as a two-
dimensional vector, where x,yð Þ is its Cartesian representation and
m,ϕð Þ is its polar representation.What distinguishes a complex number
from a standard two-dimensional vector is the multiplication rule:
multiplication of two complex numbers corresponds to both a scaling
and a rotation in the so-called complex plane. This property makes
complex-valued representations of observable quantitiesmore concise
than real-valued representations, and thus, complex numbers are a
central tool in physics and engineering. From the perspective of bio-
logical vision, a complex-valued representation is useful. Since phase
information is important for representing visual inputs, complex-
valued models, which efficiently represent phase in the argument ϕ,
are ideal. Indeed, complex-valued models of vision are widely
explored80. Given the practical utility of artificial neural networks and
deep learning (including for modeling biological neural networks),
complex-valued neural networks, in which the neural activations are

Fig. 7 | The network is capable of forecasting multiple movies without being
retrained. a The recurrent network model was adapted to contain a higher-level
competitive-learning process. Left: Readout matrices were learned separately for
separate examples. Right: Storing the learned readout matrices in an aggregate
matrixV, the present network state drove the aggregatematrix toward either of the

learned matrices via an unsupervised competitive learning rule. b Beginning with
feeding frames from movie 1, the network takes some time to recall the learned
matrix that results in an accurate closed-loop forecast. Quickly switching to a dif-
ferent movie, the network once again takes some time to adjust its output weights
before converging to the correct ones for an accurate closed-loop forecast.
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complex-valued, are of great interest. However, they are notoriously
difficult to train, especially in a recurrent architecture32. We make an
advance here on this front by choosing a unique dynamical equation
and by exploiting the advantages of reservoir computing.

The discrete-time dynamical equation for each node i is

ai½t + 1�=ai½t�+ xi½t� � i
XN

j = 1

wij exp iðaj ½t � τij � � ai½t�Þ
n o

, ð2Þ

ai½t + 1� :¼ ai½t + 1�=∣ai½t + 1�∣: ð3Þ

Here,ai½t� is the complex-valued activation at discrete time t, xi½t� is the
feedforward input of the image stimulus to node i at discrete time t,
andwij is the recurrent weight fromnode j to node i (“Methods”—“Net-
work connectivity”). Further, τij is the discrete time delay between
nodes i and j, given by τij = round½dij=v� in which the Euclidean
distance dij between nodes i and j (“Methods”—“Network connectiv-
ity”) is scaled by the parameter v, which represents the speed of
activation transmission across the network, and round½dij=v� rounds
dij=v to the nearest integer in accord with the discrete-time dynamics.
A v-valueof, for example, v=0:1means the activation travels a distance
of one-tenth the network side length per time step. Lastly, themodulus
of ai½t� (i.e., ∣ai½t�∣) is normalized (Eq. (3)), which confines ai½t� on the
complex unit circle, and thus, the phase of ai½t� contains the dynamics.
We note that modulus normalization is a common operation used in
complex-valued neural networks32.

The specific formof Eq. (2) is unique compared to other complex-
valued neural-network equations because it involves a pairwise node
attraction aj½t � τij � � ai½t�. Another system with pairwise attraction is
the Kuramotomodel, a popular model for studying synchronization in
nonlinear systems81–83. Our presented system has a correspondence
with the Kuramotomodel84 and allows the description of the dynamics
for individual realization in terms of the eigenvalues and eigenvectors
of the network36. With the described local network connectivity and
distance-dependent delays, the presented system gives rise to mean-
ingful spatiotemporal self-organization dynamics.

The initial network state is ai½0�=0+0i for all nodes, and the first
several time steps contain transient activity associated with the input
disrupting the initial steady state of the system. For the stimulus pre-
diction task, this transient activity is important to the model and was
used, while for the next-frame forecasting task, it is distracting to the
model and was discarded.

Image read-in
At each discrete time step, a digital grayscale image is read into the
network. Prior to read-in, the image ismean-subtracted and divided by
its standard deviation across all its pixels (i.e., z-scored). Image read-in
is accomplished with a local feedforward projection, which mimics
retinotopy and preserves the spatial correlations in the image. Tech-
nically, this is a two-dimensional interpolation using the bilinear kernel
common in image processing, which takes a weighted average in the
nearest 2-by-2 pixel neighborhood. The projected image has

ffiffiffiffi
N

p
rows

and
ffiffiffiffi
N

p
columns like the network grid, and each pixel intensity of the

projected image is given by xi½t� (Eq. 2). Lastly, xi½t� is scaled according
to xi½t� : = γxi½t�, where γ is called the input strength. In ourmodel, γ is
the fourth and final free parameter after the recurrent strength,
recurrent length, and conduction speed.

Stimulus prediction task
The classification was performed using the basic perceptron. For an

input vectorv = 1 v1 � � � vN
� �T , where v1, . . . , vN are features, and a label

l 2 f0,1g, the goal is to find a hyperplane uTv= b+u1v1 + � � � +uNvN =0,

where u = b u1 � � � uN

� �T is a vector containing the bias b and weights

u1, . . . ,uN , that separates the data in the N-dimensional feature space
according to their binary class (0 or 1). During training, with a sub-
optimal u-vector and one example v-vector, the output classification
l =H(uTv) is computed, where H(�) is the Heaviside step function
defined as unity for positive argument and zero otherwise. For the
desired classification d (either 0 or 1), the signed distance Δ=d � l is
computed, where Δ 2 �1,0,1f g. With each new example v, the u-vector
is updated using the delta ruleu :=u + λvΔ, where λ is the learning rate.
To use the perceptron in multiclass classification, the one-versus-rest
scheme is used. That is, for the set of classes C = c1, . . . , cM

� �
, binary

classification is performed separately M times. Each time i, the two
classes are defined such that ci = 1 and Cnci =0, where “n” denotes the
set difference. Then, there areM weight vectors u1,…, uM, andM inner
products f 1 =u1

Tv, …, f M =uM
Tv for a given data vector v. The multi-

class classification is argmax
ci

f 1, . . . , f M
� �

.

In the stimulus classification task (Fig. 1c), input frameswere 50by
50 pixels, and the network was 50 by 50 nodes. There were six frames.
One of the first five frames was randomly chosen to contain the point
stimulus, and the remaining frames were entirely zero intensity. The
point stimulus was an isotropic two-dimensional Gaussian of standard
deviation of 0.05, and the input frames are defined on the Cartesian
grid �2,2½ �× �2,2½ �. The stimulus was centered in one of four equally
sized quadrants in the frame. The sequence of frames was sequentially
input to the network. There are exactly twenty classes: each of the first
five frames times each of the four quadrants in which the point sti-
mulus could occur. The column vector of activations corresponding to
the final (sixth) frame was used as predictor for all trials. The task was
repeated 100,000 times, with the time of stimulus (1 or 2 or 3 or 4 or 5)
and the location of the stimulus (quadrant 1 or 2 or 3 or 4) randomly
rechosen each time.

Closed-loop forecasting
The network outputs an image ofMr rows andMc columns of pixels—
the same size as the input image—at each time step. In both examples
(moving bump and natural movie), the network was 50 by 50 nodes
(N =2500). Recalling thatai½t� is the complex-valued activationof node
i at discrete time t (Eqs. (2) and (3)), theoutput transformation is linear:

yi½t�=
XN

j = 1
vijaj½t�0: ð4Þ

Here, yi½t� is the ith pixel intensity of the output image, and vij is the
ði,jÞth readout weight of the M-by-N matrix V, where M =MrMc. The
prime notation (′) indicates that the activation vector
a[t] = a1½t� � � �aN ½t�

� �T was mean-subtracted, which was done to avoid
an intercept term during training.

The readout weights vij
n o

ofV are the only weights trained in our
model, making our network a reservoir computer. Reservoir compu-
ters are recurrent neural networks that avoid the issues associatedwith
training recurrent weights and have been shown to perform well in
time series forecasting42. Suppose training begins at time step 1, after
discarding the initial transient, and ends at time step T. Defining a[t]′
= a1½t�0 � � �aN ½t�0
� �T , the matrix of regressors is then

A=
�
a½1�0 . . . a½T�0� ð5Þ

and the matrix of regressands (desired outputs) is

D=
�
f ½2� . . . f ½T+ 1��: ð6Þ

Hence, the desired outputs are simply the set of one-step-ahead
frames. Here, f[t] is the column vectorization of the tth input image
frame (before read-in) and is also mean-subtracted. Training entails
ordinary least-squares linear regression betweenA andD. BecauseD is
highly underdetermined (containing far fewer frames than pixels per
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frame), the matrix 2-norm of V was simultaneously minimized during
regression to reduce model bias.

Following training is closed-loop forecasting. At this point, the
network activation has been primed by being driven with the training
frames, and the readoutmatrixVhas been trained. In thefirst time step
of closed-loop forecasting, we input the corresponding video frame.
Subsequently, for steps ftg, the predicted output at time step t serves
as the input for time step t + 1.

In the moving bump example (Fig. 2), the frames are 30 by 30
pixels and defined on a �2,2½ �× �2,2½ � Cartesian grid. A two-
dimensional isotropic Gaussian of standard deviation 0.2 traced a
Lissajous curve given by the parametric equations xcðtÞ= sinðt=3Þ and
ycðtÞ= cosðt=3Þ, where ðxc,ycÞ is the center of the Gaussian in space and
t is a continuously valued time variable85. The Lissajous trajectory was
discretized to have 100 frames per cycle. The first cycle was discarded
to omit the initial transient network activity, the network was trained
on the subsequent 3 cycles, and closed-loop forecasting was per-
formed on the 2 cycles subsequent to that.

In the natural video example (Fig. 4), a walking video from the
Weizmann Human Action Dataset86 was used, in which a person
walks across the scene. We present several key examples here but
note that the model successfully performs closed-loop forecasting
for all movies in this dataset, where we define a successful closed-
loop forecast as one in which the total structural similarity is at least
0.9 (Supplementary Fig. 2, Supplementary Table 4). Segmentation
masks of the people in the videos are included with this dataset
(https://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.
html). Using these masks, we cropped the frames so that the person
was centered throughout the entire walk, giving frames of
approximately 80 by 50 pixels. Without performing this step, our
network model would fail: the training data would be independent
of the closed-loop forecast data since they would occupy exclusive
regions of the pixel space, and the model would not generalize to
the prediction data. Such nonstationary data have been successfully
taught to networks with approximate translation invariance, and
translation invariance is likely used in the brain to learn such
processes87. However, translation invariance is beyond the scope of
our study. The frames were then resized to be exactly 80 by 50
pixels. Finally, each video was around 70 frames long. To get more
frames without interpolation, we “bookended” each video by con-
catenating it with its temporal reverse sequence, where one cycle
consists of the original frames followed by the bookended frames.
The result is a longer video with the same spatiotemporal statistics.
The first cycle was discarded to omit the initial transient network
activity, the network was trained on the subsequent three cycles,
and the closed-loop prediction was performed on the two cycles
subsequent to that.

Tomeasure the balance between feedforward input and recurrent
interaction, we devised the recurrence-to-input ratio. Per Eq. (2), the
input and recurrence terms are the column vectors x[t]
= x1½t� � � � xN ½t�
� �T and r[t] = r1½t� � � � rN ½t�

� �T , respectively, where

ri½t�= � i
XN

j = 1

wij exp iðaj ½t � τij � � ai½t�Þ
n o

: ð7Þ

Further, let the matrices

R =
�
r½1� . . . r½T�� ð8Þ

and

X=
�
x½1� . . .x½T�� ð9Þ

be the horizontal concatenations of r[t] and x[t], respectively,
over closed-loop forecast times t,t + 1, . . . ,t’f g. The ratio is defined as

∣R∣F=∣X∣F, ð10Þ

where ||G||F denotes the Frobenius matrix norm of a matrix G, which is
equivalent to the Euclidean vector norm of the vectorization of G.

Movie switching
The network was trained on twomovie inputs: one of a walking person
(movie 1) and one of a jumping person (movie 1), both from the
Weizmann dataset. The same recurrent matrix was used in each
case–only the learnedmatrices (V1 andV2, respectively) differed. Let V
= cV1 + (1−c)V2, where c 2 ½0,1�. v stores both learnedmatrices, and the
present inputmodulates the relative contribution ofV1 andV2 using an
update rule for c. The structural similarity between the input and
output were computed at each time step t (S½t�), and the change
thereof was computed at each time step as ΔS = S[t] − S[t−1]. The
update rule is c :¼ c+Δc, where Δc = −ηsgn[ΔS] and η is the learning
rate, set to 0.1. Depending onwhichmovie (movie 1 ormovie 2) drives
the network, c tends toward 1 or 0, respectively. Once this happens,
this driving input is removed and closed-loop forecasting commences
as described. Switching entails instantaneously transitioning from
closed-loop forecasting of one movie to driving the network with the
frames of another movie. c then updates as described and is followed
by closed-loop forecasting again.

Parameter optimization
The random-search algorithm was used to optimize parameters for
closed-loop forecasting. Within specified bounds, each parameter was
randomly sampled, giving a point in the parameter space. The para-
meter space was randomly sampled in this way many times, and each
time, the structural similarity index was computed as the performance
index. The bounds within which the parameters were sampled are
given in Table 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The point stimulus and moving bump stimulus data generated in this
study can be generated from the code available at this study’s GitHub
repository (https://github.com/mullerlab/benignoEAwavecomp). The
raw data of the natural movies used in this study are provided by Lena
Gorelick, Moshe Blank, and Eli Shectman of the Weizmann Institute of
Science, available at https://www.wisdom.weizmann.ac.il/~vision/
SpaceTimeActions.html and this study’s GitHub repository. Source
data are provided with this paper.

Code availability
All codes associatedwith this study are available athttps://github.com/
mullerlab/benignoEAwavecomp88.

Table 1 | Intervals over which model parameters were ran-
domly searched during optimization

Parameter Sampled interval

Recurrent strength (0, 0.2)

Recurrent length (0, 0.2)

Input strength (0, 0.2)

v (0, 0.1)
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Supplementary Information for “Waves traveling over a map of visual space can ignite
short-term predictions of sensory input”
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2Western Institute for Neuroscience, Western University, London, ON, Canada

3Western Academy for Advanced Research, Western University, London, ON, Canada
4The Salk Institute for Biological Studies, La Jolla, CA, USA

Supplementary Figure 1. Distribution of the total structural similarity (structural similarity of the entire movie) for the
moving bump example (colour scale) throughout the parameter space (axes of recurrent strength, recurrent length, and input
strength). Four views of the same parameter space shown. Source data are provided as a Source Data file.
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total structural similarity = 0.9

Supplementary Figure 2. Total structural similarity provides a sensitive measure of movie similarity. The total structural
similarity between an example movie of a walking subject and the same movie with added Gaussian noise demonstrates how
this measure captures similarity between movies. With progressively higher noise amplitude (σnoise/σmovie in line plot), the
total structural similarity rapidly decreases from 1 (no noise) to low values. Example image sequences are provided at different
noise amplitudes (red dots on blue line) to illustrate the movie sequence at varying levels of added noise. Within a range of
small noise amplitudes (inset), the total structural similarity drops rapidly from 1 to 0.4. Source data are provided as a Source
Data file

Total SSIM
phase-unshuffled phase-shuffled

1.00

0.0126
0.0143
0.0086
0.0125
0.0095
0.0109
0.0211
0.0018
0.0069

Supplementary Table 1. Total structural similarity (SSIM) between ground-truth natural video and closed-loop forecast
frames for regular case (left column) and case where each frame of the video is phase-shuffled using the discrete Fourier transform
(right column). Shuffling was performed 10 times (mean ± standard deviation = 0.0169 ± 0.0050).
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input reservoir size video frame size (pixels) # of training frames training time (s)
closed-loop forecast

performance
(total SSIM)

moving bump 50x50 30x30 300 26.48 1.00
walking person 50x50 80x50 432 36.07 1.00

Supplementary Table 2. Training specifications for both forecasting examples for the cases of optimal hyperparameters.
Total SSIM, total structual similarity.

total SSIM
unshuffled shuffled
0.9996 0.0186
0.9978 0.3692
0.9998 0.4609
0.9993 0.5982
0.9999 0.0126
0.9989 0.1804
0.9982 0.0091
0.9998 0.4609
0.9992 0.0653
0.9998 0.4553

Supplementary Table 3. Left column: a random sample of ten well performing (total SSIM > 0.99) network implemen-
tations (mean ± standard deviation = 0.9988 ± 0.0014). Right column: topographically randomized versions of the network
implementations, in which the recurrent weights and time delays were shuffled (mean ± standard deviation = 0.2566 ± 0.2186).
Total SSIM, total structural similarity.

Movie SSIMtrain SSIMtest

Shahar walk 1.00 0.9999999254
Moshe walk 1.00 0.9999995867
Lyova walk 1.00 0.9999999899
Lena walk1 1.00 0.9999563115
Lena walk2 1.00 0.9999995154
Ira walk 1.00 0.9999872030
Ido walk 1.00 0.9999999976
Eli walk 1.00 0.9999993216

Denis walk 1.00 0.9999968517
Daria walk 1.00 0.9999962703

Supplementary Table 4. Results of 100 trials of the random-search optimization method performed on the free parameters
for each walking movie in the Weizmann dataset, in terms of the total structural similarity (SSIM)-values during training and
testing (SSIMtrain and SSIMtest, respectively) of the best trial for each movie.
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5 | Discussion

In this thesis, we explored the origins and roles of traveling waves of neural activity in the
visual cortex. In Work 1 (Chapter 2), a large-scale simulation of a spiking neural network
revealed the importance of distance-dependent time delays in shaping the spatiotemporal
dynamics into waves across the entire network. Importantly these waves agreed with those
observed in vivo and provide a possible mechanism of gain modulation that complements the
observed effect in vivo of the waves modulating perceptual sensitivity. In Work 2 (Chapter
3), we analyzed a nonlinear oscillator model of synchronization, also containing distance-
dependent delays. This approach provided analytical insight into the emergent traveling
waves in the system as individual eigenmodes contributing individual waves. In Work 3
(Chapter 4), we used the model from Work 2 in a machine-learning framework, and found
that the emergent traveling waves are helpful in forecasting spatiotemporally structured
natural movie inputs.

5.1 Distance-dependent delays induce spontaneous and
evoked traveling waves

Work 1 expanded on and sought to provide a mechanism for the recent experimental result
of spontaneous activity in cortex modulating online sensory processing, which impacted
perceptual sensitivity. These spatiotemporal dynamics are asynchronous throughout the
cortical area and are not stochastic. Instead, they are frequently shaped as traveling waves.
This spiking model, which is topographic and conductance-based, revealed the sufficiency
of distance-dependent conduction delays in describing the in-vivo results from Davis et al.,
2020. The waves are spontaneous and intrinsic in the sense that there is no forcing stimulus.
Moreover, their presence in the parameter space of excitatory and inhibitory conductances
(that generate asynchronous-irregular activity) is ubiquitous. These waves agreed with the
cortical recordings of awake, behaving marmosets, with wave speeds that matched the speed
of conduction of unmyelinated axonal horizontal fibres in layer 2/3.

Cortical regions possess horizontal axonal fibres reaching between hundreds of microns
and several millimeters (Angelucci et al., 2002; Stettler et al., 2002), and the associated
time delays range from several to tens of milliseconds (Bringuier et al., 1999; Girard et
al., 2001). Previous spiking models studied networks occupying 100 µm to 1 mm—smaller
scales than the ones considered in Work 1 (up to 6 mm on a side). Furthermore, some studies
posited that the spatiotemporal dynamics were negligibly affected by the distance-dependent
delays in the system (Mehring et al., 2003). On the other hand, many other studies have
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found time delays to meaningfully impact spatiotemporal dynamics (Crook et al., 1997;
Golomb and Ermentrout, 1999, 2000; Kriener et al., 2009; Kriener et al., 2014; Osan and
Ermentrout, 2001; Roxin et al., 2005, 2006; Senk et al., 2020). Furthermore, there are
previous topographic models that lack distance-dependent delays that have been shown to
produce traveling waves (Gong and van Leeuwen, 2009; Huang et al., 2019; Keane and Gong,
2015). However, the spiking activity associated with the waves from these network models
are highly correlated in space. Our large-scale spiking network model in Work 1 provides
evidence that distance-dependent delays in networks on the scale of entire visual cortical
areas are a fundamental substrate of spatiotemporal dynamics organized as spontaneous
traveling waves. Lastly, in this model, the local network dynamics remain asynchronous
despite the large-scale presence of the traveling waves. Thus, these spontaneous traveling
waves are compatible with the asynchronous-irregular regime. Perhaps more fundamentally,
they emerge from the topographic connectivity and distance-dependent delays, which respect
the physical structure of visual cortex.

Work 2 (Chapter 3) abstracted the important structural ingredients of the network model
of Work 1 (i.e., local distance-dependent connectivity and distance-dependent time delays)
into a ring network of coupled oscillators given by the Kuramoto model. We presented an
analytical approach to the spatiotemporal dynamics of this network. Based on a complex-
valued formulation of the Kuramoto model introduced by Muller et al., 2021 and Budzinski
et al., 2022, this framework allowed us to use a delay operator. Considering a matrix repre-
senting both the network connectivity and the delays, the effect of time delays in the system
could then be understood as a rotation of the eigenvalues in the complex plane.

In Work 3 (Chapter 4), a model based on that of Work 2 was used to ask what computa-
tions could be done by such a biologically constrained system known to exhibit traveling-wave
dynamics. In this case, however, the system received inputs of natural movie frames, and
was tasked with forecasting subsequent frames. The wave activity in this network is then
evoked (rather than spontaneous as in Works 1 and 2), reminiscent of a result observed in
macaque V1 by Muller et al., 2014.

Taken together, these results demonstrate the importance of distance-dependent time
delays in neural systems, in which traveling waves emerge that match those observed in
vivo.

5.2 Spontaneous cortical traveling waves are sparse and
may be a dynamic mechanism of gain modulation

In the spiking network model of Work 1, neuronal participation in the emergent traveling
waves was sparse at cortically realistic values of neuronal and synaptic density. This sparse-
ness of spiking enabled the waves to exist simultaneously with the asynchronous-irregular
spiking regime, which is a hallmark of spontaneous dynamics in cortex and also has estab-
lished computational benefits (Destexhe and Contreras, 2006; Destexhe et al., 2003; Renart
et al., 2010; Zerlaut and Destexhe, 2017). These waves are then considered sparse with
respect to the underlying spiking activity, and modulate responses to external stimuli (i.e.,
stimuli evoke responses modulated by the phase of the wave), consistent with the in-vivo
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5.3. EVOKED TRAVELING WAVES MAY ENABLE SHORT-TERM PREDICTION IN
INDIVIDUAL VISUAL CORTICAL AREAS CHAPTER 5. DISCUSSION

observation of Davis et al., 2020.
The spatiotemporal dynamics of these sparse waves is only salient for large enough net-

works (starting at hundreds of thousands of neurons in patches of several millimeters per
side). Although there are many synapses per neuron, the number of neurons in the network is
large, making the connectivity sparse. Such networks produce self-sustained asynchronous-
irregular dynamics thanks to the high synaptic density per neuron, which brings the synaptic
conductance values nearly in line with those observed in vivo (Kumar, Rotter, et al., 2008;
Kumar, Schrader, et al., 2008). In smaller networks possessing larger conductances, there is
strong and biologically implausible linking of spikes with changes in synapse-level potentials,
which causes what is known as shunting of inputs (Morrison et al., 2007). We exemplified
this effect by simulating a smaller network that produced dense waves.

Lastly, we tested whether the instantaneous state of dynamics in the network responsible
for sparse waves was capable of affecting the network’s excitability in response to driving
stimuli. Such studies have previously been performed in non-wave-generating networks for
an effect known as gain modulation (Chance et al., 2002). By stimulating a small pool
in the network, we showed that when the stimulus was aligned with the depolarized phase
of the wave, the evoked spiking response (and thus gain modulation) was stronger than
when aligned with the hyperpolarized phase, in agreement with the wave phase-dependent
modulation of evoked firing rates in marmoset area MT observed in vivo by Davis et al., 2020.
As a control, a smaller-scale network that resulted in dense waves was also subjected to this
stimulation, and there was little phase-dependent gain modulation. These effects indicate
that the propagation of the wave front of a sparse wave shifts the local excitatory-inhibitory
balance that in turn modifies the local network excitability.

5.3 Evoked traveling waves may enable short-term pre-
diction in individual visual cortical areas

In Work 3, we used the model of Work 2 (containing local spatial connectivity and distance-
dependent time delays) to understand whether traveling waves generated by horizontal con-
nections in visual cortex may play a computational role in processing natural visual inputs.
With an appended learning rule, the model learned to forecast video frames of one of several
different naturalistic movies at a time, such as that of a moving dot stimulus or a walking
person. With the adequate amount of drive in the network due to recurrent inputs, learn-
ing successfully resulted in forecasts that extended many frames into the future, even after
cutting off ground-truth inputs and instead feeding predictions as subsequent inputs in the
so-called closed-loop forecasting paradigm.

In a simple spatiotemporal classification task, the network exhibited radiating traveling
waves that enabled successful classification, and, importantly, in the case of forecasting, the
network activity revealed evoked traveling waves in response to the input frames. For exam-
ple, a moving centre-surround-type activity pattern was visible when the network learned
to forecast the moving dot, and a stream of waves propagated across the network on top of
the imprinted walking person. As the precise computational roles of such evoked traveling
waves continue to be studied, the result in Work 2 shows that traveling waves in the present
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system are the superposition of individual simpler traveling waves given by the eigenmodes
of the system. Hence, one can imagine these different wave components given by the eigen-
modes as representing different past experiences, where the network becomes dominated by
the set of modes that most closely matches the present input. In this way, the waves could
serve as dynamical phenomena that enable short-term predictions based on the momentary
spatiotemporal input. In a preliminary demonstration, the network was trained on two dif-
ferent naturalistic movies, and we found that the network could successfully switch forecasts
between these two movies using a simple competitive mechanism.

5.4 Conclusion

Overall, using simulations, mathematical analyses, and machine learning, the results in
Works 1, 2, and 3 contribute to a deeper understanding of spatiotemporal dynamics in
mesoscopic neural systems, where the effects of heterogeneous time delays and distance-
dependent connectivity are meaningful, and emergent activity patterns like traveling waves
influence the computations that the network can perform. Subsequent experimental and
theoretical work will help to further elucidate the mechanics and functions of this interesting
regime of cortical dynamics.

67



Bibliography

Angelucci, A., Levitt, J. B., Walton, E. J., Hupe, J.-M., Bullier, J., & Lund, J. S. (2002).
Circuits for local and global signal integration in primary visual cortex. Journal of
Neuroscience, 22 (19), 8633–8646.

Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity:
Explanation of the large variability in evoked cortical responses. Science, 273 (5283),
1868–1871.

Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation
frequency by balancing excitation with inhibition. Neuron, 62 (4), 566–577.

Benigno, G. B., Budzinski, R. C., Davis, Z. W., Reynolds, J. H., & Muller, L. (2023). Waves
traveling over a map of visual space can ignite short-term predictions of sensory input.
Nature Communications, 14 (1), 3409.

Bringuier, V., Chavane, F., Glaeser, L., & Frégnac, Y. (1999). Horizontal propagation of
visual activity in the synaptic integration field of area 17 neurons. Science, 283 (5402),
695–699.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of computational neuroscience, 8, 183–208.

Brunel, N., & Wang, X.-J. (2003). What determines the frequency of fast network oscilla-
tions with irregular neural discharges? i. synaptic dynamics and excitation-inhibition
balance. Journal of neurophysiology, 90 (1), 415–430.

Budzinski, R. C., Nguyen, T. T., Ðoàn, J., Mináč, J., Sejnowski, T. J., & Muller, L. E. (2022).
Geometry unites synchrony, chimeras, and waves in nonlinear oscillator networks.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 32 (3), 031104.

Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background
synaptic input. Neuron, 35 (4), 773–782.

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado,
G. S., Newsome, W. T., Clark, A. M., Hosseini, P., Scott, B. B., et al. (2010). Stim-
ulus onset quenches neural variability: A widespread cortical phenomenon. Nature
neuroscience, 13 (3), 369–378.

Crook, S. M., Ermentrout, G. B., Vanier, M. C., & Bower, J. M. (1997). The role of axonal
delay in the synchronization of networks of coupled cortical oscillators. Journal of
computational neuroscience, 4, 161–172.

Davis, Z. W., Benigno, G. B., Fletterman, C., Desbordes, T., Steward, C., Sejnowski, T. J.,
H. Reynolds, J., & Muller, L. (2021). Spontaneous traveling waves naturally emerge
from horizontal fiber time delays and travel through locally asynchronous-irregular
states. Nature Communications, 12 (1), 6057.

68



BIBLIOGRAPHY BIBLIOGRAPHY

Davis, Z. W., Muller, L., Martinez-Trujillo, J., Sejnowski, T., & Reynolds, J. H. (2020).
Spontaneous travelling cortical waves gate perception in behaving primates. Nature,
587 (7834), 432–436.

Demas, J., Manley, J., Tejera, F., Barber, K., Kim, H., Traub, F. M., Chen, B., & Vaziri,
A. (2021). High-speed, cortex-wide volumetric recording of neuroactivity at cellular
resolution using light beads microscopy. Nature Methods, 18 (9), 1103–1111.

Denève, S., & Machens, C. K. (2016). Efficient codes and balanced networks. Nature neuro-
science, 19 (3), 375–382.

Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states.
Science, 314 (5796), 85–90.

Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field
potentials and unit discharges in cat cerebral cortex during natural wake and sleep
states. Journal of Neuroscience, 19 (11), 4595–4608.

Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical
neurons in vivo. Nature reviews neuroscience, 4 (9), 739–751.

El Boustani, S., Pospischil, M., Rudolph-Lilith, M., & Destexhe, A. (2007). Activated cortical
states: Experiments, analyses and models. Journal of Physiology-Paris, 101 (1-3), 99–
109.

Girard, P., Hupé, J., & Bullier, J. (2001). Feedforward and feedback connections between
areas v1 and v2 of the monkey have similar rapid conduction velocities. Journal of
neurophysiology, 85 (3), 1328–1331.

Golomb, D., & Ermentrout, G. B. (1999). Continuous and lurching traveling pulses in neu-
ronal networks with delay and spatially decaying connectivity. Proceedings of the
National Academy of Sciences, 96 (23), 13480–13485.

Golomb, D., & Ermentrout, G. B. (2000). Effects of delay on the type and velocity of travel-
ling pulses in neuronal networks with spatially decaying connectivity. Network: Com-
putation in Neural Systems, 11 (3), 221.

Gong, P., & van Leeuwen, C. (2009). Distributed dynamical computation in neural circuits
with propagating coherent activity patterns. PLoS Computational Biology, 5 (12),
e1000611.

González-Burgos, G., Barrionuevo, G., & Lewis, D. A. (2000). Horizontal synaptic connec-
tions in monkey prefrontal cortex: An in vitro electrophysiological study. Cerebral
Cortex, 10 (1), 82–92.

Huang, C., Pouget, A., & Doiron, B. (2022). Internally generated population activity in cor-
tical networks hinders information transmission. Science Advances, 8 (22), eabg5244.

Huang, C., Ruff, D. A., Pyle, R., Rosenbaum, R., Cohen, M. R., & Doiron, B. (2019).
Circuit models of low-dimensional shared variability in cortical networks. Neuron,
101 (2), 337–348.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148 (3), 574.

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., Lee,
A. K., Anastassiou, C. A., Andrei, A., Aydın, Ç., et al. (2017). Fully integrated silicon
probes for high-density recording of neural activity. Nature, 551 (7679), 232–236.

Keane, A., & Gong, P. (2015). Propagating waves can explain irregular neural dynamics.
Journal of Neuroscience, 35 (4), 1591–1605.

69



BIBLIOGRAPHY BIBLIOGRAPHY

Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., & Arieli, A. (2003). Spontaneously
emerging cortical representations of visual attributes. Nature, 425 (6961), 954–956.

Kriener, B., Helias, M., Aertsen, A., & Rotter, S. (2009). Correlations in spiking neuronal net-
works with distance dependent connections. Journal of computational neuroscience,
27, 177–200.

Kriener, B., Helias, M., Rotter, S., Diesmann, M., & Einevoll, G. T. (2014). How pattern
formation in ring networks of excitatory and inhibitory spiking neurons depends on
the input current regime. Frontiers in computational neuroscience, 7, 187.

Kumar, A., Rotter, S., & Aertsen, A. (2008). Conditions for propagating synchronous spiking
and asynchronous firing rates in a cortical network model. Journal of neuroscience,
28 (20), 5268–5280.

Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state of
cortical networks. Neural computation, 20 (1), 1–43.

Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons.
Science, 268 (5216), 1503–1506.

Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and
propagation of synchronous spiking in locally connected random networks. Biological
cybernetics, 88 (5), 395–408.

Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing-dependent plasticity in
balanced random networks. Neural computation, 19 (6), 1437–1467.

Muller, L., Mináč, J., & Nguyen, T. T. (2021). Algebraic approach to the kuramoto model.
Physical Review E, 104 (2), L022201.

Muller, L., Reynaud, A., Chavane, F., & Destexhe, A. (2014). The stimulus-evoked pop-
ulation response in visual cortex of awake monkey is a propagating wave. Nature
communications, 5 (1), 3675.

Nandy, A., Nassi, J. J., Jadi, M. P., & Reynolds, J. (2019). Optogenetically induced low-
frequency correlations impair perception. Elife, 8, e35123.

Osan, R., & Ermentrout, B. (2001). Two dimensional synaptically generated traveling waves
in a theta-neuron neural network. Neurocomputing, 38, 789–795.

Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., & Harris, K. D.
(2010). The asynchronous state in cortical circuits. science, 327 (5965), 587–590.

Roxin, A., Brunel, N., & Hansel, D. (2005). Role of delays in shaping spatiotemporal dy-
namics of neuronal activity in large networks. Physical review letters, 94 (23), 238103.

Roxin, A., Brunel, N., & Hansel, D. (2006). Rate models with delays and the dynamics of
large networks of spiking neurons. Progress of Theoretical Physics Supplement, 161,
68–85.

Sato, T. K., Nauhaus, I., & Carandini, M. (2012). Traveling waves in visual cortex. Neuron,
75 (2), 218–229.

Senk, J., Korvasová, K., Schuecker, J., Hagen, E., Tetzlaff, T., Diesmann, M., & Helias,
M. (2020). Conditions for wave trains in spiking neural networks. Physical review
research, 2 (2), 023174.

Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization.
Current opinion in neurobiology, 4 (4), 569–579.

70



BIBLIOGRAPHY BIBLIOGRAPHY

Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons:
Implications for connectivity, computation, and information coding. Journal of neu-
roscience, 18 (10), 3870–3896.

Stettler, D. D., Das, A., Bennett, J., & Gilbert, C. D. (2002). Lateral connectivity and
contextual interactions in macaque primary visual cortex. Neuron, 36 (4), 739–750.

Tsodyks, M., Kenet, T., Grinvald, A., & Arieli, A. (1999). Linking spontaneous activity of
single cortical neurons and the underlying functional architecture. Science, 286 (5446),
1943–1946.

Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science, 274 (5293), 1724–1726.

Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of
integrate-and-fire neurons. Journal of neuroscience, 25 (46), 10786–10795.

Zerlaut, Y., & Destexhe, A. (2017). Enhanced responsiveness and low-level awareness in
stochastic network states. Neuron, 94 (5), 1002–1009.

71


	Visual Cortical Traveling Waves: From Spontaneous Spiking Populations to Stimulus-Evoked Models of Short-Term Prediction
	Recommended Citation

	tmp.1693538565.pdf.ShAeT

