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Abstract 

Software quality assessment and prediction has been a research hotspot and has become even 

more critical in continuous software engineering. Modifications to a software product 

developed following a continuous software engineering process typically commence as a 

sequence of frequent commits, following a philosophy of “commit small, commit often.” 

Continuous integration (CI) and continuous deployment (CD) are essential concepts in this 

development environment. The challenge then is to develop techniques and tools which allow 

the development team to assess the overall quality posture of a software module in the period 

from a bug-inducing commit (i.e., when a bug is reported) to a bug-fixing commit (i.e. when a 

bug is reported fixed. The hypothesis is that in this period, the quality posture of the software 

modules involved in a bug-inducing/bug-fixing commit pair undergoes changes which may 

give developers insights that a bug-fixing commit is not only within reach but also the overall 

quality posture of the system is improving. In this thesis, we perform a quantitative analysis of 

how the posture of a software module changes and whether those changes follow a pattern that 

can be used as a predictor for an imminent bug-fixing commit. In this thesis, the posture of a 

module is denoted by a vector of metrics values computed from the source code and from 

information extracted from GitHub and Bugzilla repositories. The results indicate that a 

considerable number of bug-fixing commits in many software projects is preceded by a typical 

posture, and the occurrences of some posture combinations are more likely than others to be 

succeeded by a bug-fixing commit.  

 

 

Keywords: Software quality, continuous software engineering, process metrics, quantitative 
analysis 
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Summary for Lay Audience 

Software development teams always pursue high-quality software, yet quality as a concept is 

multifaceted and hard to measure. Software bugs are significant causes of system failure and 

poor quality. While most of the work in this field relies on Machine Learning and software 

metrics to predict and fix potential quality-influencing bugs in advance, more effort must be 

made to understand when the actual bugs are fixed, representing the point where product 

quality is restored. In this thesis, we examine first whether there are any commonly occurring 

noticeable patterns which manifest an unhealthy system posture and second, whether the 

manifestations of these patterns are more probable to be followed by fixes of bugs. The findings 

in the thesis lead to a better understanding of quality restoration, which is an essential part of 

the software quality profile. 
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Chapter 1  

1 Introduction 

1.1 Preface 

Evolved from agile software development methodologies, continuous software engineering 

(CSE) has emerged as a software development paradigm which has gained significant 

attention in the last decade. In contrast to traditional release engineering, which is dominated 

by concentrated but sparse releases, CSE accelerates the software development process by 

enabling continuous integration and deployment through frequent short, incremental, and 

iterative development revisions. The wide adoption of CSE has facilitated the intensive use of 

version control systems (VCS) such as Git and Mercurial. A release in CSE typically 

manifests as a series of frequent but small commits. Frequent releases introducing new 

incremental features bring higher customer satisfaction but, at the same time, make software 

quality highly subject to change. 

As software continues to be ubiquitous in our lives, techniques to assess the quality of a 

software system have become increasingly important in software engineering. Stakeholders 

need to know whether the software they use and depend on maintains high quality. Over the 

years, software quality has been explored in different facets: reliability, maintainability, 

security, efficiency, and size. Major organizations such as IEEE, ISO, PMI, NASA, and NIST 

have all contributed to definitions and quantifiable software quality measures. This thesis 

focuses on features that deal with maintainability and ease of evolution as key quality factors. 

Software failures caused by faults (i.e. bugs) lead to degradation of the user-perceived quality 

[1]. Over the past decade, the software engineering community has invested significant 

resources to develop techniques for identifying error-prone modules using metrics and 

machine learning. These efforts aimed to assign fault proneness to a given module or predict 

a bug-inducing commit. Despite many efforts to ensure faults are detected and fixed early, 
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they occur inevitably. In the CSE development process, software quality declines when one 

or more bugs are inserted into the system in a bug-inducing commit (BIC) and is improved 

when bugs are fixed in a bug-fixing commit (BFC). In this agile environment, understanding 

how the quality of a software module in the period of certain relevant commits before a BFC 

evolves is a way to assess the impact of BIC on the module’s quality. However, to date, little 

effort has been invested in examining the quality changing of a software module in the period 

between a BIC and a BFC. 

Software metrics are well-defined measurements that reveal unique aspects of software and 

play a crucial role in assessing software quality. Most quantitative models for assessing 

software quality rely on software metrics. However, the practical applications of metrics are 

facing several major challenges. First, many software metrics that are used extensively in 

research were proposed decades ago, and many of them are becoming less suitable to 

measure software in this era of continuous processes [2] [3] [4]. More advanced software 

metrics are needed to measure the constantly evolving development process of CSE. Second, 

esoteric software metrics proposed in academia are seldom used practically in the industry. 

The industry needs metrics that are both easy to understand and collect to aid managerial 

decision-making in the software lifecycle. 

For this thesis, we investigate a combination of source code and process metrics to define a 

feature vector that characterizes the current posture of a software module (i.e., a file or a 

package). As each metric measures particular aspect of the software, a combination of 

metrics describes a more detailed situation which can be used to model the software. We, 

therefore, define a posture in the CSE development process as a unique combination of 

several process and source code metrics. Furthermore, much research [5] [6] [7] [8] [9] [10] 

advocates that metrics with extreme values are manifestations of defects. In this thesis, we 

model software quality by capturing extreme values. A software metric is considered 

abnormal if it exhibits a very high or very low value in a software project’s history. An 

abnormal posture of a module in a commit is defined as a posture where all metrics have 
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abnormal values at the same time. A fault, which caused an observed bug, is fixed by one or 

more bug-fixing commits (BFCs), and a set of commits before a BFC that might contain an 

abnormal posture that leads to this BFC are named pre-bug-fixing commits (P-BFCs). 

This thesis has three major objectives. The first objective is to investigate a combination of 

source code and process metrics which can be extracted from reconciled GitHub and Bugzilla 

records and can be used to define the posture (i.e., the quality profile) of a module in a given 

commit. The second objective is to design and implement a technique which identifies 

patterns of postures (i.e., patterns of metrics) which frequently occur as the quality of the 

system is improved from the point in time a bug-inducing commit low-quality state) occurs to 

the time a bug-fixing commit (higher quality state) occurs. The third objective is to conduct 

this analysis under different scenarios and identify whether the selection of pre-bug-fixing (P-

BFC) commits plays a role in the analysis.  

In our analysis, we are interested in examining a) the frequency (total occurrence) of each 

posture and b) how likely (i.e. the rate of the frequency) a posture occurs in P-BFCs. The 

technique can be summarized into four main steps. In the first step, we identify the BFCs and 

BFC-related files by reconciling commit data from GitHub and project bug information from 

Bugzilla. Several software process metrics are extracted from reconciled data, and we also 

propose a set of new process metrics based on old ones, seeking improvements from them. In 

the second step, we identify P-BFCs through the different strategies we proposed for this 

thesis. In the third step, the metric values are converted into four categorical groups to study 

the abnormal behaviours, namely the very low, low, high, and very high groups. In the fourth 

step, we leverage conditional frequency analyses to answer two research questions: a) given 

the occurrence of BFCs, what are the most frequent posture patterns that occurred commonly 

before them? and b) what is the likelihood of having BFC given a posture pattern occurring 

in P-BFCs? We use various project characteristics to explain and understand the distinct 

results afterwards. The answers to these two questions can provide insights to developers that 

the posture of their system leading towards a BFC.  
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1.2 Problem Description and Approach Outline 

As discussed above, the development process of a software project which conforms with CSE 

processes is manifested by a sequence of frequent but small commits. In this development 

paradigm, each commit consists of small modifications adding very specific features to the 

system. These modifications are usually made to selected specific files of the project.  

For our work, we assume a software system S which in its lifecycle produces a time-ordered 

sequence of commits Cs = [C1, C2, C3, …, Cn], where for any two commits of Cs, Cm and 

Cn, if m<n then Cm is committed before Cn. Modern Version Control Systems like GitHub 

capture and record valuable information along with each commit related to the number of 

lines added, deleted, and modified. Similarly, metrics tools can capture other valuable metrics 

related to the committed files, such as cyclomatic complexity and information flow. In 

addition to the above process metrics, several other aggregate metrics can also be computed, 

such as the commit frequency of a file, the average commit size, etc. Assuming that each 

commit contains several files {f1, …fi}, then commit Ck ∈ Cs can be represented by a matrix 

as follows: 

𝐴𝐴𝐶𝐶𝑘𝑘 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑓𝑓1 𝑎𝑎𝑓𝑓1,𝑚𝑚1 𝑎𝑎𝑓𝑓1,𝑚𝑚2 … 𝑎𝑎𝑓𝑓1,𝑚𝑚𝑗𝑗

𝑓𝑓2 𝑎𝑎𝑓𝑓2,𝑚𝑚1 𝑎𝑎𝑓𝑓2,𝑚𝑚2 … 𝑎𝑎𝑓𝑓2,𝑚𝑚𝑗𝑗

𝑓𝑓3 𝑎𝑎𝑓𝑓3,𝑚𝑚1 𝑎𝑎𝑓𝑓3,𝑚𝑚2 … 𝑎𝑎𝑓𝑓3,𝑚𝑚𝑗𝑗

⋮ ⋮ ⋮ ⋱ ⋮
𝑓𝑓𝑖𝑖 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚1 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚2 … 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

 

where 𝑓𝑓1 to 𝑓𝑓𝑖𝑖 are files participate in commit Ck. In this context, each row of the matrix 

𝐴𝐴𝐶𝐶𝑘𝑘 represents a vector of metrics associated with a file contained in the commit. Using the 

bug report of the software product S from a bug tracking system like Bugzilla, through a 

temporal reconciliation process, we are able to identify which commits fix a bug (hence a 

bug-fixing commit, BFC) and, more importantly, which files of a bug-fixing commit may be 

related to a fix, since not all files of a bug-fixing commit are necessarily related a fix. We 
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label each file in each commit with a binary label is_bug_fixing, indicating whether the 

change made to the file in this commit is for fixing a bug (True) or not (False). In our 

experiment, if at least one file in a commit has an is_bug_fixing label value set to true, then 

the containing commit is treated as a bug-fixing commit (BFC). Having identified all BFCs, 

we carry on the study by identifying a set of commits that occurred before each BFC (hence a 

pre-bug-fixing commit, PBFC). 

The problem statement can then be formalized as follows: 

Let S be a software system with commits [C1, C2, …. Cn], where each commit Ci contains the 

files fi,1, fi,2, fi, m and each such file fi, j is modelled as a vector of metrics Vi, j we refer to as 

the posture of the file fi, j. Let also P be a reconciliation process between GitHub and Bugzilla 

records which tags a file in a bug-fixing commit as the file being the bug-fixing related file. 

For each bug-fixing commit, let us define an interval I, which refers to commits which relate 

to the bug-fixing commit (i.e., contain similar files). The objective is to conduct an analysis 

whereby we can identify commonly occurring patterns of file postures which appear in a 

period before a bug-fixing commit (i.e., within the interval I) so that we can reason as to how 

a file gradually moves from a low-quality posture (the bug-inducing commit) to a higher 

quality posture (i.e., the bug-fixing commit).      

In this respect, two analyses are conducted:  

• the first is to examine the conditional frequency rate (CFR): CFR (posture pattern | 

BFC), and  

• the second is to examine the conditional frequency rate: CFR (BFC | posture 

pattern). 
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1.3 Thesis Contributions 

This thesis contributes to software quality assessment in continuous software engineering 

processes by proposing the following: 

1. A collection of source code and process metrics extracted from GitHub and Bugzilla 

repositories can be used to define the quality posture of a file in a commit. 

2. An analysis method to identify the likelihood of patterns which may relate to bug-

fixing commits (Analysis 1) and the likelihood of a bug-fixing commit given a 

posture pattern (Analysis 2). 

3. An analysis to examine whether the type of projects and the selection of interval I 

(pre-bug-fixing commit period) affect the obtained results (See Strategy 1, 2, and 3 

in Chapters 5 and 6). 

1.4 Thesis Outline 

This thesis is organized as follows. In Chapter 2, we provide research works and background 

knowledge relevant to this thesis. Chapter 3 describes the acquisition process of the data used 

in our experiment. Chapter 4 discusses how the proposed software metrics are computed. In 

Chapter 5, the proposed quality assessment technique is detailed. We present the experiment 

and results in Chapter 6. Finally, conclusions and future directions of the thesis are provided 

in Chapter 7.  
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Chapter 2  

2 Background and Related Work 

2.1 Software Quality Assessment 

Software is penetrating and reshaping almost every aspect of our life now. The thriving 

growth of the software industry has made software quality essential for remaining 

competitive in the market. However, software quality is a vague and abstract concept, and 

various approaches have been proposed over the years for measuring software quality. 

Boehm [11] and McCall [12] presented two of the earliest software quality models, defining a 

set of software quality attributes and sub-attributes organized hierarchically. These early 

quality models led to formalizing global standards for evaluating software quality. The 

ISO/IEC 9126 quality reference model and its successor ISO/IEC 25010, were defined in 

1991 and 2011, respectively. The SQA models mentioned above are still relatively abstract; 

that is, the quality attributes proposed are still high-level and often can’t be directly used to 

ascertain detailed quantitative assessments for a specific system under analysis. Coleman et 

al.’s maintainability index (MI) [13] was one of the first efforts to address the drawback. In 

their work, they focus on maintainability, a major quality attribute. They assess 

maintainability by a four-metric polynomial function extracted from 50 regression models, 

where each metric is adjusted by a weighting coefficient. Similarly, Bansiya and Davis 

extend Coleman et al.’s work to compute all quality attributes using metric-based polynomial 

equations [14]. The major research trend today is to employ machine (ML) learning 

techniques to achieve better quality assessment or prediction results [15] [16]. 

2.2 Software Fault Prediction 

When the complexity of software increases over the years due to prolonged maintenance and 

evolution, its fault proneness increases as well. According to IEEE standard classification for 
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software anomalies, software failure is defined as the deviation of the observed behaviour 

from the specified expected one and can be caused by one or more faults, defined as 

imperfections or deficiencies in the product which do not fulfill its requirements [17]. In 

order to sustain good quality, software fault prediction (SFP) has been a research hotspot. 

SFP involves the use of various techniques to detect pre-existed fault-prone components in 

advance. 

However, software as a complex artifact can be hard to measure, model, or justify. Software 

metrics have been proposed for this reason. Many SFP models or techniques rely upon 

software metrics covering different system facets of a software system (i.e. structure, run-

time behaviour, data flow etc.). The two main types of SFP models are regression and 

classification. Classification techniques aim at classifying software components into faulty or 

non-faulty classes, whereas the objective of a regression-based model is to predict the number 

of faults within a module.  

2.3 Software Metrics 

Software metrics are imperative building blocks for any software analytical tools, so this 

section is dedicated to providing comprehensive background information and related works 

done in the joint domain of SFP, ML, and metrics. According to the IEEE “Standard of 

Software Quality Metrics Methodology,” a software metric is a function that takes software 

data as input and outputs numerical value that can be interpreted as the degree to which 

software possesses a given attribute that affects its quality [18]. In general, software metric 

provides quantitative measurements of certain aspects of a software product or process, and 

these informative measurements can be precious guidance in decision-making.  

Based on the studied literature, software metrics currently lack a clear and universal 

classification. Different names referred to the same classification were used across most of 

the papers. However, two widely agreed classes for software metrics are product metrics and 

process metrics [19] [20] [21]. Product metrics are metrics extracted from attributes of the 
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final developed product, providing a comprehensive understanding of the system’s size and 

complexity [19] [21]. Product metrics can be further classified into static metrics and 

dynamic metrics. Static metrics can be acquired from code, whereas dynamic metrics are 

based on the running of software programs. Process metrics deal with features collected 

during the software development lifecycle [20]. In general, process metrics scale when 

software evolves and gains in size.  

Figure 1 gives a broad classification of software metrics, and we will present examples of 

proposed metrics in some classes in the following sections. We will elaborate on process 

metrics since they are the underlying metric in this thesis and will be brief on less relevant 

ones. 

2.3.1 Static Metrics 

Size Metrics are among the earliest and most widely used static metrics which measure the 

size of the software product. Size metric is naturally a good indicator of programmer 

productivity. Some obvious advantages of size metrics are intuitive, well-defined, and easy to 

compute [21] [22]. However, it cannot be measured in the early stage of the coding process 

[21]. One typical example of a size metric is the line of code (LOC), which measures the 

number of lines in code files of software. The results from a recent systematic literature 

review of software quality assessment or prediction models [23] [24] suggest that LOC is 

Figure 1: Metric Classification 
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chosen as a primary metric in most studies. In this thesis, LOC is used in combination with 

other process metrics. A few refined LOC variants have been developed throughout its long 

history; for example, source lines of code (SLOC), sometimes called the logic line of code, is 

LOC that excludes comment lines, empty lines, and syntactic symbols that have no logical 

meaning such as the curly brackets in Java, and Kilo-SLOC (KSLOC), as its name suggests, 

often used in large-sized software projects. LOC-based size metrics suffer from certain 

drawbacks [14] [15] [16] [17], some of which are listed below: 

 Language Depending: programs written in different programming languages that serve 

the same functionalities tend to have different LOC. 

 Developer Variation: senior developers tend to use less LOC than junior ones when 

implementing the same logic. 

 Lack of Universal Counting Standards: How should a statement spanned over several 

lines be counted? Different counting standards result in different LOC. 

Function Points (FP) is another significant size metric proposed shortly after LOC by 

Albrecht in [25]. FP calculates the volume of functionality delivered by a software module. 

To compute the Function Points metric, the number of inputs, outputs, inquiries, internal 

files, and external interfaces to other components are taken into consideration. Quality 

metrics such as defects per FP and defects per SLOC are derived from FP and SLOC, 

respectively, and are important measures of defect density.  

LOC, as part of SFP, has been in active studies constantly. LOC’s performance in predicting 

software defects has been proven to be both satisfactory and unsatisfactory by some 

researchers. Fenton and Ohlsson’s experiments [26] show that if software modules are 

ordered by LOC descendingly, most of the top-ranked modules also stay in similar positions 

when they are ordered by the number of defects. Fenton and Ohlsson’s conclusion is 

confirmed by Zhang in his investigation of the relationships between LOC and defects [9]. 

He concluded that “larger modules tend to have more defects,” and a small number of the 
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largest modules in the system are responsible for a large share of total defects. However, both 

Fenton [27] and Rosenberg [28] found that size metrics are insufficient to support a 

predicting model alone, and they are better to be used together with other metrics.  

Complexity Metric is another type of static metric. A well-known one is McCabe’s 

cyclomatic complexity (CC) proposed in [29]. CC measures the number of linearly 

independent paths generated by the control flow statement [30]. He decomposed the software 

program into a control flow graph of connected and directed procedures, then the complexity 

of the program is the linearly independent paths in the graph which can be calculated using 

the following equation: 

𝐶𝐶 = 𝑒𝑒 − 𝑛𝑛 + 2𝑝𝑝 (2.4) 

Where e is the total number of edges connecting nodes in the graph, n is the node number, 

and p is the number of uniquely connected graph components. The System’s maintainability 

is tightly bound to its code complexity [19]. The Cyclomatic Complexity metric offers an 

explicit measure of a system’s complexity that no metric could at the time it was proposed, 

and according to a recent study [31], it is still one of the top 10 mostly used software metrics 

in research.  

Object-Oriented Metrics (OO metrics) reflect properties of code developed using object-

oriented languages, a famous one of which is the CK metrics suite proposed by Chidamber 

and Kemerer in 1994 [32], including Number of Children (NOC), Coupling between Object 

class (CBO), Depth of Inheritance Tree (DIT), Weighted Method Count (WMC), Lack of 

Cohesion in Method (LOCM), etc. OO metrics also measure a system’s complexity, but in 

comparison with McCabe’s cyclomatic complexity that focuses on procedural complexity, 

OO metrics specifically aim at quantifying higher-level inter-class or inter-method 

relationships. OO metrics have become one of the most solid choices for measuring OO 

systems, particularly when OO methodologies are growing rapidly [33] [34].  



12 

 

 

OO metrics have gone through numerous validations in the context of software quality 

assurance. Singh et al. [35] conducted an empirical validation of the CK metrics suite through 

regression and machine learning models using a public NASA dataset. Their results showed 

CBO and WMC achieved good performance in predicting fault proneness, but DIT, LCOM 

and NOC mentioned above did poorly. Gyimothy et al. in [36] tested the fault predictability 

of OO metrics together with LOC on a large open-source software system named Mozilla. 

Their experiment generally reconfirmed Singh’s results: CBO is a good predictor of defect-

proneness of classes, but DIT and NOC are untrustworthy. Besides, they found that LOC 

performed well, and they concluded that it is an excellent candidate for a quick defect 

prediction model. 

2.3.2 Software Process Metrics 

If the software development process is defined as an ordered sequence of developmental 

activities performed on an initial build incrementally, then process metrics measure how 

much the software in its current state varies from previous ones [37] [38]. Software process 

metrics serve the purpose of improving long-term software quality by improving the process 

they measure [37]. Process metrics have unmatched advantages over other types of metrics in 

software quality assessment. First, process metrics can be accessed and maintained more 

easily than other metrics. Many OO metrics discussed above require extra computation and 

management resources and thus are unfriendly and unfeasible to software practitioners. 

Second, process metrics are naturally suitable for evaluating continuously delivered software, 

whereas OO metrics and complexity metrics are designed to capture software structural 

importance. Traditionally, software defect prediction research advocates product metrics. 

However, much recent concrete research has been done to show the great potential of process 

metrics in software quality prediction [39] [10] [40] [41] [42] [43] [44]. According to 

surveys[20] [42] [45], most quality prediction techniques are still in favour of product 

metrics, but process metrics are underestimated. 
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Table 1 (derived from section 3.2 of [20]) includes the common process metrics suite and the 

metrics in the suite. Chapter 4.3 presents a full list of software process metrics we used in the 

experiments, along with descriptions of how they are measured or computed. 

 

 

Table 1: Process Metric with Examples 

Metric Suite 

Name 
Related Metrics 

Code delta 

metrics [10] 
“Delta of LOC, Delta of changes” 

Code churn 

metrics[10] 

“Churned LOC, Deleted LOC, File count, Weeks of churn, Churn count 

and Files churned.” 

Change 

metrics[40] 

“Revisions, Refactoring, Bugfixes, Authors, Loc added, Max Loc Added, 

Ave Loc Added, Loc Deleted, Max Loc Deleted, Ave Loc Deleted, Code 

churn, Max Code churn, Ave Code churn, Max Changeset, Ave 

Changeset and Age.” 

Developer 

based 

metrics[46] 

“Personal Commit Sequence, Number of Commitments, Number of 

Unique Modules Revised, Number of Lines Revised, Number of Unique 

Package Revised, Average Number of Faults Injected by Commit, 

Number of Developers Revising Module and Lines of Code Revised by 

Developer” 

Requirement 

metrics [47] 

“Action, Conditional, Continuance, Imperative, Incomplete, Option, 

Risk level, Source and Weak phrase” 
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Network 

metrics[48] 

“Betweenness centrality, Closeness centrality, Eigenvector Centrality, 

Bonacich Power, Structural Holes, Degree centrality and Ego network 

measure” 

2.3.3 Quality Assessment Using Process Metrics 

This section summarizes quality assessment or prediction techniques relying mainly on 

process metrics. 

Meneely et al. [5] examined software quality by exploring what properties vulnerability-

contributing commits (VCC) commonly possess. Three types of process metrics were used in 

the study of the Apache HTTP Server project: code churn, relative code churn, and 30-day 

code churn. The authors identified 124 VCC spanning 17 years in the project and discovered 

that VCC has twice as much code churn on average than non-VCCs. 

An and Khomh [8] empirically studied Mozilla Firefox commit data to locate crash-inducing 

commits. Similar to Meneely’s study [5], seven process metrics were employed to compare 

the characteristics between crash-inducing commits and crash-free commit, and the 

conclusion was more additions and deletions of LOC are found in crash-inducing commits.  

Illes-Seifert and Paech [41] studied the relationship between a file’s historical churn data and 

its defect count. They selected the Frequency of Change, Distinct Authors, and Co-Changed 

Files as a part of the subject metrics in the study. They employed statistical techniques and 

applied them to nine open-source Java projects. Their results indicated that a file’s fault-

proneness positively and strongly correlated to the time it has retained in the system, and its 

change count and number of authors performing the changes are good indicators for defect 

count. 

Nagappan and Ball’s work [10] is one of the first defects predictions tools that only utilized 

process metrics. Other than the absolute code churn metrics, relative code churn measures 

were formalized in their work. Statistical regression models were used to discriminate faulty 
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files among 96189 files. After the models achieved an 89% accuracy rate, they concluded 

relative code churn could be valuable in fault-prone file prediction. 

Nagappan et al. [40] studied how coarse grain process metrics collected from software 

development can be used in defect predictors as an extended study [10]. Instead of relying on 

process metrics in fine granularity, e.g., Delta of LOC changes, authors defined a new set of 

process metrics based on the number of changes (commits) and change bursts (concentrated 

commits). They applied a regression model based on the metrics set to Windows Vista version 

history data and achieved precision and recall of over 90%, which is deemed extremely 

satisfactory.  

Rhmann et al. [39] aimed to explore the predictive performance of ensemble-based 

algorithms using process metrics. The hybrid algorithm used in the literature consists of 

Fuzzy-AdaBost and Logitboost. In addition, other machine learning techniques, including 

Random Forest, Multilayer Perceptron, and J48, were also used as a comparative 

experiment. Android projects in versions v4-v5 and v2-v5 were used in the experiment. The 

conclusion drawn from the experiment result is hybrid algorithm outperformed other single-

learning ones.  

Majumder et al. conducted a large-scale performance comparison between product metrics 

and process metrics in [34] through four different statistical models using 722,471 commit 

data mined from 700 GitHub projects. Their results showed that process metrics generate far 

better recalls and AUCs than product metrics and thus proved the strong predicting force of 

process metrics. 

Nagappan and Ball [44] used simple process churn metrics together with the architectural 

dependency information to predict post-release failures in the Windows Server 2003 

operating system with a size of 28.3 million LOC comprised of 2075 files. Although only 

three process churn metrics were used in the study, i.e., Delta LOC, Churn Files, and Churn 

count, the authors sought the possible combinations of process metrics with other measures. 
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The statistical results indicated that the performance of the defect-predicting model could be 

improved significantly with the presence of OO metrics. 

2.3.4 Other Software Metrics 

In this section, we survey unique metrics that may evolve from but are considered distinctly 

out of the metric classification discussed above. 

Nakamura and Basili [49] observed that architectural variations always accompany frequent 

software modifications, so they propose a metric that measures architectural changes based 

on a software property author coined “Structural Distance.” The authors argue that the CK 

metrics suite cannot capture detailed structure changes. Towards this effort, authors 

abstracted software structure into a representable graph and then used a graph kernel function 

to measure the structural distance between structures before and after a release. They also 

applied the metric to several open-source software projects as an empirical study. They 

concluded this metric is feasible and efficient.  

Chulani et al. [50] developed a metric for managing customer view of software to improve 

software quality. First, the authors aggregated different service metrics data collected from 

customers, such as customer satisfaction reports, surveys done through telephone 

interviewing, and records from the customer support center. The data was then analyzed with 

the aid of regression tree methodology and finalized into a customizable metric set that 

visually reflects customer view.  

Washizaki et al. [51] defined a metric suite for measuring the reusability of black-box 

software components. The suite encompasses five metrics: existence of meta-information, 

rate of component observability, rate of component customizability, self-completeness of 

component’s return value, and self-completeness of component’s parameter. These metrics 

undergo a refined process, including correlation analysis and metrics combination, before 

being used to evaluate components' reusability. The information required to compute these 



17 

 

 

metrics can be acquired in the absence of source codes of the software; thus, the suite has 

high practicality.  

2.4 Correlations Between Metrics 

Since various metrics can be extracted from the same piece of software, some of them may be 

highly correlated with others. Many research papers have reported concrete evidence of 

correlations among software metrics. Jay et al. explored the relationship between LOC and 

CC complexity through a large-scale analysis of 1.2 million C, C++ and Java files [52]. They 

discovered CC and LOC has an almost perfect linear relationship and suggested using LOC 

in place of CC. Jay’s conclusion is reconfirmed when Mamun et al. studied the nature of 

relationships between different classifications of metrics [53]. A total of 25 code metrics 

collected from 9572 software revisions were classified into four domains and used as the 

experimental basis. They found software size metric tends to have a strong correlation with 

other metrics, and complexity metrics are more correlated with size metrics than themselves. 

However, a more recent study conducted by Afriyie and Labiche argued the opposite [30]. 

The authors observed that the correlation between LOC and CC is also impacted by the type 

of code (application code or test code) and the type of software (open-sourced or 

commercial). They found LOC and CC exhibit almost no correlation in test code and 

advocated for the use of CC over LOC when applicable.  

As the above studies have evidently demonstrated, correlations between metrics have also 

been taken into consideration in this thesis. We present one of the most widely adopted 

correlations, termed Pearson Correlation Coefficients (PCC), which we used to study metric 

correlations. 

2.4.1 Pearson Correlation Coefficient 

PCC is a statistical similarity metric that measures the strength and direction of a linear 

correlation between two random variables [54] [55]. Given two random variables, a and b, 

the formula is [54]-[56]: 
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𝜌𝜌(𝑎𝑎, 𝑏𝑏) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑏𝑏)
𝜎𝜎𝑎𝑎𝜎𝜎𝑏𝑏

 =
𝐸𝐸((𝑎𝑎 − 𝜇𝜇𝑎𝑎)(𝑏𝑏 − 𝜇𝜇𝑏𝑏))

𝜎𝜎𝑎𝑎𝜎𝜎𝑏𝑏
(2.5) 

where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑏𝑏) is the covariance between a and b, 𝜎𝜎𝑎𝑎 and 𝜎𝜎𝑏𝑏𝑎𝑎 are the e standard 

deviations of a and b, and 𝐸𝐸(𝑎𝑎) is the mean of a. The squared Pearson correlation 

coefficient (SPCC) is more convenient [42]-[44]: 

𝜌𝜌2(𝑎𝑎, 𝑏𝑏) =
𝐸𝐸2(𝑎𝑎𝑏𝑏)
𝜎𝜎𝑎𝑎2𝜎𝜎𝑏𝑏2

 , (2.6) 

In the context of this thesis, we work with two sample vectors and use the SPCC between two 

random vectors [42] [44]. First, given two random vectors of length L 

𝑎𝑎 = [𝑎𝑎1, 𝑎𝑎2 … 𝑎𝑎𝐿𝐿]𝑇𝑇, 

𝑏𝑏 = [𝑏𝑏1, 𝑏𝑏2 … 𝑏𝑏𝐿𝐿]𝑇𝑇. 

The SPCC between a and b [42] [44] is: 

𝜌𝜌2(𝑎𝑎, 𝑏𝑏) =
𝐸𝐸2(𝑎𝑎𝑇𝑇𝑏𝑏)

𝐸𝐸(𝑎𝑎𝑇𝑇𝑎𝑎)𝐸𝐸(𝑏𝑏𝑇𝑇𝑏𝑏) , (2.7) 

One of the most important properties of the PCC is: 

−1 ≤ 𝜌𝜌(𝑎𝑎, 𝑏𝑏) ≤ 1. (2.8) 

If 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = −1, a and b are said to have perfect negative correlation; if 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = 0, a and 

b are said to have no correlation, and if 𝜌𝜌(𝑎𝑎, 𝑏𝑏) = 1, there is a perfect positive correlation 

between a and b.  

2.5 Software Metric Selection 

Software metrics are designed for different scenarios, and therefore they contribute to the 

performance of predictive models in different ways. A rigorous metric (i.e. feature) selection 

procedure is required before the use of metrics in order to reduce superfluous noise and 
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computational complexity. The purpose of a metric selection strategy is to identify candidates 

of available metrics that are most relevant and suitable regarding the problem domain. Metric 

selection techniques can be broadly classified into two main groups, ranking and wrapper 

strategies [57]. Ranking-based strategies rank the metrics according to their calculated 

statistical scores, while wrapper strategies utilize machine learning algorithms to select 

metrics that yield the best accuracy. Four of the most commonly used feature-selecting 

methods are correlation-based (CO), information gain (IG), gain ratio (GR), symmetrical 

uncertainty (SU), and Relief [57]. A survey of related works is given below. 

Kumar et al. [58] built a fault prediction model using Least Squares Support Vector Machine 

(LSSVM). A total of 10 common feature selection methods were applied to 20 object-

oriented metrics to find the most effective subset. Principal component analysis was applied 

to reduce the dimensionality of massive data. The selected features were then fed to 3 

machine-learning prediction algorithms. The results showed that there wasn’t a significant 

difference among the ten feature selection methods. 

Ji et al. [59] proposed a refined Naive Bayes classifier capable of predicting faulty-prone 

components when feature data is not normally distributed. They considered six feature 

ranking methods to select the most suitable ones from 21 features. The classifier used 

information gain as the feature selection had the highest F-measure but was not significant 

over others. The experiments were conducted on ten software project data in three different 

programming languages obtained from the PROMISE repository. 

The related works presented in the previous sections have several limitations. First, to find 

the most suitable feature set for a given type of analysis, various feature selection techniques 

must be applied exhaustively. More computational resources are required to support the 

brute-force attempts, making the approach less actionable for practitioners. Second, the 

results from these studies are bounded by the choices of datasets, models, and available 

metrics. These studies have a limited degree of reusability as no evidence is provided on 

whether their conclusions can be generalized to other similar works or not. Third, feature 
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selection strategies didn’t play an important role in the experiments. One reasonable 

inference is that most of these strategies are initially proposed in statistical (machine 

learning) background and are not designed specifically for software quality assessment or 

prediction.  

2.6 Survey of Software Quality Assessment and Prediction 

Techniques 

Machine learning techniques have been applied extensively in software quality assessment 

and prediction. We have presented some fault prediction techniques developed with the usage 

of ML in previous chapters focusing on the software metrics side. In this section, we survey 

state-of-art quality assessment techniques developed after 2003. 

Kumar and Rath [15] built a maintainability prediction model using a hybrid neural network 

and fuzzy logic approach, where maintainability is defined as the LOC additions and 

deletions throughout the maintenance period. In their work, fuzzy numbers were input to 

neurons in the network, and the weight factor was trained through backpropagation based on 

fuzzy logic. The proposed method obtained better performance in terms of mean absolute 

relative error in comparison with other quality prediction models. 

Hindle et al. [6] explored the impact on software quality brought by commits of different 

sizes, especially large commits. They started with classifying commits into categories based 

on changes they made to quality, two important ones of which are: corrective commits---

commits that fix bugs, and perfective commits---commits that enhance a project’s 

performance or improve processing inefficiency. By conducting a quantitative analysis of the 

proportional distribution of each category in 9 open-source projects, the authors found that 

large commits tend to be perfective changes than corrective, while small commits are often 

corrective than perfective. One drawback of their study was the classification of commits is 
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done manually; therefore, only a small proportion of the total commit is inspected. We 

present an automatic way of determining commit nature in Chapter 3.5. 

Zhi et al. [60] designed a quality assessment tool for Alibaba's Business Software Ecosystem 

based on four key aspects of source code: coding convention, code duplication, complexity, 

and object-oriented design. Various metrics were collected to evaluate these four aspects in a 

threshold-rating approach. The proposed tool has been deployed to monitor over 60 core 

software systems of Alibaba. 

Fan et al. [61] proposed a defect prediction framework through the application of a recurrent 

neural network. Their work initially involved parsing targeted programs into syntax trees. 

The syntax trees were then converted into a mapping dictionary, and the vector form of the 

dictionary was fed to a recurrent neural network, allowing it to learn the syntactic and 

semantic features of the program. An extra layer, referred to as the “attention layer,” was 

employed to aggregate the critical output of the recurrent neural network into a vector which 

will be used in the final prediction. Results indicated their framework has an acceptable F1 

measure.  

Boucher and Badri [62] attempted to address fault-prone functions in software systems using 

an unsupervised version HySOM model proposed by Abaei et al. in [63]. The HySOM model 

is an ML model that relies entirely on function-level source code metrics for faulty function 

prediction. However, the authors managed to adapt the function with class-level object-

oriented metrics as they believed such adaption produces better performance. Twelve public 

datasets were selected in the empirical study, and the results were compared to RF, ANN, and 

Naive Bayes Network model. The proposed method demonstrated better performance than 

other ML techniques. 

Pandey et al. [64] proposed a two-staged defect prediction framework that addresses the class 

imbalance issue that exists in many software projects. In the first stage, a staked denoising 

auto-encoder was used to accurately extract general software metric data from historical 
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datasets, and the data underwent a deep learning phase shortly after to avoid class imbalance. 

The deep representation of the metric data was then used in the ensemble learning comprised 

of ten different classifiers in the next stage. Many of the employed classifiers in this line of 

related work have also been discussed in Chapter 2.3.1. Though the results are not supportive 

of the excellence of the designed model, the model showed its potential to reduce the over-

fitting problem. 

Wang and Zhang are the first to utilize the deep-learning neural network encoder-decoder to 

predict the number of faults [65]. The model they built has a sophisticated deeper layer which 

is capable of capturing training characteristics. A total of 14 historical fault data sets were 

chosen as data basis, and the prediction results were in comparison with other mainstream 

ML models. The authors concluded from the results that the proposed model has suitable 

performance. 

2.7 Other Technical Information 

2.7.1 GitHub 

GitHub is an online collaboration platform for software development team building on top of 

Git, a famous version control system. The collaboration is enabled through a mechanism 

named branch. Each project repository has one master branch, and each developer can create 

and work on their private branch derived from the main branch. Modifications made on a 

private branch will not be reflected on the main branch until they are accepted by authorities 

and merged into the main branch. Basic GitHub operations are:  

1. commit: make changes to the local repository. 

2. push: update the remote repository with respect to the local one. 

3. pull: update the local repository with respect to the remote one. 
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GitHub has profound meaning in continuous software engineering and open-source software 

development. Thousands of cool open-source software are made available to the public 

through GitHub. As of July 2020, GitHub has over 83 million users and 200 million 

repositories [66].  

2.7.2 Bugzilla 

To efficiently document and resolve the software fault that resulted in a failure, an issue 

tracking system (ITS) such as Bugzilla or Jira is commonly used by software companies. 

Bugzilla is an open-source bug-tracking system developed by Mozilla in 1998 and has been 

under active development since then. A lot of useful features have been added to Bugzilla 

over time, and besides the initial purpose it served, it is now an aggregated web-based 

software team management system to track project issues, assign tasks, manage schedules, 

etc. Though Bugzilla is free, it has strict security protection and high customizability, 

justifying why it is trusted and used by thousands of companies around the world. 

2.7.3 Tablesaw Table  

Tablesaw is designed to fill the vacuum of the data analysis framework in Java. Tablesaw is 

employed as the core data storage and manipulation tool in the thesis. Like Python 

counterpart, pandas, Tablesaw stores data in a tabular data structure called a dataframe which 

supports a wide variety of built-in operations. 
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Chapter 3  

3 Data Modelling 

3.1 Metric Data Acquisition Overview 

This chapter discusses the metrics acquisition process, which is adapted from the one 

presented in [67] and [68]. As depicted in Figure 2, we start by selecting suitable software 

projects based on the criteria described in Chapter 3.2. Since this thesis aims to quantify 

relationships between the metric-based patterns and the bug-fixing commits, we consider 

GitHub as the source repository of metrics and mine bug information from Bugzilla. The data 

of each selected project is then extracted and reconciled from the corresponding GitHub and 

Bugzilla repositories through custom-configured readers and analyzers complying with the 

GitHub and Bugzilla data models as discussed in Chapter 3.3 and Chapter 3.4. As GitHub 

and Bugzilla are two independent systems, a commit pushed to GitHub which fixes a bug 

may be reported as closed (i.e. fixed) to the corresponding Bugzilla repository after a delay 

(ranging from a few minutes to a few days). In order to associate the GitHub commit data 

with the correct corresponding Bugzilla bug reports and resolutions, a reconciliation process 

is performed on the raw data extracted from both GitHub and Bugzilla, as discussed in 

Chapter 3.5. 

 

Figure 2: Metric Data Acquisition Stepwise Process 
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3.2 Selected Projects 

A total of 25 open-source software projects are selected based on the following criteria, 

which are based on recommendations from Kalliamvakou’s GitHub data mining study [69], 

Korlepara’s data collection guideline [67], and Sarrab’s selection criteria of open source 

software [70]. These criteria are formulated to improve the representativeness and 

generalizability of the results [69] [70], but meanwhile, they increase the cost of the selection 

process and hence constrain the number of available projects. 

1. The project must have both publicly accessible GitHub and Bugzilla 

repositories. 

2. The project must have at least five years long active development history. We 

believe projects with longer histories would have a better chance of containing 

sufficient regular and bug-fixing commits for this thesis.  

3. The project must be related to software that has gathered enough reputation, 

featured by GitHub stared number. 

4. The project must not be collaborated using VCS other than GitHub. This 

criterion assures the integrity of the data we used for experiments. 

A summary of the selected systems and their computed system characteristics is shown in 

Table 2. Since software continuous engineering is characterized by frequent commits, the 

table is sorted in descending order of KLOC.  
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Table 2: Selected Systems and Their Characteristics 

In this thesis, we use metrics which are a) extracted directly from GitHub, b) extracted as a 

result of the reconciliation process, and c) as a result of new computations which aggregate 

existing metrics into new ones (e.g., the number of files in each commit, and the number of 

commits in the project can generate a new metric average commit size). We will discuss the 

compilation of these new metrics later in Chapter 4. 

Project 
Name 

KLOC 
# of 
commits  

BFC 
Per 
Commit 

# of 
files 

Average Gap 
Day between 
Consecutive 
Commits 

Average 
File 
Count 
per 
Commit 

Average 
Commits 
per File 
Participate 

kstars 600.44 11044 0.1651 5552 0.5778 11.0438 2.7013 
kopete 512.14 16256 0.2411 2668 0.3716 4.1265 3.8375 
marble 368.643 13045 0.1493 3474 0.3866 10.656 2.7618 
umbrello 201.228 8656 0.3354 1254 0.783 21.3485 1.9953 
k3b 164.795 26068 0.2029 898 1.076 15.9129 2.235 
kdevplatform 147.218 14540 0.1575 1609 0.2561 15.5384 2.4901 
gwenview 103.905 15643 0.1729 639 1.0047 21.9743 1.5906 
konversation 92.834 20179 0.2049 349 0.7405 31.5433 1.4269 
ktorrent 80.986 10953 0.3054 657 1.7344 12.4416 2.0106 
kget 68.556 10980 0.1762 345 2.1546 17.2964 1.6721 
kolourpaint 63.244 8345 0.126 412 2.5945 17.9965 1.506 
elisa 62.07 5017 0.1947 207 0.744 18.1468 1.3454 
plasmanm 58.121 8170 0.1794 418 0.9244 9.8665 1.5747 
kmail 57.814 25011 0.2149 631 0.3361 22.9559 2.1472 
ark 48.812 8393 0.2232 306 1.8869 24.6056 1.3671 
lokalize 40.629 6549 0.3063 229 2.8735 25.7878 1.0326 
akregator 40.496 9481 0.2016 400 1.037 10.2554 2.3077 
juk 34.155 7342 0.2535 162 2.0583 33.0588 0.9153 
clazy 31.844 2018 0.271 658 0.781 10.0617 1.9143 
solid 28.918 2847 0.1053 401 3.9482 3.8905 2.4913 
korganizer 25.458 10875 0.2093 223 0.755 13.191 2.3702 
kmix 13.474 3584 0.2384 188 3.2407 20.8374 1.2482 
kompare 10.644 2053 0.2196 68 6.4555 18.4855 0.9712 
ktimetracker 8.521 2093 0.1686 112 3.9188 12.7838 1.5755 
kontact 5.108 4925 0.1299 46 1.3472 25.052 1.453 
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3.3 GitHub Data Model 

The GitHub data acquisition process is mainly composed of two stages [67] [68]. The first 

stage is a straightforward data mining process through a customized extractor built on top of 

GitHub REST API. Data from stage one is crude because of its nested structure. In the second 

stage, we studied the GitHub data schema, as depicted in Figure 3, before further operations. 

GitHub has a commit-file-oriented nature, as discussed early. The process metrics used in the 

experiment are mainly from the properties module presented in Figure 3, and likewise, these 

metrics are subclassified into commit-associated metrics and file-associated metrics. The 

distinction between the two metrics’ associated types is important to the categorization 

procedure in Chapter 5.4. Table 3 lists all metrics acquired after the reconciliation process 

and their associated types. Fine-grained data is acquired following the schema sequentially 

while preserving the overall structure. The data extractor and data resolver are implemented 

with Python.  
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Figure 3: Domain Model for GitHub Data [67] [68]  

3.4 Bugzilla Data Model 

Bugzilla data was acquired in a similar fashion as GitHub data. Crude data was fetched from 

the Bugzilla datacenter using a Python extractor through Bugzilla REST API. The Bugzilla 



29 

 

 

data schema is depicted in Figure 4. In this thesis, we are interested in various bug-related 

field attributes in the bugs module, including bug_id, bug_status, creation_ts (local datetime 

when the bug was created), resolution, short_desc (a description of the bug), product, 

reporter, and comments [67]. We use the bug_status together with the resolution to decide 

whether the bug has been fixed or not. Comment attribute is practically used to reflect file 

modification associated with the bug as plaintext or as changelog attachments referencing 

GitHub. We extracted the list of files when a bug was reported as fixed. Such information 

will be used in the reconciliation discussed in the next section.  

Figure 4: Bugzilla Data Model [69] 
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3.5 GitHub and Bugzilla Data Reconciliation 

In GitHub, not all files participating in a bug-fixing commit are related to a bug fix. For 

example, some of these files may be modified due to normal updates or refactoring 

operations. After crude datasets are populated from GitHub and Bugzilla, a reconciliation 

process is necessary to identify the exact bug-fixing file. This process is first proposed in 

[71]. The first task is to arrange all resolved bugs in the same chronological order of GitHub 

data and group them by bug ID. Next, all GitHub commit dates are iterated until one of them 

collides with the bug’s resolution date. The search scope is narrowed down to a timeframe 

around this date. In the final step, for each GitHub commit within the window, we examined 

the number of files being a part of the commit’s file list and the bug’s file list at the same 

time, and the one with the greatest number (i.e., the largest intersection) representing the 

purpose of the commit is bug-fixing.  

Formally, let 𝐵𝐵𝑘𝑘 be a bug resolution reported on Bugzilla along with its timestamp 𝑡𝑡𝑘𝑘 and a 

set of files that resolves the bug 𝑅𝑅𝑘𝑘 = {𝐹𝐹𝑘𝑘1,𝐹𝐹𝑘𝑘2, … ,𝐹𝐹𝑘𝑘
𝑗𝑗}. We then seek all the commits 

𝑐𝑐1, 𝑐𝑐2, . . , 𝑐𝑐𝑚𝑚 within timeframe [𝑡𝑡𝑘𝑘 − 𝑥𝑥, 𝑡𝑡𝑘𝑘 + 𝑥𝑥], each of which owes a set of commit files 

𝑀𝑀𝑖𝑖 = {𝐹𝐹𝑖𝑖1,𝐹𝐹𝑖𝑖2, … ,𝐹𝐹𝑖𝑖
𝑗𝑗}, where 𝑀𝑀1 is the commit files for 𝑐𝑐1. Figure 5 depicts this process. 

The chosen value of x for this thesis is one month. Iteratively, the set of common files 

between 𝑀𝑀𝑖𝑖 and 𝑅𝑅𝑘𝑘, or 𝑀𝑀𝑖𝑖 ∩ 𝑅𝑅𝑘𝑘, is calculated as 𝐸𝐸𝑘𝑘 = {𝐸𝐸1,𝐸𝐸2, …𝐸𝐸𝑗𝑗}. Commit 𝑐𝑐𝑏𝑏 is 

marked as the bug-fixing commit corresponding to 𝐵𝐵𝑘𝑘 if 𝐸𝐸𝑏𝑏 = max (𝐸𝐸𝑘𝑘), and files in 𝐸𝐸𝑏𝑏 
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will also be marked as buggy files. If multiple 𝐸𝐸𝑏𝑏 exist, we select the 𝐸𝐸𝑏𝑏 with the 

timestamp 𝑡𝑡𝑏𝑏 closest to 𝑡𝑡𝑘𝑘. 

3.6 Metrics Acquired  

In this thesis, the metrics selected after GitHub and Bugzilla records are reconciled are: 

commit id, branch id, message, parent_ids, author, authored_at, committer, committed_at, 

commit_additions, commit_deletions, changed_files, is_bug_linked, is_fix_related, 

is_bug_fixing, is_merge_commit, is_refactoring, file_path, previous_file_path, file_additions, 

file_deletions, file_id, fractal_value, fractal_value_over_lines, and distinct_authors_to_now. 

Table 3 provides the definitions of these metrics. 

For the experiments performed in the next chapter, we temporarily exclude the data that we 

deemed inappropriate, which includes branch, message, parents_id, author, authored_at, 

committer, file_path, and previous_file_path. Corrupted data entry is removed, and the 

numerical missing is filled with 0.  

Table 3: Data Fields and Brief Explanations 

Figure 5: Timeframe Matching in Reconciliation Process. The upper timeline 
pertains to Bugzilla while the lower to GitHub events [73] 
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Field Name Explanation Associated Type 
commit_id  Unique identifier of the commit.  Commit-associated 
branch The name of the branch the commit is 

committed to.  
Commit-associated 

message The message describes a commit written by 
the committer.  

Commit-associated 

parents_id The ID of the commit that this commit is 
derived from. 

Commit-associated 

author The developers who contribute to the 
modifications in a commit. 

Commit-associated 

authored_at The starting time of the commit.  Commit-associated 
committed_at The time when the commit is submitted to 

GitHub. 
Commit-associated 

committer The person who submits the commit.  Commit-associated 
commit_additions Total lines of code added in the commit. Commit-associated 
commit_deletions,  Total lines of code deleted in the commit. Commit-associated 
changed_files The number of files changed in the commit.  Commit-associated 
is_bug_linked  A Boolean value indicates if the link to the 

bug is provided.  
Commit-associated 

is_fix_related A Boolean value indicates if the commit is 
related to a fix. 

Commit-associated 

is_bug_fixing A Boolean value indicates if the commit is 
for fixing a bug.  

Commit-associated 

is_merge_commit A Boolean value indicates if the commit is 
for merging two branches. 

Commit-associated 

is_refactoring A Boolean value indicates if the commit is 
a refactoring commit. 

Commit-associated 

file_path The absolute path of the file in the system.  File-associated 
previous_file_path The absolute path of the file before the 

commit. 
File-associated 

file_additions Total lines of code added to the file. File-associated 
file_deletion Total lines of code deleted from the file. File-associated 
file_id Unique identifier of the file. File-associated 
fractal_value The numerical value measures the diversity 

of the file contributors. 
File-associated 

fractal_value_over_
lines  

The fractal_value over the file’s line 
number.  

File-associated 

distinct_authors_to
_now 

The number of distinct contributors to file 
currently. 

File-associated 
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Chapter 4  

4 Enhanced Evolutionary Aggregated Metric Suite 

4.1 Synthesis of New Metrics 

For this thesis, in addition to LOC-derived source code metrics, as discussed in Chapter 2, we 

also use process-derived metrics such as commit_additions and commit_deletions, as seen in 

Table 3. More specifically, let 𝐿𝐿𝑐𝑐𝑖𝑖−1 be the system’s lines of code (LOC) before a commit 𝐶𝐶𝑖𝑖 

(𝐿𝐿𝑐𝑐𝑖𝑖−1 = 0 for the first commit), 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖  be the LOC addition in commit 𝐶𝐶𝑖𝑖, and 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖  

be the LOC deletion in commit 𝐶𝐶𝑖𝑖. The current LOC 𝐿𝐿𝑐𝑐𝑖𝑖 after 𝐶𝐶𝑖𝑖 can be calculated 

as:

𝐿𝐿𝑐𝑐𝑖𝑖 = 𝐿𝐿𝑐𝑐𝑖𝑖−1 + 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 − 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖 Equation 1 

Similarly, a file 𝑓𝑓’s current lines of code can be calculated as follows: 

𝐿𝐿𝑓𝑓
𝑐𝑐𝑖𝑖 = 𝐿𝐿𝑓𝑓

𝑐𝑐𝑖𝑖−1 + 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 − 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓

𝑐𝑐𝑖𝑖 Equation 2

where 𝐿𝐿𝑓𝑓
𝑐𝑐𝑖𝑖−1 is the file’s LOC after the previous commit (𝐶𝐶𝑖𝑖−1) , 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓

𝑐𝑐𝑖𝑖  and 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖  

represent the LOC addition and deletion to 𝑓𝑓 in commit 𝐶𝐶𝑖𝑖 respectively.  

4.2 Relative Change Metric Definition 

Based on the process metrics discussed in Chapter 2 and in [10] and the product metrics we 

discussed in the previous chapter, we now define the following new aggregated metrics. They 

aim to measure the relative (i.e. delta) code changes during the software development process 

while taking size metrics into consideration. They are proposed to fill the vacuum in process 

change metrics or to improve flawed old ones. Some of the metrics we defined can be applied 

to both project and file levels. 
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4.2.1 Total LOC Delta  

The LOC Delta proposed in [10] is a measure of absolute change in LOC. However, we deem 

it inadequate to reflect the magnitude of change in a commit. Considering the following 

example, a project of 500 LOC is modified by a commit with 400 LOC addition and deletion. 

The absolute delta of LOC is obviously 0 as the addition and deletion cancel out the other; 

however, either 400 LOC additions or deletions account for 80% of the project size. A 

considerable amount of change was made in the commit but was unable to be reflected by the 

absolute LOC Delta. Therefore, we defined a refined version of LOC Delta, which we coined 

Total LOC Delta. It measures the sum of addition and deletion rather than the absolute 

difference. Given the LOC addition and deletion in commit 𝐶𝐶𝑖𝑖, 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖  and 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖  

respectively, the Total LOC Delta in 𝐶𝐶𝑖𝑖, 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 , is defined as: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖 + 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 Equation 3 

Similarly, given a file 𝑓𝑓’s LOC addition and deletion in commit 𝐶𝐶𝑖𝑖, 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖  and 

𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖  respectively, the Total LOC Delta of 𝑓𝑓 in 𝐶𝐶𝑖𝑖, 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓

𝑐𝑐𝑖𝑖 , is defined as: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓

𝑐𝑐𝑖𝑖 + 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖  Equation 4 

Though LOC addition and deletion both represent churns in code, they may relate to quality 

postures to a different extent. To investigate the relationship, we adopt the polynomial 

fashion from the maintainability index [13] and apply two weighting coefficients, 𝑎𝑎 and 𝑏𝑏, 

to the additions and deletions, respectively, in Equations 4.3 and 4.4. The coefficients are 

determined through a heuristic process in which pairs of coefficients with different rationales 

are fed to Analysis 1 (discussed in 5.7.1). Each pair lead to a discovery of a different number 

of posture patterns. As one objective of this thesis is to address the quantitative relationship 

between posture patterns and BFCs, we deem a discovery of more patterns lead to a better 
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chance of finding highly related patterns. The coefficient pair that leads to the most posture 

patterns is chosen. The results of the heuristic process are shown in Table 4. 

Table 4: Coefficients and Pattern Discoveries 
Coefficients 

Rationale strategy_1 strategy_2 strategy_3 
a b 
1 1 original coefficients 3140.52 2934.28 3865.12 

1.2 0.5 increase addition's effect and reduce deletion's 3241.46 3049.17 4024.67 
0.5  1.2 reduce addition's effect and increase deletion's 2697.875 2555.79 3429.33 

3  1 
considerably increase the addition's effect 
while keeping the deletion original 

3178.125 2988.63 3939.83 

1  3 
considerably increase the deletion's effect 
while keeping the addition original 

2593.50 2449.79 3301.50 

1  0.2 
considerably reduce the deletion's effect while 
keeping the addition original 

3133.24 2914.83 3850.56 

0.2  1 
considerably reduce the addition's effect while 
keeping the deletion original 

2411.32 2230.84 3068.64 

Coefficients 1.2 and 0.5 lead to the most pattern discovery in all three strategies, so they are 

selected in this thesis. The revised formulas are: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 = 1.2 × 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖 + 0.5 × 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖  Equation 5 

and 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 = 1.2 × 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓

𝑐𝑐𝑖𝑖 + 0.5 × 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖  Equation 6 

4.2.2 Total LOC Delta Weight 

The Total LOC Delta is a direct measurement of change but is not an intuitive one. We 

defined a new metric Total LOC Delta Weight, to measure the weight percentage of Total 

LOC Delta to the project’s LOC. This metric explains comparatively how much a LOC 

means to the whole project. 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖

𝐿𝐿𝑐𝑐𝑖𝑖−1
 Equation 7 
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where 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖  is above-mentioned Total LOC Delta of a commit 𝐶𝐶𝑖𝑖 and 𝐿𝐿𝑐𝑐𝑖𝑖−1 is the 

project’s LOC of the previous commit of 𝐶𝐶𝑖𝑖, denoted by commit 𝐶𝐶𝑖𝑖−1.  

Similarly, this metric can also be used to measure file-level delta weight: 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖

𝐿𝐿𝑓𝑓
𝑐𝑐𝑖𝑖−1  Equation 8 

Total LOC Delta Weight as a weight percentage measure is problematic when the size of the 

project increases constantly in its lifetime. A substantial total delta amount in the early 

lifespan might become dramatically less insignificant when the project gains tremendous 

LOC over the years. We develop a compensation mechanism to adjust the weight of later 

time commits.   

For each commit 𝐶𝐶𝑖𝑖, we compute the Average Total LOC Delta, �̅�𝑥𝑖𝑖, of all its previous 

commits from 𝐶𝐶1 to 𝐶𝐶𝑖𝑖−1: 

�̅�𝑥𝑖𝑖 =
1

𝑖𝑖 − 1
 �𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖
𝑖𝑖−1

𝑖𝑖=1

Equation 9 

We then iterate these previous commits, finding the number of commits that have a Total 

LOC Delta is greater than �̅�𝑥𝑖𝑖. We coin the number of these commits as the significant 

commits count.  

𝑆𝑆𝑐𝑐𝑖𝑖 =  |{𝑘𝑘 ∈ {𝐶𝐶1 …𝐶𝐶𝑖𝑖−1}: 𝑘𝑘 ≥ �̅�𝑥𝑖𝑖}| Equation 10 

The Total LOC Delta Weight of each commit is compensated by multiplying it with the 

significant commits count. Later commits tend to have larger counts, so they regain 

significance through the adjusted multiplications.  

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖

𝐿𝐿𝑐𝑐𝑖𝑖−1
× 𝑆𝑆𝑐𝑐𝑖𝑖 Equation 11 
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When applied the compensation mechanism to a file f’s Total LOC Delta Weight, all the 

variables of Equation 4.11 are reduced to file-level metrics.  

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖

𝐿𝐿𝑓𝑓
𝑐𝑐𝑖𝑖−1 × 𝑆𝑆𝑓𝑓

𝑐𝑐𝑖𝑖 Equation 12 

 

4.2.3 File-Project Total LOC Delta Weight 

To our best knowledge, commit-level and file-level process metrics that have been proposed 

so far are disjointed and unrelated. However, they are connected naturally, as any project-

level changes are made up of individual file-level changes. Valuable information may be 

revealed from a metric that links a change in file to the overall change of its containing 

project. To bridge this gap, we proposed the following metric we termed File-project LOC 

Delta weight.  

𝑊𝑊𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 Equation 13 

where 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖  and 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓

𝑐𝑐𝑖𝑖  are from Equation 5 and Equation 6 respectively.  

 

4.2.4 File-Project LOC Weight 

Many previous studies discussed in Chapter 2 have shown that larger files are riskier to be the 

origin of defects, therefore leading to a Bug Fixing Commit (BFC). However, the question 

that arises is how large is large. The file-project LOC weight percentage provides intuitive 

project-wise comprehension of how large a file is. This metric can be calculated by dividing a 

file f’s LOC by the project’s LOC: 

𝑊𝑊𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝐿𝐿𝐿𝐿𝐶𝐶
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑓𝑓
𝑐𝑐𝑖𝑖

𝐿𝐿𝑐𝑐𝑖𝑖
Equation 14 
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4.2.5 Total LOC Delta Percent Change  

The percent change is a useful measure to describe how much a variable has changed from its 

previous position in a series. Finding the percent change of code deltas (i.e., the change of 

change) is helpful in understanding the nature of the software process. Given the LOC delta 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖  of commit 𝐶𝐶𝑖𝑖 and the total LOC delta 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖−1  of its previous commit 𝐶𝐶𝑖𝑖−1, 

the delta rate of change is calculated as the following: 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 − 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

𝑐𝑐𝑖𝑖−1

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 Equation 15 

 

Similarly, for file-level delta percent change: 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 − 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓

𝑐𝑐𝑖𝑖−1

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖 Equation 16 

 

4.3 Metrics Used in the Experiment 

Table 4 lists all the metrics used in our experiment, which will be discussed in Chapter 6 with 

a sequential numeric index we label them. The Index Number Uniquely References the 

associated metric. Metrics 1-7 are process metrics listed in Table 3, metrics 9 and 11 are size 

metrics we synthesize, which have been discussed in Chapter 4.1, and metrics 10 and 12-18 

are relative change metrics proposed by us, which have been discussed in Chapter 4.2. 

Table 5: Metrics Used in Experiment with Index and Associated Type.  
Metric Short Name Associated Type 

Commit additions M1 Commit-associated 
Commit deletions M2 Commit-associated 

Changed files M3 Commit-associated 
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File additions M4 File-associated 
File deletions M5 File-associated 
Fractal value M6 File-associated 

Fractal value over lines M7 File-associated 
Distinct authors to now M8 File-associated 

Project LOC M9 Commit-associated 
Project total LOC delta M10 Commit-associated 

File LOC M11 File-associated 
File total LOC delta M12 File-associated 

Project total LOC delta percent change M13 Commit-associated 
Project total LOC delta weight M14 Commit-associated 

File total LOC delta percent change M15 File-associated 
File total LOC delta weight M16 File-associated 

File-project LOC weight M17 File-associated 
File-project total LOC delta weight M18 File-associated 

 

4.4 Working Example 

We provide a working example to demonstrate how the proposed metrics in this chapter are 

synthesized or computed from available process metrics in Table 3. In the following example, 

we omit metrics in Table 3 that are not involved in any metric computing formula in this 

chapter (i.e., committed_at). Consider the following two commits: 

commit_1= {commit_id = c0001, commit_additions= 250, commit_deletions= 0, … 

 {file_id=f0001, file_additions= 190, file_deletions = 0, …} 

 {file_id=f0002, file_additions= 60, file_deletions = 0, …} 

} 

commit_2= {commit_id = c0002, commit_additions= 636, commit_deletions= 133, … 

 {file_id=f0001, file_additions=468, file_deletions = 72, …} 
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 {file_id=f0002, file_additions= 168, file_deletions = 61, …} 

} 

Assuming commit_1 and commit_2 are two consecutive commits in which commit_1 is 

committed before commit_2, they are the first and the second commit of a project, 

respectively.  

Commit_1: 

• The product metric Project LOC, 𝐿𝐿𝑐𝑐0001, can be calculated using Equation 1: 

𝐿𝐿𝑐𝑐0001 = 𝐿𝐿𝑐𝑐0000 + 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐0001 − 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐0001 = 0 + 250 − 0 = 250 

 

• Similarly, the product metric File LOC, 𝐿𝐿𝑓𝑓0001𝑐𝑐0001  and 𝐿𝐿𝑓𝑓0002𝑐𝑐0001 , for file f0001 and f0002, 

respectively, after commit_1, can be computed using Equation 2: 

𝐿𝐿𝑓𝑓0001𝑐𝑐0001 = 𝐿𝐿𝑓𝑓0001𝑐𝑐0000 + 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0001 − 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0001

𝑐𝑐0001 = 0 + 190 − 0 = 190 

𝐿𝐿𝑓𝑓0002𝑐𝑐0001 == 𝐿𝐿𝑓𝑓0002𝑐𝑐0000 + 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0001 − 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0002

𝑐𝑐0001 = 0 + 60 − 0 = 60 

• The proposed metric Project total LOC delta, 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖 , can be computed using 

Equation 5: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0001 = 1.2 × 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐0001 + 0.5 × 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑐𝑐0001 = 1.2 × 250 − 0.5 × 0 = 300 

• The proposed metric File total LOC delta, 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0001  and 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002

𝑐𝑐0001  for 

file f0001 and f0002 respectively after commit_1, can be computed using Equation 6: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0001 = 1.2 × 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0001

𝑐𝑐0001 + 0.5 × 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0001 = 1.2 × 190 − 0.5 × 0

= 228 
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𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0001 = 1.2 × 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0002

𝑐𝑐0001 + 0.5 × 𝐿𝐿𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0001 = 1.2 × 60 − 0.5 × 0 = 72 

• The proposed metric Project total LOC delta weight, 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐0001 , can’t be computed for 

commit_1 as the 𝐿𝐿𝑐𝑐𝑖𝑖−1 (LOC of previous commit) part in Equation 11 is undefined due to 

commit_1 is the first commit. We will demonstrate the computation of this metric shortly 

in commit_2. 

• The proposed metric File-project total LOC delta weight, 𝑊𝑊𝑓𝑓0001_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐0001  and 

𝑊𝑊𝑓𝑓0002_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐0001 , for file f0001 and f0002 respectively after commit_1, can be calculated 

following Equation 13:  

𝑊𝑊𝑓𝑓0001_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐0001 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0001

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0001 =
228
300

= 0.76 

𝑊𝑊𝑓𝑓0002_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐0001 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0001

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0001 =
72

300
= 0.24 

• The proposed metric File-project LOC weight, 𝑊𝑊𝑓𝑓0001_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝐿𝐿𝐿𝐿𝐶𝐶
𝑐𝑐0001  and 𝑊𝑊𝑓𝑓0002_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝐿𝐿𝐿𝐿𝐶𝐶

𝑐𝑐0001 , 

can be calculated following Equation 14: 

𝑊𝑊𝑓𝑓0001_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝐿𝐿𝐿𝐿𝐶𝐶
𝑐𝑐0001 =

𝐿𝐿𝑓𝑓0001𝑐𝑐0001

𝐿𝐿𝑐𝑐0001
=

190
250

= 0.76 

𝑊𝑊𝑓𝑓0002_𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗_𝐿𝐿𝐿𝐿𝐶𝐶
𝑐𝑐0001 =

𝐿𝐿𝑓𝑓0002𝑐𝑐0001

𝐿𝐿𝑐𝑐0001
=

60
250

= 0.24 

• The proposed metric project total LOC delta percent change and file total LOC delta 

percent change can’t be computed for commit_1 as the 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐𝑖𝑖−1  (project total LOC 

delta of previous commit) and 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓
𝑐𝑐𝑖𝑖−1 (file total LOC delta of previous commit) 

part in Equation 15 and Equation 16, respectively, are undefined due to commit_1 being 
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the first commit. We will demonstrate the computation of these two metrics shortly in 

commit_2. 

 

Commit_2: 

In commit_2, we omit the metrics which have been shown in commit_1 and focus on those 

which haven’t been shown.  

• To compute the proposed metric Project total LOC delta weight, 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐0002 , the 

weighing factor significant commits count, 𝑆𝑆𝑐𝑐0002, as depicted in Equation 11, must be 

computed first. The significant commits count of commit_2 is the number of past 

commits with a total LOC delta greater than or equal to the average total LOC delta, �̅�𝑥𝑖𝑖, 

of all past commits. Commit_1 is the only past commit; hence, the �̅�𝑥𝑖𝑖 value of commit_2 

is equal to Commit_1’s total LOC delta, 300, and 𝑆𝑆𝑐𝑐0002 is 1. 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎
𝑐𝑐0002 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0002

𝐿𝐿𝑐𝑐0001
× 𝑆𝑆𝑐𝑐0002 =

1.2 × 636 − 0.5 × 133
250

× 1 = 2.7868 

• The file total LOC delta weight, 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0002  and 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002

𝑐𝑐0002 , for file f0001 

and f0002 respectively, can be computed following Equation 12: 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0002 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0002

𝐿𝐿𝑓𝑓0001𝑐𝑐0001 × 𝑆𝑆𝑓𝑓0001𝑐𝑐0002 =
1.2 × 468 − 0.5 × 72

190
× 1 ≈ 2.7663 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0002 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0002

𝐿𝐿𝑓𝑓0002𝑐𝑐0001 × 𝑆𝑆𝑓𝑓0002𝑐𝑐0002 =
1.2 × 168 − 0.5 × 61

60
× 1 ≈ 2.8517 

• The proposed metric project total LOC delta percent change can be computed following 

Equation 15:  

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0002 =
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0002 − 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0001

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑐𝑐0002 =
696.7 − 300

696.7
≈ 0.5693 
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• The file total LOC delta percent change, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0002  and 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002

𝑐𝑐0002 , can be 

computed following Equation 16: 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0002 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0002 − 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001

𝑐𝑐0001

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0001
𝑐𝑐0002 =

525.6 − 228
525.6

≈ 0.5662 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0002 =

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0002 − 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002

𝑐𝑐0001

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑_𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎_𝑓𝑓0002
𝑐𝑐0002 =

171.1 − 72
171.1

≈ 0.5791 
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Chapter 5  

5 Quality Posture Assessment in Pre-Bug Fixing Commit 

Period 

5.1 Introduction 

This chapter discusses the proposed software quality assessment approach. Adopted from 

IEEE’s definition [17], faults are inserted into the system where incorrect modifications are 

introduced. An assumption in this thesis is that these incorrect modifications will eventually 

cause some software metrics to become abnormal, i.e., showing values that are significantly 

higher or lower than the others, until they are fixed in a bug-fixing commit (BFC), so if a few 

metrics repeatedly become abnormal in the same commits, it is a strong indication of existing 

bug, we name such situation as an abnormal posture. A software’s quality is degraded during 

the presence of bugs and is upgraded back to its previous level when it is fixed. Fixing a bug 

in a software project today implies significant costs in resources, time, and money. An 

abnormal posture that repeatedly occurred in commits before BFCs is particularly valuable as 

it can be considered as a factor that improves quality posture. We refer to those commits as 

pre-bug-fixing commits (P-BFCs). We define numerous ways to identify P-BFCs, and they 

are not necessarily the immediate past commits of a BFC. In the first part of the approach, we 

detect all abnormal postures in all P-BFCs of each selected project and find out the one with 

the most occurring rate. The abnormal posture found in this part is a key to understanding 

how a system is reaching a quality resumption point denoted by a BFC. In the second part, 

we examine all abnormal postures that occurred in all commits, then seek to predict that the 

system states warrant that we are going towards a Bug-Fixing Commit (BFC) by finding the 

posture (i.e., pattern) as this is defined by the vector of the values of the selected metrics in 

pre-BFC (P-BFC) commits. We enhance the prediction performance by combining postures 
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which predict different distinct BFCs. The abnormal posture found in this part can guide 

better decision-making and resource management. 

5.2 Overall Process  

The workflow of the proposed analysis process is depicted in Figure 6. The analysis begins 

with the selection of appropriate projects based on criteria described in Chapter 3.2. The 

historical commit data of the selected projects is extracted from GitHub, and the reported bug 

information is extracted from Bugzilla; both extraction processes rely on customized data 

extractors. Data from two repositories are reconciled to identify bug-fixing commits and, 

more importantly, the bug-containing files that are fixed in a bug-fixing commit. The 

reconciliation process identifies with a higher degree of confidence the files fixed in a bug-

fixing commit as compared to a noisy approach where every file in a bug-fixing commit is 

considered as being the file responsible for the bug being fixed. The reconciliation process 

has been discussed above in Chapter 3.5. Next, we synthesize some product metrics using 

available process metrics acquired after the reconciliation process, and based on these 

product metrics, we develop the proposed metrics suite. The metric synthesis and generation 

are discussed in Chapter 4, and all metrics that participate in the experiment are listed in 

Table 4.  

Our experiment started with correlation analysis to filter our highly correlated metrics using 

the Pearson correlation coefficient, which has been introduced in Chapter 2.5.1. In the next 

step, numerical values of each metric are converted into categorical values from 1 to 4 to 

support the study towards metric abnormality, after which we identify and group BFCs that 

are committed closely in time into a bug-fixing period (detailed in Chapter 5.5). We then 

identify the P-BFC corresponding to each BFC using three strategies. Then two different 

analyses are then performed, as discussed in Section 5.7. The following sections of this 

chapter are organized in the same order as the steps depicted in Figure 6. 
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5.3 Metric Correlations 

A heavy pair-wise correlation might be introduced as the proposed metrics are either 

synthesized or transformed based on existing ones. The purpose of metric correlation analysis 

is to filter out highly correlated metrics to reduce computational complexity, as one is 

sufficient to represent the other one. Some commonly used statistical metric filtering 

techniques have been introduced in Chapters 2.5 and 2.6. The metric correlation analyses in 

this thesis are conducted based on the Pearson Correlation Coefficient (PCC) as introduced in 

Figure 6: Overview procedure of the Posture Assessment Technique 

Figure 7: Correlation Analysis Example 
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Chapter 2.5.1 and are applied to each project we analyze. We choose PCC as the filtering 

technique because the synthesis process of the proposed metrics is mostly linear and hence 

doesn’t require a high degree correlation analysis. If the absolute value of the PCC between 

two metrics is greater than a threshold, we exclude the one with the smaller metric index 

from the experiment. The threshold we chose is 0.8, as statistical guidelines [53] [10] indicate 

that this value is associated with a “high” correlation. A partial example is shown in Figure 7. 

In this example, two pairs of metrics, fractal_value and fractal_value_over_lines, 

commit_additions and project_LOC_change, have a PCC greater than 0.8, and the one with 

the smaller metric index will be removed. Table 5 shows the excluded metrics of each 

project. 

Table 6: Project-wise Excluded Highly Correlated Metrics 
Project Name Excluded Metrics 

akregator [6, 7] 
ark [1, 6, 11] 

clazy [1, 3, 6, 7, 11] 
elisa [1, 6, 7, 11] 

gwenview [1, 6, 11] 
juk [1, 2, 6, 11] 
kget [1] 
kmix [1, 2, 6, 11] 

kolourpaint [1, 2, 5, 6, 7, 11] 
kompare [1, 2, 3, 5] 
kontact [] 

konversation [1, 2, 6, 7, 11] 
ktimetracker [1, 6] 

ktorrent [1, 6, 11] 
lokalize [1, 2, 3, 6, 11] 
marble [1, 6, 7, 11] 

plasmanm [1, 11] 
solid [1, 2, 6, 7, 11, 12] 

umbrello [1, 11] 
k3b [1, 5, 6, 11] 

kmail [1, 2, 6] 
kopete [2, 3, 6, 7, 10] 

korganizer [11] 
kstars [1, 3, 6, 11] 
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kdevplatform [3, 6, 11] 

5.4 Metric Categorization 

As metric values have a wide range, we have to discretize the values into categories (e.g., 

very high, high, medium, etc.). In this respect, we begin the analysis by surveying popular 

categorization methods. Our survey suggests two common categorization practices: a) 

standard deviation based and b) percentile based. The method based on standard deviation 

requires first calculating the mean and the standard deviation of the data and then 

categorizing each data point based on how many standard deviations it is away from the 

mean. This method generally requires that the data follows a normal distribution pattern; 

however, the metrics data we collected for the experiment are discrete measurements of 

software; therefore, it is not suitable to be categorized this way. The percentile-based method 

sorts metric data based on their numerical values and then groups them into percentiles. 

Common choices of percentiles are tertiles (33%-33%-33%), quartiles (25%-50%-25%), and 

deciles (10%-80%-10%) [72]. We adopt the percentile-based method and categorize the 

experiment data into four equal-size percentiles, namely the 0th to 25th (very low), 25th to 50th 

(low), 50th to 75th (high), and 75th to 100th (very high) percentile, and representing the data for 

the 4 percentiles with categorical values 1 to 4 respectively. Data in the lowest or highest 

percentile are considered abnormal. An example of metric categorization is given below. 

Assuming a metric vector 𝑉𝑉𝑓𝑓𝑗𝑗 for an arbitrary file 𝑓𝑓𝑗𝑗 is as the followings: 

𝑉𝑉𝑓𝑓𝑗𝑗 = [20, 2, 13, 35, 9, 5, 26, 19] 

The vector is sorted to be ready for categorization. The descendingly-sorted vector is: 

[2, 5, 9, 13, 19, 20, 26, 35] 

Clearly, [2, 5], [9, 13], [19, 20], and [26, 35] correspond the 0th to 25th (very low), 25th to 

50th (low), 50th to 75th (high), and 75th to 100th (very high) percentile respectively. The actual 
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values are then converted into categorical values 1, 2, 3, and 4, respectively. The converted 

vector 𝑉𝑉𝑓𝑓𝑗𝑗 is then as follows: 

𝑉𝑉𝑓𝑓𝑗𝑗 = [3, 1, 2, 4, 2, 1, 4, 3] 

The process metrics used in this work are either commit-associated metrics or file-associated 

metrics. Commit-associated metrics are shared by all files in the commit, whereas each file-

associated metric links with a unique file. File-associated metrics data should not be 

categorized together with other files’ data as files vary dramatically from files in size, 

functionality, dependency, etc. Therefore, each file’s metric data are categorized 

independently.  

5.5 Bug-Fixing Period 

An interesting finding of our experiments is the clustering of bug-fixing commits (BFC) 

which we coined as a bug-fixing period. After a long series of non-BFC, BFCs tend to occur 

densely within the next several commits. This finding overturns our presumed convention 

that BFC should distribute uniformly across all commits. Since a sufficient number of pre-

Bug-Fixing commits is required to form the study basis of conditional frequency rate, we 

treat the BFCs that have small non-BFC intervals in between as one BFC, namely a bug-

fixing period. Furthermore, the frequent bug fixes within a small period are likely caused by 

the same or related defects introduced shortly before this period. Formally, let 𝐶𝐶𝑘𝑘𝐵𝐵𝐵𝐵 denote a 

BFC 𝑘𝑘, let 𝐶𝐶ℎ𝐵𝐵𝐵𝐵 the first BFC ℎ after BFC 𝑘𝑘, and let 𝑛𝑛 be the number of non-BFCs 

between ℎ and 𝑘𝑘, 𝑛𝑛 must satisfy 𝑛𝑛 > 𝑎𝑎 for ℎ and 𝑘𝑘 to be considered as two separate 

BFC, otherwise ℎ and 𝑘𝑘 are treated as one bug-fixing period. The value of 𝑎𝑎 is set to 5. 

An example is illustrated in Figure 8. In this example, 𝐶𝐶7, 𝐶𝐶9, and 𝐶𝐶10 are three BFCs 

which are separated by a non-BFC interval that is less than 5. They are together considered as 

one BFC and share the same pre-bug-fixing commits discussed in the next section.  
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5.6 Selection of Pre-Bug-Fixing Commits 

As described in Chapter 5.1, ordinary commits occurred before a BFC contained metric value 

anomalies caused by defects. The statistical investigation of these commits can lead to the 

discovery of metrics that relate to file-level defects. For each BFC, we identify some 

suspicious commits prior to this BFC which might contain the manifestation of defects (i.e., 

extreme metrics). We refer to these commits as pre-bug-fixing commits (P-BFC). Using all 

commits before each commit as their P-BFC is an apparent but arduous way that results in 

unbalanced P-BFC sizes. Because the P-BFCs constitute the basis for our frequency 

calculations, we proposed different strategies for identifying P-BFCs outlined in the sections 

below labelled as Strategy 1, Strategy 2, and Strategy 3. 

5.6.1 Strategy-1: Using a Fixed-Length Commit Segment 

This strategy intuitively selects a fixed number of immediate past commits of any BFC as the 

corresponding P-BFC. The strategy is proposed under the assumption that after a BFC, the 

system can be considered temporarily defect-free, and new defects are introduced by the next 

normal commits. Therefore, defect-sensitive metrics should become abnormal when bugs 

emerge. For this thesis, we opted for the number of commits to be set to 5, which is equal to 

the commit-interval size presented in Section 5.4. This setting assures the P-BFC contains no 

BFC as the length of the bug-fixing period discussed above is also set to 5. Increasing the 

Figure 8: Bug-Fixing Period 
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fixed fix number to include more previous commits might add noise to the P-BFC. One 

obvious advantage of using this strategy is it ensures each BFC has a P-BFC of the same size. 

For the first 5 commits in the commit history, as the total number of past commits is less than 

5, all past commits are selected. An example of Strategy-1 is shown in Figure 9, where 𝐶𝐶9 is 

a BFC. The segment 𝐶𝐶4 − 𝐶𝐶8 is then considered as the P-BFC associated with the BFC 𝐶𝐶9. 

 

5.6.2 Strategy-2: Using Fixed-Length Segment of Any BFC Files  

 

In this strategy, we improve the P-BFC selection process by focusing only on the bug-fixing 

files. Theoretically, this strategy is ideal for systems where a small number of files repeatedly 

become faulty. In Strategy-2 above, for each of the bug-fixing files 𝑓𝑓𝑖𝑖,𝑘𝑘 R in a BFC Ck, we find 

the first past 5 commits prior to Ck that contain the file 𝑓𝑓𝑖𝑖,𝑘𝑘 R and collectively use all such 

found commits as the P-BFC segment period. As a past commit may contain multiple files 

𝑓𝑓𝑖𝑖,𝑘𝑘 R all these files will be included only once in the P-BFC segment period associated with 

BFC Ck. An example is illustrated in Figure 10, in which commit 𝐶𝐶11 is a BFC with bug-

fixing files 𝑓𝑓1 and 𝑓𝑓3. This P-BFC identification strategy traverses backward in the commit 

sequence to locate the first 5 commits containing 𝑓𝑓1 and the first 5 commits containing 𝑓𝑓3. 

In this example, the P-BFC segment period associated with C11 includes the commit C3 

(contains files 𝑓𝑓1, and 𝑓𝑓3 also appearing in BFC C11), commit C5 (contains file f3 also 

appearing in BFC C11), commit C7 (contains files 𝑓𝑓1, and f3 also appearing in BFC C11), 

Figure 9: Example of Strategy-1 
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commit C9 (contains files 𝑓𝑓1 and f4 also appearing in BFC C11), and commit C10 (contains 

files 𝑓𝑓1, and f3 also appearing in BFC C11). As it is depicted in Figure 10, commit C4 is not 

included in the P-BFC associated with commit C11 because neither 𝑓𝑓3 nor 𝑓𝑓4 is in it. 

 

 

 

5.6.3 Strategy-3: Using Fixed-Length Segment of All BFC Files 

Extending Strategy-2, we take a more aggressive step. In Strategy-3, the P-BFCs are formed 

by selecting the first past 5 commits that contain all bug-fixing files in a BFC. This strategy is 

inspired by Ria’s fault forecasting model [68]. The model is based on faulty files that are 

committed together, which the author referred to as a co-commit relationship. One of Ria’s 

major conclusions is that non-buggy files’ co-commit history is a good indicator that these 

files are likely to remain non-buggy in the future. In this strategy, we seek to extend Ria’s 

conclusion from a different angle by exploring if buggy files’ co-commit history was a strong 

predictor of BFC. The hypothesis behind the strategy is if the bug-fixing files used to be in 

previous non-bug-fixing commits together, then these commits are the potential origin of the 

Figure 10: Example of Strategy-2 
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defect and, thus, are likely to contain metric abnormalities. Using the same example of 

Strategy 2, the new P-BFC is shown in Figure 11.  

5.6.4 Working Example 

Let us consider the following commits: 

commit_1={commit_id =‘53963579d6cc4410cb414302b23772837d8577e1’, 

commit_associated_data =[…], file_data = {{file_id=‘04571199-1ed1-11eb-8195-

482ae32cf5b4’, is_bug_fixing=FALSE, file_associated_data =[…]},{file_id=‘04573751-

1ed1-11eb-a715-482ae32cf5b4’, is_bug_fixing= FALSE, file_associated_data 

=[…]}{file_id=‘04573752-1ed1-11eb-826d-482ae32cf5b4’, is_bug_fixing= FALSE, 

file_associated_data =[…]}, {file_id=‘04576000-1ed1-11eb-9b49-482ae32cf5b4’, 

is_bug_fixing= FALSE, file_associated_data =[…]}}} 

commit_2={commit_id =‘53963579d6cc4410cb414302b23772837d8577e1’, 

commit_associated_data =[…], file_data = {{file_id=‘04571198-1ed1-11eb-850b-

482ae32cf5b4’, is_bug_fixing= FALSE, file_associated_data =[…]}}} 

Figure 11: Example of Strategy-3 
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commit_3={commit_id =‘53963579d6cc4410cb414302b23772837d8577e1’, 

commit_associated_data =[…], file_data= {{file_id=‘0457374f-1ed1-11eb-8453-

482ae32cf5b4’, is_bug_fixing=FALSE, file_associated_data =[…]} {file_id=‘04573752-

1ed1-11eb-826d-482ae32cf5b4’, is_bug_fixing= FALSE, file_associated_data =[…]}}} 

commit_4={commit_id =‘53963579d6cc4410cb414302b23772837d8577e1’, 

commit_associated_data =[…], file_data = {{file_id=‘04573751-1ed1-11eb-a715-

482ae32cf5b4’, is_bug_fixing= FALSE, file_associated_data =[…]}{file_id=‘0457371c-

1ed1-11eb-8530-482ae32cf5b4’, is_bug_fixing= FALSE, file_associated_data=[…]}}} 

commit_5={commit_id =‘53963579d6cc4410cb414302b23772837d8577e1’, 

commit_associated_data =[…], file_data = {{file_id=‘0457371d-1ed1-11eb-b88c-

482ae32cf5b4’, is_bug_fixing=FALSE, file_associated_data =[…]},{file_id=‘04573751-

1ed1-11eb-a715-482ae32cf5b4’, is_bug_fixing= FALSE, file_associated_data 

=[…]}{file_id=‘04573752-1ed1-11eb-826d-482ae32cf5b4’, is_bug_fixing= FALSE, 

file_associated_data=[…]}}} 

commit_6={commit_id =‘53963579d6cc4410cb414302b23772837d8577e1’, commit_ 

commit_associated_data=[…], file_data = {{file_id=‘0457374f-1ed1-11eb-8453-

482ae32cf5b4’, is_bug_fixing=FALSE, file_ associated_data=[…]},{file_id=‘04573751-

1ed1-11eb-a715-482ae32cf5b4’, is_bug_fixing=TRUE, 

file_associated_data=[…]}{file_id=‘04573752-1ed1-11eb-826d-482ae32cf5b4’, 

is_bug_fixing=TRUE, file_associated_data =[…]}}} 

We can then provide a working example of how the different strategies are applied.  

Assuming commit_1 to commit_6 listed above are the first 6 commits of a project. Commit_6 

is identified as a bug-fixing commit as two of its files have TRUE for the is_bug_fixing label, 

and it is the only bug-fixing commit among the 6 commits. The actual commit-associated and 

file-associated metric data are omitted for simplicity reasons. During the P-BFC selection 

process:  
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Strategy_1 selects undiscriminatingly the immediate past 5 commits of the buggy commit_6 

as P-BFC. In this example, commit_1 to commit_5 will be chosen.  

Strategy_2 traces the past commit history of each buggy file and selects the first 5 commits 

that each buggy file participated in. Though buggy commit_6 has 3 files, only two of them 

are labelled for bug-fixing. Strategy_2 first acquires the list of buggy file IDs. In this case, the 

list is [‘04573751-1ed1-11eb-a715-482ae32cf5b4’, ‘04573752-1ed1-11eb-826d-

482ae32cf5b4’]. An iteration of the list is performed to find 5 commits for each. In each 

iteration, starting from the BFC, the past commit history is traversed until 5 containing 

commits are satisfied or until all past commits are traversed. For file ‘04573751-1ed1-11eb-

a715-482ae32cf5b4’, the containing commits are commit_1, commit_4, and commit_5, and 

for file ‘04573752-1ed1-11eb-826d-482ae32cf5b4’, the commits are commit_1, commit_3, 

and commit_5. The finding results are aggregated to remove duplicated commits, so the final 

P-BFC selected by strategy_2 are commit_1, commit_3, commit_4, and commit_5. 

Strategy_3 aims to find 5 past commits where all the buggy files in a BFC are also co-

committed together. The selection process of strategy_3 is similar to strategy_2’s. First, the 

buggy file list is [‘04573751-1ed1-11eb-a715-482ae32cf5b4’, ‘04573752-1ed1-11eb-826d-

482ae32cf5b4’]. The commit history prior to the BFC is then traversed to find 5 commits 

containing all buggy files in the list until all commits have been visited. The final P-BFC 

selected by strategy_3 are commit_1 and commit_5. 

5.7 Posture Analysis 

In this thesis, we conduct two types of analyses.  

Analysis 1 aims to identify the conditional frequency rate of a metric pattern appearing in the 

pre-BFC segment (as this segment is evaluated using Strategies 1-3 as discussed above), 

given that a BFC occurs.  
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Analysis 2 aims to identify the conditional frequency rate of a BFC given a metric pattern 

appearing in the pre-BFC segment (as this segment is evaluated using Strategies 1-3 as 

discussed above), given that a BFC occurs.  

5.7.1 Analysis 1: Pre-BFC Posture Frequency Given a BFC  

This type of analysis aims to compute the following conditional frequency rate: 

CFR (posture pattern | BFC) 

The basic assumption of the proposed technique is that if defects are introduced in these P-

BFCs, then they cause defect-sensitive metrics to behave abnormally until they are fixed. One 

common abnormal behaviour is that these metrics will demonstrate abnormal values, either 

very high or very low. The central idea can be summarized with a question: “Given all BFC 

occurrences, what postures can be found frequently before they occur?” At this point, all 

metric values have been converted into categorical values 1-4 (very low, low, high, very 

high), and the P-BFC that corresponds with each BFC has been identified. Each P-BFC 

corresponds to a commit state (i.e., a vector of metric values). As discussed in Chapters 1.2 

and 5.6, a commit consists of several files, and a few commits identified by a strategy 

constitute a P-BFC. For each P-BFC, a 2-dimensional vector matrix of metrics in converted 

categorical values, 𝐴𝐴𝑃𝑃−𝐵𝐵𝐵𝐵𝐶𝐶, can be obtained by concatenating all matrices of files of commits 

that constitute this P-BFC. 

𝐴𝐴𝑃𝑃−𝐵𝐵𝐵𝐵𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡
𝒂𝒂𝒇𝒇𝟏𝟏,𝒎𝒎𝟏𝟏 𝑎𝑎𝑓𝑓1,𝑚𝑚2 𝑎𝑎𝑓𝑓1,𝑚𝑚3 … 𝑎𝑎𝑓𝑓1,𝑚𝑚𝑗𝑗
𝑎𝑎𝑓𝑓2,𝑚𝑚1 𝑎𝑎𝑓𝑓2,𝑚𝑚2 𝑎𝑎𝑓𝑓2,𝑚𝑚3 … 𝑎𝑎𝑓𝑓2,𝑚𝑚𝑗𝑗
𝑎𝑎𝑓𝑓3,𝑚𝑚1 𝑎𝑎𝑓𝑓3,𝑚𝑚2 𝑎𝑎𝑓𝑓3,𝑚𝑚3 … 𝑎𝑎𝑓𝑓3,𝑚𝑚𝑗𝑗

⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚1 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚2 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚3 … 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

 

The concatenation process dissolves the barriers of commits, making the result matrix focus 

on files and their metrics. Taking the element 𝒂𝒂𝒇𝒇𝟏𝟏,𝒎𝒎𝟏𝟏 in position (1,1) in the matrix above as 

an example, this represents the metric 𝒎𝒎𝟏𝟏 of file 𝒇𝒇𝟏𝟏. Furthermore, each row of 𝐴𝐴𝑃𝑃−𝐵𝐵𝐵𝐵𝐶𝐶 is a 
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metric vector associated with a file (commit-associated metrics are shared by all files of that 

commit), and each column is a vector associated with a particular metric.  

Through the examination of a P-BFC’s matrix, if a metric was found showing abnormal 

values (i.e., 1, which means very low, or 4, which means very high) with a high frequency, 

then according to our hypothesis, this metric is potentially sensitive to the bug that is fixed in 

the corresponding BFC. Here, frequency rate is defined as the division of the number of 

times this metric is at an abnormal value over the total number of values of this metric (i.e., 

the number of rows of the P-BFC’s vector). As the purpose of Analysis_1 is to study the 

overall behaviour of posture patterns in P-BFCs, a threshold rate 𝑡𝑡 is used to justify the high 

frequency. In a P-BFC, if a metric shows an abnormal frequency rate greater than t, then it is 

considered abnormal in this P-BFC. More specifically, a column matrix of 𝐴𝐴𝑃𝑃−𝐵𝐵𝐵𝐵𝐶𝐶 as shown 

above, represent how a metric 𝑚𝑚𝑘𝑘 performs in the given P-BFC. 

𝑉𝑉𝑚𝑚𝑘𝑘 =  

⎣
⎢
⎢
⎢
⎡
𝑎𝑎𝑓𝑓1,𝑚𝑚𝑘𝑘
𝑎𝑎𝑓𝑓2,𝑚𝑚𝑘𝑘
𝑎𝑎𝑓𝑓3,𝑚𝑚𝑘𝑘
⋮

𝑎𝑎𝑓𝑓𝑗𝑗,𝑚𝑚𝑘𝑘⎦
⎥
⎥
⎥
⎤

 

Let −𝑚𝑚𝑘𝑘 denotes metric 𝑚𝑚𝑘𝑘’s very low occurrence in 𝑉𝑉𝑚𝑚𝑘𝑘, and +𝑚𝑚𝑘𝑘 denotes the very 

high occurrence in 𝑉𝑉𝑚𝑚𝑘𝑘. The frequency 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚𝑘𝑘) and 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(+𝑚𝑚𝑘𝑘) can be calculated by 

the following equation: 

𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚𝑘𝑘) = −𝑚𝑚𝑘𝑘

�𝑉𝑉𝑚𝑚𝑘𝑘�
, and 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(+𝑚𝑚𝑘𝑘) = +𝑚𝑚𝑘𝑘

�𝑉𝑉𝑚𝑚𝑘𝑘�
 

If 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚𝑘𝑘) or 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(+𝑚𝑚𝑘𝑘) is greater than or equal to 𝑡𝑡, metric 𝑀𝑀𝑘𝑘 is considered very 

low or very high in this P-BFC, and it is a valid study subject to infer the corresponding BFC. 

As a single metric can be biased and partial, more metrics involvement led to more accurate 

and comprehensive results. The frequency analysis can be extended to explore how several 

metrics become abnormal at the same time (i.e., in the same P-BFC). Given the total metrics 

set as the following: 
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𝑆𝑆𝑚𝑚 = {𝑚𝑚1,𝑚𝑚2,𝑚𝑚3, . . . ,𝑚𝑚𝑗𝑗} 

Because each metric 𝑚𝑚𝑘𝑘 has two abnormal values −𝑚𝑚𝑘𝑘 and +𝑚𝑚𝑘𝑘 as denoted above, the 

set of abnormal metrics that are involved in the experiment becomes: 

𝑆𝑆abnormal = {−𝑚𝑚1, +𝑚𝑚1,−𝑚𝑚2, +𝑚𝑚2,−𝑚𝑚3, +𝑚𝑚3, . . . ,−𝑚𝑚𝑗𝑗 , +𝑚𝑚𝑗𝑗} 

Let 𝑆𝑆𝑥𝑥 be a subset of 𝑆𝑆𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑚𝑚𝑎𝑎𝑑𝑑 . If 𝑆𝑆𝑥𝑥 satisfies the following: 

(∀𝑚𝑚𝑥𝑥){𝑚𝑚𝑥𝑥 ∈ 𝑆𝑆𝑥𝑥 ∶  𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(𝑚𝑚𝑥𝑥) ≥ 𝑡𝑡} 

Then all elements of 𝑆𝑆𝑥𝑥 are considered simultaneously abnormal in the given P-BFC, and 

we refer to such an 𝑆𝑆𝑥𝑥 as an abnormal posture. Notice because of the presence of other 

categorical values (i.e., 2, which means low, or 3, which means high) and the threshold value, 

neither or both of 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚𝑘𝑘) and 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(+𝑚𝑚𝑘𝑘) can be greater than threshold t. To avoid 

this contradiction, we ignore the case that a metric is simultaneously abnormal in both ways. 

The choice of the threshold is a trade-off between precision (i.e., how significant the 

frequency rate is) and the number of satisfied cases. We experiment on different thresholds 

and report the result in Table 7. A higher threshold results in more significant frequency rates 

but fewer satisfied patterns, whereas a lower threshold leads to more satisfied patterns but 

lower precision. We opted for threshold rate t to be 0.4 for this experiment, as it has a 

reasonable significance level while leading to sufficient satisfied patterns. 

Table 7: Different Thresholds and Satisfied Patterns 
Threshold Satisfied Patterns Cases 

strategy_1 strategy_2 strategy_3 
0.2 3796.58 3691.17 3917.83 
0.3 3566.5 3466.29 3672.54 
0.4 3163.04 2972.67 3244.25 
0.5 2778.62 2150.38 2368.38 
0.6 2520.75 1517.29 1274.83 
0.7 2344.96 1071.71 960.67 
0.8 2271.67 876.67 662.14 
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Compared to the analysis using a single metric, an abnormal posture of multiple metrics is a 

more thorough description of the P-BFC; consequently, it leads to better quality assessment. 

The number of subsets of a set with size n is 2𝑎𝑎. Conducting an exhaustive analysis of each 

subset of the total metric set is beyond the scope of this thesis. The alternative approach we 

used is restricting the metric subset to a fixed size z and exhaustively analyzing every 

possible subset of this size. Size z is set to 3 in this thesis; namely, all posture 𝑆𝑆𝑥𝑥 that satisfy 

|𝑆𝑆𝑥𝑥| = 3 will be examined. It is possible that multiple abnormal postures co-exist in one P-

BFC. However, after applying the frequency analysis to each P-BFC, a ranked list of 

abnormal posture occurrences is obtained, where the top posture of the list marks the posture 

that most frequently occurred in P-BFCs, and metrics in such posture are more valuable to 

assess BFC-entering state. 

5.7.1.1 Example  

We provide an example of how 3 metrics are deemed very high or very low at the same in a 

P-BFC. Considering the following categorized P-BFC matrix: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 …
1 4 2 …
2 4 3 …
2 2 1 …
3 1 4 …
1 3 4 …
1 4 1 …
4 4 3 …
1 4 3 …⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Assuming we are interested in abnormal posture {−𝑚𝑚1, 𝑚𝑚2, −𝑚𝑚3}---if metric 𝑚𝑚1 was very 

low, while if metrics 𝑚𝑚2 was very high, and while if metric 𝑚𝑚3 was very low in this P-

BFC. Hence 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚1), 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(𝑚𝑚2), and 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚3) described above are computed.  

𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚1) =
−𝑚𝑚1

�𝑉𝑉𝑚𝑚1�
=

4
8

= 0.5 

𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(𝑚𝑚2) =
𝑚𝑚2

�𝑉𝑉𝑚𝑚2�
=

5
8

= 0.625 
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𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚3) =
−𝑚𝑚3

�𝑉𝑉𝑚𝑚3�
=

2
8

= 0.25 

As the threshold is set to 0.4, 𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓(−𝑚𝑚3) is lower than this threshold, and thus, the desired 

abnormal posture is not found in this P-BFC.  

5.7.2 Analysis 2: BFC Frequency Given a P-BFC Posture Pattern 

This type of analysis aims to compute the following conditional frequency rate: 

CFR(BFC | posture pattern) 

The quality posture assessment discussed above treats the occurred BFC as conditions, 

identifies the past investigation areas (P-BFC) based on them, and uses the most likely 

posture found in P-BFCs to assess the BFC-entering phase hence assessing software quality. 

Although the found posture has a tight correlation with imminent BFCs, they are not 

necessarily good predictors that suit fault mitigation jobs. BFCs and corresponding P-BFCs 

only comprise a small proportion of the entire commit history of a project. Every P-BFC has 

a posture occurrence doesn’t mean all the posture occurrences are in P-BFCs. Therefore, such 

posture occurrences are not solid evidence that there will be an imminent BFC within the 

next few commits.  

We design a complementary technique to assess the correlation between postures and BFCs. 

This technique is based on computing the total occurrences of each abnormal posture across 

the entire project, then inspecting how many of them took place in P-BFC. A frequency ratio 

can be obtained by dividing the P-BFC occurrences by the total occurrences. If the ratio of a 

posture is high enough, it indicates that the posture has a high interrelationship with BFCs; 

thus, the posture is a good predictor of them. Again, the central idea of the technique can be 

summarized with a question: “Given the occurrences of an abnormal posture, how likely will 

there be a BFC shortly after?”. If BFCs frequently occur after a posture, this posture is a good 

predictor. More specifically, the metrics of each selected project, 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗𝑑𝑑𝑐𝑐𝑎𝑎, is in tabular form, 

which can be converted into a 2-dimensional matrix similar to 𝐴𝐴𝑃𝑃−𝐵𝐵𝐵𝐵𝐶𝐶 shown above: 
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𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗𝑑𝑑𝑐𝑐𝑎𝑎 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎𝑎𝑓𝑓1,𝑚𝑚1 𝑎𝑎𝑓𝑓1,𝑚𝑚2 𝑎𝑎𝑓𝑓1,𝑚𝑚3 … 𝑎𝑎𝑓𝑓1,𝑚𝑚𝑗𝑗
𝑎𝑎𝑓𝑓2,𝑚𝑚1 𝑎𝑎𝑓𝑓2,𝑚𝑚2 𝑎𝑎𝑓𝑓2,𝑚𝑚3 … 𝑎𝑎𝑓𝑓2,𝑚𝑚𝑗𝑗
𝑎𝑎𝑓𝑓3,𝑚𝑚1 𝑎𝑎𝑓𝑓3,𝑚𝑚2 𝑎𝑎𝑓𝑓3,𝑚𝑚3 … 𝑎𝑎𝑓𝑓3,𝑚𝑚𝑗𝑗

⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚1 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚2 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚3 … 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎤

 

The row and column interpretation of 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗𝑑𝑑𝑐𝑐𝑎𝑎 are the same as 𝐴𝐴𝑃𝑃−𝐵𝐵𝐵𝐵𝐶𝐶 except that the 

former has a much larger row size than the latter in general. In the previous assessment, 

because P-BFCs are segments rather than a row of data, a threshold is set to determine 

whether a metric should be deemed as very high or very low. In this assessment, as the first 

task is to count the occurrence of abnormal postures by examining each row of 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗𝑑𝑑𝑐𝑐𝑎𝑎, the 

threshold is not required. The set of abnormal metrics, 𝑆𝑆𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑚𝑚𝑎𝑎𝑑𝑑, has been given in the 

previous section, and the set of all possible unique combinations of  𝑆𝑆𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑚𝑚𝑎𝑎𝑑𝑑 of the size of 

3,  𝑆𝑆𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑚𝑚𝑎𝑎𝑑𝑑3 , is: 

𝑆𝑆𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑚𝑚𝑎𝑎𝑑𝑑
3 = {{−𝑚𝑚1,−𝑚𝑚2,−𝑚𝑚3}, {−𝑚𝑚1,−𝑚𝑚2, +𝑚𝑚3}, . . . , {+𝑚𝑚𝑖𝑖 , +𝑚𝑚𝑗𝑗 , +𝑚𝑚𝑘𝑘}} 

Let 𝑛𝑛 be the count of posture occurrences, and 𝑧𝑧 be the count of posture occurrences in P-

BFC. For each unique abnormal posture in 𝑆𝑆𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑚𝑚𝑎𝑎𝑑𝑑3 , we iterate each row of 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗𝑑𝑑𝑐𝑐𝑎𝑎 

space, computing 𝑛𝑛 and 𝑧𝑧. Taking posture {−𝑚𝑚1,−𝑚𝑚2,−𝑚𝑚3} as an example, during the 

iteration of each row which is in the form of [𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚1 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚2 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚3 … 𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚𝑗𝑗], the 

predicate �(𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚1 == −1) ∩ (𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚2 == −1) ∩ (𝑎𝑎𝑓𝑓𝑖𝑖,𝑚𝑚3 == −1)� is being evaluated. If the 

predicate is true, the corresponding posture has occurred once, and the 𝑛𝑛 count for this 

posture is incremented by 1. If the row is contained by at least one P-BFC, the 𝑧𝑧 count for 

this posture is incremented by 1. The P-BFC occurring rate of this posture (i.e., the rate of a 

posture occurrence in P-BFC given its occurrence), 𝑃𝑃−𝑚𝑚1,−𝑚𝑚2,−𝑚𝑚3 = 𝑧𝑧
𝑎𝑎
, can be calculated 

after iterating the entire 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎𝑗𝑗𝑑𝑑𝑐𝑐𝑎𝑎 space. After computing the conditional frequency rate of 

every posture in 𝑆𝑆𝑐𝑐𝑎𝑎𝑚𝑚𝑏𝑏𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎
3 , the posture with the highest frequency rate represents the best 

BFC predictor.  
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Chapter 6  

6 Experiments and Obtained Results 

In this chapter, we present the setup for our experiments, present the obtained results, and 

discuss threats to validity. 

6.1 Experiment Setup 

The datasets related to the selected software projects are fetched from Bugzilla and GitHub 

repositories utilizing custom-made REST APIs and readers written in Python. The extracted 

data are then stored in the form of CSV files. The preprocessing of data and new metrics 

formation is accomplished by the program utilizing the Python Pandas package. The 

proposed framework is developed in Java with SDK version 10.0.2.  

6.2 Metrics  

A total of 18 metrics are used in the experiments, including 8 common process metrics, 2 

synthesized static code metrics, and 8 proposed new processed metrics (Table 4). To simplify 

the presentation of the results, each metric is coded with an index number (1-18, see Section 

4.3 Table 4). As metric values in both the highest percentile and lowest percentile are deemed 

abnormal and studied, an “+” is used to denote values in the highest percentile and an “-” 

denotes values in the lowest percentiles. For example, in result tables presented in the 

following sub-chapters, an “+18” is interpreted as “metric 18 is found very high”. As each 

metric has two extreme percentiles, the total of variables that participate in the study is: 

18(the number of metrics) × 2(the number of abnormal metric categorizations, very high 

and very low) = 36. The size of the metric combination in the experiment is 3, so the total 

number of unique combinations is 𝐶𝐶(36, 3) = 7140. We chose this size as a combination 

size of 4 or higher is beyond the computation resource we have. 
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6.3 Experimental Results 

We have implemented the three strategies discussed in Chapter 5.6 for selecting the P-BFC 

commits, all of which are used by Analysis 1 and Analysis 2, as discussed in Section 5.7. The 

experiment is performed on 25 open-sourced software projects listed in Section 3.2. The 

following rank criteria are used to evaluate the results: 

Table 8: Evaluation Criteria 
Frequency Rate Rank 
1-0.8 Very good 
0.8-0.6 Good 
0.6-0.4 Acceptable 
0.4-0.2 Poor 
0.2-0 Very poor 

 

6.3.1 Analysis 1 Results: P (Posture Pattern | BFC) 

The obtained results of Analysis 1 are reported per strategy per project. For each strategy, 

only the posture with the highest conditional frequency rate is reported. All results are 

displayed in descending order of the rate. An example of how to interpret the result in part 1 

is given in the next section. 

6.3.1.1 Result Interpretation  

Using the first row of Table 7 in the next section as an example, the result is interpreted as the 

following: 

In project solid, in the 37 P-BFCs identified by Strategy-1, metric 3 (i.e., changed files) 

is found to be very low (indicated by the “-” sign), metric 15 (i.e., File Total LOC delta 

Percent Change) is found to be very low, and metric 18 (i.e., File-project LOC delta 

weight) is found to be very high all at the same time in the same P-BFC for a total 

occurrence of 28. The P-BFC occurring rate of this posture in all P-BFCs is 28 ÷ 37 ≈
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0.5285, and it is the highest rate among all posture’s P-BFC occurring rate in project 

solid.   

6.3.1.2 Analysis 1 / Strategy-1: Using a Fixed-Length Commit 
Segment 

Table 9: Most Frequently Occurred Posture in P-BFC Identified by Strategy-1 

Table 7 shows the most occurring postures in P-BFCs identified by Strategy-1 of each 

project. The posture with the highest frequency among all 25 projects is solid at 0.7568. This 

means that in 75.68% of the cases, this P-BFC posture occurs when we have a BFC, while the 

Project 
Name 

Most P-BFC Occurred 
Posture Occurrence 

in P-BFC 
P-BFC 
size 

P-BFC 
Occurring 
Rate 

Metric 
One 

Metric 
Two 

Metric 
Three 

solid -3 -15 18 28 37 0.7568  
kolourpaint -3 -10 18 79 127 0.6220  
lokalize -5 -10 18 39 69 0.5652  
umbrello -3 -10 18 180 369 0.4878  
kopete 14 -15 18 431 919 0.4690  
k3b -3 -10 18 152 339 0.4484  
kstars -2 -10 18 274 628 0.4363  
kontact -3 -10 18 114 265 0.4302  
korganizer -4 -5 -12 227 550 0.4127  
kdevplatform -1 -10 18 355 866 0.4099  
kmix -4 -5 -12 46 118 0.3898  
marble -3 -10 18 270 713 0.3787  
ktorrent -3 -10 18 46 123 0.3740  
akregator -3 -10 18 106 288 0.3681  
elisa -3 -10 18 37 101 0.3663  
ark -3 -10 18 80 219 0.3653  
juk -3 -10 18 55 158 0.3481  
plasmanm -3 -10 18 56 169 0.3314  
ktimetracker -2 -10 -12 37 112 0.3304  
konversation -3 -10 18 146 462 0.3160  
kget -4 -10 -12 52 165 0.3152  
clazy -2 -10 18 33 107 0.3084  
kmail -4 -5 -12 392 1296 0.3025  
gwenview -3 -10 18 101 344 0.2936  
kompare -8 -9 -14 8 40 0.2000  
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lowest one is from kompare at 20%. The average P-BFC occurring rate is 40.1%. Project 

solid and kolourpaint are assessed to have a posture with a P-BFC occurring rate ranked good 

according to the criteria in Table 6. We cross-compare these two projects with the system 

characteristics in Table 2 and find out that solid has the least BFC per commit. Meanwhile, 

kolourpaint has the second least BFC per commit among 25 selected systems. However, 

project lokalize and Umbrello, in third and fourth place, have the second-highest and the 

highest BFC per commit status. The cross-comparison between fifth to eighth places of 

results and BFC per commit of them supports the pattern: project kopete has the seventh 

highest BFC per commit, while kontact and kstars have the third and the sixth least. The 

observed pattern is evidence that Strategy-1 works better on projects with either relatively 

high or low BFC per commit status. 

 

6.3.1.3 Analysis 1 / Strategy-2: Using Fixed-Length Segment of Any 
BFC Files 

Table 10: Most Frequently Occurred Posture in P-BFC Identified by Strategy-2 

Project 
Name 

Most P-BFC Occurred Posture 
Occurrences 

in P-BFC 
P-BFC 
size 

P-BFC 
Occurring 

Rate 
Metric 

One 
Metric 

Two 
Metric 
Three 

ktorrent 3 10 -18 65 123 0.5285 
solid -8 -15 -16 18 37 0.4865 

korganizer 1 3 10 265 550 0.4818 
plasmanm 2 3 10 80 169 0.4734 

kopete -5 -8 -15 420 919 0.4570 
kdevplatform 1 2 10 394 866 0.4550 

kompare -8 10 -18 18 40 0.4500 
kmail 3 10 -18 527 1296 0.4066 

gwenview 3 10 -18 137 344 0.3983 
marble 2 3 -18 281 713 0.3941 

juk 3 10 -18 61 158 0.3861 
ark 2 3 10 84 219 0.3836 

kontact 1 10 -18 98 265 0.3698 
k3b 3 10 -18 122 339 0.3599 
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Table 8 reports the most occurring postures in P-BFCs identified by Strategy-2 of each 

system. The posture with the highest frequency rate among all 25 projects is from ktorrent at 

52.85%, while the lowest one is from kget at 23.64%. The average conditional frequency rate 

is 36.69%. The result is two-tiered according to the criteria in Table 6. Tier one contains the 

best 8 systems that are ranked acceptable, and all the rest 17 systems are ranked poor. Based 

on the system characteristics we computed in Table 2, we observe that of the top 5 projects in 

the result, solid, kopete, plasmanm, ktorrent, and korganizer have respectively the least, and 

the second least, the third least, the eighth least, and the tenth least Average File Count per 

Commit among the 25 selected projects. Based on the observations, we conclude that 

Strategy-2 works better on projects which have relatively fewer files involved in commits on 

average.  

 

 

 

 

 

umbrello 2 3 -18 130 369 0.3523 
clazy -5 -12 -16 35 107 0.3271 

ktimetracker 3 10 -18 36 112 0.3214 
kmix 3 -5 -12 37 118 0.3136 

konversation 3 10 14 142 462 0.3074 
kolourpaint -8 -9 17 37 127 0.2913 
akregator 1 3 10 76 288 0.2639 
lokalize 10 13 -18 17 69 0.2464 
kstars 2 10 13 154 628 0.2452 
elisa 2 3 10 24 101 0.2376 
kget 2 3 13 39 165 0.2364 
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6.3.1.4 Analysis 1 / Strategy-3: Using Fixed-Length Segment of All 
BFC Files 

Table 11: Most Frequently Occurred Posture in P-BFC Identified by Strategy-3 
Project 
Name 

Most P-BFC Occurring 
Posture 

Occurrence 
in P-BFC 

P-BFC 
size 

P-BFC 
Occurring 
Rate Metric 

One 
Metric 
Two 

Metric 
Three 

ktorrent 2 10 14 96 123 0.7805  
kompare 10 12 -18 31 40 0.7750  
korganizer 1 10 -18 394 550 0.7164  
umbrello 3 10 -18 263 369 0.7127  
kopete 9 14 17 645 919 0.7018  
clazy -5 -12 -16 74 107 0.6916  
lokalize 10 13 -18 47 69 0.6812  
kdevplatform 1 10 -18 589 866 0.6801  
juk 3 10 -18 105 158 0.6646  
kmail 3 10 -18 854 1296 0.6590  
ark 2 3 10 141 219 0.6438  
akregator 1 2 10 183 288 0.6354  
gwenview 3 10 -18 215 344 0.6250  
k3b 3 14 -18 203 339 0.5988  
elisa -8 -9 17 60 101 0.5941  
kmix 3 -5 -12 70 118 0.5932  
plasmanm 3 10 -18 100 169 0.5917  
marble 2 3 -18 417 713 0.5849  
konversation 3 10 -18 268 462 0.5801  
ktimetracker 3 10 -18 64 112 0.5714  
solid -8 -15 -16 21 37 0.5676  
kget 2 3 13 92 165 0.5576  
kontact 1 10 -18 140 265 0.5283  
kstars 2 10 -18 318 628 0.5064  
kolourpaint 3 10 14 64 127 0.5039  

Table 9 reports the most occurring postures in P-BFCs identified by Strategy-3 of each 

system. The posture with the highest frequency rate among all 25 projects is from ktorrent at 

78.05%, while the lowest one is from kolourpaint at 50.39%. The average conditional 

frequency rate is 62.98%. A total of 13 systems are ranked good and make up the tier one 

result, followed by the rest 12 systems with the rank of acceptable. We are unable to find a 
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system characteristic in Table 2 that justifies all the top 13 best results, but when we examine 

the top 11 systems of the best 13 results, we observe that 10 of the 11 systems (Umbrello, 

localize, ktorrent, clazy, juk, kopete, ark, compare, kmail, and korganizer) are also 10 of the 

top 11 systems with the most BFC per commit. From this observation, we can conclude that 

Strategy-3 works better with projects that have higher BFC per commit.  

6.3.1.5 Comparison of Results of Analysis 1 Using Different Strategies 

Table 7, Table 8, and Table 9 contain the most likely occurred posture in P-BFCs of each 

project. We evaluate the results by counting the instances in each rank of the criteria in Table 

6 and display the result summarization in Table 10. Obviously, Strategy-3 outperforms 

Strategy-1, and Strategy-1 slightly outperforms Strategy-2. Strategy-2 and 3 are based on a 

similar rationale, that is, the history of BFC files contains more manifestations of abnormal 

posture. However, the result of Strategy-3 vastly outperforms Strategy-2’s. It means the co-

committing history of BFC files in revealing forthcoming BFCs.  

Table 12: Instances of Each Rank for Analysis 1 
 Strategy-1 Strategy-2 Strategy-3 
Very good 0 0 0 
Good 2 0 13 
Acceptable 8 8 12 
Poor 15 17 0 
Very Poor 0 0 0 

 

6.3.2 Analysis 2 Results: P (BFC | P-BFC Posture Pattern) 

In this section, we present the obtained results for Analysis-2, discussed in Chapter 5.7.2 and 

the selection process to select the best BFC predictor. In Analysis-1, the best posture of each 

system is selected only based on the frequency; however, for a posture to be used as a good 

BFC predictor, it must occur both frequently and frequently in P-BFCs. In addition to the P-

BFC occurring rate, the occurring rate of each posture is computed by dividing the total 

posture occurrence by the size of the system dataset. As the posture occurring rate and the P-
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BFC occurring rate discussed in Chapter 5.7.2 is equally important, we compute the product 

of these two factors, and for each system, the posture with the highest product value is 

selected as the best BFC leading posture. We present the top results of the system ark in 

Table 11 to demonstrate how the best posture of an individual system is selected. Abnormal 

posture {2, 3, 10} is found 2031 times in Ark’s dataset. The occurring rate of this posture is 

calculated to be 0.1441 (the size of the dataset is omitted). Out of the 2031 posture 

occurrences, 1458 occurrences are found in P-BFC; therefore, the P-BFC occurring rate is 

1458 ÷ 2031 = 0.7179. The product of the occurring rate and P-BFC occurring rate is 

0.1441 × 0.7179 = 0.1034. The product value of posture {2, 3, 10} is the highest among all 

postures of Ark, so it is the best BFC leading posture in the system. The best posture of each 

project under each strategy is selected through the same process and displayed in the 

following sections.  

Table 13: An Example of the Top Results of Project Ark 
Metric 
One 

Metric 
Two 

Metric 
Three 

Total 
Occurre
nces 

Occurring 
rate 

Occurrence 
in P-BFCs 

P-BFC 
occurring 
frequency  

Product 

2 3 10 2031 0.1441  1458 0.7179  0.1034  
2 10 -18 1871 0.1327  1205 0.6440  0.0855  
3 10 -18 1691 0.1199  1204 0.7120  0.0854  
2 3 -18 1579 0.1120  1145 0.7251  0.0812  
2 10 13 1684 0.1194  934 0.5546  0.0662  
2 5 12 1590 0.1128  783 0.4925  0.0555  
4 5 12 1874 0.1329  752 0.4013  0.0533  
5 12 16 1746 0.1238  644 0.3688  0.0457  
5 12 15 1699 0.1205  621 0.3655  0.0440  
… … … … … … … … 
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6.3.2.1 Analysis 2 / Strategy-1: Using a Fixed-Length Commit 
Segment 

Table 14: Best BFC Predicting Posture of Each System Using Strategy-1 
Project 
Name 

Best BFC Predicting 
Posture 

Occurring 
rate 

P-BFC 
Occurring Rate 

Product 

Metric 
One 

Metric 
Two 

Metric 
Three 

kmix -4 -5 -12 0.309 0.3043 0.0940 
kmail -4 -5 -12 0.2952 0.2617 0.0772 
clazy 2 10 14 0.1581 0.4696 0.0742 
korganizer -4 -5 -12 0.2709 0.2698 0.0731 
juk -4 -5 -12 0.2591 0.2708 0.0702 
kget -6 -7 -8 0.2198 0.3183 0.0700 
plasmanm -6 -7 -8 0.1961 0.3467 0.0680 
umbrello -4 -5 -12 0.2938 0.2203 0.0647 
kstars 2 13 14 0.1239 0.5122 0.0635 
solid -15 -16 -18 0.3393 0.1709 0.0580 
kolourpaint -3 -10 18 0.1847 0.2987 0.0552 
marble 3 10 14 0.1179 0.4592 0.0541 
kontact -2 -5 -12 0.177 0.2916 0.0516 
lokalize -4 -5 -12 0.2745 0.1834 0.0504 
kopete -5 -8 -15 0.1838 0.2683 0.0493 
ktimetracker -2 -10 -12 0.155 0.3116 0.0483 
kdevplatform -1 -10 18 0.1601 0.2986 0.0478 
k3b -4 -12 -15 0.1567 0.2972 0.0466 
ktorrent -2 -5 -12 0.1692 0.2552 0.0432 
gwenview -3 -10 18 0.1614 0.2669 0.0431 
akregator -4 -10 -12 0.1457 0.2914 0.0425 
ark -4 -12 -15 0.1544 0.271 0.0418 
elisa -3 -10 18 0.1494 0.2761 0.0413 
konversation -4 -12 -15 0.1525 0.2691 0.0410 
kompare -8 -9 -14 0.1144 0.2842 0.0325 
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Table 15: Posture Instances of Strategy-1 
Abnormal Posture # of instances 
-4 -5 -12 6 
-3 -10 18 3 
-4 -12 -15 3 
-2 -5 -12 2 
-6 -7 -8 2 
3 10 14 1 
2 13 14 1 
2 10 14 1 
-1 -10 18 1 
-2 -10 -12 1 
-4 -10 -12 1 
-5 -8 -15 1 
-8 -9 -14 1 
-15 -16 -18 1 

Table 12 depicts the best BFC-predicting postures in each system based on P-BFCs identified 

by Strategy-2. The results are ordered by the product value of the occurring rate and P-BFC 

occurring rate descendingly. We observed that the highest occurring rate (0.3393) is from 

solid, and the highest P-BFC occurring rate (0.5122) is from Kstars. The posture with the 

highest product value, {-4, -5, -12}, is achieved by Kmix. 

In Table 13, we observe that posture {-4, -5, -12} appears as the best posture for 6 different 

projects, and more importantly, four of the six projects with such posture, Kmix, Kmail, 

korganizer, and Juk, achieve the highest, the second highest, the fourth highest, the fifth 

highest product respectively in Table 12; meanwhile, they are found to have the fourth least, 

the, the twelfth least, the fifth least, and eighth least KLOC. Based on the observations, 

abnormal posture {-4, -5, -12} works well on medium-small projects with projects size 

between 57 KLOC to 13 KLOC against P-BFC identified using the fixed-length commit 

segment method.  
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6.3.2.2 Analysis 2 / Strategy-2: Using Fixed-Length Segment of Any 
BFC Files 

Table 16: Best BFC Predicting Posture of Each System Using Strategy-2 
Project 
Name 

Best BFC Predicting 
Posture Occurring 

Rate 
P-BFC Occurring 
Rate 

Product 
Metric 
One 

Metric 
Two 

Metric 
Three 

solid -8 -15 -18 0.3781 0.9696 0.3666 
umbrello -4 -5 -12 0.2938 0.8618 0.2532 
kmix -4 -5 -12 0.309 0.6793 0.2099 
lokalize -4 -5 -12 0.2745 0.7607 0.2088 
kolourpaint 3 10 14 0.178 1 0.1780 
kmail -4 -5 -12 0.2952 0.5984 0.1766 
ktorrent -7 -8 -12 0.1932 0.8868 0.1713 
kdevplatform 1 2 10 0.1716 0.995 0.1708 
juk -4 -5 -12 0.2591 0.6549 0.1697 
clazy -5 -12 -16 0.1893 0.8487 0.1606 
plasmanm 2 10 14 0.1602 0.9729 0.1558 
gwenview 2 3 10 0.1547 1 0.1547 
k3b 2 3 10 0.1608 0.9603 0.1544 
korganizer -4 -5 -12 0.2709 0.5634 0.1526 
kget -6 -7 -8 0.2198 0.6775 0.1489 
marble 2 3 14 0.1523 0.9398 0.1431 
elisa 2 10 14 0.1508 0.9291 0.1401 
konversation 3 10 14 0.1343 0.9644 0.1295 
ark 2 3 10 0.1441 0.8872 0.1278 
kompare -6 -7 -8 0.177 0.7014 0.1241 
kopete -5 -8 -15 0.1838 0.653 0.1200 
akregator 1 2 10 0.1351 0.8752 0.1182 
kontact 1 10 -18 0.1343 0.8378 0.1125 
kstars 2 10 13 0.1279 0.8548 0.1094 
ktimetracker 2 3 10 0.1164 0.743 0.0865 
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Table 17: Posture Instances using Strategy-2 
Abnormal Posture # of instance 
-4 -5 -12 6 
2 3 10 4 
3 10 14 2 
2 10 14 2 
1 2 10 2 
-6 -7 -8 2 
2 10 13 1 
2 3 14 1 
1 10 -18 1 
-5 -8 -15 1 
-5 -12 -16 1 
-7 -8 -12 1 
-8 -15 -18 1 

Table 14 depicts the postures of each system with the highest product value of occurring rate 

and P-BFC occurring rate. The P-BFCs are identified by Strategy-1. We observed that the 

highest occurring rate (0.3781) and product value (0.3666) in the table are both achieved by 

posture {-8, -15, -18} in project solid, and the lowest occurring rate and product value are 

both from posture {2, 3, 10} in project Ktimetracker. We also notice that the P-BFC 

occurring rate of best posture in project Gwenview and Kolourpaint are both perfectly 1. It 

indicates that all posture occurrences are found in some P-BFCs; however, as many posture 

occurrences might locate in one P-BFC, a P-BFC occurring rate of 1 doesn’t guarantee every 

P-BFC has its occurrence. We will address this issue in Chapter 6.3.2.4.  

Table 15 depicts the number of instances of each posture in Table 14. We observe that 

posture {-4, -5, -12} appears as the best posture for 6 different projects again, and the second 

most emerged abnormal posture is {2, 3, 10} for 4 projects. Four of the six projects possessed 

posture {-4, -5, -12} are Umbrello, Kmix, Localize, and Kmail, the products of which are the 

second highest, the third highest, the fourth highest, and the sixth highest, respectively, in 

Table 14. We conduct a cross-comparison between these four projects and the project 

features in Table 2 to understand the relationship between the posture’s good performance 

and the adopted P-BFC identification strategy. We find Umbrello and Localize have the 
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highest and the second highest BFC per Commit ratio, and Kmix and Kmail’s are seventh and 

tenth highest, respectively. Based on the found relationship, abnormal posture {-4, -5, -12} is 

suitable to predict BFC in projects with a high BFC per Commit ratio using Strategy-2.  

6.3.2.3 Analysis 2 / Strategy-3: Using Fixed-Length Segment of All 
BFC Files 

Table 18: Best BFC Predicting Posture of Each System Using Strategy-3 
Project 
Name 

Best BFC Predicting 
Posture 

Occurring 
Rate 

P-BFC 
Occurring Rate 

Product 

Metric 
One 

Metric 
Two 

Metric 
Three 

solid -8 -15 -18 0.3781 0.9538 0.3606 
kolourpaint 3 10 14 0.178 1 0.1780 
kdevplatform 1 2 10 0.1716 0.9695 0.1664 
k3b 2 3 10 0.1608 0.9209 0.1481 
plasmanm 2 3 10 0.1513 0.9459 0.1431 
gwenview 2 3 10 0.1547 0.8856 0.1370 
korganizer 1 3 10 0.1419 0.9007 0.1278 
umbrello 2 3 10 0.1275 0.947 0.1208 
juk 3 10 -18 0.1327 0.9061 0.1202 
marble 2 3 14 0.1523 0.7879 0.1200 
kmail 3 10 -18 0.1429 0.8028 0.1147 
konversation 3 10 14 0.1343 0.7805 0.1048 
ark 2 3 10 0.1441 0.7179 0.1034 
kstars 2 10 13 0.1279 0.7955 0.1018 
kget 2 3 10 0.1385 0.7273 0.1007 
kontact 1 10 -18 0.1343 0.7291 0.0979 
kmix -4 -5 -12 0.309 0.3127 0.0966 
ktorrent 2 3 14 0.1385 0.6154 0.0852 
clazy 2 10 14 0.1581 0.5053 0.0799 
akregator 1 2 10 0.1351 0.5768 0.0779 
elisa 3 10 -18 0.1086 0.6982 0.0758 
kompare -8 10 -18 0.1229 0.6031 0.0741 
ktimetracker -12 -16 -18 0.1151 0.5551 0.0639 
lokalize -4 -5 -12 0.2745 0.2195 0.0603 
kopete -5 -8 -15 0.1838 0.3177 0.0584 

 

Table 19: Posture Instances of Strategy-3 
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Abnormal Posture # of instances 
2 3 10 6 
3 10 -18 3 
3 10 14 2 
2 3 14 2 
1 2 10 2 
-4 -5 -12 2 
2 10 14 1 
2 10 13 1 
1 10 -18 1 
1 3 10 1 
-5 -8 -15 1 
-8 10 -18 1 
-8 -15 -18 1 

-12 -16 -18 1 

Table 16 depicts the best BFC-predicting postures selected from each project based on P-

BFCs identified by Strategy-2. We observed that the highest occurring rate (0.3781) is from 

solid, and the highest P-BFC occurring rate (0.4696) is from Clazy. The posture with the 

highest product value, {-8, -15, -18}, is also achieved by solid. 

In Table 17, we observe that posture {2, 3, 10} appears as the best posture of 6 different 

projects, and the second most emerged postures are {3, -10, 18}. Four of the six projects with 

posture {2, 3, 10} exhibit a product value in the top one-third, namely project K3b, 

Plasmanm, Gwenview, and Umbrello. We find these projects possess feature values in strong 

proximity, as shown in Table 2. First, the Average Gap Day between Consecutive Commits of 

every one of the four projects is close to 0.9 days ---1.0760 days for k3b, 1.0047 days for 

Gwenview, 0.9244 days for Plasmanm, and 0.7830 days for Umbrello. Second, they possess 

Average Commits per File Participate values ranging from 1.3737 to 1.7689 commits and 

range from the seventh highest to the thirteenth highest.  

6.3.2.4 Combination of Posture and Coverage 

As previously discussed, an issue encountered in Analysis 2 is a posture’s occurring rate, and 

P-BFC occurring rate might not properly reflect its general closeness with BFCs, as a P-BFC 
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can contain multiple occurrences of it. Moreover, the product of the two rates is too vague to 

reveal the predictability of a posture. Hence, we developed a more advanced methodology to 

evaluate the results, which is based on the number of unique P-BFCs a few postures 

combinedly occurs in. More specifically, from the results of Analysis 2, each abnormal 

posture is known to occur in a set of P-BFCs, or, in other words, to have a certain P-BFC 

coverage. The combined P-BFC coverage of a posture combination can be obtained by taking 

the union of all P-BFC sets of single posture coverage in the combination, and the coverage 

ratio of the posture combination can be obtained by dividing the cardinality of the union 

coverage set by the cardinality of all P-BFCs set.  

The highest posture combination coverage ratio of each project is computed following a two-

step approach. In the first step, we compute the individual P-BFC coverage of the best 

predicting abnormal posture of each project, as shown in Table 12, Table 14, and Table 16. In 

the second step, we compute the combined coverage ratio of every posture combination of 

sizes two and three. With the increased size of the combination, the coverage ratios of the 

size-three combination should be significantly higher than those of the size two, but the 

actual difference between them is neglectable. We present the coverage ratios of the size-two 

posture combination of each strategy in the following tables and append those of the size-

three posture combination Appendix A to Appendix C. Table 18 to Table 20 contain the 

highest coverage ratio and its yielding posture combination of each project based on different 

P-BFC strategies. We leverage information obtained in Table 2, Table 13, Table 15, and 

Table 17 and other calculated statistics to evaluate and perceive the results. 

 

 

Table 20: Highest Combined Coverage Ratio Using Strategy-1 
Project Name Posture Combination Coverage Ratio 

solid {-3,-10,18},{-5,-8,-15} 0.7215 
elisa {-3,-10,18},{-4,-12,-15} 0.7095 
kmix {-4,-5,-12},{-3,-10,18} 0.7085 
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plasmanm {-3,-10,18},{-6,-7,-8} 0.7067 
marble {-3,-10,18},{-4,-12,-15} 0.7035 

k3b {-3,-10,18},{-4,-12,-15} 0.7025 
kget {-3,-10,18},{-6,-7,-8} 0.7025 

kolourpaint {-3,-10,18},{-4,-12,-15} 0.7025 
kompare {-4,-12,-15},{-4,-10,-12} 0.7025 
ktorrent {-4,-5,-12},{-3,-10,18} 0.7025 

korganizer {-4,-5,-12},{-3,-10,18} 0.7012 
kontact {-3,-10,18},{-6,-7,-8} 0.6998 

umbrello {-4,-5,-12},{-3,-10,18} 0.6987 
gwenview {-3,-10,18},{-4,-12,-15} 0.6984 

juk {-4,-5,-12},{-3,-10,18} 0.6981 
akregator {-3,-10,18},{-4,-12,-15} 0.6976 

kdevplatform {-4,-5,-12},{-1,-10,18} 0.6976 
ark {-3,-10,18},{-4,-12,-15} 0.6961 

kmail {-4,-5,-12},{-3,-10,18} 0.696 
konversation {-3,-10,18},{-4,-12,-15} 0.6919 
ktimetracker {-3,-10,18},{-4,-12,-15} 0.6900 

lokalize {-4,-5,-12},{-5,-8,-15} 0.6720 
clazy {-2,-5,-12},{-4,-10,-12} 0.6565 
kstars {-4,-12,-15},{-2,-10,-12} 0.6264 
kopete {-5,-8,-15},{-15,-16,-18} 0.5450 

 

Table 21: Highest Combined Coverage Ratio Using Strategy-2 
Project Name Posture Combination Coverage Ratio 

lokalize {-4,-5,-12},{-5,-12,-16} 0.7355 
plasmanm {-6,-7,-8},{-5,-12,-16} 0.7250 
ktorrent {-4,-5,-12},{-7,-8,-12} 0.7191 
umbrello {-4,-5,-12},{-6,-7,-8} 0.7191 

juk {-4,-5,-12},{-5,-8,-15} 0.7158 
kmix {-4,-5,-12},{-7,-8,-12} 0.7127 

korganizer {-4,-5,-12},{-6,-7,-8} 0.7118 
kmail {-4,-5,-12},{-7,-8,-12} 0.7110 
kget {-4,-5,-12},{-6,-7,-8} 0.7030 

kdevplatform {-4,-5,-12},{-7,-8,-12} 0.6974 
k3b {2,3,10},{-7,-8,-12} 0.6908 
elisa {-5,-12,-16},{-8,-15,-18} 0.6891 

kstars {-4,-5,-12},{-7,-8,-12} 0.6869 
gwenview {-4,-5,-12},{-7,-8,-12} 0.6786 

kopete {-5,-8,-15},{-8,-15,-18} 0.6761 
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ark {-4,-5,-12},{-7,-8,-12} 0.6720 
kompare {-6,-7,-8},{-7,-8,-12} 0.6706 

ktimetracker {-4,-5,-12},{-7,-8,-12} 0.6538 
marble {-4,-5,-12},{-5,-12,-16} 0.6538 
clazy {-4,-5,-12},{-5,-12,-16} 0.6437 

konversation {-4,-5,-12},{-5,-12,-16} 0.6356 
kontact {-4,-5,-12},{-7,-8,-12} 0.6183 

akregator {-4,-5,-12},{1,10,-18} 0.5991 
solid {-5,-8,-15},{-8,-15,-18} 0.5878 

kolourpaint {3,10,14},{-8,-15,-18} 0.4167 

 

Table 22: Highest Combined Coverage Ratio Using Strategy-3 
Project Name Posture Combination Coverage Ratio 

solid {-5,-8,-15},{-8,10,-18} 0.7568 
kmail {-4,-5,-12},{-12,-16,-18} 0.6875 

plasmanm {-5,-8,-15},{-12,-16,-18} 0.6686 
juk {-4,-5,-12},{-8,10,-18} 0.6646 

kmix {-4,-5,-12},{-12,-16,-18} 0.6525 
konversation {-4,-5,-12},{-12,-16,-18} 0.6061 
korganizer {-4,-5,-12},{-12,-16,-18} 0.6018 

kget {-4,-5,-12},{-12,-16,-18} 0.6000 
kstars {-4,-5,-12},{-12,-16,-18} 0.5939 

kdevplatform {-4,-5,-12},{-12,-16,-18} 0.5878 
kontact {-4,-5,-12},{-12,-16,-18} 0.5811 

ktimetracker {-4,-5,-12},{-12,-16,-18} 0.5714 
gwenview {-4,-5,-12},{-8,10,-18} 0.5669 
kolourpaint {3,10,-18},{-12,-16,-18} 0.5591 

kompare {-8,10,-18},{-12,-16,-18} 0.5500 
elisa {-4,-5,-12},{-12,-16,-18} 0.5347 
ark {-8,10,-18},{-12,-16,-18} 0.5342 

marble {-4,-5,-12},{-12,-16,-18} 0.5316 
umbrello {-4,-5,-12},{-12,-16,-18} 0.5149 
lokalize {-4,-5,-12},{-12,-16,-18} 0.5072 

k3b {-8,-15,-18},{-12,-16,-18} 0.4926 
akregator {-4,-5,-12},{-12,-16,-18} 0.4653 

kopete {-5,-8,-15},{-8,-15,-18} 0.4505 
ktorrent {-4,-5,-12},{-12,-16,-18} 0.4065 

clazy {-4,-5,-12},{-12,-16,-18} 0.3271 
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In the combined coverage ratios using Strategy-1 in Table 18, we observe posture {-3,-10,18} 

emerges as a part of the posture combination that produces the highest combined coverage 

ratio for 19 projects out of 25. At the same time, it has only an instance count of 3 in Table 

13. However, the posture {-4,-5,-12} with the greatest instance count (i.e. 6) in Table 13 

emerges only eight times in Table 18. The result of Strategy-3 presented in Table 20 

demonstrates a similar situation: posture {2,3,10}, which is the greatest posture in Table 17, 

doesn’t appear in any posture combination, whereas the most emerged posture {-12,-16,-18} 

has only instance count of 1. These observations reaffirm that the P-BFC occurring rate 

might not properly reveal the co-occurrence of postures and BFCs, and hence the coverage 

ratio is a better posture evaluation method.  

The averages of best coverage ratios for Strategy-1, Strategy-2, and Strategy-3 are 0.6891, 

0.6689, and 0.5605, respectively. The standard deviations of the three strategies are 0.0354, 

0.0657, and 0.0923, respectively. Based on these statistics, Strategy-1 is the best-performed 

strategy with the highest average and the lowest standard deviation. Given that Strategy-1 

treats the immediate past commits of fixed length as P-BFC, we can conclude that abnormal 

postures are more likely to be found right before a bug is fixed.  

Although no posture combination predominates results of all three strategies, the single 

abnormal posture {-4,-5,-12} is considered as the best-performing posture considering all 

strategies as it appears 8 times, 18 times, and 18 times in Strategy-1, Strategy-2, and 

Strategy-3, respectively. The metrics of the postures are file additions, file deletions, and File 

total LOC delta, all of which are file-associated metrics. Considering they are all in abnormal 

type very small, it means a BFC is often preceded by a negligible modification made to some 

files. This conclusion coincides partially with those drawn in [41] [5] [8] [6]. We also 

observe that the abnormal type of metrics that made up posture combinations in the above 

tables is predominantly very small. Moreover, the metrics proposed in this thesis appear in 

many posture combinations, indicating that these metrics have good potentials to be applied 

to other related studies.  
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6.4 Discussion of the Results 

6.4.1 Strategy-1 

In Analysis-1, posture {-3, -10, 18} is found to be the most P-BFC occurring posture for 13 

projects out of 25 with an average occurring rate of 0.3944. Combining the metrics of the 

postures and corresponding abnormal type together, posture {-3, -10, 18} depicts a situation 

in which a file has predominant file-project total LOC delta weight in commits where very 

few changed files are involved, and very few project total LOC delta has resulted. The 

average indicates approximately 40% of the BFCs in these projects are preceded by such a 

situation. Additionally, Strategy-1 is more suitable to be applied to a project with a low BFC 

per commit status. 

The posture {-3, -10, 18} of Analysis-1 coincides with the featured posture combination of 

Analysis-2. The predominant posture combination of Analysis-2 is {-3, -10, 18} and {-4, -12, 

-15}, and it produces the highest BFC coverage ratio in 9 projects with an average coverage 

ratio of 0.6991. The situation depicted by posture {-3, -10, 18} has been described above, and 

posture {-4, -12, -15} depicts a situation in which a file has very few file additions, file total 

LOC delta, and file total LOC delta percent change. The average indicates that approximately 

70% of the occurrence of the situation depicted by posture {-3, -10, 18} or {-4, -12, -15} is 

succeeded by a BFC.  

6.4.2 Strategy-2  

There is no posture which significantly overwhelms others in Analysis-1 using Strategy-2, 

but the posture with the most instances is again {-3, -10, 18}, which is found in 6 projects 

with an average P-BFC occurring rate of 0.4001, and it means approximately 40% of the 

BFCs in these projects is preceded by such a situation. Additionally, Strategy-2 is more 

suitable to be applied to a project with a low Average File Count per Commit. 
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The predominant posture combination of Analysis-2 using Strategy-2 consists of {-4, -5, -12} 

and {-7, -8, -12}, which produces the highest BFC coverage ratio in 9 projects with an 

average coverage ratio of 0.6833. The depicted situation of posture {-4, -5, -12} has been 

described above, and posture {-7, -8, -12} depicts a situation in which a file has very low 

fractal value over lines, has been modified by very few distinct authors to now, and is 

modified by very low file total LOC delta. The average indicates that approximately 68% of 

the occurrence of the situation depicted by posture {-4, -5, -12} or {-7, -8, -12} in the 9 

projects is succeeded by a BFC.  

6.4.3 Strategy-3 

In Analysis-1 using Strategy-2, posture {-3, -10, 18} has the most instances of 7 with an 

average P-BFC occurring rate of 0.6292, and it means approximately 63% of the BFCs in 

these projects are preceded by such a situation. Furthermore, Strategy-3 is more suitable to be 

applied to a project with a high BFC per commit. 

The predominant posture combination of Analysis-2 using Strategy-3 consists of {-4,-5,-12} 

and {-12,-16,-18}, which produces the highest BFC coverage ratio in 16 projects out of 25 

projects with an average of 0.5481. Moreover, 7 of the rest 9 projects show a posture 

combination has either {-4, -5, -12} or {-12, -16, -18}. Posture {-12, -16, -18} depicts a 

situation in which a file in a commit has a very low file total LOC delta, file total LOC delta 

weight, and file-project total LOC delta weight. The average indicates that approximately 

55% of the occurrence of the situation depicted by posture {-4, -5, -12} or {-12, -16, -18} in 

the 16 projects is succeeded by a BFC. 

6.5 Threats to Validity  

The following aspects are considered threats to the validity of this experiment. 

The first point deals with the reconciliation process. The heuristic algorithm we used to label 

whether a commit is buggy or not relies on the data integrity from both Bugzilla and GitHub. 
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While GitHub’s data integrity is trustworthy, Bugzilla’s is not guaranteed. Besides, the 

algorithm used a lookup timeframe size of one month. However, it is possible for the lag to 

exceed this frame which introduces inaccuracy to the label. 

The second point deals with the reality of code churn. The proposed metrics are based on the 

relative code churn history provided by GitHub, but many operations can result in churn in 

code other than the logic LOC we expect to be measured. For example, a code restructure that 

is as simple as moving a function to a different location in the same file will also be recorded 

as a file deletion and a file addition of the length of that function. Such code churns act like 

noise to the proposed techniques. 

The third point deals with the integrity of bug information. Many projects we selected were 

initiated around the 2000s. We are unaware of if they started to report bugs to Bugzilla 

immediately after the beginning of development. Moreover, many other well-known bug-

tracking systems, such as Jira, ClickUp, slack, etc., are available in the market, and we are 

not sure if the development team uses a secondary bug-tracking system. These situations 

result in an incomplete list of bugs, and consequently, the results may be skewed. 
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Chapter 7  

7 Conclusion and Future Work 

7.1 Conclusion 

In this thesis, we presented a technique and its implementation in order to analyze the quality 

posture of system modules in the period leading to a bug-fixing commit. The concept behind 

this work is that once a bug-inducing commit, which manifests a system failure, occurs, then 

the system modules which participate in this bug-inducing commit (BIC) are considered to be 

in a low-quality posture. From that point on, these modules enter an intensive corrective 

maintenance phase until the bug is fixed, as this is manifested by a bug-fixing commit (BFC). 

We refer to the period between a BIC and a BFC as the pre-BFC (P-BFC) period, and the 

main objective of the analysis presented in this thesis is to examine whether there are any 

metrics patterns (i.e. quality posture) that indicate the transition of a module form a low-

quality posture to a high-quality posture. We have considered two main analysis facets. The 

first facet was to evaluate the conditional frequency rate, CFR (posture pattern | BFC), of 

each posture pattern given that we will have an imminent BFC (i.e. next 5 or 10 commits). 

The second facet deals with the evaluation of the conditional frequency rate, CFR (BFC | a 

posture pattern), of a BFC that will imminently occur (i.e. in the next 5 or 10 commits) given 

that we observe a posture pattern occurs. In this thesis, we proposed a suite of source code as 

well as process metrics and a technique to discretize the metrics values to categorical values. 

More specifically, the approach is based on: a) converting selected datasets into categorical 

values in order to identify extreme values which are manifestations of an existing defect; b) 

compiling the set of pre-bug-fixing commits, which we refer as P-BFC, took place prior to 

each bug-fixing commits is identified through designated strategies; c) computing the 

frequency of each metric combination within P-BFC as well as its frequency rate (evaluated 

as a frequency of cases); d) measuring the occurrence of each combination in all commits and 

e) calculating the number of instances within P-BFC as well as its frequency rate. The two 
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complementary selection processes together can be used as a metric validation tool which we 

used to validate the proposed metrics. 

From our analysis, we draw the following conclusions. For predicting the occurrence of a 

pattern given an imminent bug-fixing commit, the metrics pattern that exhibits the highest 

prediction potential is the combination of the low value of the Number of Changed files, the 

low value of the Project total LOC delta, and the high value of File-project total LOC delta 

weight. With respect to predicting an imminent bug-fixing commit (i.e. improvement of 

quality posture) given a quality posture pattern, the pattern with the highest prediction 

capability is the one that includes the low value for the Number of File Additions, low value 

for the Number of File Deletions, and low value of File total LOC delta. Stakeholders of 

open-source software following a CSE paradigm can use the results to infer the general 

quality status with respect to bug-fixing commits of the system. Moreover, researchers of 

maintainability prediction models can consider the metrics proposed in the thesis as features. 

7.2 Future Work 

The work presented in this thesis can be extended in the following directions. The first 

extension is to design more advanced P-BFC selection strategies. P-BFC contains bug-

inducing commits which influence the results profoundly, so we proposed three strategies to 

identify the P-BFCs. Strategy-1 is an intuitive strategy that chooses the direct history of each 

bug-fixing commit as the P-BFC, whereas Strategy-2 and 3 are buggy-file-based approaches. 

However, Strategy-2 and 3’s results show no significant differences. The proposed technique 

is expected to yield better results under better strategies. In this respect, one could also 

consider tuning certain parameters of the experiments, such as the length of the P-BFC period 

and what commits are considered relevant to the BFC. A third extension is to consider more 

metrics which can be harvested by either considering dependencies between modules or the 

volume of functionality delivered by a module. Such metrics may deal with Information 

Flow, Coupling, and Cohesion. 
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9 Appendices 

Appendix A: Highest Combined Coverage Ratio Using Strategy-1 
Project Name Posture Combination Coverage Ratio 

solid {-3,-10,18},{-5,-8,-15},{-15,-16,-18} 0.7215 
kompare {-4,-12,-15},{-4,-10,-12},{-8,-9,-14} 0.7201 

elisa {-4,-5,-12},{-3,-10,18},{-4,-12,-15} 0.7095 
kmix {-4,-5,-12},{-3,-10,18},{-4,-12,-15} 0.7085 
kget {-3,-10,18},{-4,-12,-15},{-2,-5,-12} 0.7068 

plasmanm {-3,-10,18},{-2,-5,-12},{-15,-16,-18} 0.7067 
kontact {-3,-10,18},{-4,-12,-15},{-6,-7,-8} 0.7052 

akregator {-3,-10,18},{-4,-12,-15},{-2,-5,-12} 0.7049 
k3b {-3,-10,18},{-4,-12,-15},{-8,-9,-14} 0.7046 

korganizer {-4,-5,-12},{-3,-10,18},{-6,-7,-8} 0.7038 
marble {-4,-5,-12},{-3,-10,18},{-4,-12,-15} 0.7035 

gwenview {-3,-10,18},{-4,-12,-15},{-2,-5,-12} 0.7025 
kolourpaint {-3,-10,18},{-4,-12,-15},{3,10,14} 0.7025 

ktimetracker {-4,-5,-12},{-3,-10,18},{-4,-12,-15} 0.7025 
ktorrent {-4,-5,-12},{-3,-10,18},{-4,-12,-15} 0.7025 

kdevplatform {-4,-12,-15},{-2,-5,-12},{-1,-10,18} 0.7009 
ark {-3,-10,18},{-4,-12,-15},{-2,-5,-12} 0.6993 

umbrello {-4,-5,-12},{-3,-10,18},{-4,-12,-15} 0.6987 
juk {-4,-5,-12},{-3,-10,18},{-4,-12,-15} 0.6981 

kmail {-4,-5,-12},{-3,-10,18},{-8,-9,-14} 0.6965 
konversation {-3,-10,18},{-4,-12,-15},{-4,-10,-12} 0.6949 

lokalize {-4,-5,-12},{-4,-10,-12},{-5,-8,-15} 0.672 
clazy {-4,-12,-15},{-2,-5,-12},{-4,-10,-12} 0.6697 
kstars {-4,-12,-15},{-2,-5,-12},{-4,-10,-12} 0.6477 
kopete {-4,-5,-12},{-5,-8,-15},{-15,-16,-18} 0.545 

 
Appendix B: Highest Combined Coverage Ratio Using Strategy-2 

Project Name Posture Combination Coverage Ratio 
lokalize {-4,-5,-12},{-5,-8,-15},{-5,-12,-16} 0.7355 

juk {-4,-5,-12},{-5,-8,-15},{-5,-12,-16} 0.725 
plasmanm {-4,-5,-12},{-6,-7,-8},{2,10,13} 0.725 
umbrello {-4,-5,-12},{-6,-7,-8},{-5,-12,-16} 0.7211 
ktorrent {-4,-5,-12},{2,3,14},{-5,-12,-16} 0.7191 

kmix {-4,-5,-12},{-5,-8,-15},{-7,-8,-12} 0.7189 
korganizer {-4,-5,-12},{-6,-7,-8},{-5,-8,-15} 0.7131 

kmail {-4,-5,-12},{-5,-12,-16},{-7,-8,-12} 0.7121 
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kget {-4,-5,-12},{-6,-7,-8},{-5,-8,-15} 0.7118 
kdevplatform {-4,-5,-12},{-5,-12,-16},{-7,-8,-12} 0.7041 

elisa {-5,-8,-15},{-5,-12,-16},{-8,-15,-18} 0.7035 
gwenview {-4,-5,-12},{2,10,14},{-7,-8,-12} 0.6913 

k3b {3,10,14},{2,3,14},{-7,-8,-12} 0.6908 
kstars {-4,-5,-12},{-5,-12,-16},{-7,-8,-12} 0.6892 

ark {-4,-5,-12},{-7,-8,-12},{-8,-15,-18} 0.6853 
kopete {-4,-5,-12},{-5,-8,-15},{-8,-15,-18} 0.6761 

ktimetracker {-4,-5,-12},{-5,-8,-15},{-7,-8,-12} 0.6732 
marble {-4,-5,-12},{-5,-12,-16},{-8,-15,-18} 0.6721 

kompare {-6,-7,-8},{-7,-8,-12},{-8,-15,-18} 0.6706 
konversation {-4,-5,-12},{3,10,14},{-5,-12,-16} 0.6528 

clazy {-4,-5,-12},{-5,-12,-16},{-8,-15,-18} 0.6505 
kontact {-4,-5,-12},{2,10,14},{-7,-8,-12} 0.6347 

akregator {-4,-5,-12},{1,10,-18},{-5,-12,-16} 0.6293 

 

Appendix C: Highest Combined Coverage Ratio Using Strategy-3 
Project Name Posture Combination Coverage Ratio 

solid {-5,-8,-15},{-8,10,-18},{-8,-15,-18} 0.7568 
kmail {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.6898 

plasmanm {-5,-8,-15},{-8,10,-18},{-12,-16,-18} 0.6864 
juk {-4,-5,-12},{-5,-8,-15},{-8,10,-18} 0.6835 

kmix {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.661 
kontact {1,2,10},{-4,-5,-12},{-12,-16,-18} 0.6491 

konversation {-4,-5,-12},{-8,-15,-18},{-12,-16,-18} 0.6169 
kget {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.6121 

kdevplatform {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.6074 
ktimetracker {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.6071 

korganizer {-4,-5,-12},{2,10,14},{-12,-16,-18} 0.6036 
kstars {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.6019 

gwenview {-4,-5,-12},{2,10,13},{-12,-16,-18} 0.5959 
ark {-4,-5,-12},{-8,10,-18},{-12,-16,-18} 0.5708 

elisa {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.5644 
kolourpaint {3,10,-18},{3,10,14},{-12,-16,-18} 0.5591 

kompare {-8,10,-18},{-8,-15,-18},{-12,-16,-18} 0.55 
marble {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.5358 

umbrello {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.5203 
lokalize {-4,-5,-12},{-5,-8,-15},{-12,-16,-18} 0.5072 

akregator {1,2,10},{-4,-5,-12},{-12,-16,-18} 0.4965 
k3b {-8,10,-18},{-8,-15,-18},{-12,-16,-18} 0.4926 
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kopete {-4,-5,-12},{-5,-8,-15},{-8,-15,-18} 0.4505 
ktorrent {3,10,-18},{-4,-5,-12},{-12,-16,-18} 0.4065 

clazy {-4,-5,-12},{2,10,13},{-12,-16,-18} 0.3364 
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