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Abstract 

 

Network failure is the unintentional interruption of internet services, resulting in 

widespread client frustration. It is especially true for time-sensitive services in the healthcare 

industry, smart grid control, and mobility control, among others. In addition, the COVID-19 

pandemic has compelled many businesses to operate remotely, making uninterrupted internet 

access essential. Moreover, Internet Service Providers (ISPs) lose millions of dollars annually 

due to network failure, which has a negative impact on their businesses. Currently, redundant 

network equipment is used as a restoration technique to resolve this issue of network failure. 

This technique requires a strategy for failure identification and prediction to run faultlessly and 

without delay. However, we lack a suitable generic network failure identification and 

prediction system due to the unavailability of publicly accessible failure data. This study 

simulates network traffic to gather failure data based on a general network failure guideline. 

Furthermore, various state-of-the-art Machine Learning and Deep Learning methods were 

applied to the generated data. Notably, our proposed Deep Learning model for failure 

identification provides accuracy, precision, recall, and F1 scores in the range of 97% to 99% 

for three different demonstration networks. Additionally, our proposed Long Short Term 

Memory model gives low root mean square error rates of 0.9751 for failure prediction.  
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Summary for Lay Audience 
 

 

 

Internet services may be interrupted for various reasons, such as device failure, 

connection issues, natural disasters, etc. When a network error inadvertently disrupts internet 

services, customers become frustrated. Especially in a medical emergency, personal safety, or 

transportation-related emergency, a lack of network connectivity can be catastrophic. In 

addition, since the outbreak of the COVID-19 pandemic, many businesses require a constant 

internet connection. In reality, every aspect of our lives depends on the Internet, including 

emergency needs, banking, entertainment, healthcare, socializing, and creative work. The 

Internet is now such an integral part of our lives that its absence will be immediately noticeable. 

Additionally, Internet Service Providers (ISPs) are impacted by service interruptions 

from a business perspective, as they lose millions annually due to network failure. As a result, 

ISPs utilize redundant network equipment as backups if a network device fails. However, the 

disadvantage of this approach is that it requires time to identify the type of failure and then fix 

the problem with an appropriate backup. Constructing a system that can predict the type of 

failure occurring next to using backups effectively would be preferable. But building this type 

of system will necessitate a record of past network failures to determine what types of failures 

may occur in the future. Nevertheless, the absence of publicly accessible failure data is 

responsible for lacking a suitable general network failure identification and prediction system. 

This research simulates network traffic to obtain failure data based on a generic failure 

guideline to address this issue. Furthermore, cutting-edge Artificial Intelligence (AI) 

techniques on that data yield promising results. 
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Chapter 1 
 

1 Introduction 
 

Network failure is the complete or partial failure of network hardware or software 

components that causes service disruptions. It is a significant concern for network service 

providers because a mere 1 hour of network failure affecting only 100 customers can cost them 

hundreds of thousands of dollars [1]. Clients are impacted because they are receiving 

inadequate service due to network failures. Moreover, it becomes crucial when the service is 

time sensitive. 

Conventionally, redundant network equipment is a probable solution to address network 

failure [2]. These software or hardware backups serve not only in the event of a network outage 

but also in the case of routine software or hardware upgrades. Nevertheless, switching to a 

backup path as soon as a problem is detected is crucial for these fault tolerance measures to be 

effective. Since numerous time-critical services in healthcare, mobility control, real-time 

media, smart grid control, and motion control require uninterrupted internet services [3], we 

need a system that significantly reduces network downtime and provides excellent availability. 

Therefore, an appropriate failure identification and prediction model is essential to prepare our 

redundant network resources for potential failure. 

Some conventions are utilized to ensure redundancy. For example, mesh connections 

among routers divert the affected network flow to an unaffected link. Additional routers and 

network paths are also maintained. Moreover, additional processors, memory, line cards, and 

links are also used to ensure redundancy [2]. 

If we explore further, network failure identification and prediction fall in the category 

of 'Availability' of the three triads of network security- CIA (Confidentiality, Integrity, and 

Availability) [4]. Keeping the data encrypted to render it unreadable to third parties 

(Confidentiality) and preventing tampering with the data (Integrity) will be ineffective if we 

cannot deliver the data (Availability), especially for time-sensitive operations. The time 

required to discover, identify, and repair a failure directly impacts the network's availability. 

Equation 1.1 demonstrates the relationship between availability and failure [2]. In Equation 

1.1, if we have an MTBF (Mean Time Between Failure) of 0, it implies that the system is 
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experiencing failures so frequently that there is no operational time between failures. Again, in 

the case of MTTR (Mean Time to Repair) being 0, we have a system that gets repaired instantly 

which is an idealized scenario and may not reflect real-world situations. Additionally, if we 

have 0 for both MTBF and MTTR, we have a unique scenario where failures keep occurring 

and getting repaired instantaneously. Therefore, Equation 1.1 considers the realistic assumption 

of both MTBF and MTTR being a non-zero positive integer. According to this equation, 

increasing the MTBF and decreasing the MTTR will increase the network's overall availability. 

A reliable network failure identification and prediction model making the best use of redundant 

equipment is required to guarantee both conditions. 

In order to prevent network failures and guarantee maximum availability, we must be 

aware of their potential causes. Power outages, natural disasters, hardware or software failure, 

and configuration errors are the most common causes of outages. According to a reliability 

study conducted by the University of Michigan, the leading causes of downtime were router 

software or hardware upgrade related issues (36%), link failure (32%), router failure (23%), 

and other reasons (9%) [1], [2]. These factors must be considered to design an effective failure 

prediction model and effectively deploy redundant elements. 

The discussion above shows that maintaining internet availability is vital for time-

critical network solutions and the ISP's financial interests. This study aims to develop a 

comprehensive framework for network failure identification and prediction to address this 

problem based on a network failure guideline [2].  

1.2 Motivation 

Roger's significant telecommunications outage on the early morning of July 8, 2022 [5] 

demonstrates the significance of this network failure issue. This daylong outage across Canada 

has left a quarter of the population (12 million) without internet access, severely impacting 

their daily lives. Emergency and payment services were also unavailable with data and calling 

services. This incident emphasized the susceptibility of industry, financial institutions, and 

healthcare systems to a network failure, rendering the loss of productivity, inability to work, 

missed meetings, opportunities, and contracts a minor pitfall. Rogers required excessive time 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦  =  
𝑀𝑇𝐵𝐹

(𝑀𝑇𝐵𝐹  +  𝑀𝑇𝑇𝑅)
       𝑖𝑓 𝑀𝑇𝐵𝐹 > 0 𝑎𝑛𝑑 𝑀𝑇𝑇𝑅 > 0 Equation 1.1 
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to identify the cause of the failure, which turned out to be a software update of a router. Overall, 

this highlighted the need for a comprehensive failure prediction tool. 

Maintaining a five-nine availability (99.999 percent) with 5.256 minutes of annual 

downtime is the gold standard, particularly for mission-critical communication [6]. Even with 

redundant equipment, the time to identify and repair network failure persists due to complex 

failures, manual intervention, and validation of the failure [2]. Redundancy reduces downtime 

but does not eliminate the intricacies of diagnosing and addressing network issues. A reliable 

failure identification and prediction model can help us in this regard to maintain quality and 

improve performance by making the best use of redundant network equipment. Being aware of 

failures caused by natural disasters, power outages, and system maintenance enables us to use 

redundant resources effectively and provide uninterrupted service. A failure prediction model 

will save millions of dollars that ISPs (Internet Service Providers) must lose due to downtimes.  

As discussed, the significance of a failure prediction system is paramount for time-

critical network services. It is crucial to have a framework for a network failure prediction 

system to maintain excellent network availability and minimal loss of ISPs. 

1.3 Challenges 

Machine Learning (ML) techniques must be applied to a collection of failure data to 

identify potential failure patterns. The primary issue at hand is the requirement for publicly 

accessible failure data. Network providers must be willing to make their failure information 

public. Even if we want to generate a synthetic dataset with a demonstration network, it is 

difficult because there are many parameters to consider. In addition, the simulated data should 

provide us with failure traces that matches the pattern of real-world failure data. Furthermore, 

even if we could obtain network traffic data displaying availability and failure traces, the 

proportion of failure data would be significantly lower than that of regular traffic, making it 

more challenging for an ML algorithm to identify failure patterns in traffic. These obstacles are 

described in detail in the following subsections. 

1.3.1 Unavailability of failure data 

Examining the case studies of significant network failures over the past few years will 

reveal the general dearth of data on network failures. Section 2.1 of Chapter 2 of this paper 
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analyses some of these network failure incidents in detail. However, examining past massive 

network failures, we find that most of their causes were never disclosed. Again, some of the 

failures in the past fall into specific categories, such as software or hardware failure, 

misconfiguration, power supply failure, and fiber cut (Chapter 2, Section 2.1). As there are a 

few prominent types of failure, attempting failure prediction with sufficient data is possible. 

However, some outdated public failure datasets were found after an extensive search 

(Chapter 3, Section 3.2). Most of these datasets consist of CPU and node availability and ping 

logs. Furthermore, these datasets were mainly used to analyze the viability of specific 

configurations for grid computing. All these log datasets were from the years 2000–2005. Other 

datasets include manually recorded software (1996–2005) and hardware (2003–2007) failure 

logs of some facilities. These datasets are outdated and were not designed for predictive 

analysis. In addition, they do not account for all possible failure categories. 

1.3.2 Challenges of generating synthetic data 

Generating synthetic data to solve the problem of the lack of actual data is a challenging 

endeavor. We must consider the intricate details of the real-world scenario. For our case, 

generating network failure data will require us to capture the complexity of actual network 

architecture. There are numerous interdependent parameters to consider. Designing a system 

that produces data while keeping the relationship between the parameters intact requires careful 

consideration of the properties of the elements of the network. Again, the generated dataset 

must follow the statistical distribution of the real-world data. Overall, capturing the real world's 

randomness while maintaining the dependencies between variables and their resemblance to 

actual distribution is incredibly challenging. 

1.3.2 Unbalanced nature of failure data 

By default, network failure records are fewer than regular traffic records in a network 

traffic flow. Additionally, some failures show randomness, such as those resulting from natural 

disasters or human error. In addition, specific failures (equipment failure, misconfiguration) 

occur much more frequently than others (power supply failure). For these reasons, it is difficult 

to classify network failure even with a dataset. Evaluating various ML algorithms and 

identifying the optimal one is essential to classify failure data correctly. Also, it is necessary to 
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balance the data so that the classifier can accurately identify the minority categories. 

Oversampling minority classes or under sampling majority classes is a possible method for 

balancing failure data. As an alternative method, it is also possible to generate synthetic data 

using deep learning techniques. Finding a suitable ML model for failure categorization, even 

with a dataset, is extremely difficult. 

1.4 Thesis Contribution 

This research employs the following methods to address the obstacles cited in the previous 

section regarding the construction of a network failure model: 

• A general failure guideline is evaluated and applied to three different demo network 

topologies of varying sizes [2]. Various features are considered, such as the 

discontinuation of production, port utilisations per node, power supply, memory, and 

card risk factors. 

• With these demos, sample traffic data are simulated. This network traffic data contains 

the node utilization rates and risk factors with their availability status: regular traffic or 

port, card, CPU, memory, power supply, location, OS, and misconfiguration error. To 

the best of our knowledge, this is the only existing generic network failure dataset. 

• This generated dataset is subsequently trained with multiple cutting-edge ML 

algorithms and deep learning techniques to form a comprehensive study and determine 

the most suitable model for network failure prediction with proper hyperparameter 

tuning. 

• Using deep learning techniques with hyperparameter tuning the sequence of each node's 

availability state is analyzed in order to predict future failure events. 

1.5 Thesis Outline 

The remaining sections of the thesis are structured as follows: In Chapter 2, the 

components of a network, recent significant network failures, and AI-based prediction 

techniques are described. The third chapter describes related research on failure prediction and 

comprehensively analyzes publicly accessible network failure logs. Chapter 4 analyzes the 
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entire procedure for generating the proposed failure dataset in-depth, along with the 

experimental specifics of the AI techniques. The experimental outcomes are described and 

illustrated in Chapter 5. The sixth chapter of the thesis concludes with possible future 

directions. 
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Chapter 2 

2 Background 

This Chapter describes the concepts and statistics associated with network failure. 

Section 2.1 gives an idea of the building blocks of a network and the type of failures that can 

happen. Section 2.2 summarizes past catastrophic network failures, including their duration and 

impact. In addition, the final section describes the AI techniques considered for this 

investigation. 

2.1 Network Building Blocks 

Internet Service Providers (ISP) provide customers with internet services worldwide. 

To distribute the Internet to their clients, ISPs use physical infrastructure, network equipment, 

and software [7]. As physical infrastructure, they use optical fiber cables or wireless networks. 

To route data to their customers, they use routers and switches. These routers or nodes are 

interconnected to maintain the global flow of network traffic. 

 
Figure 2. 1: Simplified view of a network architecture 

Figure 2.1 demonstrates a simplified network architecture. The link between routers or 

nodes is known as a network link. This link is used to transfer data between nodes. For instance, 

if client 1 wishes to send a text message to client 4, they may transmit it to node 1 first. It can 

be forwarded from node 1 to node 3 and then to client 4. In this context, the network traffic is 
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the text being transmitted. The software component of the node determines how data will be 

transferred between nodes. A node's number of outgoing connections is known as its nodal 

degree [8]. For example, node 1 has a nodal degree of 2, while node 2 has a nodal degree of 1. 

The following subsection describes the functional component of a node in greater detail. 

 

 
Figure 2. 2: Internal structure of a node 

2.1.1 Nodes 

A node or router in a network is a point where data processing and transmission occur 

(Figure 2.2). Every node has a manufacturer-provided lifetime. Each node is a functional 

network component consisting of a power supply, memory, CPU, and an Operating System. 

Each node has several line cards with several ports [7]. The functions of each of these 

components are as follows: 

• Power supply: This is the node's electrical outlet, which supplies the node with 

electricity. Each node requires an adequate quantity of power for the device to function. 

A faulty power supply will entirely shut down the node and may cause damage to the 

node's other components. 

• CPU (Central Processing Unit): A node's CPU is responsible for processing and 

routing data and maintaining scheduled tasks. Among the duties that can be scheduled 

are security checks and network protocol management. A CPU failure will halt all 

processing-related jobs and render the node ineffective. 
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• Memory: A node's memory refers to its storage capacity. This memory stores data prior 

to processing or transmission. Frequently, a memory buffer is used to store additional 

data beyond the processing capacity of the node to reduce congestion.  

• Operating System (OS): This software component of a node manages the resources 

and activities of a node. It is responsible for managing each aspect of a node, including 

data transfer, managing protocols, and applying security measures, among others. 

• Line Card: This is one of the hardware components of a node that acts as an adapter. 

A line card provides interfacing ports that connect the node to other network nodes. 

A port is an interface that facilitates the transmission of data between nodes. Each node 

has a succession of client-facing cards connecting to other clients. In addition, the side 

confronting the network is connected to other nodes (Figure 2). 

2.1.2 Failure Categories: Cisco Guidelines [2]  

In [2], Cisco Press provided a guideline based on a one-year study by the University of 

Michigan on the availability study of a regional ISP. Based on the survey, network failures can 

broadly be divided into hardware and software failures. Within hardware failure, there are 

subcategories like power supply, memory, CPU, card, port, link failures, and natural disasters. 

Among software failures, we have OS failures and misconfiguration failures. However, the 

percentages of each failure category's frequency and the contributing factors are also provided 

in greater detail. 

 Most network failures (32%) are due to link failures, primarily caused by fiber cuts and 

configuration errors (Table 2.1). Again, operating system failure (18%) and configuration 

failure (18%) are the second-most common causes. Upgrade and maintenance issues are the 

primary causes of OS failures. Card and port failures follow with a 10% incidence rate each. 

These occurrences result from either high utilization rates or the device wearing out due to 

extended use (manufacturing discontinuation). Then there are natural disasters and other 

unpredictable and uncontrollable causes (9%). Last but not least, we have power supply failures 

(1%), memory failures (1%), and CPU failures (1%), which occur due to high utilization and 

overuse. In addition, all of these causes of network failure can be confirmed through the case 

studies described in the following section of this chapter. 
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 Table 2. 1: Failure categories, Percentages, and Contributing factors. 

Failure Categories Percentage Factors 

Power supply failure 1% Manufactured 

discontinued                      - 

Memory failure 1% Very high utilization Manufactured discontinued 

CPU failure 1% Very high utilization Manufactured discontinued 

Card failure  10% Very high utilization Manufactured discontinued 

Port failure 10% Very high utilization Manufactured discontinued 

Link failure 32% Fiber cut- construction Configuration error 

Natural disasters and others 9%                     -                     - 

OS failure 18% Upgrade                     - 

Misconfiguration failure 18% Config- fat finger                     - 

 

2.2 Network Failure Case Studies 
 

Several significant network failure incidents from 2015 to 2021 are examined to 

understand the network failure's impact thoroughly. This section outlines the root cause of each 

incident and its impact on real-life scenarios. 

2.2.1 Unknown/ Undisclosed Network failures 
 

Rogers Telecommunications experienced similar outages, as mentioned in Chapter 1, 

in 2015 and 2019. In July 2015, Rogers and Fido customers in certain provinces of Canada 

experienced intermittent disruptions of calls, texts, and data services [9], [10]. During the 2019 

nationwide outage, Rogers’s customers experienced disruptions to their voice call services 

[11], [12]. During this outage, even 911 emergency calls were not possible. However, the 

reasons behind any of these outages were not disclosed. 

On February 16, 2016, Comcast cable and Internet Service Provider customers 

experienced an outage [13]. Due to this 90-minute outage beginning at 10 a.m., customers could 

not view on-demand videos, broadcasts, or local cable TV channels. Customers were 

subsequently compensated for the service interruption they endured [14]. It was unknown what 

caused this outage. 

On August 6, 2020, beginning at 12:10 p.m., a significant portion of Ontario and 

specific locations in Quebec experienced a network outage. Bell and Telus customers were the 
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most affected by this outage. The lack of internet, television, mobile phone, and landline 

services has caused widespread customer frustration. The blackout lasted slightly less than an 

hour. However, the cause of the outage remained unknown [15]. 

The United States and parts of Western Europe experienced a widespread outage on 

Sunday morning, August 30, 2020 [16]. A CenturyLink equipment malfunction caused this 

outage. A faulty flowspec rule prevented BGP (Border Gateway Protocol) from being broadcast 

across the network. Later, an IP NoC global configuration change halted the offending 

flowspec. However, the cause of the flowspec's activation remained unknown. We can only 

speculate that a misconfiguration or cyberattack is the reason. This outage affected Discord, 

Feedly, Xbox Live, Hulu, and other data centers using the ISP [17]. It took CenturyLink four 

hours to identify and resolve the issue. 

The northeast coast of the United States remained without internet access on January 

26, 2021, due to the outage of Verizon Wireless and its fiber optic network Fio. Clients reported 

outages in other services, including Gmail, Google, Slack, Zoom, AWS, and Hulu [18]. During 

this post-Covid period, many clients could not join their remote work, and students were absent 

from online classes. However, the power outage began at 11 a.m. and lasted over an hour [19]. 

The incident's root cause was not disclosed. This incident demonstrates that even if 

redundancies are installed, a large-scale outage could render them useless if traffic levels are 

high. This is especially true if most individuals work from home or attend online school. 

2.2.2 Equipment failure 
 

On December 27, 2018, CenturyLink experienced one of the most significant outages 

in its history, affecting 22 million customers in 39 U.S. states [20]. Clients could not access the 

Internet or emergency 911 services for 37 hours [21]. A total of 12 million calls dropped as a 

result of this outage. However, a malfunctioning piece of equipment that caused 

misconfiguration in the network nodes was the cause of this outage. One of the switching 

modules began generating improperly formatted packets. Due to the absence of suitable filters, 

these packets propagated to all other connecting nodes. This incident caused a power outage 

by creating an infinite feedback loop that consumed all available processing power. Due to the 

severity of this outage, the FCC (Federal Communications Commission) later conducted an 

investigation. 
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In another incident, expired certificates caused an outage in Ericsson equipment in 

December 2018. Because they used Ericsson software, millions of customers from 11 countries 

experienced poor connections [22]. Customers of O2 in the United Kingdom and SoftBank in 

Tokyo were offline for several hours. It took O2 over 12 hours to fully recover from the issue, 

while SoftBank customers were affected for only four hours [23]. In addition to hindering 

communication, outages resulting from expired certificates exposed it to third parties. 

During a 40-minute outage on 1 April 2019, 780 flights were delayed or canceled across 

the United States [24]. Due to a software defect at AvroData Inc., flight planning and weight 

balancing became difficult, resulting in delays. Some airlines impacted by this problem include 

Southwest, SkyWest, and United Continental. Travelers were forced to endure lengthy airport 

waits and had their travel plans disrupted due to this outage. 

A software flaw in a recent update caused an outage on June 8, 2021, for the Content 

Delivery Network (CDN) Fastly [25]. A customer's legitimate change of configuration 

command caused the bug. Due to this, 85% of their network returned errors. The New York 

Times, Hulu, CNN, Amazon Web Services, Twitter, Spotify, and Reddit failed to deliver 

services to their clients. Some of Fastly's clients reverted to non-CDN mode, which could result 

in slower-than-usual traffic due to the lack of load balancing [26]. However, resolving this issue 

took approximately three hours, and it took even longer to debug and redeploy the updated 

code. 

2.2.3 Misconfiguration Error 
 

On 12 June 2015, Level 3 Communications experienced a two-hour outage that affected 

the United States and parts of Europe (the United Kingdom, France, and Germany) [27]. Due 

to this outage, Google, LinkedIn, AOL, Microsoft, and Dow Jones could not provide services. 

Capital One suffered collateral damage because Level 3 Communications was their primary 

ISP (Internet Service Provider). This outage was the result of a configuration error. Due to 

inadequate filtering, Telecom Malaysia inadvertently advertised itself as a route, which Level 

3 Communications (one of the largest Tier 1 ISPs) accepted. As a result, network traffic flowed 

toward Telecom Malaysia, resulting in countless packet drops and service interruptions. 

In another incident, an Amazon S3 service disruption in February 2017 halted many 

services in northern Virginia, including Coursera, Quora, and Trello. A later investigation 
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revealed that this outage was caused by human error [28]. While debugging a slower-than-usual 

billing system, the S3 team inadvertently shut down several vital servers, resulting in a four-

hour-long outage. After accidentally shutting down the servers, restarting and bringing them 

back online took considerable time. This widespread outage cost 500 businesses $160 million 

[29]. 

On 2 July 2019, CloudFlare witnessed a global outage caused by a flaw in one Web 

Application Firewall (WAF) rule [30]. The erroneous code segment was a regular expression 

that demanded extensive backtracking, consuming excessive processing power. As a result, 

users could not access sites and services hosted by CloudFlare. However, this outage raised 

concerns regarding the dependability of cloud services and the necessity of a backup plan in 

the event of a similar failure. 

2.2.4 Power supply failure 

Due to an outage at the Equinix data center in July 2023, clients in London could not 

access one out of ten web pages. One of the LINX exchange nodes failed due to the outage, 

impeding twenty percent of the total network flow. A UPS power disruption of one of Equinix's 

subsidiaries, Telecity, caused the failure. Telecity resolved the issue in 22 minutes, whereas 

LINX required more than an hour. In 2015 and 2011, similar UPS failures occurred in Telecity 

[31]. 

2.2.5 Fiber cut 

Bell's outage on August 4, 2017 [32] affected banking services, 911 emergency calls, 

and even air travel. Internet, television, and landline phone services were disrupted throughout 

most of Atlantic Canada. The outage began before 11 a.m. and lasted until 4 p.m. Accidentally 

damaged fiber wires during construction caused this widespread outage. However, a lack of 

adequate backup also contributed to the severity and duration of the outage. Bell Aliant 

experienced a similar outage in New Brunswick in 2011. 

2.3 Artificial Intelligence 
 

Artificial intelligence (AI) is the study of training machines to perform tasks that 

humans can do [33]. Machine learning (ML) is a subfield of AI that learns how to perform a 
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given task by accumulating experience through repeated attempts [34]. ML algorithms analyze 

a given dataset and discover patterns to draw meaningful conclusions. Deep Learning (DL) is 

a subset of Machine Learning (ML) that employs computationally intensive models to discover 

complex patterns in given data [35]. A Recurrent Neural Network (RNN) is a deep learning 

technique that processes sequential data through information propagation [36]. In the context 

of this study, if we provide a machine learning algorithm with network failure data, it can 

identify a pattern in the data and predict the type of failure based on the pattern it has learned. 

The subsequent subsections detailed the ML and DL techniques utilized for this thesis. 

2.3.1 Logistic regression 

Logistic regression is a statistical model that is used for classification. Using a logistic 

function, this model outputs the probability that a sample is one of the possible categories [37]. 

This technique uses the sigmoid function as the hypothesis function, where θ is the set of 

learning parameters, and x is the input data (Equation 2.1). In this case, the hypothesis 

function's task is to provide a probabilistic measure of a particular data sample xi to be of a 

certain category. 

 ℎ𝜃(𝑥) =
1

(1 + 𝑒−𝜃𝑇𝑥)
 Equation 2.1 

The learning parameters θ are optimized with labeled training data to ensure the 

hypothesis function is accurate. The cost function in Equation 2.2 is used to optimize the 

parameters for binary classification. The learning parameters are modified with an optimization 

technique to obtain the lowest cost. In Equation 2.2, ℎ𝜃(𝑥) is the hypothesis function, and y is 

the actual category of a sample. 

 
𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) = {

−log (ℎ𝜃(𝑥)), 𝑦 = 1

−log (1 − ℎ𝜃(𝑥)), 𝑦 = 0
 Equation 2.2 

For a multi-class dataset, the softmax function is used to predict the data point category. A 

softmax unit outputs a list containing the probability of a particular data point for every possible 

type. From this list, the class with the highest value is chosen as the predicted label. And as an 

optimizer, sklearn's ‘SAGA’ is used, a variation of the stochastic gradient descent algorithm 

that uses the loss function from a random sample of data for faster convergence. 
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2.3.2 Naïve bias 

Naive Bayes is a probabilistic algorithm that is used for classification. The model runs 

under the assumption that the features of the given dataset are independent of each other [38]. 

This model calculates the probability of a given sample based on the observed training data. 

The model works with the following equation: 

 

 
𝑃(𝑦 | 𝑥1, 𝑥2, … , 𝑥𝑛) =  

𝑃(𝑦) ∗ 𝑃(𝑥1| 𝑦) ∗ 𝑃(𝑥2| 𝑦) ∗ … ∗ 𝑃(𝑥𝑛|𝑦)

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)
 Equation 2.3 

Here we are calculating the probability of a given data sample (𝑥1, 𝑥2, … , 𝑥𝑛) being a 

category 𝑦 using the prior probability of the category (𝑃(𝑦)), the conditional probabilities of 

feature 𝑥𝑖 given the category is 𝑦 (𝑃(𝑥𝑖| 𝑦)), and the probability of the features occurring 

together 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛).  

In the case of Gaussian naïve bias, the conditional probability of a feature given a category is 

assumed to follow a normal distribution (Equation 2.4). 

             𝑃(𝑥𝑖| 𝑦) =  
1

√2𝜋𝜎𝑦
2

𝑒
−

(𝑥𝑖− 𝜇𝑦)
2

2𝜎𝑦
2

 

 

Equation 2.4 

Here, 𝜇𝑦 and 𝜎𝑦
2 is the mean and standard deviation of the feature set for each class label.  

 

2.3.3 Support Vector Machine (SVM) 

Support Vector Machine is a popular supervised Machine learning algorithm used for 

binary and multi-class classifications [39]. SVM works by finding a hyperplane that will 

maximize the margin among different categories of data points. To obtain this highest margin 

and to define the shape and direction of the hyperplane, SVM uses support vectors (data points 

closest to the margin). The hinge loss function penalizes the misclassified samples to maximize 

the margin (Equation 2.5). 

 
𝐶𝑜𝑠𝑡( 𝑦, ℎ(𝑥)) = {

0, 𝑦 ∗ ℎ(𝑥)  ≥ 1
1 − 𝑦 ∗ ℎ(𝑥),  𝑒𝑙𝑠𝑒

 Equation 2.5 
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SVM uses many kinds of kernels to manipulate the input data according to the problem 

statement. The linear kernel is one of the most used kernels that takes the dot product of input 

feature vectors, i.e., it is simply the linear transformation of the training data points. The 

formula for the linear kernel is given in Equation 2.6. 

 𝐾(𝑥𝑖 , 𝑥𝑗)  =  𝑥𝑖
𝑇 𝑥𝑗 

Equation 2.6 

Here, 𝑥𝑖 and 𝑥𝑗 is input data points. 

Another Popular kernel used with SVM is ‘rbf’ or Gaussian kernel, which maps the training 

data into a higher dimensional space. This kernel works best when the data points are not 

linearly separable, which for most problems with a higher number of features is true. The RBF 

kernel uses Equation 2.7 where 𝑥𝑖 and 𝑥𝑗 are input data points and 𝛾 is a parameter used to 

provide a regularization effect: 

 
𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾 ||𝑥𝑖−𝑥𝑗||

2

 Equation 2.7 

2.3.4 Decision tree 

The decision tree is another rule-based machine learning algorithm popular for prediction 

and classification tasks [40]. Figure 2.3 depicts the entire process of creating a decision tree. A 

decision tree first takes the entire dataset as the root node. Then it selects a feature that will 

provide the most information gain and partitions the input space. It then recursively does the 

same calculation on each decision node. The ‘gini’ impurity is used for this study to calculate 

the information gain of a particular feature. Gini impurity is calculated as follows: 

 𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 =  1 −  𝛴 (𝑝𝑖)
2 

Equation 2.8 

Here 𝑝𝑖 is the probability of each class 𝑖 in the dataset.  

After the recursive process, we have a tree like Figure 2.3 which is used to predict the category 

of a new data point. 
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Figure 2. 3: Decision Tree (Image source: Learning Spark, 2nd Edition, figure 10–9) 

2.3.5 Random Forest 

Random forest is a variation of the decision tree algorithm, which uses a majority voting 

technique to make a generalized model [41]. The underlying concept of creating a tree based 

on the 'information gain' is like the decision tree. However, a random forest classifier works 

with the following steps: 

1. A random subset of features is selected from the feature set. 

2. Decision trees are built with that section of the data. 

3. Steps 1 and 2 are repeated with different feature sets, creating a forest of trees. 

4. A new data point is tested by running it through all the trees in the forest and taking the 

majority vote to choose the category. 

Random forest increases generalization ability and decreases overfitting by bringing 

randomness into building trees and picking categories. Figure 2.4 depicts the overall process 

of random forest classification. 
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Figure 2. 4: Random Forest (Source: medium.com, The Complete Guide to Random Forests: Part 2) 

2.3.6 AdaBoost 

AdaBoost or Adaptive boosting is an incremental ensemble machine learning technique 

used for classification [42]. AdaBoost work on ensemble learning where the average of some 

weak models is shown to provide superior performance than one single model. The AdaBoost 

classifier uses the following steps: 

1. Initially, random weights are assigned to all training samples. 

2. A weak classifier is trained with the initial sample. 

3. Training data is evaluated with the model. 

4. Weights are penalized if misclassification is observed. 

5. Steps 1-4 are repeated with a new sample set generating another weak classifier. This 

sample set mainly contains misclassified data points from the training set. 

6. Take majority voting for all the classifiers. 

This type of ensemble-based model is known to deal with large datasets while maintaining 

low overfitting. 
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2.3.7 Gradient boosting 

Gradient boosting is a similar technique to AdaBoost. The gradient boosting algorithm 

also works by taking the ensemble of a few weak models [43]. In the case of gradient boosting, 

the loss function of each subsequent model is penalized with the residual errors of the previous 

model rather than focusing on the misclassified samples, as in AdaBoost. This model also 

provides a majority voting-based generalized solution. Gradient boosting works as follows: 

1. Initialize the model with a constant value. 

2. A weak classifier trained with the initial sample. 

3. The residual error of the model on the training data is calculated. 

4. Fit another weak learner to the residual errors and add it to the model. 

5. Update the model by adding a fraction of the new learner to the previous model. 

6. Repeat steps 2-5 until the desired accuracy is achieved. 

2.3.8 Multi-Layer Perceptron (MLP) 

A Multi-Layer Perceptron (MLP) Classifier is an artificial neural network commonly 

used for classification tasks [44]. A feedforward neural network consists of an input layer, one 

or more hidden layers, and an output layer. Each layer is composed of several neurons that are 

connected to the neurons in the adjacent layers. The neurons use activation functions to 

transform the input data and pass the information forward to the next layer until the output is 

produced. Figure 2.5 depicts an MLP classifier. 
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Figure 2. 5: Multi-Layer Perceptron - MLP (Source sci-kit learn) 

2.3.9 Quadratic discriminant analysis 

Quadratic Discriminant Analysis (QDA) is a classification algorithm used to model 

each class's probability distribution [45]. The goal is to find the class that maximizes the 

posterior probability given the input features. Bayes' theorem is used to compute the posterior 

probability of each class. The probability of sample x belonging to a class C is given by: 

 
𝑃(𝐶|𝑥)  =  𝑃(𝑥|𝐶)  ∗  

𝑃(𝐶)

𝑃(𝑥)
   Equation 2.9 

 

where 𝑃(𝑥|𝐶) is the probability of observing 𝑥 given that it belongs to class 𝐶, 𝑃(𝐶) is the prior 

probability of class 𝐶, and 𝑃(𝑥) is the probability of observing 𝑥. 

QDA assumes that the input features follow a normal distribution with each class, and therefore 

the probability distribution of each class can be modeled as a multivariate Gaussian 

distribution. The mean vector and covariance matrix of each class is estimated from the training 

data. 
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The posterior probability of each class is computed to classify a new sample, and the class with 

the highest probability is chosen as the predicted class. The decision boundary between two 

classes is quadratic, meaning it can be curved. 

2.3.10 Deep neural network 
 

A Deep Neural Network is an Artificial Neural Network (ANN) containing multiple 

layers of interconnected neurons [46]. Each node serves as a computational point containing a 

set of learnable parameters. DNN is designed to model complex patterns and relationships in 

data. Unlike traditional shallow neural networks, DNNs can have many hidden layers between 

the input and output layers, allowing them to learn hierarchical features and make much more 

accurate predictions. Figure 2.6 depicts a Deep Neural Network (DNN). 

 

Figure 2. 6: Deep Neural Network (source: ibm.com) 

Every learning parameter of a neural network is first initialized with a random weight. 

Each neuron in a DNN receives inputs from the neurons in the previous layer, performs a 

weighted sum of the inputs, and applies an activation function to the result. This activation 

function acts as a method to add non-linearity to the otherwise linear data. The output of the 

activation function is then passed to the neurons in the next layer as input.  

 𝑧𝑗  =  ∑(𝑤𝑖 

𝑖

∗  𝑥𝑖)   + 𝑏𝑗   

𝑎𝑗  =  𝑓( 𝑧𝑗) 

Equation 2.9 
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For a neuron in layer 𝑗 , with input 𝑥𝑖, and weights 𝑤𝑗, and an added bias value of  𝑏𝑗, the output 𝑎𝑗 

with activation function 𝑓, DNN follows Equation 2.9. After one such iteration, the DNN model 

predicts the output of a given sample as being one of the possible categories. This predicted 

output is compared with the actual output and a loss value is calculated. Based on this loss 

value, the weights of the connections between neurons are learned during training using a 

variant of gradient descent optimization algorithms. This process of learning weights is called 

backpropagation. For this study, Adam (Adaptive Moment Estimation) is used as the 

optimization technique [75]. Adam optimizer is a gradient-based optimizer that uses the concept 

of bias-corrected exponentially weighted average. Adam fits the parameters using a weighted 

average of derivatives of the loss function with respect to parameters. 

 
Figure 2. 7: Long Short-Term Memory Block Diagram [47]  

2.3.11 Recurrent Neural Network 

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) that 

works on sequence prediction by understanding the long-term dependencies of the given 

sequence [48]. Figure 2.7 depicts a block diagram of an LSTM. As we can see, an LSTM cell 

consists of three types of gates. The forget gate with the sigmoid activation function decides 

which information to disregard. The input gate with the tanh and sigmoid activation function 

decides which information to keep from that cell state. Moreover, the output gate with the tanh 

and sigmoid function decides which information to pass to the next state and output based on 
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the data from forget and input gate. Usually, several such LSTM cells are stacked to create a 

model. 
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Chapter 3 

3 Literature Review 
 

This chapter thoroughly evaluates the existing literature on network failure 

identification and prediction. The purpose of this analysis is to identify key themes in the 

existing literature and identify potential research gaps. Following are descriptions of the 

relevant researches in this field and the available failure datasets. 

3.1 Related Works 

Labovitz et al. [49] of the University of Michigan used Border Gateway Protocol (BGP) 

data from a large regional internet service provider to identify the leading causes of network 

failure in their study on internet stability. They concluded that software or hardware 

malfunctions, fiber cuts or network congestion, software or hardware upgrades, configuration 

errors, and other errors are the leading causes of network failure. In addition, they discovered 

that the Internet has significantly more availability problems than the telephony network. 

Hayford-Acquah et al. [50] introduced a survey-based investigation into the cause of 

fiber cuts in Western and Central Ghana. They concluded that government road projects and 

private construction negligence were primarily responsible for these fiber cuts. Several short-

term and long-term solutions were proposed to address these problems, such as raising 

awareness by educating respective parties on the repercussions of fiber damage, law 

enforcement, and many more. In a separate related study, Nyarko-Boateng et al. [51] utilized 

linear regression to predict the location of faults in optical fiber accurately. This research aimed 

to close the gap between the optical time-domain reflectometer (OTDR) output and the actual 

fault location. 

Wang et al. proposed a failure prediction model for an optical network using SVM 

(Support Vector Machine) and DES (Double Exponential Smoothing) algorithms [52]. They 

collected WDM (Wavelength Division Multiplexing) data of a telecommunication operator on 

the control plane and selected a set of features that they used to train the SVM model. DES is 

then used to update the prediction curve for the equipment. With this setup, they successfully 

built a model that can predict which equipment can fail in the future so that they can back up 

the data and use a different link to continue communication. 
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In their paper, Zhang et al. proposed an LSTM-based deep learning model to predict 

failures from heterogenous streamed console log data [53]. Using the console data collected 

from a Web Server Cluster (WSC) and Mailer Server Cluster (MSC), they grouped similar logs 

together and then extracted the log cluster's format. Later, sequential features over time are 

extracted and fed into an LSTM model that predicts the likelihood of failure in the future. They 

demonstrated that LSTM models outperformed other cutting-edge Machine learning 

algorithms, such as Support Vector Machine (SVM) and random forest. 

In their paper, Zhong et al. [54] analyzed network failure using 14 months of alarm log 

data collected from metropolitan area networks. After collecting the log data, separate feature 

sets for network system and equipment failures were developed. To create feature sets, they 

utilized several distinct types of alarms, the mean-variance of each type of alarm, and the 

frequency of failure occurring during each time interval. They use these characteristics to 

predict system and equipment failure probabilities using various cutting-edge machine-learning 

algorithms (RIPPER, Bayes Net, and Random Forest). RIPPER performed better for both 

system and equipment failure prediction among these algorithms. 

Using simulated log data, Ji et al. constructed a classification model that identifies 

failure and non-failure data categories. The paper needs to describe how the log data were 

generated [55]. However, they labeled the cleaned heterogeneous log data using a sliding 

window technique. Subsequently, an embedding layer was applied to convert these labeled 

samples into numerical values. These numbers were utilized as input values for a convolutional 

neural network. Finally, the output values indicate whether a given network flow example 

represents a failure. 

Javadi et al. introduced a Failure Trace Archive (FTA) in [56]. In this archive, they have 

collected several failure traces and unified them in a singular format. Most traces are log data 

collected from parallel and distributed systems. Based on the statistical properties of the trace, 

they determined that the Gamma, Lognormal, and Weibull distributions are the best fit for the 

majority of availability and unavailability distributions. They underlined the need for publicly 

available failure traces and emphasized further studies on general distributed systems. 

A method for predicting network congestion is proposed in [57]. This study employed 

a Bayesian network to analyze the throughput data gathered from a small demonstration 

network. This model attempts to prevent network failure by anticipating when congestion may 
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occur. In another study, Xu et al. [58] proposed an RNN model for assessing the health status 

of hard drives. Instead of categorizing the status of discs as failing or not failing, they provided 

a more nuanced status with six health levels. 

3.2 Available datasets 
 

Several public availability traces are described in this section. Most of these datasets 

are log data found after an exhaustive search for publicly accessible failure records. However, 

these datasets appear outdated and unsuitable for failure prediction systems. 

3.2.1 LANL 
 

LANL05 is a dataset containing the Los Alamos National Laboratory's (LANL) manually 

recorded failure data from 1996 to 2005 [59]. There are 23,000 failure records for the 22 

production computing systems at LANL, which contain 4,750 nodes. Each failure record 

contains various information, including the number of processors, date of node installation, 

date of production, date of decommission, CPU and memory type, number of links, the node's 

purpose, the time the failure began, and the time the problem was resolved. In addition, the 

failure type was recorded as hardware failure, human error, software failure, or an unknown 

category. The dataset analysis determined that system failure rates and repair times vary 

significantly. In addition, the failure rate is proportional to the workload. This dataset contains 

information on the type of failure and parameters associated with the failure. 

3.2.2 G5k06 
 

G5k06 is a collection of availability data for a large-scale grid structure known as Grid5000, 

which consists of nine sites in France with fifteen clusters and two thousand five hundred 

processors [60]. This dataset contains log data for every node in the grid and information about 

their availability at a given time. The information is gathered between mid-May 2005 and mid-

November 2006. However, the analysis of this dataset reveals that resource availability in a 

grid system varies significantly. Automated resource scheduling techniques are significantly 

more effective than human intervention in resolving this issue [61]. It is essential to monitor 

and forecast the resource availability of a grid system to ensure this. 
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3.2.3 Microsoft99 
 

The Microsoft99 dataset contains ping data collected from 51,663 desktop PCs over 35 days. 

The initial objectives of the study were to examine the viability of a serverless distributed 

system in which client computers do not assume mutual trust [62]. This dataset contains 52 text 

files, each containing hourly machine availability information. Each file contains 1000 lines, 

representing a one-hour snapshot of a specific machine. The snapshot shows the machine's 

availability as 0 (unavailable) or 1 (available) for each hour. However, they concluded that their 

proposed serverless distributed system would work well with any existing desktop PC network, 

mainly if additional storage space is installed.  

3.2.4 Websites02 
  

The Websites02 dataset was developed at Carnegie Mellon University as part of an availability 

model of the data distribution system. The dataset contains the ping log of a web page. Each 

file line contains the server's availability information and a timestamp. Additionally, different 

types of unavailability were recorded. Pings were transmitted every 10 minutes. Eight months 

of data were collected between 2001 and 2002 [63]. 

3.2.5 Overnet  
 

Overnet is a dataset designed while studying availability for peer-to-peer systems. This dataset 

is a log of availability information for 3000 hosts checked every 20 minutes a week since 

January 21, 2003. Each data line in these files contains the host identifier, the host's IP address, 

and information regarding the host's unavailability [64]. 

3.2.6 ND07CPU  
 

The ND07CPU dataset contains information on CPU load data for the Condor resource pool at 

the University of Notre Dame. There is a total of four months of data from early 2007. Each 

record contains CPU loads measured every 16 minutes, along with a timestamp and the state 

of the CPU. The state of the CPU is one of the following: available, idle, CPU load over 50%, 

and unavailable. In [36], the original timestamped CPU data were assigned to one of four states 

to investigate the viability of using this information to predict workload and distribute resources 



 28 

more effectively. This investigation revealed the possibility of an online predictive model for 

the availability behavior of a multi-grid system. 

3.2.7 SKYPE 
 

The SKYPE dataset is created for an experimental study on the Skype protocol [65]. Over 82 

million data points were collected from application-level pings in a Skype super-peer network. 

Data regarding the nature of traffic, the number of online clients, and the number of super nodes 

were collected from 1 September 2005 to 14 January 2006. This study aimed to examine 

Skype's "black box" to determine how it differs from other VoIP systems. They concluded that 

Skype was fundamentally distinct from other VoIP protocols and warranted further 

investigation. 

3.2.8 SAT 
 

The SAT dataset consists of 230,000 host availability records from the large-scale distributed 

system SETI@home [66]. This data set contains CPU availability information for multiple 

heterogeneous SETI@home hosts. It contains data for approximately two years, from 1 April 

2007 to 1 January 2009. The primary objective of the dataset was to determine if a particular 

distribution exists among the hosts of a distributed network. They concluded that approximately 

34% of hosts exhibit random behavior. Different distributions, including gamma, log-normal, 

and Weibull, can represent other hosts' availability. 

3.2.9 PNNL 
 

The PNNL dataset contains time-stamped hardware failure data from a high-performing 

computing testbed, namely, the Pacific Northwest National Laboratory (PNNL) [67]. The 

testbed consists of 980 nodes with an Itanium-2 processor. Overall, information on failures 

from November 2003 to February 2007 was compiled. Each entry contains the failure time, the 

node identifier, the failed node component, and the corrective action. The hard disk was the 

most frequently involved component in failures, then memory, graphics cards, operating 

system failures, and other unknown causes. It was necessary to replace the failed component 

to recover from most failures. In some instances, restarting or resetting the device resolved the 

issue. 
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3.2.10 UCB 
 

UCB is a trace of the activities of a workstation cluster used by a CAD (Computer Aided 

Design) group at the University of California, Berkeley [68]. Keyboard, mouse, disk, memory, 

and CPU activities were recorded every 2 seconds for February and March 1994. This trace 

determined whether a workstation could handle a combined parallel and sequential workload. 

Overall, they demonstrated that fifty percent of the workstations in a network could adapt to 

the configuration of a parallel and sequential workload. 

3.2.11 SDSC, LRI, DEUG 
 

SDSC is a dataset that contains CPU availability information for a desktop grid running 

Entropia's DCGrid software at the San Diego Supercomputer Centre (SDSC) [69]. The dataset 

contains information regarding the availability of 275 hosts for 28 days between August and 

October 2003. This study aimed to investigate the characteristics and efficacy of a desktop grid 

with tasks of varying granularity. In addition, they proposed a quantitative measure of the 

desktop grid and dedicated cluster equivalence. Later, additional traces from the University of 

Paris South were added to the study [70]. The trace LRI contains CPU availability information 

for a cluster of forty hosts utilized by scientific calculation groups. The other trace, DEUG, is 

an availability trace of forty hosts in a classroom. These hosts of DEUG trace were primarily 

utilized during the week by first-year students. Both traces utilized the open-source grid 

software XtremWeb. 

The preceding discussion demonstrates the need for a comprehensive network failure 

prediction system. Most relevant research focuses on fiber cut location prediction, failure 

prediction with domain-specific log data, hard-drive failure prediction with health status, and 

network failure prediction by predicting congestion. There needs to be a failure prediction 

system that is compatible with all platforms and combats common failure patterns (described 

in Chapter 2). Nonetheless, this absence of a network failure identification and prediction 

system is primarily attributable to poor public failure records. In order to address this research 

gap, this thesis attempts to compile a network failure dataset with simulated traffic flow. To 

predict failures, both deep learning and machine learning techniques are applied to the 
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generated dataset. Our proposed method will serve as a benchmark for future research on the 

prediction of generic network failure. 
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Chapter 4 

4 Proposed Framework and Methodologies 
 

In this Chapter, the proposed system architecture and experimental setup are detailed. Section 

4.1 gives the overall system architecture for data generation and training with ML algorithms. 

In Section 4.2, the details of the dataset generation process are described. Section 4.3 discusses 

the experimental setup for the AI techniques used for this study. 

4.1 System Architecture 

 

 
Figure 4. 1: Dataset Generation Overview 

 

Two segments comprise the proposed system: the generation of datasets and the 

application of Machine Learning and Deep Learning to the generated data for failure prediction. 

Figure 4.1 provides an overview of the process of creating datasets. As we can see, we are 

initially considering a demo network. Every node in this network is a single object with the 

following attributes: discontinuation of production, port utilization, misconfiguration risk 

factors, software upgrade risk factors, location risk factors, and link risk factors. We randomly 
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initialize these variables according to some predefined rules (detailed explanation in 4.2). 

Manufacture discontinuation, port utilization, and the misconfiguration risk factor are 

subsequently used to calculate additional properties, including card, CPU, memory, and power 

supply risk factors [2]. The network traffic simulation begins after initialization, and we collect 

data at the end of rush hour (6 PM) every day for three years. During rush hour, a random factor 

taken from a uniform distribution increases the utilization rate. During this time, a single traffic 

sample from a node is evaluated based on its associated risk factors for different kinds of failure 

(CPU, memory, Card, Port, Power Supply, Natural disaster failure associated with location, OS 

upgrades, Misconfiguration, and Link failures). A particular node is selected as a failure 

category for having a high-risk factor for a specific category or non-failure category. At the end 

of the simulation, we now have a record of each node's properties and the type of failure (or 

non-failure) it exhibits based on its properties. 

 

 
Figure 4. 2: Failure Prediction System with the Generated Dataset 

After generating the dataset, we will train the ML model to identify and predict failure (Figure 

4.2). The dataset is used in two ways: to identify the failure category of a given new traffic 

sample and to analyze the sequence of failure statuses of a specific node to predict future 

failures. 

1. Identify failure category: 

Most of the features of the generated datasets are considered to build this 

system. The features are first scaled to have values within a range, making it easier for 

the ML to converge to a solution. Later this scaled data is fed into several ML and DL 

algorithms for learning the patterns to identify correct category of failure. After training, 
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the model is tested with unseen data with new traffic to evaluate its effectiveness in 

identifying failure categories. 

2. failure prediction:  

First, the data for each node over three years are separated. We are only 

considering the failure category as a feature. A portion of this time series data for a 

single node is scaled to have values between 0 and 1 before being fed into an LSTM 

model. After training the model, predicted results are evaluated using the remaining 

data for the node. 

4.2 Dataset Generation 

In our proposed system, traffic data is simulated for three sample network topologies of 

varying sizes. We have adhered to Cisco's network failure guidelines to generate the traffic 

flow [2]. In this section, the entire procedure for generating sample networks and the 

characteristics of nodes is outlined. The statistical properties of each dataset are subsequently 

described. 

4.2.2 Network architectures 

Three different-sized sample network architectures are considered to review the failure 

data generated by a network thoroughly. The smallest architecture consists of 100 nodes, the 

medium one contains 200 nodes, and the largest includes 500 nodes. For each network, the 

minimum nodal degree is three, and the maximum is 10. The total link count for the small 

network is 638, the medium is 1267, and the largest is 3188. The time to complete the entire 

simulation process for these networks is 88.7143s, 180.3846s, and 471.1655s, respectively. 

Figure 4.3 shows the schematic diagram of the sample network architectures, and Table 4.1 

summarizes the properties of all these networks. 
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Each port of every node is randomly initialized with a utilization rate of minimum 0 

Gbps and maximum 100 Gbps each port. Uniform distribution is used for this initialization. 

This port utilization and the adjacency list of the network are used to create a single node. 

Table 4. 1: Properties of Sample network architectures 

Properties Network- Small Network- Medium Network- Large 

Number of nodes 100 200 500 

Nodal degree per node 3-10 3-10 3-10 

Total number of links 638 1267 3188 

Number of cards per node 16 16 16 

Number of ports per card 8 8 8 

Maximum utilization per port 100 Gbps 100 Gbps 100 Gbps 

Memory buffer 10 Gb 10 Gb 10 Gb 

Time to generate data 88.7143s 180.3846s 471.1655s 

Memory to store data 39.6 MB 79.3 MB 198MB 

Total equipment counts 15338 30667 76688 

 
Furthermore, for our simulation of network traffic, following the Cisco guidelines [2], 

an availability rate of 0.99 is considered for all the sample networks. Another measure of 

availability, Defects Per Million (DPM), is calculated by multiplying unavailability by 

1,000,000. So, for the availability of 0.99, DPM is 1000000 * (1 - 0.99) = 10,000. This 

calculation is equivalent to a 1% failure rate of the equipment (10,000 defects per 1000000). 

Therefore, 1% of the total pieces of equipment can fail at a time for all three sample networks. 

   

Figure 4. 3: Form the left- Network architecture with 100 nodes, 200 nodes, and 500 nodes. 
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4.2.3 Simulation 

This section details the overall network architecture creation and traffic simulation 

processes. Following section provides a description of the properties of each node and the 

calculation of these properties, the method for generating traffic flow is outlined.  

4.2.3.1 Node Properties 

To start generating the traffic, Node objects are first created with randomly initialized port 

utilizations and the adjacency list of the entire network. A single node object has the following 

properties: 

1) Name: The node's name is a numerical value between 0 to 99 or 199, or 499, depending 

on the network sizes. 

2) Port capacity: The maximum port capacity for all eight ports of every card is set to 100 

Gbps. 

3) Card capacity: Card capacity is (8 * Port capacity), with eight ports in one card. There 

are a total of 16 cards. 

4) Memory buffer: The memory buffer is set to 10 Gb. 

5) Manufacture discontinued: This value indicates how long the node is being used. For 

our case, the maximum time a node can stay operational without much complication is 

five years (60 months). So, this number is randomly initialized with a uniform 

distribution with a value between 0 to 60 for all nodes. 

6) Power supply risk factor: Referring to Table 2.1, manufacture discontinued is the only 

factor contributing to power supply failure. Therefore, a risk factor in the range of 0 to 

10 is assigned to this field using the manufacture discontinued value of the node. The 

calculation is done as follows: 

𝑃𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =  round(
Manufactured discontinued

60
∗ 10) Equation 4.1 

 

7) Port utilizations: Each port's utilization is randomly initialized with 0 to 100 Gbps with 

values from a uniform distribution. 
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8) Port risk factor: Table 2.1 shows that port failure occurs mainly for a very high 

utilization rate and secondarily for manufacture discontinued. Accordingly, each port is 

assigned a risk factor of 0 to 10 based on the following equation: 

𝑃𝑜𝑟𝑡 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 = round (
Port Utilization

10
) ∗ 0.9 +  round (

Manufactured discontinued

60
∗ 10) ∗ 0.1 

Equation 4.2 

 

9) Card utilization: This value indicates the percentage of the card currently being utilized. 

The sum of all port utilizations for that card is divided by the total card capacity, 

yielding a number between 0 to 1. 

𝐶𝑎𝑟𝑑 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = round (
Sum ( Port utilizations)

Card capacity
) Equation 4.3 

 

10) Card risk factor: Card failure mostly happens due to high utilization and manufacture 

discontinued (Table 2.1). So, each card is assigned a risk factor based on 90% weight 

on card utilization and 10% on manufacture discontinued. 

𝐶𝑎𝑟𝑑 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 = round(𝐶𝑎𝑟𝑑 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∗ 10) ∗ 0.9 +  round (
Manufactured discontinued

60
∗ 10) ∗ 0.1 

Equation 4.4 

 

 

11) CPU utilization: CPU utilization depends on the total utilization of each port of the 

node. The percentage of the CPU in use is determined with the following equation: 

𝐶𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = round (
Sum ( Port utilizations)

Node capacity
) Equation 4.5 

 

12) CPU risk factor: The CPU risk factor is between 0 to 10, derived from CPU utilization 

and discontinued manufacture. 

𝐶𝑃𝑈 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 = round( CPU utilization ∗ 10) ∗ 0.9 +  round (
Manufactured discontinued

60
∗ 10) ∗ 0.1 

Equation 4.6 

 

13) Memory utilization: Memory utilization of a node depends on the CPU utilization as 

read/write operation are done during information processing by CPU.  But, for memory, 

there is often a layer of buffer added to hold additional packets to avoid congestion. 

Memory utilization is calculated using Equation 4.7. Here, 100% of the buffered 
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memory is added with the CPU utilization. Therefore, if we have a CPU utilization of 

40%, memory utilization would be 140% with respect to CPU utilization because of the 

added buffer. 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = CPU utilization +
Memory buffer

10
 

Equation 4.7 

 

14) Memory risk factor: This is a value between 0 to 10, indicating the risk of memory 

failure. It primarily relies on the very high utilization of memory components and 

secondly on manufacture discontinued (Table 2.1). 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 = 

round(Memory utilization ∗ 10) ∗ 0.9 +  round (
Manufactured discontinued

60
∗ 10) ∗ 0.1 

Equation 4.8 

 

15) Link failure risk factor: With the adjacency list of the network, each link connecting 

to other nodes is assigned a random risk factor between 0 to 10 for fiber cut, the primary 

cause of link failure. The secondary cause of link failure is a configuration error. First, 

the risk factor for each link is calculated with 90% weight on the fiber-cut risk factor 

and 10% weight on the misconfiguration risk factor. Later, the average of all outgoing 

links is taken as the final value. 

𝐿𝑖𝑛𝑘 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =  
Sum((fiber cut risk factor ∗ 0.9) + (misconfiguration risk factor ∗ 0.1))

Total link count
 

Equation 4.9 

 

16) Location risk factor: This risk factor is associated with natural disasters and other 

causes. This factor is assigned with a random number between 0 to 10. 

17) Misconfiguration risk factor: The chances of a misconfiguration will depend on the 

history of this kind of error on that specific device. This node property is given a random 

risk factor between 0 to 10. 

18) OS upgrade risk factor: Chances of failure due to OS upgrades are common (Table 

2.1). A random integer value between 0 and 10 from a uniform distribution is assigned 

for each node indicating the risk factor associated with the OS upgrade. 

Overall, each node has a manufacture discontinued value ranging from 0 to 60, ports 

utilization of a maximum of 100 Gbps, memory buffer of 10 GB. Additionally, the risk 
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factor ranges from 0 to 10 for the power supply, port, card, CPU, memory, link, location, 

misconfiguration, and OS upgrade. 

Algorithm 1: Traffic generation 

Input: nodes with manufacture discontinued, port utilizations and risk factors, 

 final dataset = {}, month counter = 0                

Output: final dataset = traffic data samples of a category- no failure, CPU, memory,                                                        

card, port power supply, location, OS upgrade, misconfiguration, link failure 

For (each quarter of three years’ time) 

 If (one month passed) 

  Month counter = 1 

 Else 

  Month counter = 0 

  Foreach node do 

   If (month counter == 1) 

    Manufacture discontinued++ 

   If (rush hour) 

    Increase port utilization up to 40%, not crossing 100 Gbps 

    Re-calculate risk factors 

    Add data sample to the final dataset: 

If (risk factor >= 5) 

final dataset += Failure category 

    Else 

     final dataset += Normal traffic 

   Else  

    Keep the original risk factor and utilization rate 

  End for 

 End for 

 Return final dataset 

 



 39 

  4.2.3.2 Traffic generation 

After establishing the nodes for small, medium, and large networks, three years' worth 

of traffic is generated. Each day is divided into four quarters for this purpose: 12 AM to 6 AM, 

6 AM to 12 PM, 12 PM to 6 PM, and 6 PM to 12 AM. While maintaining a maximum speed 

of 100 Gbps, port utilization is increased by a random factor taken from a uniform distribution 

of up to 40% during rush hour. All node properties are recalculated in response to an increase 

in port utilization. At the end of each month, manufacture discontinued is increased by 1. For 

data collection after each rush hour, the nodes with the highest risk factors in a particular 

category are selected as candidates for that failure category. Otherwise, it is designated as a 

standard traffic flow. Equipment with a risk factor of 5 or higher is considered high-risk. For 

instance, a node with a misconfiguration risk factor of nine is selected as the category for 

misconfiguration failure. The entire procedure is depicted in Algorithm 1. 

           As mentioned in the CISCO guidelines section, for all the sample network 

topologies, a 0.99 availability rate is considered, i.e., 1% defects (10,000 DPM). Among these 

1% defects, the ratio of each type of failure is maintained based on Table 2.1. Finally, three 

different datasets are created for the three different topologies. 

4.2.4 Statistical properties of dataset 

In this subsection, the statistical properties of the dataset are described. Each row of the 

dataset for three different topologies contains the following features: 

1) Date:  DateTime object 

2) Name: number of the node 

3) Manufacture discontinued: Integer value between 0-60 

4) Power supply risk factor: Integer value between 0-10 

5) CPU risk factor: Integer value between 0-10 

6) Memory risk factor: Integer value between 0-10 

7) Location risk factor: Integer value between 0-10 

8) Misconfiguration risk factor: Integer value between 0-10 

9) Average link risk factor: Integer value between 0-10 (ceiling of the average) 

10) Card 0 to Card 15 risk factor: Integer value between 0-10 for each card 
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11) Port 0 to port 7 risk factor for each card: Integer value between 0-10 for each port 

12) Failure Category- Target: Integer value between 0-9 where 

• 0 - No failure 

• 1 - CPU 

• 2 - memory 

• 3 - Card 

• 4 - Port 

• 5 - Power Supply 

• 6 - Location 

• 7 - OS upgrade 

• 8 - Misconfiguration 

• 9 - Link 

13) The number of data points, and memory usage per data frame: 

• Small network (100 nodes): 109500, 136.6 MB 

• Medium network (200 nodes): 219000, 273.2 MB 

• Large network (500 nodes): 547500, 683.0 MB 

Correlation graphs, bar plots, and violin plots are analyzed for each dataset to get an 

overall sense. The following fields are considered for this: manufactured discontinued, power 

supply risk factor, CPU risk factor, memory risk factor, location risk factor, misconfiguration 

risk factor, OS risk factor, average link risk factor, an average of all port risk factors, an average 

of all card risk factors, and failure categories. 

At first, from the correlation graph for all three networks (Figure 4.4, Figure 4.6, and 

Figure 4.7), we can see that the target attribute (failure category) is correlated to some degree 

with all the other features. Significantly, the most strongly correlated feature with the target is 

the link failure risk factor for all the networks. Other significant ones are misconfiguration, OS 

upgrades, and card and port risk factors. All other risk factors have a mild correlation with the 

dataset's target. Therefore, we can see that the generated datasets follow the failure percentages 

mentioned in Table 2.1. 
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Figure 4. 4: Pearson Correlation Map - Small Network (100 Nodes) 
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Figure 4. 5: Pearson Correlation Map - Medium Network (200 Nodes) 
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Figure 4. 6: Pearson Correlation Map - Large Network (500 Nodes) 

 

Figures 4.7- 4.18 illustrate bar and violin plots for all three dataset’s properties. As can 

be seen, most devices have a discontinuation rate greater than 50 across all three datasets. This 

is because we have collected traffic data for three years. The violin plots illustrate the overall 

distribution of each property. Again, due to random initialization, the power supply, location, 

misconfiguration, and operating system risk factors follow a uniform distribution. The risk 

factor associated with the power supply is directly attributable to the manufacturer's 

discontinuation. 
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Figure 4. 7: Left- Bar Plots, Right- Violin Plots of features of the Small Network (100 Nodes) 
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Figure 4. 8: Left- Bar Plots, Right- Violin Plots of features of the Small Network (100 Nodes) 
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Figure 4. 9: Left- Bar Plots, Right- Violin Plots of features of the Small Network (100 Nodes) 
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Figure 4. 10: Left- Bar Plots, Right- Violin Plots of features of the Small Network (100 Nodes) 

 

Furthermore, the other risk factors, including CPU, memory, average link risk factor, 

average port risk factor, and average card risk factor, follow a normal distribution for all three 

datasets. All these risk factors are primarily derived from the port utilization rate, which is 

randomly generated with uniform distribution (Node Properties subsection, Page 35). All these 

risk factors are derived mainly from the average port utilization. Moreover, according to the 

Central Limit Theorem, the average of sizeable uniform distribution tends toward the normal 

distribution. Additionally, we can confirm a strong correlation between all these properties 

from the Pearson correlation graphs of Figures 4.4 - 4.6. 
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Figure 4. 11: Left- Bar Plots, Right- Violin Plots of features of the Medium Network (200 Nodes) 
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Figure 4. 12: Left- Bar Plots, Right- Violin Plots of features of the Medium Network (200 Nodes) 
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Figure 4. 13: Left- Bar Plots, Right- Violin Plots of features of the Medium Network (200 Nodes) 
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Figure 4. 14: Left- Bar Plots, Right- Violin Plots of features of the Medium Network (200 Nodes) 
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Figure 4. 15: Left- Bar Plots, Right- Violin Plots of features of the Large Network (500 Nodes) 
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Figure 4. 16: Left- Bar Plots, Right- Violin Plots of features of the Large Network (500 Nodes) 
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Figure 4. 17: Left- Bar Plots, Right- Violin Plots of features of the Large Network (500 Nodes) 
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Figure 4. 18: Left- Bar Plots, Right- Violin Plots of features of the Large Network (500 Nodes) 

Finally, the bar plots for the failure category class for all three datasets show that the 

most significant samples are for the no-failure category. The other prominent categories are 

average link, OS, location, and misconfiguration risk factors. The port, card, CPU, memory, 

and power supply failures have the lowest count. This distribution shows that the failure and 

non-failure data follow the Cisco guidelines [2]. However, the datasets demonstrate an 

imbalanced characteristic, as some failure categories have fewer entries than others. Overall, 

the above discussion demonstrates the soundness of the datasets. 

4.3 Training with AI Methods 

Several cutting-edge ML and Deep Learning (DL) techniques have been applied to the 

generated datasets to investigate the best possible option in terms of performance. Different 

algorithms bring diverse perspectives to the data by capturing unique patterns and relationships 

among the features. By using a variety of techniques, we reduce the chance of relying on a 

single algorithm's biases or constraints, resulting in a more thorough comprehension of the data 
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revealing subtle insights.  Therefore, a number of ML and DL techniques commonly followed 

in recent literature are evaluated on the generated dataset. Training time and memory of these 

algorithms are also considered for the overall experiment. This section contains the 

experimental setup and the steps to prepare the dataset for the methods. 

4.3.1 Experimental Setup 

The experiment is performed on a MacBook Air (2020) with an M1 processor and 8GB 

of memory. All experiments utilize Python as their primary language. Python's sci-kit-learn 

library is used for the Machine Learning algorithms. In addition, the Keres framework with a 

TensorFlow backend is utilized for deep learning. Pandas, NumPy, matplotlib, and seaborn are 

among the additional data manipulation and visualization modules deployed.  

Table 4. 2: Train Test split for each dataset 

 Small dataset – 100 

nodes 

Medium dataset – 

200 nodes 

Large dataset – 500 

nodes 

Training data 87600 175200 438000 

Testing data 21900 43800 109500 

 

In order to prepare the data for ML and DL algorithms, it is divided into training and 

test data. As a training test split 80%-20% ratio is used for all datasets. The number of training 

and testing data points is shown in Table 4.2. As there is an imbalance in the dataset, the 

Synthetic Minority Oversampling Technique (SMOTE) is applied to the datasets, and the 

experimental results are compared for a thorough investigation. Table 4.3 contains the train test 

split with SMOTE applied to the datasets [72]. All categories contain equal number of data 

points in this case. SMOTE is applied only to the training data, and the test data is the same as 

the original set. 
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Table 4. 3: Train Test split for each dataset – with SMOTE 

 Small dataset – 100 

nodes 

Medium dataset – 

200 nodes 

Large dataset – 500 

nodes 

Training data 206270 383050 961960 

Testing data 21900 43800 109500 

  

SMOTE creates new synthetic data samples of the minority categories to balance the 

dataset. SMOTE work by taking some random minority samples and interpolating the points 

of the straight line between these samples. For each feature 𝑓, if 𝑥 is a minority class sample 

and 𝑥′ is one of its neighbors then, ∆ = 𝑥𝑗 − 𝑥𝑗
′. A new sample would be calculated by: 𝑥 +

 𝜆 ∗ ∆ where 𝜆 is a random number between 0 and 1. The train test splits with SMOTE applied 

on all three datasets are shown in Table 4.3.  

4.3.2 Training with ML and DL 
 

After splitting the data into training and testing sets, we selected several features before 

training them with the ML and DL algorithms. For creating the model that will predict the 

failure category, all dataset features except the node identifier and the date are considered. 

These columns are dropped from the data set as a preparation step. After we select the features 

for the training, feature scaling is done to normalize the data as a preprocessing step [73]. The 

training data is first fitted with a standard scaler which follows the following equation: 

 
𝑠 =

(𝑥 − 𝜇)

𝜎2
 Equation 4.10  

Here 𝜇 and 𝜎2 are the mean and standard deviation of the training data. The standard scaler 

brings all the numbers to the same scale for faster convergence and accurate results. The scaler 

fitted with training data scales the test data to prevent leaks.  
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Figure 4. 19: Proposed Deep Neural Network 

After these steps, the data is trained with all the ML algorithms described in Chapter 2. The 

optimal hyperparameters are decided with grid search for all the state-of-the-art ML techniques. 

For logistic regression, l2 regularization and ‘saga’ solver are applied to get the best 

performance. The proposed decision tree model considers gini impurity for calculating 

information gain with a maximum depth of 10. Also, the minimum number of samples required 

to make a split is set to 10. In the case of a random forest, the number of trees in the forest is 

set to 50. Gini impurity with a maximum tree depth of 10 is used like the decision tree model. 

But, in the case of a random forest, the minimum number of samples required to make a split 
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is set to 2. For SVM, two types of kernels, namely, ‘linear’ and ‘rbf’ kernel is considered. The 

proposed AdaBoost model has a learning rate of 0.01 and 50 weak classifiers for majority 

voting. The Gradient boosting algorithm, on the other hand, has 0.1 as the learning rate and 150 

weak classifiers for majority voting. For the MLP algorithm, the ‘reLu’ activation function with 

a hidden layer of 100 nodes is considered. For Naive Bayes and QDA, there was no 

hyperparameter tuning involved as they operate based on probability theory. For training all 

these models fivefold cross validation is applied.  

However, Figure 4.19 shows our proposed DNN architecture. This model's 

hyperparameters are fine-tuned with several trials and errors to have the optimal number of 

layers, learning rate, and epochs. The input layer of the proposed DNN model takes the 152 

features of the dataset as input. Then we have 2 hidden layers of the dimensions 128 and 256. 

A bias term is added for all the hidden layers of the model. Following the two layers, we have 

a dropout layer with a 10% dropout rate. Dropout layers give a regularization effect in the 

model by randomly deactivating certain percentages of nodes of that layer. After the dropout 

layer, we have a number of dense-dropout blocks. The rest of the dense layers contain 256, 

512, 1024, 512, 256, and 128 blocks consecutively. Here, the dropout layers added after these 

dense layers have a dropout rate of 50%, 50%, 25%, and 10%. At the end, we have a dense 

layer with 10 nodes which uses the Softmax function to give a probability of a particular data 

sample belonging to a specific class. 

 Each dense layer uses the ReLu activation function to add non-linearity to the data. 

ReLu activation is defined as: 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥),  i.e., the function returns the input value x 

if it is positive and returns zero otherwise. As a loss function, sparse categorical cross entropy 

is used with Adam (Adaptive Moment Estimation) optimizer [74], [75]. The model is trained 

for 20 epochs with a learning rate of 0.0001. 

 Overfitting is an important issue when we are considering synthetic data. If we have an 

intricate model with a number of interdependent features, an ML model can learn to overly fit 

in the associated mathematical functions. In such a case, our model will perform well on the 

training data and perform poorly on the test data. Therefore, to avoid such overfitting issues 

proper regularization is considered for all the proposed ML and DL models to get a generalized 

solution to the problem. For logistic regression, l2 regularization is used. Random Forest avoids 

overfitting by taking a number of decision trees and applying the majority voting technique.  
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The proposed boosting algorithms similarly avoid overfitting by taking majority voting from 

the outcome of multiple weak classifiers. The DNN model uses multiple dropout layers to 

combat overfitting. 

 

Figure 4. 20: Proposed LSTM Model 

 

4.3.3 Training with LSTM  

We have utilized LSTM to predict the availability of a single model node. For this 

purpose, data samples from each node are isolated sequentially for three years. In this instance, 

we only utilize the availability information (the 'target' column). The selected column is then 

scaled using a min-max scaler for each node [73]. Equation 4.11 is a representation of the min-

max scaler. 

 

 
𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 Equation 4.11 

 

Here, 𝑋𝑚𝑎𝑥 is the maximum number and 𝑋𝑚𝑖𝑛 is the minimum number of the list 𝑋.  

After these preprocessing stages, the proposed LSTM model (Figure 4.20) is provided 

with the sequence data. Since we predict one output at a time, the proposed model consists of 

two LSTM blocks with 100 and 32 nodes, followed by a dense layer with one node. These 
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layers have the activation function 'ReLu.'  Seven days of failure data are regarded as a 

single input set, with the eighth-day availability status appended as a label. The loss function 

used for training is the Root Mean Square Error. The model is trained for 10 epochs with a 

learning rate of 0.0001. 
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Chapter 5 

 5 Experimental Evaluation 

This Chapter explains the experimental results of every method. The following 

subsections describe the results of different state-of-the-art machine learning and deep learning 

techniques with and without SMOTE, followed by the results for the LSTM model. 

5.1 Experimental Results, Time-Space: Original datasets 

As performance evaluation metrics, accuracy, precision, recall, and F1-scores are used 

for the ML and DL models. Accuracy gives us an overall measure of correctly identified data 

points among all the data points. Precision quantifies the quality of the positive prediction with 

a ratio of correctly predicted positive samples to all predicted positive samples. On the other 

hand, recall calculates the rate of correctly predicted positive samples among all correctly 

predicted samples. The F1-score represents the harmonic mean of precision and recall giving 

an overview of the model's performance. We can calculate these matrices with the numbers of 

true positives (number of correctly predicted positive samples), true negatives (correctly 

predicted negative samples), false positives (incorrectly predicted positive samples), and false 

negatives (incorrectly predicted negative samples). Equations 5.1–5.4 provide the 

mathematical formulas for these matrices. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 Equation 5.1 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 Equation 5.2 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 Equation 5.3 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  

2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 Equation 5.4 

 

Table 5.1 and Figure 5.1 contains the accuracy, precision, recall, and F1-score obtained 

for all original datasets using all ML and DL techniques. As we can see, the highest-performing 

algorithms are Deep Neural Network, Decision Tree, and Random Forest classifiers. They 

obtained 99% to 98% accuracies for all three datasets. Also, the precision, recall, and F-1 scores 
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are 97-98%. Multi-Layer Perceptron (MLP) showed promise with 98% accuracy for all datasets 

and 96-97% precision and recall. Support Vector Machine with ‘rbf’ kernel worked well with 

all the datasets with 99-98% precision, recall, and accuracy. However, SVM with a linear kernel 

worked better with the smallest dataset (97-98%) but showed deteriorated performance for the 

bigger datasets (94-96%). Logistic Regression and Naïve Bias followed a similar trend, with 

good results for the small dataset (95-98%) and relatively lower results for bigger datasets (92-

96%). Primarily, Naïve Bias provided accuracy of 80% for the largest dataset and precision, 

recall, and F1 scores in the 72-84% range. Quadratic Discriminant Analysis (QDA) displayed 

high accuracies for all datasets (94-99%) but relatively lower precision, recall, and F1 scores, 

especially for the larger datasets (in the range of 90-95%). On the other hand, Gradient 

Boosting performed well for larger datasets with accuracy, precision, recall, and F1 scores in 

the range of 96-98% but showed lower results for the smallest dataset (84-95%). Contrary to 

all these, the AdaBoost algorithm does not seem to work well for any of the datasets seemingly 

predicting randomly. However, the performance is a little better for larger datasets.  

Table 5. 1: Experimental results- Accuracy, Precision and Recall on Original dataset 

Algorithms   
Small dataset – 

100 nodes 

Medium dataset – 

200 nodes 

Large dataset – 500 

nodes 

Logistic 

Regression 

Accuracy 0.98 0.96 0.94 

Precision 0.97 0.95 0.93 

Recall 0.97 0.94 0.92 

F1 score 0.97 0.94 0.93 

Naïve bias 

Accuracy 0.96 0.92 0.8 

Precision 0.96 0.93 0.72 

Recall 0.95 0.92 0.84 

F1 score 0.96 0.92 0.74 

Support 

Vector 

Machine- 

Linear  

Accuracy 0.98 0.96 0.96 

Precision 0.98 0.96 0.95 

Recall 0.97 0.94 0.94 

F1 score 0.98 0.95 0.94 

Support 

Vector 

Machine- 

Polynomial  

Accuracy 0.98 0.98 0.98 

Precision 0.98 0.98 0.97 

Recall 0.97 0.96 0.97 

F1 score 0.98 0.97 0.97 
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Decision 

Tree 

Accuracy 0.99 0.98 0.98 

Precision 0.98 0.97 0.97 

Recall 0.98 0.97 0.97 

F1 score 0.98 0.97 0.97 

Random 

Forest 

Accuracy 0.99 0.98 0.98 

Precision 0.99 0.98 0.97 

Recall 0.97 0.97 0.97 

F1 score 0.98 0.97 0.97 

AdaBoost 

Accuracy 0.27 0.32 0.55 

Precision 0.14 0.19 0.43 

Recall 0.13 0.25 0.39 

F1 score 0.07 0.18 0.39 

Gradient 

Boosting 

Accuracy 0.95 0.98 0.98 

Precision 0.84 0.98 0.97 

Recall 0.85 0.97 0.96 

F1 score 0.84 0.98 0.96 

Multi-Layer 

Perceptron 

(MLP) 

Accuracy 0.98 0.98 0.98 

Precision 0.98 0.97 0.96 

Recall 0.97 0.97 0.96 

F1 score 0.98 0.97 0.96 

Quadratic 

discriminant 

analysis 

Accuracy 0.99 0.94 0.95 

Precision 0.94 0.9 0.93 

Recall 0.95 0.95 0.95 

F1 score 0.95 0.92 0.94 

Deep Neural 

Network 

Accuracy 0.99 0.98 0.98 

Precision 0.98 0.98 0.97 

Recall 0.96 0.97 0.97 

F1 score 0.97 0.97 0.97 



 65 

 

Figure 5. 1: Experimental results- Accuracy, Precision and Recall on Original dataset 

Figures 5.2, 5.4, and 5.6 show the confusion matrix for all the datasets with the DNN 

model. As we can observe, the card failure category is often misclassified with some other 

categories. This could be because card failure happens due to contributing factors from other 

failure categories. Figures 5.3, 5.5, and 5.7 show consecutively the learning and accuracy 

curves for all the datasets. As we can see, there is a steady growth in accuracy and a decreasing 

loss. The validation curve is also going smoothly with the training curve. 
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Figure 5. 2: Confusion Matrix for DNN (100 nodes) 

 

  

Figure 5. 3: Accuracy curve and Learning curve (100 nodes) 
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Figure 5. 4: Confusion matrix for DNN - 200 nodes 

 
 

Figure 5. 5: Accuracy and loss curve - 200 nodes 
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Figure 5. 6: Confusion matrix- 500 nodes 

  

Figure 5. 7: Accuracy and learning curves - 500 nodes. 
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Table 5. 2: Time and Memory consumption for original dataset 

Algorithms   
Small dataset 

– 100 nodes 

Medium dataset 

– 200 nodes 

Large dataset – 

500 nodes 
 

Logistic 

Regression 

Time (s) 37.21 71.98 194.34  

Memory (Mib) 3604.33 3861.02 6225.62  

Naïve bias 
Time (s) 0.26 0.4 1.41  

Memory (Mib) 2072.91 2272.61 4283.36  

SVM- Linear  
Time (s) 66.34 1107.35 59791.3  

Memory (Mib) 2870.33 3625.36 7977.5  

SVM- 

Polynomial  

Time (s) 85.87 2600.78 5125.92  

Memory (Mib) 2801.86 2962.95 5074.8  

Decision Tree 
Time (s) 3.52 7.82 28.21  

Memory (Mib) 2616.81 3211.25 3770.39  

Random 

Forest 

Time (s) 15.21 34.48 112.68  

Memory (Mib) 2618.25 2321.34 4707.55  

AdaBoost 
Time (s) 13.13 25.34 78.33  

Memory (Mib) 2153.52 2796.48 5500.77  

Gradient 

Boosting 

Time (s) 669.36 1324.91 3601.29  

Memory (Mib) 1742.11 2448.33 3968.92  

MLP 
Time (s) 80.76 164.55 684.48  

Memory (Mib) 2565.19 3845.83 4009.84  

QDA 
Time (s) 0.8 1.48 3.55  

Memory (Mib) 2224.31 3336.91 4894.22  

Deep Neural 

Network 

Time (s) 843.81 1640.51 4734.67  

Memory (Mib) 1268.19 1441.85 2174.32  



 70 

 

Figure 5. 8: Time consumption for original dataset 

 

 

 

Figure 5. 9: Memory consumption for original dataset 
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As we can see in Table 5.2, Figure 5.8, and 5.9, for the smallest dataset, Naive Bias, 

QDA, DT, AdaBoost, and RF took the least time to train the model. Logistic regression, SVM, 

and MLP took a moderate amount of time. Gradient boosting and DNN took the longest to 

train. Additionally, the time to train the model for larger datasets demonstrates a linear increase 

except for SVM. Especially with a linear kernel, SVM took longer to train the two large 

datasets, surpassing gradient boosting and DNN. Now, if we look at memory consumption, all 

techniques use approximately the same kind of memory without any significant variation. The 

memory usage for the large datasets follows a linear trend for all models. 

5.2 Experimental Results, Time-Space: SMOTE 
 

Table 5.3 and Figure 5.10 shows all datasets accuracy, precision, and recall after 

applying SMOTE on the original training data for all the ML and DL techniques. Like the 

original dataset, Deep Neural Network, Decision Tree, and Random Forest classifiers are the 

highest-performing algorithms. However, they obtained slightly better results for the two large 

datasets. MLP obtained almost the same results as the original. There is a slight increase in 

SVM with the 'rbf' kernel, while SVM with linear kernel showed similar results. Logistic 

Regression performed better for the medium dataset. Naive Bias, AdaBoost, and QDA showed 

similar performances. The Gradient Boosting algorithm performed much better with the 

SMOTE applied to the small dataset with 99% accuracy, precision, and recall. 

Table 5. 3: Experimental results- Precision, Recall, Accuracy with SMOTE 

Algorithms   
Small dataset – 

100 nodes 

Medium dataset 

– 200 nodes 

Large dataset – 

500 nodes 

Logistic 

Regression 

Accuracy 0.97 0.95 0.92 

Precision 0.95 0.91 0.91 

Recall 0.97 0.95 0.93 

F1 score 0.96 0.93 0.92 

Naïve bias 

Accuracy 0.96 0.92 0.77 

Precision 0.96 0.92 0.72 

Recall 0.95 0.92 0.83 

F1 score 0.96 0.92 0.74 

Support 

Vector 

Accuracy 0.97 0.95 0.94 

Precision 0.96 0.92 0.93 
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Machine- 

Linear  
Recall 0.97 0.95 0.95 

F1 score 0.96 0.93 0.94 

Support 

Vector 

Machine- 

Polynomial  

Accuracy 0.99 0.98 0.98 

Precision 0.99 0.95 0.97 

Recall 0.98 0.97 0.98 

F1 score 0.98 0.96 0.97 

Decision 

Tree 

Accuracy 0.99 0.98 0.98 

Precision 0.97 0.97 0.97 

Recall 0.98 0.97 0.97 

F1 score 0.98 0.97 0.97 

Random 

Forest 

Accuracy 0.99 0.98 0.98 

Precision 0.98 0.98 0.97 

Recall 0.98 0.97 0.97 

F1 score 0.98 0.97 0.97 

AdaBoost 

Accuracy 0.03 0.02 0.36 

Precision 0.06 0.01 0.42 

Recall 0.26 0.23 0.34 

F1 score 0.07 0.02 0.27 

Gradient 

Boosting 

Accuracy 0.99 0.98 0.98 

Precision 0.99 0.97 0.96 

Recall 0.99 0.97 0.97 

F1 score 0.99 0.97 0.96 

Multi-Layer 

Perceptron 

(MLP) 

Accuracy 0.98 0.98 0.98 

Precision 0.98 0.96 0.96 

Recall 0.98 0.96 0.96 

F1 score 0.98 0.96 0.96 

Quadratic 

discriminant 

analysis 

Accuracy 0.96 0.95 0.95 

Precision 0.85 0.91 0.93 

Recall 0.84 0.95 0.95 

F1 score 0.84 0.93 0.94 

Deep Neural 

Network 

Accuracy 0.99 0.98 0.98 

Precision 0.98 0.96 0.97 

Recall 0.98 0.97 0.98 

F1 score 0.98 0.96 0.97 
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Figure 5. 10: Experimental results- Precision, Recall, Accuracy with SMOTE 

 

Figures 5.11, 5.13, and 5.15 are the confusion matrices for all the SMOTE datasets with 

the DNN model. If we compare with the original dataset results, we can observe a visible 

improvement over the card failure category, especially for bigger datasets. The correctly 

recognized card failure numbers were: 1022, 2420, and 5243, respectively, with the original 

dataset. With SMOTE, these numbers increased to 1039, 2623, and 5769. Figures 5.12, 5.14, 

and 5.16 contain the learning and accuracy curves, which showed a similar trend to the original 

dataset. 
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Figure 5. 11: Confusion matrix (SMOTE)- 100 nodes. 

 

 
 

Figure 5. 12: Accuracy and learning curve (SMOTE) - 100 nodes. 
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Figure 5. 13: Confusion matrix (SMOTE)- 200 nodes 

 

 

 

Figure 5. 14: Accuracy and learning curve- 200 nodes. 
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Figure 5. 15: Confusion matrix (SMOTE) - 500 nodes 

 

 
 

Figure 5. 16: Accuracy and learning curves - 500 nodes. 
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Table 5. 4: Time and memory consumption with SMOTE 

Algorithms   
Small dataset 

– 100 nodes 

Medium dataset 

– 200 nodes 

Large dataset 

– 500 nodes 
 

Logistic 

Regression 

Time (s) 87.09 162.1 476.42  

Memory (Mib) 4661.02 7030.39 8325.73  

Naïve bias 
Time (s) 0.43 1.11 4.88  

Memory (Mib) 2372.97 4161.11 5704.41  

SVM- Linear  
Time (s) 233.51 3320.69 120896.97  

Memory (Mib) 3739.44 5436.53 8667.52  

SVM- 

Polynomial  

Time (s) 138.59 1130.1 8142.42  

Memory (Mib) 3915.64 5186.91 7389.3  

Decision 

Tree 

Time (s) 10.8 28.11 101.87  

Memory (Mib) 2672.88 4384.69 8272.14  

Random 

Forest 

Time (s) 66.4 150.14 568.71  

Memory (Mib) 2950.72 4620.59 8084.34  

AdaBoost 
Time (s) 77.81 152.28 491.48  

Memory (Mib) 2861.41 4601.19 8083.3  

Gradient 

Boosting 

Time (s) 3791.42 7040.16 21079.75  

Memory (Mib) 2705.91 5252.14 7870.41  

MLP 
Time (s) 79.59 261.6 1211.37  

Memory (Mib) 3547.33 5120.5 6566.3  

QDA 
Time (s) 1.51 2.52 6.76  

Memory (Mib) 3292.33 4654.77 7957.67  

Deep Neural 

Network 

Time (s) 1725.22 4656.34 8133.9  

Memory (Mib) 1760.8 2374.35 3931.74  

 



 78 

 

Figure 5. 17: Time consumption with SMOTE 

 

 

Figure 5. 18: Memory consumption with SMOTE 

Table 5.4, Figure 5.17, Figure 5.18 shows the time and memory consumption with the 

datasets after applying SMOTE. They demonstrate a similar trend as before. After applying 

SMOTE, overall data points for training sets increased, and the time and memory requirements 

increased proportionally.   
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5.3 Experimental Results for Failure Prediction 

Each node is considered separately for each dataset, and the proposed model is trained 

separately for each node. For the failure prediction, a separate model for each node of one 

dataset is trained consecutively, and later the average prediction error is calculated for all the 

nodes. Therefore, there are 100 models for the small dataset, 200 for the medium dataset, and 

500 for the large dataset. The average results of these models are later calculated and reported. 

Each model is trained for 10 epochs with a learning rate 0.0001 and Adam optimizer.  The Root 

Mean Square Error (RMSE) is considered the evaluation matrix. To calculate the RMSE, the 

square root distance of the predicted and actual sequence is taken (Equation 5.5). 

 

𝑅𝑀𝑆𝐸 =  √
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 Equation 6 

 

Table 5. 5: Average RMSE for all datasets 

DataSet RMSE 

Small dataset – 100 nodes 1.0381156792830557 

Medium dataset – 200 nodes 0.9278651685828186 

Large dataset – 300 nodes 0.9751401700710098 

 
The RMSE average of all dataset nodes is presented in Table 5.5. As can be seen, the average 

error rate is relatively low. With more training data, the error ratings for the larger datasets are 

lower. 
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Chapter 6 

 6 Conclusion and Future work 
 

Evidentially, our daily activities are heavily impacted by network failures owing to 

external elements like software, hardware, broken links, misconfiguration, adverse weather, 

and other concerns. Network failure during medical and personal security emergencies can 

have catastrophic consequences. In addition, time-sensitive general or industrial operations 

suffer from network disruptions. This research seeks to develop a predictive model to correctly 

identify failure categories and aid ISPs in avoiding misusing redundant resources. 

A comprehensive investigation of network failure case studies, available datasets, and 

existing tools and techniques revealed a need for public datasets on network failure that can be 

utilized for various purposes. The vast majority of current data sets are log-based or domain-

specific. In addition, most recent research focuses on fiber cut location prediction and alarm 

log-based domain-specific prediction. This study proposed a simulation-based approach with 

three prototype network architectures of varying sizes. These networks capture network failure 

data following Cisco guidelines [2]. Even though the generated dataset is examined to ensure 

its veracity, it is challenging to follow real-world data's exact distribution due to the numerous 

interconnected components. 

Subsequently, these datasets are trained and evaluated using advanced Machine 

Learning and Deep Learning techniques. The optimal outcome demonstrated 99% accuracy, 

98% precision, 96% recall, and 97% F1 score. As the failure data is inherently skewed, SMOTE 

generates synthetic samples of minority classes. Using SMOTE significantly improved the 

recognition accuracy of certain minority classes. In addition, each network node's availability 

data is used to train an LSTM model for failure sequence prediction. The low average root 

mean square error rates in sequence prediction are encouraging. Still, there is a need for a more 

comprehensive analysis of the efficacy of the sequence model on each node of the network 

separately. 

This study is a proof of concept of a network failure prediction system. This method 

can serve as a baseline for further research with actual failure data. To deploy the proposed 

identification and prediction model for an ISP, we need to get a better understanding of their 

network architecture, components, and monitoring systems. Based on that information, the 
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proposed framework can be integrated with the central monitoring system of the ISP. This 

approach will provide a centralized system for real-time failure identification and prediction 

based on the incoming network data. Alternatively, we can deploy the model on distributed 

edge nodes for quicker response time as the processing will be done locally in each node. This 

approach provides flexibility in the case of a very complex network. After the model is 

deployed it will then use an online learning algorithm to update the model in real time with the 

inclusion of new data. This will particularly be advantageous for dynamic and rapidly changing 

network conditions. Some modifications and adjustments will be necessary to the proposed 

model parameters for Software Defined Network (SDN) which can be addressed in future 

works. However, applying this model in real-world scenarios can increase internet availability 

to ensure the uninterrupted delivery of time-critical operations. In addition, ISPs can reduce the 

money lost due to network failure. 
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