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Abstract 

In recent years, the technology of glycopeptide sequencing through MS/MS mass 

spectrometry data has achieved remarkable progress. Various software tools have been 

developed and widely used for protein identification. Estimation of false discovery rate (FDR) 

has become an essential method for evaluating the performance of glycopeptide scoring 

algorithms. The target-decoy strategy, which involves constructing decoy databases, is 

currently the most popular utilized method for FDR calculation. In this study, we applied 

various decoy construction algorithms to generate decoy glycan databases and proposed a 

novel approach to calculate the FDR by using the EM algorithm and mixture model. 
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Summary for Lay Audience 

In recent years, an increasing number of glycopeptide identification software has been 

developed, capable of scoring glycopeptides and identifying tandem mass spectrometry data. 

However, due to the potential mistakes in the results, false discovery rate (FDR) estimation 

plays a key role in evaluating the confidence of correctness. Applying the decoy-target 

approach is one of the most effective methods for calculating FDR, which requires building a 

decoy database. In this study, we explored a novel method for generating decoy databases 

based on the probability of glycan composition in the target database, and then compared it 

with other decoy construction methods. Meanwhile, since the distribution of target matches 

could be a mixture of the correct matches and incorrect matches, we created a new FDR 

estimation approach by using the EM algorithm with a mixture model. 
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Chapter 1 

1 Introduction 

1.1 Glycoproteomic 

Glycoproteomics is a rapidly advancing field that focuses on the comprehensive 

identification and characterization of glycosylation on proteins at the proteome level. 

Glycosylation, a prevalent and vital post-translational modification (PTM), involves the 

covalent attachment of glycans to proteins, which modulates the glycan structures observed 

on individual proteins and regulates their functions within the cell. This ubiquitous PTM 

not only plays a critical role in elucidating cell development, intercellular communication, 

and interactions but also holds significant potential for the treatment of various diseases 

such as Alzheimer's disease and cancer [1, 2].  

Protein glycosylation represents a preponderant and essential PTM, arising from 

the enzymatic activity of glycosyltransferases that orchestrate the formation of glycosidic 

bonds. The interplay between glycosyltransferases, carbohydrate transporters, and 

glycosidases intricately fine-tunes the glycan structures observed on individual proteins, 

thereby modulating their biological activities. 

Glycoproteomic analysis performed at the protein level allows for the 

comprehensive identification and characterization of glycosylation. However, the 

structural diversity and heterogeneity of glycosylation sites make the analysis of 

glycosylation more intricate than simpler PTMs. Due to its intricate nature, a single protein 

may exhibit hundreds of possible glycan attachments, with N-linked and O-linked 

glycosylation sites being modified by a wide range of different glycans [3]. Consequently, 

the study of glycosylation necessitates a comprehensive understanding of the intricate 

interplay between the various factors influencing glycan structures, the deployment of 

advanced analytical methods and technologies to capture and comprehend these complex 

structures. 
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1.1.1 Monosaccharides 

Monosaccharides are simple carbohydrate molecules that cannot be broken down 

by hydrolysis into smaller carbohydrate units. They are often referred to as "sugars" due to 

their basic structure. Chemically, they are aldehydes or ketones with two or more hydroxyl 

groups. Generally, monosaccharides have a chemical formula of Cx(H2O)y. 

Monosaccharides are categorized based on three primary characteristics: the 

position of carbonyl group, the number of carbon atoms, and the chiral nature. For instance, 

monosaccharides with an aldehyde carbonyl group are called aldoses, while those with a 

ketone carbonyl group are called ketoses. Monosaccharides can also be classified based on 

the number of carbon atoms, such as triose (3), tetrose (4), pentose (5), hexose (6), heptose 

(7). In addition, there are several minor monosaccharides, including mannose, galactose, 

xylose, and arabinose [4, 5, 6]. 

1.1.2 N-linked/O-linked glycans: 

Glycans are compounds consisting of many monosaccharides linked glycosidically, and 

they are integral components of numerous biological processes. Among the various types 

of glycans, N-linked and O-linked glycans are the most extensively studied. N-linked 

glycans are typically released from glycoproteins through enzymatic digestion, while O-

linked glycans are commonly released using chemical methods [7]. The precise 

characterization of glycans not only enhances our understanding of various cellular 

processes but also provides insights into the underlying mechanisms governing disease 

pathogenesis, enabling the identification of novel therapeutic targets. 

Typically, N-glycans possess a shared core structure that consists of three mannose 

residues linked to two GlcNAc residues. This fundamental core structure can be modified 

by substituting its atoms or molecules with each other to form different derivatives, 

resulting in the generation of diverse branching patterns and a plethora of linkages [2]. N-

glycans can be classified into three distinct groups: high-mannose, complex, and hybrid 

glycans. The high-mannose N-linked glycans exhibit a core structure that encompasses 

multiple mannose residues. In contrast, complex N-linked glycans exhibit a core structure 

decorated with a diverse range of monosaccharides. The hybrid N-linked glycans, as the 
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name suggests, exhibit a core structure that carries mannose residues on one side and 

complex residues on the other [8]. 

In contrast, O-glycosylation lacks a singular consensus sequence, as it encompasses 

a broad spectrum of glycan types [9, 10]. Notably, there are currently eight characterized 

core structures for mucin-type O-glycans, which exhibit diverse variations in length and 

branching antennae [11]. 

This thesis focuses only on N-linked glycans, and all tests were conducted on N-

linked glycan database. 

 

Figure 1 Variation in the N- and O-glycosylation in proteins. (A) Three types 

of N-glycans. (B) Eight core structures of O-glycans. [2] 

1.1.3 Format for glycans: 

There are different ways to represent glycans, including GlycoCT and linear representation. 

GlycoCT is a multi-line format for representing glycan structures and 

compositions. It was published in 2008 [12]. The format was designed to be easily readable 

and compressed while also ensuring a single representation for each glycan structure.  
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 GlycoCT consists of two main sections: the entity list and the linkage list. The entity 

list contains all the residues present in the glycan, with each residue assigned a unique 

number. The linkage list specifies the connectivity between residues using these numbers 

as addresses. 

 

Figure 2 The general idea of GlycoCT [12] 

 Besides, GlycoCT also includes the repeating unit and underdetermined terminal. 

The repeating unit is referenced and specified in the REP-section. It can also link to further 

sections by applying underdetermined units. 
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Figure 3 Repeating unit and Underdetermined terminal [12] 

 GlycoCT employs five attributes in its residue list to represent various features of 

glycan structures. These attributes include the anomeric carbon configuration, the three-

letter code representing the stem type with its configuration, the chain length denoting the 

number of carbons, the positions involved in ring formation, and additional modifier 

information.  

 

Figure 4 GlycoCT format [12] 

On the other hand, in the linkage information, we are able to represent canonical 

linkage number and residue number, atom replacement identifier, attachment position of 

both parent side and child side. 
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Figure 5 Linkage information [12] 

At the same time, glycans can be represented using a linear representation, such as 

a preorder traversal tree.  Therefore, glycans in GlycoCT format can be transformed into 

linear notation.  

It is noteworthy that in this study, information such as residue number and atom 

replacement identifier were not considered, as the glycan score was calculated only based 

on the distance of ion mass lists. 
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Figure 6 Glycan example 

1.2 Mass spectrometry 

1.2.1 Mass spectrometry 

Mass spectrometry is an analytical technique for determining the mass-to-charge ratio 

(m/z) of molecules in a sample. This powerful tool is widely used in various applications, 

including identification of unknown compounds based on the molecular weight, 

quantification of known compounds, and elucidation of molecular structure and chemical 

properties.  

Modern mass spectrometers are mainly composed of three parts: ionization source, 

mass analyzer, and ion detection system [13]. The mass spectrometer initially produces 

ions from a liquid sample, once ionized, the ions can be sorted and separated in the mass 

analyzer based on its mass-to-charge ratio (m/z), where m denotes the relative molecular 

weight of the ion in Daltons and z represents the absolute value of its charge number in 

electrons. Then the abundance of ions at each m/z value is detected and converted into an 

electrical signal. The detector subsequently processes the electrical signal and transmits it 

to a computer for analysis. The output of the mass spectrometer is typically presented as a 

histogram, where the X-axis denotes the m/z value, and the Y-axis represents the intensity 

at each m/z value.  

1.2.2 Tandem MS 

In instrumental analysis, tandem mass spectrometry (MS/MS or MS2) is a technique that 

involves coupling two or more mass analyzers together, along with an additional reaction 

step, to separate and detect more key parameters.  

In MS/MS, the molecules in a sample are first ionized, and the ions are then 

separated by m/z using the first spectrometer (MS1). Next, ions with a specific m/z ratio 

are selected and induced to fragment into smaller ions. These fragment ions are then 

introduced into the second mass spectrometer (MS2), which further separates and detects 

them based on their m/z ratio. This fragmentation step allows for the identification and 
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separation of ions with similar m/z ratios that may not be easily distinguished in single 

conventional mass spectrometers. 

 

Figure 7 MS/MS 

1.2.3 Dissociation methods: 

Nowadays, various MS peptide fragmentation methods have been developed, and they 

have two major classes based on energy deposition: vibration-based and electron-based 

methods. Vibration-based methods include low-energy collision-induced dissociation 

(CID), high-energy collision dissociation (HCD), and infrared multiphoton dissociation 

(IRMPD). Electron-based methods include electron capture dissociation (ECD), electron 

transfer dissociation (ETD), and ultraviolet photodissociation (UVPD) [14]. 

 CID is the most commonly used fragmentation technique, it typically results in only 

a single fragmentation event for precursor ions. Alternatively,  HCD induces multiple 

collisions with a collision gas occurring under high-pressure conditions. This leads to the 

activation of ions in a multi-step process, resulting in more complex spectra compared to 

CID. Both of methods tend to produce spectra with predominantly b-type and y-type amino 

acid sequence-specific ions. 

ECD and ETD are two techniques used to fragment molecular ions in gas phase 

during mass spectrometry analysis. In ECD, low energy electrons are directly introduced 

to trapped ions, causing simultaneous fragmentation and generating more complete ion 
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series. Similarly, ETD also involves transferring electrons to peptides, resulting in random 

cleavage along the peptide backbone while leaving side chains intact, and both methods 

generate c and z type ions. 

Additionally, hybrid fragmentation, which involves the combination of multiple 

dissociation methods, has been utilized to generate a wider range of ion types. This 

approach enhances the characterization of glycopeptides by enabling the identification of 

more complex structural features [15][16].  

1.2.4 Peptide identification strategy: 

There are four commonly used strategies for peptide identification: database searching, 

spectral library searching, tag-assisted searching and de novo sequencing [17]. Among 

these, database searching is the most utilized method for peptide identification and 

characterization. This strategy matches experimental MS/MS data with theoretically 

possible sequences in a reference database, such as UniProtKB [18] and NCBI RefSeq 

[19]. By calculating the comparison of experimental spectra with theoretical fragment 

masses, candidate peptides are scored and ranked based on their match to the experimental 

data, with the highest-scoring peptide reported. Some search engines for database 

searching, like Mascot [20], SEQUEST [21], and Andromeda [22, 23], have been 

developed recently. One of the drawbacks of database searching is its heavy dependence 

on the quality and availability of the reference database, it may not work well when there 

is no accurate reference database.  
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Figure 8 Four commonly used strategies for peptide identification [16] 

Spectral library searching is based on MS/MS spectra in a spectral library. Although 

spectral library searching has a shorter processing time and higher identification rate than 

database searching, it, like database searching, depends on the availability of a reference 

database [24].  COSS [25] is one of the most used tools at present. 

Tag-assisted protein purification has become a popular approach for academic 

researchers. The incorporation of purification tags into the protein production process can 

greatly reduce time and cost. However, the challenges are how to design and implement 

the tagged fusion proteins [26]. The software JUMP is a Tag-based Database Search Tool 

[27]. 

When a suitable database is not available, de novo sequencing is the only option 

for peptide identification [28]. De novo sequencing can reconstruct the original amino acid 

sequence from MS/MS spectra, making it possible to identify previously unknown peptide 
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sequences, peptide homologues, and modifications [29]. There are currently a variety of 

widely used de novo sequencing software programs, such as PEAKS [30], PepNovo [31], 

and pNovo3 [32]. 

1.3 False discovery rates and target-decoy approach 

1.3.1 False discovery rate 

The database search method is currently one of the most popular and widely used methods. 

However, the results obtained from this method are not entirely reliable, because not all 

peptides are present in the reference database, and incorrect candidate peptides may at 

times be prioritized over the correct sequences. However, high-throughput studies often 

involve millions of tests which make manual inspection impossible [33]. To address this 

problem, false discovery rate (FDR) estimation has emerged as an adopted and effective 

method for controlling error rates in large-scale identification efforts.  

1.3.2 Target-decoy search strategy 

The target-decoy search strategy has emerged as a standard approach for estimating the 

FDR [34]. This approach is achieved by constructing decoy peptide sequences that do not 

exist naturally in the universe. Therefore, if a match is made with the decoy database, it 

represents a match with an incorrect sequence. This forms the first assumption of the target-

decoy strategy, which states that any hits to the decoy database are incorrectly assigned 

[35]. At the same time, if no match is made with any decoys, then the purpose of using the 

decoy database is lost, therefore, when constructing the decoy database, it is also important 

to avoid complete difference from the target database.  

Another key assumption of the target-decoy search strategy is that the likelihood of 

false positive identifications is the same for both the target and decoy databases [36]. The 

incorrect decoy peptides are designed to closely resemble unknown incorrect peptides that 

may be present in the target database. Following this, the experimental MS/MS spectra are 

searched against both the target and decoy databases. Since the peptide sequences in the 

decoy database are not present in the sample, any PSMs identified against decoy sequences 
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are deemed incorrect, enabling the estimation of the relative proportion of target and decoy 

sequences.  

1.3.3 Decoy sequence construction 

The Target-decoy approach is an effect strategy for estimating the FDR [37]. However, it 

is important to remember that this strategy is dependent on the quality and completeness 

of the decoy database, which must be carefully constructed.  

In recent years, several methods have been suggested for constructing decoy 

sequences. One straightforward technique for producing decoy sequences is reversing the 

target database [36]. This method preserves the features of the original sequence, such as 

composition and sequence length, and is easy to implement. However, the disadvantage is 

that the reversing method is less efficient for generating decoy peptides for complex 

sequences [38]. Another approach for constructing decoy databases is to add random noise 

to the target spectrum to generate decoy spectra [39].  

Although the decoy-target strategy for glycan works similarly to peptides. Unlike 

the chain-like structure of peptides, the chemical structure of glycans can be abstracted into 

a tree structure. Saito's [40] stated that the shuffle method is an easy-to-use decoy glycan 

creating method. This method randomly rearranged the target monosaccharides while 

preserving the glycan structure and composition. However, we thought that simple 

shuffling or swapping may not be sufficient for decoy glycan databases. Changing the 

glycan tree structure should also be considered. Therefore, in this thesis, we will explore a 

few decoy construction methods by modifying the glycan tree structure. 

1.3.4 Separate search and concatenated search 

After constructing the decoy database, there are two main types of searching: 

separate search and concatenated search [41]. In the separate database search method, the 

target and decoy databases are searched independently, and the best scores from each 

database are used to identify targets and decoys, respectively. On the other hand, the 

concatenated search method reports only one target or decoy sequence with the best score 

for each spectrum. Unlike the separate search method, in concatenated search, there is 
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competition between the target and decoy sequences in a single search for the highest score. 

Elias and Gygi [1] recommended using concatenated database searches instead of separate 

searches because separate searching greatly obstructs the ability to estimate low-scoring 

correct identifications in the presence of high-scoring incorrect identifications.  

 

Figure 9 separate database search and concatenated database search [41] 

1.3.5 FDR estimation 

In the context of target-decoy search strategy, true positives (TP) refer to the number of 

correct matches above the threshold score, while false positives (FP) indicate the number 

of incorrect matches above the threshold. True negatives (TN) represent the number of 

incorrect matches below the threshold, and false negatives (FN) indicate the number of 

correct matches below the threshold. 
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In general, the FDR estimates the percentage of incorrect matches above the 

threshold in the positive matches, and is defined as: 

                                                        𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
                                                 (1.1) 

 Since we can’t easily get the number of incorrect and correct matches. According 

to the assumptions of decoy-target strategy, the separate search strategy computes the ratio 

of the number of decoy matches and target matches above the threshold by the following 

formula: 

                                                 𝐹𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑐𝑜𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
                              (1.2) 

 In the concatenated database search, incorrect matches cannot be accurately 

determined due to the mixture of target and decoy databases. Since we assumed that the 

likelihood of false positive identifications is the same for both the target and decoy 

databases, in this situation, true positive matches tend to match targets, while false positive 

matches are uniformly distributed between targets and decoys. Then, the number of false 

positives is doubling the number of decoy matches. The FDR in this case is calculated 

using the formula: 

𝐹𝐷𝑅 =
2∗𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑐𝑜𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑐𝑜𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
            (1.3) 

 Since we assumed that the probabilities of incorrect matches were the same in both 

decoy and target databases. However, in practical applications, this assumption may not 

always hold true. This can lead to an overestimation or underestimation of FDR. If we can 

obtain distributions for correct and incorrect matches, then we can calculate the cumulative 

distribution function (CDF) of the distributions to get a more accurate estimate of the FDR. 

 𝐹𝐷𝑅 =
1 − 𝑡ℎ𝑒 𝐶𝐷𝐹 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

(1 − 𝑡ℎ𝑒 𝐶𝐷𝐹 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) + (1 − 𝑡ℎ𝑒 𝐶𝐷𝐹 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)
 

                                                                                                                                    (1.4)       
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1.4 Mixture distribution and EM algorithm 

1.4.1 Mixture distribution 

In FDR estimation, we aimed to determine the number of incorrect and correct matches 

that were above the given threshold to calculate the FDR. However, since we could not 

directly distinguish between correct and incorrect matches, according to the assumptions 

that decoys represented incorrect matches and that the false positives were the same in both 

the decoy and target databases, we estimated the FDR by computing the number of target 

and decoy matches that were above the threshold. 

In this article, we proposed a novel algorithm for FDR calculation. We knew that 

the distribution of glycan scores above the threshold included both incorrect and correct 

matches, we considered it as a mixture model at least containing two distributions. By 

employing the EM (Expectation-Maximization) algorithm, we could calculate the 

parameters of these distributions and directly computed the FDR. 

The use of mixture models has gained increasing attention in statistical and machine 

learning research. A mixture model is a probabilistic model that represents the distribution 

as a mixture of two or more component distributions, P1(x), ..., Pn(x), these component 

distributions are combined in a weighted manner, π1, …, πn and ∑ 𝜋𝑖 = 1 , where the 

weights represent the proportion of the population that belongs to each component, then 

the distribution function, F can be represented as: 

                                                        𝐹(𝑥) = ∑ 𝜋𝑖𝑃𝑖(𝑥)𝑛
𝑖=1                                          (1.5) 

One advantage of mixture models is their ability to capture heterogeneity in the 

data. This is particularly useful when dealing with data that exhibits multiple clusters. By 

modeling the data as a mixture of distributions, mixture models can accurately capture the 

characteristics of each cluster, even if they have different mean, variance, or shape. 

However, there are also some limitations to the use of mixture models. One limitation is 

their sensitivity to the initialization of the model parameters. It may lead to multiple local 

optima, which can result in different solutions depending on the starting point. Another 
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limitation is the assumption of independence between the components, which may not hold 

in some cases [42].  

1.4.2 EM algorithm (Expectation-maximization) 

The EM algorithm (Expectation-maximization) is a widely used approach used to estimate 

model parameters for probabilistic models with latent variables. It is an iterative algorithm 

that alternates between two steps: the E-step and the M-step. In the E-step, the algorithm 

calculates the posterior probabilities of each observation belonging to each component of 

the mixture distribution, given the current estimate of the parameters [43]. In the M-step, 

the algorithm updates the model parameters to maximize the expected log-likelihood of the 

data given the latent variables computed in the E-step [44]. The EM algorithm is guaranteed 

to increase the likelihood of the data at each iteration and will converge to a local maximum 

of the likelihood. However, the algorithm may converge to a suboptimal solution if it gets 

stuck in a local maximum. The advantage of the EM algorithm is its ability to handle 

missing data. In cases where some of the data is missing, the EM algorithm can be used to 

estimate the missing values and the model parameters simultaneously [45]. 
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Chapter 2 

2 Methods 

2.1 Databases 

In this work, we used the same mouse brain MS mass spectrometry data as pGlyco3[46]. 

It was utilized for analysis and testing to improve experimental stringency and accuracy. 

We analyzed the mouse protein database used by GlycanFinder, which contained 17048 

mouse brain sequences [47]. Similarly, the glycan database also employed the same glycan 

database used by GlycanFinder, which consisted of 7887 structurally distinct basic glycans. 

2.2 Notation 

It is worth noting that the glycan utilized in this project consisted of only six distinct 

monosaccharides, including Hex(Galactose, Glucose, Mannose), HexNAc(N-

Acetylgalactosamine, N-Acetylglucosamine), NeuAc(N-Acetylneuraminic acid), 

NeuGc(N-Glycolylneuraminic acid), Fuc(Fucose), and Xyl(Xylose). Based on their 

chemical formulas, the relative molecular masses of these monosaccharides were 

determined to be 180.06, 221.09, 309.10, 325.10, 164.06, and 150.05, respectively. 

Table 1 Monosaccharide mass 

Monosaccharide Generic term Mass 

Galactose, Glucose, Mannose Hex 180.06 

N-Acetylgalactosamine, N-Acetylglucosamine HexNAc 221.09 

N-Acetylneuraminic acid NeuAc 309.10 

N-Glycolylneuraminic acid NeuGc 325.10 

Fucose Fuc 164.06 

Xylose Xyl 150.05 
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Figure 10 The symbols of monosaccharide 

2.3 Glycan distance score 

In the thesis, we decided to use mass list distance instead of tree edit distance, such as Saito 

[40] or Sun[48], to calculate glycan distance scores. This decision was made because the 

scoring algorithms in most sequencing software heavily relied on B-ion and Y-ion lists as 

the final evaluation criterion. 

We obtained the mass lists of b-ion and y-ion from the decoy glycan and the original 

glycan respectively, so that ay and by represent the y-ion lists and ax, bx represent the b-ion 

lists, |𝑎𝑦|  represents the length of y-ion list. Therefore we used the formula where 

|𝑎𝑦 − 𝑏𝑦|for the distance of y-ion which is the number of elements in the difference 

between two y-ion lists,  |𝑎𝑥 − 𝑏𝑥|  for the distance of b-ion which is the number of 

elements in the difference between two b-ion lists, s(a, b) is the similarity of  glycan a and 

b, which equals 𝜆|𝑎𝑦 ∩ 𝑏𝑦| + (1 − 𝜆)|𝑎𝑥 ∩ 𝑏𝑥|and 𝜆 = 0.7. 

We chose 𝑓(𝑥) = 𝑙𝑜𝑔2(𝑥 + 1), the scoring formula is below:  

                                                       
𝑑𝐿∞

𝑠 (a,b)

𝑓(𝑑𝐿∞
𝑠 (a,b)+s(a,b))

                                              

                                           =
max {𝑠(𝑎,𝑎)−𝑠(𝑎,𝑏),𝑠(𝑏,𝑏)−𝑠(𝑎,𝑏)}

𝑓(max {𝑠(𝑎,𝑎),𝑠(𝑏,𝑏)})
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                                                  =
max {|𝑎−𝑏|,|𝑏−𝑎|}

𝑓(max {|𝑎|,|𝑏|})
 

            =
max {𝜆(|𝑎𝑦−𝑏𝑦|)+(1−𝜆)(|𝑎𝑥−𝑏𝑥|),𝜆(|𝑏𝑦−𝑎𝑦|)+(1−𝜆)(|𝑏𝑥−𝑎𝑥|)}

𝑓(max {𝜆(|𝑎𝑦|)+(1−𝜆)(|𝑎𝑥|),𝜆(|𝑏𝑦|)+(1−𝜆)(|𝑏𝑥|)})
                      (2.1) 

 

2.4 Reciprocal probability distribution 

In this research, we proposed a method for randomly generating a decoy glycan based on 

a reciprocal probability list. The algorithm is as follows: 

Given 𝑃 =  (𝑝1, 𝑝2, … , 𝑝𝑛), we assume that pi ≠ 0. If we have pi = 0, then add a 

very small number Ɛ to each pi and rescale the summation to 1. In the research, we choose 

Ɛ=0.5% (0.005).  

We want to compute Q = (q1, q2, . . . , qn) such that for any i and j: 

𝑝𝑖

𝑝𝑗
=

𝑞𝑗

𝑞𝑖
 

Then we have for any i and j: 

𝑝1𝑞1 = 𝑝2𝑞2 = ⋯ = 𝑝𝑛𝑞𝑛 

Let 𝑝𝑖𝑞𝑖 = 𝑐, then 𝑞𝑖 =
𝑐

𝑝𝑖
 

Since we have: 

∑ 𝑞𝑘

𝑛

𝑘=1

= 1 

Which is:  

∑
𝑐

𝑝𝑘

𝑛

𝑘=1

= 1 



20 

 

Therefore, we have:  

                                                         𝑐 =
1

∑
1

𝑝𝑘

𝑛
𝑘=1

 

                                                        𝑞𝑖 =
1

𝑝𝑖 ∑
1

𝑝𝑘

𝑛
𝑘=1

                                                 

                                        𝑄 = (
1

𝑝1 ∑
1

𝑝𝑘

𝑛
𝑘=1

,
1

𝑝2 ∑
1

𝑝𝑘

𝑛
𝑘=1

, … ,
1

𝑝𝑘 ∑
1

𝑝𝑘

𝑛
𝑘=1

)                         (2.2) 

2.5 Decoy glycan construction 

2.5.1 Decoy database generating algorithm 

We chose to build a one-to-one decoy database, which means that one target glycan 

generates one corresponding decoy. First, we applied the decoy glycan generation 

algorithm to each target glycan (the generation algorithm can be any of the algorithms from 

the following six methods, specific algorithms will be introduced later). Since we cannot 

guarantee that the generated decoy does not overlap with any other glycans in the target 

database or the decoys we have already created, thus, we compared the distance between 

the decoy we just created with all the target glycans and all the decoys we have generated, 

by using the distance score algorithm, and selected the minimum score as the distance of 

decoy to the target database. Finally, we repeated the construction process 30 times and 

selected the decoy with the highest distance to the target database as the final output decoy. 

For each glycan g in target glycan database: 

 Perform 30 iterations: 

  New glycan g’ = glycan construction method (g) 

  For every Y-ion and B-ion lists in list l: 

   Get the minimum distance d according to Equation 2.1 

  Add Y-ion and B-ion lists of g’ into list l 
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Return the decoy g’ which has the maximum value of d among 30 times:  

  

2.5.2 Permutation method 

For the first method, the monosaccharides of the target glycan were randomly permuted to 

generate a new decoy glycan. Since this method only alters the order of the 

monosaccharides in the original glycan, the topology and monosaccharide composition 

remain unchanged. 

 

Figure 11 Permutation method 

2.5.3 Node transfer method 

As a simplification of the chemical structure of glycans, they were represented by a tree 

structure in which each monosaccharide served as a node, and the glycosidic linkages 

served as the edges. In the second method, decoys were generated by reconstructing the 

nodes of the target glycan tree.  

 In the beginning, a node was randomly selected, and we recorded the number of its 

children before deleting it. In the case of selecting the root, we reselected a non-root node 

and swapped two monosaccharides, then we deleted the second selected one. Subsequently, 

for all the children of this node, we transferred them to the parent node through breadth-

first searching until the condition (children number less than 4) was met. Moreover, we 

randomly selected another node and transferred the corresponding number of children of 
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the second selected node to the previously deleted node, based on the number of children 

of the deleted node we recorded before. After, we searched for the second chosen node 

using breadth-first searching until the condition (children number less than 4) was met, 

then added the deleted node as its child. Finally, we repeated this transfer process 15 times. 

This method reconstructs the positions of nodes in the glycan tree structure, resulting in a 

decoy that differs from the original target's tree structure. 

 

Figure 12 Node transfer method (1 time) 

 

Figure 13 Node transfer method (15 times) 

2.5.4 Combination method 

This method combined the principles of methods 2.5.2 and 2.5.3. Firstly, we repeated the 

permutation method 10 times and chose the best one among 10 candidate glycans. Next 
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the 10 random monosaccharides within the glycan were positionally reconstructed. Finally, 

we permuted 10 more times again and selected the best one as the final decoy. 

 

Figure 14 Combination method 

2.5.5 Random method 

In this method, the decoy tree structure is generated entirely at random. Firstly, we obtained 

the number and types of monosaccharides included in the target glycans and converted 

them into a list. then we randomly selected the root node from the list of target 

monosaccharides. Since biological rules dictate that each glycan usually has between 1 and 

4 monosaccharide children, thus, for the root node, we randomly selected 1 to 4 children's 

monosaccharides as the next-level nodes. We removed these children from the list and 

repeated this process level by level until the list of monosaccharides is empty. The random 

method preserves only the monosaccharide composition of the original target glycan while 

completely changing its tree structure and monosaccharide positions. 

For i in all glycans: 

 While monosaccharides list! = null: 

  Random select the number of children from 1 to 4 

  For j in children number: 

   Random select monosaccharide from monosaccharide list 



24 

 

   Delete the selected monosaccharide in monosaccharides list 

   Add the selected monosaccharide in the decoy glycan as a node 

 

Figure 15 Random method 

2.5.6 Reciprocal probability based on monosaccharides list 
method 

In the random method, we used a completely random method to generate decoys. For 

peptides, the most used method to generate decoys was by reversing the sequence. Since 

glycans have a tree-like structure that cannot be easily reversed, we could analyze and 

create a table of the compositional distribution of glycans in the target glycan database. By 

reversing this table, we constructed a decoy database that mirrors the structures in the target 

database, based on statistical information. 

2.5.6.1 Statistical probability results 

In the reciprocal probability method, we began by determining the number of children at 

each level in 7887 glycans, which is the target glycan database. We counted the number of 

branches at each level and obtained statistical results. The statistical results are as follows: 

Table 2 The statistical result of children number 

 0 child 1 child 2 children 3 children 4 children 

Level 1 0 0.511 0.489 0 0 

Level 2 0.328 0.672 0 0 0 
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Level 3 0 0 0.545 0.455 0 

Level 4 0.199 0.171 0.627 0.003 0 

Level 5 0.129 0.551 0.319 0 0 

Level 6 0.482 0.515 0.003 0 0 

Level 7 0.814 0.156 0.003 0 0 

Level 8 0.547 0.453 0 0 0 

Level 9 0.542 0.446 0.012 0 0 

Level 10 0.878 0.122 0 0 0 

Level 11 0.552 0.448 0 0 0 

Level 12 0.86 0.14 0 0 0 

Level 13 0.667 0.333 0 0 0 

Level 14 0 1 0 0 0 

Level 15 0 1 0 0 0 

Level 16 1 0 0 0 0 

 

At each level, we also computed the types of monosaccharides and obtained the 

following results: 

Table 3 The statistical result of monosaccharide types 

 Hex HexNAc HeuAc NeuGc Fuc Xyl 

Level 1 0 1 0 0 0 0 

Level 2 0 0.672 0.328 0 0 0 

Level 3 1 0 0 0 0 0 

Level 4 0.815 0.185 0 0 0 0 

Level 5 0.072 0.928 0 0 0 0 

Level 6 0.67 0.001 0.324 0 0.003 0.003 

Level 7 0.113 0.096 0.015 0 0.388 0.388 

Level 8 0.528 0.012 0.137 0 0.162 0.161 

Level 9 0.202 0.04 0.012 0 0.373 0.373 

Level 10 0.289 0 0.025 0 0.343 0.343 

Level 11 0.75 0.062 0 0 0.094 0.094 

Level 12 1 0 0 0 0 0 

Level 13 0.667 0.333 0 0 0 0 

Level 14 1 0 0 0 0 0 

Level 15 0 1 0 0 0 0 

Level 16 1 0 0 0 0 0 

2.5.6.2 Reverse the probability lists 

Since not all types of monosaccharides were present in each layer of the 

experimental data, certain monosaccharide types had a probability of 0 in the results. To 
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create a smoother probability curve, we modified the probability of these data points from 

0 to 0.5%. Subsequently, we applied equation 2.2 for probability to recalculate the 

statistical results and obtained the final data. We followed the same process to invert the 

children list. 

The reciprocal lists are showed:  

Table 4 The reciprocal probability of children number 

 0 child 1 child 2 children 3 children 4 children 

Level 1 0.33109 0.00329 0.00344 0.33109 0.33109 

Level 2 0.00512 0.0025 0.33079 0.33079 0.33079 

Level 3 0.33107 0.33107 0.00308 0.00369 0.33107 

Level 4 0.00922 0.01073 0.00293 0.61184 0.36527 

Level 5 0.01897 0.00444 0.00767 0.48446 0.48446 

Level 6 0.00283 0.00265 0.45454 0.26999 0.26999 

Level 7 0.00281 0.01467 0.07628 0.45312 0.45312 

Level 8 0.00307 0.00307 0.33107 0.33107 0.33107 

Level 9 0.00382 0.00464 0.17238 0.40958 0.40958 

Level 10 0.0019 0.01365 0.32815 0.32815 0.31815 

Level 11 0.00304 0.00375 0.33107 0.33107 0.33107 

Level 12 0.00194 0.01192 0.32871 0.32871 0.32871 

Level 13 0.00252 0.00504 0.33081 0.33081 0.33081 

Level 14 0.24968 0.00127 0.24968 0.24968 0.24968 

Level 15 0.24968 0.00127 0.24968 0.24968 0.24968 

Level 16 0.00127 0.24968 0.24968 0.24968 0.24968 

 

Table 5 The reciprocal probability of monosaccharide types 

 Hex HexNAc HeuAc NeuGc Fuc Xyl 

Level 1 0.1998 0.00102 0.1998 0.1998 0.1998 0.1998 

Level 2 0.24856 0.00189 0.00387 0.24856 0.24856 0.24856 

Level 3 0.00102 0.1998 0.1998 0.1998 0.1998 0.1998 

Level 4 0.00155 0.00684 0.2479 0.2479 0.2479 0.2479 

Level 5 0.01738 0.00135 0.24532 0.24532 0.24532 0.24532 

Level 6 0.0008 0.53469 0.00165 0.1064 0.17823 0.17823 

Level 7 0.03051 0.03591 0.22982 0.686 0.00888 0.00888 

Level 8 0.00623 0.2742 0.02402 0.6548 0.02031 0.02044 

Level 9 0.01558 0.0787 0.26235 0.62648 0.00844 0.00844 

Level 10 0.00777 0.44465 0.08983 0.44465 0.00655 0.00655 

Level 11 0.00307 0.0371 0.45545 0.45545 0.02447 0.02447 
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Level 12 0.00102 0.1998 0.1998 0.1998 0.1998 0.1998 

Level 13 0.0019 0.00381 0.24857 0.24857 0.24857 0.24857 

Level 14 0.00102 0.1998 0.1998 0.1998 0.1998 0.1998 

Level 15 0.1998 0.00102 0.1998 0.1998 0.1998 0.1998 

Level 16 0.00102 0.1998 0.1998 0.1998 0.1998 0.1998 

2.5.6.3 Rescale the lists 

We were not able to rely directly on the reciprocal probability of the monosaccharide types 

list and the reciprocal probability of the children number list for glycan reconstruction 

because certain monosaccharides may be absent from the original glycan monosaccharide 

list but appear in the reciprocal probability lists. For instance, a glycan may contain 3 Hex, 

2 HexNAc, but the root selection probabilities in the reciprocal list may only be 19.98% 

for Hex, 0.1% for HexNAc, and the remaining 79.92% may not correspond to any 

monosaccharides in the original list. In such cases, it was necessary to rescale the reciprocal 

list while preserving the probabilities and selecting only the monosaccharides present in 

the original list. The specific method used for rescaling involved adjusting the probabilities 

in the reciprocal list to account for the missing monosaccharides,  

The algorithm began by obtaining the total probabilities of all glycans that were not 

present in the target monosaccharide list. Next, for each monosaccharide in the target 

glycan list, the probability of missing monosaccharides was allocated to that particular 

monosaccharide based on their respective ratios. The pseudocode is: 

 Get the total probabilities that does not in original glycan 

monosaccharides list 

 For each monosaccharide m in original glycan list: 

  Allocate the probability of missing monosaccharides based on the 

ratio and add to m 

After the rescaling process, the selection probabilities for the root were as follows: 

Hex at 99.502% and HexNAc at 0.498%. The ratio of Hex and HexNAc remained 

consistent before and after the rescaling process. 
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2.5.6.4 The algorithm of method 

Next, a statistical approach was used to generate randomized glycan tree structures 

based on the reciprocal children list and reciprocal monosaccharides list, using the 

following algorithm, first of all, we randomly selected the number of children based on the 

reciprocal children probability list, then for each child, the reciprocal monosaccharide 

probability list was rescaled before randomly selecting a monosaccharide from it as a node, 

and removing it from the original monosaccharides list. This process was repeated until the 

original monosaccharides list became empty. 

For i in all glycans: 

 While monosaccharides list! = null: 

  Random select the number of children based on reciprocal children 

probability 

  For j in children number (break if monosaccharides list is empty): 

   Rescaled the reciprocal monosaccharide probability list 

   Random select monosaccharide based on reciprocal mono 

probability 

   Add the selected monosaccharide in the decoy glycan 

   Delete the selected monosaccharide in monosaccharides list 
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Figure 16 Reciprocal based on list 

2.5.7 Reciprocal probability not based on list method 

In comparison to method 2.5.6, this approach is not restricted by the composition of the 

monosaccharide list, thereby enabling the repetition of any selection of monosaccharides. 

In this approach, the first step remained the same, where the number of children was 

randomly selected from the reciprocal children probability list. However, the difference 

was that, instead of rescaling the monosaccharide list, a node was directly chosen from it 

and added, without removing the selected monosaccharide from the target monosaccharide 

list. This process was repeated until the number of monosaccharides in the decoy glycan 

matched that of the target glycan. This method changed all the composition and position 

of the monosaccharide list of target glycan as well as the tree structure: 

For i in all glycans: 

 While the number of monos in decoy!= the number of monos in target: 

  Random select the number of children based on reciprocal children 

probability 

  For j in children number: 

   Random select monosaccharide based on reciprocal mono 

probability 
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   Add the selected monosaccharide in the decoy glycan 

 

Figure 17 Reciprocal not based on list 

2.6 Software 

The software platform, GlycanFinder, was developed by Bioinformatics Solutions Inc as 

an upgraded add-on module to the PEAKS studio. A sophisticated database search and 

newly developed algorithms were employed to perform in-depth glycoproteomic analyses 

using LC-MS/MS spectra data. These analyses included protein identification and 

measurement, glycan and peptide scoring and sequencing, as well as peptide de novo 

sequencing. The platform has been used to provide comprehensive glycoproteomic 

analyses using LC-MS/MS spectra data. 

The default glycopeptide decoy database used by GlycanFinder was generated by 

adding random noise masses to the original MS spectrum. A default decoy glycan database 

was integrated into the software to enable comparison of the performance of decoy glycan 

databases generated by different algorithms.  

2.7 FDR estimation 

When we tested the decoy database using GlycanFinder, we calculated the FDR by 

counting the number of decoys and targets that scored above a specific threshold for the 

glycan score. We used the formula below to calculate FDR: 

                       FDR = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑜𝑦 𝑔𝑙𝑦𝑐𝑎𝑛 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑎𝑏𝑜𝑣𝑒 𝑠ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑎𝑏𝑜𝑣𝑒 𝑠ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                         (2.3) 
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In this thesis, the equation mentioned above was used to calculate the FDR. The target 

glycan matches and decoy glycan matches were analyzed at the thresholds of 1%, 3%, and 

100% glycan FDR. 

2.8 Test method 

It's worth noting that the default database of GlycanFinder was not absolutely correct, after 

obtaining the results, we only used the default glycan database as the reference for 

comparison. The percentage differences between the results obtained using different 

algorithms and the default database were calculated. 

In the results, we counted the number of target matches for different construction 

functions and the default decoy database at an FDR of 1%. Then, we calculated the 

complement of the construction functions and the default database to determine the number 

of newly discovered target glycans and the number of missed target glycans. Dividing these 

values by the number of target matches in the default decoy database provided us with the 

proportion of newly discovered and missed target glycans in the decoy database: 

          𝑇ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑛𝑒𝑤 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 =

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑛𝑒𝑤 𝑑𝑒𝑐𝑜𝑦 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑖𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
        (2.4) 

     𝑇ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 =

 
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑖𝑛 𝑛𝑒𝑤 𝑑𝑒𝑐𝑜𝑦 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑔𝑙𝑦𝑐𝑎𝑛 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
         (2.5)  

2.9 Mixture model 

2.9.1 Mixture model for glycopeptide score distribution 

In this study, we employed the target-decoy strategy if the target and decoy databases had 

no overlapping and that all decoy hits were incorrect matches. However, the target hits 

could contain both correct and incorrect matches. Moreover, the assumptions also included 

the likelihood of false positive identifications is the same for both the target and decoy 

databases. As a result, the glycan fraction distribution could be a mixture of the correct 

matches and incorrect matches. To evaluate the effectiveness of the glycopeptide 
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identification software, we employed a statistical model to distinguish between correct and 

incorrect identifications.  

The mixture of distributions with K mixture components formulated by: 

                           𝑓(𝑥; 𝛳1, … , 𝛳𝑘) = ∑ 𝜋𝑘𝑓𝑘(𝑥; 𝛳𝑘)𝐾
𝑘=1                               (2.6) 

Where 𝛳𝑘 represents parameters of kth component in the mixture distribution and 

the weight 𝜋𝑘 , the weight of kth component, meet the conditions: 

∑ 𝜋𝑘

𝐾

𝑘=1

= 1 

and 

𝜋𝑘 ≥ 0 

2.9.2 Expectation–maximization (EM) algorithm 

The EM algorithm, initially proposed by Dempster, Laird, and Rubin in 1977 [49], is an 

iterative method used in statistics to estimate (local) maximum likelihood or maximum a 

posteriori (MAP) parameter in statistical models that rely on unobserved latent variables. 

The EM iteration alternates between two steps, known as the expectation (E) step and the 

maximization (M) step. During the E step, a function for the expectation of the log-

likelihood is created, evaluated using the current parameter estimate. Then, during the M 

step, the parameters that maximize the expected log-likelihood found in the E step are 

computed. These parameter estimates are subsequently utilized to determine the 

distribution of the latent variables in the next E step. This process is iteratively repeated 

until the resulting values converge to fixed points or below the threshold. 

The algorithm proceeds as follows: 

1. Initialization: Initialize the model parameters μk, σk, and πk, and evaluate the log-

likelihood with these parameters. 
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2. E-step: Evaluate the posterior probabilities γZi(k) using the current values of μk and 

σk 

3. M-step: Estimate new parameters 𝜇�̂�, 𝜎𝑘
2̂, and 𝜋�̂� using the current values of γZi(k) 

4. Evaluate the log-likelihood with the new parameter estimates. If the change in the 

log-likelihood is less than a predetermined threshold ϵ, terminate the algorithm. 

Otherwise, repeat the E-step and M-step until convergence. 
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Chapter 3 

3 Result 

3.1 Software setting 

This project utilized the GlycanFinder software for the querying, scoring, and sorting mass 

spectrometry data. Specific settings included enrichment data with a precursor mass 

tolerance of 10 ppm, fragment ion tolerance of 0.02 Da, and glycan fragment ion tolerance 

of 20 ppm. The digest mode was specified with Carbamidomethylation and Oxidation as 

PTMs. The mouse brain data sources tested in this study were the same as those analyzed 

by pGlyco3. 

3.2 FDR estimation for different databases 

The tables presented in the appendix display the outcomes acquired via GlycanFinder for 

the default database and six methods when subjected to FDR of 100%, 3%, and 1%. 

Figures 18 to 24 display the glycan score distribution of each decoy database 

construction method when the FDR is set to 100%. Appendix A to G display the 

distributions when FDR=1%, appendix H to N display the distribution when FDR=3%.  
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Figure 18 The Target and Decoy distributions in Default database (FDR=100%) 

 

Figure 19 The Target and Decoy distributions in Permutation method (FDR=100%) 

 



36 

 

Figure 20 The Target and Decoy distributions in Node transfer method (FDR=100%) 

 

Figure 21 The Target and Decoy distributions in Combination method (FDR=100%) 
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Figure 22 The Target and Decoy distributions in Random method (FDR=100%) 

 

Figure 23 The Target and Decoy distributions in Reciprocal based on list method 

(FDR=100%) 

 

Figure 24 The Target and Decoy distributions in Reciprocal not based on list method 

(FDR=100%) 
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Table 6 The results (FDR=1%, 30 iterations) 

Decoy Construction Number of glycan Threshold glycan score 

Default 8548 4.27 

Permutation 3013 6.68 

Node transfer 1154 5.98 

Combination 7699 4.48 

Random 1666 7.02 

Reciprocal based on list 8648 5.84 

Reciprocal not based on list 18387 11.5 

We evaluated the performance of each decoy glycan construction method using the 

GlycanFinder software, with data collected at an FDR of 1% (table 6). And the threshold 

and the number of glycans results for FDR=100% and 3% were displayed in appendix O, 

P. By labeling the GlycanID and based on table 6 data, we obtained the performance of 

each method compared to the default database using equations 2.4 and 2.5, which is shown 

as follows: 

Compare with default database, permutation method misses 390 glycans, difference 

is 4.61%, finds 0 new glycans, new finding is 0.00%. 

Compare with default database, node transfer method misses 553 glycans, 

difference is 6.53%, finds 0 new glycans, new finding is 0.00%. 

Compare with default database, permutation and node transfer combination method 

misses 75 glycans, difference is 0.89%, finds 1 new glycans, new finding is 0.01%. 

Compare with default database, random method misses 505 glycans, difference is 

5.96%, finds 0 new glycans, new finding is 0.00%. 

Compare with default database, reciprocal based on list method misses 3 glycans, 

difference is 0.04%, finds 16 new glycans, new finding is 0.19% 

Compare with default database, reciprocal not based on list method misses 0 

glycans, difference is 0%, finds 491 new glycans, new finding is 5.80%. 
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We observed that when the FDR was set to 1%, the reciprocal based on list method 

identified 16 new glycans while missing 3 glycans. In other words, the performance of 

detecting candidate glycopeptides was better than the algorithm used by GlycanFinder. 

Furthermore, we observed that the data obtained using the reciprocal not based on 

list for FDR of 1%, 3%, and 100% were the same. This suggests that the decoy glycans 

generated by this algorithm did not match at all, indicating significant differences between 

the generated decoys and the targets. Consequently, the decoy glycan database generated 

by the reciprocal not based on list method is not suitable for reference comparison and 

cannot be used further.  

On the other hand, the node transfer and random methods contained only 1000 

glycans for FDR 1%. This was caused by the decoys generated by these two methods being 

too similar to the targets, resulting in higher scores and a lower number of detected glycans. 

Thus, we used these two methods only as control groups for the combination and composite 

based on list methods, which means they did not participate in the performance comparison. 

Table 7 The results (FDR=1%, 50 iterations) 

Decoy Construction Number of glycan Threshold glycan score 

Permutation 3253 6.18 

Node transfer 1216 5.84 

Combination 7946 4.07 

Random 1600 5.64 

Reciprocal based on list 8631 4.17 

We also tested the case of 50 iterations. In this situation, the results are shown in 

table 7. We can conclude that the performance of the reciprocal method was almost same 

between the decoy databases generated from 30 and 50 iterations. This was caused by the 

reciprocal method constructed decoys based on the statistical distribution of the target 

database, which was more stable. On the other hand, for these four methods (combination, 

permutation, node transfer, and random), 50 iterations showed slight differences compared 

to 30 iterations, resulting in an increased number of glycans. This phenomenon occurred 

due to these methods exhibiting higher randomness compared to the reciprocal methods. 

However, the performances of all methods from 30 and 50 iterations were similar. 
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As a result, by comparing the results of 50 iterations with 30 iterations, we observed 

that a higher number of iterations implied a greater distance between the decoy and the 

target. Additionally, decoy databases created by different construction methods generated 

varying distances to the target database. The smaller the distance, the fewer glycans were 

detected. Among all methods, the reciprocal-based list method exhibited the largest 

distance, thus detecting the highest number of glycans. On the other hand, if the distance 

between the decoy and target glycans was too far, it indicated greater dissimilarity, and the 

number of glycans increased. However, if the decoy glycans were too dissimilar from the 

target glycans, it might have led to a situation where there were no matches in the decoy 

database. Therefore, we needed to find a method to generate a decoy database that ensured 

the distance to the target glycans was neither too close nor too far. To be noticed, in the 

following tests, we used the data of 30 iterations for each decoy construction methods. 

3.3 2 components mixture model 

To determinate FDR value, we decomposed the total matches into correct matches and 

incorrect matches, then fitted them to a normal distribution for further comparison. 

The normal distribution parameters are shown in appendix R, and are presented in 

Figures 25 to 30, which display the distribution of correct matches, incorrect matches and 

glycan scores. In these figures, incorrect matches are represented in black, correct matches 

are represented in red, and the glycan scores are blue. 
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Figure 25 Incorrect and correct matches distributions in Default database (2 

components) 

 

Figure 26  Incorrect and correct matches distributions in Permutation method (2 

components) 
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Figure 27 Incorrect and correct matches distributions in Node transfer method (2 

components) 

 

 

Figure 28 Incorrect and correct matches distributions in Combination method (2 

components) 
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Figure 29 Incorrect and correct matches distributions in Random method (2 components) 

 

 

Figure 30 Incorrect and correct matches distributions in Reciprocal based on list method 

(2 components) 

The GlycanFinder applied equation 2.3 to estimate the FDR of the results. Next, we 

rescaled the integral of the correct and incorrect distributions of π and calculated the FDR 

using the equation 1.4. The results are shown in the following figure and table: 
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Figure 31The recalculated FDR (2 components) 

Table 8 The results (FDR=1%, 2 components) 

 Threshold score Number of glycans Number of decoys 

Default database 4.45 8322 71 

Permutation method 2.89 8256 275 

Combination method 3.85 8494 123 

Reciprocal based on list 6.01 8479 68 

One method was found to have lower glycan scores than those obtained from 

GlycanFinder, while all other methods had differences. This indicates that the use of the 2-

component Normal-based EM algorithm was not appropriate. 

In image 32, an obvious "gap" was observed, which separated the distribution into 

two distinct parts. It was expected that the left and right sides of the gap would correspond 

to different distributions, but the 2-component EM algorithm did not match them 

accordingly. Therefore, it was necessary to consider the possibility of using more 

components. 
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Figure 32 The “gap” 

3.4 3 components 

For the 3-component case, we used an EM algorithm based on a 3 components normal 

mixture for the entire dataset. The left distribution corresponded to incorrect matches, 

while the right side corresponded to two correct matches. 

The parameters are showed in appendix S. In figures 33 to 38, incorrect matches 

are represented in black, correct matches 1 are represented in red, correct matches 2 are 

represented in deep blue and the glycan scores are shown in blue. 
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Figure 33 Incorrect and correct matches distributions in Default database (3 components) 
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Figure 34 Incorrect and correct matches distributions in Permutation method (3 

components) 

 

Figure 35 Incorrect and correct matches distributions in Node transfer method (3 

components) 
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Figure 36 Incorrect and correct matches distributions in Combination method (3 

components) 

 

Figure 37 Incorrect and correct matches distributions in Random method (3 components) 

 

Figure 38 Incorrect and correct matches distributions in Reciprocal based on list method 

(3 components) 

By using equation 1.4, we calculated the FDR: 
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Figure 39 The recalculated FDR (3 components) 

Table 9 The results (FDR=1%, 3 components) 

 Threshold score Number of glycans Number of decoys 

Default database 4.23 8601 86 

Permutation method 2.58 8887 348 

Combination method 3.76 8631 136 

Reciprocal based on list 6.25 8299 59 

The results indicated that the number of decoys recalculated by the default database 

was the same as those obtained directly from the GlycanFinder software. Additionally, the 

numbers of decoys from the two methods were higher than the theoretical value. We 

believe the reason for this phenomenon is that there were abnormally high peaks on the left 

in the dataset (figure 18 to 23) where the score is very small, and these peaks may cause 

overfitting by the EM algorithm. In the next section, we will subsequently consider 

dropping some parts of the data to ensure a better match. 

3.5 4 components and gamma-normal distributions 

In the Last section, we tried using 3 components, however, the results showed that this 

method did not perform well. Therefore, we considered using a cutoff and 4 components. 

At the same time, we used a mixture model of gamma and normal distributions to fit the 

curve. 
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To reduce the impact of small glycan scores on the final FDR evaluation, we first 

dropped off the bottom 2.5% of the lowest scores, and then we used an EM algorithm based 

on a 4 components gamma-normal mixture for the remaining dataset. The left distribution, 

corresponding to incorrect matches, was modeled as a gamma distribution, while the right 

side was modeled using one gumbel distribution and two normal distributions for the 

correct matches. 

Overall, we obtained four distributions: the gamma distribution represented the first 

incorrect matches, located on the far left of the plot; the second gamma distribution, located 

on the left side of the figure, represented the second incorrect match; and the third 

distribution, located in the middle, represented the first correct match, and the fourth 

distribution represented the second correct match, which is located on the right. 

 The parameters are shown in appendix T. In figures 40 to 45, incorrect matches are 

represented in black, correct matches 1 are represented in red, correct matches 2 are 

represented in deep blue, correct matches 3 are represented in green and the glycan scores 

are shown in blue. 
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Figure 40 Incorrect and correct matches distributions in Default database (4 components, 

2.5% cutoff) 

 

Figure 41 Incorrect and correct matches distributions in Permutation method (4 

components, 2.5% cutoff) 
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Figure 42 Incorrect and correct matches distributions in Node transfer (4 components, 

2.5% cutoff) 

 

Figure 43 Incorrect and correct matches distributions in Combination method (4 

components, 2.5% cutoff) 
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Figure 44 Incorrect and correct matches distributions in Random method (4 components, 

2.5% cutoff) 

 

Figure 45 Incorrect and correct matches distributions in Reciprocal based on list (4 

components, 2.5% cutoff) 

With the same approach, we recalculated the FDR. 

 

Figure 46 The recalculated FDR (4 components, 2.5% cutoff) 
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Table 10 The results (FDR=1%, 4 components, 2.5% cutoff) 

 Threshold score Number of glycans Number of decoys 

Default database 5.13 7591 46 

Permutation method 4.09 6252 146 

Combination method 3.88 8450 122 

Reciprocal based on list 4.91 9610 207 

The results showed that among the four methods (not including node transfer and 

random), one method had fewer decoys than theoretically expected at an FDR of 1%. 

Although the other three methods performed poorly with higher-than-expected decoy 

numbers, two of them had a better performance than the 3 components condition.  

3.6 5 components 

Previously we dropped a portion of the data to make sure it was a better match. However, 

we were not sure how much data we had to cut to avoid the abnormal peak, and sometimes 

we were required to use the entire dataset. Therefore, in this section, we propose a new 

approach to circumvent this overfitting problem. We will add a new normal distribution to 

match this peak without any data drops, and then apply the previous 4 components method. 

The overall distributions will contain a normal distribution on the far left for the incorrect 

match of the abnormal peak, a gamma distribution on the right for the second incorrect 

match, and a gumbel distribution on the right for the first correct match, the two normal 

distributions on the far right represent the two correct matches. 

The parameters are shown in appendix U. In figures 47 to 52, incorrect matches 1 

are represented in yellow, incorrect matches 2 are represented in black, incorrect matches 

2 are represented in red, correct matches 1 are represented in deep blue, correct matches 2 
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are represented in green and the glycan scores are in blue. 

 

Figure 47 Incorrect and correct matches distributions in Default (5 components) 

 

Figure 48 Incorrect and correct matches distributions in Permutation (5 components) 
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Figure 49 Incorrect and correct matches distributions in Node transfer (5 components) 

 

Figure 50 Incorrect and correct matches distributions in Combination (5 components) 
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Figure 51 Incorrect and correct matches distributions in Random (5 components) 

 

Figure 52 Incorrect and correct matches distributions in Reciprocal based on list (5 

components) 

With the same approach, we recalculated FDR. 
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Figure 53 The recalculated FDR (5 components) 

Table 11 The results (5 components) 

 Threshold score Number of glycans Number of decoys 

Default database 4.97 7757 52 

Permutation method 4.32 5915 130 

Combination method 4.21 8147 107 

Reciprocal based on list 5.39 9100 130 

The results showed that among the four methods (not including node transfer and 

random), the default database detected fewer decoys than theoretically expected at an FDR 

of 1%, and the number of glycans detected was close to that obtained from the software. 

Although, the other three methods had higher decoy numbers, their threshold score and the 

number of decoys were the best among all other components condition, and they were close 

to the software outputs (table 6).  

Overall, after testing different components, although the default database of 

GlycanFinder was not absolutely correct, as a comparison, we can conclude that using an 

EM algorithm based on a mixture distribution to calculate the distribution of incorrect and 

correct matches and to estimate FDR through CDF is a feasible method to consider. 
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Chapter 4 

4 Conclusion and discussion 

In this study, we constructed seven glycan databases, including permutation, node transfer, 

and reciprocal probability methods. To evaluate the performance of each method, we first 

used the GlycanFinder software for glycan scoring, with test data from mouse brain spectra 

used in testing Pglyco3. Additionally, we evaluated and compared the distribution of the 

obtained results. Moreover, we used the EM algorithm based on mixture distributions to 

separate correct and incorrect parameters and visualize them. Finally, by using the CDF of 

the distributions to recalculate the threshold at FDR=1% and compare it with the data from 

software. 

As for the results, we found that combining the node transfer and permutation 

method, which alters the structure of the glycan tree, was more efficient than using only 

permutation algorithm, which only rearranges monosaccharides, it caused by more 

reported number of glycans when FDR=1%. Furthermore, constructing a reverse 

probability list and using the original glycan monosaccharides list resulted in the 

discovering of more potential candidate glycans compared to the default database used by 

the GlycanFinder software. However, the decoys of the fully random construction method 

were too close to the targets since it only reported thousand around glycans when FDR=1%. 

On the other side, the database constructed using the method of constructing a reverse list 

not based on the original glycan monosaccharides list had a largest distance and differed 

greatly from the original database and could not match effective decoys. 

Additionally, we tested 2 and 3 components EM algorithm based on normal 

distribution. However, the results were not satisfactory. Finally, we tested the 4 

components EM algorithm with a 2.5% cutoff and the 5 components approach for 

recalculating the FDR, and the results showed that 3 out of 4 algorithms generated decoy 

databases that were close to the conclusion obtained from the software. Therefore, we 

concluded that using the EM algorithm to estimate FDR is a feasible approach. 
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However, there may be some limitations to this study. In this work, we employed 

a method of randomly generating decoy glycan databases, but there were still many 

possibilities that were not considered, even though we created 30 candidate glycans and 

compared their distances. According to Zhikai Zhu [50], the efficiency of a 1-to-many 

decoy database is higher than that 1-to-1 decoy database. Therefore, in the future, we may 

consider using algorithms to generate a 1-to-many decoy glycan database to improve 

performance. 

Lastly, in this study, we only tested gamma, gumbel and normal distributions in the 

mixture model. In future work, it is possible to test more potential mixture distributions, 

such as an extreme value distribution, and different combinations of distributions to better 

match the correct and incorrect distribution. More importantly, determining the number of 

components is crucial, we must find the optimal number of distributions. Additionally, 

determining the initial parameters can be important too. 
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Appendices 

 

Appendix A The Target and Decoy glycan distributions in Default database (FDR=1%) 
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Appendix B The Target and Decoy glycan distributions in Permutation method 

(FDR=1%) 

 

Appendix C The Target and Decoy glycan distributions in Node transfer method 

(FDR=1%) 
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Appendix D The Target and Decoy glycan distributions in Combination method 

(FDR=1%) 

 

Appendix E The Target and Decoy glycan distributions in Random method (FDR=1%) 
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Appendix F The Target and Decoy glycan distributions in Reciprocal based on list 

method (FDR=1%) 

 

Appendix G The Target and Decoy glycan distributions in Reciprocal not based on list 

(FDR=1%) 
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Appendix H The Target and Decoy glycan distributions in Default database (FDR=3%) 

 

Appendix I The Target and Decoy glycan distributions in Permutation method 

(FDR=3%) 
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Appendix J The Target and Decoy glycan distributions in Node transfer method 

(FDR=3%) 

 

Appendix K The Target and Decoy glycan distributions in Combination method 

(FDR=3%) 
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Appendix L The Target and Decoy glycan distributions in Random method (FDR=3%) 

 

Appendix M The Target and Decoy glycan distributions in Reciprocal based on list 

method (FDR=3%) 

 

Appendix N The Target and Decoy glycan distributions in Reciprocal not based on list 

(FDR=3%) 

 

Decoy Construction Number of glycan Threshold glycan score 
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Default 19251 0.55 

Permutation 19503 0.36 

Node transfer 19371 0.21 

Combination 19299 0.49 

Random 19799 0.23 

Reciprocal based on list 19185 0.73 

Reciprocal not based on list 18387 11.5 

Appendix O The results (FDR=100%) 

 

Decoy Construction Number of glycan Threshold glycan score 

Default 11130 2.76 

Permutation 7829 3.13 

Node transfer 5820 2.66 

Combination 9545 3.19 

Random 3998 4.84 

Reciprocal based on list 10006 4.59 

Reciprocal not based on list 18387 11.5 

Appendix P The results (FDR=3%) 

 

Decoy Construction Number of glycan Threshold glycan score 

Default 8548 4.27 

Permutation 3013 6.68 

Node transfer 1154 5.98 

Combination 7699 4.48 

Random 1666 7.02 

Reciprocal based on list 8648 5.84 

Reciprocal not based on list 18387 11.5 

Appendix Q The results (FDR=1%) 

 

Method 
name 

Default 
Permutatio

n 
Node 

transfer 
Combination Random 

Reciprocal 
based on list 

π1 0.493 0.503 0.540 0.485 0.525 0.491 

μ1 1.958 1.260 0.835 1.715 1.085 2.697 

σ1
2 1.071 0.450 0.225 0.794 0.347 1.928 

π2 0.506 0.496 0.459 0.514 0.474 0.508 

μ2 9.014 5.826 3.902 7.661 5.054 13.055 



72 

 

σ2
2 33.701 15.068 8.556 20.330 12.164 60.409 

Appendix R The parameters (2 components) 

 

Method 
name 

Default Permutation 
Node 

transfer 
Combination Random 

Reciprocal 
based on list 

π1 0.504 0.487 0.483 0.498 0.497 0.538 

μ1 1.893 1.172 0.713 1.687 0.987 2.756 

σ1
2 0.964 0.353 0.129 0.756 0.251 2.093 

π2 0.463 0.438 0.439 0.468 0.428 0.402 

μ2 8.221 4.850 2.931 7.273 4.024 11.949 

σ2
2 12.289 4.935 1.841 10.317 3.388 16.595 

π3 0.031 0.073 0.077 0.032 0.074 0.059 

μ3 24.044 11.235 7.904 16.017 10.138 28.226 

σ3
2 93.774 37.246 21.819 81.747 27.488 90.915 

Appendix S The parameters (3 components) 

 

Method 
name 

Default Permutation 
Node 

transfer 
Combination Random 

Reciprocal 
based on list 

π1 0.282 0.473 0.446 0.296 0.405 0.220 

α1 0.828 5.337 8.045 5.436 5.538 4.128 

ϴ1 0.779 -0.510 -0.700 -0.310 -0.590 0.090 

μ1 1.160 0.372 0.203 0.372 0.342 0.551 

π2 0.343 0.217 0.130 0.608 0.277 0.294 

μ2 3.320 6.347 4.989 5.321 4.896 4.469 

β2 1.431 3.373 2.747 3.073 2.693 1.645 

π3 0.336 0.306 0.411 0.082 0.301 0.392 

μ3 10.201 4.954 3.155 9.409 4.149 13.282 

σ3 2.668 1.839 1.244 0.973 1.553 3.045 

π4 0.037 0.001 0.012 0.012 0.015 0.092 

μ4 24.308 15.855 10.578 13.748 14.970 26.453 

σ4 9.427 0.280 0.765 0.394 1.177 9.884 

Appendix T The parameters (4 components, cutoff=2.5%) 

 

Method 
name 

Default Permutation 
Node 

transfer 
Combination Random 

Reciprocal 
based on list 

π1 0.144 0.138 0.099 0.112 0.112 0.087 
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μ1 0.954 0.605 0.374 0.853 0.503 1.344 

σ1
2 0.141 0.084 0.058 0.125 0.070 0.205 

π2 0.279 0.356 0.130 0.211 0.287 0.103 

α2 7.758 7.348 7.673 8.369 7.146 6.300 

ϴ2 -0.450 -0.650 -0.790 -0.510 -0.710 -0.240 

μ2 0.365 0.330 0.262 0.317 0.319 0.527 

π3 0.447 0.159 0.265 0.581 0521 0.330 

μ3 5.776 7.358 0.932 5.413 3.746 3.963 

β3 2.691 3.591 0.405 3.098 2.028 1.746 

π4 0.099 0.189 0.413 0.082 0.050 0.387 

μ4 12.567 3.887 3.426 9.390 5.192 13.242 

σ4
2 1.010 1.205 1.305 0.976 1.419 3.092 

π5 0.029 0.154 0.091 0.012 0.027 0.090 

μ5 25.992 6.616 8.238 13.748 14.767 26.514 

σ5
2 9.351 1.371 4.723 0.391 2.088 9.893 

Appendix U The parameters (5 components) 
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