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Abstract

Calculation of vertical excitation energies by the adiabatic linear-response time-dependent

density-functional theory (TDDFT) requires static Kohn–Sham potentials and exchange-

correlation kernels. When these quantities are derived from standard density functionals, mean

absolute errors (MAE) of the method are known to range from 0.2 eV to over 1 eV, depending on

the functional and type of excitation. We investigate how the performance of TDDFT varies when

increasingly accurate exchange-correlation potentials derived from Hartree–Fock (HF) and post-

HF wavefunctions are combined with different approximate kernels. The lowest MAEs obtained

in this manner for valence excitations are about 0.15–0.2 eV, which appears to be the practical

limit of the accuracy of TDDFT that can be achieved by improving Kohn–Sham potentials alone.

These findings are consistent with previous reports on the benefits of accurate exchange-correlation

potentials in TDDFT, but provide new insights and afford more definitive conclusions.
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1. BACKGROUND

The linear-response time-dependent density-functional theory1–3 (TDDFT) is a widely

used method for calculating excitation energies of many-electron systems. The central role

in this technique is played by the interacting density-response function

χ[ρ0](r, r
′, t − t′) =

δρ(r, t)

δvext(r′, t′)

∣

∣

∣

∣

ρ=ρ0

, (1)

which describes the linear part of the response of the ground-state density ρ0(r, t) to a weak

perturbation of the external potential vext(r
′, t′). The key idea of the linear-response method

is to extract excitation frequencies of the system as poles of the density-response function

Fourier-transformed to the frequency domain, χ(r, r′, ω). One way to see what this requires

is to represent χ(r, r′, ω) by a Dyson-type equation4

χ(r, r′, ω) = χs(r, r
′, ω) +

∫

dr1

∫

dr2 χs(r, r1, ω)

×

[

1

|r1 − r2|
+ fXC(r1, r2, ω)

]

χ(r2, r
′, ω), (2)

where χs(r, r
′, ω) is the noninteracting density response function expressible in terms of

the unperturbed Kohn–Sham orbitals and orbital energies, while fXC(r, r′, ω) is the Fourier

transform of the exchange-correlation kernel,

fXC[ρ0](r, r
′, t − t′) =

δvXC(r, t)

δρ(r′, t′)

∣

∣

∣

∣

ρ=ρ0

, (3)

where vXC(r, t) is the exchange-correlation potential. Thus, the two quantities needed to

set up eq 2, χs(r, r
′, ω) and fXC(r, r′, ω), are determined by vXC(r, t). To extract the poles

of χ(r, r′, ω), this function is usually expanded in products of occupied and virtual Kohn–

Sham orbitals and eq 2 is cast as a matrix eigenvalue problem known as Casida’s equations.5

Solution of Casida’s equations produces excitation energies and expansion coefficients of

χ(r, r′, ω).

In principle, the linear-response TDDFT is exact, but to take full advantage of this

promise one needs the exact Kohn–Sham orbitals and orbital eigenvalues as well as the

exact fXC(r, r′, ω). The exact Kohn–Sham orbitals are already challenging to obtain, and

the exact frequency-dependent kernel is even less accessible. To make progress, the problem

is simplified by introducing the adiabatic approximation

vXC[ρ](r, t) =
δEXC[ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρt

, (4)
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where EXC[ρ] is the ground-state exchange-correlation energy functional. Under this as-

sumption, the exchange-correlation kernel becomes frequency-independent and the quanti-

ties required to set up Casida’s equations are just the static exchange-correlation potential,

vXC[ρ](r) =
δEXC[ρ]

δρ(r)
, (5)

and its functional derivative,

fXC[ρ](r, r′) =
δvXC[ρ](r)

δρ(r′)
=

δ2EXC[ρ]

δρ(r)δρ(r′)
, (6)

both evaluated at ρ0(r). The adiabatic approximation makes it possible to use the linear-

response TDDFT machinery with a wide range of approximate ground-state exchange-

correlation functionals available in quantum-chemistry packages.6–9 It is worth noting that

the adiabatic form of Casida’s equations can also be derived without the response-function

formalism by using only the variational principle.10

The adiabatic approximation itself is remarkably accurate,1 at least for single

excitations,11 but the errors caused by the use of approximate vXC(r) and fXC(r, r′) are

substantial, typically 0.2–0.5 eV for valence and up to 1 eV or more for Rydberg exci-

tations, depending on the functional.12–22 The errors in ground-state exchange-correlation

potentials were initially believed to be dominant, as they demonstrably are for Rydberg

transitions,23–28 but the errors in static kernels can also be significant.1,29 Because exchange-

correlation potentials are simpler and more familiar objects than the kernels, there have been

several attempts to improve the performance of adiabatic TDDFT by replacing standard

density-functional approximations for vXC(r) with model23,24,29–31 and optimized effective

potentials32–35 (OEPs). Because the kernels corresponding to OEPs and most model poten-

tials must themselves be evaluated by indirect methods,35–37 accurate Kohn–Sham potentials

in practice are often paired with static kernels derived from standard density functionals such

as the local density approximation (LDA).

2. PROBLEM STATEMENT

Given that accurate Kohn–Sham effective potentials can be constructed with less effort

than accurate exchange-correlation kernels, it is natural to wonder how far one can increase

the accuracy of adiabatic TDDFT by improving the potentials alone. Evidence based on

3
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model potentials31,38,39 is encouraging but inconclusive because model potentials are not par-

ticularly accurate.40 Most TDDFT studies that did employ accurate Kohn–Sham potentials

were restricted to two-electron systems,32,33 small atoms,41 LDA kernel,34,41 or the exchange-

only case.37 A study by Allen and Tozer42 went beyond these limits, but was modest in scope

(13 selected excitation energies of N2 and CO using two different kernels). The most ex-

tensive assessment of nearly exact Kohn–Sham orbitals and orbital energies in TDDFT was

reported recently by Jin et al.,43 but their work dealt with a variant of the random-phase

approximation in which fXC(r, r′) is ignored entirely.

In this work, we assess the benefit of exact Kohn–Sham potentials in adiabatic TDDFT

using our recently developed method for constructing accurate exchange44,45 and exchange-

correlation46–48 potentials from ab initio wavefunctions. Two specific questions are posed

here: (1) How far can one push the accuracy of adiabatic TDDFT by using accurate Kohn–

Sham potentials and standard (local, semilocal, and hybrid) approximations for exchange-

correlation kernels? (2) Which approximate kernels work best with accurate exchange-

correlation potentials? These questions were anticipated but not specifically addressed in

existing literature.32–34,41,42 To focus on just one problem, we limit the scope of this work to

excitations without charge-transfer character.

3. METHODOLOGY

An adiabatic linear-response TDDFT calculation involves two steps. First, one solves the

Kohn–Sham equations to generate ground-state Kohn–Sham orbitals and orbital energies. In

the second step, those quantities are used to set up and solve Casida’s eigenvalue equations.

The Kohn–Sham orbitals and their energies were obtained from various density-functional

approximations (see below) and from all-electron ab initio wavefunctions using our recently

developed method46–48 implemented locally in the Gaussian program49 as described in ref 48.

The wavefunctions were Hartree–Fock (HF) and complete active space (CAS) self-consistent

field (SCF).

The static exchange-correlation kernels were computed at the four rungs of Ja-

cob’s ladder:50,51 LDA in the Perdew–Wang parametrization for the correlation energy,52

the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA),53 the

revised Tao–Perdew–Staroverov–Scuseria (rTPSS) meta-GGA,54 and the PBE0 hybrid

4
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functional.55,56 All of these kernels were constructed in a post-SCF manner from the Kohn–

Sham orbitals generated in the first step. Full exchange-correlation kernels were used even

for Kohn–Sham potentials derived from HF (exchange-only) wavefunctions.

Our methodology constrains us to use the same one-electron basis set for computing all

quantities and properties from wavefunctions to excitation energies. The latter property

restricts our choices to basis sets with sufficiently diffuse functions. We selected three such

basis sets: for atoms—the universal Gaussian basis set (UGBS) augmented with polarization

and diffuse functions (see below); for small molecules—Sadlej+,38,57 taken the Basis Set

Exchange database;58 for larger molecules—6-311++G(3df,3pd).

The test sets of excitation energies and experimental reference data for our assessment

were those used by Savin et al.59 (Be atom), Tozer and Handy23 (N2, CO, CH2O, and C2H4)

and Leang et al.20 When comparing TDDFT assessments carried out on different data sets,

one should keep in mind that tests on atoms and small molecules such as CH2O tend to give

larger MAEs than the same tests on larger organic molecules with π-conjugated systems.

This is because TDDFT data sets for larger molecules are dominated by low-energy valence

transitions that are easier to predict accurately with approximate TDDFT than for small

molecules (see, e.g., the data of ref 17). As we will see, the benefits of accurate Kohn–Sham

potentials are also more pronounced in tests on small systems.

4. RESULTS

A. Be atom

The beryllium atom is an ideal system for TDDFT assessments: its exact exchange-

correlation potentials60 and Kohn–Sham orbital energies59 are known, and reliable experi-

mental data exist.61 In addition, the small size of this system enables one to employ large ba-

sis sets. Here we adopted the UGBS1P(3+) basis set, (28s,28p,18d), which was constructed

by augmenting the UGBS1P basis set of the Gaussian program49 with three primitive diffuse

functions of each type following the geometric progression defined by the last two s, p, d

functions of UGBS1P. This basis set is adequate for describing electron excitation of the Be

atom up to the 3d level.

Figure 1 compares the LDA and PBE exchange-correlation potentials of Be to those

5
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LDA

PBE

HF

CAS(2,4)

exact

Figure 1: Exchange-correlation potentials for the Be atom generated from density-functional ap-

proximations and ab initio wavefunctions using the UGBS1P(3+) basis set. The exact vXC(r) is

from ref 60.

εi

LDA PBE HF CAS(2,4) Exact

Figure 2: Energies of the 2s, 2p, 3s, 3p, and 3d Kohn–Sham orbitals of Be obtained from density-

functional approximations and ab initio wavefunctions using the UGBS1P(3+) basis set. The levels

are shown to scale using the data of Table S1. The exact energies are a combination of data from

refs 59 and 62.

derived from the HF and full-valence CASSCF wavefunctions. The LDA and PBE potentials

are not negative enough and decay too fast. As a result, the LDA and PBE Kohn–Sham

spectra exhibit a characteristic collapse of Rydberg levels (Figure 2), absent in the potentials

derived from the wavefunctions. The HF-based potential is essentially the exchange-only

potential, whereas the potential derived from the full-valence CASSCF wavefunction is an

excellent representation of the exact vXC(r). Note also that the PBE potential diverges at

the nucleus,63 but this unphysical behavior does not cause any complications in TDDFT.

Table 1 demonstrates that the quality of the exchange-correlation potentials of Figure 1

6
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Table 1: Excitation Energies (eV) of the Beryllium Atom Calculated with Adiabatic Linear-

Response TDDFT Using Various Static Exchange-Correlation Potentials (First Row of the Header)

and Kernels (Second Row). The Basis Set is UGBS1P(3+)

LDA PBE rTPSS PBE0 HF CAS(2,4)

State Transition Expt. LDA PBE rTPSS PBE0 LDA PBE rTPSS PBE0 LDA PBE rTPSS PBE0

3P 2s → 2p 2.73 2.40 1.90 1.65 1.79 2.52 1.93 0.93 −1.30 2.47 1.86 0.52 −1.39

1P 2s → 2p 5.28 4.80 4.90 5.11 4.93 4.86 4.86 4.67 3.15 5.13 5.11 4.89 3.21

3S 2s → 3s 6.46 5.52 5.42 5.74 5.68 5.75 5.66 5.77 4.62 6.64 6.55 6.65 5.46

1S 2s → 3s 6.78 5.60 5.60 5.83 5.96 6.04 6.06 6.04 5.20 6.95 6.98 6.94 6.06

3P 2s → 3p 7.29 5.71 5.71 5.92 6.18 6.46 6.34 6.39 5.45 7.38 7.25 7.32 6.31

1P 2s → 3p 7.46 5.73 5.74 5.92 6.28 6.71 6.70 6.63 5.75 7.55 7.55 7.49 6.58

3D 2s → 3d 7.69 5.80 5.81 5.97 6.42 6.84 6.69 6.81 5.78 7.79 7.61 7.72 6.59

1D 2s → 3d 7.99 5.80 5.81 6.00 6.42 6.76 6.77 6.72 5.92 7.72 7.73 7.65 6.79

MAE Valence (2) 0.41 0.60 0.62 0.65 0.31 0.61 1.21 3.08 0.21 0.52 1.30 3.10

MAE Rydberg (6) 1.59 1.60 1.38 1.12 0.85 0.91 0.89 1.82 0.15 0.13 0.13 0.98

MAE All (8) 1.29 1.35 1.19 1.00 0.72 0.83 0.97 2.14 0.16 0.22 0.42 1.51

correlates strongly with the accuracy of excitation energies predicted by TDDFT. The metric

is the mean absolute error (MAE) relative to experiment. The LDA and (meta)-GGAs

systematically underestimate Rydberg excitation energies (MAE=1.38–1.60 eV) because of

the collapse of virtual orbitals.31,38 The PBE0 hybrid functional gives only a modestly lower

MAE for Rydberg excitations (1.12 eV) than LDA, PBE, and rTPSS.

Kohn–Sham potentials derived from HF wavefunctions are essentially exact-exchange

potentials.45,46 They have correct Coulombic (−1/r) decay and therefore give smaller er-

rors for Rydberg excitation energies (MAE=0.85–0.91 eV for non-hybrid kernels) than the

density-functional approximations. The improvement for valence transitions, however, is

seen only for the LDA kernel (MAE=0.31 eV).

The best overall result for Be (MAE=0.16 eV) is obtained by pairing the exchange-

correlation potential from the CAS(2,4) wavefunction with the LDA kernel. We have also

experimented with the CAS(4,9) wavefunction but obtained the same MAEs (within 0.01

eV) as with CAS(2,4) for each kernel. It is reassuring that the CAS(2,4) results for the LDA

kernel are consistent with analogous calculations of van Gisbergen et al.41 who employed

the exact60 exchange-correlation potential of beryllium: individual discrepancies are small

(0.05 eV to 0.18 eV) and the total MAEs for the 8 lowest transitions of Table 1 are almost

identical (0.16 eV here vs. 0.15 eV in ref 41), despite the fact that van Gisbergen et al. used

7
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a different basis set and a different parametrization of the LDA.

According to Table 1, wavefunction-based exchange-correlation potentials perform best

for Be when paired with the LDA kernel, followed by the PBE kernel, with the rTPSS and

PBE0 kernels trailing far behind. For the lowest-energy excitation, performance of the LDA,

PBE, and rTPSS kernels mirrors that of the corresponding density functionals.

The PBE0 (nonlocal) kernel appears to be incompatible with multiplicative Kohn–Sham

potentials: it gives implausibly low excitation energies and an imaginary value for the low-

est (2s → 2p) transition frequency (Table 1), which indicates a triplet instability.64 To

rationalize this observation, we recall that excitation energies of adiabatic TDDFT with

pure density functionals are dominated by orbital-energy differences, whereas in the time-

dependent Hartree–Fock method and in hybrid TDDFT the coupling term (contribution of

the Hartree and exchange-correlation kernels) makes a large additional contribution.59,65,66

Therefore, when the orbital energies themselves are accurate, inclusion of a significant frac-

tion of the Hartree–Fock-type kernel makes matters worse. For this reason, from now on we

will report TDDFT results obtained with wavefunction-based Kohn–Sham potentials only

for the LDA, PBE, and rTPSS kernels.

B. Small molecules

Our next focus is on four small molecules: N2, CO, CH2O, and C2H4. A total of about

50 vertical excitation energies of these systems have been used for detailed assessments of

adiabatic TDDFT in three previous studies relevant to this work.23,34,38 Following these

precedents, we adopted the Sadlej+ basis set and performed all calculations for the ex-

perimental equilibrium molecular geometries: re = 1.098 Å for N2; re = 1.128 Å for CO;

re(CO) = 1.208 Å, re(CH) = 1.116 Å, and θ(HCO) = 121.75◦ for CH2O; re(CC) = 1.339 Å,

re(CH) = 1.087 Å, and θ(CCH) = 121.3◦ for C2H4.

The quality of the Kohn–Sham potentials derived for these molecules from approximate

density functionals and ab initio wavefunctions is illustrated by Figures 3 (for N2) and 4 (for

CO). As with the Be atom, the wavefunctions yield significantly more realistic potentials

than do the LDA and PBE functionals. Of course, full-valence CASSCF wavefunctions

are not exact and, in the absence of exact benchmarks, we do not know how accurate

the full-valence CASSCF potentials of Figures 3 and 4 actually are. What we do know is

8

Page 8 of 23

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



−6

−5

−4

−3

−2

−1

0

 0  1  2  3

v X
C

(z
),

  E
h

z,  a
0

N

LDA

PBE

HF

CAS(10,8)

Figure 3: Exchange-correlation potentials for N2 generated from density-functional approximations,

HF, and full-valence CASSCF wavefunctions using the Sadlej+ basis set. The plots show potentials

along the internuclear axis with the bond midpoint at z = 0.
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Figure 4: Exchange-correlation potentials for CO generated from density-functional approxima-

tions, HF, and full-valence CASSCF wavefunctions using the Sadlej+ basis set.

that exchange-correlation potentials obtained by our method for atoms and small molecules

converge with respect to the level of theory quite rapidly, at least visually (see, for instance,

Figure 1 and ref 67). This suggests that the full-valence CASSCF potentials of Figures 3 and

4 must be very close to the exact vX(r) and vXC(r), respectively. In any case, improvement

of these potentials beyond the full-valence CASSCF level should not lead to substantially

different TDDFT results for small molecules such as N2 and CO.

Tables 2–5 show details and summaries of TDDFT results for N2, CO, CH2O, and C2H4.

The trends here are similar to those observed for the Be atom: density-functional approxi-

9
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Table 2: Same as in Table 1 for the N2 Molecule Using the Sadlej+ Basis Set

LDA PBE rTPSS PBE0 HF CAS(10,8)

State Transition Expt. LDA PBE rTPSS PBE0 LDA PBE rTPSS LDA PBE rTPSS

3Σ+
u

πu → πg 7.75 7.86 7.51 7.31 6.93 8.48 8.09 7.59 8.01 7.62 7.09

3Πg σg → πg 8.04 7.54 7.37 7.52 7.50 8.58 8.30 7.97 8.04 7.75 7.42

3∆u πu → πg 8.88 8.82 8.31 8.18 7.90 9.37 8.86 8.45 8.96 8.43 7.99

1Πg σg → πg 9.31 9.04 9.08 9.31 9.31 10.13 10.06 9.84 9.59 9.52 9.30

3Σ−

u
πu → πg 9.67 9.64 9.66 9.93 9.34 10.16 10.16 10.16 9.79 9.79 9.79

1Σ−

u
πu → πg 9.92 9.64 9.66 9.93 9.34 10.16 10.16 10.16 9.79 9.79 9.79

1∆u πu → πg 10.27 10.22 10.08 10.05 9.89 10.70 10.56 10.26 10.37 10.22 9.92

3Πu σu → πg 11.19 10.36 10.38 10.76 10.74 11.34 11.06 10.73 11.01 10.72 10.39

3Σ+
g

σg → 3sσg 12.0 10.28 10.06 10.32 11.17 11.72 11.67 11.67 11.54 11.51 11.51

1Σ+
g

σg → 3sσg 12.2 10.39 10.23 10.43 11.47 11.94 11.94 11.94 11.61 11.61 11.61

1Πu σg → 3pπu 12.90 10.98 10.80 11.03 11.99 12.47 12.47 12.47 11.96 11.96 11.96

1Σ+
u

σg → 3pσu 12.98 10.62 10.48 10.66 11.87 12.59 12.59 12.59 12.14 12.14 12.14

1Πu πu → 3sσg 13.24 11.80 11.53 11.58 12.32 12.75 12.76 12.74 12.68 12.68 12.68

MAE Valence (8) 0.27 0.37 0.32 0.51 0.49 0.32 0.30 0.14 0.23 0.45

MAE Rydberg (5) 1.85 2.04 1.86 0.90 0.37 0.38 0.38 0.68 0.68 0.68

MAE All (13) 0.88 1.02 0.91 0.66 0.44 0.34 0.33 0.35 0.41 0.54

mations perform reasonably well for valence excitations (with MAEs typically in 0.2–0.4 eV

range) but poorly for Rydberg transitions (with most MAEs falling between 1 and 2 eV).

Exchange-only potentials perform much better for Rydberg transitions but not for valence

excitations. Exchange-correlation potentials derived from full-valence CASSCF wavefunc-

tions produce results that are best overall. The lowest MAEs for valence transitions are 0.14

eV for N2 and CO (using the LDA kernel), 0.22 eV for CH2O (rTPSS kernel), and 0.10 eV

for C2H4 (PBE kernel). One the other hand, the MAEs of Rydberg transitions are higher

for CASSCF-based potentials than for HF wavefunctions in three cases out of four (N2,

CO, and C2H4). This surprising outcome may be an artifact of the sensitivity of Rydberg

excitation energies to the choice of diffuse functions. Another possibly contributing factor
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Table 3: Same as in Table 1 for the CO Molecule Using the Sadlej+ Basis Set

LDA PBE rTPSS PBE0 HF CAS(10,8)

State Transition Expt. LDA PBE rTPSS PBE0 LDA PBE rTPSS LDA PBE rTPSS

3Π σ → π∗ 6.32 5.96 5.73 5.87 5.73 6.69 6.25 5.78 6.49 6.08 5.64

3Σ+ π → π∗ 8.51 8.39 8.09 8.02 7.84 9.39 9.09 8.72 8.56 8.24 7.83

1Π σ → π∗ 8.51 8.18 8.25 8.52 8.44 9.09 9.03 8.78 8.75 8.69 8.44

3∆ π → π∗ 9.36 9.17 8.74 8.72 8.61 10.09 9.68 9.38 9.32 8.88 8.55

3Σ− π → π∗ 9.88 9.85 9.84 10.12 9.78 10.71 10.71 10.71 9.99 9.99 9.99

1Σ− π → π∗ 9.88 9.85 9.84 10.12 9.78 10.71 10.71 10.71 9.99 9.99 9.99

1∆ π → π∗ 10.23 10.32 10.18 10.21 10.20 11.13 11.00 10.77 10.46 10.33 10.08

3Σ+ σ → 3s 10.4 8.96 8.79 9.12 9.70 10.53 10.46 10.45 10.81 10.73 10.73

1Σ+ σ → 3s 10.78 9.07 8.98 9.25 10.05 10.92 10.92 10.90 11.31 11.32 11.29

3Σ+ σ → 3pσ 11.3 9.33 9.25 9.50 10.35 11.65 11.51 10.57 11.72 11.60 11.65

1Σ+ σ → 3pσ 11.40 9.35 9.25 9.53 10.42 11.84 11.90 11.85 11.88 11.92 11.86

3Π σ → 3pπ 11.53 9.49 9.41 9.68 10.49 11.89 11.90 11.88 12.14 12.15 12.12

1Π σ → 3pπ 11.55 9.48 9.36 9.62 10.43 11.84 11.75 11.78 12.10 12.00 12.03

1Σ+ σ → 3dσ 12.4 9.94 9.84 10.11 11.05 13.09 13.11 13.05 13.35 13.35 13.26

MAE Valence (7) 0.16 0.29 0.30 0.33 0.73 0.56 0.46 0.14 0.21 0.37

MAE Rydberg (7) 1.96 2.07 1.79 0.98 0.34 0.31 0.37 0.56 0.53 0.51

MAE All (14) 1.06 1.18 1.05 0.66 0.54 0.44 0.42 0.35 0.37 0.44

is that potentials generated by our method sometimes deviate from the correct asymptotic

−1/r decay beyond a certain large r when the basis set contains very diffuse basis functions.

Inspection of Tables 2–5 reveals another limitation of replacing density-functional approx-

imations for vXC(r) with accurate exchange-correlation potentials while keeping approximate

kernels. According to Figures 3 and 4, molecular exchange-correlation potentials derived

from HF and full-valence CASSCF wavefunctions are not substantially different, at least

visually. However, they produce distinct excitation energies for a fixed exchange-correlation

kernel, with MAEs differing by up to 0.7 eV (Tables 2–5). These differences are greater

on average than the differences between the MAEs of the LDA, PBE, and rTPSS density-
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Table 4: Same as in Table 1 for the CH2O Molecule Using the Sadlej+ Basis Set

LDA PBE rTPSS PBE0 HF CAS(12,10)

State Transition Expt. LDA PBE rTPSS PBE0 LDA PBE rTPSS LDA PBE rTPSS

3A2 n → π∗ 3.50 3.05 3.05 3.29 3.13 4.43 4.26 4.05 3.68 3.51 3.29

1A2 n → π∗ 3.94 3.66 3.78 4.09 3.92 5.01 4.97 4.82 4.29 4.24 4.10

3A1 π → π∗ 5.53 6.18 5.75 5.63 5.22 6.97 6.55 6.18 6.48 6.02 5.62

3B2 n → 3sa1 6.83 5.76 5.58 5.88 6.46 7.65 7.55 7.46 7.11 6.99 6.89

1B2 n → 3sa1 7.09 5.82 5.73 5.97 6.66 7.78 7.80 7.75 7.30 7.32 7.27

3A1 n → 3pb2 7.79 6.37 6.25 6.42 7.75 8.85 8.75 8.73 8.33 8.22 8.20

1A1 n → 3pb2 7.97 6.37 6.29 6.43 7.38 8.98 9.00 8.97 8.48 8.51 8.47

3B2 n → 3pa1 7.96 6.38 6.30 6.43 7.60 8.43 8.35 8.29 8.08 8.00 7.97

1B2 n → 3pa1 8.12 6.38 6.32 6.44 7.63 8.64 8.65 8.60 8.25 8.26 8.20

1B1 σ → π∗ 8.38 6.56 6.48 6.62 7.55 8.90 8.91 8.90 9.20 9.21 9.20

1A2 n → 3pb1 8.68 8.74 8.79 9.10 9.08 9.98 9.93 9.79 9.30 9.24 9.09

1A2 n → 3db1 9.22 7.10 7.02 7.15 8.13 10.69 10.69 10.68 10.96 10.97 10.95

MAE Valence (4) 0.36 0.23 0.22 0.28 1.19 1.01 0.80 0.53 0.34 0.22

MAE Rydberg (8) 1.58 1.67 1.50 0.53 0.82 0.79 0.75 0.54 0.52 0.47

MAE All (12) 1.17 1.19 1.07 0.44 0.94 0.87 0.77 0.54 0.46 0.39

functional approximations. This fact highlights the risk of relying on accurate Kohn–Sham

potentials when exchange-correlation kernels remain approximate. It is also notable that,

for a given ab initio Kohn–Sham potential, the LDA, PBE, and rTPSS kernels give prac-

tically identically results for the high-energy transitions, whereas the predicted energies of

the low-energy transitions strongly depend on the kernel.

When the results for Be and the four molecules of this section are combined (Ta-

ble 6), TDDFT with Kohn–Sham potentials derived from full-valence CASSCF wavefunc-

tions emerges as a clear winner with the overall MAEs of 0.41 eV and 0.31 eV for the LDA

and PBE kernels, respectively. These errors are 2–3 times lower than the MAEs of the

density-functional approximations including PBE0.

The results for the Be atom, N2, CO, CH2O, and C2H4 suggest that Kohn–Sham po-
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Table 5: Same as in Table 1 for the C2H4 Molecule Using the Sadlej+ Basis Set

Excited LDA PBE rTPSS PBE0 HF CAS(12,12)

State Orbital Expt. LDA PBE rTPSS PBE0 LDA PBE rTPSS LDA PBE rTPSS

3B1u π∗ 4.36 4.62 4.20 4.11 3.79 5.07 4.64 4.26 4.82 4.35 3.91

3B3u 3s 6.98 6.49 6.26 6.39 6.67 7.05 6.98 7.02 7.49 7.44 7.45

1B3u 3s 7.11 6.53 6.35 6.42 6.79 7.14 7.17 7.13 7.60 7.62 7.59

3B1g 3pπ 7.79 6.90 6.71 6.72 7.72 8.00 7.95 7.95 8.24 8.18 8.16

1B1g 3pπ 7.80 6.91 6.73 6.73 7.73 8.01 8.02 7.99 8.36 8.35 8.31

1B2g 3pσ 7.90 6.91 6.73 6.72 7.72 8.04 8.05 8.04 8.32 8.33 8.31

1B1u π∗ 8.0 7.30 7.47 7.54 7.45 7.73 7.69 7.54 7.87 7.82 7.65

3Ag 3pπ 8.15 7.13 6.91 6.91 7.44 7.92 7.82 7.88 8.74 8.66 8.72

1Ag 3pπ 8.28 7.15 6.97 6.95 7.55 8.07 8.09 8.07 8.90 8.93 8.91

3B3u 3dσ 8.57 6.97 6.80 6.77 7.60 8.60 8.49 8.50 9.08 8.98 8.99

1B3u 3dσ 8.62 6.97 6.81 6.78 7.62 8.71 8.71 8.68 9.23 9.24 9.19

1B3u 3dδ 8.90 7.35 7.19 7.17 7.89 9.26 9.27 9.25 9.69 9.70 9.67

1B2u 3dδ 9.05 7.44 7.27 7.24 7.96 8.95 8.96 8.93 9.83 9.84 9.81

1B1u 3dπ 9.33 7.58 7.17 7.18 8.04 9.53 9.51 9.48 10.23 10.22 10.19

MAE Valence (2) 0.48 0.35 0.35 0.56 0.49 0.29 0.28 0.29 0.10 0.40

MAE Rydberg (12) 1.18 1.38 1.38 0.65 0.16 0.16 0.15 0.60 0.58 0.57

MAE All (14) 1.08 1.23 1.23 0.63 0.20 0.18 0.17 0.56 0.51 0.54

Table 6: MAEs (eV) for the Combined Data of Tables 1–5. See the Abstract Graphic for Visual-

ization

vXC: LDA PBE rTPSS PBE0 HF Full-valence CASSCF

Property fXC: LDA PBE rTPSS PBE0 LDA PBE rTPSS LDA PBE rTPSS

Valence (23) 0.36 0.42 0.38 0.45 0.63 0.50 0.49 0.23 0.27 0.47

Rydberg (38) 1.51 1.64 1.51 0.78 0.49 0.49 0.48 0.52 0.49 0.47

All (61) 1.08 1.18 1.08 0.65 0.54 0.49 0.48 0.41 0.31 0.47

13

Page 13 of 23

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 7: MAEs (eV) for the Test Set of 101 Excitation Energies of Ref 20 Computed with Standard

Exchange-Correlation Functionals and Kohn–Sham Potentials Derived from HF Wavefunctions.

The Basis Set is 6-311++G(3df,3pd)

vXC: LDA PBE rTPSS PBE0 HF

Property fXC: LDA PBE rTPSS PBE0 LDA PBE rTPSS

Valence (60) 0.49 0.44 0.31 0.29 0.48 0.40 0.33

Rydberg (41) 0.60 0.78 0.59 0.24 0.49 0.48 0.45

All (101) 0.53 0.58 0.42 0.27 0.48 0.43 0.38

tentials derived from HF wavefunctions (i.e., exchange-only potentials) perform consistently

better than standard density-functional approximations only for Rydberg excitations, but

not for valence transitions (Table 6). To ascertain whether this result is general, we extended

our tests of HF-based Kohn–Sham potentials to a larger test set.

C. Larger molecules

The test set of Leang et al.20 consists of 101 excitation energies (60 valence and 41 Rydberg

transitions) of 14 molecules (benzene, butadiene, cyclopentadiene, ethylene, formaldehyde,

furan, methylenecyclopropene, pyrazine, pyridine, pyrrole, s-tetrazine, s-trans-acrolein, s-

trans-glyoxal, and water). Following Leang et al.,20 we used the 6-311++G(3df,3pd) basis

set for all calculations on this test set. In contrast to ref 20, however, we did not reoptimize

molecular geometries with each functional but used the PBE0/6-311++G(3df,3pd) geome-

tries for all TDDFT calculations, to disentangle the effect of geometry relaxation from the

accuracy of the potential. Note that two molecules of the set, CH2O and C2H4, are the same

as in section 4B, but we did not exclude them because the methodology (basis set, number

of excitations, and sources of experimental data) of the present section is different.

The results are summarized in Table 7 and details for individual excitations are given

in the Supporting Information (Table S2). In agreement with sections 4A and 4B, use of

Kohn–Sham potentials derived from HF wavefunctions improves Rydberg excitation energies

but has little effect on the accuracy of valence excitations. The fact that this conclusion has

been reached for different systems and different basis sets makes it quite certain.
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As in section 4B, Kohn–Sham potentials derived from HF wavefunctions (MAE=0.38–

0.48 eV) perform better than the LDA, PBE, and rTPSS exchange-correlation functionals

(MAE=0.42–0.58 eV), but this time not quite as well as PBE0 (MAE=0.27 eV). The PBE0

functional is no ordinary contender: Leang et al.20 found that it has the best overall accuracy

in TDDFT among 24 diverse density functionals. Nevertheless, we believe that the much bet-

ter performance of PBE0 in Table 7 than in Table 6 has to do with the 6-311++G(3df,3pd)

basis set which lacks highly diffuse functions of Sadlej+. The absence of such functions

artificially props up Rydberg states and make PBE0 appear more accurate than it actually

is. Comparison of Tables 6 and 7 suggests that Rydberg excitation energies computed with

asymptotically correct potentials are less sensitive to the basis set than the same excitations

computed with standard density functionals, and that Kohn–Sham potentials derived from

wavefunctions would outperform PBE0 closer to the basis-set limit (Table 6).

5. CONCLUSIONS

We have presented numerical tests of adiabatic linear-response TDDFT in which Kohn–

Sham orbitals and orbital energies derived from HF and post-HF wavefunctions are paired

with standard density-functional approximations for the static exchange-correlation kernel.

Our main findings are as follows.

(1) Accurate exchange-correlation potentials combined with approximate exchange-

correlation kernels generally perform much better than standard density-functional approx-

imations, provided that the kernels are derived from local or semilocal (not hybrid) func-

tionals.

(2) Kohn–Sham potentials derived from HF wavefunctions give better results than local

and semilocal exchange-correlation functionals for Rydberg excitations, but not for valence

transitions. To outperform standard density functionals with wavefunction-based potentials,

one needs post-HF wave functions.

(3) For a fixed Kohn–Sham potential derived from a wavefunction, variation of the static

kernel from LDA to PBE to rTPSS causes substantial changes in predicted excitation ener-

gies for low-lying states, but makes very little difference for Rydberg states.

(4) Hybrid kernels such as PBE0 are not compatible with multiplicative exchange-

correlation potentials.
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(5) Advantages of accurate Kohn–Sham potentials over standard density-functional ap-

proximations may vanish in TDDFT calculations using insufficiently large basis sets.

It is unlikely that the lowest MAEs reported in this work for valence excitations (0.15–0.2

eV) can be further reduced by improving static Kohn–Sham potentials alone. This is because

(i) potentials derived from full-valence CASSCF wavefunctions are already quite accurate;

(ii) the calculated valence excitation energies change appreciably in response to variations in

exchange-correlation kernels; (iii) previous applications of accurate Kohn–Sham potentials

in TDDFT29,31,33,34,42 were unable to reduce the MAE consistently below 0.2 eV, even when

the potentials were exact.33 Errors for Rydberg excitations are even more difficult to reduce

below 0.4 eV. Thus, it appears that the practical accuracy limit of adiabatic linear-response

TDDFT with exact exchange-correlation potentials and standard density-functional kernels

is 0.15–0.2 eV. For large basis sets, this accuracy is better than that of the best-performing

(hybrid) density functionals such as PBE0.

It would be interesting to investigate whether our estimate of this limit can be pushed

even further by using exchange-correlation kernels derived from meta-GGAs with a stronger

dependence on kinetic energy density than that of (rev)TPSS, and by differentiating the

functional with respect to ρ(r) rather than Kohn–Sham orbitals.68 Regardless of the outcome,

accuracy of TDDFT can be improved continuously by devising more accurate models for

the static exchange-correlation kernel or by going beyond the adiabatic approximation.
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Calculated Kohn–Sham orbital energies of the Be atom, calculated excitation energies for

the test set of Leang and co-workers, total electronic energies from the HF and CASSCF

wavefunctions used for generating the potentials (PDF)
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