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Reconstruction of Exchange-Correlation Potentials from Their Matrix Representations

Yan Oueis and Viktor N. Staroverov∗

Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
(Dated: August 15, 2022)

Within a basis set of one-electron functions that form linearly independent products (LIPs) it
is always possible to construct a unique local (multiplicative) real-space potential that is precisely
equivalent to an arbitrary given operator. Although standard basis sets of quantum chemistry rarely
form LIPs in a numerical sense, occupied and low-lying virtual canonical Kohn–Sham orbitals often
do so, at least for small atoms and molecules. Using these principles, we construct atomic and
molecular exchange-correlation potentials from their matrix representations in LIP basis sets of
occupied canonical Kohn–Sham orbitals. The reconstructions are found to imitate the original
potentials in a consistent but exaggerated way. Since the original and reconstructed potentials
produce the same ground-state electron density and energy within the associated LIP basis set, the
procedure may be regarded as a rigorous solution to the Kohn–Sham inversion problem within the
subspace spanned by the occupied Kohn–Sham orbitals.

1. Introduction
Much of nonrelativistic quantum mechanics is con-

cerned with eigenvalue problems for Hermitian operators
whose domain is an infinite-dimensional Hilbert space. In
particular, the Kohn–Sham density-functional theory1 of
spin-compensated many-electron systems is centered on
the one-electron Schrödinger equation

ĥφi(r) = ǫiφi(r) (1)

where (using atomic units)

ĥ = −
1

2
∇2 + veff(r) (2)

is the Kohn–Sham Hamiltonian consisting of the kinetic
energy operator and a multiplicative operator veff(r)
known as the Kohn–Sham effective potential.
In actual implementations of eq 1, one usually replaces

operators with their finite-dimensional matrix represen-
tations in terms of some fixed one-electron basis functions
fk(r) (k = 1, 2, . . . ,K).2 Within this basis set, the Hamil-
tonian of eq 1 becomes a K ×K matrix with elements

Hkl = 〈fk|ĥ|fl〉 (3)

and eq 1 turns into the matrix equation

Hci = ǫiSci (4)

Here ci are column vectors of expansion coefficients of
the corresponding eigenfunctions

φi(r) =

K∑
k=1

ckifk(r) (5)

and S is the overlap matrix of the basis functions

Skl = 〈fk|fl〉 (6)

The transition from operators to finite-dimensional

matrices involves partial loss of information about ĥ, so
the eigenfunctions φi(r) and their eigenvalues ǫi obtained

by solving eq 4 are only approximations to the solutions
of eq 1, as is also true in the Hartree–Fock theory.3 Con-
sistency between eqs 1 and 4 can be achieved only if one
uses a complete (in practice, sufficiently large) basis set
or a small finite basis set consisting of exact eigenfunc-

tions of ĥ.

For a given potential v(r), it is straightforward to con-
struct its matrix representationV in any finite basis. Can
one also go backwards, that is, recover v(r) from the Fock
matrix V, provided that the basis set is known? This
question is relevant to the Kohn–Sham inversion prob-
lem, where one attempts to find the veff(r) that repro-
duces a given ground-state electron density ρ(r) within
a complete or finite basis set.4–6 An analogous problem
arises in optimized effective potential (OEP) methods,
where one needs to extract a multiplicative operator from
the OEP integral equation written in matrix form.7–17

The strict answer to the above question is negative be-
cause restriction of operators to finite-dimensional sub-
spaces amounts to projection, and projections are not
invertible. On the other hand, it is not difficult to find a
potential ṽ(r) that is distinct from v(r) but has the same
matrix representation V. This can be done by expanding
ṽ(r) in some auxiliary basis set and determining the ex-
pansion coefficients by solving a system of simultaneous
linear equations.7–12 The trouble with such expansions is
that different basis sets for ṽ(r) give different potentials
and it is unclear what, if any, constraints on ṽ(r) should
be imposed.8–11 Conventional metrics of smoothness of
ṽ(r) or its similarity to the original v(r) are inherently
arbitrary and subjective. It is desirable to have a proce-
dure that is mathematically rigorous and leaves no room
for ambiguity.

In this work, we describe a method for recovering mul-
tiplicative operators from their matrix representations
that is rigorous and practical, at least for small atoms and
molecules. This method is based on Harriman’s theory of
operators in finite basis sets.18–25 The proposed approach
may be interpreted as a way of solving the Kohn–Sham
inversion problem under the condition that the matrix
representation of the potential is known.
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2. Methodology

For simplicity, we will restrict our discussion to vector
spaces of real-valued functions over the real numbers.
Consider an arbitrary multiplicative potential v(r) and

a finite set of real basis functions fk(r) (k = 1, 2, . . . ,K),
not necessarily orthogonal or normalized. Within this
basis set, the operator v(r) is represented by a K × K
matrix V with elements

Vkl = 〈fk|v|fl〉 (7)

Matrix V is symmetric and contains

M =
K(K + 1)

2
(8)

independent elements. There are infinitely many other
potentials ṽ(r) represented by the same V, i.e.,

〈fk|ṽ|fl〉 = Vkl (9)

for all k and l. All such potentials are equivalent to v(r)
within the basis {fk}. To construct a particular ṽ(r),
expand it in suitably chosen M basis functions gij(r) as

ṽ(r) =
M∑

ij=1

aijgij(r) (1 ≤ i ≤ j ≤ K) (10)

where ij is treated as a collective index. To determine
the coefficients aij , substitute eq 10 into eq 9 and write
the result as

M∑
ij=1

Wkl,ijaij = Vkl (1 ≤ k ≤ l ≤ K) (11)

where kl is also a collective index and

Wkl,ij = 〈fk|gij |fl〉 (12)

are elements of an M ×M matrix W. If matrix W hap-
pens to be nonsingular, then eq 11 has a unique solution:
a column vector of coefficients aij . Different sets of func-
tions gij(r) produce different unique potentials ṽ(r).
If W is singular, the above recipe will not work, but

that does not alter the fact that V can be reproduced
by infinitely many different potentials. To see this, con-

sider the homogeneous equation
∑M

ij=1 Wkl,ijaij = 0.
For a singular W, this equation has a nontrivial solu-

tion, call it ∆ṽ(r) =
∑M

ij=1 aijgij(r). Then the potential

v(r)+∆ṽ(r) is distinct from v(r) but has the same matrix
elements as v(r) in the basis {fk}.
The essential idea represented by eq 11 is well

known7–17 but there are varied opinions on how to choose
the basis functions gij(r). Most choices are guided by ex-
pectations or experience and therefore remain subjective.
We argue here that, for the purpose of constructing ṽ(r)
from V, the proper method was given by Harriman.18

Let us recapitulate Harriman’s approach.

The multiplicative operator ṽ(r) is in fact a part of the
symmetric integral-operator kernel

Ṽ (r, r′) = ṽ(r)δ(r− r
′) (13)

Within a finite basis set, this kernel has finite rank and
is given by

Ṽ (r, r′) =

K∑
i=1

K∑
j=1

(S−1
VS

−1)ijfi(r)fj(r
′) (14)

where S is the overlap matrix of eq 6. Note that the
matrix representation of Ṽ (r, r′) in the basis {fk} is again
V. Equation 14 looks like an expansion in K2 linearly
independent products fi(r)fj(r

′) but the symmetry of
V (r, r′) implies that only M symmetric combinations

Φij(r, r
′) =

1

2
[fi(r)fj(r

′) + fj(r)fi(r
′)] (i ≤ j) (15)

actually contribute. This can be made explicit by writing

Ṽ (r, r′) =

M∑
ij=1

(S−1
VS

−1)ij(2− δij)Φij(r, r
′) (i ≤ j)

(16)

Now if Ṽ (r, r′) is treated as an element of an M -
dimensional vector space Er of integral-operator kernels,
then ṽ(r) can be regarded as an element of the vector
space Fr of the associated potentials.18–20 The space Er
is a linear manifold of functions Φij(r, r

′), whereas Fr is
a linear manifold of functions

gij(r) = fi(r)fj(r) (1 ≤ i ≤ j ≤ K) (17)

which are related to Φij(r, r
′) through the linear “collapse

operator” defined by

gij(r) ≡ Φij(r, r) = δ̂Φij(r, r
′) (18)

The M functions Φij(r, r
′) form a basis for Er but the M

functions gij(r) are generally not a basis for Fr because
they may be linearly dependent. However, if the func-
tions gij(r) happen to be linearly independent, then there

is one-to-one correspondence between every Ṽ (r, r′) ∈ Er
and ṽ(r) ∈ Fr.

19 Thus, within a LIP basis set, it is pos-
sible to construct ṽ(r) rigorously and unambiguously by
using eqs 10–12 and the functions of eq 17.
Given that the LIP basis set method is the answer, one

should wonder why it is not widely used. The reason is
the scarcity of LIP basis sets. If the functions fk(r) form
a complete (infinite) basis set, their products are neces-
sarily linearly dependent.12,19 This is especially easy to
see for complete basis sets of plane waves and monomials
such as fk = xk. Standard basis sets of quantum chem-
istry are finite, but this is of little help. Only the smallest
Gaussian basis sets such as 6-31G and only for the light-
est atoms form LIPs, at least in a numerical sense.23,25–27

The situation does not improve much by extending basis
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functions to momentum space.28 This seems to put an
end to the whole proposal, but there is a way out.
Every many-electron system has a natural minimal

one-electron basis set: the set of occupied Kohn–Sham
orbitals. Solving the Kohn–Sham equations in this basis
set yields the same ground-state electron density and en-
ergy as the original basis set, no matter how large. Using
standard terminology, we will refer to a non-orthogonal
basis of K nucleus-centered functions fk(r) as the atomic
orbital (AO) basis set, and to the corresponding set of K
orthonormal Kohn–Sham orbitals as the molecular or-
bital (MO) basis.
One can show that any nonsingular linear transforma-

tion of basis functions preserves the linear independence
of their products.29 This means that if an AO basis set
is not of the LIP type, no full set of MOs (occupied and
virtual) will be. Often, however, only a subset of all MOs
is needed. Hoch and Harriman observed23 that the occu-
pied Hartree–Fock self-consistent-field (SCF) orbitals of
small molecules commonly form LIPs; Morrison30 con-
structed LIPs of selected atomic natural orbitals of the
Be atom. We add to these reports that the occupied
Kohn–Sham SCF orbitals often form LIPs as well. This
remains true even for very large underlying AO basis sets.
The minimal LIP basis set of occupied Kohn–Sham or-
bitals can be sometimes extended by including several
virtual orbitals (see below).
The ability of low-lying Kohn–Sham MOs to serve as

LIP basis sets allows us to achieve our objectives as fol-
lows. Consider an N -electron closed-shell system and let
n (N/2 ≤ n ≤ K) be the number of real canonical Kohn–
Sham MOs, φi(r). Form the product basis functions

gMO
ij (r) = φi(r)φj(r) (1 ≤ i ≤ j ≤ n) (19)

calculate the overlap matrix elements

Wkl,ij = 〈gMO
kl |gMO

ij 〉 =

∫
φk(r)φl(r)φi(r)φj(r) dr (20)

and diagonalize W to check whether the functions
gMO
ij (r) are linearly independent. If so, set up the right-
hand side of eq 11 by starting with a matrix V of the
original potential v(r) in the AO basis, transforming it
to the MO basis, and picking out the elements

Vkl = 〈φk|v|φl〉 (1 ≤ k ≤ l ≤ n) (21)

of the occupied block. Finally, solve eq 11 for the expan-
sion coefficient aij of the reconstructed potential ṽ(r).
Within a basis set of n occupied MOs, the potential

ṽ(r) reproduces the n× n matrix V by construction and
therefore yields the same ground-state electron density
and hence energy as the original potential v(r) in the
full AO basis set. The matrix of ṽ(r) in the AO basis,
however, will not reproduce the density. This is because
the occupied-virtual block of the matrix of ṽ(r) in the
basis of all MOs (occupied and virtual) is no longer zero.
In essence, the proposed method consists in replacing

the full AO basis set with a smaller system-specific LIP

basis set which gives the same ρ(r) as the AO basis set
and makes the recovery of ṽ(r) possible. There is no
reason why the potential ṽ(r) extracted from its matrix
in the smaller basis set should be identical or even close to
the original v(r). We will see, however, that the outputs
of this procedure are consistent and reasonable.

3. Results and Discussion

We implemented the procedure of Sec. 2 as a MAT-
LAB code processing the output of Kohn–Sham SCF cal-
culations. Two types of multiplicative reference poten-
tials vXC(r) were used: the local density approximation
(LDA) for exchange and correlation in the Perdew–Wang
parametrization31 and accurate exchange-correlation po-
tentials derived from full configuration interaction (FCI)
wavefunctions using the method of refs 32–35. The LDA
matrices were generated with the Psi4NumPy program;36

Kohn–Sham orbitals and matrices of accurate potentials
were obtained using the method of ref 34. The LDA
rather than some generalized gradient approximation
(GGA) was chosen because GGA exchange-correlation
potentials have irrelevant artifacts (divergences at atomic
nuclei37 and small unphysical bumps) which pose no
problems but would be distracting when comparing
vXC(r) and ṽXC(r). Matrix elements of eq 20 were com-
puted by expanding them in terms of four-center AO
overlap integrals and evaluating the latter analytically

Table 1. Size (M) of Various LIP Basis Sets Formed by
Canonical SCF LDA MOs and the Smallest Eigenvalue (λmin)
of the Overlap Matrix of Normalized MO Products gij(r)

system MOs Ma basis set λmin

Be [1s, 2s] 3 def2-SVP 3.36× 10−2

3 def2-TZVP 2.59× 10−2

3 def2-QZVP 2.59× 10−2

Be [1s, 2s, 2p] 15 def2-SVP 3.21× 10−3

15 def2-TZVP 5.46× 10−3

15 def2-QZVP 4.12× 10−3

Be [1s, 2s, 2p, 3s] 21 def2-SVP 9.12× 10−6

21 def2-TZVP 1.80× 10−5

21 def2-QZVP 8.08× 10−6

Ne all occupied 15 def2-SVP 6.48× 10−4

HF all occupied 15 def2-SVP 2.17× 10−3

H2O all occupied 15 def2-SVP 5.19× 10−3

NH3 all occupied 15 def2-SVP 9.00× 10−3

CH4 all occupied 15 def2-SVP 1.37× 10−2

LiH all occupied 3 def2-SVP 9.83× 10−1

HCN all occupied 28 def2-SVP 2.47× 10−6

N2 all occupied 28 def2-SVP 1.65× 10−8

C2H4 all occupied 36 def2-SVP 1.84× 10−8

HCOOH all occupied 78 def2-SVP 2.00× 10−8

CH3COOHb all occupied 136 def2-SVP 9.05× 10−9

a Some of products may not contribute by symmetry
b PBE1PBE/def2-SVP geometry
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Figure 1. Self-consistent LDA exchange-correlation potentials
(vXC, red) of Be and their reconstructions (ṽXC, blue) from
the corresponding matrix representations of vXC in the basis
of the occupied Kohn–Sham orbitals. The inset shows the
same data on the logarithmic r-scale.

using the method of refs 38 and 39. All calculations on
molecules were performed for the experimental geome-
tries from ref 40, except where noted otherwise.

To investigate how the original and reconstructed
exchange-correlation potentials for atoms and molecules
vary with respect to the AO basis set, we used standard
Gaussian basis sets of the same family: def2-SVP (small),
def2-TZVP (medium), def2-QZVP (large).41 As a mea-
sure of linear independence of MO products we used the
smallest positive eigenvalue λmin of the four-center over-
lap matrix W. All canonical Kohn–Sham MOs used as
basis functions were confirmed to form LIPs for the atoms
and molecules studied, with λmin values ranging between
about 1 and ∼ 10−8 (see Table 1). For comparison, Hoch
and Harriman24,25 considered a set of normalized orbitals
to be a LIP basis set if λmin was below a threshold of 10−8

or 10−9 or 10−10. We have also verified that, in each case,
the original vXC(r) and the corresponding reconstruction
ṽXC(r) produce the same Fock matrix in the LIP basis
set and hence the same electron density.

Figure 1 shows that exchange-correlation potentials for
Be reconstructed from matrix representations of conven-
tional LDA potentials using products of occupied Kohn–
Sham orbitals have a weak dependence on the underlying
AO basis set. This suggests that there exists a unique,
well-defined AO basis-set limit of ṽXC(r). Similar results
were obtained for nearly exact exchange-correlation po-
tentials and the corresponding Kohn–Sham orbitals de-
rived from FCI wavefunctions of the Be atom (Figure 2).

The original and reconstructed potentials of Figures 1
and 2 are similar in some respects: both vXC(r) and
ṽXC(r) are finite at the nucleus, approach zero as r → ∞,
and have a single bump. The differences are also consid-
erable: the reconstructed potentials are much more neg-
ative near the nucleus, have a bump closer to r = 0, and
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Figure 2. Accurate exchange-correlation potentials (vXC, red)
derived from FCI wavefunctions of Be and their reconstruc-
tions (ṽXC, blue) from matrix representations of vXC in the
basis of the occupied Kohn–Sham orbitals. The inset shows
the same data on the logarithmic r-scale.
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Figure 3. Self-consistent LDA/def2-SVP exchange-correlation
potential (vXC) of Be and its reconstructions (ṽXC) from the
corresponding matrix representations of vXC in three different
LIP Kohn–Sham orbital basis sets. The inset shows the same
data on the logarithmic r-scale.

decay with r significantly faster than does vXC(r).

The occupied Kohn–Sham orbitals form the natural
minimal LIP basis set for reproducing the ground-state
ρ(r), but this choice is not the only possibility. In-
clusion of a few low-lying virtual Kohn–Sham orbitals
produces other LIP basis sets suitable for reproduc-
ing the density (Table 1). To find out this affects
the shape of ṽXC(r) for the Be atom, we compared
potentials reconstructed using three different LIP ba-
sis sets of Kohn–Sham orbitals: [1s, 2s] (occupied or-
bitals only), [1s, 2s, 2p], and [1s, 2s, 2p, 3s], where 2p
stands for the entire (2px, 2py, 2pz) subshell. Inclusion
of virtual orbitals generally improves the agreement be-
tween ṽXC(r) and vXC(r), although near the nucleus the
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Figure 4. Self-consistent LDA/def2-SVP potentials for the
ground state of LiH (Re = 3.014a0): conventional (vXC) and
reconstructed (ṽXC) from the matrix representation of vXC in
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Figure 5. Self-consistent LDA/def2-SVP potentials for the
ground state of CH4 (Re = 2.079a0): conventional (vXC) and
reconstructed (ṽXC) from the matrix representation of vXC in
the occupied MO basis. Both potentials are shown along the
C–H axis.

changes are somewhat erratic (Figure 3). It is significant
that the [1s, 2s, 2p] reconstruction decays more slowly
than [1s, 2s], and the [1s, 2s, 2p, 3s] reconstruction decays
more slowly still. Overall, the [1s, 2s, 2p, 3s] reconstruc-
tion becomes very close to the reference vXC(r) every-
where except r < 0.1a0. This is consistent with the basic
premise that if we had a large enough LIP basis set, we
would be able to recover vXC(r) from its matrix faithfully.

The LIP basis set method is even more robust for
molecules than for atoms of comparable size because lin-
ear independence of MO products is enhanced by MO
delocalization over multiple nuclei. For example, in the
10-electron series (Ne, HF, H2O, NH3, CH4), the small-
est eigenvalue λmin increases by two orders of magnitude
from Ne to CH4 (Table 1).
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Figure 6. Self-consistent LDA/def2-SVP potentials for the
ground state of HCN (RHC = 2.011a0, RCN = 2.185a0): con-
ventional (vXC) and reconstructed (ṽXC) from the matrix rep-
resentation of vXC in the occupied MO basis. Both potentials
are shown along the internuclear axis.

Examples of molecular exchange-correlation potentials
reconstructed from LDA Fock matrices in the occupied
MO basis set are shown in Figures 4–6. For hydrides
such as LiH and CH4, ṽXC(r) has the same structure
as the original vXC(r) (Figures 4 and 5). For molecules
involving multiple bonds between heavier atoms (HCN,
N2, CO, etc.), the reconstructed LDA potentials have
strongly pronounced shell-boundary bumps and mid-
bond undulations that are not seen in the original po-
tentials (Figure 6). Observe that, in all cases, the depth
of ṽXC(r) near the nucleus increases with nuclear charge
Z much more rapidly than the depth of vXC(r). The low
values of ṽXC(r) near atomic nuclei are not a concern
from numerical point of view because GGA potentials
diverge as r → 0 and are even more negative.37

It is interesting that the exaggerated bumps and mid-
bond maxima seen in the reconstructed LDA potential
of Figure 6 are reminiscent of the similarly exagger-
ated features of accurate exchange-correlation potentials
in stretched molecules.32,33 The greater prominence of
bumps in the reconstructed LDA potentials suggests that
matrix representations of an approximate vXC(r) may ef-
fectively incorporate the atomic shell structure of the cor-
responding exact potential even when the approximation
vXC(r) itself is relatively featureless.

4. Conclusion

Within LIP basis sets, the mapping between Kohn–
Sham potentials and ground-state electron densities is
bijective and invertible in practice.19 Although this re-
sult has been known for some time, it did not appear to
have much practical significance because standard LIP
basis sets are virtually non-existent. We have shown here
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that the LIP basis-set machinery can be practical if one
uses occupied and low-lying Kohn–Sham orbitals as ba-
sis functions. The potential ṽXC(r) constructed using
the natural minimal LIP basis set of the occupied Kohn–
Sham orbitals is well-defined, reproduces the ground-
state electron density and energy of vXC(r) exactly, and
shows weak dependence on the underlying AO basis.
Within a the LIP basis set, one can go back and

forth between ṽXC(r), its matrix representation, and
the corresponding ρ(r) without any loss of information.
Exchange-correlation potentials recovered in this manner
from Fock matrices resemble the originals in an exagger-
ated way and decay faster than even the conventional
LDA potentials. The similarity between the original and
reconstructed potentials can be improved by including
unoccupied orbitals in the MO basis set, as long as the
enlarged basis set still forms LIPs.
The fact that exchange-correlation potentials ex-

tracted from their Fock matrices are not very close to
the complete-basis-set originals is instructive. It suggests
that accurate representation of the size and position of
the bumps, the rate of asymptotic decay, and other such
features of exact vXC(r) may not be as important for com-
puting ground-state properties within finite basis sets as
is often assumed. This finding offers another perspective
on why local and semilocal density functionals perform
much better than the shapes of their Kohn–Sham poten-
tials might indicate.
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