
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-21-2023 9:45 AM

Data-Driven Exploration of Coarse-Grained Equations: Harnessing Data-Driven Exploration of Coarse-Grained Equations: Harnessing

Machine Learning Machine Learning

Elham Kianiharchegani, The University of Western Ontario

Supervisor: Karttunen, Mikko, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Applied Mathematics

© Elham Kianiharchegani 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, Numerical Analysis and Scientific

Computing Commons, Ordinary Differential Equations and Applied Dynamics Commons, and the Partial

Differential Equations Commons

Recommended Citation Recommended Citation
Kianiharchegani, Elham, "Data-Driven Exploration of Coarse-Grained Equations: Harnessing Machine
Learning" (2023). Electronic Thesis and Dissertation Repository. 9530.
https://ir.lib.uwo.ca/etd/9530

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/121?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9530?utm_source=ir.lib.uwo.ca%2Fetd%2F9530&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

In scientific research, understanding and modeling physical systems often involves working

with complex equations called Partial Differential Equations (PDEs). These equations are es-

sential for describing the relationships between variables and their derivatives, allowing us to

analyze a wide range of phenomena, from fluid dynamics to quantum mechanics. Traditionally,

the discovery of PDEs relied on mathematical derivations and expert knowledge. However, the

advent of data-driven approaches and machine learning (ML) techniques has transformed this

process. By harnessing ML techniques and data analysis methods, data-driven approaches have

revolutionized the task of uncovering complex equations that describe physical systems. The

primary goal in this thesis is to develop methodologies that can automatically extract simpli-

fied equations by training models using available data. ML algorithms have the ability to learn

underlying patterns and relationships within the data, making it possible to extract simplified

equations that capture the essential behavior of the system. This study considers three distinct

learning categories: black-box, gray-box, and white-box learning.

The initial phase of the research focuses on black-box learning, where no prior informa-

tion about the equations is available. Three different neural network architectures are explored:

multi-layer perceptron (MLP), convolutional neural network (CNN), and a hybrid architecture

combining CNN and long short-term memory (CNN-LSTM). These neural networks are ap-

plied to uncover the non-linear equations of motion associated with phase-field models, which

include both non-conserved and conserved order parameters.

The second architecture explored in this study addresses explicit equation discovery in

gray-box learning scenarios, where a portion of the equation is unknown. The framework em-

ploys eXtended Physics-Informed Neural Networks (X-PINNs) and incorporates domain de-

composition in space to uncover a segment of the widely-known Allen-Cahn equation. Specif-

ically, the Laplacian part of the equation is assumed to be known, while the objective is to

discover the non-linear component of the equation. Moreover, symbolic regression techniques

are applied to deduce the precise mathematical expression for the unknown segment of the

ii

equation.

Furthermore, the final part of the thesis focuses on white-box learning, aiming to uncover

equations that offer a detailed understanding of the studied system. Specifically, a coarse para-

metric ordinary differential equation (ODE) is introduced to accurately capture the spreading

radius behavior of Calcium-magnesium-aluminosilicate (CMAS) droplets. Through the uti-

lization of the Physics-Informed Neural Network (PINN) framework, the parameters of this

ODE are determined, facilitating precise estimation. The architecture is employed to discover

the unknown parameters of the equation, assuming that all terms of the ODE are known. This

approach significantly improves our comprehension of the spreading dynamics associated with

CMAS droplets.

Keywords: Coarse-graining, Machine learning, Neural Network, Symbolic regression

iii

Summary for Lay Audience

This thesis is centered around the application of machine learning techniques for uncovering

hidden patterns and equations in complex physical systems. It showcases the transformative

potential of machine learning and data-driven approaches in revolutionizing the process of

understanding and describing complex equations. Traditional methods of deriving equations

from data often require significant time and expertise. However, with the advent of data-driven

approaches and machine learning, we can automate and improve this process. The thesis delves

into three distinct learning approaches: black-box, gray-box, and white-box learning. Through

these approaches, the thesis explores different ways of learning and extracting insights from

data, ranging from scenarios where no prior knowledge of the equations is available to cases

where some parts of the equations are known.

In black-box learning, neural network models are developed to uncover non-linear equa-

tions governing phase-field models without any prior knowledge of the equations. These mod-

els capture the behavior of the systems solely based on the provided data.

In gray-box learning, extended physics-informed neural networks (X-PINNs) are employed

to reveal unknown components of an equation. By incorporating domain decomposition and

symbolic regression techniques, we can determine the missing components of the equation

using the available data.

Finally, in white-box learning, the primary objective is to achieve a comprehensive under-

standing of a system through the utilization of the physics-informed neural network (PINN)

framework. Specifically, this approach focuses on predicting the parameters of a coarse para-

metric ordinary differential equation (ODE) that accurately characterizes the spreading radius

behavior of CMAS droplets.

iv

Acknowledgements

I would like to sincerely express my profound gratitude to my supervisor, Professor Mikko

Karttunen, for his expertise and unwavering support throughout my entire PhD journey. Collab-

orating with him has been an exceptionally rewarding experience. His mentorship has played

a crucial role in achieving significant progress in the project, while also leaving a profound

impact on my personal academic growth. I am truly thankful for the invaluable opportunities

and knowledge gained under his expert supervision.

I would also like to extend my gratitude to Professor George Em Karniadakis and his re-

search group, particularly Professor Khemraj Shukla, for providing me with the invaluable

opportunity to engage in research exchange visits at Brown University, USA. Additionally, I

would like to express my thanks to Professor Mishra Siddhartha for supporting me during my

visit to ETH, Switzerland. The experiences gained during these visits have been incredibly

enriching. I would like to extend my heartfelt gratitude to Dr. Mahdi Kooshkbaghi, who has

been involved in this project from its inception to its completion. Collaborating with him has

been an invaluable experience, and I am genuinely thankful for his guidance in addressing my

questions.

I want to extend my heartfelt gratitude to each and every one of my family members for

their unwavering and unconditional support throughout this journey. Their encouragement

has been the driving force behind my achievements, and I am truly grateful for their constant

presence in my life. Throughout this journey, I have been privileged to meet and connect with

many wonderful people. Each individual, in their unique way, has left a profound impact on my

path. I apologize for not mentioning each of you by name, but I am grateful for the moments

we have cherished together.

I gratefully acknowledge the funding support provided by Ontario Graduate Scholarship

(OGS), Mitacs Globalink Research Award, Western University’s Science International Engage-

ment Fund Award, and Flight 752 Memorial Graduate Scholarship. This financial assistance

has been of immense help in conducting my research.

v

Co-Authorship Statement

This thesis contains the following manuscripts that have been published or submit-

ted:

Chapter 4 has been published in Physical Review E.

E. Kiyani, S. Silber, M. Kooshkbaghi, and M. Karttunen, Machine-learning-based data-

driven discovery of nonlinear phase-field dynamics, Physical Review E, 106, 065303, 2022.

Chapter 5 has been published in Computer Methods in Applied Mechanics and Engineer-

ing.

E. Kiyani, K. Shukla, G. Em Karniadakis, and M. Karttunen, A framework based on sym-

bolic regression coupled with eXtended Physics-Informed Neural Networks for gray-box learn-

ing of equations of motion from data, Computer Methods in Applied Mechanics and Engineer-

ing, 415, p.116258, 2023.

Chapter 6 has been submitted to the Journal of Fluid Mechanics.

E. Kiyani, M. Kooshkbaghi, K. Shukla, R. Babu Koneru, Z. Li, L. Bravo, A. Ghoshal,

G. Em Karniadakis, and M. Karttunen, Characterization of partial wetting by CMAS droplets

using multiphase many-body dissipative particle dynamics and data-driven discovery based on

PINNs, Journal of Fluid Mechanics, JFM-23-1205, 2023, Submitted.

As the first author, Elham Kianiharchegani undertook the primary responsibility of drafting

the initial versions, performing the analysis, and conceptualizing the problems for each project.

American Physical Society, the publisher of our article, allows for the inclusion of the

published article within this thesis.

vi

Contents

Abstract ii

Summary for Lay Audience iv

Acknowledgements v

Co-Authorship Statement vi

List of Figures xi

List of Tables xxiv

List of Abbreviations, Symbols, and Nomenclature xxvii

1 Introduction 1

1.1 Machine learning . 1

1.2 Supervised learning . 4

1.3 Unsupervised learning . 7

1.4 Reinforcement learning . 10

1.5 Neural networks . 14

1.5.1 Activation function . 16

1.5.2 Loss function . 19

1.5.3 Learning rate . 20

1.5.4 The general architecture and training of deep neural networks 21

1.6 Differential equations . 22

vii

1.6.1 Ordinary differential equations . 23

1.6.2 Partial differential equations . 23

1.7 Data-driven discovery of PDEs . 25

1.8 Coarse-graining: bridging the gap between microscopic and macroscopic prop-

erties . 29

1.9 Thesis outline . 31

2 Neural network models: An overview 34

2.1 Feed-forward neural network . 35

2.2 Recurrent neural network . 39

2.2.1 Long short-term memory . 40

2.3 Convolutional neural network . 45

2.4 Physics-Informed Neural Networks . 48

2.4.1 eXtended Physics-Informed Neural Networks 52

2.5 Symbolic regression . 54

2.5.1 Genetic programming approaches . 54

3 Data generation: An overview 58

3.1 Phase-field modeling . 58

3.1.1 Simulation of phase-field models . 64

3.2 Droplet spreading . 64

3.2.1 Simulation of droplet spreading . 66

4 Machine learning based data-driven discovery of non-linear phase-field dynamics 69

4.1 Introduction . 69

4.2 Phase-field modeling . 72

4.2.1 Phase-field modeling in a nutshell . 72

4.2.2 Phase-field models used in the current work 73

The Allen–Cahn Model . 73

viii

The Cahn–Hilliard Model . 74

The phase-field crystal model . 74

4.2.3 Simulation of phase-field models . 75

4.3 Data-driven PDEs with a spatial derivatives dictionary 76

4.3.1 Multi-layer perceptron network architecture and performance 77

4.3.2 Convolution and long short-term memory (CNN-LSTM) Network Ar-

chitecture and Performance . 79

4.3.3 Hyper-parameter study . 84

4.4 Data-Driven PDEs without spatial derivatives dictionary 86

4.4.1 Convolutional neural network (CNN) architecture 87

4.4.2 CNN performance for learning PDEs 89

4.4.3 Simulation of data-driven PDEs . 90

4.5 Conclusion . 92

5 A Framework Based on Symbolic Regression Coupled with eXtended Physics-

Informed Neural Networks for Gray-Box Learning of Equations of Motion from

Data 94

5.1 Introduction . 95

5.2 Phase-field modeling . 98

5.3 Extended physics-informed neural network (X-PINN) 100

5.4 Symbolic regression . 111

5.5 Noisy data analysis . 114

5.6 Optimal training datasets . 117

5.7 Summary . 122

6 Characterization of partial wetting by CMAS droplets using multiphase many-

body dissipative particle dynamics and data-driven discovery based on PINNs 125

6.1 Introduction . 125

ix

6.2 Multiphase many-body dissipative particle dynamics simulations 129

6.2.1 Simulation parameters and system setup 131

6.3 Simulation results . 133

6.4 Physics-informed neural networks (PINNs) 138

6.4.1 Discovering parameters of ODE . 139

6.4.2 Generate more samples of feasible radii and contact angles 142

6.5 Symbolic regression . 142

6.6 Bayesian physics-informed neural network: B-PINN results 145

6.7 Conclusions . 151

7 Conclusions and future work 154

7.1 Conclusions . 154

7.2 Future work . 158

Bibliography 163

Curriculum Vitae 201

x

List of Figures

1.1 Two fundamental types of machine learning [1]. Supervised learning in which

ML models are trained on pre-labelled data, consisting of input features and

corresponding output labels or target values. Classification and regression are

specific types of supervised learning problems, with classification being used

for categorical outputs and regression for numerical outputs. Classification in-

volves organizing and categorizing ideas or objects based on their shared char-

acteristics and distinctions while regression models use input data features and

associated continuous numeric output values to predict relationships between

inputs and desired outputs. Labeled data can vary based on the prediction or

classification task. In regression tasks, the labeled data consists of numerical

values, while in classification tasks, it involves categorical labels. Unsuper-

vised learning, involves training models on unlabeled data. Clustering is an

unsupervised learning technique that groups similar data points together based

on their inherent similarities or patterns. 5

1.2 Two fundamental techniques in supervised learning, (a) classification and (b)

regression. In classification, data is sorted into predetermined classes or labels,

allowing for the prediction of future class memberships. Regression, on the

other hand, is concerned with predicting continuous numerical values using

input variables. 7

1.3 Uncluttered data prior to clustering (a) and clustered data after undergoing the

clustering process (b). 8

xi

1.4 A deep neural network architecture which has an input layer, three hidden layer,

and an output layer. Each layer consists of multiple neurons. The neurons in

each layer are interconnected, with weights assigned to each connection. The

input layer receives the input data, and the output layer produces the final out-

put of the network, with the weights between neurons adjusted during training

using an optimization algorithm. 15

1.5 Three most frequently employed activation functions in neural networks (a)

sigmoid, (b) tanh , and (c)ReLU. 17

1.6 Typical time scales and simulation modelling methods, fs=femtosecond

(10−15 s), ps=picosecond (10−12 s), ns=nanosecond (10−9 s), `s=microsecond

(10−6 s), and ms=millisecond (10−3 s). MD stands for molecular dynamics

and CG for coarse-grained. The rectangular boxes list the methods while the

ovals and spheres provide typical systems sizes and basic entities (that is,

whether the method uses atoms, elements or such) used by the method. The

current longest MD simulations can reach about a millisecond on specialized

hardware [2]. The work that lead to the 2013 Nobel Prize in Chemistry for

multiscale modeling is discussed in detail in a pre-Nobel Prize article by

Karplus [3]. The relations between the different methods are discussed in

detail by Murtola et al. [4]. 29

2.1 A basic feed-forward neural network is constructed with a single input layer

comprising of two nodes, X = (𝑥1, 𝑥2), followed by a hidden layer consisting of

three nodes shown by 𝑧1, 𝑧2, 𝑧3, and culminating in an output layer containing

one node, denoted as Y = 𝑦. The connections between the input layer and the

hidden and output layers are represented by weights 𝑤𝑖 for 𝑖 ∈ 1, 2, 9. 37

xii

2.2 The LSTM architecture diagram illustrates the presence of three inputs: 𝑋𝑡

(current input), ℎ𝑡−1 (previous hidden state), and 𝐶𝑡−1 (previous cell state). It

also showcases the existence of three gates, input gate, forget gate, and output

gate. Furthermore, the diagram includes two outputs, ℎ𝑡 (current hidden state)

and 𝐶𝑡 (current cell state). The symbol × represents element-wise multiplica-

tion and the symbol + represents element-wise addition. 42

2.3 A basic architecture of CNNs comprises multiple convolutional layers, fol-

lowed by pooling layers, which reduce the dimensionality of the feature maps

to extract the most relevant features. After the pooling layers, a flattening layer

is applied to convert the multi-dimensional feature maps into a one-dimensional

vector. This prepares the data for further processing by fully connected layers.

The fully connected layers are responsible for making predictions or perform-

ing classification tasks based on the extracted features. 46

2.4 Example of a convolution operation. It involves taking a 3 × 3 matrix of nu-

merical values known as the kernel or the filter, and applying it to a 6 × 6 input

image. During this process, the kernel is slid over the image, and element-wise

multiplication is performed between the kernel and the corresponding pixel

values in the image. The results of these multiplications are then summed up

to generate an output using Equation (2.8). This operation allows the network

to extract relevant features from the image that are essential for subsequent

analysis and processing. 47

2.5 The schematic of the PINNs methodology is utilized to uncover the unknown

parameters of a PDE. An MLP is trained using independent variables to pre-

dict the value of 𝑢. The predicted 𝑢 is then utilized in the physics-informed

portion of the methodology. The loss function consists of two components,

namely Lossdata and Lossphysics, which is minimized to determine the unknown

parameters _. 50

xiii

2.6 Expression tree representing a symbolic regression model, with three inputs

𝑋0, 𝑋1, and 𝑋2, and the equation 2.55(𝑋2 − 𝑋1) + 𝑋0
2 55

3.1 Snapshots of the field solutions for the Allen-Cahn model (Eq. (3.5)) at three

distinct time points: 𝑡 = 0, 𝑡 = 50, and 𝑡 = 100. The simulations (in dimension-

less units) were conducted on a uniformly discretized two-dimensional grid

with dimensions of 100 × 100 and a spacing of 𝛥𝑥 = 𝛥𝑦 = 1. The time step

used in the simulations was 𝛥𝑡 = 0.1, and the simulation duration extended up

to 𝑡 = 20. 61

3.2 Snapshots of the field solutions for the Cahn-Hilliard model (Equation (3.6)) at

three distinct time points: 𝑡 = 0, 𝑡 = 50, and 𝑡 = 100. The simulations were

conducted on a uniformly discretized two-dimensional grid with dimensions of

100× 100 and a spacing of 𝛥𝑥 = 𝛥𝑦 = 1. The time step used in the simulations

was 𝛥𝑡 = 0.01, and the simulation duration extended up to 𝑡 = 20. 62

3.3 The field solutions for the PFC model (Eq. (3.8)) were captured at three specific

time points: 𝑡 = 0, 𝑡 = 50, and 𝑡 = 100. The simulations were performed on

a uniformly discretized two-dimensional grid with dimensions of 100 × 100

and a spacing of 𝛥𝑥 = 𝛥𝑦 = 1. A time step of 𝛥𝑡 = 0.05 was utilized in the

simulations, and the simulation duration extended until 𝑡 = 100. 63

3.4 A schematic figure showing the various aspects related to the equilibrium con-

tact angle (\ ≡ \eq) and surface tensions (𝛾) from Equation 3.9. 65

xiv

4.1 Snapshots from the three phase-field models. Field solutions for the Allen–

Cahn model (Equation (4.5)) is shown on the left at 𝑡 = 20, for the Cahn–

Hilliard (Equation (4.6)) in the center at 𝑡 = 20, and for the PFC (Equa-

tion (4.8)) on the right at 𝑡 = 100. The longer simulation time of the PFC

model is required to allow the number of initial defects to decrease [5]. The

parameters of the numerical simulations are presented in Table 4.1. The verti-

cal and horizontal axes display 𝑥 = 𝑛𝑥 and 𝑦 = 𝑛𝑦 respectively, and𝑈 represents

the phase-field for the corresponding model, all in dimensionless units. 76

4.2 Schematic of the general steps in discovery of PDEs with a spatial derivatives

dictionary. Learning of PDEs from spatial derivatives and local values of

coarse variables using two different approaches, (a) MLP and (b) CNN-LSTM.

Coarse-scale variables are collected as snapshots from the phase-field

simulations. We used a 60:20:20 ratio to randomly choose the training,

validation and test sets. Finite difference methods are used to approximate the

spatial derivatives which are fed into panel (a) the MLP network according

to Equation (4.9). The network connecting the input layer consists of a list

of input features (the field 𝑈 and its spatial derivatives) to the output layer of

a single neuron (time derivative 𝑈𝑡). The values of the macroscopic field 𝑈

evaluated around each grid point are fed through the panel (b) CNN-LSTM

network to learn PDEs of the form Equation (4.10). CNN-LSTM network

connecting the input layer consists of a list of input features (local variables

𝑈 (𝑡𝑘 , 𝑥𝑖−1, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖+1, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗−1),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗+1) for

1 ≤ 𝑘 ≤ 𝑛𝑘 , 1 ≤ 𝑖 ≤ 𝑛𝑥 , and 1 ≤ 𝑗 ≤ 𝑛𝑦) to the output layer of a single neuron

𝑈𝑡 . Here 𝑛𝑘 is the number of snapshots used for training which is a random set

of 𝑛𝑡 with size 𝑛𝑘 = 0.6𝑛𝑡 . The corresponding values for 𝑛𝑡 , 𝑛𝑥 , and 𝑛𝑦 are

summarized in the Table 4.1. 78

xv

4.3 Performance of the MLP network for predicting time derivatives of phase-fields

given by Equations (4.5), (4.6), and (4.8). Allen–Cahn, Equation (4.5), as

well as Cahn–Hilliard, Equation (4.6), were plotted at 𝑡 = 20, and PFC, Equa-

tion (4.8), was drawn at 𝑡 = 100. Left column shows 𝑈𝑡 , the time derivative

computed from the numerical solution generated by SymPhas [6], and the cen-

ter column shows 𝑈𝑡 , the learned time derivative. The right panel shows the

difference between 𝑈𝑡 and 𝑈𝑡 , as well as the corresponding rMSE value for

each phase-field model. 80

4.4 CNN-LSTM predictions for (a) the Allen–Cahn Equation (4.5) at 𝑡 = 20, (b)

the Cahn–Hilliard Equation (4.6) at 𝑡 = 20, and (c) the PFC Equation (4.8) at

𝑡 = 100. Actual and learned time derivatives𝑈𝑡 and𝑈𝑡 are shown in the left two

panels. The difference between the predicted and the actual time derivatives as

well as rMSE are presented in the right panel. 82

4.5 Comparisons between MLP and CNN-LSTM performance using the phase-

field Equations (4.5), (4.6), and (4.8). In each plot, the horizontal axis indicates

𝑥 = 𝑛𝑥 and the vertical axis represents the time derivative 𝑈𝑡 and 𝑈𝑡 predicted

by MLP and CNN-LSTM for each phase-field model. Two MLP and CNN-

LSTM networks are trained and tested on the same data sets. 84

4.6 Effect of changing MLP and CNN-LSTM architectures on rMSE and 𝑅2. (a)

rMSE values obtained by three different MLP architectures, (b) rMSE values

obtained by three different CNN-LSTM architectures. (c) 𝑅2 values for the test

set calculated by Equation (4.12) reported for three different MLP and CNN-

LSTM architectures. 85

xvi

4.7 Trace of MSE and MAE (see Equations (4.11) and (4.13)) errors for MLP and

CNN-LSTM networks. The blue and green lines represent the errors on the

training sets as a function of epochs, and the orange and red lines correspond

to the errors on the validation sets. Learning curves show that the training

and validation curves are very similar for both MSE and MAE errors and they

decrease to a point of stability. 86

4.8 The proposed CNN architecture. The input and output of the CNN are the 𝑈

and 𝑈𝑡 fields, respectively. Input passes through several convolution (conv),

batch normalization (bn), max pooling (mp) and up-sampling (up) layers.

All the relevant parameters of the network architecture are described in

Section 4.4.1. 87

4.9 Results using the CNN model trained on the Cahn–Hilliard (Equation (4.6))

dataset. The left two panels show the color map of the 𝑈𝑡 test set and the

corresponding prediction by the CNN. The 𝑈𝑡 predictions for all test data as

well as the traces of the loss functions are given in the right two panels. 89

4.10 Time integration results of the PDEs learned by CNN for (a) Allen–Cahn

(Equation (4.5)), (b) Cahn–Hilliard (Equation (4.6)) and (c) PFC (Equa-

tion (4.8)) at 𝑡 = 2.2 and 𝑡 = 6. Left panels: 𝑈 field for original data. Middle

panels: 𝑈 field from simulations of the learned PDEs. Right panel: 𝑈 values

along the centerline 𝑦 = 𝑛𝑦/2 for the original PDEs (solid lines) and from

simulations of the learned PDEs (dashed lines). 91

5.1 Snapshots from a simulation of the Allen–Cahn model, Equation (5.1), at 𝑡 = 0,

𝑡 = 50, and 𝑡 = 100. The simulation was performed using dimensionless units,

and on a uniformly discretized grid of size 𝑛𝑥 × 𝑛𝑦 = 100 × 100 with a spatial

resolution of 𝛥𝑥 = 𝛥𝑦 = 1.0. A time step of 𝛥𝑡 = 0.1 was used. Periodic

boundary conditions were applied and the initial configuration was randomly

generated from a uniform distribution. 99

xvii

5.2 The X-PINN methodology for discovering the Allen–Cahn model with four

subdomains, 𝛺11 (0 ≤ 𝑥, 𝑦 ≤ 50), 𝛺12 (50 ≤ 𝑥 ≤ 100 and 0 ≤ 𝑦 ≤ 50), 𝛺21

(0 ≤ 𝑥 ≤ 50 and 50 ≤ 𝑦 ≤ 100), and 𝛺22 (50 ≤ 𝑥, 𝑦 ≤ 100) involves several

steps. Four sub-PINNs corresponding to the four subdomains are composed,

each consisting of two sub-networks, 𝑁𝑁𝑈 and 𝑁𝑁𝐹 , and a physics-informed

part. 𝑁𝑁𝑈 takes inputs 𝑥, 𝑦, and 𝑡 at each subdomain to predict the output

𝑈. The output 𝑈 is then fed into a second network 𝑁𝑁𝐹 to predict the out-

put 𝐹 (𝑈). Using the predicted 𝑈 and 𝐹 (𝑈), the physics-informed part creates

Equation (5.2). The loss function is composed of two categories: 1) loss on sub-

domains and 2) loss along the interfaces, where LossU and Lossresidual minimize

data mismatch and residual on each subdomain, respectively. Additionally, the

average solution continuity term and the residuals across the subdomain inter-

faces are included in the loss function, along with Lossflux, which represents

the normal flux continuity term. After minimizing the loss function, the next

step involves feeding𝑈 and predicted 𝐹 (𝑈) into symbolic regression to predict

the general form of 𝐹 as a function of 𝑈. 103

5.3 Snapshots of (a) PINNs predictions 𝑈, (b) the true solution of the Allen–Cahn

Equation (5.1) at time 𝑡 = 100, and (c) the point-wise relative errors. A compar-

ison of the predictions from X-PINNs and PINNs frameworks with true values

of 𝑈 is shown in (d) and (e), respectively. It is worth noting that the plots were

generated specifically for the value of 𝑦 = 50. This positioning corresponds to

one of the interfaces, specifically at 𝑦 = 50 and 𝑥 ranging from 0 to 100. 108

5.4 Snapshots of (a) predicted unknown function 𝐹 (𝑈), (b) the exact 𝐹 (𝑈) = 𝑈 −

𝑈3 at time 𝑡 = 100 as well as (c) a comparison of the predicted 𝐹 (𝑈) and

exact 𝑈 − 𝑈3, where the vertical axis represents 𝐹 (𝑈) and 𝑈 − 𝑈3 and the

horizontal axis is the 𝑥-coordinate. It is important to mention that the plots

were specifically generated for the value of 𝑦 = 50 109

xviii

5.5 Frobenius norm error for (a) 𝑈 and (b) 𝐹 (𝑈) calculated by Equations (5.9) and

(5.10). 111

5.6 The mean value of the predictions (a) 𝑈 and (b) 𝐹 (𝑈) as well as the standard

deviations for the ten different runs. The dashed lines are the averages of the ten

different predictions with random selection of training sets. The highlights in-

dicate the standard deviations. Predicted 𝑈 and 𝐹 (𝑈) are shown in the vertical

axis and the horizontal axis is the 𝑥-coordinate. 112

5.7 Mean and standard deviation of the predicted 𝐹 (𝑈𝛺𝑖 𝑗
) for each subdomain 𝛺𝑖 𝑗

derived from noisy data with (a) 1% noise, (b), (c), and (d) 2%, 3%, 9% noise

respectively. The vertical axis represents 𝐹 (𝑈𝛺𝑖 𝑗
) values, while the horizon-

tal axis represents the corresponding values of 𝑥. The dashed lines represent

the mean values of the predicted 𝐹 (𝑈𝛺𝑖 𝑗
), while the red highlights around the

dashed lines indicate the standard deviation. 116

5.8 The ratio of each singular value to the sum of all singular values for the pre-

dicted 𝑈𝛺𝑖 𝑗
for each subdomains 𝛺𝑖 𝑗 with 9% noise. The vertical axis repre-

sents _𝑖/
∑𝑖=100

𝑖=1 _𝑖 values, while the horizontal axis represents the number of

samples. The ratio of singular values decreases, which suggests that the infor-

mative singular vectors are becoming less dominant or relevant in predicting

the target variable. 117

5.9 Snapshots of the predicted 𝐹 (𝑈) obtained from varying sample sizes of data.

(a) illustrates the predicted 𝐹 (𝑈) when 60% of the data was used for training.

(b), (c), and (d) correspond to cases where 50%, 30%, and 10% of the data were

used for training, respectively. The results indicate that the neural networks can

effectively capture the underlying information in (a) and (b) using only 60%

and 50% of the original training data, respectively. However, in the case of (c)

and (d), which have a much smaller subset of training points, the network is

not able to perform well due to the lack of sufficient training data. 119

xix

5.10 The standard deviation of predicted 𝐹 (𝑈𝛺𝑖 𝑗
) for each subdomains 𝛺𝑖 𝑗 was

computed using various sets of training points across multiple runs. The verti-

cal axis represents 𝐹 (𝑈𝛺𝑖 𝑗
), while the horizontal axis represents 𝑥. In (a), the

predicted 𝐹 (𝑈) was generated using 60% of the available training points, while

(b), (c), and (d) show the predicted 𝐹 (𝑈) for models trained with only 50%,

30%, 10% of the training points, respectively. The plots depict the mean values

of the predicted 𝐹 (𝑈𝛺𝑖 𝑗
) using dashed lines. The red highlights surrounding

the dashed lines indicate the standard deviation of ten runs. 121

6.1 A schematic showing the equilibrium contact angle (that is, \ ≡ \eq), the

surface tensions (𝛾), the threshold between low- and high-wetting regimes

(\eq = 90◦), and a situation of a non-wetting droplet (\eq = 180◦). The last

panel demonstrates the occurrence of a precursor that is observed in some

cases. In that case, the (macroscopic) contact angle is defined using the macro-

scopic part of the droplet as indicated by the black line in the rightmost figure.

The height of the precursor is in the molecular length scales [7, 8, 9]. 127

6.2 The equilibrium contact angles \eq for the different attraction parameters be-

tween the liquid and solid particles (𝐴ls; see Equation (6.9)). It is worth noting

that the data for this figure has been extracted from Koneru et al. [10]. 132

6.3 Left: Illustration of the spreading behavior of a CMAS droplet on a high surface

energy surface at different times. The droplet with initial size of 𝑅0 spreads

on the surface with radius 𝑟 (𝑡) and contact angle \ (𝑡). Right: A series of

snapshots from a simulation of a droplet with initial size of 𝑅0 = 0.136 mm

and an equilibrium contact angle of \eq = 93.4◦. 133

xx

6.4 The impact of \eq and 𝑅0 on the droplet radii as a function of time for vari-

ous (a) initial drop sizes with equilibrium contact angle of \eq = 54.6◦ corre-

sponding to 𝐴ls = 30.0, and (b) equilibrium contact angles (corresponding to

𝐴ls = −25.0,−25.8,−27.0,−28.0,−29.0,−30.0,−31.4,−32.2) and initial drop

size 𝑅0 = 0.136 mm. 135

6.5 The value of 𝛼, calculated using Equation (6.2), varies for different initial radii

and fixed equilibrium contact angles \eq = 62.4◦ and \eq = 85.6◦. The figure

illustrates that 𝛼 is influenced by both the initial drop size 𝑅0 and the equlibrium

contact angle \eq. 136

6.6 The process of utilizing PINNs to extract three unknown parameters of the

ODE (6.12), using three-dimensional mDPD simulation data. First, a neural

network is trained using simulation data, where the input is time 𝑡 and the out-

put is spreading radii 𝑟 (𝑡). This neural network comprises four layers with three

neurons and is trained for 12, 000 epochs. Subsequently, the predicted 𝑟 (𝑡) is

used to satisfy Equation (6.12) in the physics-informed part. The loss function

for this process consists of two parts: data matching and residual. By optimiz-

ing the loss function, the values of [(𝑅0, \eq), 𝛽(𝑅0, \eq), and 𝜏(𝑅0, \eq) are

determined for each set of 𝑅0 and \eq. After predicting the unknown parame-

ters using PINNs, two additional neural networks, denoted as 𝑁𝑁𝛽 and 𝑁𝑁𝜏,

are trained using these parameters to generate values for the unknown param-

eters at points where data is not available. The outputs of these networks,

together with the outputs of the PINNs, are then fed through a symbolic regres-

sion model to discover a mathematical expression for discovered parameter.

. 137

xxi

6.7 Comparison of the time evolution of the droplet radii: mDPD simulations (sym-

bols), ODE model (6.12) (solid lines) and PINN predictions (dashed lines) for

\eq = {39.1◦, 62.4◦, 93.4◦} and 𝑅0 = {0.136, 0.153, 0.187, 0.204}mm param-

eter sets. 139

6.8 The first three plots show the evolution of parameters [(𝑅0, \eq), 𝛽(𝑅0, \eq),

and 𝜏(𝑅0, \eq) over multiple epochs. These plots demonstrate that the param-

eters gradually converge to a stable state after 12, 000 epochs. The rightmost

figure displays the traces of the loss function for the PINNs framework. The

learning curves demonstrate the decreasing trend of the loss functions, indicat-

ing that they converge to a stable point for all initial drop sizes and \eq. 140

6.9 The values of [, 𝛽, and 𝜏 obtained through PINNs. These values exhibit varying

behavior depending on the initial radius 𝑅0 and equilibrium contact angles \eq.

The horizontal axes display the equilibrium contact angles \eq. The vertical

axes of all figures represent the values of [and 𝛽, and 𝜏. [remains nearly

constant within a small range of values between −0.325 and −0.200 and 𝛽 as

well as 𝜏 change within a range of 1.0 to 5.0 and 6.5 to 8.0, respectively. 141

6.10 Predictions of the parameters (a) 𝜏 and (b) 𝛽 using the trained neural networks

𝑁𝑁𝛽 and 𝑁𝑁𝜏. The horizontal axes show 𝑅0 and \eq. The green and red circles

correspond to the obtained values of 𝜏 and 𝛽 using the PINNs that were used

to train 𝑁𝑁𝛽 and 𝑁𝑁𝜏. Additionally, the orange and blue dots represent the

predicted values for grid interpolations between 𝑅0 = 1.3 to 𝑅0 = 2.05 and

\eq = 40◦ to \eq = 95◦. 143

6.11 The behaviour of 𝛼 from RHS of Equation (6.12) with parameters from

Equation (6.14). Left: different contact angles with fixed initial radius

𝑅0 = 0.136 mm. Right: varying initial radii with fixed contact angle \eq = 77.9◦. 145

xxii

6.12 The left figure illustrates the behavior of the parameter 𝛼 using Equation (6.12)

for 𝑅0 = 0.127 mm, which falls outside the range of the initial drop sizes used

for training the networks. On the right panel, the simulation data and the so-

lution obtained from solving the ODE (Equation (6.12)) with parameters from

symbolic regression, Equation (6.14) are shown. 146

6.13 The mean and uncertainty (mean ± 2 standard deviation) of B-PINN predic-

tions of the spreading radii history are given as solid lines and shaded regions,

respectively. The test simulation data is depicted by solid circles and training

data is indicated by stars. This analysis is carried out for two different ini-

tial drop sizes, namely 𝑅0 = 0.137 mm and 0.170 mm, for three equilibrium

contact angles. 149

6.14 Comparison between B-PINNs and PINNs discovered parameters for range

of equilibrium contact angles and two initial radii. The mean values (solid

lines) and the standard deviations (mean values ± 2 standard deviations, shaded

region) of 𝛽 (left panels) and 𝜏 (right panels). The dashed lines represent the

parameters discovered by PINNs. 150

6.15 Comparison between the ODE solution with parameters found by B-PINNs

(solid lines), and the simulation radii (circles). Two initial drop sizes 𝑅0 =

0.137 mm and 0.170 mm and three equilibrium contact angles are shown. . . . 151

xxiii

List of Tables

4.1 The simulations were done on a uniformly discretized two dimensional grid

of size 𝑛𝑥 × 𝑛𝑦 and 𝛥𝑥 = 𝛥𝑦 = 1. The simulations use a time step of 𝛥𝑡 and

continue to time 𝑡. All models use periodic boundary conditions, and initial

conditions are populated using a uniform random distribution with values be-

tween -1 and 1 generated using the Mersenne Twister 19937 generator from the

C++ standard library [11]. Additionally, all constants in the equations of mo-

tion are set to 1, except for Y used in the PFC model, which is set to 0.1. Later,

in our phase field equations discovery, we used training sets with 60% (for

MLP and CNN-LSTM) and 80% (for CNN) of the total snapshots (𝑛𝑘 = 0.6𝑛𝑡

or 𝑛𝑘 = 0.8𝑛𝑡). 75

4.2 MLP architecture for discovering phase-fields given in Equations (4.5), (4.6),

and (4.8) consists of 4 dense layers with 128/64/16/8 neurons in each layer.

The network was trained with learning rate of 10−3 for 2000 epochs. For each

dataset, 𝑛𝑡 snapshots wererandomly split into training, validation, and test with

a 60:20:20 ratio (training set has 𝑛𝑘 snapshots with a size of 0.6𝑛𝑡 for each

dataset). 79

4.3 Details of the CNN-LSTM network used for field equation discovery. The

network is trained for 2,000 epochs with learning rate 10−3. 𝑛𝑡 snapshots for

each dataset are randomly split with 60:20:20 ratio for training, validation, and

test (training set has 𝑛𝑘 snapshots with size 0.6𝑛𝑡 for each dataset). 81

xxiv

4.4 A CNN network used for discovering field equations without spatial deriva-

tives. This network is trained for 20,000 epochs with the ADAM optimizer [12]

with learning rate 10−4 and MAE loss function, Equation (4.13). A random

sampling of 80% of snapshots (𝑛𝑡) was used as the training set. Validation was

performed on 10% and testing on the remainder. 88

4.5 𝑅2 values for CNN performance of predicting 𝑈𝑡 for test (unseen) data. 89

5.1 The neural network architectures in both sub-networks. Networks 𝑁𝑈𝑖, 𝑗
consist

of 6 layers with 20 neurons in each layer. The 𝑁𝐹𝑖, 𝑗 networks are comprised of

4 layers and 20 neurons in each layer. The networks were trained with learning

rate of 10−3 for 300, 000 epochs using the ADAM optimizer. Each subdomain

has 𝑛𝑡 = 100 snapshots were randomly split into training and testing with a

80 : 20 ratio. 102

5.2 Symbolic regression results for multiple runs to fit a mathematical formulation

to the predicted function 𝐹 (𝑈𝛺𝑖, 𝑗
) on subdomain 𝛺𝑖, 𝑗

. It is worth noting that

the exact formulation for 𝐹 (𝑈) is 𝑈 − 𝑈3, and this formulation was closely

approximated in multiple runs. 114

5.3 Symbolic regression results for noisy data. 𝐹 (𝑈𝛺𝑖, 𝑗
) is the predicted function

corresponding to subdomain 𝛺𝑖, 𝑗 . It is noteworthy that the exact formulation

for 𝐹 (𝑈) is given by 𝑈 −𝑈3. Despite the presence of 9% noise in the dataset,

the results demonstrate that the algorithm has successfully identified a closely

approximated formulation for the predicted 𝐹 (𝑈). 115

xxv

5.4 The mathematical formula for 𝐹 (𝑈𝛺𝑖 𝑗) for each subdomain 𝛺𝑖 𝑗 using symbolic

regression. The model was trained using different percentages of the available

data, and the results show that the correct terms of 𝑈 and 𝑈3 were accurately

identified when the model was trained with (a) 60% and (b) 50% of the data.

However, the model’s accuracy decreased with less data, and it could not accu-

rately predict coefficients when trained with only 50% of the data. Moreover,

the results demonstrate that training the model with only 30% and 10% of the

data is insufficient to even predict the correct terms of 𝑈 and 𝑈3 in the function. 120

xxvi

List of Abbreviations, Symbols, and Nomenclature

AI Artificial Intelligence
B-PINNs Bayesian Physics-Informed Neural Networks
CFL Courant-Friedrichs-Lewy
CPINN Conservative Physics-Informed Neural Network
CMAS Calcium-Magnesium-Aluminosilicate
CNN Convolutional Neural Network
DPD Dissipative Particle Dynamics
FNN Feed-forward Neural Network
GCNs Graph Convolutional Networks
GRU Gated Recurrent Unit
HMC Hamiltonian Monte Carlo
L-BFGS Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
LSTM Long Short-Term Memory
MCMC Markov Chain Monte Carlo
ML Machine Learning
MLP Multi-Layer Perceptron
mDPD Many-body Dissipative Particle Dynamics
MSE Mean Squared Error
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PINNs Physics-Informed Neural Networks
POD Proper Orthogonal Decomposition
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RProp Resilient Backpropagation
SGD Stochastic Gradient Descent
SINDy Sparse Identification of Nonlinear Dynamics
SVD Singular Value Decomposition
X-PINNs Xtended Physics-Informed Neural Networks

xxvii

Chapter 1

Introduction

This thesis explores the benefits, challenges, and potential applications of data-driven ap-

proaches in the discovery of partial differential equations (PDEs). Machine learning techniques

are employed to unveil the connections between variables and their derivatives. It is important

to highlight that the primary objective of this thesis is to leverage machine learning (ML) tech-

niques for the identification of equations using available data. While this thesis provides an

overall review of the significance of the chosen equations and the process of data generation,

its central focus is on the development and application of ML models and techniques specifi-

cally tailored for the discovery of equations.

1.1 Machine learning

Artificial Intelligence (AI) encompasses the ability of a system to effectively comprehend ex-

ternal data, learn from it, and utilize that acquired knowledge to achieve specific goals and

tasks. It has garnered significant attention and has been a topic of discussion for many years.

However, despite the extensive coverage of AI in recent articles, it is surprisingly challenging

to establish a precise definition of what AI entails and what falls outside its scope [13, 14, 15].

By the 1950s, the concept of AI had deeply permeated the intellectual landscape of scien-

tists, mathematicians, and philosophers [13, 16]. Alan Turing stands out as an exemplary fig-

1

2 Chapter 1. Introduction

ure who extensively explored the mathematical potential of AI [17, 18, 19]. Turing proposed a

thought-provoking idea: if humans can utilize available information and employ reasoning to

solve problems and make decisions, why cannot machines do the same? Leveraging his deep

engagement with mathematics, Turing delved into the theoretical frontiers of artificial intel-

ligence, yielding remarkable contributions to the field. Alan Turing proposed a definition to

determine whether software can be considered intelligent. According to his theory, the intelli-

gence of software can be assessed based on its ability to mimic human cognitive abilities. If a

human interacting with the software cannot distinguish it from another human, the software is

deemed intelligent. This evaluation method became known as the Turing test.

In 1947, Alan Turing delivered a significant public lecture, which is believed to be the

earliest instance of mentioning computer intelligence [20]. In this lecture, he expressed the

desire for a machine that could learn from experience, emphasizing the importance of allowing

the machine to modify its own instructions. In his 1948 report titled ”Intelligent Machinery,”

Turing introduced key concepts that would become central to the field of AI. These included

the hypothesis of intellectual activity as various forms of search, genetic algorithms, and the

idea of training artificial neural networks [21]. Several factors prevented Turing from imme-

diately pursuing his ideas. Firstly, the computers of that time lacked a crucial capability for

intelligence. They were unable to store commands and could only execute them. In essence,

computers were capable of following instructions but could not retain information about their

previous actions. Secondly, the cost of computing was exorbitant during the early 1950s.

From 1957 to 1974, the field of AI experienced significant growth. Computers became

more powerful, affordable, and accessible, with increased storage capacity. Progress was also

made in machine learning algorithms, enabling better problem-solving techniques [22]. In

1970, Marvin Minsky confidently stated that within three to eight years, we would witness

the development of a machine possessing the general intelligence of an average human be-

ing. However, despite this optimistic outlook, there remained substantial challenges ahead in

achieving the ultimate objectives of natural language processing, abstract thinking, and self-

1.1. Machine learning 3

recognition [23].

In the 1980s, AI experienced an expansion of the algorithmic toolkit and increased funding.

John Hopfield made notable advancements in the field of neural networks, particularly with the

development of the Hopfield network. This network demonstrated the ability to learn and pro-

cess information in a novel and innovative manner [24, 25, 26]. The Japanese government

provided significant funding for AI through its Fifth Generation Computer Project, demon-

strating a proactive approach towards advancing the field [14]. During the 1990s and 2000s,

significant milestones in artificial intelligence were accomplished, marking the achievement of

several key goals in the field [14, 27, 28]. Kohonen (1982) [29] presented a theoretical study

and computer simulations showcasing a novel self-organizing process that automatically maps

signal representations onto output responses, aligning them topologically with primary events.

The process utilizes a network of adaptive physical elements resembling threshold-logic units

with short-range lateral feedback, as demonstrated through various computer simulations.

With the growth in computational power and the increasing availability of data, artificial

intelligence has witnessed a resurgence of interest, especially in the fields of Machine Learning

and Deep Learning. These areas have become prominent focuses within the broader realm

of artificial intelligence. The term Machine Learning was introduced by Arthur Samuel in

1959 [30].

The objective of Machine Learning is to develop algorithms that enable computers to learn.

It involves designing and implementing techniques that allow computers to automatically ana-

lyze and extract patterns or insights from data, and subsequently make predictions, decisions,

or take actions based on that learned knowledge [1]. ML utilizes a range of statistical tech-

niques and computational algorithms to uncover relationships and patterns within data. It has

made notable progress in diverse fields such as image recognition [31], natural language pro-

cessing [32], and autonomous vehicles [33]. Its applications encompass automating tasks [33]

and facilitating informed decision-making based on patterns that may not be immediately dis-

cernible to humans [34]. For example, in visual perception, humans can quickly identify basic

4 Chapter 1. Introduction

shapes, colors, or objects. In decision-making, individuals can often make judgments based on

their immediate observations or experiences while artificial intelligence and automation sys-

tems have the potential to uncover complex patterns and insights that may not be immediately

apparent to humans [35].

Training ML models is a fundamental aspect of machine learning and presents unique chal-

lenges. The process entails providing a dataset to the ML model to facilitate learning and enable

accurate predictions or decisions. The dataset comprises input data, commonly referred to as

features, which can encompass numerical or categorical variables that capture essential infor-

mation about the data. The model then examines the patterns, relationships, and dependencies

between these features and their corresponding outputs to carry out tasks or make predictions

effectively. However, several challenges arise during this training phase. One major challenge

is obtaining high-quality and relevant training data. The quality and representativeness of the

data greatly impact the performance of the model. Gathering and preprocessing large datasets

can be time-consuming and resource-intensive [36]. Another challenge is selecting the appro-

priate algorithm or model architecture for the specific task [37]. Different algorithms have their

strengths and weaknesses, and choosing the right one requires expertise and careful considera-

tion. Additionally, the process of training machine learning models often demands significant

computational resources. Training complex models can be computationally intensive and may

require specialized hardware or distributed computing setups [34].

This section offers a brief overview of the fundamental types of machine learning, super-

vised learning, unsupervised learning, and reinforcement learning [1], and their diverse appli-

cations in various domains as illustrated in Figure 1.1.

1.2 Supervised learning

Supervised learning is a ML approach where a model learns to map input data to corresponding

output values based on labeled training examples. Labelling itself depends on the nature of the

1.2. Supervised learning 5

Machine Learning

Supervised
Learning

Unsupervised
Learning

Model training with labeled data Model training with unlabeled data

Classification Regression Clustering

Figure 1.1: Two fundamental types of machine learning [1]. Supervised learning in which ML
models are trained on pre-labelled data, consisting of input features and corresponding output
labels or target values. Classification and regression are specific types of supervised learning
problems, with classification being used for categorical outputs and regression for numerical
outputs. Classification involves organizing and categorizing ideas or objects based on their
shared characteristics and distinctions while regression models use input data features and as-
sociated continuous numeric output values to predict relationships between inputs and desired
outputs. Labeled data can vary based on the prediction or classification task. In regression
tasks, the labeled data consists of numerical values, while in classification tasks, it involves
categorical labels. Unsupervised learning, involves training models on unlabeled data. Clus-
tering is an unsupervised learning technique that groups similar data points together based on
their inherent similarities or patterns.

6 Chapter 1. Introduction

prediction or classification task. In regression tasks, the labeled data includes numerical values,

in classification tasks, labeled data can consist of categorical labels. The training data consists

of input-output pairs, where the inputs are the features or attributes, and the outputs are the

corresponding labels or target values.

The model learns from this labeled data by analyzing the patterns, relationships, and de-

pendencies between the input features and their corresponding outputs. The goal is to learn

patterns or relationships from the training dataset and apply them to the test dataset for predic-

tion or classification tasks. Supervised learning can be classified into two types: classification

and regression. Each type is designed to address specific problem types based on the charac-

teristics of the output variable [1, 38, 39]. These types are briefly reviewed as follows:

(I) Classification: categorizing and organizing ideas or objects based on their similarities

and differences. Classification is the act of recognizing, differentiating, and comprehending

various entities. The purpose of classification is to group related facts or entities into distinct

classes, allowing for better organization and understanding, see Figure 1.2 (a). It is also a

method that brings together similar elements while distinguishing dissimilar ones [1, 40].

(II) Regression: It refers to a class of statistical models that analyze the relationship be-

tween a dependent variable and one or more independent variables. The objective of regression

analysis is to estimate the relationship between the independent variables, often input data fea-

tures, and the dependent variable, typically continuous numeric output values. This estimation

is used for making predictions or understanding the impact of the independent variables on

the dependent variable. Regression models provide a mathematical equation or formula that

describes this relationship. These models are used to estimate or forecast values rather than

classify them into predefined categories, see Figure 1.2 (b). For instance, regression can be

used to predict weather conditions, stock market prices, housing prices, or the demand for a

product based on historical data and the relationship between variables [1, 39].

Specific applications of supervised learning include

• Image classification: Supervised learning algorithms can be trained to classify images

1.3. Unsupervised learning 7

(a) Classification (b) Regression

Figure 1.2: Two fundamental techniques in supervised learning, (a) classification and (b) re-
gression. In classification, data is sorted into predetermined classes or labels, allowing for the
prediction of future class memberships. Regression, on the other hand, is concerned with pre-
dicting continuous numerical values using input variables.

into different categories. This is widely used in applications such as object recognition,

facial recognition, and medical image analysis [41].

• Autonomous vehicles: Supervised learning can be used to train models for object detec-

tion, lane recognition, and traffic sign classification, contributing to the development of

autonomous vehicles [33].

• Sales and demand forecasting: By training on historical sales data along with relevant

features such as time, promotions, and competitor information, supervised regression

models can predict future sales and demand for products or services for businesses, help-

ing them make informed decisions on inventory management and resource allocation.

1.3 Unsupervised learning

Unsupervised learning is a subset of ML that learns patterns from unlabeled data [42, 43].

The aim to discover hidden structures, clusters, or relationships in the data without explicit

knowledge of the ground truth or predefined labels. This approach is particularly useful for

organizing unsorted data by identifying similarities, dissimilarities, and hidden patterns in the

8 Chapter 1. Introduction

(a) Unclustered data (b) Clustered data

Figure 1.3: Uncluttered data prior to clustering (a) and clustered data after undergoing the
clustering process (b).

input data. Unsupervised learning algorithms learn directly from the data without a predefined

output variable, allowing them to handle complex tasks. This characteristic makes unsuper-

vised learning particularly useful in scenarios where the data is unlabeled or when we seek to

gain insights into the intrinsic patterns and properties of the data itself.

Clustering is often regarded as the most significant unsupervised learning problem. Like

other unsupervised learning problems, it revolves around identifying a structure/structres

within a set of unlabeled data. A cluster can be defined as a group of objects that exhibit

similarity among themselves while being dissimilar to objects belonging to other clusters;

clustering is a powerful technique employed to group similar data points together based

on their intrinsic similarities or patterns. In the uncluttered data representation (Figure 1.3

(a)), individual data points are scattered without any discernible grouping. However, after

applying a clustering algorithm, the data points are grouped into distinct clusters, as depicted

in Figure 1.3 (b). In addition to the term data clustering, there are several synonyms used to

refer to similar concepts. These synonyms include cluster analysis, automatic classification,

numerical taxonomy, botrology, and typological analysis. Clustering algorithms autonomously

partition the data into clusters based on various similarity measures or distance metrics.

Clustering algorithms are, for example, widely used for the identification of cancerous cells.

It divides the cancerous and non-cancerous data sets into different groups [44, 45]. Data

1.3. Unsupervised learning 9

clustering algorithms can be categorized as hierarchical or partitional.

Hierarchical algorithms build clusters in a step-by-step fashion, using previously estab-

lished clusters [46]. Hierarchical algorithms can be further classified as either agglomerative

(bottom-up) or divisive (top-down) approaches. Agglomerative algorithms start by considering

each element as a separate cluster [47]. They then iteratively merge these individual clusters to

form larger clusters, combining elements based on similarity measures. This process continues

until all elements are merged into a single cluster or until a specified termination condition is

met. Agglomerative algorithms gradually build clusters from smaller to larger units. In con-

trast, divisive algorithms begin with the entire dataset as a single cluster. They then proceed to

divide this initial cluster into smaller and more distinct clusters through a series of partition-

ing steps. Divisive algorithms recursively split the dataset into subsets, creating successively

smaller clusters until each subset represents a separate cluster or a termination condition is

satisfied. Divisive algorithms break down clusters from larger to smaller units.

On the other hand, partitional algorithms determine all clusters at once, without relying on

a hierarchical structure [48]. These algorithms assign each data point to a particular cluster

based on similarity measures or optimization criteria. Two commonly used heuristic methods

for partitioning algorithms are the k-means algorithm [49] and the k-medoids algorithm [50].

The k-means algorithm is designed to divide the data into a pre-defined number of clusters,

denoted as k. It begins by randomly selecting k initial cluster centroids from the dataset. Then,

in an iterative process, each data point is assigned to the nearest centroid based on a chosen

distance metric, typically the Euclidean distance. After all data points are assigned to clusters,

the algorithm recalculates the centroids by computing the mean of the data points within each

cluster. This new centroid position represents the center of the cluster. The process continues

iteratively, with data points being reassigned to the nearest centroids and centroids being recal-

culated based on the updated cluster assignments. The iterations proceed until convergence is

achieved, which happens when the cluster assignments and centroid positions no longer change

significantly. The k-medoids algorithm is a variation of the k-means algorithm that addresses

10 Chapter 1. Introduction

the issue of outliers and robustness. Unlike the k-means algorithm, which uses centroids as

representatives of clusters, the k-medoids algorithm employs medoids as representative data

points. Medoids are actual data points within the cluster, chosen from the data set. The al-

gorithm starts by randomly selecting k data points as initial medoids. Then, in an iterative

process, each data point is reassigned to the nearest medoid based on a chosen distance metric.

The medoids are updated by selecting the data point that minimizes the sum of distances to all

other points in the same cluster. This process continues until convergence, where the medoid

assignments and positions no longer change significantly. The result is a partition of the data

into k clusters, with each cluster represented by a medoid. The use of medoids as represen-

tatives makes the k-medoids algorithm more robust to outliers and less sensitive to extreme

values. By selecting actual data points as medoids, the algorithm can better capture the central

tendency and characteristics of each cluster.

Several applications make use of unsupervised learning techniques, including:

• Image and document clustering: Unsupervised learning algorithms can analyze the vi-

sual features of images, such as color, texture, shape, or deep learning-based features, to

identify similarities and group similar images together. Similarly, they can analyze the

textual content of documents, such as words, phrases, or topic distributions, to cluster

similar documents together. This enables tasks like organizing large image databases,

creating image galleries, or automatically generating tags for images based on their con-

tent. Document clustering is particularly useful for tasks like topic modeling, document

summarization, content recommendation, and information retrieval systems [51, 52].

1.4 Reinforcement learning

Reinforcement learning enables an agent to learn optimal actions by interacting with an en-

vironment and receiving feedback which typically focuses on sequential decision making. It

employs a trial-and-error approach, where the agent learns through a feedback-based process.

1.4. Reinforcement learning 11

The agent takes actions in an environment and receives feedback in the form of rewards or

penalties based on its actions. The objective of the agent is to maximize the total reward it ac-

cumulates over time. By exploring and exploiting the environment, the agent gains knowledge

of actions that yield the highest rewards. The agent engages in ongoing interaction with the

environment, learning from previous actions and adapting its behavior accordingly. Reinforce-

ment learning encompasses two main types of learning: positive reinforcement learning and

negative reinforcement learning [53].

(I) Positive reinforcement learning: It involves rewarding the agent for taking actions that

lead to positive outcomes. The agent receives positive reinforcement, typically in the form

of rewards, when it makes correct decisions or achieves desired goals. These rewards can be

numerical values, such as scores or probabilities, or symbolic values, such as labels or tags.

By associating actions with positive rewards, the agent learns to reinforce those actions and

increase the likelihood of choosing them in similar situations in the future. Positive reinforce-

ment learning aims to maximize cumulative rewards over time [54].

(II) Negative reinforcement learning: It also known as avoidance learning. In negative re-

inforcement learning, the agent faces punishment or negative reinforcement for engaging in

actions that result in unfavorable outcomes. The punishment can be in the form of penalties,

loss of rewards, or negative feedback. The agent learns to avoid actions that result in pun-

ishment and instead focuses on actions that lead to positive outcomes or minimize negative

consequences. Negative reinforcement learning enables the agent to develop strategies to nav-

igate the environment and avoid undesirable states or outcomes [55].

Both positive and negative reinforcement learning techniques are used in the broader frame-

work of reinforcement learning. The combination of positive reinforcement for desired actions

and negative reinforcement for undesired actions helps guide the learning process and shape

the agent’s behavior towards achieving optimal outcomes.

Reinforcement learning has a wide range of applications across various domains. Here are

some notable examples:

12 Chapter 1. Introduction

• Intelligent robotics: Reinforcement learning plays a significant role in building intelli-

gent robots. By training robots to interact with their environment and receive feedback

through rewards or penalties, they can learn to perform complex tasks. This includes

tasks such as object manipulation, navigation, grasping, and assembly. Reinforcement

learning enables robots to adapt and improve their actions based on the received feed-

back, leading to more efficient and effective robotic systems [56].

• Personalized treatment plans for patients: In healthcare, reinforcement learning can be

utilized to develop personalized treatment plans for patients. By modeling patient re-

sponses to different treatments and using reinforcement learning algorithms, medical

professionals can optimize treatment decisions. The reinforcement learning agent can

learn from patient data, treatment outcomes, and medical guidelines to suggest the most

effective treatment options tailored to individual patients’ needs [57].

• Autonomous vehicles: Reinforcement learning plays a crucial role in the development

of autonomous vehicles. Agents learn to navigate complex traffic scenarios, make deci-

sions about acceleration, braking, and steering, and adapt to changing road conditions.

Reinforcement learning enables autonomous vehicles to learn safe and efficient driving

behaviors, improving road safety and optimizing transportation efficiency [58].

• Game playing: Reinforcement learning has been successful in developing game-playing

agents that can compete with and even surpass human performance in various games.

Examples include AlphaGo [59], which defeated world champion Go players, and Dota

2 [60], which achieved high-level gameplay. Reinforcement learning agents learn op-

timal strategies by playing against themselves or human opponents, honing their skills

through continuous learning and exploration.

As computers have advanced, generating large volumes of data has become increasingly

common in various domains. This exponential growth in data has created a pressing need for

models and algorithms capable of effectively handling and analyzing such vast datasets. How-

1.4. Reinforcement learning 13

ever, analyzing complex data often involves a large number of variables, which can lead to

challenges such as increased memory and computation requirements. This is particularly true

in high-dimensional datasets where the data becomes more sparse, making it harder to extract

meaningful insights and reducing the accuracy of predictions. To address these challenges,

dimensionality reduction techniques are employed to transform high-dimensional data into a

lower-dimensional representation that captures the underlying characteristics of the data [61].

Dimensionality reduction serves multiple purposes, including noise reduction, data visualiza-

tion, cluster analysis, and supporting other analytical tasks. There are two main approaches in

dimensionality reduction, feature selection [62], which identifies the most relevant input vari-

ables for a given task, and feature extraction [63], which creates new derived features while

reducing the dimensionality of the data. Feature extraction plays a critical role in building ef-

fective machine learning models by identifying informative aspects of the data and discarding

irrelevant or redundant information, ultimately improving data analysis, model performance,

and decision-making based on the extracted features.

High dimensionality of data presents challenges for neural networks, including increased

computational complexity, longer optimization steps, and the requirement for larger network

architectures [64]. To tackle the challenges posed by high-dimensional data and enhance the ef-

ficiency of training neural networks, it is essential to make advancements in dimensional reduc-

tion techniques. Dimensional reduction techniques play a critical role in enhancing the perfor-

mance and effectiveness of neural network models, enabling them to handle high-dimensional

data more effectively.

In the following sections of this chapter, we will present a detailed overview of neural

network architectures. We will explore essential components such as loss functions, which

measure the difference between predicted and actual values, and activation functions, which

introduce non-linearity and enable the network to learn intricate data relationships. Grasping

these foundational elements is crucial for a deeper understanding of neural network operations

and their applications in machine learning.

14 Chapter 1. Introduction

1.5 Neural networks

ML is a comprehensive concept within the field of AI, encompassing algorithms that have the

ability to learn and adapt from data. Neural networks, on the other hand, are a type of ML

models that are designed inspired by the connections of neurons in the human brain. They are

composed of interconnected nodes known as neurons, organized into layers, which enable them

to learn and adapt based on new information. Through the intricate network of neurons, infor-

mation is processed and transmitted, enabling the neural network to make accurate predictions

or decisions.

Training is a crucial phase for neural networks, during which the connections between neu-

rons, referred to as weights, are continually adjusted to optimize the network’s performance.

Once the training phase is complete and the weights have been optimized, the network enters

the prediction phase. In this phase, the weights are typically fixed and no longer adjusted.

Through this iterative process, the neural network becomes increasingly proficient at recogniz-

ing and generalizing patterns in the input data. The network takes new input data and uses the

learned weights to generate predictions or outputs based on the patterns and relationships it has

learned during training. The fixed weights enable the network to efficiently and quickly process

new data without the need for further training. Inspired by the remarkable parallel structure

of the human brain, neural networks have emerged as powerful tools for various applications.

Their ability to harness parallelism and adaptability has led to significant advancements in

fields such as image recognition [65], natural language processing [66], and predictive model-

ing [67, 68].

Deep neural networks are a specific type of neural network that consists of multiple hid-

den layers between the input and output layers. Generally, layers in a neural network that

are not directly connected to the input or output are commonly referred to as hidden layers.

Each layer of the network learns progressively more abstract and complex features based on

the previous layer’s output. This allows deep learning models to capture intricate patterns and

dependencies in the data. One significant advantage of deep learning is its ability to analyze

1.5. Neural networks 15

and learn from vast quantities of unsupervised data. This makes it a valuable tool for Big Data

Analytics, particularly in scenarios where the raw data is predominantly unlabeled and lacks

categorization [69]. The rise in popularity of deep learning is attributed to the increasing avail-

ability of vast amounts of data and advancements in hardware, providing powerful computing

capabilities. Deep neural networks have achieved significant success in various branches of

ML, including supervised learning and unsupervised learning [69]. Deep learning finds exten-

sive applications across diverse domains, notably making significant contributions in the field

of computer vision. Deep learning models have demonstrated impressive performance image

classification [41] and image segmentation [70]. These models can accurately classify objects

in images, detect their presence and location, and segment different regions within an image.

Additionally, it has emerged as a powerful tool in the field of medical image analysis [71].

Deep learning has been employed to build regression models for predicting time-dependent

data, such as road traffic speed forecasting [72]. Additionally, deep learning techniques offer

a comprehensive introduction to their application in the field of Natural Language Processing

tasks [66].

Input Output

Hidden layers

Figure 1.4: A deep neural network architecture which has an input layer, three hidden layer,
and an output layer. Each layer consists of multiple neurons. The neurons in each layer are
interconnected, with weights assigned to each connection. The input layer receives the input
data, and the output layer produces the final output of the network, with the weights between
neurons adjusted during training using an optimization algorithm.

To gain a comprehensive understanding of neural networks, it is essential to explore key

concepts that significantly impact their functionality. One such concept is hyperparameters in

16 Chapter 1. Introduction

neural networks [73]. Hyperparameters are parameters that are set prior to the training pro-

cess and influence the behavior and performance of the network. Hyperparameters in neural

networks include the number of hidden layers determines the depth and complexity of the net-

work and the number of neurons in each hidden layer that affects the network’s capacity to

learn complex patterns. The learning rate, which controls the step size for parameter updates

during training, as well as the selection of activation functions, are important hyperparameters

to consider in the network’s configuration. The process of selecting and tuning hyperparame-

ters plays a crucial role in determining the performance and generalization ability of a model. It

typically involves an iterative trial-and-error approach, where different combinations of hyper-

parameters are tested and evaluated. Techniques like cross-validation are commonly employed

to assess the model’s performance. Gaining a comprehensive understanding of these funda-

mental concepts provides valuable insights into the inner workings of neural networks and

how they are optimized during the training process.

1.5.1 Activation function

An activation function in a neural network determines whether a neuron should be activated

or not based on the input it receives [74]. It plays a crucial role in computing the output

of a neuron by applying mathematical operations to the input values. One key requirement

is differentiability, as most neural network training algorithms rely on derivatives for weight

updates during backpropagation. Activation functions impact the occurrence of the vanish-

ing/exploding gradient problem during training [75]. The vanishing gradient problem arises

when gradients become too small, hindering effective learning in deep networks. Conversely,

the exploding gradient problem occurs when gradients become excessively large, causing un-

stable training. The activation function takes the weighted sum of the input values and applies

a transformation to produce the output of the neuron. This transformation introduces non-

linearity to the network, allowing it to model complex relationships and capture non-linear

patterns in the data. By determining the importance of the neuron’s input in the prediction

1.5. Neural networks 17

10 5 0 5 10
x

0.00

0.25

0.50

0.75

1.00
Si

gm
oi

d(
x)

(a)

10 5 0 5 10
x

1.0

0.5

0.0

0.5

1.0

ta
nh

(x
)

(b)

10 5 0 5 10
x

0.0

2.5

5.0

7.5

10.0

R
eL

U
(x

)

(c)

Figure 1.5: Three most frequently employed activation functions in neural networks (a) sig-
moid, (b) tanh , and (c)ReLU.

process, the activation function helps the network make more accurate predictions and learn

meaningful representations from the data [76].

As mentioned, the choice of activation function has a significant impact on the training

performance of a neural network. There are several commonly used activation functions, in-

cluding sigmoid [77], tangent hyperbolic (tanh) [78], and ReLU (Rectified Linear Unit) [79].

Each of these activation functions has its own characteristics and affects the behavior of the

neural network in different ways. They are defined as follows:

• Sigmoid (Figure 1.5 (a)) : The sigmoid activation function, also called the logistic func-

tion, has the following mathematical form

𝜎(𝑥) = 1
1 + 𝑒−𝑥 . (1.1)

It takes a real value and squashes it between 0 and 1, offering a smooth and continuous

output. It is commonly used in binary classification tasks where the goal is to predict

a probability or make a decision based on a threshold. The sigmoid function possesses

several distinct properties that make it advantageous for use in neural networks. One of

the most important property of the sigmoid function is its differentiability. The sigmoid

function is continuously differentiable, meaning that its derivative can be easily calcu-

lated at any point. This property is essential for the backpropagation algorithm, which

is used to train neural networks. The term sigmoid refers to the S-shaped curve, and the

18 Chapter 1. Introduction

logistic form of the sigmoid function maps the range (−∞,∞) onto (0, 1). This prop-

erty allows the sigmoid function to transform any input, whether positive or negative,

into a probability-like output, indicating the likelihood or activation level of a particular

event or class. This characteristic is particularly useful in classification tasks where the

network needs to assign probabilities to different categories.

• tanh (Figure 1.5 (b)): tanh function maps the input to the range (−1, 1) and exhibits

similar properties to the sigmoid function. This non linear function has the following

mathematical form

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 = 2𝜎(2𝑥) − 1 (1.2)

• ReLU (Figure 1.5 (c)): ReLU is a non-linear activation function which has the following

mathematical form

𝑦 = max(0, 𝑥). (1.3)

Compared to the sigmoid and tanh functions, it has become popular in recent years due

to its computational efficiency and ability to mitigate the vanishing gradient problem.

Firstly, ReLU is computationally efficient, making it well-suited for large-scale neural

networks and deep learning models. Secondly, ReLU does not suffer from either vanish-

ing or exploding gradients. One significant advantage of the rectifier function ReLU is

its ability to produce a true zero output. This distinguishes it from activation functions

such as tanh and sigmoid, which approximate a zero output but never precisely reach a

true zero value. The ability of ReLU to generate true zero values for negative inputs,

is a valuable property in neural networks. With some neurons having zero outputs, the

network can focus on learning the important features and disregard irrelevant or noisy

information. This helps streamline the learning process and improve efficiency [80].

In addition to the aforementioned commonly used activation functions, a relatively new acti-

vation function called Swish was introduced in 2017 [74]. Swish has gained attention for its

potential performance improvements compared to other activation functions like ReLU. It is

1.5. Neural networks 19

expressed mathematically as:

𝑓 (𝑥) = 𝑥/(1 + 𝑒𝑥𝑝(−𝛽𝑥)) = 𝑥𝜎(𝛽𝑥), (1.4)

where 𝛽 is a trainable parameter. By combining the linearity of the input with the non-linear

characteristics of the sigmoid function, Swish offers enhanced expressiveness in capturing

complex relationships within the data.

1.5.2 Loss function

Loss functions, also known as cost functions, play a vital role in machine learning algorithms,

including neural networks. They measure the difference between the predicted output of a

model and the actual target output for a given input. The purpose of a loss function is to

evaluate how well an algorithm models a dataset. The learning algorithm aims to minimize the

loss function value by adjusting the weights and biases of the network through optimization.

The loss function aggregates all possible network variables into a single value, indicating how

far the system is from achieving perfect performance. Initially, the loss value is high when the

network has poor accuracy, but it decreases gradually as the system learns.

The choice of loss function depends on the specific problem being solved. There exists a

variety of loss functions, each suitable for different types of tasks. For instance, mean squared

error (MSE) is a commonly employed loss function for regression tasks [81]. It can be defined

as

𝑀𝑆𝐸 =
1
𝑁

𝑖=𝑁∑︁
𝑖=1

(�̂�𝑖 − 𝑦𝑖)2, (1.5)

where �̂� represents the predicted value, 𝑦 denotes the target value, and 𝑁 is the number of sam-

ples in the dataset. The MSE is widely used due to its differentiability, which allows for efficient

optimization using gradient descent-based algorithms [82]. Moreover, it is straightforward to

interpret as it provides a measure of the average deviation between predictions and actual val-

ues. One downside of MSE is that it can suffer from slow learning speed or slow convergence

20 Chapter 1. Introduction

when used in combination with the sigmoid activation function. The sigmoid function has a

saturation property where its gradient becomes small for large input values, leading to vanish-

ing gradient problem. This can hinder the learning process and result in slower convergence

when optimizing the model using MSE with sigmoid activation [83].

The choice of a loss function is a critical decision in machine learning as it can significantly

impact the performance of the network. Using an inappropriate loss function can lead to un-

intended effects on the network’s learning process. The loss function represents the aspects of

the problem that the network considers important, and minimizing its value is the goal of the

optimization process. In this study, we have selected MSE (1.5) as our loss function for all

networks.

1.5.3 Learning rate

The learning rate is a crucial hyperparameter in ML algorithms [84]. A hyperparameter refers

to a parameter that is not learned from the training data but is set manually before the learning

process begins. Unlike the model’s internal parameters that are learned through training, hyper-

parameters control the behavior and performance of the learning algorithm. The learning rate

is a hyperparameter that plays a crucial role in determining the performance and generalization

ability of a model. It determines the step size at which the weights and biases of a neural net-

work are updated during the training process. The learning rate is typically selected within the

range of 0.0 to 1.0. It determines how quickly or slowly the network adapts to the training data.

A learning rate that is too small can lead to slow convergence of the training algorithm, while

a learning rate that is too large can cause the algorithm to diverge [85]. Therefore, choosing

an appropriate learning rate is essential for achieving good performance and efficient training.

A suitable learning rate allows the network to effectively adapt to the training data, achieving

optimal performance. However, selecting a learning rate that is too small can result in slow

convergence of the training algorithm, while a learning rate that is too large can cause the al-

gorithm to diverge. Finding the right balance is essential for successful training and achieving

1.5. Neural networks 21

accurate predictions. It is important to note that the optimal learning rate can vary depending

on the dataset, model architecture, and specific task at hand.

1.5.4 The general architecture and training of deep neural networks

The general architecture of a deep neural network, illustrated in Figure 1.4, is comprised of

interconnected neurons arranged in multiple layers. Each neuron in a deep neural network is

connected to neurons in the previous layer and the subsequent layer. Typically, the architecture

includes an input layer, one or more hidden layers, and an output layer. The input layer receives

input data, which flows through the network in a forward direction to the output layer. The

output layer delivers the network’s final output, which may be classification, regression, or

another type of prediction depending on the specific problem being addressed. The selection

of architecture and optimization algorithm can significantly affect the network’s performance

and accuracy.

In a neural network, the weights and biases are parameters that allow the network to learn

from input data and make accurate predictions. The weights represent the strength of the con-

nections between neurons in different layers of the network. Each connection has an associated

weight, which is multiplied by the input from the previous layer and passed through an acti-

vation function to produce the output of the neuron. The weights are initially set to random

values and then adjusted during the training process to minimize the error between the pre-

dicted output and the actual output.

The biases, on the other hand, are added to the weighted sum of the inputs before being

passed through the activation function. The biases are also adjusted during the training process

to improve the accuracy of the predictions. The bias in a neural network helps the model make

predictions more accurately by adjusting the output of each neuron. It acts like a constant value

that is added to the overall calculation performed by the neuron. By adjusting the bias, we can

shift the activation function used by the neuron towards either the positive or negative side.

This shift allows the model to make predictions that are more in line with what we expect. The

22 Chapter 1. Introduction

general formula for a simple deep neural network with weights and biases can be expressed as

𝑦 = 𝑓 (𝑊𝑚 ... 𝑓 (𝑊3 𝑓 (𝑊2 𝑓 (𝑊1𝑥 + 𝑏1) + 𝑏2) + 𝑏3) + ...𝑏𝑚),

where 𝑥 is the input to the network, 𝑊𝑖 and 𝑏𝑖 are the weights and biases of the 𝑖-th layer,

respectively. Moreover, 𝑓 is the activation function and 𝑦 is the output. The number of hidden

layers in the network is denoted by 𝑚. The output of each layer is calculated by applying the ac-

tivation function 𝑓 to the linear combination of the input vector and the corresponding weights

and biases of that layer. The output of the final layer gives the prediction or classification of

the network.

In the field of neural networks, it is widely acknowledged that backpropagation is the dom-

inant technique used for training neural networks. This algorithm, originally introduced by

Frank Rosenblatt in 1962 [86], has become widely adopted in machine learning. Backprop-

agation is an algorithm that allows the network to adjust its weights and biases by iteratively

propagating the errors backward from the output layer to the input layer. This process helps the

network learn and improve its performance by minimizing the difference between the predicted

and actual outputs.

1.6 Differential equations

Differential equations are mathematical equations that involve derivatives and are used to de-

scribe the relationships between variables and their rates of change. They have widespread

applications across various fields like physics, engineering, economics, and biology, enabling

the modeling and analysis of dynamic systems [87]. In this section, we will focus on discussing

two common types of differential equations, ordinary differential equations (ODEs) [88] and

partial differential equations (PDEs) [89].

1.6. Differential equations 23

1.6.1 Ordinary differential equations

Ordinary Differential Equation (ODE) [88] is a type of mathematical equation that describes

the relationship between a function and its derivatives. In an ODE, the unknown function

depends on a single independent variable and its derivatives with respect to that variable. The

equation typically involves derivatives of different orders and may include the function itself.

The general form of an ODE is given by

𝐹

(
𝑥, 𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2 , ...,
𝜕𝑛𝑢

𝜕𝑥𝑛

)
= 0, (1.6)

where 𝑥 is the independent variable, 𝑢 is the dependent variable, and 𝜕𝑢
𝜕𝑥

and 𝜕2𝑢
𝜕𝑥2 represent the

first and second derivative of 𝑢 with respect to 𝑥, and so on, up to the 𝑛th derivative 𝜕𝑛𝑢
𝜕𝑥𝑛

. The

function 𝐹 establishes the relationship between the variables 𝑥, 𝑢, and their derivatives.

ODEs are employed to model a wide range of physical phenomena as they offer a ro-

bust mathematical framework to describe the changes in quantities relative to an independent

variable, usually time [90]. In addition to their significance in understanding biological phe-

nomena [91], ODEs are also crucial in engineering applications, including motion, population

dynamics [92], chemical reactions [93], and electrical circuits [94].

1.6.2 Partial differential equations

Partial Differential Equations (PDEs) are mathematical models that involve partial derivatives

of an unknown function with respect to multiple independent variables [89]. They find broad

applications in various scientific and engineering disciplines for describing a wide range of

phenomena. PDEs are commonly encountered in fields such as fluid dynamics [95], electro-

magnetism [96], and finance [97], where they play a crucial role in understanding and predict-

ing complex behaviors.

24 Chapter 1. Introduction

The general form of a partial differential equation is

𝐹

(
𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛, 𝑢,

𝜕𝑢

𝜕𝑥1
,
𝜕𝑢

𝜕𝑥2
, ...,

𝜕2𝑢

𝜕𝑥1𝑥2
, ...,

𝜕𝑛𝑢

𝜕𝑥1𝑥2, ..., 𝑥𝑛

)
= 0, (1.7)

where 𝑢(𝑥1, 𝑥2, ..., 𝑥𝑛) is the unknown function, and 𝐹 is some function of the independent

variables 𝑥1, 𝑥2, ..., 𝑥𝑛 and the partial derivatives of 𝑢. The order of a partial differential equation

is the order of the highest partial derivative appearing in the equation.

Solving an ODE involves finding a function that satisfies the equation for a given set of

boundary conditions, which specify the behavior of the solution at the boundaries of the do-

main of interest [88]. Both numerical methods and ML methods have their advantages and

limitations when it comes to solving ODEs and PDEs. Numerical methods such as separation

of variables [98], finite difference methods [99, 100], finite element methods [101], spectral

methods [102], and Runge-Kutta methods [103] are widely used for solving ODEs and PDEs.

On the other hand, ML methods have gained attention for solving ODEs/PDEs as well. The

integration of ODEs/PDEs with ML techniques has ushered in new opportunities for modeling

and comprehending intricate physical, chemical, and biological systems. This integration can

be broadly classified into two domains, allowing for:

• Solving ODEs/PDEs: ML has shown great potential in solving ODEs/PDEs by offer-

ing new approaches to overcome the challenges associated with traditional numerical

methods[99, 101, 103, 104, 105]. ML techniques can handle complex geometries, high-

dimensional systems, and computationally expensive simulations more effectively. ML

techniques, including Gaussian Processes [106, 107], Neural Networks [108, 109, 110,

111, 112, 113], and Physics-Informed Neural Networks [114] have demonstrated their

effectiveness in solving PDEs.

• Predicting Unknown ODEs/PDEs: discovery of ODEs/PDEs using ML methods is an

exciting area of research that aims to automatically uncover the underlying equations

governing a system from available data. ML algorithms can be trained to discover

1.7. Data-driven discovery of PDEs 25

ODEs/PDEs by learning the functional relationships between the variables in the data.

These algorithms can identify patterns, correlations, and dependencies within the data,

enabling the extraction of the underlying PDEs. Discovering ODEs/PDEs through ML

involves tasks such as identifying the form of the ODEs/PDEs, estimating unknown pa-

rameters, and discovering new terms of the equation that improve the fit to the data [115,

116, 117].

The main objective of the studies presented in this thesis is to discover PDEs using ML

methods. The focus is on employing ML algorithms to analyze available data and uncover the

underlying equations that govern the system of interest. The primary objective of this thesis is

to enhance our comprehension of the phenomena governed by the PDEs and make significant

contributions to the field of PDE modeling and analysis.

1.7 Data-driven discovery of PDEs

Data-driven discovery of PDEs extracts mathematical models from observational or experi-

mental data to describe complex systems [114, 117, 118, 119]. It aims to identify the under-

lying PDEs and reveal their physics without prior knowledge of the equations. This approach

enables exploration and understanding of complex phenomena solely based on available data,

opening up new possibilities for modeling diverse systems. It has shown promising outcomes

in fields such as fluid dynamics, materials science, and neuroscience, leading to accelerated

discoveries and improved understanding. By extracting meaningful insights, data-driven PDE

discovery contributes to advancements and comprehension of complex phenomena across dis-

ciplines. The ability to predict PDEs from data opens up new possibilities for modeling and

analyzing complex systems. It enables researchers to gain insights into the underlying physical

processes and improve our understanding of the system’s behavior.

The process of discovering PDEs from data involves training an ML model to identify a

26 Chapter 1. Introduction

function 𝐹, which satisfies the PDE

𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥 , 𝑢𝑥𝑥 , ...), 𝑥 ∈ 𝛺 ⊂ R𝑛, (1.8)

where 𝑡 belongs to the time interval [0, 𝑇], 𝑢 is a series of measurements of certain physical

quantities on the domain 𝛺 ⊂ R𝑛, 𝑢𝑥 and 𝑢𝑥𝑥 represent the first- and second-order spatial

derivatives of 𝑢, and 𝑢𝑡 denotes the time derivative. During the training process, the ML model

is fed with labeled data, where the input data is known, and the corresponding output data is

provided. In certain models, the input data includes spatial and temporal variables, and the

output data represents the solution of the PDEs. The model captures patterns and relationships

between the input data and the corresponding output to discover the function 𝐹 that appears on

the right-hand side of Equation (1.8). However, in some models, the input data includes spatial

derivatives of the solution, such as 𝑢𝑥 and 𝑢𝑥𝑥 and the corresponding output represents the time

derivative, 𝑢𝑡 . In these cases, the model learns the relationships between the derivatives to

uncover the correct form of the function 𝐹 in Equation (1.8). The training process involves

feeding the model with labeled data, where the input data is known, and the corresponding

output data is provided. In some models, the input data includes spatial and temporal variables,

and the corresponding output data represents the solution of the PDEs. The model learns from

this labeled data by adjusting its internal parameters. However, in some models, the input data

includes spatial derivatives of the solution and corresponding output is time derivative. The

model learns patterns between derivatives to discover right hand side of the Equation (1.8).

Once the model is trained, it can be used to identify the underlying PDEs that govern

the system’s dynamics. The ML model can capture the spatial and temporal dependencies

present in the data, allowing it to infer the underlying PDEs based on the learned patterns. This

approach is particularly useful when the explicit form of the PDEs is unknown or difficult to

derive analytically.

Various methods have been proposed to tackle the task of predicting PDEs from data. PDE-

1.7. Data-driven discovery of PDEs 27

Net [120, 121], in which the primary goal is to learn the form of the non-linear function 𝐹 such

that

𝑢𝑡 = 𝐹 (𝑥, 𝑢,∇𝑢,∇2𝑢, ...),

where 𝑥 ∈ 𝛺 ⊂ R2 and 𝑡 ∈ [0, 𝑇], and 𝑢𝑡 is derivative of 𝑢 with respect to time 𝑡. The PDE-Net

approach offers a notable advantage by reducing the reliance on extensive prior knowledge re-

garding the specific form of the non-linear response function 𝐹, making it applicable to a wide

range of complex PDE problems. This simplifies the modeling process and eliminates the need

for specific operator approximations. However, PDE-Net is computationally demanding, es-

pecially for large-scale or high-dimensional PDE problems. Training and inference times may

increase significantly, requiring adequate computational resources for efficient implementation.

Additionally, the performance of PDE-Net is highly dependent on the availability of abundant

and representative training data. In cases where data is limited or of poor quality, the network

may encounter challenges in accurately learning the underlying dynamics of the PDE.

Neural networks [122] and Gaussian processes [117] are two other often used methods for

discovering equations. Neural networks offer flexibility in discovering equations by approxi-

mating complex relationships, while Gaussian processes provide a probabilistic approach with

uncertainty quantification. Sparse Identification of Non-linear Dynamics (SINDy) [123, 124]

is a data-driven technique that uncovers the governing equations and dynamics of a system

from noisy and high-dimensional data. The SINDy algorithm employs sparse regression to es-

timate coefficients in governing equations. It constructs a library of candidate functions, such

as polynomials and trigonometric functions, and identifies the most relevant terms and their

coefficients. SINDy has found success in various scientific domains, however, the choice of

candidate functions is critical, requiring expertise specific to the problem at hand. Incorrect

choices may lead to inaccurate equation discovery [123].

Physics-Informed Neural Networks (PINNs), on the other hand, have emerged as a power-

ful technique that combines the flexibility of neural networks with the incorporation of physical

constraints. By integrating known physics principles into the learning process, PINNs enhance

28 Chapter 1. Introduction

the accuracy and generalizability of the predicted PDEs [114, 125]. By integrating physics-

based constraints into the loss function, PINNs enable the direct learning of the underlying

equations governing a system from available data.

Conservative Physics-Informed Neural Network (cPINN) [126] and eXtended Physics-

Informed Neural Networks (X-PINNs) [127, 128] are valuable approaches for equation dis-

covery, with their specific advantages and considerations. cPINN is a spatial domain decom-

position approach within the PINN framework specifically designed for conservation laws. It

focuses on enforcing conservation principles in the solution of PDEs. cPINN decomposes the

computational domain into smaller subdomains and trains separate neural networks for each

subdomain. The solutions from individual subdomains are then combined to ensure overall

conservation. X-PINNs, on the other hand, generalized space-time domain decomposition ap-

proach for PINNs framework. It enables the deployment of multiple neural networks in smaller

subdomains, enhancing representation and parallelization capabilities. Unlike cPINN, X-PINN

is applicable to any type of PDE and allows arbitrary decomposition in space and time.

The utilization of the residual network (ResNet) aims to reveal hidden parameterized dy-

namical systems through the utilization of observational data concerning state variables in

[129]. Time-series or spatio-temporal datasets can be employed to identify accurate governing

systems using utilizing neural networks for ordinary and partial differential equations (Ne-

uPDE), as discussed in [130]. This model is parameterized using both shallow multilayer

perceptrons and nonlinear differential terms, allowing it to capture relevant correlations among

spatio-temporal samples. A network-based approximation to an ODE/PDE was constructed,

considering both the interconnections among components (via a dictionary of monomials) and

the differential characteristics of spatial terms (through finite difference kernels). A framework

named DLGA-PDE, which merges deep learning and genetic algorithms, has been introduced

for the discovery of PDEs, as discussed in [131].

1.8. Coarse-graining: bridging the gap between microscopic and macroscopic properties 29

1.8 Coarse-graining: bridging the gap between microscopic

and macroscopic properties

This section introduces the basic idea of coarse-graining, and the concepts of microscopic

and macroscopic properties. In this thesis, the focus is not on the simulation methods, but

simulations are used simply as the source of data. This data is then used for discovering the

underlying PDEs or ODEs from the data using ML methods. Figure 1.6 shows a sketch of

different common simulation methods (the boxes), typical time scales, and the typical entities

or/and particle numbers (ovals and spheres) used in them. In this thesis, phase-field models and

coarse-grained MD were used for data generation and the specific methods used are described

in Chapter 3.

Figure 1.6: Typical time scales and simulation modelling methods, fs=femtosecond
(10−15 s), ps=picosecond (10−12 s), ns=nanosecond (10−9 s), `s=microsecond (10−6 s), and
ms=millisecond (10−3 s). MD stands for molecular dynamics and CG for coarse-grained. The
rectangular boxes list the methods while the ovals and spheres provide typical systems sizes and
basic entities (that is, whether the method uses atoms, elements or such) used by the method.
The current longest MD simulations can reach about a millisecond on specialized hardware [2].
The work that lead to the 2013 Nobel Prize in Chemistry for multiscale modeling is discussed
in detail in a pre-Nobel Prize article by Karplus [3]. The relations between the different meth-
ods are discussed in detail by Murtola et al. [4].

Microscopic properties refer to the characteristics and behaviors of a material at the atomic

30 Chapter 1. Introduction

or molecular level. These properties encompass various attributes, including the positions and

velocities of particles, their energies, and the interactions between them. Examples include

atomic arrangements, chemical bonding, intermolecular forces, electronic structure, and vibra-

tional modes. An understanding of these microscopic properties is crucial for predicting and

explaining the macroscopic behavior and properties of the material [132].

On the other hand, the macroscopic properties refer to the observable behaviors and charac-

teristics of a material at a larger scale. These properties can include mechanical behavior (e.g.,

elasticity, strength), thermal behavior (e.g., temperature, conductivity, expansion), electrical

behavior (e.g., conductivity, resistivity), and other relevant properties that are measurable at a

macroscopic level. They are influenced by the underlying microscopic properties and interac-

tions within the material but are generally expressed in terms of averaged or bulk properties

that are relevant to practical applications and experimental measurements [132, 133].

Coarse-graining techniques can be used to bridge the gap between microscopic and macro-

scopic by providing simplified descriptions that capture the essential behavior at larger scales.

Coarse-graining plays a crucial role in reducing the computational complexity of simulations in

modeling physical systems, enabling studies of larger systems or longer timescales than would

be possible with microscopic simulations alone. It simplifies complex systems by reducing the

number of degrees of freedom. This involves averaging or integrating over the small-scale de-

tails such as the positions and velocities of individual atoms, to derive a simplified description

of its behavior [4, 134, 135, 136, 137, 138, 139, 140]. Multiscale modeling was recognized

with the 2013 Nobel Prize in Chemistry.

Three main categories commonly used to classify different levels of scale are macroscale,

mesoscale, and atomistic. Macroscale refers to time and length scales observable by the naked

eye consisting typical times > 0.1 s and typical lengths > 1 mm. At the macroscopic level,

the main simulation methods commonly employed include phase-field models [141], finite

element method [101], and Monte Carlo simulations [142]. The mesoscale represents inter-

mediate scales not directly observable by the naked eye but accessible through various exper-

1.9. Thesis outline 31

imental techniques, typical time scales range from 10−7 s up to 10−1 s, while lengths range

from micrometers to millimeters. At the mesoscale, commonly used simulation methods in-

clude phase-field models, lattice Boltzman [143], coarse-grained molecular dynamics [144],

and Monte Carlo simulations.

The atomistic scale refers to the molecular scale, where phenomena involve the interactions

and behaviors of individual atoms or molecules. The typical time scales range from picosec-

onds (10−12 s) to a few hundreds of nanoseconds (10−7 s), while lengths range from Ångströms

to a few tens of nanometers (10−10 - 10−8 m). This scale focuses on phenomena involving

microscopic mechanisms and interactions, such as hydrogen bonding. Commonly used simu-

lation methods at the atomistic scale include classical molecular dynamics [3] and Monte Carlo

simulations.

1.9 Thesis outline

In this dissertation, we focus on ML-based approaches for discovering coarse-level equations

from data. We aim to extract meaningful relationships and patterns from the given data to

derive simplified equations that capture the essential dynamics of the system. Our efforts are

primarily dedicated to three key objectives: discovering equations through the utilization of

black-box learning [145], gray-box learning [146], and white-box [147] learning approaches.

Black-box learning involves training models without any prior knowledge about the underlying

system. Gray-box learning, on the other hand, combines limited prior knowledge with data-

driven learning.

In the case of black-box models, our focus is on learning the relationships between the in-

puts and the outputs without explicitly representing the equations symbolically. We investigate

two specific scenarios to tackle this challenge. In the first scenario, we encounter an unknown

relation between field evolution and its spatial derivatives. To address this, we employ two

different approaches. The first involves utilizing a multi-layer perceptron (MLP) to discover

32 Chapter 1. Introduction

the underlying equation. In the second approach, we combine a convolutional neural network

(CNN) with long short-term memory (LSTM) to uncover the equation. The CNN-LSTM ar-

chitecture proves beneficial in modeling the temporal dependencies and capturing the complex

relationships between the field evolution and its spatial derivatives. In the second scenario, we

encounter a situation where the spatial derivatives, their orders, and combinations are unknown.

To address this challenge, we employ a CNN-based approach. The CNN proved effective in

capturing the complex patterns and dependencies present in the data, allowing us to uncover

the underlying equation without prior knowledge of the derivatives and their combinations.

This approach proved especially valuable when dealing with complex and non-linear systems,

where deriving the underlying equations may be difficult or even unknown.

Explicit equation discovery approaches have previously been explored in addition to black-

box learning. Techniques such as PINNs [114] and X-PINN [127, 128] have been developed

to explicitly uncover the underlying equations governing a physical system. In this thesis, we

have developed a framework that combines X-PINNs with data-driven methods to uncover

the non-linear term in a partially known PDE, incorporating a Laplacian term as a diffusion

operator. This approach provides an effective solution for gray-box learning of equations using

X-PINNs, where equations are discovered with limited prior knowledge. Gray-box learning

involves uncovering equations when only partial knowledge is available [148, 149].

Moreover, to discover an equation using white-box learning, we utilized PINNs to investi-

gate the behavior of calcium-magnesium-aluminosilicate (CMAS) droplet spreading dynamics.

By leveraging the parameter discovery capability of PINNs, we uncovered the unknown param-

eters of the proposed ordinary differential equation (ODE) that effectively captures the droplet

spreading behavior.

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview of the neural network methods employed in this study. Sec-

tion 2.1 covers the feed-forward neural network and multilayer perceptron (MLP). Section 2.2

discusses the Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). Sec-

1.9. Thesis outline 33

tion 2.3 focuses on Convolutional Neural Networks (CNNs) and their architecture. The appli-

cation of PINNs and X-PINNs is explored in Section 2.4. Finally, Section 2.5 delves into the

use of symbolic regression.

Chapter 4, machine learning based data-driven discovery of non-linear phase-field dynam-

ics, which includes an introduction to the subject in Section 4.1. A brief summary of the phase-

field approach and data preparation is presented in Section 4.2. In Section 4.3, an overview of

MLP and CNN-LSTM networks. Finally, in Section 4.4, we introduce a CNN network that

learns PDEs without any assumption regarding spatial derivatives.

Chapter 5, A Framework Based on Symbolic Regression Coupled with eXtended Physics-

Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data, which

includes an introduction to the subject in Section 5.1. Section 5.2 provides an overview of the

phase-field approach and data preparation. Section 5.3 gives a brief summary of the PINNs

and X-PINNs. Section 5.4 presents the symbolic regression results. The performance of the

framework for noisy data is discussed in Section 5.5. In Section 5.6, we examine the frame-

work’s performance for different sizes of training data sets to investigate the amount of optimal

data required for training. Finally, a summary of the chapter is provided in Section 5.7.

Chapter 6, Characterization of partial wetting by multiphase many-body dissipative parti-

cle dynamics and data-driven discovery based on Physics-Informed Neural Networks, which

includes an introduction to the subject in Section 6.1. In Section 6.2, we provide an overview

of the mDPD simulation parameters and system setup. The simulation results and the pro-

cess of data preparation are presented in Section 6.3. Section 6.4 gives a brief introduction

to the PINNs architecture, followed by a presentation of the results of PINNs and parameter

discovery. The symbolic regression results are outlined in Section 6.5. Section 6.6 covers the

discussion on B-PINNs. Finally, we conclude with a summary of the chapter in Section 6.7.

Chapter 7 summarizes the study’s major conclusions, highlights key findings, and provides

a comprehensive discussion on potential future research directions.

Chapter 2

Neural network models: An overview

In this chapter, we provide a comprehensive review of the deep learning methods employed in

this thesis. It is important to highlight that all the methods utilized in the thesis research are

supervised learning models, which involve training the models using labeled data. Throughout

the thesis, the power of deep learning techniques for the discovery of PDEs is harnessed. To

accomplish this, we employed various deep learning models, including multi-layer perceptrons

(MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs).

Using neural networks for data-driven discovery of PDEs has become a powerful and ef-

fective approach [114, 117]. The ability of neural networks to learn complex patterns and

relationships within the data enables the discovery of hidden physical laws and its governing

equations. This approach offers several advantages, including the potential to uncover novel

insights, accelerate the discovery process, and enhance the accuracy of the physical PDE mod-

els.

In contemporary neural network design, one of the critical challenges is determining the

most suitable network size for a particular application. The concept of network size encom-

passes multiple factors within layered neural network architectures, such as the number of

layers, neurons per layer, and connections. Fundamentally, a neural network operates as a non-

linear mapping denoted by 𝑦 = 𝐹 (𝑥), where the mapping function 𝐹 is established during a

34

2.1. Feed-forward neural network 35

training phase. This training phase enables the network to effectively associate input patterns 𝑥

with their corresponding output 𝑦. Through iterative adjustments to its parameters, the neural

network learns to capture and represent complex relationships between the input and output,

ultimately achieving the desired mapping. Given a collection of training examples (𝑥, 𝑦), there

exists a multitude of network sizes that could potentially learn to map input patterns 𝑥 to out-

put patterns 𝑦. However, determining which network size is the most appropriate for a given

problem is often far from straightforward. To date, there is no definitive answer to this question

[150].

2.1 Feed-forward neural network

The feed-forward neural network (FNN), recognized as the multilayer perceptron (MLP),

stands as a foundational architecture within the domain of artificial neural networks. It is

the first, simplest and most common type of neural network used in various machine learning

applications [69, 150, 151]. An FNN consists of an input layer, one or more hidden layers,

and an output layer. Each layer is composed of interconnected neurons. Information flows

through the network in forward direction, from the input layer through the hidden layers to

the output layer. A fundamental form of a feed-forward neural network is the linear network,

which consists of input and output nodes organized in layers. In this simple architecture, the

inputs are directly connected to the outputs through a set of weights. The information flows

straightforwardly through the network without intricate transformations or hidden layers. The

node outputs are determined by calculating the sum of the products between the weights and

their corresponding inputs.

The advancement of neural network research has led to the development of multi-layer

feed-forward neural networks, commonly known as MLPs. MLPs are comprised of multiple

layers of perceptrons and are fully connected, meaning that each neuron in a layer is connected

to every neuron in the subsequent layer. Perceptron represents a single neuron in the network.

36 Chapter 2. Neural network models: An overview

It receives inputs, applies weights to these inputs, and computes an output using an activation

function [152].

The concept of MLPs was first introduced by Alexey Ivakhnenko and Valentin Lapa in

1965 [153]. MLPs are often informally referred to as vanilla neural networks, particularly

when they consist of a single hidden layer. In an MLP, each neuron establishes connections

with neurons in both the previous and following layers. The computation within a neuron

involves weighing the inputs received from the preceding layer, applying an activation function

to the resulting sum, and transmitting the output to the subsequent layer. During the training

process, MLPs iteratively adjust the weights and biases of the neurons in order to minimize

the discrepancy between the predicted output and the actual output. This iterative optimization

process allows MLPs to learn complex patterns and relationships within the input data, making

them suitable for a wide range of tasks across various domains.

In the domain of deep learning, backpropagation is the most commonly used technique

for training MLPs [75]. The primary objective of backpropagation is to analyze the relation-

ship between the network’s error and its weights and biases. By computing this relationship,

the backpropagation algorithm enables the optimization of the network’s weights and biases,

leading to a reduction in the overall error and an improvement in performance. By iteratively

adjusting the weights and biases based on the calculated gradients of the loss function with

respect to the weights and biases, backpropagation aids the network in learning the appropriate

transformations and representations necessary to make accurate predictions or classifications.

This iterative process gradually improves the network’s ability to generalize and make correct

mappings, enhancing its overall learning capability. The algorithm involves computing the

gradient of the error function with respect to the weights and biases and using it to update

their values. This iterative process continues until the network is able to accurately predict the

output for new input data [154, 155, 156].

Figure 2.1 shows a basic feed-forward neural network architecture having an input layer

with two nodes. The hidden layer consists of three nodes, and the output layer comprises a

2.1. Feed-forward neural network 37

Data

Figure 2.1: A basic feed-forward neural network is constructed with a single input layer com-
prising of two nodes, X = (𝑥1, 𝑥2), followed by a hidden layer consisting of three nodes
shown by 𝑧1, 𝑧2, 𝑧3, and culminating in an output layer containing one node, denoted as Y = 𝑦.
The connections between the input layer and the hidden and output layers are represented by
weights 𝑤𝑖 for 𝑖 ∈ 1, 2, 9.

single node. To illustrate a specific instance, let’s consider an input vector X = (𝑥1, 𝑥2) and the

desired output Y = 𝑦. Initially, the weights and biases connecting the input layer to the hidden

and output layers are randomly or near-zero initialized. The network utilizes the weights and

biases, in conjunction with the activation functions, to compute the outputs of the hidden layer

nodes as well as the final output of the network. The output of each node in the hidden layer

can be calculated by taking the weighted sum of the inputs for that particular node,

𝑧1 = 𝐿 (𝑤1 · 𝑥1 + 𝑤4 · 𝑥2 + 𝑏1),

𝑧2 = 𝐿 (𝑤2 · 𝑥1 + 𝑤5 · 𝑥2 + 𝑏2),

𝑧3 = 𝐿 (𝑤3 · 𝑥1 + 𝑤6 · 𝑥2 + 𝑏3),

where 𝐿 represents the activation function.

In a neural network, the output of each layer becomes the input for the next layer, estab-

lishing a sequential flow of information through the network. This iterative process of passing

information from one layer to the next is repeated for each neuron in the output layer. It ensures

that the information is effectively transmitted and propagated throughout the entire network,

38 Chapter 2. Neural network models: An overview

culminating in the computation of the final output

�̂� = 𝐿 (𝑤7 · 𝑧1 + 𝑤8 · 𝑧2 + 𝑤9 · 𝑧3 + 𝑏4).

The process of training a neural network involves several interconnected steps. First, the

error for each output neuron is computed by comparing the predicted output �̂� with the actual

output 𝑦 using a chosen loss function 𝐸 . This error serves as a measure of the network’s

performance. Next, the backpropagation algorithm is employed to calculate the gradients of

the error with respect to the trainable parameters of a neural network, weights and biases,

denoted by θ. During the training process, the trainable parameters of the neural are updated

according to

\𝑡 = \𝑡−1 − 𝜖
𝜕𝐸

𝜕θ
. (2.1)

This process efficiently propagates the error from the output layer back to the hidden layers,

allowing for adjustments to be made at each layer. In the optimization process, the loss function

𝐸 is often chosen to be the squared-error function. The learning rate 𝜖 plays a significant role

as it determines the step size for updating the weights and biases. It controls the extent to

which the parameters are adjusted based on the calculated gradients. Selecting an appropriate

learning rate is crucial because a value that is too small may result in slow convergence, while

a value that is too large can cause the optimization process to diverge.

This update rule guides the optimization process, gradually minimizing the loss function

and improving the network’s performance. Optimization is a crucial process in ML, where the

model is iteratively trained to find the optimal values for the model’s parameters. It plays a

vital role in achieving better results and improving the performance. By optimizing the model,

we aim to find the optimal set of parameters that minimize the loss function, thereby improving

the accuracy and effectiveness of the model’s predictions.

By combining these steps, neural networks can learn from data, adjust their parameters,

and optimize their performance. This iterative process of computing errors, backpropagating

2.2. Recurrent neural network 39

gradients, and updating parameters allows the network to converge towards a more accurate

representation of the desired output, making it capable of solving complex problems and mak-

ing reliable predictions.

2.2 Recurrent neural network

A Recurrent Neural Network (RNN) is a type of artificial neural network designed to handle

sequential data, such as time series or natural language text [157, 158]. It incorporates the con-

cept of recurrence into its architecture, allowing for the processing of sequential information.

Similar to feed-forward neural networks, a basic RNN consists of three essential components:

the input layer, the hidden layer, and the output layer. However, RNNs utilize feedback con-

nections that enable the flow of information in both the forward direction and in a recurrent

manner. In each time step, the input layer receives sequential input data, serving as the initial

stage for processing the sequential information within the network.

The hidden layer in a RNN plays a crucial role by incorporating recurrent connections,

allowing the network to maintain a memory of past inputs. In each time step, the hidden

state is updated by combining the current input with the previous hidden state. This hidden

state serves as a memory bank, capturing important information from previous time steps. By

retaining this memory, the network can learn and capture temporal dependencies within the

data, enabling it to effectively analyze sequential patterns.

RNNs have been successfully applied to a wide range of tasks, such as speech recogni-

tion [159], machine translation [160], and image captioning [161]. However, training RNNs

can pose challenges, primarily because of the issue of vanishing or exploding gradients [75].

These gradient-related problems can impede the network’s ability to effectively learn long-term

dependencies within the input sequence. The vanishing gradient problem occurs when the gra-

dients calculated during backpropagation diminish exponentially as they propagate through the

layers of the network. Consequently, the network struggles to capture and learn dependencies

40 Chapter 2. Neural network models: An overview

that span across many time steps in the sequence. The exploding gradient problem arises when

the gradients grow exponentially during backpropagation, leading to unstable and ineffective

learning. Both the vanishing and exploding gradient problems hinder the RNN’s capacity to

retain and utilize information from earlier time steps, impairing its ability to model and learn

long-term dependencies accurately. Addressing these challenges often requires careful initial-

ization of the network’s parameters, regularization techniques, or the utilization of specialized

RNN architectures such as Long Short-Term Memory (LSTM) [162, 163], and Gated Recur-

rent Unit (GRU) [164].

2.2.1 Long short-term memory

Long Short-Term Memory (LSTM) is a specific type of recurrent neural network (RNN) that

has demonstrated remarkable capabilities in learning sequential problems [162, 163]. LSTM

networks excel particularly in scenarios where past inputs play a crucial role in predicting the

current output. The LSTM model was introduced in 1997 by German scientists Hochreiter and

Schmidhuber [165]. LSTM is specifically designed to retain information over long sequences.

The architecture of LSTM enables it to effectively capture and retain dependencies and patterns

that occur at different time steps in the input sequence. This distinctive capability to preserve

information over long periods sets LSTM apart from other recurrent neural networks. It makes

LSTM particularly suitable for tasks that require modeling long-term dependencies, including

language modeling, speech recognition, and time series analysis.

As shown in Figure 2.2, the LSTM architecture comprises three primary states: the cell

state (𝐶𝑡−1, 𝐶𝑡), the input state (𝑋𝑡 , ℎ𝑡−1), and the output state (ℎ𝑡). The term ’state’ refers

to the internal memory components that store and carry information throughout the network’s

sequential processing. These states play a crucial role in retaining relevant information from

previous inputs and propagating it to subsequent time steps. The cell state (𝐶𝑡−1, 𝐶𝑡) is a fun-

damental component of the LSTM architecture, often referred to as the memory unit. It passes

information along the LSTM units within the network, allowing for the transfer and modifica-

2.2. Recurrent neural network 41

tion of information. This information is altered using gate layers, which play a significant role

in controlling the flow of information within the LSTM. In addition, each LSTM unit com-

prises four essential components, the forget gate (𝑓𝑡), the input gate (𝑖𝑡), the new memory gate

(𝐶′𝑡), and the output gate (𝑜𝑡). These gates enable the network to selectively retain or discard

information based on the context of the input sequence. They are defined as follows:

• Forget gate: Determines what information should be forgotten or discarded from the

previous cell state. It takes as input the previous cell state and the current input, applies

a 𝜎 activation function, and produces a forget gate vector. This vector determines the

portion of the previous cell state that should be retained and passed to the next time step.

• Input gate: A crucial component in determining the new information to be stored in the

current cell state. It accomplishes this by taking the previous cell state and the current

input and passing them through a 𝜎 activation function. The 𝜎 function squashes the

values between 0 and 1, allowing the LSTM cell to selectively control the flow of infor-

mation. Simultaneously, the current input is processed separately using a tanh activation

function, resulting in the creation of a candidate vector. The candidate vector represents

potential new information that could be added to the current cell state. It is an inter-

mediate vector generated by applying the tanh activation function to the current input.

The tanh activation function in an LSTM assists in capturing non-linear relationships,

handling positive and negative values, and evaluating the importance of the current input

for memory state. The candidate vector, along with the input gate, is then utilized to

determine which parts of the candidate vector should be integrated into the cell state. By

combining the input gate and candidate vector, the LSTM unit can effectively control

and regulate the flow of new information into the current cell state, allowing for selective

memory retention and integration of relevant information.

• Output gate: Takes both the previous cell state and the current input, applies a 𝜎 acti-

vation function, and generates an output gate vector. Subsequently, the current cell state

42 Chapter 2. Neural network models: An overview

undergoes a tanh activation function, resulting in a transformed cell state. This trans-

formed cell state is then element-wise multiplied with the output gate vector, producing

the output of the LSTM cell. This final output encapsulates the relevant information from

the cell state that is deemed important for further processing or prediction.

SigmoidSigmoid Sigmoidtanh

tanh

Figure 2.2: The LSTM architecture diagram illustrates the presence of three inputs: 𝑋𝑡 (cur-
rent input), ℎ𝑡−1 (previous hidden state), and 𝐶𝑡−1 (previous cell state). It also showcases the
existence of three gates, input gate, forget gate, and output gate. Furthermore, the diagram
includes two outputs, ℎ𝑡 (current hidden state) and 𝐶𝑡 (current cell state). The symbol × repre-
sents element-wise multiplication and the symbol + represents element-wise addition.

Each gate has a 𝜎 activation function that outputs values between zero and one, controlling

the flow of information. Additionally, the LSTM unit includes a memory cell that utilizes the

tanh activation function to regulate the cell state. Terminology:

• ℎ𝑡−1 is the output of the LSTM at the previous time step, that is, 𝑡 − 1.

• 𝑋𝑡 is the input to the LSTM at time step 𝑡

• 𝐶𝑡−1 is the cell state at the previous time step (𝑡 − 1).

• 𝑖(𝑡), 𝑓 (𝑡), 𝑜(𝑡), and 𝑔(𝑡) are the values of the input gate, forget gate, output gate, and cell

update vectors at time step 𝑡, respectively.

2.2. Recurrent neural network 43

Each LSTM unit receives three inputs: 𝑋𝑡 , ℎ𝑡−1, and 𝐶𝑡−1, and generates one output ℎ𝑡 (output

at time step 𝑡) and a new cell state 𝐶𝑡 . The input ℎ𝑡−1, which comes from the previous LSTM

unit, plays a role in controlling the information flow. If the current unit is the first unit of

the LSTM, there is no previous input available. In such cases, a randomly generated value is

assigned to ℎ𝑡−1. Once these inputs are processed through the internal gates, they are used to

update the cell state from 𝐶𝑡−1 to 𝐶𝑡 and contribute to predicting the output ℎ𝑡 of the current

LSTM unit.

The forget gate in an LSTM determines what information should be retained or forgotten

from the previous cell state (𝐶𝑡−1). It uses a 𝜎 layer to make this decision. The forget gate

takes inputs from the input state (𝑋𝑡) and the previous output state (ℎ𝑡−1) and produces a value

between 0 and 1 for each element in the cell state 𝐶𝑡−1. The purpose of training a network

within the forget gate is to produce outputs close to 0 for irrelevant input components and

closer to 1 for relevant ones. If the output is 1, the corresponding information is retained

completely, while if it is 0, the information is entirely removed from the cell state 𝐶𝑡−1. The

mathematical formula for the forget gate is given by

𝑓𝑡 = 𝜎(𝑊 𝑓 [ℎ𝑡−1, 𝑋𝑡] + 𝑏 𝑓), (2.2)

where 𝑊 𝑓 represents the weight matrix, which is a square matrix of dimension (𝑛× 𝑛), 𝑛 is the

number of features, and 𝑏 𝑓 represents the bias term associated with the forget gate.

In the first process, the inputs 𝑋𝑡 and ℎ𝑡−1 are passed through a 𝜎 function to generate the

input gate (𝑖𝑡). The input gate decides which values should be passed on to the next step. The

mathematical formula for the input gate is

𝑖𝑡 = 𝜎(𝑊𝑖 [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖). (2.3)

In the second step, a tanh function is employed to process the inputs (𝑋𝑡) and ℎ𝑡−1, generating

44 Chapter 2. Neural network models: An overview

values for 𝐶
′
𝑡 in the range of [−1, 1],

�̂�𝑡 = tanh(𝑊𝑐 [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐). (2.4)

The terms 𝑊𝑐 and 𝑏𝑐 represent the weight matrix and bias vector. A new cell state, 𝐶𝑡 , is

generated by multiplying the previous cell state, 𝐶𝑡−1, with the forget gate, 𝑓𝑡 , this helps the

LSTM unit to selectively retain relevant information and discard irrelevant or outdated infor-

mation. Then it is added to the element-wise multiplication of the input gate 𝑖𝑡 , and the values

of �̂�𝑡 . Therefore, the LSTM unit can selectively update the cell state with new information.

The mathematical formula for computing 𝐶𝑡 is given by

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡�̂�𝑡 . (2.5)

The newly generated cell state, 𝐶𝑡 , contains crucial information that is passed on to the next

LSTM unit in the network. This information is used by the subsequent unit to predict its output.

In the final step, the output of the LSTM unit is determined. This step involves two sub-

steps. In the first sub-step, the information from the current input, 𝑋𝑡 , and the previous output,

ℎ𝑡−1, are fed into a 𝜎 function. The 𝜎 function determines which parts of the cell state con-

tribute to the output. Mathematically, this is represented by

𝑜𝑡 = 𝜎(𝑊𝑜 [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜). (2.6)

In the second sub-step, the values of the cell state, 𝐶𝑡 , are passed through a tanh function

to scale the values between −1 and 1. The output of the tanh function is then multiplied by

the output of the 𝜎 function to produce the final output, ℎ𝑡 . This can be represented by the

following formula,

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡), (2.7)

where 𝑜𝑡 represents the output gate, 𝐶𝑡 represents the cell state, and tanh represents the hyper-

2.3. Convolutional neural network 45

bolic tangent function. The multiplication of the output gate with the scaled cell state allows

the LSTM unit to selectively include relevant information from the cell state in the final output.

2.3 Convolutional neural network

Convolutional Neural Networks (CNNs) are a specialized type of deep learning algorithm pri-

marily utilized for image and video processing tasks [166]. CNNs have found extensive utility

in object and face recognition, and image classification [167, 65]. At the heart of a CNN lies

the convolutional layer, which employs filters or kernels to extract important visual features

like edges, shapes, and patterns from the input image.

As illustrated in Figure 2.3, the typical architecture of CNN consists of multiple hidden

layers that facilitate the extraction of information from images. The three key layers in a CNN

are:

1. Convolutional layer

2. Pooling layer

3. Fully connected layer

A CNN model typically operates in two main steps, feature extraction and classification.

In the feature extraction step, the CNN learns to automatically extract relevant and meaningful

features from, for example, the input images. This is achieved through the use of convolutional

layers. The convolution layer is an initial step in extracting important features from an image.

It consists of multiple filters that perform the convolution operation. Each filter convolves over

the image, performing element-wise multiplication and summing up the results to produce

a feature map. The filters capture different patterns, such as edges, corners, and textures,

at various spatial locations within the image. The values of the subsequent feature map are

calculated as

𝐺 [𝑚, 𝑛] = (𝑓 ∗ ℎ) [𝑚, 𝑛] =
∑︁
𝑖

∑︁
𝑗

ℎ[𝑖, 𝑗] 𝑓 [𝑚 − 𝑖, 𝑛 − 𝑗], (2.8)

46 Chapter 2. Neural network models: An overview

Convolution

Pooling

Fully connected
Flatten

Input

Figure 2.3: A basic architecture of CNNs comprises multiple convolutional layers, followed by
pooling layers, which reduce the dimensionality of the feature maps to extract the most relevant
features. After the pooling layers, a flattening layer is applied to convert the multi-dimensional
feature maps into a one-dimensional vector. This prepares the data for further processing by
fully connected layers. The fully connected layers are responsible for making predictions or
performing classification tasks based on the extracted features.

where the input image is represented by 𝑓 and the kernel by ℎ. The indices of rows and columns

in the resulting matrix are indicated by 𝑚 and 𝑛, respectively.

Pooling is an operation used for down-sampling in order to reduce the dimensionality of

the feature map. After the rectified feature map is obtained, it is passed through a pooling layer

to produce a pooled feature map. Pooling layers identify different parts of the image, such as

edges, by downsampling the feature map. By reducing the spatial resolution of the features,

pooling layers highlight important patterns and structures in the image. The pooling operation

helps to capture the presence of edges by effectively summarizing the information in a local

neighborhood and retaining the most prominent features. This allows the network to focus on

important visual cues, making it more robust to variations in position and scale.

Figure 2.4 shows an example scenario where a 6 × 6 image is represented as a matrix of

pixel values, where each pixel can have a value of either 0 or 1. Additionally, a filter matrix

of size 3 × 3 is used. The process of obtaining the convolved feature matrix involves sliding

the filter matrix over the image and computing the dot product at each position. This operation

captures important information from the image and produces the convolved feature matrix,

resulting in a matrix of size 4×4. Furthermore, a max pooling layer with 2×2 filters is applied

to reduce the dimensionality of the feature map. A max pooling layer is a type of pooling layer

2.3. Convolutional neural network 47

that performs down-sampling by dividing the input into non-overlapping regions and selecting

the maximum value from each region [168]. The process of flattening in a CNN is used to

transform the pooled feature maps, which are initially represented as 2-dimensional arrays,

into a 1-dimensional array. This involves rearranging the elements of the pooled feature maps

in a sequential manner, forming a vector. This vector representation is often referred to as a

single, long, continuous linear vector. It allows for a more straightforward input into the fully

connected layer, which is responsible for classifying the image based on the extracted features.

0

3
1

2
1
1
6

0
5
7
7

3
0

1
8
1
5
2
2

2

9 0
7 5
1 5 7

3
4

1

8

19
5

3
47

0

01

1
1

-1

-1
-1

-4
-11
-5
-1

8
14
5

-3

-4
1 2

2
-5

-6
-10

0
1

2

14

5
Max pooling

Figure 2.4: Example of a convolution operation. It involves taking a 3 × 3 matrix of numerical
values known as the kernel or the filter, and applying it to a 6× 6 input image. During this pro-
cess, the kernel is slid over the image, and element-wise multiplication is performed between
the kernel and the corresponding pixel values in the image. The results of these multiplications
are then summed up to generate an output using Equation (2.8). This operation allows the net-
work to extract relevant features from the image that are essential for subsequent analysis and
processing.

After the data has been flattened into a 1D array, it is forwarded to the fully connected

layer. As we use CNNs for regression purposes in this thesis, the output layer consists of

a single node without an activation function. The predicted value is directly obtained from

this node, representing the estimated numerical value [168]. Extensive research and litera-

ture have shown that CNNs generally follow a common architecture, which involves stacking

convolutional layers and pooling layers in a repeated manner before forwarding the output to

48 Chapter 2. Neural network models: An overview

fully-connected layers [169, 170]. This structured approach has proven to be successful in

various CNN applications.

One advantage of CNNs over recurrent-type networks is their convolutional structure,

which leads to a smaller number of trainable weights. This characteristic makes CNNs more

efficient during the training and prediction processes. By leveraging shared weights and local

receptive fields, CNNs can effectively capture spatial and hierarchical patterns in data, while

reducing the overall number of parameters [171].

2.4 Physics-Informed Neural Networks

Deep neural networks have garnered significant attention in the field of ML due to their im-

pressive universal approximation properties. Through the training process, the models can

learn to solve and uncover the equations that govern the observed phenomena. However, train-

ing deep neural network models typically demands a substantial quantity of labeled data, which

is frequently scarce in many scientific applications. A physics-informed approach, even with

relatively small amounts of labeled data, can be used to solve and discover equations. Physics-

Informed Neural Networks (PINNs) are a machine learning approach proposed by Raissi et

al. in 2019 [114] that combines the power of neural networks with the principles of physics

to solve and discover partial differential equations (PDEs). This approach differs from the

standard supervised learning as it leverages the physical properties of the PDE to guide the

training process: It incorporates known physical laws and governing equations as constraints

during the learning process. The algorithm incorporates the governing equation of a problem

into the neural network structure, and enhances the loss function by introducing a residual term

derived from the equation itself. The PDE residual is included as a regularization term in the

loss function of fully-connected neural networks.

This residual term serves as a penalty, restricting the search space to feasible solutions. By

doing so, the task of inferring solutions for PDEs is reformulated as an optimization problem,

2.4. Physics-Informed Neural Networks 49

where the goal is to minimize the loss function.

PINNs have been applied to two main problems in the field of PDEs:

• Data-driven solutions: PINNs can be utilized to solve PDEs by incorporating boundary

and initial conditions into the loss function. The network is trained to minimize the

loss, ultimately yielding a solution. This approach is particularly useful when analytical

solutions are not available or when enhancing the accuracy of numerical solutions is

desired. By learning from available data and integrating the known physical constraints,

PINNs provide efficient and accurate approximations to PDE solutions [172].

• Discovering PDEs: PINNs enable the discovery of PDE models from data by training

the network to fit the observed data and identifying the PDE that describes the system’s

dynamics. This approach is useful in cases where the underlying physics is unclear

or when deriving the PDE analytically is challenging. By combining ML with data-

driven insights, PINNs provide a powerful tool for exploring and understanding complex

systems, offering a direct and effective way to discover PDEs from observed data [172,

173].

In PINNs, both initial and boundary conditions can be integrated into the loss function during

the training process. This is achieved to ensure that the neural network not only fits the given

data but also respects the physical behaviors dictated by these conditions. Initial conditions are

conditions specified at the starting point of a system’s evolution. In PINNs, they are incorpo-

rated by evaluating the neural network’s predictions at the initial time step and then comparing

them to the provided initial values. The discrepancy between the predicted and actual initial

values contributes to the loss function. Boundary conditions, on the other hand, are constraints

set at the boundaries of the problem domain. In most cases, essential boundary conditions can

be enforced by introducing penalization terms to the loss function. These penalization terms

penalize the deviation of the neural network’s predictions from the desired boundary values.

These terms are multiplied by constant weighting factors that control their influence on the

50 Chapter 2. Neural network models: An overview

Neural Networks PDE:

Loss

Figure 2.5: The schematic of the PINNs methodology is utilized to uncover the unknown
parameters of a PDE. An MLP is trained using independent variables to predict the value of 𝑢.
The predicted 𝑢 is then utilized in the physics-informed portion of the methodology. The loss
function consists of two components, namely Lossdata and Lossphysics, which is minimized to
determine the unknown parameters _.

overall loss.

PINNs can be trained with relatively small datasets, especially when the underlying physics

of the problem is known and incorporated into the loss function. In such cases, the focus is

on capturing the physics-based constraints rather than relying solely on the quantity of train-

ing data. However, in situations where more complex or diverse patterns need to be learned, a

larger dataset may be beneficial to improve the generalization and accuracy of the PINN model.

Two main challenges in using PINNs are the substantial computational resources required for

training and the complexity of designing appropriate loss functions and constraints. The high

computational cost arises from the iterative nature of PINN training, involving forward and

backward passes, weight updates, and loss function minimization. This intensity increases

when dealing with large datasets or complex network architectures. On the other hand, for-

mulating accurate loss functions and constraints that effectively capture the underlying physics

can be a difficult and intricate task. It requires a deep understanding of the problem domain

and expertise in translating the physics into mathematical formulations [127, 174].

2.4. Physics-Informed Neural Networks 51

The general form of a non-linear PDE is given as

𝑢𝑡 − 𝑁 [𝑢, _] = 0 𝑥 ∈ 𝛺 ⊂ R𝑛, (2.9)

where 𝑢 is a function of 𝑡 and 𝑥 represents the solution of the equation, 𝑢𝑡 is its time derivative,

and 𝑁 [𝑢, _] denotes a non-linear operator that depends on the parameter _. In the context of

data-driven discovery of PDEs, the goal is to determine the values of the model parameters

_ that best describe the observed data. These parameters represent the unknown quantities or

characteristics of the underlying system that we want to estimate or infer based on the available

data.

To encapsulate the left-hand side of Equation (2.9), we define the residual 𝑓 (𝑡, 𝑥) as

𝑓 (𝑡, 𝑥) = 𝑢𝑡 − 𝑁 [𝑢, _] . (2.10)

First, as shown in Figure 2.5, a neural network is trained using the available data, which in-

cludes initial and boundary values, to learn 𝑢(𝑡, 𝑥), 𝑓 (𝑡, 𝑥), and parameters _. Predicted �̂�(𝑡, 𝑥)

is subsequently utilized to satisfy Equation (2.10). The loss function plays a crucial role in

guiding the training process. The loss function in PINNs consists of two main components,

Lossdata and Lossphysics,

Loss = Lossdata + Lossphysics. (2.11)

Lossdata measures the discrepancy between the predicted values of the neural network and the

observed data. It quantifies how well the network fits the given data points. For example, a

commonly used loss function for regression problems is the mean squared error (MSE), which

compares the predicted values with the actual data points via

Lossdata =
1
𝑁𝑢

𝑖=𝑁𝑢∑︁
𝑖=1

|𝑢(𝑡𝑖, 𝑥𝑖) − �̂�(𝑡𝑖, 𝑥𝑖) |2 , (2.12)

where 𝑁𝑢 is the number of training points, and 𝑢(𝑡𝑖, 𝑥𝑖) and �̂�(𝑡𝑖, 𝑥𝑖) denote the observed and

52 Chapter 2. Neural network models: An overview

predicted initial and boundary values at the training points.

Lossphysics incorporates the governing equations or physical constraints into the training

process. It ensures that neural network solutions satisfy the underlying laws of physics. This is

achieved by evaluating the residual of the differential equation, which represents the difference

between the left-hand side and the right-hand side of Equation (2.10). Lossphysics penalizes

the deviation from the governing equation and encourages the network to learn solutions that

satisfy the physics constraints,

Lossphysics =
1
𝑁𝑢

𝑗=𝑁 𝑓∑︁
𝑗=1

�� 𝑓 (𝑡 𝑗 , 𝑥 𝑗)��2 , (2.13)

where 𝑁 𝑓 is the number of residual points, and 𝑓 (𝑡 𝑗 , 𝑥 𝑗) is the value of the function 𝑓 (𝑡, 𝑥) at

the residual points.

During training, the network parameters are updated iteratively by computing the gradients

of the loss function with respect to these parameters. In addition to updating the network

parameters, the optimization process also involves iteratively adjusting the values of _. This

allows for a search in the parameter space to find the combination of values that yields the

best fit between the model predictions and the observed data. The overall loss in PINNs is a

combination of Lossdata and Lossphysics, which are typically weighted to reflect their relative

importance. The relative weights assigned to the losses can vary depending on the specific

problem and the desired balance between accurately fitting the data and enforcing the physics

constraints. By jointly optimizing both components of the loss, PINNs aim to find solutions that

not only match the observed data, but also adhere to the underlying physical laws governing

the system.

2.4.1 eXtended Physics-Informed Neural Networks

Since the introduction of PINNs, several extensions have been developed to enhance

their performance and to expand their applicability to various problem domains. These

2.4. Physics-Informed Neural Networks 53

extensions include Physics-Informed Attention-Based Neural Networks (PIANNs) [175],

Generative Adversarial Physics-Informed Neural Networks (GA-PINNs) [176], Graph

Convolutional Networks (GCNs) [177], Conditional Physics-Informed Neural Networks

(CPINN) [126], eXtended Physics-Informed Neural Networks (X-PINNs) [127, 128], and

Bayesian Physics-Informed Neural Networks (B-PINNs) [178].

One of the primary drawbacks of PINNs is their significant training cost, which can have a

detrimental effect on their performance, especially in real-life applications where real-time ex-

ecution is necessary. The computational expense of training a PINN model can be substantial,

making it challenging to achieve rapid convergence and efficient deployment of the model in

time-critical scenarios [126, 127, 128]. Therefore, there is a critical need to address this issue

and develop techniques that can accelerate the convergence of PINNs without compromising

their performance. One of the methods is to partition the computational domain into several

subdomains to train each subdomain separately.

X-PINNs are a generalized approach for solving and discovering PDEs in complex-

geometry domains. They involve generalized space-time domain decomposition in order

to provide computationally efficient solutions to PDEs across large spatial and temporal

domains. In this approach, the domain is first split into smaller subdomains. Then, the PDEs

are solved in each subdomain using PINNs and at the interfaces with certain continuity

conditions imposed as soft-constraints in the loss function. This allows X-PINNs to use

large neural networks without the common problem of overfitting. X-PINNs also reduce the

computational cost associated with training due to their implicit concurrent implementation.

X-PINN is designed to leverage parallel processing capabilities, particularly through the

implicit concurrent implementation, which allows for simultaneous computations and exploits

parallelism. This can help reduce the computational cost associated with training by utilizing

multi-core processors or specialized hardware like GPUs.

The original studies in this thesis employ both PINNs and X-PINNs to enable the explo-

ration of white-box and gray-box learning respectively, for discovering PDEs based on avail-

54 Chapter 2. Neural network models: An overview

able data.

2.5 Symbolic regression

Symbolic regression is the process of discovering an optimal mathematical expression that ac-

curately predicts a continuous target variable [179]. It has found significant applications in the

field of physical systems, particularly in deriving natural laws from observational data [180].

The primary objective of symbolic regression is to discover a model that accurately represents

the underlying relationship between the input variables and the target variable. This model

should also be interpretable and easily understandable.

Given a set of features represented by 𝑥 ∈ R𝑛 and a corresponding target variable 𝑦 for

which a ground-truth solution 𝑦(𝑥) = 𝑓 (𝑥) exists, symbolic regression aims to learn a map-

ping 𝑦(𝑥) = 𝑓 ∗(𝑥). The optimal function 𝑓 ∗ can be composed of any combination of fea-

tures from 𝑥 and mathematical operators that transform or combine these features. It in-

volves searching for the optimal combination of base functions, such as addition, trigono-

metric functions, and exponentials, that can effectively capture the underlying relationships in

the data [181, 181, 182, 183]. Symbolic regression is a fundamental concept that underlies

various fields of research, including engineering [184], psychology [185], economics [186],

physics [187], and chemistry [188]. Various optimization techniques, such as genetic pro-

gramming [189], evolutionary algorithms, or Bayesian approaches, are commonly employed

to guide the search and evolution process towards finding the best-fitting model.

2.5.1 Genetic programming approaches

Genetic programming is widely used to learn symbolic regression models [190, 191]. By ran-

domly generating a set of candidate expressions and then gradually improving the candidates

through series of mutations, crossovers, reproduction, and selection operations, until the best

candidate model satisfactorily fits the designated target variable. In these cases, the symbolic

2.5. Symbolic regression 55

add

div

sub 2.55

mul

2

Figure 2.6: Expression tree representing a symbolic regression model, with three inputs 𝑋0,
𝑋1, and 𝑋2, and the equation 2.55(𝑋2 − 𝑋1) + 𝑋0

2 .

regression model is represented as an expression tree, in which the internal nodes represent

mathematical operators, while the terminal nodes represent features or constants, which col-

lapse into a single mathematical expression via recursive tree traversal. Figure 2.6 shows an

expression tree for presenting symbolic regression. The example consists of three inputs 𝑋0,

𝑋1, and 𝑋2, which generate a mathematical presentation 2.55 (𝑋2 − 𝑋1) + 𝑋0
2 .

In traditional genetic programming approaches, the initial population of candidate expres-

sion trees is created by randomly combining features, mathematical operators, and constants.

These expression trees represent the individuals in the population, and they consist of hierarchi-

cal compositions of primitive functions and terminals that are suitable for the specific problem

domain. The primitive functions used in genetic programming typically include basic arith-

metic operations such as addition, subtraction, multiplication, and division. They also encom-

pass mathematical functions such as logarithms, exponentiation, and trigonometric functions.

These primitive functions provide the building blocks for creating complex expressions. The

terminals, on the other hand, represent inputs to the expressions and can include variables, con-

stants, or other data relevant to the problem domain. Numeric constants, which are fixed values

used in calculations, can also be included as terminals. By combining these primitive functions

56 Chapter 2. Neural network models: An overview

and terminals in various hierarchical compositions, genetic programming aims to evolve indi-

viduals that can effectively solve the given problem. The algorithm applies genetic variation

and selection techniques to iteratively improve the population. From this population, a subset

of trees is selected for the next generation based on their fitness, which is determined by their

prediction error or correlation with the target variable. Through processes like crossover and

mutation [192], the algorithm generates new individuals with combinations of functions and

terminals from the fittest individuals in the current population.

Crossover and mutation are two fundamental genetic operators used to modify the genetic

material of the trees, introducing variations and combinations of features, mathematical op-

erators, and constants. The purpose of these genetic operations is to explore the different

combinations of genetic material in the population, and potentially improve the fitness of the

individuals in subsequent generations. After the selected trees have undergone genetic op-

erations, they progress to the next generation, and the fitness evaluation is conducted once

more. This iterative process continues until a stopping criterion is met, which can be based

on a predictive performance evaluation or reaching a predefined maximum number of genera-

tions [181, 190, 192].

The challenge in symbolic regression lies in searching the space of mathematical expres-

sions to find a model that optimally balances accuracy and simplicity. This involves exploring

different combinations of mathematical operations, functions, and variables to construct can-

didate expressions, and then evaluating their performance against the dataset. In symbolic

regression, it is possible to have multiple symbolic expressions that represent the same under-

lying function. This occurs due to the various ways in which elementary functions, variables,

and constants can be combined to portray a specific mathematical relationship.

Additionally, while the complexity of generic functions can pose significant challenges

for symbolic regression, making their discovery nearly impossible in certain cases, it is worth

noting that many practical functions of interest often possess simplifying properties. These

properties, such as symmetries, separability, and compositionality, can be leveraged to generate

2.5. Symbolic regression 57

accurate multidimensional expressions [193].

Chapter 3

Data generation: An overview

Generating appropriate datasets for training deep learning models is a critical step. This chap-

ter aims to provide a review the concepts of phase-fields and droplet spreading, which serve as

the primary datasets for our deep learning methods in this thesis. Additionally, we discuss the

methodologies employed to generate the required data for training and evaluating our machine

learning models. It is important to note that the central focus of this thesis is the development

and application of ML models and techniques specifically designed for the discovery of equa-

tions. These datasets were used in the subsequent chapters for developing and applying deep

learning models for equation discovery.

3.1 Phase-field modeling

The phase-field method is an important technique for investigating non-equilibrium interface

phenomena [141]. Non-equilibrium conditions refer to situations where a system is not in

a state of thermodynamic equilibrium. In thermodynamics, equilibrium is a state where all

forces, flows, and energy transfers within a system are balanced, resulting in a stable and

unchanging state. In contrast, non-equilibrium conditions occur when a system is subjected

to external influences or experiences changes that prevent it from reaching or maintaining a

state of equilibrium. These conditions can arise due to various factors, such as temperature

58

3.1. Phase-field modeling 59

gradients, pressure differences, chemical reactions, mechanical stresses, or external forces.

The main objective of phase-field modeling is to study the dynamics and structural changes

that occur during these processes. It finds applications in various fields, ranging from dendrite

growth in materials science to reaction-diffusion systems, damage and fracture models, and

even biological systems [141].

Phase-field modeling is a coarse-grained approach (see Figure 1.6) used to study the be-

havior of materials, particularly in processes involving slow variables such as concentrations.

Phase-field modeling technique employs continuum fields, which are continuous representa-

tions of physical quantities, to describe the system’s behavior and evolution. This method

utilizes a continuous variable, the order parameter, that depends on both position and time to

describe the state of the material, differentiating, for example, between different phases. The

interfaces separating these phases are characterized by smooth transitions in the phase-field

variable, with rapid changes occurring within a narrow region.

This modeling technique involves describing the dynamics of one or more fields through a

set of coupled dynamical equations given as PDEs. By solving these PDEs, the system can be

time-evolved, allowing for, for example, studies of complex phenomena and the prediction of

microstructural changes over time. In the construction of phase-field models, one typically pro-

poses a phenomenological free energy functional known as the Ginzburg-Landau free energy or

Lyapunov functional [141]. This functional is developed by expanding the order parameter us-

ing a gradient expansion and subsequently taking a functional derivative. The terms included in

this expansion must satisfy the symmetries associated with the specific system being modeled.

The free energy functional, denoted as 𝐹, plays a fundamental role in phase-field modeling. It

is typically expressed as an integral over space and consists of two main terms: the gradient

energy term | ®∇𝑈 |2 (in a simple case) and the bulk free energy term 𝑓 (𝑈). The gradient energy

term accounts for the spatial variations or gradients of the order parameter 𝑈 ≡ 𝑈 (®𝑥, 𝑡). This

term captures the energy associated with changes or variations in the order parameter across

space.

60 Chapter 3. Data generation: An overview

Using only the term | ®∇𝑈 |2, the general form of the free energy functional is given as

𝐹 =

∫
𝑑®𝑥

[
| ®∇𝑈 |2 + 𝑓 (𝑈)

]
. (3.1)

One of the fundamental aspects of phase-field modeling is the order parameter. Order param-

eters can be categorized as either conserved or non-conserved, depending on the nature of the

properties and dynamics being examined. Conserved order parameters correspond to quanti-

ties that remain constant during the evolution of the system. On the other hand, non-conserved

order parameters do not possess such constraints and can freely change over time.

In this thesis, the focus is on systems that can be described using a single order parameter.

The behavior of this order parameter is governed by different equations of motion depending on

whether it is conserved or non-conserved. For a non-conserved order parameter, the equation

of motion is given by
𝜕𝑈

𝜕𝑡
= −𝛤 𝛿𝐹

𝛿𝑈
, (3.2)

and for a conserved order parameter, the equation of motion takes the form

𝜕𝑈

𝜕𝑡
= 𝛤∇2 𝛿𝐹

𝛿𝑈
. (3.3)

These equations describe the rate of change of the order parameter 𝑈 with respect to time,

𝛿𝐹/𝛿𝑈 denotes the functional derivative of 𝐹 with respect to 𝑈, and 𝛤 is a constant represent-

ing the generalized mobility. The functional derivative captures how the free energy changes

as the order parameter varies.

The bulk free energy term, denoted as 𝑓 (𝑈) in Equation 3.1, represents the energy asso-

ciated with the bulk properties of the system. In this particular work, the bulk free energy is

modeled using a double well potential,

𝑓 (𝑈) = 𝑎4

4
𝑈4 + 𝑎2

2
𝑈2. (3.4)

3.1. Phase-field modeling 61

Figure 3.1: Snapshots of the field solutions for the Allen-Cahn model (Eq. (3.5)) at three
distinct time points: 𝑡 = 0, 𝑡 = 50, and 𝑡 = 100. The simulations (in dimensionless units)
were conducted on a uniformly discretized two-dimensional grid with dimensions of 100×100
and a spacing of 𝛥𝑥 = 𝛥𝑦 = 1. The time step used in the simulations was 𝛥𝑡 = 0.1, and the
simulation duration extended up to 𝑡 = 20.

Here, 𝑎4 and 𝑎2 are constants that determine the shape and properties of the potential.

By incorporating both the gradient energy term and the bulk free energy term into the free

energy functional, one can capture the interplay between spatial variations and the overall ener-

getics of the system. This enables the simulation and study of phase transitions, pattern forma-

tion, and other complex phenomena in materials and systems. In this thesis, we employed three

single order parameter phase-field models, the Allen–Cahn [194], the Cahn–Hilliard [195], and

the phase-field crystal (PFC) model [5].

• The Allen-Cahn model, originally proposed by Allen and Cahn in 1972 [194], is a dy-

namical model used to describe the process of solidification. It is characterized by a

single non-conserved order parameter. In this model, the equation of motion is given by

𝜕𝑈

𝜕𝑡
= −𝑀

(
∇2𝑈 + 𝑎2𝑈 − 𝑎4𝑈

3
)
. (3.5)

Here, the constant 𝛤 in Equation (3.2) is set to 𝑀 in Equation (3.5), where 𝑀 represents a

constant related to the chemical mobility. Figure 3.1 shows snapshots from a simulation

of the Allen-Cahn model at three specific time steps: 𝑡 = 0, 𝑡 = 50, and 𝑡 = 100.

• The Cahn-Hilliard model, by Cahn and Hilliard in 1958 [195], is used to describe the

62 Chapter 3. Data generation: An overview

Figure 3.2: Snapshots of the field solutions for the Cahn-Hilliard model (Equation (3.6)) at
three distinct time points: 𝑡 = 0, 𝑡 = 50, and 𝑡 = 100. The simulations were conducted on
a uniformly discretized two-dimensional grid with dimensions of 100 × 100 and a spacing of
𝛥𝑥 = 𝛥𝑦 = 1. The time step used in the simulations was 𝛥𝑡 = 0.01, and the simulation duration
extended up to 𝑡 = 20.

phenomenon of spinodal decomposition. It is a conserved order parameter model, corre-

sponding to Equation (3.3). By applying the free energy density given by Equation (3.1),

the Cahn-Hilliard model can be expressed as

𝜕𝑈

𝜕𝑡
= 𝐷∇2

(
∇2𝑈 + 𝑎2𝑈 + 𝑎4𝑈

3
)
, (3.6)

where 𝛤 in Equation 3.3 is set to 𝐷, a constant that represents the diffusion constant.

Equation (3.6) is also known as Model B in the Hohenberg and Halperin classification

[196].

• A free energy density, originally developed by Elder et al. [5, 197] is employed to de-

scribe the behavior of a crystal lattice at an atomistic scale within a phase-field model.

This formulation, known as the Phase-Field Crystal (PFC) model, incorporates elastic

effects and aims to capture the characteristics of materials at fine length scales. The PFC

free energy density can be given as [198]

𝐹 (𝑈) =
∫

𝑑®𝑥
[
𝑈3

3
+ 𝑈

4

4
+𝑈

(
(𝑞0 + ∇2)2 − Y

) 𝑈
2

]
. (3.7)

In this equation, the order parameter is denoted by 𝑈, and the integral is performed

3.1. Phase-field modeling 63

Figure 3.3: The field solutions for the PFC model (Eq. (3.8)) were captured at three specific
time points: 𝑡 = 0, 𝑡 = 50, and 𝑡 = 100. The simulations were performed on a uniformly
discretized two-dimensional grid with dimensions of 100 × 100 and a spacing of 𝛥𝑥 = 𝛥𝑦 = 1.
A time step of 𝛥𝑡 = 0.05 was utilized in the simulations, and the simulation duration extended
until 𝑡 = 100.

over the spatial domain. The terms involving 𝑈3 and 𝑈4 contribute to the bulk energy,

while the term involving the Laplacian operator ∇2 accounts for the spatial variations

of the order parameter. The parameters 𝑞0 and Y are constants and represent the pre-

ferred wavevector associated with the hexagonal lattice structure and the lattice stiffness.

Minimizing the PFC free energy functional in 2-d leads to the formation of a hexagonal

periodic lattice configuration, which accurately describes the atomistic characteristics of

the crystal lattice. The PFC model enables investigations into the behavior of materials

at atomistic length scales and captures diffusive phenomena.The equation governing the

dynamics of the PFC model with 𝛤 = 1 is expressed as

𝜕𝑈

𝜕𝑡
= ∇2

(
𝑈2 +𝑈3 +

(
(𝑞0 + ∇2)2 − Y

)
𝑈

)
, (3.8)

where the order parameter 𝑈 represents the mass density. This equation captures the

evolution of the system over time, considering the spatial variations and interactions

within the crystal structure.

64 Chapter 3. Data generation: An overview

3.1.1 Simulation of phase-field models

The numerical simulations of the three phase-field systems discussed in this thesis were con-

ducted using SymPhas [6], an open-source software package. This software provides a user-

friendly interface that enhances the flexibility and ease of generating phase-field data for further

analysis and investigation. It facilitates the direct definition of phase-field models using their

corresponding PDE formulations.

For this study, the semi-implicit Fourier spectral method [199] was selected for the nu-

merical solution. The simulations were performed on a two-dimensional grid with uniform

discretization. Periodic boundary conditions were applied to the models, and the initial con-

ditions were generated by populating the grid with values from a uniform random distribution

between −1 and 1. The grid size was 𝑛𝑥 × 𝑛𝑦 and the grid spacing was 𝛥𝑥 = 𝛥𝑦 = 1. A time

step of 𝛥𝑡 was used, and the simulations were run until time 𝑡. The constants in the equations

of motion were set to 1, except for Y in the phase field crystal (PFC) model, which was set to

0.1. The results of the simulation are presented in Figures 3.1, 3.2 and 3.3.

3.2 Droplet spreading

Droplet spreading is a fascinating phenomenon that occurs when a liquid droplet comes into

contact with a solid surface. This process plays a significant role in various fields, including

physics, chemistry, biology, and engineering. Understanding and controlling droplet spreading

is crucial for applications such as surface coating, inkjet printing, microfluidics, and oil recov-

ery, among others. The theoretical groundwork for understanding this phenomenon was laid

down in the early 1800s by scientists Young and Laplace [200, 201]. Thomas Young made

significant contributions to the understanding of liquid spreading through his work on the con-

cept of contact angle. The contact angle is the angle formed between the liquid-vapor interface

and the solid-liquid interface at the three-phase contact line, where the liquid, solid, and vapor

phases meet.

3.2. Droplet spreading 65

Solid Surface

Liquid

Gas

Figure 3.4: A schematic figure showing the various aspects related to the equilibrium contact
angle (\ ≡ \eq) and surface tensions (𝛾) from Equation 3.9.

Young proposed an equation, now known as Young’s equation, which relates the equilib-

rium contact angle to the interfacial tensions between the liquid, solid, and vapor phases [202].

Young’s equation states that

cos \eq =
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
. (3.9)

Here, \eq represents the equilibrium contact angle, while 𝛾𝑆𝐺 , 𝛾𝑆𝐿 , and 𝛾𝐿𝐺 are the surface

tensions between the solid-gas, solid-liquid, and liquid-gas phases, respectively (refer to Fig-

ure 3.4).

Young’s equation is a fundamental relationship that establishes a connection between the

contact angle and the interfacial tensions. While droplet spreading has been extensively studied

for complete wetting scenarios, that is, when the droplet fully spreads over the surface, the

behavior becomes more intricate in the case of partial wetting. Partial wetting occurs when the

droplet only partially covers the solid surface. Understanding partial wetting is crucial for a

comprehensive understanding of droplet spreading phenomena. To classify the contact angle

regimes, four categories are commonly defined: complete wetting, the entire solid surface is

covered by the fluid, resulting in (\eq = 0◦). This condition is satisfied when 𝛾𝑆𝐺 − 𝛾𝐿𝐺 −

𝛾𝑆𝐿 = 0. High-wetting (0◦ < \eq < 90◦), low-wetting (90◦ ≤ \eq < 180◦), and non-wetting

(\eq = 180◦) [7, 8, 9].

One of the key aspects of droplet spreading analysis is the exploration of the relationship

between the spreading area and time. The spreading of a droplet on a solid surface is often

characterized by a power law relationship between the radius of the wetted area (𝑟) and time

66 Chapter 3. Data generation: An overview

(𝑡), expressed as 𝑟 ∼ 𝑡𝛼. This power law describes how the size of the wetted region changes

over time. Tanner’s law, which is applicable to macroscopic complete wetting at late stages,

states that the exponent 𝛼 in the power law is approximately equal to 1/10 [203, 204]. This

means that the wetted area increases relatively slowly with time. It is worth noting that the

power law behavior described by Tanner’s law has also been observed at microscopic scales

[8]. However, it is important to recognize that deviations from Tanner’s law can occur in certain

cases. For instance, surface topography and other complex phenomena can affect the spreading

dynamics and lead to deviations from the ideal power law behavior [205, 206, 207].

3.2.1 Simulation of droplet spreading

In this thesis, the mDPD (multiphase many-body dissipative particle dynamics) method [208,

209, 210] was utilized to generate data for studying droplet spreading over a surface. The

mDPD method, an extension of the traditional dissipative particle dynamics (DPD) model [211,

212], is a mesoscale simulation technique that allows for simulations of complex fluids and

multiphase systems. DPD provides a framework for simulating fluid dynamics at an interme-

diate scale (see Figure 1.6), where the behavior of particles is described in a coarse-grained

manner. By considering interactions between the particles and incorporating dissipative and

random forces, DPD models capture mesoscopic phenomena and provide insights into com-

plex fluid behavior.

In both the DPD and mDPD models, the motions of the particles are governed by Newton’s

equations of motion. The total force on particle 𝑖 is the sum of three pairwise components: the

conservative force (®𝐹C), the dissipative force (®𝐹D), and the random force (®𝐹R),

𝑑®𝑟𝑖
𝑑𝑡

= ®𝑣𝑖, (3.10)

𝑚𝑖

𝑑®𝑣𝑖
𝑑𝑡

= ®𝐹𝑖 =
∑︁
𝑗≠𝑖

®𝐹C
𝑖 𝑗 + ®𝐹D

𝑖 𝑗 + ®𝐹R
𝑖 𝑗 ,

3.2. Droplet spreading 67

where ®𝑟𝑖 and ®𝑣𝑖 are the position and velocity of particle 𝑖 of mass 𝑚𝑖, and

®𝐹D
𝑖 = −𝛾𝜔D(𝑟𝑖 𝑗) (®𝑣𝑖 𝑗 · ®𝑒𝑖 𝑗) ®𝑒𝑖 𝑗 ,

®𝐹R
𝑖 𝑗 = Z𝜔R(𝑟𝑖 𝑗) (𝑑𝑡)−1/2b𝑖 𝑗 ®𝑒𝑖 𝑗 , (3.11)

𝐹C
𝑖 𝑗 = 𝐴𝜔C(𝑟𝑖 𝑗) ®𝑒𝑖 𝑗 + 𝐵(𝜌𝑖 + 𝜌 𝑗)𝜔B ®𝑒𝑖 𝑗 ,

where 𝑟𝑖 𝑗 = |𝑟𝑖 − 𝑟 𝑗 |, the unit vector ®𝑒𝑖 𝑗 =
𝑟𝑖−𝑟 𝑗
|𝑟𝑖−𝑟 𝑗 | represents the direction between particles 𝑖 and

𝑗 , and b𝑖 𝑗 is a pairwise conserved Gaussian random variable. The weight functions 𝜔𝐷 and 𝜔𝑅

as well as the constants 𝛾 and Z are related through fluctuation-dissipation relations

𝜔𝐷 = (𝜔𝑅)2 , (3.12)

Z =
√︁

2𝛾𝑘B𝑇, (3.13)

ensuring the canonical equilibrium distribution. These releations were first derived by Español

and Warren [211] In Equation 3.13, 𝑇 denotes the temperature and 𝑘B is the Boltzmann’s

constant.

The first term in the conservative force 𝐹C
𝑖 𝑗

in Equation 3.12represents the conventional

conservative force used in the DPD model, 𝐴 denotes the magnitude of the force, and the

weight function 𝜔C vanishes when the inter-particle distance 𝑟𝑖 𝑗 is larger than a cutoff range 𝑟𝑐.

The second term in 𝐹C
𝑖 𝑗

, on the other hand, corresponds to the multi-body interaction term and

the weight function 𝜔B vanishes for 𝑟𝑖 𝑗 > 𝑟𝑏. The constants 𝐴 and 𝐵 are selected in such a way

that 𝐴 < 0 represents attractive interactions, while 𝐵 > 0 corresponds to repulsive interactions.

It is worth noting that in the conventional DPD model, 𝐴 > 0 and 𝐵 = 0. The weighted local

density, denoted as 𝜌𝑖, is calculated by

𝜌𝑖 =
∑︁
𝑗≠𝑖

𝜔𝜌 (𝑟𝑖 𝑗). (3.14)

There are various approaches to selecting the weight function. In this thesis, the normalized

68 Chapter 3. Data generation: An overview

Lucy kernel in three dimensions, proposed by Lucy [213], is employed. The expression for the

weight function 𝜔𝜌 (𝑟𝑖 𝑗) is given by

𝜔𝜌 (𝑟𝑖 𝑗) =
105

16𝜋𝑟3
c𝜌

(
1 +

3𝑟𝑖 𝑗
𝑟c𝜌

) (
1 −

𝑟𝑖 𝑗

𝑟c𝜌

)3

, (3.15)

where 𝑟𝑐𝜌 represents the cutoff distance beyond which the weight function 𝜔𝜌 becomes zero.

In this thesis, simulations of molten CMAS, a mixture of calcia, magnesia, alumina, and

silicate, was performed using the parameter mapping proposed by Koneru et al. [10]. The

simulations were conducted using the open-source code LAMMPS [214].

Chapter 4

Machine learning based data-driven

discovery of non-linear phase-field

dynamics

The contents of this chapter have been published with the following citation: E. Kiyani, S.

Silber, M. Kooshkbaghi, and M. Karttunen, Machine-learning-based data-driven discovery of

nonlin- ear phase-field dynamics, Physical Review E, 106, 065303 (2022). American Physical

Society, the publisher of our article, allows for the inclusion of the published article within this

thesis.

4.1 Introduction

PDEs are widely used in modeling of complex physical, chemical and biological systems in-

cluding fluid dynamics, chemical kinetics, population dynamics and phase transitions. The

study of PDEs in the context of ML, broadly speaking, falls into two categories: 1) solving

PDEs and 2) predicting unknown PDEs from data [108, 109, 110, 215, 216, 217, 114]. In sim-

ulations of phase-field and reaction-diffusion models, commonly used numerical techniques are

69

70Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

based on time and space discretization, such as finite difference and finite element methods. In

recent years, a third approach based on ML has emerged with promising results for solving and

even discovering unknown PDEs from data, see for example Ref. [125] and references therein.

The core idea for using ML algorithms to solve PDEs is representing the residuals of

PDEs as a loss function of a neural network (NN) where the loss function is minimized; a

loss function measures how far the predicted values are from their true values. This approach

does not require discretization or meshing, which is beneficial when dealing with problems

of high dimensions and/or complex geometries [108, 109, 218]. Since most deep learning

frameworks are based on automatic differentiation, these methods are known as mesh-free ap-

proaches [219].

In the case of discovering unknown PDEs from data, the key idea of ML-based approaches

is to estimate the time derivative of the desired (dependent) quantity. These approaches can be

broadly categorized as follows:

1. An ensemble of macroscopic observations is available, and there is knowledge about the

physics of the governing coarse PDE(s). The typical knowledge is that the time evolu-

tion of the field of interest depends on the field and its derivatives (e.g. Navier-Stokes

equations). One can design the ML algorithm to find that dependency. This relation can

be formulated based on any of the following methods: (i) Linear dependence of the field

evolution using a dictionary of spatial derivatives with unknown coefficients [115, 116];

(ii) Non-linear dependence with black-box inference [114]; (iii) Non-linear dependence

using a selective dictionary of spatial derivatives which were found by other data-driven

approaches [117]; (iv) Non-linear dependence where spatial derivatives are informed by

the memory (history) of the system using a feedback loop, e.g. recurrent neural net-

work (RNN) together with long short-term memory (LSTM) and gated recurrent unit

(GRU) [220, 221, 222].

2. An ensemble of microscopic observations is available, and the macroscopic field of in-

terest is known. For example, the microscopic solutions of the Boltzmann equation are

4.1. Introduction 71

available and one is looking for the time evolution of coarse fields such as density, ve-

locity or temperature. Again, one can assume that the time evolution of the field depends

on the spatial derivatives using physical intuition [223, 117].

3. An ensemble of microscopic observations is available, but the macroscopic field is un-

known. Therefore, the first step is to discover the coarse-grained field, which is generally

formulated as a model reduction problem [224]. The second step is to find the PDE(s)

for the coarse variable(s). For example, Thiem et al. determined an order parameter for

coupled oscillators using diffusion maps and the corresponding governing PDE using a

Runge-Kutta network [225].

In this paper, we explore ML-based approaches which fall under the first category mentioned

above. We assess two scenarios:

(i) There is an unknown relation between field evolution and its spatial derivatives.

(ii) The spatial derivatives, their orders and combinations are unknown (there is no spatial

derivative dictionary).

Afterwards, we also solve the predicted PDEs in time and space. We should note that by

discovering PDEs, we are referring to finding the aforementioned unknown relation implicitly.

For the first scenario, a flexible framework that can deal with large data sets and extract

the unavailable PDE(s) from coarse-scale variables implicitly is developed. Two different ap-

proaches are presented for learning coarse-scale PDEs: 1) an MLP architecture and 2) a CNN-

LSTM. Since LSTM only passes time information to its layers and misses the spatial features

of previous time steps, CNN can be used to learn and detect the spatial features of the in-

puts [169, 226]. For the second scenario, a convolution operator is used to implicitly learn the

dependence of the time derivative of the field on the spatial derivative(s) of unknown orders.

The learned PDE is then marched in time with a time-integrator.

We demonstrate the capability of the above algorithms to learn PDEs using data obtained

72Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

from phase-field simulations of the well-known Allen–Cahn [194], Cahn–Hilliard [195], and

the phase-field crystal (PFC) [5, 197] models using the open source software SymPhas [6].

4.2 Phase-field modeling

4.2.1 Phase-field modeling in a nutshell

Phase-field modeling provides a theoretical and computational approach for simulating

non-equilibrium processes in materials, typically with the objective of studying the dynamics

and structural changes. For an excellent overview of phase-field modelling, see the book by

Provatas and Elder [141]. In its essence, phase-field modeling is a coarse-grained approach

that uses continuum fields to describe slow variables such as concentrations. The continuum

fields are given by order parameters which may be conserved or non-conserved. In this work,

we consider only systems described by a single order parameter 𝑈 ≡ 𝑈 (®𝑥, 𝑡). In all of the

descriptions below, we use the conventional dimensionless units [141].

The equations of motion for the non-conserved and conserved order parameters are (see

Ref. [141] for a more detailed discussion) given as

𝜕𝑈

𝜕𝑡
= −𝛤 𝛿𝐹

𝛿𝑈
(non-conserved) (4.1)

𝜕𝑈

𝜕𝑡
= 𝛤∇2 𝛿𝐹

𝛿𝑈
(conserved), (4.2)

where 𝐹 is a free energy functional and 𝛿/𝛿𝑈 is a functional derivative. We have neglected

thermal noise from the above equations. The parameter 𝛤 is a generalized mobility that is

assumed to be constant, and is chosen based on a particular phase-field model. The free energy

functional typically has the form

𝐹 =

∫
𝑑®𝑥

[
| ®∇𝑈 |2 + 𝑓 (𝑈)

]
(4.3)

4.2. Phase-field modeling 73

where 𝑓 (𝑈) is a bulk free energy with a double well potential, which for this work we set to be

𝑓 (𝑈) = 𝑎4

4
𝑈4 + 𝑎2

2
𝑈2. (4.4)

It is also noteworthy that when no free energy functional is available, the equations of motion

are often postulated. This is the case with reaction-diffusion systems, for example, the well-

known Turing [227, 228] and Gray–Scott models [229, 228]. Phase-field models have been

widely applied to various types of systems and phenomena, including dendritic and directional

solidification [230, 231, 232], crystal growth [5, 233, 234, 235] and magnetism [236] as well

as for phenomena such as fracture propagation [237, 238] to mention some examples.

4.2.2 Phase-field models used in the current work

We employed three different well-studied single order parameter phase-field models: 1) the

Allen–Cahn model [194] for the case of a non-conserved order parameter, 2) the Cahn–Hilliard

model [195] for the conserved order parameter, and 3) the phase-field crystal (PFC) model [5]

that has a conserved order parameter and generates a modulated field that describes atomistic

length scales and diffusive times. In addition to being well-studied, these models were chosen

because they contain differing orders of spatial derivatives: the Allen–Cahn model is described

using a 2nd order derivative, Cahn–Hilliard using 4th, and PFC using 6th. Moreover, they each

exhibit various spatial patterns that evolve according to different time scales.

The Allen–Cahn Model

The Allen–Cahn model, a dynamical model for solidification originally developed by Allen and

Cahn in 1972, has a single non-conserved order parameter corresponding to Equation (4.1), and

is defined using the free energy of Equation (4.3). The equation of motion is then given as

𝜕𝑈

𝜕𝑡
= −𝑀

(
∇2𝑈 + 𝑎2𝑈 − 𝑎4𝑈

3
)
, (4.5)

74Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

where 𝛤 is set to 𝑀 (see Equation (4.1)), a constant related to chemical mobility. The numerical

values of the parameters 𝑀 , 𝑎2 and 𝑎4 are given in Table 4.1. Equation ((4.5)) represents a

physical system that evolves purely due to a chemical potential. It is also called Model A

according to the Hohenberg and Halperin classification of phase-field models [196].

The Cahn–Hilliard Model

The Cahn–Hilliard model, formulated by Cahn and Hilliard in 1958, represents spinodal de-

composition. It is a conserved order parameter model corresponding to Equation (4.2). Apply-

ing the free energy density of Equation (4.3) then gives

𝜕𝑈

𝜕𝑡
= 𝐷∇2

(
∇2𝑈 + 𝑎2𝑈 + 𝑎4𝑈

3
)
, (4.6)

where 𝛤 is set to 𝐷 (see Equation (4.2)), a constant that represents the diffusion constant. The

parameters 𝐷, 𝑎2 and 𝑎4 are given in Table 4.1. Equation (4.6) is also known as Model B in

the Hohenberg and Halperin classification [196].

The phase-field crystal model

A free energy density to describe a crystal lattice at an atomistic scale incorporating elastic

effects into a phase-field model was originally developed by Elder et al. [5, 197]. The PFC free

energy functional is minimized by a hexagonal periodic lattice, and can be defined [198] as

𝐹 (𝑈) =
∫

𝑑®𝑥
[
𝑈3

3
+ 𝑈

4

4
+𝑈

(
(𝑞0 + ∇2)2 − Y

) 𝑈
2

]
, (4.7)

where 𝑞0 and Y are constants. The equation of motion with a conserved order parameter is then

determined using Equation (4.2) with 𝛤 = 1 as

𝜕𝑈

𝜕𝑡
= ∇2

(
𝑈2 +𝑈3 +

(
(𝑞0 + ∇2)2 − Y

)
𝑈

)
. (4.8)

4.2. Phase-field modeling 75

Table 4.1: The simulations were done on a uniformly discretized two dimensional grid of size
𝑛𝑥 × 𝑛𝑦 and 𝛥𝑥 = 𝛥𝑦 = 1. The simulations use a time step of 𝛥𝑡 and continue to time 𝑡. All
models use periodic boundary conditions, and initial conditions are populated using a uniform
random distribution with values between -1 and 1 generated using the Mersenne Twister 19937
generator from the C++ standard library [11]. Additionally, all constants in the equations of
motion are set to 1, except for Y used in the PFC model, which is set to 0.1. Later, in our phase
field equations discovery, we used training sets with 60% (for MLP and CNN-LSTM) and 80%
(for CNN) of the total snapshots (𝑛𝑘 = 0.6𝑛𝑡 or 𝑛𝑘 = 0.8𝑛𝑡).

Phase-field model 𝑛𝑥 × 𝑛𝑦 𝛥𝑡 𝑡 𝑛𝑡 Equation parameters
Allen–Cahn, Equation (4.5) 256 × 256 0.1 20 100 𝑀 = 𝑎2 = 𝑎4 = 1
Cahn–Hilliard, Equation (4.6) 128 × 128 0.01 20 100 𝐷 = 𝑎2 = 𝑎4 = 1
PFC, Equation (4.8) 128 × 128 0.05 100 200 𝑞0 = 1 and Y = 0.1

The order parameter, 𝑈, represents the mass density. The PFC model can be used to de-

scribe elastic and plastic deformations in isotropic materials, i.e., crystal structures. The lattice

structure can assume any orientation (based on the initial conditions) and interactions between

grains (individual crystal structures) can lead to defects and dislocations.

4.2.3 Simulation of phase-field models

The open-source SymPhas [6] software package was used to numerically simulate the above

three systems. SymPhas allows the user to define phase-field models directly from their PDE

formulations, and control simulation parameters from a single configuration file. All simu-

lations were done using dimensionless units [141]. In terms of the numerical solution, Sym-

Phas has the ability to simulate models using either explicit finite difference methods or the

semi-implicit Fourier spectral method. The latter was chosen. By virtue of its excellent error

properties, the Fourier semi-implicit spectral method typically allows for larger time stepping

than a finite difference solver [105]. For each of the models, five independent simulations with

100 frames of the field 𝑈 were saved at equally spaced intervals. Parameters for the numeri-

cal simulations are summarized in Table 4.1. For models A and B, the simulation is stopped

after the fast growth regime and the universal scaling of the system takes effect. The simula-

tion of the PFC model was chosen to stop after approximately 10 diffusion times in order to

76Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

be well within the regime where the number of defects is slowly decreasing [5]. To illustrate

the different dynamics of each model, snapshots at the end of each simulation are provided in

Figure 4.1.

Figure 4.1: Snapshots from the three phase-field models. Field solutions for the Allen–Cahn
model (Equation (4.5)) is shown on the left at 𝑡 = 20, for the Cahn–Hilliard (Equation (4.6)) in
the center at 𝑡 = 20, and for the PFC (Equation (4.8)) on the right at 𝑡 = 100. The longer simu-
lation time of the PFC model is required to allow the number of initial defects to decrease [5].
The parameters of the numerical simulations are presented in Table 4.1. The vertical and hor-
izontal axes display 𝑥 = 𝑛𝑥 and 𝑦 = 𝑛𝑦 respectively, and 𝑈 represents the phase-field for the
corresponding model, all in dimensionless units.

4.3 Data-driven PDEs with a spatial derivatives dictionary

As already discussed above, we consider two distinct types of methods for discovering PDEs

from data, assuming the network is informed by spatial derivatives either explicitly or im-

plicitly. In the first method, an MLP network is used to learn a function 𝐹MLP that can be

formulated as

𝑈𝑡 (𝑡, 𝑥, 𝑦) = 𝐹MLP
(
𝑈 (𝑡, 𝑥, 𝑦),𝑈𝑥 (𝑡, 𝑥, 𝑦),𝑈𝑥𝑥 (𝑡, 𝑥, 𝑦),𝑈𝑦 (𝑡, 𝑥, 𝑦),𝑈𝑦𝑦 (𝑡, 𝑥, 𝑦), ...

)
, (4.9)

where 𝑈𝑡 (𝑡, 𝑥, 𝑦) is the time derivative and 𝑈𝑥 (𝑡, 𝑥, 𝑦),𝑈𝑥𝑥 (𝑡, 𝑥, 𝑦),𝑈𝑦 (𝑡, 𝑥, 𝑦), and 𝑈𝑦𝑦 (𝑡, 𝑥, 𝑦)

are the first and second spatial derivatives with respect to 𝑥 and 𝑦, respectively.

In the second method, extending LSTM to a convolutional structure (CNN-LSTM) is used

to learn an equation from local variables without giving spatial derivatives explicitly. Mathe-

4.3. Data-driven PDEs with a spatial derivatives dictionary 77

matically, the network learns the time derivative 𝑈𝑡 (𝑡, 𝑥, 𝑦) as a function of local macroscopic

variables on a small square around each grid point,

𝑈𝑡 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗) = 𝐹CNN−LSTM

(
𝑈 (𝑡𝑘 , 𝑥𝑖−1, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗),

𝑈 (𝑡𝑘 , 𝑥𝑖+1, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗−1),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗+1)
)
,

(4.10)

where 𝑈 (𝑡𝑘 , 𝑥𝑖−1, 𝑦 𝑗), 𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗), 𝑈 (𝑡𝑘 , 𝑥𝑖+1, 𝑦 𝑗), 𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗−1), and 𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗+1) are the

field values at the positions 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑦 𝑗−1, and 𝑦𝑖+1, respectively, and 𝑡𝑘 corresponds to the

time of the snapshots used in the training set for 1 ≤ 𝑘 ≤ 𝑛𝑘 .

A schematic diagram of our framework for discovering PDEs with spatial derivatives

dictionary is shown in Figure 4.2. Specifically, it shows how the spatial derivatives

(𝑈,𝑈𝑥 ,𝑈𝑦,𝑈𝑥𝑥 ,𝑈𝑦𝑦, ...) and the local macroscopic variables (𝑈𝑖−1, 𝑗 ,𝑈𝑖, 𝑗 ,𝑈𝑖+1, 𝑗 ,𝑈𝑖, 𝑗−1,𝑈𝑖, 𝑗+1)

are fed through the MLP (Figure 4.2 (a)) and CNN-LSTM (Figure 4.2 (b)), respectively, to

learn the time derivative 𝑈𝑡 (𝑡, 𝑥, 𝑦).

4.3.1 Multi-layer perceptron network architecture and performance

An MLP is an example of a typical feedforward artificial neural network, consisting of a series

of layers. Each layer calculates the weighted sum of its inputs and then applies an activation

function to get a signal that is transferred to the next neuron [151].

In our MLP network, the number of layers, neurons, and the type of activation functions

for each phase-field model was found by trial and error. We approximate spatial derivatives

of the coarse variable 𝑈 by finite differences, and along with 𝑈 itself, feed this to the MLP

network to learn the function 𝐹MLP in Equation (4.9). The MLP architecture for learning the

Allen–Cahn model (Equation (4.5)) is shown in Figure 4.2 (a) as an example. The five in-

puts𝑈 (𝑡, 𝑥, 𝑦),𝑈𝑥 (𝑡, 𝑥, 𝑦),𝑈𝑥𝑥 (𝑡, 𝑥, 𝑦),𝑈𝑦 (𝑡, 𝑥, 𝑦), and𝑈𝑦𝑦 (𝑡, 𝑥, 𝑦) are passed to the first hidden

layer, which is connected to the layers with 128/64/16/8 neurons each. In the output layer,

we use a dense layer with a single neuron to predict 𝑈𝑡 . The network is trained for 2, 000

78Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

128 nodes

64 nodes
16 nodes

8 nodes

Figure 4.2: Schematic of the general steps in discovery of PDEs with a spatial derivatives
dictionary. Learning of PDEs from spatial derivatives and local values of coarse variables
using two different approaches, (a) MLP and (b) CNN-LSTM. Coarse-scale variables are
collected as snapshots from the phase-field simulations. We used a 60:20:20 ratio to ran-
domly choose the training, validation and test sets. Finite difference methods are used to
approximate the spatial derivatives which are fed into panel (a) the MLP network according
to Equation (4.9). The network connecting the input layer consists of a list of input features
(the field 𝑈 and its spatial derivatives) to the output layer of a single neuron (time deriva-
tive 𝑈𝑡). The values of the macroscopic field 𝑈 evaluated around each grid point are fed
through the panel (b) CNN-LSTM network to learn PDEs of the form Equation (4.10). CNN-
LSTM network connecting the input layer consists of a list of input features (local variables
𝑈 (𝑡𝑘 , 𝑥𝑖−1, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖+1, 𝑦 𝑗),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗−1),𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗+1) for 1 ≤ 𝑘 ≤ 𝑛𝑘 ,
1 ≤ 𝑖 ≤ 𝑛𝑥 , and 1 ≤ 𝑗 ≤ 𝑛𝑦) to the output layer of a single neuron 𝑈𝑡 . Here 𝑛𝑘 is the
number of snapshots used for training which is a random set of 𝑛𝑡 with size 𝑛𝑘 = 0.6𝑛𝑡 . The
corresponding values for 𝑛𝑡 , 𝑛𝑥 , and 𝑛𝑦 are summarized in the Table 4.1.

epochs using the ADAM optimizer [12], rectified linear unit (ReLU) activation function [239],

and mean squared error (MSE) as the loss function (see Table 4.2). For all three phase-fields

models, the same architecture has been used. For the Cahn–Hilliard (Equation (4.6)) and PFC

(Equation (4.8)) models, we used spatial derivatives up to fourth and sixth order for the input

layers, respectively. The performance of the MLP network on learning the models is shown in

4.3. Data-driven PDEs with a spatial derivatives dictionary 79

Table 4.2: MLP architecture for discovering phase-fields given in Equations (4.5), (4.6), and
(4.8) consists of 4 dense layers with 128/64/16/8 neurons in each layer. The network was
trained with learning rate of 10−3 for 2000 epochs. For each dataset, 𝑛𝑡 snapshots wereran-
domly split into training, validation, and test with a 60:20:20 ratio (training set has 𝑛𝑘 snap-
shots with a size of 0.6𝑛𝑡 for each dataset).

networks layers neurons activation functions
MLP 4 dense layers 128/64/16/8 ReLU

Figure 4.3. The root mean squared error (rMSE) is the square root of MSE calculated as

MSE =
1

𝑛𝑥 × 𝑛𝑦

𝑛𝑥×𝑛𝑦∑︁
𝑖=1

(𝑈𝑖
𝑡 −𝑈𝑖

𝑡)2. (4.11)

As shown in Figure 4.3, the rMSE values are small (∼ 10−2), indicating that the target time

derivatives (𝑈𝑡) learned by the proposed MLP network are close to the true ones for all three

models.

4.3.2 Convolution and long short-term memory (CNN-LSTM) Network

Architecture and Performance

One of the main challenges in approximating coarse-scale PDEs is the estimation of spatial

derivatives. While in previous studies PDEs have been successfully identified by learning time

derivatives as a function of the estimated spatial derivatives, approximating derivatives remains

challenging [240, 241]. Generally, the choice of the grid size is one of the most important

considerations in numerical differentiation. While large step sizes can increase simulation

speed, too large steps can create instabilities. On the other hand, if the steps are too small,

numerical errors can dominate and the derivatives are of no use. Accordingly, the question that

arises in discovering PDEs is the accuracy of numerical differentiation that has been used for

training.

Unlike an MLP, CNN-LSTM is capable of automatically learning time derivatives from

coarse-scale values. Using a combination of convolutional layers with other network struc-

80Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

0 100 200

x

0

50

100

150

200

y
Ut test

0 100 200

x

0

50

100

150

200

y

Ût MLP

0 100 200

x

0

50

100

150

200

y

rMSE=5.486e-02

−0.36

−0.18

0.00

0.18

0.36

0.54

0.72

−0.48

−0.32

−0.16

0.00

0.16

0.32

0.48

0.64

0.80

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(a) Allen–Cahn model

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y

rMSE=7.300e-02

−0.96

−0.80

−0.64

−0.48

−0.32

−0.16

0.00

0.16

0.32

0.48

−0.80

−0.64

−0.48

−0.32

−0.16

0.00

0.16

0.32

0.48

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

(b) Cahn–Hilliard model

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y
rMSE=5.552e-02

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(c) PFC model

Figure 4.3: Performance of the MLP network for predicting time derivatives of phase-fields
given by Equations (4.5), (4.6), and (4.8). Allen–Cahn, Equation (4.5), as well as Cahn–
Hilliard, Equation (4.6), were plotted at 𝑡 = 20, and PFC, Equation (4.8), was drawn at 𝑡 = 100.
Left column shows 𝑈𝑡 , the time derivative computed from the numerical solution generated by
SymPhas [6], and the center column shows 𝑈𝑡 , the learned time derivative. The right panel
shows the difference between 𝑈𝑡 and 𝑈𝑡 , as well as the corresponding rMSE value for each
phase-field model.

tures for data-driven differential equations is an active field of research (see, for example,

Refs. [242, 243]). CNNs are widely used for image classification, and there have been several

breakthroughs in image recognition with performance close to that of humans [170]. The CNN

architecture can progressively extract higher level representations (color, shape, topology, etc.)

of an input feature (image) and learn the dependency of the output (mostly a single class label)

4.3. Data-driven PDEs with a spatial derivatives dictionary 81

Table 4.3: Details of the CNN-LSTM network used for field equation discovery. The network
is trained for 2,000 epochs with learning rate 10−3. 𝑛𝑡 snapshots for each dataset are randomly
split with 60:20:20 ratio for training, validation, and test (training set has 𝑛𝑘 snapshots with
size 0.6𝑛𝑡 for each dataset).

Layers Structure units filter kernel size pool size activation
0 Input 1 - - - -
1 Conv1D - 64 3 - ReLU
2 TimeDistributed - - - - -
3 MaxPooling1D - - - 2 -
4 TimeDistributed - - - - -
5 LSTM 80 - - - ReLU
6 Dense 10 - - - ReLU
7 Dense 5 - - - ReLU
8 Dense (output) 1 - - - Linear

on those representations. The convolution operation sweeps a filter across the entire input field

and extracts the global features and local (pixel-to-pixel) variations. The convolutional layer

can be considered as an efficient implementation of the convolution operator, hence, represent-

ing approximations of (potentially high order) derivatives of a scalar field. The relationship

between the convolution-differentiation and derivatives-order of filters has been discussed in

detail by Cai and Dong [244, 245].

A schematic diagram of the proposed CNN-LSTM architecture is shown in Figure 4.2

(b). The architecture consists of two sub-networks: (i) A CNN sub-network, including one-

dimensional convolution and maxpooling layers for feature extraction from input data and, (ii)

a LSTM sub-network including sequential layers followed by one LSTM layer and two dense

layers with ReLU activation. We feed the CNN-LSTM network with the five local coarse-scale

variables, 𝑈 (𝑡𝑘 , 𝑥𝑖−1, 𝑦 𝑗), 𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗), 𝑈 (𝑡𝑘 , 𝑥𝑖+1, 𝑦 𝑗), 𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗−1), 𝑈 (𝑡𝑘 , 𝑥𝑖, 𝑦 𝑗+1) tuple for

1 ≤ 𝑘 ≤ 𝑛𝑘 , 1 ≤ 𝑖 ≤ 𝑛𝑥 , and 1 ≤ 𝑗 ≤ 𝑛𝑦 for all phase-field models. Although we have second,

fourth, and sixth order equations, CNN-LSTM training can be performed with only five local

points (mentioned above). Due to CNN’s ability to extract spatial features from inputs, CNN-

LSTM shows that increasing training local points has no impact on performance. Here 𝑛𝑘

correspond to 60% of the original datasets which is randomly selected for training. These

coarse-scale variables at each grid point are fed into the CNN sub-network and the output of

the convolutional layer passes through the LSTM layer followed by a dense layer to provide

82Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

0 100 200

x

0

50

100

150

200

250

y

Ut test

0 100 200

x

0

50

100

150

200

250

y

Ût CNN-LSTM

0 100 200

x

0

50

100

150

200

250

y

rMSE=1.987e-02

−0.24

−0.16

−0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

−0.24

−0.16

−0.08

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.000

0.075

0.150

0.225

0.300

0.375

0.450

0.525

(a) Allen–Cahn model

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y

rMSE=9.596e-02

−0.96

−0.80

−0.64

−0.48

−0.32

−0.16

0.00

0.16

0.32

0.48

−0.80

−0.64

−0.48

−0.32

−0.16

0.00

0.16

0.32

0.48

0.000

0.075

0.150

0.225

0.300

0.375

0.450

0.525

(b) Cahn–Hilliard model

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y

0 50 100

x

0

20

40

60

80

100

y

rMSE=6.714e-02

0.00

0.06

0.12

0.18

0.24

0.30

0.36

−0.09

0.00

0.09

0.18

0.27

0.36

0.45

0.000

0.045

0.090

0.135

0.180

0.225

0.270

(c) PFC model

Figure 4.4: CNN-LSTM predictions for (a) the Allen–Cahn Equation (4.5) at 𝑡 = 20, (b) the
Cahn–Hilliard Equation (4.6) at 𝑡 = 20, and (c) the PFC Equation (4.8) at 𝑡 = 100. Actual and
learned time derivatives 𝑈𝑡 and 𝑈𝑡 are shown in the left two panels. The difference between the
predicted and the actual time derivatives as well as rMSE are presented in the right panel.

4.3. Data-driven PDEs with a spatial derivatives dictionary 83

the output. The output of network is the single neuron approximating 𝑈𝑡 (𝑡, 𝑥, 𝑦) at each grid

point.

The LSTM network consists of a cell state which is the core concept of LSTM networks

and memory blocks. Each block is composed of gates that can make decisions about which

information passes through the cell state and which information can be removed. There are

three kinds of gates: 1) input, 2) output, and 3) forget gate. Each memory block in an LSTM

architecture has an input and an output gate which control information coming into the memory

cell and information going out to the rest of the network, respectively. In addition, an LSTM

architecture has a forget gate which contains an activation function and allows the LSTM to

keep or forget information. Information from the previous hidden state and information from

the current input is passed through the activation function. The output of each gate is a value

between 0 (block the information) and 1 (pass the information) [162, 163].

In our setup, the network consists of a convolutional layer (Conv1D) with 64 filters before

pooling layer, kernel size 3 followed by an LSTM layer with 80 neurons. There are two dense

layers (fully connected) with 10 and 5 neurons each. Data has been reshaped to one dimension

before training the network. The performance of the trained CNN-LSTM network is shown in

Figure 4.4. In the left two panels, contours of 𝑈𝑡 and 𝑈𝑡 for the test sets and the corresponding

predictions by CNN-LSTM are compared. The snapshots of the differences between the true

value and the predictions of the CNN-LSTM at time steps 𝑡 = 100 are shown in the right

panels, where rMSE is also reported for each phase-field model. A slight error can be observed

along sharp boundaries in some isolated grid points, indicating CNN-LSTM does not identify

smaller features in the field. Compared to true phase-field simulations, the spatial gradient

of phase concentration is not as sharp. Similar behavior has been reported in other studies,

see, e.g. Ref. [246]. The prediction errors from CNN-LSTM remain unchanged and an rMSE

∼10−2 is obtained for all three models.

84Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

0 25 50 75 100

x

−1.0

−0.8

−0.6

−0.4

U
t

Allen-Cahn model

true

MLP

CNN-LSTM

0 25 50 75 100

x

−1.0

−0.5

0.0

0.5

Cahn-Hilliard model

0 25 50 75 100

x

−0.50

−0.25

0.00

0.25
PFC model

Figure 4.5: Comparisons between MLP and CNN-LSTM performance using the phase-field
Equations (4.5), (4.6), and (4.8). In each plot, the horizontal axis indicates 𝑥 = 𝑛𝑥 and the
vertical axis represents the time derivative 𝑈𝑡 and 𝑈𝑡 predicted by MLP and CNN-LSTM for
each phase-field model. Two MLP and CNN-LSTM networks are trained and tested on the
same data sets.

4.3.3 Hyper-parameter study

A comparison of regression results over the selected prediction period obtained by MLP and

CNN-LSTM is shown in Figure 4.5. One can clearly see the ability of both MLP and CNN-

LSTM to accurately reproduce the original data and make predictions of the phase-field mod-

els.

We used the coefficient of determination, 𝑅2 to compare the performance of the networks,

𝑅2 = 1 −
∑𝑛𝑥×𝑛𝑦

𝑖=1 (𝑈𝑖
𝑡 −𝑈𝑖

𝑡)2∑𝑛𝑥×𝑛𝑦
𝑖=1 (𝑈𝑖

𝑡 −𝑈𝑡)2
, (4.12)

where 𝑈𝑡 is the mean value of the time derivative for a single snapshot. Root mean squares

and 𝑅2 scores can be affected by different hyper-parameters such as learning rate, number of

training epochs, and network depth and width. Here, we study the effect of adding/removing

MLP and convolutional layers, while all the other parameters are fixed.

Figure 4.6 (a) shows the effect of adding layers to our MLP architecture. An MLP network

with one layer consisting of 64 hidden neurons is expanded to a network with two and three

layers with 128, 64 and 256, 128, 64 hidden neurons, respectively. It can be seen that adding

hidden layers reduces the rMSE and increases the performance of prediction. Figure 4.6 (b)

presents the effect of adding CNN and LSTM layers to the CNN-LSTM. Here, we use a single

LSTM layer with two configurations for CNN layers: 1) single CNN layer with output filters

4.3. Data-driven PDEs with a spatial derivatives dictionary 85

of size 64, 2) two CNN layers with 128, 64 output shape as well as two LSTM layers with

128, 64 neurons followed by two CNN layers with 128, 64 output sizes. Adding convolutional

layers increases the performance. However, MLP networks are more sensitive to the choice

of architecture than the CNN-LSTM networks. Moreover, the computational cost of training a

multi-layer CNN-LSTM is huge compared to a single layer and should be taken into account

for large-scale data. It can be roughly concluded that the optimal number of LSTM and CNN

layers is 1 in our CNN-LSTM network. Conversely, the 𝑅2 values show less sensitivity to the

structural changes in our proposed neural networks, particularly in the CNN-LSTM network

(see Figure 4.6 (c)).

Allen-Cahn Cahn-Hilliard PFC
0.000

0.025

0.050

0.075

0.100

0.125

rM
S

E

0.
01

8

0.
08

4

0.
06

3

0.
00

4 0.
01

7

0.
01

2

0.
00

3

0.
00

9

0.
00

7
(a) MLP architectures

one hidden layer

two hidden layers

three hidden layers

Allen-Cahn Cahn-Hilliard PFC

0.
01

2

0.
07

2

0.
05

5

0.
00

8

0.
04

8

0.
04

2

0.
00

9

0.
01

9

0.
01

4

(b) CNN-LSTM architectures

one Cov. one LSTM

two Cov. one LSTM

two Cov. two LSTM

Allen-Cahn Cahn-Hilliard PFC

MLP with one hidden layer 0.96 0.85 0.51

MLP with two hidden layers 0.99 0.99 0.98

MLP with three hidden layers 0.99 0.99 0.99

CNN-LSTM with one Cov. one LSTM 0.98 0.99 0.95

CNN-LSTM with two Cov. one LSTM 0.99 0.99 0.98

CNN-LSTM with two Cov. two LSTM 0.98 0.99 0.97

(c) R2 for MLP and CNN-LSTM

Figure 4.6: Effect of changing MLP and CNN-LSTM architectures on rMSE and 𝑅2. (a)
rMSE values obtained by three different MLP architectures, (b) rMSE values obtained by three
different CNN-LSTM architectures. (c) 𝑅2 values for the test set calculated by Equation (4.12)
reported for three different MLP and CNN-LSTM architectures.

To further study the dynamics of the optimization process (training models), the MSE and

mean absolute error (MAE) as a function of epochs are given in Figure 4.7. The MAE is

the difference between the original and predicted values. This is calculated by averaging the

86Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

0 500 1000 1500 2000
0.00

0.01

0.02
M

LP
 e

rro
r

Allen-Cahn model
training MSE
validation MSE
training MAE
validation MAE

0 500 1000 1500 2000
0.00

0.05

Cahn-Hilliard model
training MSE
validation MSE
training MAE
validation MAE

0 500 1000 1500 2000
0.000

0.025

0.050
PFC model

training MSE
validation MSE
training MAE
validation MAE

0 500 1000 1500 2000
epoch

0.00

0.02

0.04

CN
N-

LS
TM

 e
rro

r

training MSE
validation MSE
training MAE
validation MAE

0 500 1000 1500 2000
epoch

0.0

0.1
training MSE
validation MSE
training MAE
validation MAE

0 500 1000 1500 2000
epoch

0.00

0.05
training MSE
validation MSE
training MAE
validation MAE

Figure 4.7: Trace of MSE and MAE (see Equations (4.11) and (4.13)) errors for MLP and
CNN-LSTM networks. The blue and green lines represent the errors on the training sets as a
function of epochs, and the orange and red lines correspond to the errors on the validation sets.
Learning curves show that the training and validation curves are very similar for both MSE and
MAE errors and they decrease to a point of stability.

absolute difference over the dataset and is expressed as

MAE =
1

𝑛𝑥 × 𝑛𝑦

𝑛𝑥×𝑛𝑦∑︁
𝑖=1

|𝑈𝑖
𝑡 −𝑈𝑖

𝑡 |. (4.13)

In order to achieve sufficiently small error, we trained networks for 2,000 epochs with a

batch size of 64. However, using approximately 500 epochs (e.g. early-stopping [247]) seems

adequate for achieving optimal results, particularly for the Allen–Cahn and the Cahn–Hilliard

models. Since training CNN-LSTM networks is computationally expensive, using smart early-

stopping approaches can help in cases of large data PDE learning tasks.

4.4 Data-Driven PDEs without spatial derivatives dictionary

In this section, we reformulate the problem of learning PDEs as black-box supervised learning

tasks, using convolutional neural network architecture where there is no selection of spatial

derivatives and the field 𝑈 is the only input to our deep learning model. The mathematical

4.4. Data-Driven PDEs without spatial derivatives dictionary 87

25
6

25
6

25
6

conv1 conv7

conv5

conv2

conv3

bn2

bn3

bn1

32 32 32

mp1

mp2

12
8

12
8

12
8

64 64 64
64

conv4 bn4

3

312
8

64

conv6

12
8

12
8

64

3

3

3

25
6

25
6

25
6

33

3

3

33
3

3

3

64

64

up1

up2

25
6

Figure 4.8: The proposed CNN architecture. The input and output of the CNN are the 𝑈 and
𝑈𝑡 fields, respectively. Input passes through several convolution (conv), batch normalization
(bn), max pooling (mp) and up-sampling (up) layers. All the relevant parameters of the network
architecture are described in Section 4.4.1.

representation of data-driven PDE learning task with CNN is

𝑈𝑡 (𝑡, 𝑥, 𝑦) = 𝐹CNN (𝑈 (𝑡, 𝑥, 𝑦))

𝐹CNN : R𝑛𝑥×𝑛𝑦 → R𝑛𝑥×𝑛𝑦 ,
(4.14)

where 𝑛𝑥 and 𝑛𝑦 are the number of grid points in the 𝑥- and 𝑦-directions, respectively. We use

𝑈 from our phase-field model simulations to train the CNN. After successful training of the

CNN networks, arbitrary initial conditions were chosen for the field 𝑈 and it was evolved in

time by solving 𝑈𝑡 = 𝐹CNN(𝑈) numerically at each grid point.

4.4.1 Convolutional neural network (CNN) architecture

The CNN network architecture is illustrated in Figure 4.8. The full details of the mathemat-

ical operations and functionality of each layer are beyond the scope of this paper and can be

found in reviews on CNNs such as the one by Rawar and Wang [167]. For particular appli-

cations where the desired outputs include localization (a class label is assigned to each pixel),

a specific CNN architecture called “U-net” has been proposed [70]. Since in most engineer-

ing and physics applications, the time evolution of the scalar field depends on the local spatial

derivatives, the U-net architecture is a reasonable candidate for such a learning task. The U-net-

inspired network has also been successfully used in subgrid flame surface density estimation

88Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

Table 4.4: A CNN network used for discovering field equations without spatial derivatives.
This network is trained for 20,000 epochs with the ADAM optimizer [12] with learning rate
10−4 and MAE loss function, Equation (4.13). A random sampling of 80% of snapshots (𝑛𝑡)
was used as the training set. Validation was performed on 10% and testing on the remainder.

Layers Structure filter kernel size pool size activation padding
1 Conv2D 32 (3,3) - ReLU same
2 BatchNormalization - - - - -
3 Conv2D 32 (3,3) - ReLU same
4 BatchNormalization - - - - -
5 MaxPooling2D - - (2,2) - valid
6 Conv2D 64 (3,3) - ReLU same
7 BatchNormalization - - - - -
8 Conv2D 64 (3,3) - ReLU same
9 BatchNormalization - - - - -

10 MaxPooling2D - - (2,2) - valid
11 Conv2D 64 (3,3) - ReLU same
12 UpSampling2D - (2,2) - - -
13 Conv2D 32 (3,3) - ReLU same
14 UpSampling2D - (2,2) - - -
15 Conv2D (output) 1 (3,3) - linear same

for premixed turbulent combustion modeling [248].

The CNN structure proposed here, similar to the U-net [70, 248], resembles the encoding-

decoding (auto-encoding) networks. The scalar field discretized on 𝑛𝑥 × 𝑛𝑦 grid points was fed

as the input to the network. In the contracting path, two convolutional layers (conv1, conv2

in Figure 4.8) with 32 filters each followed by ReLU and batch normalization (bn1, bn2)

were applied. The kernel size was 3 × 3 for all the convolutional layers. After the bn2 layer,

the 2D max pooling operation (mp1) with zero stride (for dimensionality reduction purposes)

was applied. The pool size for all the max pooling layers was 2 × 2. The same sub-structure

is repeated with 64 filters (conv3, bn3, conv4, bn4) up to the bottleneck unit (output of

mp2). The expansion path consists of two convolutional layers (conv5,conv6) with ReLU

units, each followed by an upsampling layer (up1, up2) with the expansion factor of (2, 2).

Finally, at the last convolutional layer (conv7), a linear activation function was used with a

filter of size one resulting in an output of shape 𝑛𝑥×𝑛𝑦. All the parameters used for the network

are summarized in Table 4.4. The ADAM optimization was applied to find the parameters of

the network, where the cost function is the mean absolute error between the network output and

𝑈𝑡 from the training set. In total, our CNN network consists of 121057 trainable parameters.

4.4. Data-Driven PDEs without spatial derivatives dictionary 89

Table 4.5: 𝑅2 values for CNN performance of predicting 𝑈𝑡 for test (unseen) data.

2D Model Allen–Cahn Equation (4.5) Cahn–Hilliard Equation (4.6) PFC Equation (4.8)
𝑅2 0.98 0.975 0.985

4.4.2 CNN performance for learning PDEs

The phase-field models presented in Section 4.2 were used to evaluate the performance of the

CNN network. For each model, the total of 𝑛𝑡 two-dimensional 𝑈 and 𝑈𝑡 fields were used and

randomly split 80:10:10 into training, validation and test sets, respectively. The𝑈 and𝑈𝑡 fields

from training sets were provided as an input and output to the CNN. All models were trained

for 20, 000 epochs and the performance of the network to recover the 𝑈𝑡 (learning the RHS of

a PDE) on the test sets is summarized in Table 4.5 in terms of 𝑅2 values. The values indicate

that all the trained models performed outstandingly in recovering the PDEs. The contours of𝑈𝑡

and the prediction of the CNN (for the Cahn–Hilliard model, Equation (4.6)) are compared in

Figure 4.9 in the left two panels. The figure shows a qualitative agreement between the original

and the data-driven models. In addition, the true and CNN predicted values of 𝑈𝑡 for all the

grid points for the test set are compared in the third panel (correlation plot). The data lie mostly

on the diagonal line indicating good performance. The traces of the loss/cost functions during

the training phase are also given in the rightmost panel of Figure 4.9. Similar results/plots were

obtained for both the Allen–Cahn (Equation (4.5)) and the PFC (Equation (4.8)) models (data

not shown here).

Figure 4.9: Results using the CNN model trained on the Cahn–Hilliard (Equation (4.6)) dataset.
The left two panels show the color map of the 𝑈𝑡 test set and the corresponding prediction by
the CNN. The𝑈𝑡 predictions for all test data as well as the traces of the loss functions are given
in the right two panels.

90Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

4.4.3 Simulation of data-driven PDEs

In this section, the potential of the proposed method to predict the field 𝑈 in time and space

based on a given initial condition𝑈0 is presented. For all three phase-field models (Section 4.2),

we are interested in solving a set of PDEs of the form

𝜕𝑈 (𝑡, 𝑥, 𝑦)
𝜕𝑡

= 𝐹CNN (𝑈 (𝑡, 𝑥, 𝑦))

𝑈 (0, 𝑥, 𝑦) = 𝑈0; initial condition,
(4.15)

where the right hand side is the output (prediction) of the trained CNN networks. In the fol-

lowing, we used the 𝑈 fields at 𝑡 = 2 (simulation time) as the initial condition (𝑈0) for all the

three models. The 𝑈 field had 𝑛𝑥×𝑛𝑦 = 128×128 real values for the Cahn–Hilliard (Equa-

tion (4.6)) and the PFC (Equation (4.8)) models, and 256× 256 for the Allen–Cahn model

(Equation (4.5)). The different sizes were used to test if there is any size dependence. At each

time 𝑡, the 𝑈𝑡 values for every grid point were determined from our trained CNN models, and

𝑛𝑥 × 𝑛𝑦 ODEs (ordinary differential equations) were solved using the (stiff) integrator. We

used the scipy Adams/BDF method with automatic stiffness detection and switching for time

integration [249, 250]. Those ODEs were solved up to 𝑡 = 6 in our benchmark datasets.

Figure 4.10 shows the solutions of the original and the data-driven PDEs. The color maps

for 𝑈 are given for qualitative comparison as well as the 𝑈 values along the centerline 𝑦=𝑛𝑦/2

for two snapshots at times 𝑡 = 2.2 and 𝑡 = 6. The results in Figure 4.10 showed that the

data-driven PDEs learned by CNN approximate the original dynamics in both quantitative and

qualitative manner.

Finally, we would like to emphasize the following points: 1) The explicit forms of the

data-driven PDEs are not known and there is no obvious relation between the functional form

of the original and the learned PDEs. Therefore, unlike with the phase-field models, there is

no guarantee for existence and uniqueness for the learned PDEs. 2) There are some isolated

points in which the𝑈𝑡 predicted values are different from the original models. This discrepancy

4.4. Data-Driven PDEs without spatial derivatives dictionary 91

a)

b)

c)

Figure 4.10: Time integration results of the PDEs learned by CNN for (a) Allen–Cahn (Equa-
tion (4.5)), (b) Cahn–Hilliard (Equation (4.6)) and (c) PFC (Equation (4.8)) at 𝑡 = 2.2 and
𝑡 = 6. Left panels: 𝑈 field for original data. Middle panels: 𝑈 field from simulations of the
learned PDEs. Right panel: 𝑈 values along the centerline 𝑦 = 𝑛𝑦/2 for the original PDEs (solid
lines) and from simulations of the learned PDEs (dashed lines).

92Chapter 4. Machine learning based data-driven discovery of non-linear phase-field dynamics

propagates in time and space and can lead to finite time blow-up in simulations. This is a known

issue in (almost all) machine learning algorithms for time series forecasting where there is no

periodicity in time [251, 252]. In the case of no underlying periodicity, it may occur that the

system trajectories do not span the whole phase space properly. Therefore, the observations

do not properly represent the possible outcomes of the system and, hence, models trained with

those data may not be adequate. Such a situation may limit the applicability of the approach to

short simulation times.

4.5 Conclusion

We have presented several data-driven methodologies for discovering PDEs from phase-field

dynamics. The well-known Allen–Cahn, Cahn–Hilliard and phase-field crystal models were

used as the test cases to predict the underlying equations of motion.

First, we provide an MLP architecture to learn the PDEs where the spatial derivatives are

explicitly computed by finite differences. Second, CNN-LSTMs were employed to learn the

governing PDEs from coarse-scale local values. Third, we proposed a special CNN architecture

for cases where there is no information about spatial dependence. In addition, using numerical

integration, we showed how the learned PDEs can be used to predict coarse-scale variables as a

function of time and space, starting from given initial conditions. The evolution of the learned

and original PDEs showed excellent agreement. We emphasize that all of the above algorithms

yield a black-box-type discovery of PDEs with no obvious connection to the functional form

of the physical models.

In general, MLP networks are extremely flexible with data, and PDEs can be learned from

various types of data using these networks. More specifically, they can be used to learn a map-

ping from a coarse field and its spatial derivatives as the inputs. However, the performance of an

MLP network is greatly affected by the choice of architecture as shown in Section 4.3.3. Along

with approximating derivatives, we need to know the derivatives’ orders, as that is required to

4.5. Conclusion 93

train an MLP network.

In CNN networks, however, spatial derivatives are not required, and thus a CNN can be

thought of as a finite-difference method capable of estimating derivatives in its first convolution

layer. Moreover, one major advantage in using CNNs is their capability to extract spatial

features from inputs. Since LSTMs pass only time information to the layers and keep the

missing spatial information from the previous steps, a combination of CNNs and LSTMs can

be applied more generally on data with spatial relationships, and, in the current case, to learn

phase-field models. In spite of these advantages, CNN networks are memory intensive and

require a large amount of data and several iterations in order to be trained effectively, and

LSTMs are computationally expensive. Despite the above limitations, we believe that the

techniques introduced here offer approaches that are both general and systematic, and provide

a basis for future developments.

The study will be extended in two directions in the future: (a) predicting two-dimensional

noisy phase-field models, (b) predicting three-dimensional phase-field models. As a result of a

limited amount of memory, it becomes increasingly challenging to train networks efficiently in

the second scenario. As a consequence, we will use frameworks that can handle large datasets.

Acknowledgments

Mahdi Kooshkbaghi was partially supported by NIH Grant GM133777. Mikko Karttunen

thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) and

the Canada Research Chairs Program. Computing facilities were provided by SHARCNET

(www.sharcnet.ca) and Compute Canada (www.computecanada.ca).

Chapter 5

A Framework Based on Symbolic

Regression Coupled with eXtended

Physics-Informed Neural Networks for

Gray-Box Learning of Equations of

Motion from Data

The contents of this chapter have been published with the following citation: E. Kiyani, K.

Shukla, G. Em Karniadakis, and M. Karttunen, A Framework Based on Symbolic Regression

Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equa-

tions of Motion from Data, Computer Methods in Applied Mechanics and Engineering, 415,

116258 (2023)

94

5.1. Introduction 95

5.1 Introduction

Partial differential equations (PDEs) are commonly used for modeling the evolution of dynam-

ical systems in, e.g., fluid dynamics, heat transfer, financial derivatives, chemical reactions and

phase tranformations. From the physical perspective, one of the main problems is constructing

models that contain all the relevant information about the system at hand. This involves, for ex-

ample, identifying the order parameters, relevant symmetries and possible couplings, and their

nature, between the order parameters. Machine learning (ML) offers a method for automated

construction of models directly from experimental or other data: it can be used to identify

PDEs from data without prior/or only with partial knowledge about the underlying physics.

Being able to predict the PDEs from data involves training a neural network to recog-

nize patterns in the data set(s), and then using the learned network to identify the underly-

ing PDEs. Various methods have been proposed including PDE-Net [120, 121], neural net-

works [253, 122], Gaussian processes [107, 117], and the sparse identification of non-linear

dynamics (SINDy) algorithm [254, 255, 256, 123, 124]. However, when dealing with sparse

and high-dimensional data, these methods may not be sufficient to obtain a high level of accu-

racy. To circumvent these issues, Raissi et al. [114] proposed Physics-Informed Neural Net-

works (PINNs), which utilize a novel approach that incorporates physics-based constraints

into the loss function allowing for accurate predictions in complex systems with varying initial

and boundary conditions. PINNs are capable of discovering unknown equations and solving

them [125].

Their leading idea is to integrate the fundamental physical principles of a system with neu-

ral networks. They are also flexible in the sense that they can handle complex and non-convex

geometries, and different boundary and initial conditions. The loss function for a PINN incor-

porates data fitting, residuals of the PDEs (computed using automatic differentiation), initial

and boundary conditions. The network parameters are updated during training to minimize the

loss function, resulting in a solution that meets the constraints applied in the loss function.

One of the key benefits of using PINNs, as compared to other ML techniques, is their ability

96Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

to effectively learn from limited data, while also incorporating prior knowledge of the system

being studied. This prior knowledge is incorporated into the loss function of the network, and

it helps to guide the network towards solutions that are physically plausible and consistent

with the known properties of the system being studied. This allows the network to make more

accurate predictions even with limited training data. PINNs possess the ability to tackle both

forward and inverse problems, and identifying unknown parameters in differential equations

based on observed data. To achieve this, the available data is introduced into the network’s

training process as solutions to the PDEs, allowing it to learn and approximate the underlying

physics of the system, and subsequently recognize the unknown parameters. This feature is

beneficial in instances where the governing equations are only partially known, and the aim is

to deduce the parameters based on gathered experimental or observational data [114, 257, 258].

Since the introduction of PINNs, various extensions such as Physics-Informed Attention-

Based Neural Networks, (PIANNs) [175], Generative Adversarial Physics-Informed Neural

Networks (GA-PINNs) [176], Graph Convolutional Networks (GCNs) [177], and Bayesian

Physics-Informed Neural Networks (B-PINNs) [178] have been developed to enhance perfor-

mance and to extend the applicability of PINNs to different problems. In this work, we focus

on the eXtended Physics-Informed Neural Networks (X-PINNs) [127, 128]. They involve

generalized space-time domain decomposition in order to provide computationally efficient

solutions to PDEs across large spatial and temporal domains. In this approach, the domain is

first split into smaller subdomains. Then, the PDEs are solved in each subdomain using PINNs

and at the interfaces with certain continuity conditions imposed as soft-constraints in the loss

function. This allows X-PINNs to use large neural networks without the common problem of

overfitting. X-PINNs also reduce the computational cost associated with training due to their

implicit concurrent implementation [259, 260]. X-PINN is an approach that involves dividing

a computational domain into smaller subdomains. In this method, independent PINNs are de-

ployed in each subdomain, allowing for parallelization and distributed computing. At the end

of each epoch or iteration, the solution, flux, and the residuals of the PDEs at the interfaces

5.1. Introduction 97

between the subdomains are communicated using point-to-point protocols. These protocols

enable efficient and cost-effective communication between the subdomains.

In this study, we propose a framework combining X-PINNs with data-driven methods to

uncover the non-linear term of the underlying PDE, while assuming the presence of a Laplacian

term as a diffusion operator. The well-known Allen-Cahn model is used as the test case [194].

Our study presents a promising approach for gray-box learning of equations with X-PINNs.

Gray-box learning refers to discovering equations when only partial knowledge of the equation

is available and it combines the strengths of both white-box and black-box learning. It can be

particularly useful in situations where the known parts of the equation provide valuable insights

into the behavior of the system, despite the complete equation being unknown [148, 149]. For

instance, in the current study, the Laplacian term represents the known part of the equation,

while the non-linear term is unknown. After discovering the non-linear term of the gray-box

Allen-Cahn equation using X-PINN, we feed the discovered term and the data from phase-

field simulations into a symbolic regression model to predict the explicit mathematical formula

of the unknown term. Symbolic regression is an ML technique used to discover the explicit

mathematical expressions or equations that best fit a given dataset [261]. The framework is

implemented using Python, and utilizes the Tensorflow (version 2.0) deep learning framework

for its efficient automatic differentiation capabilities [262].

The rest of this article is structured as follows: Section 5.2 provides an overview of the

phase-field approach and data preparation. Section 5.3 gives a brief summary of the PINNs

and X-PINNs, followed by a presentation of X-PINN results and a comparison of the predic-

tions using PINNs and X-PINNs. Section 5.4 presents the symbolic regression results. The

performance of the framework for noisy data is discussed in Section 5.5. In Section 5.6, we

examine the framework’s performance for different sizes of training data sets to investigate

the amount of optimal data required for training. Finally, a summary of the current work is

provided in Section 6.7.

98Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

5.2 Phase-field modeling

In phase-field modeling the time evolution of the order parameter (𝑈 (®𝑥, 𝑡)) is described by a

time-dependent PDE [141]. The order parameter takes the value zero in the disordered, or high-

temperature phase, and a small finite value in the ordered, or low-temperature phase. The order

parameter field is called the “phase-field” and the order parameter itself can be a scalar, vector

or even a tensor depending on the nature of the system at hand [263, 141, 264]. The typical

way of constructing such models is by postulating a phenomenological Ginzburg–Landau free

energy, or Lyapunov functional, in terms of a gradient expansion of the order parameter and

taking a functional derivative [263, 141]. The terms that are included from the expansion

must obey the symmetries of the system. In cases when a free energy functional cannot be

constructed, one typically postulates an equation of motion. This is, for example, the case

with reaction-diffusion models [265, 266]. Systems may also have several order parameters

that are coupled, examples include such diverse systems as magnetocrystallinity [267] and cell

migration [268]. Recently, open source software for phase-field simulations has also started to

emerge, see e.g. Refs. [269, 270].

We utilize the well-known Allen–Cahn model [194, 271]. This model was first introduced

by Stuart Allen and John Cahn in 1972 to describe solidification dynamics in binary alloys

by employing a non-conservative scalar order parameter [194]. Its wide-ranging applications

in solidification include, for example, dendritic growth and pattern formation. For broader

discussions see, e.g. Refs. [271, 272, 273]. The model describes the evolution of a phase

interface via a PDE that accounts for the thermodynamic driving force for phase separation, as

well as kinetic effects arising from diffusion and surface tension. The equation of motion for

the order parameter 𝑈 ≡ 𝑈 (®𝑥, 𝑡) can be given in a dimensionless form as [141]

𝜕𝑈

𝜕𝑡
= −𝑀

(
∇2𝑈 + 𝑎2𝑈 − 𝑎4𝑈

3
)
, (5.1)

where the rate of change of the order parameter over time is determined by the mobility coeffi-

5.2. Phase-field modeling 99

cient 𝑀 . It is related to the interfacial energy, and it controls the speed of interface propagation

and the wavelength of resulting patterns. Here we set 𝑀 = 1. The constants 𝑎2 and 𝑎4 deter-

mine the shape and behavior of the free energy density of the system. We set 𝑎2 = 𝑎4 = 1 in

our simulations. Figure 5.1 displays snapshots at three different time steps (𝑡 = 0, 𝑡 = 50, and

𝑡 = 100) to illustrate the dynamics of the Allen–Cahn model.

In addition to traditional numerical methods, recent developments in machine learning

have shown promise in solving the Allen-Cahn equation as a forward problem. The PINN

framework has been demonstrated to be highly accurate and efficient for solving the equa-

tion [114, 274, 275]. In addition, the Laplacian part has elliptic regularity, resulting in fast

convergence of PINNs [276]. Another emerging field is physics-informed machine learning

(PIML), which combines traditional numerical methods with ML to solve physical problems

such as the Allen-Cahn equation. In other recent studies, data driven deep learning frameworks

have been proposed and shown to significantly accelerate the traditional numerical methods for

solving phase-field equations [277, 246, 253].

Figure 5.1: Snapshots from a simulation of the Allen–Cahn model, Equation (5.1), at 𝑡 = 0,
𝑡 = 50, and 𝑡 = 100. The simulation was performed using dimensionless units, and on a
uniformly discretized grid of size 𝑛𝑥×𝑛𝑦 = 100×100 with a spatial resolution of 𝛥𝑥 = 𝛥𝑦 = 1.0.
A time step of 𝛥𝑡 = 0.1 was used. Periodic boundary conditions were applied and the initial
configuration was randomly generated from a uniform distribution.

Here, numerical simulations were conducted using a two-dimensional grid with dimensions

[𝑛𝑥 × 𝑛𝑦] = [100 × 100] and grid spacing of [𝛥𝑥, 𝛥𝑦] = [1, 1]. The simulations were run

100Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

from 𝑡 = 0 to 𝑡 = 10 with a time step of 𝛥𝑡 = 0.1, resulting in a total of 𝑛𝑡 = 100 time

steps. Periodic boundary conditions were applied and uniform random distribution was used

for initial conditions. Figure 5.1 shows snapshots from a simulation starting from random

initial conditions.

5.3 Extended physics-informed neural network (X-PINN)

PINNs are a type of ML algorithm that can accurately solve differential equations by incor-

porating the known physics (e.g., PDEs, ODEs, integro-differential equations) of the prob-

lem into a neural network architecture as soft constraints [114, 125, 278, 279]. The network

is trained to minimize the loss functions constructed by computing the misfit between the

data, initial and boundary conditions, and residuals of the PDE. To minimize the loss func-

tion, a first order optimizer (ADAM) or a combination of first and second order optimizer

(ADAM + L-BFGS) is typically used [280, 281]; L-BFGS stands for the limited-memory

Broyden–Fletcher–Goldfarb–Shannon algorithm. This approach allows PINNs to capture the

underlying physics in the data and to make predictions. PINNs are particularly suited for mod-

eling non-linear relationships, and handling multiple physical processes [279, 175, 282, 283,

284, 285, 286, 287, 278, 288].

In general, using a single PINN may not be sufficient to accurately capture chaotic, highly

non-linear, and complex solutions [126].

Increasing the depth of the neural network may seem like an obvious solution, but it can

lead to several issues. Firstly, using deeper networks with sparse data can result in over-

parameterization, which can lead to over-fitting. This means that the network may fit the

training data too closely and fail to generalize to new data [289, 290, 291].

Secondly, deep neural networks can result in a complex and highly non-convex loss land-

scape, which can make it difficult to optimize the network. This can lead to issues such as

getting stuck in local minima and slow convergence [291, 292]. Lastly, using deeper networks

5.3. Extended physics-informed neural network (X-PINN) 101

can be computationally intractable, which can limit their usefulness in practical applications.

To circumvent these issues, Jagtap et al. [127] proposed X-PINNS which are primarily based

on the domain decomposition approach frequently adopted in the classical numerical methods.

The X-PINN approach extends PINNs by offering space-time domain decomposition,

which can be useful for problems with irregular, and non-convex geometries. X-PINNs aim

to improve the accuracy and efficiency of solving and discovering PDEs by introducing

additional physics-inspired constraints. In this approach, the domain is decomposed into

smaller subdomains both in space and time, and separate neural networks are trained for each

subdomain. The solutions at the spatio-temporal interfaces of the subdomains are unified by

enforcing residual continuity. This allows for more efficient and accurate modeling of the

physics in each subdomain, leading to an improved overall accuracy of the solutions.

As discussed in Section 5.2, we use the Allen-Cahn model as the test case. The underlying

assumption is that the Laplacian term of Equation (5.1) is considered to be the known part of

the equation and used as prior knowledge during the training of X-PINNs. Thus, the objective

is to determine the function 𝐹 (𝑈) such that

𝜕𝑈

𝜕𝑡
= ∇2𝑈 + 𝐹 (𝑈) . (5.2)

The rationale behind considering the Laplacian operator is rooted in its extensive utiliza-

tion and well-established significance in describing diffusion processes across diverse scientific

and engineering domains. By assuming the Laplacian term as the known diffusion operator,

we capitalize on existing knowledge and established physical theories that emphasize the sig-

nificance of diffusion in the system under investigation. This approach allows us to focus on

the reaction part, which is more complex and non-linear, and may involve intricate interactions

and phenomena that are not explicitly captured by known physical laws or models.

Figure 5.2 shows a schematic diagram of the proposed framework to discover the unknown

function 𝐹 (𝑈) in Equation (5.2). To train the X-PINN, the domain 𝛺 is divided into four

102Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

subdomains such that, 𝛺11 with 0 ≤ 𝑥 ≤ 50 and 0 ≤ 𝑦 ≤ 50, 𝛺12 with 50 ≤ 𝑥 ≤ 100 and

0 ≤ 𝑦 ≤ 50, 𝛺21 with 0 ≤ 𝑥 ≤ 50 and 50 ≤ 𝑦 ≤ 100, and 𝛺22 with 50 ≤ 𝑥 ≤ 100 and

50 ≤ 𝑦 ≤ 100.

In this study, X-PINNs are used with four sub-PINNs, each consisting of two sub-networks.

The sub-networks 𝑁𝑁𝑈𝑖, 𝑗
, for 𝑖, 𝑗 in 1, 2, predict 𝑈𝑖, 𝑗 as a function of 𝑥, 𝑦, and 𝑡, and the sub-

networks 𝑁𝑁𝐹𝑖, 𝑗 are used to predict the corresponding 𝐹𝑖, 𝑗 (𝑈). The network architectures for

both sub-networks are shown in Table 5.1. The architectures of the networks 𝑁𝑁𝑈𝑖, 𝑗
include

six dense layers, each having 20 neurons, while the networks 𝑁𝑁𝐹𝑖, 𝑗 comprise of four dense

layers with 20 neurons in each layer. The networks were trained using a learning rate of 10−3

and the ADAM optimizer for 300, 000 epochs. The L-BFGS can be used as an optimizer when

dealing with slow convergence rates and no mini-batch is required.

Each subdomain has 𝑛𝑡 = 100 snapshots randomly split into training and test sets with an

80 : 20 ratio.

Networks # of layers Layer type Neurons in each layer Activation function
𝑁𝑁𝑈𝑖, 𝑗

6 dense and fully connected 20 tanh
𝑁𝑁𝐹𝑖, 𝑗 4 dense and fully connected 20 tanh

Table 5.1: The neural network architectures in both sub-networks. Networks 𝑁𝑈𝑖, 𝑗
consist of

6 layers with 20 neurons in each layer. The 𝑁𝐹𝑖, 𝑗 networks are comprised of 4 layers and 20
neurons in each layer. The networks were trained with learning rate of 10−3 for 300, 000 epochs
using the ADAM optimizer. Each subdomain has 𝑛𝑡 = 100 snapshots were randomly split into
training and testing with a 80 : 20 ratio.

As shown in Figure 5.2, the first set of networks 𝑁𝑈𝑖, 𝑗
takes 𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 , and 𝑡 as inputs and

predicts 𝑈𝑖, 𝑗 as a function of these inputs. The predicted 𝑈𝑖, 𝑗 is then fed through the second

set of networks 𝑁𝐹𝑖, 𝑗 to discover the function 𝐹 (𝑈𝑖, 𝑗). Additionally, there are four interfaces

𝜕𝛺11−12, 𝜕𝛺11−21, 𝜕𝛺12−22, and 𝜕𝛺21−22, between two neighboring subdomains. 𝜕𝛺11−12 and

𝜕𝛺11−12 are depicted in Figure 5.2 as examples which 𝜕𝛺11−12 is a common boundary between

subdomains 𝛺11 and 𝛺12, and has 𝑥 = 50 and 0 ≤ 𝑦 ≤ 50. Therefore, each subdomain has two

interfaces and two boundaries, marked by purple and green, respectively, in Figure 5.2.

It is important to note that in X-PINNs, the loss functions are defined separately for each

5.3. Extended physics-informed neural network (X-PINN) 103

Figure 5.2: The X-PINN methodology for discovering the Allen–Cahn model with four sub-
domains, 𝛺11 (0 ≤ 𝑥, 𝑦 ≤ 50), 𝛺12 (50 ≤ 𝑥 ≤ 100 and 0 ≤ 𝑦 ≤ 50), 𝛺21 (0 ≤ 𝑥 ≤ 50
and 50 ≤ 𝑦 ≤ 100), and 𝛺22 (50 ≤ 𝑥, 𝑦 ≤ 100) involves several steps. Four sub-PINNs cor-
responding to the four subdomains are composed, each consisting of two sub-networks, 𝑁𝑁𝑈

and 𝑁𝑁𝐹 , and a physics-informed part. 𝑁𝑁𝑈 takes inputs 𝑥, 𝑦, and 𝑡 at each subdomain to
predict the output 𝑈. The output 𝑈 is then fed into a second network 𝑁𝑁𝐹 to predict the output
𝐹 (𝑈). Using the predicted 𝑈 and 𝐹 (𝑈), the physics-informed part creates Equation (5.2). The
loss function is composed of two categories: 1) loss on subdomains and 2) loss along the inter-
faces, where LossU and Lossresidual minimize data mismatch and residual on each subdomain,
respectively. Additionally, the average solution continuity term and the residuals across the
subdomain interfaces are included in the loss function, along with Lossflux, which represents
the normal flux continuity term. After minimizing the loss function, the next step involves
feeding 𝑈 and predicted 𝐹 (𝑈) into symbolic regression to predict the general form of 𝐹 as a
function of 𝑈.

subdomain. Each subdomain has the same terms as the standard PINN loss function, that is,

a data-fitting term and the residuals of the PDE expressed in Equation (5.2). Let 𝑁𝑢 and 𝑁𝐹

denote the number of training and residual data points, respectively. The unknown function 𝐹

104Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

Algorithm 1 Pseudo-algorithm for gray-box learning of the Allen-Cahn equation
Require: 𝑈, 𝑥, 𝑦, 𝑡: sampled using Latin hypercube sampling
Require: 𝑁𝑑: Number of sub-domains to partition 𝛺 in subdomains
Require: 𝑖𝑑: iterator for subdomains
Require: 𝛩𝑖 = {𝑊𝑖, 𝑏𝑖}𝑁𝑑

𝑖=1 ⊲ Initialize trainable parameters
Require: 𝜖 : 10−5 ⊲ Initialize training convergence criteria
Require: 𝑁: Total number of iterations ⊲ Number of iterations
Require: Update ∈ { Adam, L-BFGS} ⊲ Set of optimizers
Require: F

𝑈
(Θi), F𝐹

𝑈
(Θi) ⊲ Initialize neural networks for each subdomain for 𝑈 and 𝐹 (𝑈)

Require: 𝑛, 𝑖𝑑 , L: iteration counters and initial loss ⊲ Initialize
for all 𝑖𝑑 ∈ 𝑁𝑑 do ⊲ Loop 1: X-PINN Training

while L > 𝜖 and 𝑛 < 𝑁 do
𝑈𝑖𝑑 , 𝐹 (𝑈)𝑖𝑑 ← F𝑈 (Θ𝒊𝒅), F𝐹𝑈 (Θ𝒊𝒅)
L𝑖𝑑 ← L𝑈𝑖𝑑

+ L
𝐹 (𝑈)𝑖𝑑

+ R(𝑈)𝑖𝑑 ⊲ R is residual loss
Θ𝑖𝑑 ← Update(Θ)
𝑛← 𝑛 + 1

end while
𝑖𝑑 ← 𝑖𝑑 + 1

end for
𝑈𝑖𝑑 , 𝐹 (𝑈)𝑖𝑑 ← Loop: 1

Require: 𝐹 (𝑈)𝑖𝑑 : 𝛼𝑖𝑑𝑈
𝑚
𝑖𝑑
+ 𝛽𝑖𝑑𝑈𝑛

𝑖𝑑
Require: 𝜖𝑟𝑅𝑇𝑜𝑙

Require: 𝜖𝑆𝑟 = 100 ⊲ Tolerance for symbolic regression
for all 𝑖𝑑 ∈ 𝑁𝑑 do ⊲ Loop 2: Symbolic regression

while 𝜖𝑆𝑟 < 𝜖𝑆𝑟𝑇𝑜𝑙 do
{𝛼𝑖𝑑 , 𝛽𝑖𝑑 , 𝑚𝑖𝑑 , 𝑛𝑖𝑑 , 𝜖𝑆𝑟} ← Symbolic Regressor((𝑈𝑖𝑑 , 𝐹 (𝑈)𝑖𝑑))

end while
end for

can be obtained by minimizing the mean squared error loss

M𝑆𝐸𝑈𝛺𝑖, 𝑗
=

1
𝑁𝑢

𝑘=𝑁𝑢∑︁
𝑘=1

| (𝑈𝑘
𝛺𝑖, 𝑗
−𝑈𝑘

𝛺𝑖, 𝑗
) |2, (5.3)

M𝑆𝐸Residual𝛺𝑖, 𝑗
=

1
𝑁𝐹

𝑘=𝑁𝐹∑︁
𝑘=1

|𝑅(𝑈𝑘
𝛺𝑖, 𝑗
) |2, (5.4)

where M𝑆𝐸𝑈𝛺𝑖, 𝑗
is a data-fitting term, and 𝑈𝛺𝑖, 𝑗

and 𝑈𝛺𝑖, 𝑗
are the simulation data and the

predicted solution by sub-PINNs over subdomain 𝛺𝑖, 𝑗 . M𝑆𝐸𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝛺𝑖, 𝑗
is the loss for the PDE

residual that enforces the governing Equation (5.2) over subdomains. For the predicted 𝑈𝛺𝑖, 𝑗
it

5.3. Extended physics-informed neural network (X-PINN) 105

is defined as

𝑅(𝑈𝛺𝑖, 𝑗
) =

𝜕𝑈𝛺𝑖, 𝑗

𝜕𝑡
− ∇2𝑈𝛺𝑖, 𝑗

− 𝐹 (𝑈𝛺𝑖, 𝑗
) . (5.5)

Subsequently, each subdomain’s loss function is modified to enforce flux and residual con-

tinuity at the interface. This binds the subdomains together and ensures unique solutions at the

interface between two neighboring subdomains.

For any method based on the PINN framework, there are three types of errors: estimation

error, approximation error and optimization error. The generalization error is the addition

of approximation and estimation errors. The approximation error is very well understood as

single layer with sufficiently large number of neurons that can approximate the function to an

arbitrary level of error. However, the estimation error is caused by a finite number of the data

points and converges with the rate of ∝ 1√
𝑛

[291]. The optimization error, however, is poorly

understood as the objective function is high-dimensional, highly non-convex and non-linear.

Optimization often involves many engineering tricks and tedious trial and error type fine-

tuning of parameters such as adjusting the learning rate, usage of learning rate scheduler, type

of optimizers e.g., SGD [293], Adam, RProp [294] etc. The imposition of flux or residual con-

tinuity is bounded from above by the optimization error and can be viewed as O ≤ F (𝑢+, 𝑢−),

where O represents the optimization error and F is the flux or residual computed at the in-

terface. A detailed study of convergence of PINN for parabolic and elliptic PDEs was done

by Shin et al. [276]. The convergence of X-PINN specifically for generalization was studied

in detail by Hu et al. [295]. Also the error bounds for PINN in solving the incompressible

Navier-Stokes equation have been shown by De Ryck et al. [296], wherein they proved

• Smallness of the PDE residual in the class of neural networks.

• A small residual contributes to a small total error.

• Small training errors imply small total errors for sufficient number of quadrature points.

It is to be noted that in the original implementation of X-PINN [127, 258], only continuity

of the solutions and residuals are enforced at the interfaces of two neighboring subdomains.

106Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

In this study, we augment the loss function with flux continuity along with continuity of the

residuals and the solution. This enables the model to consider physical constraints that are

not explicitly included in the training data. By doing so, the model’s accuracy and the rate

of convergence are improved, enabling it to determine more precise predictions regarding the

interface behavior. The loss terms representing the continuity of solutions, residual and flux at

the interface of two subdomains are expressed as

M𝑆𝐸𝑈𝜕𝛺𝑖, 𝑗
=

∑︁
𝛺+

𝑖, 𝑗

©«
1
𝑁𝑢

𝑘=𝑁𝑢∑︁
𝑘=1

������𝑈𝑘
𝜕𝛺𝑖, 𝑗
− ©«

𝑈𝑘
𝜕𝛺𝑖, 𝑗
+𝑈𝑘

𝜕𝛺+
𝑖, 𝑗

2
ª®¬
������
2ª®®¬ , (5.6)

M𝑆𝐸Residual𝜕𝛺𝑖, 𝑗
=

∑︁
𝛺+

𝑖, 𝑗

(
1
𝑁𝐹

𝑘=𝑁𝐹∑︁
𝑘=1

|𝑅(𝑈𝑘
𝜕𝛺𝑖, 𝑗
) − 𝑅(𝑈𝑘

𝜕𝛺+
𝑖, 𝑗
) |2

)
, and (5.7)

M𝑆𝐸flux𝜕𝛺𝑖, 𝑗
=

∑︁
𝛺+

𝑖, 𝑗

©«
1
𝑁𝐹

𝑘=𝑁𝐹∑︁
𝑘=1

������
(
𝜕𝑈𝑘

𝜕𝛺𝑖, 𝑗

𝜕𝑥
+
𝜕𝑈𝑘

𝜕𝛺𝑖, 𝑗

𝜕𝑦

)
· n̂−©«

𝜕𝑈𝑘
𝜕𝛺+

𝑖, 𝑗

𝜕𝑥
+
𝜕𝑈𝑘

𝜕𝛺+
𝑖, 𝑗

𝜕𝑦

ª®¬· n̂
������
2ª®®¬ . (5.8)

The term M𝑆𝐸𝑈𝜕𝛺𝑖, 𝑗
represents the data-fitting term along the interfaces, 𝑈𝜕𝛺𝑖, 𝑗

denotes the

simulation data, and (𝑈𝑘𝜕𝛺𝑖, 𝑗+𝑈𝑘𝜕𝛺𝑖, 𝑗+

2) is the average of the solutions along the interfaces pre-

dicted by two different networks on subdomains 𝛺𝑖, 𝑗 and 𝛺𝑖+1, 𝑗 or 𝛺𝑖, 𝑗+1. Here, 𝜕𝛺+
𝑖, 𝑗

refers

to the interfaces between subdomains. Furthermore, M𝑆𝐸Residual𝜕𝛺𝑖, 𝑗
and M𝑆𝐸flux𝜕𝛺𝑖, 𝑗

repre-

sent the residual continuity conditions and fluxes across common interfaces, respectively. The

residuals and fluxes at the interfaces are calculated by two different networks on 𝛺𝑖, 𝑗 and other

connected subdomains 𝛺𝑖+1, 𝑗 or 𝛺𝑖, 𝑗+1. For the Allen-Cahn (Equation (5.1)), the fluxes in the

𝑥- and 𝑦-directions are
𝜕𝑈

𝜕𝑥
and

𝜕𝑈

𝜕𝑦
, respectively, and n̂ denotes the direction of the outward

normal to the interfaces.

5.3. Extended physics-informed neural network (X-PINN) 107

It is important to highlight that we define the following loss function:

Loss = 𝑊𝑈𝛺𝑖, 𝑗
M𝑆𝐸𝑈𝛺𝑖, 𝑗

+W𝑅𝛺𝑖, 𝑗
𝑀𝑆𝐸Residual𝛺𝑖, 𝑗

+𝑊𝑈𝜕𝛺𝑖, 𝑗
M𝑆𝐸𝑈𝜕𝛺𝑖, 𝑗

+

𝑊𝑅𝜕𝛺𝑖, 𝑗
M𝑆𝐸Residual𝜕𝛺𝑖, 𝑗

+𝑊𝐹𝜕𝛺𝑖, 𝑗
M𝑆𝐸flux𝜕𝛺𝑖, 𝑗

.

The weights assigned in our approach play a crucial role in achieving convergence for the

minimizer. In our method, we utilize the following values for the weights: 𝑊𝑈𝛺𝑖, 𝑗
= 20,

𝑊𝑅𝛺𝑖, 𝑗
= 1, 𝑊𝑈𝜕𝛺𝑖, 𝑗

= 20, 𝑊𝑅𝜕𝛺𝑖, 𝑗
= 20, 𝑊𝐹𝜕𝛺𝑖, 𝑗

= 20. Based on our numerical experiments, we

have observed that increasing the weights results in accelerated convergence.

In comparison to conservative physics-informed neural networks (CPINNs) [126], our ap-

proach introduces an additional loss term at the interface between subdomains. While CPINNs

emphasize enforcing flux continuity and the average solution in their loss function, our method

incorporates the continuity of the residuals term to further improve the accuracy and consis-

tency of the model’s predictions at the subdomain interface. Furthermore, CPINN has been

utilized to uncover the unknown parameters of equations in white-box learning. However, in

the current study, to fulfill the requirements for gray-box learning, an additional network has

been incorporated into each sub-PINNs to train the unknown term 𝐹 (𝑈).

Figure 5.3 displays the performance of the trained sub-PINNs. The left panels in Figure 5.3

(a) show the contours of the predicted 𝑈 at time 𝑡 = 100, while the middle panels in Figure 5.3

(b) show snapshots of the exact solution of 𝑈. The right panels in Figure 5.3 (c) illustrate the

point-wise relative errors. Moreover, Figures 5.3 (d) and (e) depict a comparison between the

true values with the predicted values of 𝑈 using X-PINNs and PINNs, the vertical axis rep-

resents 𝑈 and the horizontal axis the 𝑥-coordinate. The results indicate that the sub-networks

in X-PINNs are effective at accurately capturing the primary characteristics of the solution. In

contrast, the predictions obtained using PINNs are significantly divergent from the true val-

ues, suggesting that PINNs may not be a suitable option for predicting this particular equation.

However, some slight errors are present in isolated grid points near sharp boundaries, indi-

108Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

cating that the network may not detect smaller features. Such behavior has been previously

reported in other studies [246, 253].

Figure 5.3: Snapshots of (a) PINNs predictions 𝑈, (b) the true solution of the Allen–Cahn
Equation (5.1) at time 𝑡 = 100, and (c) the point-wise relative errors. A comparison of the
predictions from X-PINNs and PINNs frameworks with true values of 𝑈 is shown in (d) and
(e), respectively. It is worth noting that the plots were generated specifically for the value of
𝑦 = 50. This positioning corresponds to one of the interfaces, specifically at 𝑦 = 50 and 𝑥

ranging from 0 to 100.

Figure 5.4 displays the predicted 𝐹 (𝑈) at time 𝑡 = 100. The left panels in Figure 5.4 (a)

show the contours of 𝐹 (𝑈), while the right panels in Figure 5.4(b) depict 𝑈 −𝑈3. The results

demonstrate that PINNs in each subdomain can accurately identify function 𝐹 (𝑈) with a high

degree of accuracy. Figure 5.4 (c) presents a visual comparison between the predicted and exact

𝐹 (𝑈) = 𝑈 −𝑈3. The vertical axis represents 𝐹 (𝑈), and the horizontal axis the 𝑥-coordinate.

These results illustrate that the proposed framework can uncover the unknown part of the non-

5.3. Extended physics-informed neural network (X-PINN) 109

linear Equations (5.2) with a great accuracy, despite using no information about the function 𝐹

during model training.

Figure 5.4: Snapshots of (a) predicted unknown function 𝐹 (𝑈), (b) the exact 𝐹 (𝑈) = 𝑈 −𝑈3

at time 𝑡 = 100 as well as (c) a comparison of the predicted 𝐹 (𝑈) and exact 𝑈 − 𝑈3, where
the vertical axis represents 𝐹 (𝑈) and 𝑈 −𝑈3 and the horizontal axis is the 𝑥-coordinate. It is
important to mention that the plots were specifically generated for the value of 𝑦 = 50

.

The primary reason behind the underperformance of PINN compared to X-PINN is spectral

bias [174, 297, 298, 299].

Spectral bias in neural network causes it to perform better with good convergence for

low frequencies/wavenumbers over high frequencies/wavenumbers. The solution of the Allen-

110Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

Cahn equation comprises broad range of wavenumbers associated with respective the energy

modes of the solutions, and they are difficult to recover for a single PINN due to limited expres-

sive power of a single neural network. X-PINN, however, comprising multiple PINNs, offers

a better representation of the solution by splitting the domain into various subdomains. In this

way, each subdomain is represented by a subset of the global wavenumbers and offering rapid

to accurate solution.

To evaluate the accuracy of the predictions, we use the Frobenius matrix norm [300] to

measure the errors between the predicted 𝑈 and 𝐹 (𝑈), and the exact values of 𝑈 and 𝑈 −

𝑈3 in R100×100. The Frobenius matrix norm is commonly used in linear algebra, numerical

analysis, and ML. It has several useful properties, including being invariant under orthogonal

transformations and sub-multiplicative, similar to the magnitude of a vector. The Frobenius

norm for an 𝑚 × 𝑛 predicted matrix 𝑈 is defined as

∥error𝑈 ∥𝐹 =

√√√ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

|𝑈𝑖, 𝑗 −𝑈𝑖, 𝑗 |2. (5.9)

Similarly, we calculate the 𝐹 (𝑈) error using

∥error𝐹 (𝑈) ∥𝐹 =

√√√ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

| (𝑈𝑖, 𝑗 −𝑈3
𝑖, 𝑗
) − 𝐹 (𝑈𝑖, 𝑗) |2. (5.10)

Figure 5.5 presents the Frobenius norm errors. Figure 5.5 (a) shows the errors for 𝑈 and

Figure 5.5 (b) for 𝐹 (𝑈). The errors are given as the overall difference between the predicted

and exact values of 𝑈 and 𝐹 (𝑈) according to Equations (5.9) and (5.10). The 𝑥-axis represents

the time and the 𝑦-axis the Frobenius norm error. It can be observed that the error decreases as

the model is trained, indicating that the model is learning and makes better predictions as time

progresses. This trend is observed in all subdomains. As the model becomes more familiar

with the problem, it can identify and capture more complex features of the solution. However,

as the error approaches a plateau around 10−2, the improvement in accuracy slows down. This

5.4. Symbolic regression 111

could be due to several factors such as the model reaching its capacity, the complexity of the

problem, or the quality of the training data. Overall, the observed trend in the Frobenius norm

error indicates that the model is learning and improving in accuracy.

Figure 5.5: Frobenius norm error for (a) 𝑈 and (b) 𝐹 (𝑈) calculated by Equations (5.9) and
(5.10).

In order to investigate the stability and consistency of the trained model, we compute the

means and the standard deviations of the predicted solutions across ten runs with different

initialization parameters for the neural network. This helps us to determine how much the

predicted values vary from their expected values due to the stochastic initialization process.

Smaller standard deviation indicates that the predicted values are more accurate because their

values cluster more tightly around the mean. The results are presented in Figure 5.6, where

the left set of figures shows the predicted 𝑈 and the right one the predicted function 𝐹 (𝑈).

The dashed lines represent the mean values, while the highlights above and below the mean

indicate the standard deviation along the 𝑥-axis.

5.4 Symbolic regression

Symbolic regression is an ML technique that involves identifying a mathematical expression

or an equation that closely approximates a given dataset. This approach has been used in

112Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

Figure 5.6: The mean value of the predictions (a) 𝑈 and (b) 𝐹 (𝑈) as well as the standard
deviations for the ten different runs. The dashed lines are the averages of the ten different pre-
dictions with random selection of training sets. The highlights indicate the standard deviations.
Predicted𝑈 and 𝐹 (𝑈) are shown in the vertical axis and the horizontal axis is the 𝑥-coordinate.

various fields, including engineering, finance, biology, and modeling of complex systems by

discovering correlations between input/output data pairs [261, 187, 301, 190, 302]. Instead of

using predefined models, such as linear or polynomial regression, symbolic regression searches

through a space of mathematical functions to find the function that best fits the data. In this

study, we utilize the API for symbolic regression provided by the Python library gplearn [303]

to discover mathematical expressions for 𝐹 (𝑈) as a function of simulation data 𝑈.

Typically, gplearn provides a set of predefined mathematical functions that can be utilized

during the regression process. These functions encompass arithmetic operators (addition, sub-

traction, multiplication, and division), trigonometric functions (sine, cosine), logarithmic func-

tions, exponential functions, and potentially others. The effectiveness of gplearn in uncovering

specific functions hinges on both the functions incorporated in its search space and the com-

plexity of the desired function. While gplearn can generally succeed in identifying functions

like polynomials or basic trigonometric functions, the process of symbolic regression, in gen-

eral, may face challenges if the desired functions are not included in the predefined set of

5.4. Symbolic regression 113

functions. In addition to gplearn, one can use Sparse Identification of Non-linear Dynamics

(SINDY) [254, 255, 256] and PySR [304] package to discover the mathematical expression of

an unknown term 𝐹. SINDY provides a valuable tool for inferring the dynamics of a system

based on data, allowing for the discovery of meaningful mathematical expressions. PySR is

a high-performance symbolic regression package that implements an algorithm for optimizing

symbolic expressions using evolutionary algorithms.

Moreover, the success of function discovery in symbolic regression is influenced by vari-

ous factors, including the quality and quantity of the available data. Having an ample amount

of high-quality data is crucial for accurately uncovering complex functions. The greater the

representativeness and diversity of the data, the higher the likelihood of capturing the underly-

ing patterns and relationships. Inadequate or noisy data can impede the discovery process and

result in inaccurate or incomplete outcomes [181, 182, 183].

On the other hand, as mentioned by Udrescu et al. [193], the task of discovering functions

can be exceedingly complex and often deemed nearly impossible for symbolic regression to

achieve. However, it is worth noting that functions encountered in physics and various scien-

tific applications frequently exhibit certain simplifying properties that facilitate their discovery.

These simplifying properties may include symmetries, separability, and compositionality. By

capitalizing on these properties, several symbolic regression algorithms have been developed

to uncover the mathematical expressions of functions. For instance, the AI Feynman algo-

rithm [193] was applied to analyze a collection of 100 equations from the Feynman Lectures

on Physics [305, 306, 307]. Remarkably, the algorithm successfully discovered all of the equa-

tions, demonstrating its effectiveness in revealing symbolic expressions that accurately capture

the underlying physical relationships. This example highlights the potential of symbolic regres-

sion in unraveling complex equations and further underscores the significance of leveraging

simplifying properties when attempting to discover mathematical representations of functions.

It is worth noticing that here the exact function for 𝐹 (𝑈) is given by 𝑈 −𝑈3, as described

by Equations (5.1) and (5.2). We set the population size to 5, 000 and evolved 20 generations

114Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

until the error became close to 1 %. Since the equation 𝑈 −𝑈3 consists of basic operations, it

does not require the use of custom functions. The results of symbolic regression for multiple

runs are presented in Table 5.2, where the predicted function 𝐹 (𝑈) for each subdomain is

denoted as 𝐹 (𝑈𝛺𝑖, 𝑗
) with 𝑖, 𝑗 ∈ 1, 2. The findings demonstrate that the model has accurately

identified the underlying pattern between the input and output variables, and that the predicted

functions contain the correct terms of 𝑈 and 𝑈3 with coefficients that are relatively close to

the coefficients (both equal to one) of the equation 𝑈 − 𝑈3. A comparison between the exact

function 𝐹 = 𝑈−𝑈3 and the predicted functions further highlights the effectiveness of X-PINN

in discovering the unknown components of equations, and is further validated by symbolic

regression. The detailed pseudo-algorithm pairing X-PINN and symbolic regression is shown

in Algorithm 1.

𝐹 (𝑈𝛺11) 𝐹 (𝑈𝛺12) 𝐹 (𝑈𝛺21) 𝐹 (𝑈𝛺22)
1st run 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.88(1 −𝑈3) 0.96𝑈 (1 − 0.89𝑈2)
2nd run 0.88𝑈 (0.99 −𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.88𝑈 (0.994 −𝑈2) 0.96𝑈 (1 − 0.89𝑈2)
3rd run 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.88𝑈 (0.99 −𝑈2) 0.88𝑈 (1 −𝑈2)
4th run 0.88𝑈 (0.99 −𝑈2) 0.88𝑈 (0.99 −𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.88𝑈 (0.99 −𝑈2)
5th run 0.88𝑈 (0.994 −𝑈2) 0.88𝑈 (0.994 −𝑈2) 0.88𝑈 (0.99 −𝑈2) 0.96𝑈 (1 − 0.89𝑈2)

Table 5.2: Symbolic regression results for multiple runs to fit a mathematical formulation to
the predicted function 𝐹 (𝑈𝛺𝑖, 𝑗

) on subdomain 𝛺𝑖, 𝑗
. It is worth noting that the exact formulation

for 𝐹 (𝑈) is 𝑈 −𝑈3, and this formulation was closely approximated in multiple runs.

5.5 Noisy data analysis

To demonstrate the robustness of the proposed framework to discover equations from noisy

data, we add noise to the original datasets to evaluate the performance of the framework. The

purpose of adding noise to the data is to simulate real-world scenarios where data is often

subject to randomness (e.g. thermal noise) and errors, rather than being precise and clean.

Uniform noise of various magnitudes, sampled from a uniform distribution of zero mean and

unit standard deviation, was applied to the original data set, which was used for training the

5.5. Noisy data analysis 115

PINNs.

A summary of results using noisy data is presented in Figure 5.7. The predicted 𝐹 (𝑈) is

shown in Figure 5.7(a) with 1% noise, while Figures 5.7 (b), (c), and (d) present the results

for 2%, 3%, and 9% noise, respectively. The plots show the mean and standard deviation

values that were calculated across ten runs for each set of predictions. Our results demonstrate

that the sub-PINNs were able to accurately identify the unknown function 𝐹 from noisy data.

Notably, predictions on subdomains 𝛺12 and 𝛺21 were found to be less sensitive to noise than

the other two subdomains. Additionally, we observe that the subdomain 𝛺11 has a higher

standard deviation, indicating greater sensitivity to noise.

As above, we employ symbolic regression to obtain the mathematical formula for the pre-

dicted function 𝐹 (𝑈) using noisy data, and compare it with the exact expression 𝑈 −𝑈3. The

predicted 𝐹 (𝑈) and 𝑈 were fed into the symbolic regression model and the outcomes are pre-

sented in Table 5.3. The results show that the algorithm has successfully identified the correct

terms of 𝑈 and 𝑈3.

𝐹 (𝑈𝛺11) 𝐹 (𝑈𝛺12) 𝐹 (𝑈𝛺21) 𝐹 (𝑈𝛺22)
(1% noise) 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.87𝑈 (1 −𝑈2) 0.96𝑈 (1 − 0.89𝑈2)
(2% noise) 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 𝑈 (0.96 − 0.98𝑈2) 0.96𝑈 (1 − 0.89𝑈2)
(3% noise) 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.956𝑈 (1.02 −𝑈2) 0.956𝑈 (1 − 0.85𝑈2)
(9% noise) 0.96𝑈 (1 − 0.89𝑈2)𝑈 0.956𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1.02 −𝑈2) 0.96𝑈 (1 − 0.89𝑈2)

Table 5.3: Symbolic regression results for noisy data. 𝐹 (𝑈𝛺𝑖, 𝑗
) is the predicted function corre-

sponding to subdomain 𝛺𝑖, 𝑗 . It is noteworthy that the exact formulation for 𝐹 (𝑈) is given by
𝑈 −𝑈3. Despite the presence of 9% noise in the dataset, the results demonstrate that the algo-
rithm has successfully identified a closely approximated formulation for the predicted 𝐹 (𝑈).

To evaluate the model’s performance in recovering all the energy modes of system, we

performed a modal analysis using proper orthogonal decomposition (POD) [308]. Figure 5.8

shows the ratios of the singular values of the matrices 𝑈 (modal energy) and 𝑈 that have

been reshaped to (𝑛𝑥 × 𝑛𝑦, 𝑛𝑡) to the sum of all singular values (total energy of the system).

The singular values were obtained by performing singular value decomposition (SVD) on the

matrices 𝑈 and 𝑈. Specifically, the SVD of the matrix 𝑈 is computed using the equation

116Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

Figure 5.7: Mean and standard deviation of the predicted 𝐹 (𝑈𝛺𝑖 𝑗
) for each subdomain 𝛺𝑖 𝑗

derived from noisy data with (a) 1% noise, (b), (c), and (d) 2%, 3%, 9% noise respectively. The
vertical axis represents 𝐹 (𝑈𝛺𝑖 𝑗

) values, while the horizontal axis represents the corresponding
values of 𝑥. The dashed lines represent the mean values of the predicted 𝐹 (𝑈𝛺𝑖 𝑗

), while the
red highlights around the dashed lines indicate the standard deviation.

𝑈 = 𝑊𝛴𝑉𝑇 , where 𝑊 and 𝑉 are orthogonal matrices, and 𝛴 is a diagonal matrix containing

the singular values of 𝑈 on the diagonal [309, 310]. Noise that is uncorrelated and evenly

distributed across the entire dataset can lead to instability in predictions or model performance.

Therefore, the ratio of each singular value to the sum of all singular values can be used to

assess the stability of predictions. As shown in Figure 5.8, the ratios of singular values decrease

5.6. Optimal training datasets 117

over samples, indicating that the informative singular vectors are becoming progressively less

dominant, or relevant, in the prediction task. Therefore, as we increase the number of samples,

the importance of these specific singular vectors diminishes. Figure 5.8 shows that the model

is able to recover the dominant energy modes very accurately even when the level of the noise

is increased.

Figure 5.8: The ratio of each singular value to the sum of all singular values for the predicted
𝑈𝛺𝑖 𝑗

for each subdomains 𝛺𝑖 𝑗 with 9% noise. The vertical axis represents _𝑖/
∑𝑖=100

𝑖=1 _𝑖 val-
ues, while the horizontal axis represents the number of samples. The ratio of singular values
decreases, which suggests that the informative singular vectors are becoming less dominant or
relevant in predicting the target variable.

5.6 Optimal training datasets

In this section, we reduce the number of training points while still preserving its overall shape

and distribution to understand how much information is needed to train a network. The tech-

nique is called downsampling [311, 312], which involves reducing the number of training

points without sacrificing too much accuracy or losing too much information. The goal is

to enhance the generalization performance of the model on unseen data and to reduce its com-

plexity by minimizing the number of training points without compromising accuracy or losing

118Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

crucial information. For this purpose, we choose a downsampling rate that is appropriate for

the dataset and ensure that the selected subset of data is representative of the entire dataset.

To select an appropriate downsampling rate, one can consider factors such as the size of the

original dataset, the complexity of the problem, and the computational resources available. It

is also important to ensure that the selected subset of data is representative of the entire dataset,

meaning that it captures the overall distribution and patterns of the original data. To evaluate

the performance of the networks, we randomly select samples from the original dataset and

consider four different sizes to ensure that the downsampling rate is not too high, resulting in a

loss of critical information or a decrease in accuracy.

In the previous sections, our datasets were randomly split into training and test with a

80 : 20 ratio. Each subdomain has thus been trained by using 80 samples, which implies a

training set of size (80, 50, 50), where 80 is the number of samples, and each subdomain has

dimensions of 𝑛𝑥 = 𝑛𝑦 = 50.

To reduce the number of samples, we decreased the size of training data by reducing the

number of training points in both time and space as illustrated in Figures 5.9 and 5.10. Fig-

ure 5.9 (a) indicates that for each subdomain, a training set of size (60, 30, 30) was selected to

represent 60% of the available data. As depicted in Figure 5.9 (b), (c), and (d), we trained the

model using 50%, 30%, and 10% of the data, respectively. This corresponds to training sets

of sizes (50, 25, 25), (30, 15, 15), and (10, 5, 5) for each subdomain. The findings demonstrate

that the networks can effectively capture the information in Figures 5.9 (a) and (b).

In contrast, in Figures 5.9 (c) and (d) the model failed to accurately identify the unknown

function, suggesting a lack of sufficient training. Hence, at minimum, 50% of the data must be

used to train the network to adequately capture the information.

We present the standard deviations and averages of the predicted 𝐹 (𝑈) for ten runs in

Figure 5.10 to evaluate the sensitivity of the model’s predictions to changes in the training

data. Figure 5.10 (a) shows the predicted 𝐹 (𝑈) computed using 60% of the available training

data, and Figures 5.10 (b), (c), and (d) show the predicted 𝐹 (𝑈) for models trained with 50%,

5.6. Optimal training datasets 119

Figure 5.9: Snapshots of the predicted 𝐹 (𝑈) obtained from varying sample sizes of data. (a)
illustrates the predicted 𝐹 (𝑈) when 60% of the data was used for training. (b), (c), and (d)
correspond to cases where 50%, 30%, and 10% of the data were used for training, respectively.
The results indicate that the neural networks can effectively capture the underlying information
in (a) and (b) using only 60% and 50% of the original training data, respectively. However, in
the case of (c) and (d), which have a much smaller subset of training points, the network is not
able to perform well due to the lack of sufficient training data.

30%, and 10% of the training data, respectively.

The results in Figures 5.10 (a) and (b) indicate that the subdomains 𝛺11, 𝛺12, and 𝛺21

exhibit low sensitivity (i.e., low standard deviation), that is, they are less affected by changes

in the training data and are more likely to generalize well to new data. However, in 𝛺21,

120Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

higher sensitivity was observed, which could indicate reduced robustness and generalization

ability to new, unseen data. In contrast, in Figures 5.10 (c) and (d), all subdomains exhibited

high sensitivity, with a high standard deviation around mean predictions. This suggests that

the model is highly sensitive to changes in the training data, which could affect its ability to

generalize to new and unseen data.

𝐹 (𝑈𝛺11) 𝐹 (𝑈𝛺12) 𝐹 (𝑈𝛺21) 𝐹 (𝑈𝛺22)
(60% data) 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2) 0.96𝑈 (1 − 0.89𝑈2)
(50% data) 0.96𝑈 (1 − 0.89𝑈2) 0.56𝑈 (1 − 0.144𝑈2) 0.56𝑈 (1 − 0.144𝑈2) 0.96𝑈 (1 − 0.89𝑈2)
(30% data) 0.088𝑈 0.088𝑈 0.088𝑈 0.088𝑈
(10% data) 0.04𝑈 0.02𝑈 0.04𝑈 0.02𝑈

Table 5.4: The mathematical formula for 𝐹 (𝑈𝛺𝑖 𝑗) for each subdomain 𝛺𝑖 𝑗 using symbolic
regression. The model was trained using different percentages of the available data, and the
results show that the correct terms of 𝑈 and 𝑈3 were accurately identified when the model was
trained with (a) 60% and (b) 50% of the data. However, the model’s accuracy decreased with
less data, and it could not accurately predict coefficients when trained with only 50% of the
data. Moreover, the results demonstrate that training the model with only 30% and 10% of the
data is insufficient to even predict the correct terms of 𝑈 and 𝑈3 in the function.

The mathematical expression of the function 𝐹 (𝑈) was discovered using a symbolic regres-

sion model by feeding in the predicted 𝐹 (𝑈) for different training data set sizes. The outcomes

of the symbolic regression model are summarized in Table 5.4. The model was able to identify

the correct terms of𝑈 and𝑈3 for the cases where 60% and 50% of the data were used for train-

ing. However, it was found that training the model with only 50% of the data is not sufficient

for predicting the coefficients accurately. In contrast, the results for the cases where only 30%

and 10% of the data were used for training indicate that the model could not even predict the

correct terms of𝑈 and𝑈3 in the function. Therefore, based on these results, it is recommended

to use at least 60% of the available datasets for training in order to obtain the correct form of

the equation and good approximations for the coefficients in the symbolic regression model.

It is worth noting that the recommendation of using at least 60% of the available dataset

for training was specific to the Allen-Cahn equation in the context mentioned. It is impor-

tant to emphasize that the optimal fraction of data for training may vary for different datasets

5.6. Optimal training datasets 121

Figure 5.10: The standard deviation of predicted 𝐹 (𝑈𝛺𝑖 𝑗
) for each subdomains 𝛺𝑖 𝑗 was com-

puted using various sets of training points across multiple runs. The vertical axis represents
𝐹 (𝑈𝛺𝑖 𝑗

), while the horizontal axis represents 𝑥. In (a), the predicted 𝐹 (𝑈) was generated us-
ing 60% of the available training points, while (b), (c), and (d) show the predicted 𝐹 (𝑈) for
models trained with only 50%, 30%, 10% of the training points, respectively. The plots depict
the mean values of the predicted 𝐹 (𝑈𝛺𝑖 𝑗

) using dashed lines. The red highlights surrounding
the dashed lines indicate the standard deviation of ten runs.

and equations. Depending on the complexity and characteristics of the problem at hand, other

equations and datasets may require a different fraction or a more tailored approach to achieve

accurate results. The 50% data refers to the number of snapshots taken to reach a steady state

122Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

solution for Allan-Cahn equation. The snapshots are stored at (0, 𝛥𝑡, 2𝛥𝑡, 3𝛥𝑡....) where 𝛥𝑡 is

the optimal time step determined by the Courant-Friedrichs-Lewy (CFL) criterion [313]. The

purpose of these snapshots is to capture the evolving behavior of the system over time. The

spatial resolution of each snapshot is the optimal resolution, the minimum resolution necessary

to prevent aliasing in the solution [314]. Aliasing refers to the distortion or loss of information

that can occur when a signal is not properly sampled or represented. By choosing an appro-

priate spatial resolution, the snapshots can accurately represent the system’s spatial features

without introducing artifacts or inaccuracies due to aliasing. Therefore, it is crucial to consider

the specific requirements and characteristics of each dataset and equation when determining

the appropriate fraction for training.

5.7 Summary

In this study, we have applied modified X-PINNs to perform gray-box learning of the Allen-

Cahn equation by decomposing the computational domain into four subdomains. We assumed

that the equation comprises a Laplacian component, and our objective was to discover the non-

linear component of the equation, that is,𝑈−𝑈3. The results indicate that X-PINNs have highly

expressive capabilities of uncovering the unknown components across various subdomains.

Given the X-PINNs’ capability to handle complex data, they have the potential to become a

valuable tool for gray-box learning of equations.

In addition, we implemented symbolic regression with the aim to uncover the general math-

ematical (closed) form of the unknown component (here, 𝑈 − 𝑈3) and its coefficients. The

results show great agreement with the exact form of the equation. This outcome serves as a

strong evidence of the efficacy of our proposed framework in accurately identifying unknown

components of an equation from data/noisy data.

Additionally, we determined the number of data samples required for training a neural

network to accurately identify the unknown component of the equation. Our results show that

5.7. Summary 123

at least 60% of the available data is necessary to accomplish that. Training with a smaller

percentage of data resulted in less accurate and less close-to-exact predicted results. We also

demonstrated the robustness of the trained model by computing the epistemic uncertainty using

different initializations of the neural network parameters.

In this study, we have employed artificially generated data to assess the performance of

an inverse method. Experimental data could come from a number of different types of time-

dependent experiments. In particular, time-dependent microscopy (atomic for or optical, and

scanning electron microscopy) and time-dependent scattering are the most natural sources for

experimental data. Essentially, any imaging technique that is capable of producing time depen-

dent data of interface/domain motion would be a suitable source for data.

Overall, the findings of this study show that the proposed framework is a powerful tool for

discovering the unknown components of non-linear and complex PDEs by using the domain

decomposition approach. Future research could explore the potential of the proposed frame-

work to investigate how to further optimize the performance in different subdomains and using

the method for solving PDEs involving higher order derivatives e.g., bi-Laplacians.

Competing interests

The authors declare no competing interests.

Acknowledgments

EK thanks Dr. Aniruddha Bora, Dr. Ehsan Kharazmi, and Zhen Zhang for their invaluable

suggestions throughout the different phases of the project, and Mitacs Globalink Research

Award Abroad and Western University’s Science International Engagement Fund Award. MK

thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) and the

Canada Research Chairs Program. The work was partially supported by DOE grant (DE-

SC0023389). Computing facilities were provided by the Digital Research Alliance of Canada

124Chapter 5. A FrameworkBased on SymbolicRegressionCoupled with eXtended Physics-InformedNeuralNetworks forGray-Box Learning of Equations ofMotion fromData

(https://alliancecan.ca). This research was partially conducted by using computational re-

sources and services at the Center for Computation and Visualization, Brown University.

Chapter 6

Characterization of partial wetting by

CMAS droplets using multiphase

many-body dissipative particle dynamics

and data-driven discovery based on PINNs

The contents of this chapter have been submitted with the following citation: E. Kiyani, M.

Kooshkbaghi, K. Shukla, R. Babu Koneru, Z. Li, L. Bravo, A. Ghoshal, G. Em Karniadakis,

and M. Karttunen, Characterization of partial wetting by CMAS droplets using multiphase

many-body dissipative particle dynamics and data-driven discovery based on PINNs, submitted

to Journal of Fluid Mechanics, JFM-23-1205, 2023. Preprint: arXiv:2307.09142

6.1 Introduction

Recent advancements in machine learning (ML) have opened the way for extracting governing

equations directly from experimental (or other) data [115, 315, 316]. One particularly exciting

use of ML is the extraction of partial differential equations (PDEs) that describe the evolution

125

126Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

and emergence of patterns or features [225, 253, 117, 317].

Spreading of liquids on solid surfaces is a classic problem [318, 204]. Although the the-

oretical foundations were laid by Young and Laplace already in the early 1800’s [200, 201],

there are still many open questions and it remains a highly active research field especially in

the context of microfluidics [319] as well as in the design of propulsion materials [320]. As

discussed in detail in the review of Popescu et al. [9], there are two fundamentally different

cases: non-equilibrium spreading of the droplet, and the case of thermodynamic equilibrium

when spreading has ceased and the system has reached its equilibrium state.

In thermodynamic equilibrium, the Laplace equation relates the respective surface tensions

of the three interfaces via [318, 9]

cos \eq =
𝛾𝑆𝐺 − 𝛾𝑆𝐿

𝛾𝐿𝐺
, (6.1)

where \eq is the equilibrium contact angle, and 𝛾𝑆𝐺 , 𝛾𝑆𝐿 , and 𝛾𝐿𝐺 are the surface tensions be-

tween solid-gas, solid-liquid and liquid-gas phases, respectively (see Figure 6.1). Two limiting

situations can be identified, namely, partial wetting and complete wetting. In the latter, the

whole surface becomes covered by the fluid and \eq = 0◦, that is, 𝛾𝑆𝐺−𝛾𝐿𝐺−𝛾𝑆𝐿 = 0. When

the equilibrium situation corresponds to partial wetting, \eq ≠ 0◦, it is possible to identify the

cases of high-wetting (0◦ < \eq < 90◦), low-wetting (90◦ ≤ \eq < 180◦), and non-wetting

(\eq = 180◦).

When a droplet spreads, it is out of equilibrium and properties such as viscosity and the

associated processes need to be addressed [318, 204, 9]. In experiments, the most common

choice is to use high viscosity liquids in order to eliminate inertial effects. An early classic

experiment by Dussan and Davis [321] gave a beautiful demonstration of some of the phenom-

ena. They added tiny drops of marker dye on the surface of a spreading liquid. They observed

a caterpillar-type rolling motion of the marker on the surface giving rise to dissipation via vis-

cous friction. Effects of viscosity and dissipation remain to be fully understood and they have

6.1. Introduction 127

γ
LG

γ
SG

γ
SL

θ

solid surface

gas / vapor

liquid θ=90
θ=180

cap

precursor

o

o

Figure 6.1: A schematic showing the equilibrium contact angle (that is, \ ≡ \eq), the surface
tensions (𝛾), the threshold between low- and high-wetting regimes (\eq = 90◦), and a situation
of a non-wetting droplet (\eq = 180◦). The last panel demonstrates the occurrence of a pre-
cursor that is observed in some cases. In that case, the (macroscopic) contact angle is defined
using the macroscopic part of the droplet as indicated by the black line in the rightmost figure.
The height of the precursor is in the molecular length scales [7, 8, 9].

a major role in wetting phenomena [206, 322, 323].

Calcium-magnesium-aluminosilicate, CMAS, is a molten mixture of several oxides, includ-

ing calcia (CaO), magnesia (MgO), alumina (Al2O3), and silicate (SiO2). It has a high melting

point, typically around 1,240◦C [324] (although it can be significantly higher, see, e.g., Wies-

ner et al. and references therein [325]), which allows it to exist in the molten state even at

high temperatures encountered in modern aviation gas turbine engines [326, 327]. With high

viscosity, high density, and high surface tension, CMAS tends to form non-volatile droplets

of \eq ≠ 0 rather than completely wetting the surfaces [328, 329, 330]. When it solidifies,

it forms a glass-like material that can adhere to surfaces and resist erosion. The buildup of

CMAS on turbine engine components can lead to clogging of the cooling passages and degra-

dation of the protective coatings, resulting in engine performance issues and even damage or

failure [327, 331, 325, 326].

The spreading of a droplet over a solid surface is commonly characterized using a power

law, 𝑟 ∼ 𝑡𝛼, which expresses the radius of the wetted area as a function of time. The rela-

tionship is called Tanner’s law for macroscopic completely wetting liquids at late times with

𝛼 = 1/10 [203, 204]. Power laws have also been demonstrated at microscopic scales [8]. How-

ever, several conditions such as surface properties, droplet shape, and partial wetting result in

deviations from Tanner’s law [205, 206, 207].

A common method, and as the above suggests, for analyzing the spreading dynamics is to

investigate existence of the power law behavior. To determine the presence of such power-law

128Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

regimes in data, one can simply employ

𝛼(𝑡) = 𝑑 ln(𝑟)
𝑑 ln(𝑡) . (6.2)

While this has worked remarkably well for complete wetting by viscous fluids, the situation for

partial wetting is different [207]. In our study, we investigate the spreading behavior of CMAS

droplets using multiphase many-body dissipative particle dynamics (mDPD) simulations. We

generalize Equation (6.2) such that it includes dependence on the initial droplet radius 𝑅0 and

\eq in order to describe partial wetting, that is, 𝛼 ≡ 𝛼(𝑡, 𝑅0, \eq).

Our objective is to gain a comprehensive understanding of the behavior of CMAS droplet

spreading dynamics by integrating knowledge about the fundamental physics of the system

into the neural network architecture. To achieve this, we employ the framework of Physics-

Informed Neural Networks (PINNs) [114], an emerging ML technique that incorporates the

physics of a system into deep learning. PINNs address the challenge of accurate predictions

in complex systems with varying initial and boundary conditions. By directly incorporating

physics-based constraints into the loss function, PINNs enable the network to learn and satisfy

the governing equations of the system.

The ability of PINNs to discover equations makes them promising for applications in

scientific discovery, engineering design, and data-driven modeling of complex physical sys-

tems [125]. Their integration of physics-based constraints into the learning process enhances

their capacity to generalize and capture the underlying physics accurately. Here, we also em-

ploy symbolic regression to generate a mathematical expression for each unknown parameter.

Furthermore, we employ Bayesian Physics-Informed Neural Networks (B-PINNs) [178] to

quantify the uncertainty of the predictions.

The rest of this article is structured as follows: In Section 6.2, we provide an overview of

mDPD simulation parameters and system setup. Simulation outcomes and the data prepara-

tion process are presented in Section 6.3. Section 6.4 gives a brief introduction to the PINNs

6.2. Multiphase many-body dissipative particle dynamics simulations 129

architecture, followed by a presentation of the results of PINNs and parameter discovery. The

symbolic regression results and the mathematical formulas for the parameters are presented

in Section 6.5. Section 6.6 covers the discussion on B-PINNs as well as the quantification of

uncertainty in predicting the parameters. Finally, we conclude with a summary of our work in

Section 6.7.

6.2 Multiphase many-body dissipative particle dynamics

simulations

Three-dimensional simulations were performed using the mDPD method [208, 209, 210],

which is an extension of the traditional dissipative particle dynamics (DPD) model [211, 212].

DPD is a mesoscale simulation technique for studies of complex fluids, particularly multiphase

systems, such as emulsions, suspensions, and polymer blends [332, 333, 334]. The relation be-

tween DPD and other coarse-grained methods and atomistic simulations have been studied and

discussed by Murtola et al. [4], Li et al. [335, 336], and Español and Warren [337].

In DPD and mDPD models, the position (®𝑟𝑖) and velocity (®𝑣𝑖) of a particle 𝑖 with a mass 𝑚𝑖

are governed by Newton’s equations of motion in the form of

𝑑®𝑟𝑖
𝑑𝑡

= ®𝑣𝑖, (6.3)

𝑚𝑖

𝑑®𝑣𝑖
𝑑𝑡

= ®𝐹𝑖 =
∑︁
𝑗≠𝑖

®𝐹C
𝑖 𝑗 + ®𝐹D

𝑖 𝑗 + ®𝐹R
𝑖 𝑗 .

The total force on particle 𝑖, that is, ®𝐹𝑖, consists of three pairwise components, i.e., the con-

servative ®𝐹C, dissipative ®𝐹D, and random forces ®𝐹R. The latter two are identical in DPD and

mDPD models, given by,

®𝐹D
𝑖 𝑗 = −𝛾𝜔D(𝑟𝑖 𝑗) (®𝑣𝑖 𝑗 · ®𝑒𝑖 𝑗) ®𝑒𝑖 𝑗 , (6.4)

®𝐹R
𝑖 𝑗 = Z𝜔R(𝑟𝑖 𝑗) (𝑑𝑡)−1/2b𝑖 𝑗 ®𝑒𝑖 𝑗 , (6.5)

130Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

where ®𝑒𝑖 𝑗 is a unit vector, 𝜔𝐷 and 𝜔𝑅 are weight functions for the dissipative and random

forces, and b𝑖 𝑗 a pairwise conserved Gaussian random variable with zero mean and second

moment ⟨b𝑖 𝑗 (𝑡)b𝑘𝑙 (𝑡′)⟩ = (𝛿𝑖𝑘𝛿 𝑗 𝑙 +𝛿𝑖𝑙𝛿 𝑗 𝑘)𝛿(𝑡− 𝑡′), where 𝛿𝑖 𝑗 is the Kronecker delta and 𝛿(𝑡− 𝑡′)

the Dirac delta function. Together, the dissipative and random forces constitute a momentum

conserving Langevin-type thermostat. The weight functions and the constants 𝛾 and Z are

related via fluctuation-dissipation relations first derived by Español and Warren [211]

𝜔𝐷 = (𝜔𝑅)2 , (6.6)

Z =
√︁

2𝛾𝑘B𝑇, (6.7)

in which 𝑘B is the Boltzmann constant and 𝑇 the temperature. This relation guarantees the

canonical distribution [211] for fluid systems in thermal equilibrium. The functional form of

the weight function is not specified, but the most common choice (also used here) is

𝜔D(𝑟𝑖 𝑗) =

(
1 − 𝑟𝑖 𝑗/𝑟𝑑

) 𝑠 for 𝑟𝑖 𝑗 ≤ 𝑟d

0 for 𝑟𝑖 𝑗 > 𝑟d.

(6.8)

Here, 𝑠 = 1.0 is used and 𝑟d defines a cutoff distance for the dissipative and random forces.

Although the above equations are the same for both DPD and mDPD, they differ in their

conservative forces. Here, we use the form introduced by Warren [338, 339],

𝐹C
𝑖 𝑗 = 𝐴𝜔C(𝑟𝑖 𝑗) ®𝑒𝑖 𝑗 + 𝐵(𝜌𝑖 + 𝜌 𝑗)𝜔B ®𝑒𝑖 𝑗 . (6.9)

The functional form of both weight functions 𝜔𝐶 and 𝜔𝐵 is the same as 𝜔D in Equation (6.8)

but with different cutoff distances 𝑟𝑐 and 𝑟𝑏. The first term in Equation (6.9) is the standard

expression for the conservative force in DPD, and the second one is the multi-body term. The

constants 𝐴 and 𝐵 are chosen such that 𝐴 < 0 for attractive interactions and 𝐵 > 0 for repulsive

interactions; note that in conventional DPD 𝐴 > 0 and 𝐵 = 0. The key component is the

6.2. Multiphase many-body dissipative particle dynamics simulations 131

weighted local density

𝜌𝑖 =
∑︁
𝑗≠𝑖

𝜔𝜌 (𝑟𝑖 𝑗). (6.10)

There are several ways to choose the weight function [332] and here, the normalized Lucy

kernel [213] in 3-dimension is used,

𝜔𝜌 (𝑟𝑖 𝑗) =
105

16𝜋𝑟3
c𝜌

(
1 +

3𝑟𝑖 𝑗
𝑟c𝜌

) (
1 −

𝑟𝑖 𝑗

𝑟c𝜌

)3

, (6.11)

with a cutoff distance 𝑟𝑐𝜌 beyond which the weight function 𝜔𝜌 becomes zero.

6.2.1 Simulation parameters and system setup

To simulate molten CMAS, the parameter mapping of Koneru et al. [10] was used together

with the open-source code LAMMPS [214]. In brief, the properties of molten CMAS at about

1,260◦ C based on the experimental data from Naraparaju et al. [340], Bansal and Choi [341],

and Wiesner et al. [325], were used. In physical units, density was 2,690 kg/m3, surface tension

0.46 N/m, and viscosity 3.6 Pa·s. Using the density and surface tension to estimate the capillary

length (^ = (𝜎/(𝜌𝑔))1/2) gives 4.18 mm. The droplets in the simulations (details below) had

linear sizes shorter than the capillary length and hence gravity was omitted. In terms of physical

units, time: 6.297×10−6 s, length: 17.017×10−6 m, mass: 1.964×10−8 kg.

Using the above values, droplets of initial radii of 𝑑 = 8, 9, 10, 11, and 12 in mDPD units,

corresponding to 𝑅0 = 0.136 mm, 0.153 mm, 0.17 mm, 0.187 mm, and 0.204 mm, respectively,

were used in the simulations; all of them are smaller than the capillary length. The time step

was 0.002 (mDPD units) corresponding to 12.59 ns. In addition, 𝑘B𝑇 = 1, 𝑟𝑐 = 1.0, 𝑟𝑏 = 𝑟c𝜌 =

0.75, 𝑟𝑑 = 1.45, 𝛾=20, and 𝐵=25. The attraction parameter, 𝐴 in Equation (6.9) has to be set

for the interactions between the liquid particles (𝐴ll), and the liquid and solid particles (𝐴ls).

The former was set to 𝐴ll = −40 and 𝐴ls was chosen based on simulations that provided the

desired \eq, thus allowing for controlled variation of \eq (see Figure 6.2).

The initial configuration of the droplet and the solid wall were generated from a random

132Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

−34 −32 −30 −28 −26

Als

20

40

60

80

100

θ◦ e
q

Figure 6.2: The equilibrium contact angles \eq for the different attraction parameters between
the liquid and solid particles (𝐴ls; see Equation (6.9)). It is worth noting that the data for this
figure has been extracted from Koneru et al. [10].

distribution of equilibrated particles with a number density 𝜌 = 6.74. This amounts to about

60,660 particles in the wall and depending on the initial radius, anywhere between 14,456 and

48,786 particles in the droplet. Periodic boundary conditions are imposed along the lateral

directions and a fixed, non-periodic boundary condition is imposed along the wall-normal di-

rection. Since mDPD is a particle-based method, the spreading radius and the dynamic contact

angle are approximated using surface-fitting techniques. First, the outermost surface of the

droplet is identified based on the local number density, i.e., particles with 𝜌 ∈ [0.45, 0.6]. The

liquid particles closest to the wall are fitted to a circle of radius 𝑟, i.e., the spreading radius.

On the other hand, a sphere with the centroid of the droplet as the center is fit to the surface

particles to compute the contact angle. The contact angle is defined as the angle between the

tangent at the triple point (liquid-solid-gas interface) and the horizontal wall. The wall in these

simulations is made-up of randomly distributed particles to eliminate density and temperature

fluctuations at the surface. Following [342], the root mean squared height (𝑅𝑞) of the surface

scales linearly with 1/
√
𝑁𝑤 where 𝑁𝑤 = 2𝜋𝑟3

𝑐𝑤/3 · 𝜌𝑤 is the number of neighboring particles.

In this work, 𝑅𝑞 comes out to be around 0.0708 mDPD units or 1.2 `m.

As the CMAS droplet spreads on the substrate, it loses its initial spherical shape and begins

to wet the surface as depicted in Figure 6.3, forming a liquid film between the droplet and

the substrate. Understanding how droplets behave on surfaces is important for a wide range

of applications, including in industrial processes, microfluidics, propulsion materials, and the

6.3. Simulation results 133

t

tim
e

Figure 6.3: Left: Illustration of the spreading behavior of a CMAS droplet on a high surface
energy surface at different times. The droplet with initial size of 𝑅0 spreads on the surface with
radius 𝑟 (𝑡) and contact angle \ (𝑡). Right: A series of snapshots from a simulation of a droplet
with initial size of 𝑅0 = 0.136 mm and an equilibrium contact angle of \eq = 93.4◦.

design of self-cleaning surfaces [343, 344, 345, 320, 328].

6.3 Simulation results

The size of a droplet changes over time. By tracking the changes, we can gain insight into

the physical processes involved in spreading. The time evolution of the droplet radius (𝑟 (𝑡))

is shown in Figure 6.4. The log-log plots show the effect of the initial drop size 𝑅0 and equi-

librium contact angles \eq on the radius 𝑟 (𝑡). Figure 6.4 (a) displays 𝑟 (𝑡) for initial drop sizes

𝑅0 of 0.136 mm, 0.153 mm, 0.17 mm, 0.183 mm, and 0.204 mm and equilibrium contact angle

of \eq = 54.6◦. Similarly, Figure 6.4 (b) shows the spreading radius for different equilibrium

contact angles (\eq = 93.4◦, 85.6◦, 77.9◦, 70.1◦, 62.4◦, 54.6◦, 45.3◦, and 39.1◦) with an initial

134Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

drop size of 𝑅0 = 0.136 mm.

Eddi et al. [346] used high-speed imaging with time resolution covering six decades to

study the spreading of water-glycerine mixtures on glass surfaces. By varying the amount of

glycerine, they were able to vary the viscosity over the range 0.0115-1.120 Pa·s. They observed

two regimes, the first one for early times with 𝛼 changing continuously as a function of time

from 𝛼 ≈ 0.8 to 𝛼 ≈ 0.5. This was followed by a sudden change to the second regime in which

𝛼 settled to 0.1 < 𝛼 < 0.2. As pointed out by Eddi et al. [346], the second regime agrees with

Tanner’s law [203]. All of their systems displayed complete wetting.

Based on 𝑟 (𝑡) of the CMAS drops and 𝛼 shown in Figure 6.4, it can be observed that

𝑟 (𝑡) (and based on the power-law 𝛼) depends both on the initial drop size and the equilibrium

contact angle. The values of 𝛼 for some simulation datasets are plotted over time in Figure 6.5.

The plot shows the behaviour of 𝛼 for different initial drop sizes and equilibrium contact angles

of \eq = 62.4◦ and \eq = 85.6◦.

Inspired by the experimental results of Eddi et al. [346], the simulations of Koneru et

al. [10], and the current simulations, we propose a simple sigmoid type dependence for 𝛼,

𝑑 ln(𝑟)
𝑑 ln(𝑡) =𝛼(𝑡, 𝑅0, \eq) :=[

[
1

1+exp (𝛽(𝜏−ln(𝑡)) −1
]
. (6.12)

The two constant values of 𝛼 discussed in the above references are the two extrema of the sig-

moid curve, given that the transition between the two regimes occurs at ln(𝑡transition) = 𝜏. The

parameters of Equation (6.12) are discovered by PINNs and their dependence on 𝑅0 and \eq

is then expressed using symbolic regression. The general steps in the discovery of the droplet

spreading equation and the extraction of the unknown parameters [(𝑅0, \eq), 𝛽(𝑅0, \eq), and

𝜏(𝑅0, \eq) are shown in Figure 6.6 and can be summarized as follows:

• Data collection: For this study, data is collected by conducting three-dimensional sim-

ulations using the mDPD method in LAMMPS with varying initial drop sizes 𝑅0 and

equilibrium contact angles \eq.

6.3. Simulation results 135

0.1

0.2

0.3
r

[m
m

]
(a) θeq = 54.6◦

R0 [mm]
0.136

0.153

0.170

0.187

0.204

10−4 10−3 10−2 10−1

t [sec]

0.1

0.2

0.3

r
[m

m
]

(b) R0 = 0.136 [mm]

θeq

39.1◦

45.3◦

54.6◦

62.4◦

70.1◦

85.6◦

93.4◦

Figure 6.4: The impact of \eq and 𝑅0 on the droplet radii as a function of time for
various (a) initial drop sizes with equilibrium contact angle of \eq = 54.6◦ corre-
sponding to 𝐴ls = 30.0, and (b) equilibrium contact angles (corresponding to 𝐴ls =

−25.0,−25.8,−27.0,−28.0,−29.0,−30.0,−31.4,−32.2) and initial drop size 𝑅0 = 0.136 mm.

136Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

−0.1

0.0

0.1

0.2

0.3

α
(a) θeq = 85.6◦

R0 = 0.136

R0 = 0.153

R0 = 0.170

R0 = 0.187

R0 = 0.204

10−3 10−2

t [sec]

−0.1

0.0

0.1

0.2

0.3

α

(b) θeq = 62.4◦

R0 = 0.136

R0 = 0.153

R0 = 0.170

R0 = 0.187

R0 = 0.204

Figure 6.5: The value of 𝛼, calculated using Equation (6.2), varies for different initial radii and
fixed equilibrium contact angles \eq = 62.4◦ and \eq = 85.6◦. The figure illustrates that 𝛼 is
influenced by both the initial drop size 𝑅0 and the equlibrium contact angle \eq.

6.3. Simulation results 137

 (I) Physics-Informed Neural Networks

Physics-Informed

N
eu

ra
l n

et
w

or
ks

L
os

s f
un

ct
io

ns

ODE parameters

Tr
ai

ne
d

ne
tw

or
ks

 u
si

ng
 P

IN
N

s o
ut

pu
ts

Feasible grid values

(II) Data interpolation(III) Symbolic regression

div

mul

add

div

mul

add

add

mul

add

Figure 6.6: The process of utilizing PINNs to extract three unknown parameters of the
ODE (6.12), using three-dimensional mDPD simulation data. First, a neural network is trained
using simulation data, where the input is time 𝑡 and the output is spreading radii 𝑟 (𝑡). This neu-
ral network comprises four layers with three neurons and is trained for 12, 000 epochs. Subse-
quently, the predicted 𝑟 (𝑡) is used to satisfy Equation (6.12) in the physics-informed part. The
loss function for this process consists of two parts: data matching and residual. By optimizing
the loss function, the values of [(𝑅0, \eq), 𝛽(𝑅0, \eq), and 𝜏(𝑅0, \eq) are determined for each
set of 𝑅0 and \eq. After predicting the unknown parameters using PINNs, two additional neural
networks, denoted as 𝑁𝑁𝛽 and 𝑁𝑁𝜏, are trained using these parameters to generate values for
the unknown parameters at points where data is not available. The outputs of these networks,
together with the outputs of the PINNs, are then fed through a symbolic regression model to
discover a mathematical expression for discovered parameter.

138Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

• PINNs: The input of the network is time 𝑡 and output of the network is the spreading radii

𝑟 (𝑡). The physics informed part of PINNs encapsulated in designing the loss function.

In this study, the “goodness” of the fit is measured by (a) deviation from trained data

together with (b) deviation of network predictions and those from ODE (6.12) solutions.

This optimization process reveals the the unknown parameters [(𝑅0, \eq), 𝛽(𝑅0, \eq),

and 𝜏(𝑅0, \eq).

• Data interpolation: After PINNs are trained, we used their predictions together with two

additional multilayer perceptron neural networks to fill the sparse parameter space. This

step helps our next goal which is relating the ODE parameters to 𝑅0 and \eq without

performing three-dimensional simulations.

• Symbolic regression: Discovering a mathematical expression for each unknown param-

eter, [(𝑅0, \eq), 𝛽(𝑅0, \eq), and 𝜏(𝑅0, \eq) of the Equation (6.12).

• In order to quantify the uncertainty associated with our predictions, we utilize B-PINN

and leverage the insights gained from PINNs’ prediction and symbolic regression, with

a specific emphasis on the known value of [. By employing B-PINN, we can effectively

ascertain the values of two specific parameters, 𝛽 and 𝜏, which in turn enable us to

quantify the uncertainty in our predictions.

6.4 Physics-informed neural networks (PINNs)

PINNs are a promising approach that leverages the flexibility and scalability of deep neural

networks to solve or even to discover governing equations, incorporating physical laws and

constraints into the network structure [114, 125, 347, 348, 349, 350].

The training phase of PINNs consists of an optimization process applied on top of a neural

network structure to identify the set of parameters in the governing equations with a pre-defined

form (PDEs or ODEs). Those parameters aim to satisfy both data and the physical constraints.

6.4. Physics-informed neural networks (PINNs) 139

6.4.1 Discovering parameters of ODE

As discussed in Section 6.3, our study aims to identify the values of the parameters [(𝑅0, \eq),

𝛽(𝑅0, \eq), and 𝜏(𝑅0, \eq) in the ODE given by Equation (6.12). The general steps of the

framework are shown in Figure 6.6 (I). PINNs take time 𝑡 as an input to predict 𝑟 (𝑡) at each

time. The network architecture consists of four layers with three neurons each and is trained

for 12, 000 epochs with the learning rate of 10−3.

10−4 10−3 10−2 10−1

t [sec]

0.1

0.2

0.3

r
[m

m
]

R0=0.136 [mm]

θ=93.4◦

θ=62.4◦

θ=39.1◦

10−4 10−3 10−2 10−1

t [sec]

R0=0.153 [mm]

10−4 10−3 10−2 10−1

t [sec]

R0=0.187 [mm]

10−4 10−3 10−2 10−1

t [sec]

R0=0.204 [mm]

PINN predictions

ODE solutions

Sim data

Figure 6.7: Comparison of the time evolution of the droplet radii: mDPD simulations
(symbols), ODE model (6.12) (solid lines) and PINN predictions (dashed lines) for \eq =

{39.1◦, 62.4◦, 93.4◦} and 𝑅0 = {0.136, 0.153, 0.187, 0.204}mm parameter sets.

The predicted values for the time evolution of the radii 𝑟 (𝑡) should satisfy the data and

the physics-informed step, i.e., meet the requirements of the ODE, Equation (6.12). The two-

component loss function, designed to meet the requirements, consists of Lossdata and LossODE,

Lossdata =
1
𝑁𝑘

𝑖=𝑁𝑘∑︁
𝑖=1

| (𝑟𝑖 (𝑡) − 𝑟𝑖 (𝑡)) |2, (6.13a)

LossODE =
1
𝑁𝑟

𝑖=𝑁𝑟∑︁
𝑖=1

����𝑑 ln(𝑟)
𝑑 ln(𝑡) −

[

(
1

1 + exp (−𝛽(ln(𝑡) − 𝜏)) − 1
)����2 , (6.13b)

where 𝑟 (𝑡) and 𝑟 (𝑡) stand for the radii from the prediction and simulation, respectively. 𝑁𝑘 is

the number of training points and 𝑁𝑟 is the number of residual points. Figures 6.7, 6.8, and

6.9 illustrate the results obtained by utilizing PINNs to discover the parameters of the ODE

140Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

Figure 6.8: The first three plots show the evolution of parameters [(𝑅0, \eq), 𝛽(𝑅0, \eq), and
𝜏(𝑅0, \eq) over multiple epochs. These plots demonstrate that the parameters gradually con-
verge to a stable state after 12, 000 epochs. The rightmost figure displays the traces of the loss
function for the PINNs framework. The learning curves demonstrate the decreasing trend of
the loss functions, indicating that they converge to a stable point for all initial drop sizes and
\eq.

(Equation (6.12)), which describes the dynamics of the radii of the CMAS drops.

Figure 6.7 shows comparisons of the simulation data (𝑟 (𝑡)), the prediction (𝑟 (𝑡)) and so-

lution of the ODE, Equation (6.12). The figure demonstrates remarkable degree of agreement

between simulations, PINNs and our ODE model.

The first three panels in Figure 6.8 show the convergence of [(𝑅0, \eq), 𝛽(𝑅0, \eq), and

𝜏(𝑅0, \eq) parameters during training. One can conclude that, all three parameters stabilize

roughly after 10, 000 epochs. In the rightmost panel of Figure 6.8, the loss function (Equa-

tion (6.13)) history is plotted against the training epochs, stabilizing around 10−4. This indi-

cates successful training of the PINNs model. The results shown in Figures 6.7 and 6.8 demon-

strate the capability of our proposed framework to accurately predict the spreading radius of

CMAS across the different initial radii and equilibrium contact angles.

Each column in Figure 6.9 shows the values of [(𝑅0, \eq), 𝛽(𝑅0, \eq), and 𝜏(𝑅0, \eq) ob-

tained by PINNs for different initial radii 𝑅0 ranging from 0.136 to 0.204 mm and equilibrium

contact angles \eq ranging from 39.1◦ to 93.4◦. The results show that [changes within a small

window between −0.325 and −0.200 for all 𝑅0 and \eq. However, the changes in 𝛽 (between 1

and 5) and [(between 6.0 and 8.0) are significant, indicating that these parameters are strongly

depend on 𝑅0 and \eq.

6.4. Physics-informed neural networks (PINNs) 141

−0.45

−0.35

−0.25

−0.15
η(R0, θeq)

R0=0.136 mm

1

2

3

4

5
β(R0, θeq)

R0=0.136 mm

6.5

7.0

7.5

8.0
τ(R0, θeq)

R0=0.136 mm

−0.45

−0.35

−0.25

−0.15

R0=0.153 mm

1

2

3

4

5

R0=0.153 mm

6.5

7.0

7.5

8.0

R0=0.153 mm

−0.45

−0.35

−0.25

−0.15

R0=0.17 mm

1

2

3

4

5

R0=0.17 mm

6.5

7.0

7.5

8.0

R0=0.17 mm

−0.45

−0.35

−0.25

−0.15

R0=0.187 mm

1

2

3

4

5

R0=0.187 mm

6.5

7.0

7.5

8.0

R0=0.187 mm

30 40 50 60 70 80 90

θeq

−0.45

−0.35

−0.25

−0.15

R0=0.204 mm

30 40 50 60 70 80 90

θeq

1

2

3

4

5

R0=0.204 mm

30 40 50 60 70 80 90

θeq

6.5

7.0

7.5

8.0

R0=0.204 mm

Figure 6.9: The values of [, 𝛽, and 𝜏 obtained through PINNs. These values exhibit varying
behavior depending on the initial radius 𝑅0 and equilibrium contact angles \eq. The horizontal
axes display the equilibrium contact angles \eq. The vertical axes of all figures represent the
values of [and 𝛽, and 𝜏. [remains nearly constant within a small range of values between
−0.325 and −0.200 and 𝛽 as well as 𝜏 change within a range of 1.0 to 5.0 and 6.5 to 8.0,
respectively.

142Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

6.4.2 Generate more samples of feasible radii and contact angles

As discussed earlier, the parameters in our ODE model (Equation (6.12)) are functions of the

initial radius and the equilibrium contact angle. Using PINNs, we were able to find the values

for those parameters. To find a closed-form relation between the parameters, 𝑅0, and \eq, more

data than the rather small current set is needed. Performing three-dimensional mDPD simula-

tions are, however, computationally expensive. In this section, we train two additional neural

networks to capture the nonlinear relation between the ODE parameters found by PINNs, and

the variables 𝑅0 and for \eq. Then, we will use these trained networks to fill our sparse param-

eter space to perform symbolic regression in the next section.

Specifically, we generate values for 𝑅0 in the interval [0.136 mm, 0.204 mm] and \eq in the

range [40◦, 95◦], as shown in Figure 6.6 (II). Two fully connected networks, 𝑁𝑁𝛽 and 𝑁𝑁𝜏

consist of eight dense layers with 256/256/256/128/64/32/16/8 neurons. These networks

are trained using an Adam optimizer with a learning rate of 10−2 for a total of 4, 000 epochs.

The parameter values obtained from 𝑁𝑁𝜏 and 𝑁𝑁𝛽 are visualized in Figures 6.10

(a) and (b), respectively. The parameter values obtained from PINNs are denoted by green

and red circles, indicating the training data for 𝑁𝑁𝛽 and 𝑁𝑁𝜏, respectively. The parameter

values generated by the networks are depicted as light orange and light blue dots. Visually,

it is evident that these dots have filled the gaps between parameters that were absent in our

LAMMPS dataset.

6.5 Symbolic regression

In this section, we use symbolic regression to find the explicit relation between the ODE param-

eters, and the initial radii and equilibrium contact angles. Symbolic regression is a technique

used in empirical modelling to discover mathematical expressions or symbolic formulas that

best fit a given dataset [261]. The process of symbolic regression involves searching a space

of mathematical expressions to find the equation that best fits the data. The search is typically

6.5. Symbolic regression 143

(a)

0.136 0.153 0.170 0.187 0.204

R0 [mm]

6

7

8

τ
(R

0
,θ

e
q
)

40 60 80 100

θeq

τNNτ
τPINN

(b)

0.136 0.153 0.170 0.187 0.204

R0 [mm]

0

2

4

β
(R

0
,θ

e
q
)

40 60 80 100

θeq

βNNβ

βPINN

Figure 6.10: Predictions of the parameters (a) 𝜏 and (b) 𝛽 using the trained neural networks
𝑁𝑁𝛽 and 𝑁𝑁𝜏. The horizontal axes show 𝑅0 and \eq. The green and red circles correspond
to the obtained values of 𝜏 and 𝛽 using the PINNs that were used to train 𝑁𝑁𝛽 and 𝑁𝑁𝜏.
Additionally, the orange and blue dots represent the predicted values for grid interpolations
between 𝑅0 = 1.3 to 𝑅0 = 2.05 and \eq = 40◦ to \eq = 95◦.

144Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

guided by a fitness function that measures the goodness of fit between the equation and the

data. The fitness function is optimized using various techniques such as genetic algorithms,

gradient descent, or other optimization algorithms. The equations discovered by symbolic re-

gression are expressed in terms of familiar (i.e., more common) mathematical functions and

variables, which can be easily understood and interpreted by humans.

In this study, we used the Python library gplearn for symbolic regression [303]. As dis-

cussed in Section 6.4.2, in order to have more accurate formulation for the ODE parameters

before using symbolic regression, we trained two networks, 𝑁𝑁𝛽 and 𝑁𝑁𝜏, using the dis-

covered values 𝛽(𝑅0, \eq), and 𝜏(𝑅0, \eq) enabling us to predict the parameter values for grid

interpolations where no corresponding data points were available. The predicted parameters

from both PINNs and the 𝑁𝑁𝛽 and 𝑁𝑁𝜏 networks are fed through the symbolic regression

model to discover a mathematical formulation for each parameter. For this purpose, \eq and

𝑅0 are fed as inputs, and [, 𝛽, and 𝜏 are the outputs. We set the population size to 5, 000 and

evolve 20 generations until the error is close to 1%. Since the equation consists of basic opera-

tions such as addition, subtraction, multiplication, and division, we do not require any custom

functions.

The following results of symbolic regression can be substituted in Equation (6.12),

[= −0.255

𝛽 = 0.283 + 0.27
(
\eq

𝑑

)
(6.14)

𝜏 = 6.13
(
𝑑

\eq
+ 1

)
,

where 𝑑 is the initial size of the droplet in mDPD units.

Figure 6.11 shows the history of 𝛼(𝑡, 𝑅0, \eq) using the the ODE (Equation (6.12)) with

parameters from Equation (6.14). The conversion between 𝑑 in mDPD units and 𝑅0 in physical

unit is 𝑅0 = 𝑑 × 1.701 × 10−2 mm.

In Figure 6.12, the left panel depicts the values of 𝛼 for an initial drop size of 𝑅0 =

6.6. Bayesian physics-informed neural network: B-PINN results 145

10−4 10−3 10−2 10−1

t [sec]

0.0

0.1

0.2

α

R0 = 0.136 [mm]

θeq

93.4◦

84.1◦

77.9◦

70.1◦

10−4 10−3 10−2 10−1

t [sec]

θeq = 77.9◦

R0 [mm]
0.136

0.153

0.170

0.187

0.204

Figure 6.11: The behaviour of 𝛼 from RHS of Equation (6.12) with parameters from Equa-
tion (6.14). Left: different contact angles with fixed initial radius 𝑅0 = 0.136 mm. Right:
varying initial radii with fixed contact angle \eq = 77.9◦.

0.127 mm and contact angles \eq = 93.4◦ and \eq = 87.2◦. The right panel compares the

solution of Equation (6.12) using the discovered parameters, Equation 6.14, with the simula-

tion data. The figure demonstrates the agreement between the ODE solution and the actual

simulation results for this particular, unseen data set. It is important to note that this particular

drop size lies outside the training interval for initial drop sizes [0.136, 0.204]mm.

6.6 Bayesian physics-informed neural network: B-PINN re-

sults

Bayesian Physics-Informed Neural Networks (B-PINNs) integrate the traditional PINN frame-

work with Bayesian Neural Networks (BNNs) [351] to enable quantification of uncertainty

in predictions [178]. This framework combines the advantages of BNNs [352] and PINNs to

address both forward and inverse nonlinear problems. By choosing a prior over the ODE and

network parameters, and by defining a likelihood function, one can find posterior distributions,

using Bayes’s theorem. B-PINNs offer a robust approach for handling problems containing

uncorrelated noise, and they provide aleatoric and epistemic uncertainty quantification on the

parameters of neural networks and ODEs.

146Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

10−4 10−3 10−2 10−1

t [sec]

0.0

0.1

0.2
α

θ=93.4◦

θ=87.2◦

10−4 10−3 10−2 10−1

t [sec]

0.10

0.20

0.25

r
[m

m
]

ODE solutions

Sim data

Figure 6.12: The left figure illustrates the behavior of the parameter 𝛼 using Equation (6.12)
for 𝑅0 = 0.127 mm, which falls outside the range of the initial drop sizes used for training the
networks. On the right panel, the simulation data and the solution obtained from solving the
ODE (Equation (6.12)) with parameters from symbolic regression, Equation (6.14) are shown.

The BNN component of the prior adopts Bayesian principles by assigning probability dis-

tributions to the weights and biases of the neural network. To account for noise in the data, we

add noise to the likelihood function. By applying Bayes’ rule, we can estimate the posterior

distribution of the model and the ODE parameters. This estimation process enables the propa-

gation of uncertainty from the observed data to the predictions made by the model. We write

Equation (6.12) as

N𝑡 (𝑟; λ) = 𝑓 (𝑡), 𝑡 ∈ R+ (6.15a)

I(𝑟, λ) = 𝑟0, 𝑡 = 0, (6.15b)

where λ = [[, 𝛽, 𝜏]⊤ is a vector of the parameters of the ODE (Equation (6.12)), and N𝑡 is

a general differential operator. 𝑓 (𝑡) is the forcing term, and I is the initial condition. This

problem is an inverse problems, λ is inferred from the data with estimates on aleatoric and

6.6. Bayesian physics-informed neural network: B-PINN results 147

epistemic uncertainties. The likelihoods of simulation data and ODE parameters are given as

𝑃(D | θ, λ)=𝑃 (D𝑟 | θ) 𝑃
(
D 𝑓 | θ, λ

)
𝑃 (DI | θ, λ) , where

𝑃(D𝑟 | θ, λ)=
𝑁𝑟∏
𝑖=1

1√︃
2𝜋𝜎 (𝑖)

2

𝑟

exp

−
(
𝑟 (t (𝑖)𝑟 ; θ, λ) − 𝑟 (𝑖)

)2

2𝜎 (𝑖)
2

𝑟

,
𝑃
(
D 𝑓 | θ, λ

)
=

𝑁 𝑓∏
𝑖=1

1√︃
2𝜋𝜎 (𝑖)

2

𝑓

exp

−
(
𝑓 (t (𝑖)

𝑓
; θ, λ) − 𝑓 (𝑖)

)2

2𝜎 (𝑖)
2

𝑓

,
𝑃(DI | θ, λ)=

𝑁I∏
𝑖=1

1√︃
2𝜋𝜎 (𝑖)

2

I

exp

−
(
I(t (𝑖)

𝑖
; θ, λ)−Ī (𝑖)

)2

2𝜎 (𝑖)
2

I

, (6.16)

where 𝐷 = 𝐷𝑟 ∪ 𝐷 𝑓 ∪ 𝐷I with D𝑟 =

{(
ln 𝑡 (𝑖)𝑟 , ¯ln 𝑟 (𝑖)

)}𝑁𝑟

𝑖=1
, D 𝑓 =

{(
𝑡
(𝑖)
𝑓
, 𝑓 (𝑖)

)}𝑁 𝑓

𝑖=1
, DI ={(

𝑡
(𝑖)
I , 𝐼 (𝑖)

)}𝑁I
𝑖=1

are scattered noisy measurements. The joint posterior of [θ, λ] is given as

𝑃(θ, λ | D) = 𝑃(D | θ, λ)𝑃(θ, λ)
𝑃(D)

≃ 𝑃(D | θ, λ)𝑃(θ, λ)

= 𝑃(D | θ, λ)𝑃(θ)𝑃(λ).

(6.17)

To sample the parameters from the the posterior probability distribution defined by Equa-

tion (6.17), we utilized the Hamiltonian Monte Carlo (HMC) approach [353], which is an

efficient Markov Chain Monte Carlo (MCMC) method [354]. For a detailed description of

the method, please see, e.g., Refs. [355, 356, 357]. To sample the posterior probability distri-

bution, however, variational inference [358] could be also used. In variational inference, the

posterior density of the unknown parameter vector is approximated by another parameterized

density function, which is restricted to a smaller family of distributions [178]. To compute the

uncertainty in the ODE parameters by using B-PINN, a noise of 5% was added to the original

data set. The noise was sampled from a normal distribution with a mean of 0 and standard

deviation of ±1.

148Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

Here, the neural network model architecture comprises of two hidden layers, each contain-

ing 50 neurons. The network takes time (𝑡) as the input, and generates a droplet radius 𝑟 (𝑡) as

the output. Additionally, we include a total of 2,000 burn-in samples.

The computational expense of B-PINNs compared to traditional neural networks primarily

arises from the iterative nature of Bayesian inference and the need to sample from the posterior

distribution. B-PINNs involve iterative Bayesian inference, where the posterior distribution is

updated iteratively based on observed data. This iterative process requires multiple iterations

to converge to a stable solution, leading to increased computational cost compared to non-

iterative methods. Moreover, B-PINNs employ sampling-based algorithms such as MCMC

or variational inference to estimate the posterior distribution of the model parameters. These

algorithms generate multiple samples from the posterior distribution, which are used to ap-

proximate uncertainty and infer calibrated parameters.

Sampling from the posterior distribution can be computationally expensive, particularly for

high-dimensional parameter spaces or complex physics models. Furthermore, B-PINNs often

require running multiple forward simulations of the physics-based model for different param-

eter samples. Each simulation represents a potential configuration of the model parameters.

Since physics-based simulations can be computationally intensive, conducting multiple simu-

lations significantly increases the computational cost of training B-PINNs. Achieving a high

acceptance rate for posterior samples, especially for high-dimensional data, demands running

a large number of simulations. This further adds to the computational complexity.

Due to the computational expense associated with B-PINNs, we opt to use the method

selectively for a few cases only. Utilizing the insights gained from PINNs prediction and

symbolic regression, specifically the known value of [= −0.255, we can leverage the power of

B-PINNs to uncover and ascertain the values of the parameters 𝛽 and 𝜏. Figure 6.13 showcases

the comparison between the mean values of the radii 𝑟 (𝑡) predicted by B-PINNs represented

by solid lines, the corresponding standard deviations denoted by highlighted regions, and the

simulation data used for training is presented as stars, while the test data is indicated by colored

6.6. Bayesian physics-informed neural network: B-PINN results 149

10−3 10−2 10−1

t [sec]

0.1

0.2

0.3

r
[m

m
]

R0=0.136 [mm]

10−3 10−2 10−1

t [sec]

R0=0.17 [mm]

θeq

θ=58.5◦

θ=74.8◦

θ=93.4◦

Figure 6.13: The mean and uncertainty (mean ± 2 standard deviation) of B-PINN predictions
of the spreading radii history are given as solid lines and shaded regions, respectively. The test
simulation data is depicted by solid circles and training data is indicated by stars. This analysis
is carried out for two different initial drop sizes, namely 𝑅0 = 0.137 mm and 0.170 mm, for
three equilibrium contact angles.

circles. The horizontal axes represent time, while the vertical axes depict the spreading radii

𝑟 (𝑡). This comparative analysis is conducted for two distinct initial drop sizes, namely 𝑅0 =

0.137 mm and 0.170 mm, considering various equilibrium contact angles.

Figure 6.14 illustrates the mean values of the parameters 𝛽 and 𝜏 obtained using B-PINNs

along with their corresponding standard deviations. The solid lines represent the average values

of the discovered parameters, while the highlighted regions indicate the standard deviations.

The parameters discovered by PINNs are represented by the dashed lines. On the left side, the

vertical axes represent the values of 𝛽, while the panels on the right side display the values

of 𝜏. The results are presented for two initial drop sizes: 𝑅0 = 0.136 mm (top panels) and

𝑅0 = 0.17 mm (bottom panels). From the figure, it can be observed that the parameter 𝛽

exhibits a range of values between 1.0 and 3.0. On the other hand, the parameter 𝜏 fluctuates

within the range of 5.0 to 7.0. These ranges provide insight into the variability and uncertainty

associated with the estimated values of 𝛽 and 𝜏 obtained through the B-PINN methodology.

By comparing Figures 6.9 and 6.14, it becomes evident that the discovered parameters

𝛽 and 𝜏 using PINNs of B-PINNs frameworks exhibit remarkable similarity. This striking

150Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

0.4

1.4

2.4

3.4

4.4
β(R0, θeq)

R0=0.136 mm

5

6

7

8
τ(R0, θeq)

R0=0.136 mm

50 60 70 80 90

θeq

0.4

1.4

2.4

3.4

4.4
R0=0.17 mm

50 60 70 80 90

θeq

5

6

7

8

R0=0.17 mm

Figure 6.14: Comparison between B-PINNs and PINNs discovered parameters for range of
equilibrium contact angles and two initial radii. The mean values (solid lines) and the standard
deviations (mean values ± 2 standard deviations, shaded region) of 𝛽 (left panels) and 𝜏 (right
panels). The dashed lines represent the parameters discovered by PINNs.

similarity reinforces the efficacy and capability of our models in accurately identifying the

parameters of the ODE described in Equation (6.12). The close alignment between the dis-

covered parameters in both figures demonstrates the robustness and reliability of our models.

It highlights their ability to effectively capture the underlying dynamics and characteristics of

the spreading behavior of CMAS, leading to accurate parameter estimation. This consistency

and agreement between the PINN and B-PINN results provide further validation of the power

and effectiveness of our modeling approaches in uncovering the true values of the parame-

ters 𝛽 and 𝜏 in the ODE. Additionally, Equation (6.12) with anticipated parameters obtained

using B-PINNs is solved using Odeint. The results are presented in Figure 6.15, which pro-

vides a comparison between the simulated spreading radii 𝑟 (𝑡) (circles) and the solution of the

ODE (solid lines). This comparison is conducted for initial drop sizes of 𝑅0 = 0.136 mm and

0.17 mm considering different contact angles.

6.7. Conclusions 151

10−4 10−3 10−2 10−1

t [sec]

0.1

0.2

r
[m

m
]

R0=0.136 [mm]

θeq

70.1◦

88.7◦

93.4◦

10−4 10−3 10−2 10−1

t [sec]

R0=0.17 [mm]

ODE solutions

Sim data

Figure 6.15: Comparison between the ODE solution with parameters found by B-PINNs (solid
lines), and the simulation radii (circles). Two initial drop sizes 𝑅0 = 0.137 mm and 0.170 mm
and three equilibrium contact angles are shown.

6.7 Conclusions

This study introduces a new approach to model the spreading dynamics of molten CMAS

droplets. In the liquid state, CMAS is characterized by high viscosity, density, and surface

tension. The main objective is to achieve a comprehensive understanding of the spreading

dynamics by integrating the underlying physics into the neural network architecture.

The study emphasizes the potential of PINNs in analyzing complex systems with intri-

cate dynamics. To study the dynamics of CMAS droplets, we performed simulations using

the mDPD method. By analyzing the simulation data and observing the droplet behavior, we

proposed a coarse parametric equation (Equation (6.12)), which consists of three unknown pa-

rameters. This parametric equation aims to capture and describe the observed behavior of the

CMAS droplets based on the simulation results. Using the data from the mDPD simulations,

the study employed the PINNs framework to determine the parameters of the equation. Sym-

bolic regression was then utilized to establish the relationship between the identified parameter

values, and the initial droplet radii and contact angles. As a result, a simplified ODE model

was developed, accurately capturing the spreading dynamics. The model’s parameters were

explicitly determined based on the droplet’s geometry and surface properties. Furthermore,

B-PINNs were employed to assess the uncertainty associated with the model predictions, pro-

152Chapter 6. Characterization of partial wetting byCMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs

viding a comprehensive analysis of the spreading behavior of CMAS droplets.

In reality, the CMAS attack involves a complex interplay of reaction kinetics between

CMAS and the TBC, surface morphology (roughness, porosity) occurring under a highly non-

uniform thermal conditions. However, our findings extend beyond the isothermal conditions

used in this study and even the specific case of CMAS droplets. The relationships uncovered

and methods developed in this study have broader applications in understanding the spreading

dynamics of droplets in general. By leveraging the insights gained from this research, one can

investigate and understand the behavior of droplets in diverse contexts, furthering our under-

standing of droplet spreading phenomena. This knowledge can potentially be used in develop-

ing strategies for effective droplet management and optimizing processes involving droplets in

a wide range of practical applications.

Acknowledgments

EK thanks the Mitacs Globalink Research Award Abroad and Western University’s Science

International Engagement Fund Award. MK thanks the Natural Sciences and Engineering Re-

search Council of Canada (NSERC) and the Canada Research Chairs Program. The work

was partially supported by DOE grant (DE-SC0023389). RBK would like to acknowledge the

support received from the US Army Research Office Mathematical Sciences Division for this

research through grant number W911NF-17-S-0002. LB and AG were supported by the US

Army Research Laboratory 6.1 basic research program in propulsion sciences. ZL and GK

acknowledge the support from the AIM for Composites, an Energy Frontier Research Center

funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences

(BES) under Award #DE-SC0023389. ZL also acknowledges support from the National Sci-

ence Foundation (Grants OAC-2103967 and CDS&E-2204011). Computing facilities were

provided by the Digital Research Alliance of Canada (https://alliancecan.ca) and the Center

for Computation and Visualization, Brown University. The authors acknowledge the resources

6.7. Conclusions 153

and support provided by Department of Defense Supercomputing Resource Center (DSRC)

through use of ”Narwhal” as part of the 2022 Frontier Project, Large-Scale Integrated Simula-

tions of Transient Aerothermodynamics in Gas Turbine Engines.

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have presented a comprehensive exploration of data-driven approaches for

the discovery of PDEs in the context of black-box in Chapter 4, gray-box in Chapter 5, and

white-box modeling in Chapter 6. A wide range of methodologies and techniques to uncover

the underlying PDEs based on available data and varying degrees of prior knowledge were

studied. The thesis showcases the potential of data-driven approaches, such as MLP in Sec-

tion 4.3.1, CNN in Section 4.4, CNN-LSTM in Section 4.3.2, X-PINNs in Section 5.3, PINNs

in Section 6.4 , and symbolic regression in Section 5.4 in discovering and understanding the

behavior of complex systems described by PDEs.

For black-box learning, two scenarios were investigated with a specific focus on under-

standing and analyzing phase-field dynamics in Chapter 4. These scenarios involved the uti-

lization of well-known models such as Allen-Cahn, Cahn-Hilliard, and the phase-field crystal

as test cases. MLP and CNN-LSTM architectures were employed to learn the PDEs when there

is an unknown relationship between field evolution and its spatial derivatives. A specialized

CNN architecture was proposed for cases where information regarding spatial dependence is

unavailable. These algorithms provide a black-box approach for discovering PDEs without

154

7.1. Conclusions 155

relying on prior knowledge of the physical model’s functional form.

We have created an MLP architecture (see Section 4.3.1) capable of learning PDEs by ex-

plicitly computing spatial derivatives using finite differences. In addition to spatial derivatives,

we also feed time derivatives through the network to learn the right-hand side of the equation.

MLP networks have the ability to adapt and work well with various types of data. This includes

handling data with low resolution or granularity and their associated spatial derivatives (rates

of change in the data with respect to spatial coordinates). MLP networks are flexible enough to

effectively process and analyze such diverse data types, making them suitable for tasks involv-

ing PDE learning. However, it is extremely important to choose the architecture of the MLP

network with care to achieve the best possible performance. The selection of the network’s

structure and parameters should be done thoughtfully and based on the specific requirements

of the task at hand. Additionally, having accurate knowledge of the derivative orders (the order

of spatial and temporal derivatives involved in the PDE) is crucial for successful training of

the network. This knowledge allows for the appropriate design and configuration of the MLP

architecture, ensuring that it can effectively learn and approximate the desired PDEs. However,

the choice of architecture for an MLP network can significantly impact its performance. The

architecture of an MLP refers to the arrangement and connectivity of its layers, including the

number of hidden layers, the number of neurons in each layer, and the activation functions

used. Selecting the appropriate architecture depends on various factors, including the spe-

cific requirements of the task, available data, computational resources, and desired accuracy.

Different architectures can exhibit varying capabilities in handling different types of data and

modeling complex relationships. For example, a shallow MLP with only one hidden layer may

struggle to capture intricate patterns and relationships in the data, resulting in lower perfor-

mance. On the other hand, a deeper MLP with multiple hidden layers can potentially learn

more abstract and hierarchical representations, enabling it to capture complex dependencies

and achieve better performance.

Training an MLP necessitates explicit calculations of spatial derivatives, which can be

156 Chapter 7. Conclusions and future work

computationally expensive and time-consuming. However, CNN networks offer a different

approach. In a CNN, the initial convolutional layer is capable of directly estimating deriva-

tives without the need for explicit calculations. This means that CNNs can approximate spatial

derivatives in a way that is similar to finite-difference approximations. By estimating deriva-

tives directly in the convolutional layer, CNNs are able to capture the spatial features present

in the input data. This is because the convolutional layer applies filters to the input data, identi-

fying patterns and features that are spatially distributed. The filters act as local receptive fields,

analyzing the neighboring data points to identify gradients and spatial variations. This ability

to estimate derivatives and capture spatial features makes CNNs particularly well-suited for

modeling PDEs with complex spatial dependencies. They can learn and represent the under-

lying patterns and structures in the data without explicitly calculating spatial derivatives. This

simplifies the learning process and enhances the network’s capability to handle intricate spa-

tial relationships. By eliminating the need for explicit spatial derivative calculations, CNNs

offer a more efficient and streamlined approach to PDE learning, especially when compared to

traditional methods. However, due to the nature of their architecture, CNNs often demand a

significant amount of memory to store the network parameters and intermediate feature maps

during training and inference. This can pose challenges, especially when working with limited

computational resources or large-scale datasets. Moreover, CNNs typically require a substan-

tial amount of data to achieve optimal performance and accurate results. Training a CNN on

a small dataset may lead to overfitting, where the network becomes overly specialized to the

training samples and fails to generalize well to new, unseen data. It is important to ensure

that the dataset used for training is diverse and representative of the problem domain to avoid

overfitting and improve the generalization ability of the network.

In the context of gray-box learning, the approach assumes that we have prior knowledge

about certain components or aspects of the equation, while considering other parts as unknown.

The primary objective of gray-box learning is to predict and uncover the unknown components

of the equation. Gray-box learning allows us to make informed predictions and fill in the gaps

7.1. Conclusions 157

in our understanding by utilizing the known components and integrating them with observed

data. we employed a modified version of X-PINNs for gray-box learning of the Allen-Cahn

equation in Chapter 5. By dividing the computational domain into four subdomains and utiliz-

ing our understanding of the Laplacian part, we successfully uncovered the non-linear compo-

nent𝑈−𝑈3 of the equation. To reveal the closed mathematical form of the unknown component

and its coefficients, we utilized symbolic regression. By applying symbolic regression to our

dataset, we aimed to find a mathematical formula that represents the relationship between the

known variables and the unknown component. The outcomes of this approach exhibited a

strong alignment between the discovered form and the exact form of the equation. This frame-

work proved to be highly effective in accurately identifying the unknown components based on

the available data.

In the realm of white box modeling, we developed a novel approach to investigate the

spreading dynamics of molten CMAS droplets in Chapter 6. Our method involved integrating

the fundamental physics principles into the neural network architecture, allowing us to gain

valuable insights into the behavior of CMAS droplets. To accurately capture the droplets’ dy-

namics, we employed the mDPD model for simulations. However, rather than relying solely

on the simulation data, we proposed a coarse parametric equation with three unknown param-

eters. This equation aimed to provide a concise representation of the droplets’ behavior while

allowing for flexibility in capturing their dynamics. To determine the values of these unknown

parameters, we combined the power of PINNs with the available simulation data. By training

the PINNs using the simulation data, we were able to infer the optimal parameter values that

aligned with the observed behavior of the droplets. This integration of PINNs and simulation

data enabled us to gain a comprehensive understanding of the droplet behavior and uncover

insights into their spreading dynamics.

158 Chapter 7. Conclusions and future work

7.2 Future work

There are several interesting alleys for future work. For example, it would be interesting to

focus on enhancing the performance and efficiency of data-driven models, such as MLPs and

CNNs, for PDE discovery. This can be achieved by exploring advanced architectural designs,

optimization techniques, and regularization methods that specifically target the unique chal-

lenges posed by PDE discovery tasks.

In the case of discovering equations using black-box modeling, extending the methods to

more complex PDE systems presents additional challenges. One particularly challenging sce-

nario involves predicting three-dimensional phase-field models. This presents difficulties due

to limited computer memory, making efficient network training increasingly problematic. Con-

sequently, it becomes essential to explore frameworks that can handle large datasets to address

this issue. MLP requires explicit spatial derivatives, which significantly increases the compu-

tational cost when predicting three-dimensional equations. Additionally, the use of CNNs for

three-dimensional phase-field models can be computationally expensive. Therefore, alterna-

tive approaches need to be explored to overcome these challenges and improve the efficiency

of prediction for three-dimensional phase-field models.

In the case of discovering equations using gray-box modeling, the current study primar-

ily focused on specific PDE systems, such as the Allen-Cahn equation. However, due to the

properties of PINNs that require spatial derivatives to create residuals in the physics-informed

part, dealing with higher-order derivatives like in the Cahn-Hilliard and the phase-field crystal

models became either impossible or computationally expensive. In future research, it is cru-

cial to broaden the scope by exploring more complex PDE systems that involve higher-order

derivatives, additional variables, and intricate dynamics. To tackle the challenges posed by

such systems, employing X-PINNs for both time and space decomposition can be a promising

approach. By utilizing X-PINNs, it becomes feasible to effectively address the investigation

of equations involving higher-order derivatives. This approach allows for the efficient man-

agement of the computational complexity associated with such equations. This advancement

7.2. Future work 159

would significantly contribute to advancing our understanding of complex physical phenomena

described by PDEs.

By applying similar methodologies to droplet systems other than those presented in Chap-

ter 6, the relationships between the parameters and dynamics can be further explored, pro-

viding valuable insights for managing and understanding droplet behavior in various contexts

and applications. The power of PINNs, demonstrated in this thesis, opens up new possibilities

for investigating and optimizing processes involving droplets and advancing our knowledge

in droplet-related phenomena. Further research can involve conducting experimental studies

to validate the predictions made by the developed model and refine its parameters. This can

be accomplished through the design of controlled experiments specifically aimed at observing

and measuring the spreading dynamics under different conditions. This can include different

substrate materials, varying surface properties, and changes in temperature or environmental

conditions. Through systematic observations and measurements, researchers can gather com-

prehensive datasets that encompass a range of scenarios, providing valuable insights into the

behavior of droplets. By combining simulated and experimental data, a more comprehensive

understanding of the dynamics of the system can be achieved, and the discovered PDEs/ODEs

can be validated against real-world observations. This evaluation should include assessing the

scalability, computational efficiency, and practical usability of the models.

The methodologies and techniques developed in this study have the potential to be appli-

cable to a wide range of domains and applications beyond the scope of the specific systems

investigated. In future research, it would be valuable to explore the application of data-driven

approaches for discovering PDEs in diverse scientific disciplines, engineering, and industrial

processes. Additionally, addressing the challenges and complexities that arise in different ap-

plications is essential. These challenges may include handling large-scale datasets, dealing

with high-dimensional systems, incorporating domain-specific constraints, or considering spe-

cific boundary conditions. These conditions could be of the Dirichlet type (specifying values at

boundaries) or the Neumann type (specifying derivatives at boundaries). Adapting the method-

160 Chapter 7. Conclusions and future work

ologies to address these challenges is critical for successfully applying data-driven approaches

to PDE discovery in diverse domains.

An important aspect of PDE modeling is the quantification of uncertainties and the assess-

ment of sensitivity in relation to different input parameters and data variations. Some of these

issues were addressed in Section 6.6. Future research is needed for developing techniques that

effectively quantify uncertainties in data-driven models. This would enable robust predictions

and informed decision-making even in the presence of uncertain conditions. As mentioned

in Section 6.6, the current implementation of B-PINNs and Bayesian methods in the context

of PDE modeling can be computationally expensive. This is primarily due to the inherent

complexity and computational requirements associated with Bayesian inference and the inte-

gration of uncertainty quantification techniques. Bayesian methods involve evaluating complex

probabilistic computations, such as estimating posterior distributions and conducting MCMC

sampling. These calculations often require a large number of iterations and computations,

making them computationally intensive and time-consuming. By improving the computational

efficiency of Bayesian methods, one can enhance the practical applicability and scalability of

these techniques in real-world PDE modeling scenarios. This would enable broader adoption

of uncertainty-aware modeling approaches, facilitating more reliable predictions and decision-

making under uncertain conditions.

The potential future directions discussed above would contribute to more accurate and re-

liable modeling of complex systems governed by partial differential equations, enabling better

predictions and informed decision-making in a wide range of scientific and engineering appli-

cations.

In this study, we utilized artificially generated data to evaluate the effectiveness of an in-

verse method. To delve deeper, we focused on three key objectives: black box modeling, grey

box modeling, and white box modeling. These objectives have direct applications in uncov-

ering mathematical equations through the utilization of experimental data in both application

phase fields and drop spreading phenomena. Experimental data can stem from a diverse range

7.2. Future work 161

of time-dependent experiments. By integrating data from both microscopic and macroscopic

sources, the process of equation discovery can be further refined. This approach entails captur-

ing intricate behaviors at the microscopic level, facilitated by techniques such as atomic force

microscopy and optical microscopy. Simultaneously, it includes incorporating broader trends

observed in macroscopic data, obtained through methods like scanning electron microscopy.

Integrating these authentic data sources has the potential to significantly improve the accuracy

and comprehensiveness of the equation discovery process. Moreover, it enables us to thor-

oughly assess the effectiveness of our approaches.

Based on the above discussion, future works can be categorized as follows:

• Performance and efficiency enhancement: Focus on improving the performance and effi-

ciency of data-driven models for PDE discovery. Explore advanced architectural designs

and innovative network architectures that are well-suited for PDE discovery. These ar-

chitectures may include specialized designs that can effectively capture the underlying

dynamics and patterns of PDE systems. Develop data-driven models that are capable of

efficiently handling large-scale PDE datasets, optimizing computational resources, and

improving the accuracy and reliability of PDE predictions.

• Handling higher-dimensional equations: Address the challenges associated with higher-

dimensional equations by developing frameworks and methodologies capable of effec-

tively handling and predicting complex PDE systems in three or more dimensions. This

involves managing computational complexity and memory requirements while ensuring

practical and scalable solutions.

• Handling equations with higher-order Derivatives: Explore techniques to handle equa-

tions involving higher-order derivatives. Develop methods that can efficiently learn and

predict PDEs with multiple derivatives.

• Integration of experimental data: Enhance the accuracy and practical usability of data-

driven models by combining simulated and experimental data. Integrate experimental

162 Chapter 7. Conclusions and future work

observations with simulation data to achieve comprehensive understanding and valida-

tion of the discovered PDEs/ODEs.

• Application to diverse domains: Extend the application of data-driven approaches for

PDE discovery to diverse scientific disciplines, engineering fields, and industrial pro-

cesses. Customize and adapt the methodologies to effectively capture and model the

unique characteristics of each domain.

• Scalability and generalization: Address challenges related to scalability and general-

ization of data-driven models. Develop techniques to train and generalize data-driven

models effectively with limited data, avoid overfitting, and enhance their performance in

diverse scenarios.

• Uncertainty quantification and sensitivity analysis: Develop techniques to accurately

measure and propagate uncertainties in data-driven models, specifically in scenarios

where we are modeling the impact of environmental factors. Give priority to robust

uncertainty quantification and sensitivity analysis to facilitate reliable predictions and

informed decision-making, particularly when dealing with uncertain conditions.

Bibliography

[1] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, “An overview of machine learning,”

Mach. Learn., pp. 3–23, 1983.

[2] K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, “How fast-folding proteins

fold,” Science, vol. 334, no. 6055, pp. 517–520, 2011.

[3] M. Karplus, “Molecular dynamics of biological macromolecules: A brief history and

perspective,” Biopolymers, vol. 68, no. 3, pp. 350–358, 2003.

[4] T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, and M. Karttunen, “Multiscale mod-

eling of emergent materials: biological and soft matter,” Phys. Chem. Chem. Phys.,

vol. 11, no. 12, pp. 1869–1892, 2009.

[5] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, “Modeling elasticity in crystal

growth,” Phys. Rev. Lett., vol. 88, p. 245701, 2002.

[6] S. A. Silber and M. Karttunen, “SymPhas–General purpose software for phase-field,

phase-field crystal, and reaction-diffusion simulations,” Adv. Theory Simul., vol. 5,

p. 2100351, 2022.

[7] W. B. Hardy, “III. the spreading of fluids on glass,” Lond. Edinb. Dublin philos. mag. j.

sci., vol. 38, no. 223, pp. 49–55, 1919.

163

164 BIBLIOGRAPHY

[8] J. A. Nieminen, D. B. Abraham, M. Karttunen, and K. Kaski, “Molecular dynamics of

a microscopic droplet on solid surface,” Phys. Rev. Lett., vol. 69, no. 1, pp. 124–127,

1992.

[9] M. N. Popescu, G. Oshanin, S. Dietrich, and A.-M. Cazabat, “Precursor films in wetting

phenomena,” J. Phys. Condens. Matter, vol. 24, no. 24, p. 243102, 2012.

[10] R. B. Koneru, A. Flatau, Z. Li, L. Bravo, M. Murugan, A. Ghoshal, and G. E. Karni-

adakis, “Quantifying the dynamic spreading of a molten sand droplet using multiphase

mesoscopic simulations,” Phys. Rev. Fluids, vol. 7, no. 10, p. 103602, 2022.

[11] ISO, ISO/IEC 14882:2017: Programming languages—C++. Geneva, Switzerland: In-

ternational Organization for Standardization, 5 ed., 2017.

[12] K. Diederik, B. Jimmy, et al., “Adam: A method for stochastic optimization,” ArXiv,

vol. 1412.6980, pp. 273–297, 2014.

[13] A. Kaplan and M. Haenlein, “Siri, siri, in my hand: Who’s the fairest in the land? on

the interpretations, illustrations, and implications of artificial intelligence,” Bus. Horiz.,

vol. 62, no. 1, pp. 15–25, 2019.

[14] J. F. Allen, “Ai growing up: The changes and opportunities,” AI magazine, vol. 19, no. 4,

pp. 13–13, 1998.

[15] D. Kirsh, “Foundations of ai: the big issues,” Artif. Intell., vol. 47, no. 1-3, pp. 3–30,

1991.

[16] A. Newell, J. C. Shaw, and H. A. Simon, “The processes of creative thinking.,” in Con-

temporary Approaches to Creative Thinking, 1958, University of Colorado, CO, US;

This paper was presented at the aforementioned symposium., Atherton Press, 1962.

[17] A. Turing, “Programmers,” Handbook for Manchester Electronic Computer’, University

of Manchester Computing Laboratory. A digital facsimile of the original may be viewed

BIBLIOGRAPHY 165

in The Turing Archive for the History of Computing document.¡ http://www. AlanTuring.

net/programmers handbook, 1950.

[18] A. M. TURING, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind,

vol. LIX, no. 236, pp. 433–460, 1950.

[19] A. M. Turing, “Computing machinery and intelligence,” Creative Computing, vol. 6,

no. 1, pp. 44–53, 1980.

[20] A. M. Turing, “Lecture to the london mathematical society on 20 february 1947,” MD

COMPUTING, vol. 12, pp. 390–390, 1995.

[21] A. Turing, “Intelligent machinery (1948),” B. Jack Copeland, p. 395, 2004.

[22] N. Muthukrishnan, F. Maleki, K. Ovens, C. Reinhold, B. Forghani, and R. Forghani,

“Brief history of artificial intelligence,” vol. 30, pp. 393–399, Elsevier, 2020.

[23] M. Minsky and S. A. Papert, “Proposal to arpa for research on artificial intelligence at

mit, 1970-1971,” 1970.

[24] C. S. Navinchandra, “Neural networks and physical systems with emergent collective

computational abilities,” Education, vol. 3, no. 6, 2012.

[25] J. J. Hopfield, “Neurons with graded response have collective computational properties

like those of two-state neurons,” PNAS, vol. 81, no. 10, pp. 3088–3092, 1984.

[26] J. J. Hopfield and D. W. Tank, ““neural” computation of decisions in optimization prob-

lems,” Biol. Cybern., vol. 52, no. 3, pp. 141–152, 1985.

[27] H. S. Seung, “Continuous attractors and oculomotor control,” Neural Netw., vol. 11,

no. 7-8, pp. 1253–1258, 1998.

[28] J. Šı́ma and P. Orponen, “Continuous-time symmetric hopfield nets are computationally

universal,” Neural Comput., vol. 15, no. 3, pp. 693–733, 2003.

166 BIBLIOGRAPHY

[29] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biol. Cy-

bern., vol. 43, no. 1, pp. 59–69, 1982.

[30] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM J.

Res. Dev, vol. 3, no. 3, pp. 210–229, 1959.

[31] K. Santosh, S. Antani, D. Guru, and N. Dey, Medical Imaging: Artificial Intelligence,

Image Recognition, and Machine Learning Techniques. New York, USA: CRC Press,

2019.

[32] A. Kulkarni and A. Shivananda, Natural language processing recipes. New York, USA:

Springer, 2019.

[33] J. Mayr, C. Unger, and F. Tombari, “Self-supervised learning of the drivable area for

autonomous vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 362–369, IEEE, Madrid, Spain, 2018.

[34] I. El Naqa and M. J. Murphy, What Is Machine Learning?, pp. 3–11. Cham: Springer,

2015.

[35] K. Wagstaff, “Machine learning that matters,” arXiv preprint arXiv:1206.4656, 2012.

[36] A. Famili, W.-M. Shen, R. Weber, and E. Simoudis, “Data preprocessing and intelligent

data analysis,” Intell. Data Anal., vol. 1, no. 1, pp. 3–23, 1997.

[37] P. Benardos and G.-C. Vosniakos, “Optimizing feedforward artificial neural network

architecture,” Eng. Appl. Artif. Intell., vol. 20, no. 3, pp. 365–382, 2007.

[38] P. Cunningham, M. Cord, and S. J. Delany, Supervised Learning, pp. 21–49. Berlin,

Heidelberg, Germany: Springer, 2008.

[39] V. Nasteski, “An overview of the supervised machine learning methods,” Horizons. b,

vol. 4, pp. 51–62, 2017.

BIBLIOGRAPHY 167

[40] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks with re-

sume: sequence learning, classification, and spike shifting,” Neural Comput., vol. 22,

no. 2, pp. 467–510, 2010.

[41] S. Loussaief and A. Abdelkrim, “Machine learning framework for image classification,”

in 7th International Conference on Sciences of Electronics, Technologies of Information

and Telecommunications (SETIT), pp. 58–61, IEEE, 2016.

[42] H. B. Barlow, “Unsupervised learning,” Neural Comput., vol. 1, no. 3, pp. 295–311,

1989.

[43] K. J. Cios, R. W. Swiniarski, W. Pedrycz, L. A. Kurgan, K. J. Cios, R. W. Swiniarski,

W. Pedrycz, and L. A. Kurgan, “Unsupervised learning: association rules,” Data Min-

ing: A Knowledge Discovery Approach, pp. 289–306, 2007.

[44] I. Krol, F. D. Schwab, R. Carbone, M. Ritter, S. Picocci, M. L. De Marni, G. Stepien,

G. M. Franchi, A. Zanardi, M. D. Rissoglio, et al., “Detection of clustered circulating

tumour cells in early breast cancer,” Br. J. Cancer., vol. 125, pp. 23–27, 2021.

[45] N. A. Mat-Isa, M. Y. Mashor, and N. H. Othman, “An automated cervical pre-cancerous

diagnostic system,” Artif. Intell. Med., vol. 42, no. 1, pp. 1–11, 2008.

[46] T. S. Madhulatha, “An overview on clustering methods,” arXiv preprint

arXiv:1205.1117, 2012.

[47] F. Nielsen and F. Nielsen, “Hierarchical clustering,” Introduction to HPC with MPI for

Data Science, pp. 195–211, 2016.

[48] M. E. Celebi, Partitional clustering algorithms. Springer, New York, USA, 2014.

[49] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Trans. Syst. Man.

Cybern., vol. 29, no. 3, pp. 433–439, 1999.

168 BIBLIOGRAPHY

[50] N. K. Kaur, U. Kaur, and D. Singh, “K-medoid clustering algorithm-a review,” Int. J.

Comput. Appl. Technol, vol. 1, no. 1, pp. 42–45, 2014.

[51] M. Afzali and S. Kumar, “Text document clustering: issues and challenges,” in Interna-

tional conference on machine learning, big data, cloud and parallel computing (COMIT-

Con), pp. 263–268, IEEE, Faridabad, India, 2019.

[52] M. Karthikeyan and P. Aruna, “Probability based document clustering and image clus-

tering using content-based image retrieval,” Appl. Soft Comput., vol. 13, no. 2, pp. 959–

966, 2013.

[53] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in 33rd In-

ternational Conference on Machine Learning (M. F. Balcan and K. Q. Weinberger, eds.),

vol. 48 of Proceedings of Machine Learning Research, (New York, USA), pp. 1928–

1937, PMLR, 2016.

[54] B. Heidenreich, “An introduction to positive reinforcement training and its benefits,” J.

Exot. Pet Med., vol. 16, no. 1, pp. 19–23, 2007.

[55] L. L. Thompson, E. D. Claus, S. K. Mikulich-Gilbertson, M. T. Banich, T. Crowley,

T. Krmpotich, D. Miller, and J. Tanabe, “Negative reinforcement learning is affected

in substance dependence,” Drug and alcohol dependence, vol. 123, no. 1-3, pp. 84–90,

2012.

[56] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”

Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013.

[57] A. Coronato, M. Naeem, G. De Pietro, and G. Paragliola, “Reinforcement learning for

intelligent healthcare applications: A survey,” Artif. Intell. Med., vol. 109, p. 101964,

2020.

BIBLIOGRAPHY 169

[58] S. Aradi, “Survey of deep reinforcement learning for motion planning of autonomous

vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 740–759, 2020.

[59] S. R. Granter, A. H. Beck, and D. J. Papke Jr, “Alphago, deep learning, and the future of

the human microscopist,” Arch. Path. Lab., vol. 141, no. 5, pp. 619–621, 2017.

[60] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dȩbiak, C. Dennison, D. Farhi, Q. Fis-

cher, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforcement learning,”

arXiv preprint arXiv:1912.06680, 2019.

[61] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A survey of dimensionality reduction

techniques,” arXiv preprint arXiv:1403.2877, 2014.

[62] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature

selection: A data perspective,” ACM Comput. Surv., vol. 50, no. 6, pp. 1–45, 2017.

[63] T. R. Reed and J. H. Dubuf, “A review of recent texture segmentation and feature ex-

traction techniques,” CVGIP: Image understanding, vol. 57, no. 3, pp. 359–372, 1993.

[64] L. Meneghetti, N. Demo, and G. Rozza, “A dimensionality reduction approach for con-

volutional neural networks,” Appl. Intell., pp. 1–16, 2023.

[65] S. Hijazi, R. Kumar, C. Rowen, et al., “Using convolutional neural networks for image

recognition,” Cadence Design Systems Inc.: San Jose, CA, USA, vol. 9, p. 1, 2015.

[66] Y. Goldberg, “A primer on neural network models for natural language processing,”

Artif. Intell. Res., vol. 57, pp. 345–420, 2016.

[67] C.-X. Feng and X.-F. Wang, “Surface roughness predictive modeling: neural networks

versus regression,” IIE Trans ., vol. 35, no. 1, pp. 11–27, 2003.

[68] D. Chung, “Machine learning for predictive model in entrepreneurship research: pre-

dicting entrepreneurial action,” Small Enterp. Res., pp. 1–18, 2023.

170 BIBLIOGRAPHY

[69] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Netw.,

vol. 61, pp. 85–117, 2015.

[70] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical

image segmentation,” in International Conference on Medical Image Computing and

Computer-Assisted Intervention, (Munich, Germany), pp. 234–241, Springer, 2015.

[71] J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in medical image

analysis,” Ieee Access, vol. 6, pp. 9375–9389, 2017.

[72] T. Epelbaum, F. Gamboa, J.-M. Loubes, and J. Martin, “Deep learning applied to road

traffic speed forecasting,” arXiv preprint arXiv:1710.08266, 2017.

[73] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part

1–learning rate, batch size, momentum, and weight decay,” arXiv preprint

arXiv:1803.09820, 2018.

[74] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” arXiv

preprint arXiv:1710.05941, 2017.

[75] A. Kag, Z. Zhang, and V. Saligrama, “Rnns incrementally evolving on an equilibrium

manifold: A panacea for vanishing and exploding gradients?,” in International Confer-

ence on Learning Representations, ICLR, Addis Ababa, Ethiopia, April 26-30, 2020.

[76] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,” To-

wards Data Sci., vol. 6, no. 12, pp. 310–316, 2017.

[77] H. Pratiwi, A. P. Windarto, S. Susliansyah, R. R. Aria, S. Susilowati, L. K. Rahayu,

Y. Fitriani, A. Merdekawati, and I. R. Rahadjeng, “Sigmoid activation function in se-

lecting the best model of artificial neural networks,” in J. Phys. Conf. Ser., vol. 1471,

p. 012010, IOP Publishing, 2020.

BIBLIOGRAPHY 171

[78] B. Karlik and A. V. Olgac, “Performance analysis of various activation functions in

generalized mlp architectures of neural networks,” Int. J. Artif. Intell., vol. 1, no. 4,

pp. 111–122, 2011.

[79] K. Eckle and J. Schmidt-Hieber, “A comparison of deep networks with relu activation

function and linear spline-type methods,” Neural Netw., vol. 110, pp. 232–242, 2019.

[80] B. Paria, C.-K. Yeh, I. E. Yen, N. Xu, P. Ravikumar, and B. Póczos, “Minimizing flops

to learn efficient sparse representations,” arXiv preprint arXiv:2004.05665, 2020.

[81] N. N. Prasad and J. N. Rao, “The estimation of the mean squared error of small-area

estimators,” Am. Stat. Assoc. Bull., vol. 85, no. 409, pp. 163–171, 1990.

[82] D. P. Mandic, “A generalized normalized gradient descent algorithm,” IEEE Signal Pro-

cess. Lett., vol. 11, no. 2, pp. 115–118, 2004.

[83] P. Murugan, “Feed forward and backward run in deep convolution neural network,”

arXiv preprint arXiv:1711.03278, 2017.

[84] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE winter

conference on applications of computer vision (WACV), pp. 464–472, IEEE, 2017.

[85] Y. Bengio, Practical Recommendations for Gradient-Based Training of Deep Architec-

tures, pp. 437–478. Berlin, Heidelberg, Germany: Springer, 2012.

[86] F. Rosenblatt, “Principles of neurodynamics: Perceptrons and the theory of,” Brain

Mechanisms, pp. 555–559, 1962.

[87] M. Braun and M. Golubitsky, Differential equations and their applications, vol. 2.

Springer, New York, USA, 1983.

[88] E. L. Ince, “Ordinary differential equations,” (New York, USA), Courier Corporation,

1956.

172 BIBLIOGRAPHY

[89] K. Omori and J. Kotera, “Overview of pdes and their regulation,” Circ. Res., vol. 100,

no. 3, pp. 309–327, 2007.

[90] L. F. Shampine, “Conservation laws and the numerical solution of odes,” Comput. Math.

with Appl., vol. 12, no. 5-6, pp. 1287–1296, 1986.

[91] D.-E. Gratie, B. Iancu, and I. Petre, “Ode analysis of biological systems,” Formal Meth-

ods for Dynamical Systems: 13th International School on Formal Methods for the De-

sign of Computer, Communication, and Software Systems, SFM 2013, Bertinoro, Italy,

June 17-22, 2013. Advanced Lectures, pp. 29–62, 2013.

[92] D. A. Charlebois and G. Balázsi, “Modeling cell population dynamics,” In Silico Biol.,

vol. 13, no. 1-2, pp. 21–39, 2019.

[93] D. J. Higham, “Modeling and simulating chemical reactions,” SIAM review, vol. 50,

no. 2, pp. 347–368, 2008.

[94] K. Nakkeeran, “Mathematical description of differential equation solving electrical cir-

cuits,” J. Circuits Syst. Comput., vol. 18, no. 05, pp. 985–991, 2009.

[95] M. H. Zawawi, A. Saleha, A. Salwa, N. Hassan, N. M. Zahari, M. Z. Ramli, and Z. C.

Muda, “A review: Fundamentals of computational fluid dynamics (cfd),” in AIP confer-

ence proceedings, vol. 2030, p. 020252, AIP Publishing LLC, 2018.

[96] T. Rabczuk, H. Ren, and X. Zhuang, “A nonlocal operator method for partial differen-

tial equations with application to electromagnetic waveguide problem,” Comput. Mater.

Contin., pp. 31–55, 2019.

[97] D. Heath and M. Schweizer, “Martingales versus pdes in finance: an equivalence result

with examples,” J. Appl. Probab., vol. 37, no. 4, pp. 947–957, 2000.

[98] A. D. Polyanin and A. I. Zhurov, Separation of variables and exact solutions to nonlin-

ear PDEs. Boca Raton, FL, USA: CRC Press, 2021.

BIBLIOGRAPHY 173

[99] J. C. Strikwerda, “Finite difference schemes and partial differential equations,” SIAM,

Philadelphia, PA, 2004.

[100] J. W. Thomas, Numerical partial differential equations: finite difference methods,

vol. 22. Springer, New York, USA, 2013.

[101] K.-J. Bathe, “Finite element method,” Wiley encyclopedia of computer science and en-

gineering, pp. 1–12, 2007.

[102] J. Shen, T. Tang, and L.-L. Wang, Spectral methods: algorithms, analysis and applica-

tions, vol. 41. Springer Berlin, Heidelberg, Germany, 2011.

[103] D. W. Zingg and T. T. Chisholm, “Runge–kutta methods for linear ordinary differential

equations,” Appl. Numer. Math, vol. 31, no. 2, pp. 227–238, 1999.

[104] S. Yoon, D. Jeong, C. Lee, H. Kim, S. Kim, H. G. Lee, and J. Kim, “Fourier-spectral

method for the phase-field equations,” Mathematics, vol. 8, 2020.

[105] L. Q. Chen and J. Shen, “Applications of semi-implicit Fourier-spectral method to phase

field equations,” Comput. Phys. Commun., vol. 108, pp. 147–158, 1998.

[106] M. Heinonen, C. Yildiz, H. Mannerström, J. Intosalmi, and H. Lähdesmäki, “Learning

unknown ode models with gaussian processes,” in International conference on machine

learning, pp. 1959–1968, PMLR, 2018.

[107] Y. Chen, B. Hosseini, H. Owhadi, and A. M. Stuart, “Solving and learning nonlinear

pdes with gaussian processes,” J. Comput. Phys., vol. 447, p. 110668, 2021.

[108] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial differential equations

using deep learning,” Proc. Natl. Acad. Sci. USA, vol. 115, pp. 8505–8510, 2018.

[109] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for solving ordinary and

partial differential equations,” IEEE Trans. Neural Netw., vol. 9, pp. 987–1000, 1998.

174 BIBLIOGRAPHY

[110] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial

differential equations,” J. Comput. Phys., vol. 375, pp. 1339–1364, 2018.

[111] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary

and partial differential equations,” IEEE trans. neural netw., vol. 9, no. 5, pp. 987–1000,

1998.

[112] M. Dissanayake and N. Phan-Thien, “Neural-network-based approximations for solving

partial differential equations,” Commun. numer. methods eng., vol. 10, pp. 195–201,

1994.

[113] Z. Liu, Y. Yang, and Q. Cai, “Neural network as a function approximator and its ap-

plication in solving differential equations,” Appl. Math. Mech., vol. 40, pp. 237–248,

2019.

[114] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, 2019.

[115] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from

data by sparse identification of nonlinear dynamical systems,” Proc. Natl. Acad. Sci.,

vol. 113, pp. 3932–3937, 2016.

[116] H. Schaeffer, “Learning partial differential equations via data discovery and sparse opti-

mization,” Proc. R. Soc. Math. Phys. Eng. Sci., vol. 473, p. 20160446, 2017.

[117] S. Lee, M. Kooshkbaghi, K. Spiliotis, C. I. Siettos, and I. G. Kevrekidis, “Coarse-scale

PDEs from fine-scale observations via machine learning,” Chaos Interdiscip. J. Nonlin-

ear Sci., vol. 30, p. 013141, 2020.

[118] J. Bakarji and D. M. Tartakovsky, “Data-driven discovery of coarse-grained equations,”

J. Comput. Phys., vol. 434, p. 110219, 2021.

BIBLIOGRAPHY 175

[119] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of partial

differential equations,” Sci. Adv., vol. 3, p. e1602614, 2017.

[120] Z. Long, Y. Lu, X. Ma, and B. Dong, “Pde-net: Learning pdes from data,” in Interna-

tional conference on machine learning, pp. 3208–3216, PMLR, 2018.

[121] Z. Long, Y. Lu, and B. Dong, “PDE-Net 2.0: Learning PDEs from data with a numeric-

symbolic hybrid deep network,” J. Comp. Phys., vol. 399, p. 108925, 2019.

[122] J. Qu, W. Cai, and Y. Zhao, “Learning time-dependent PDEs with a linear and nonlinear

separate convolutional neural network,” J. Comp. Phys., vol. 453, p. 110928, 2022.

[123] U. Fasel, E. Kaiser, J. N. Kutz, B. W. Brunton, and S. L. Brunton, “Sindy with control:

A tutorial,” in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 16–21,

IEEE, 2021.

[124] D. E. Shea, S. L. Brunton, and J. N. Kutz, “Sindy-bvp: Sparse identification of nonlinear

dynamics for boundary value problems,” Phys. rev. res., vol. 3, no. 2, p. 023255, 2021.

[125] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,

“Physics-informed machine learning,” Nat. Rev. Phys., vol. 3, pp. 422–440, 2021.

[126] A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis, “Conservative physics-informed neu-

ral networks on discrete domains for conservation laws: Applications to forward and

inverse problems,” Comput. Methods Appl. Mech. Eng., vol. 365, p. 113028, 2020.

[127] A. D. J. Karniadakis and G. Em, “Extended physics-informed neural networks (xpinns):

A generalized space-time domain decomposition based deep learning framework for

nonlinear partial differential equations.,” Commun. Comput. Phys., vol. 28, no. 5,

pp. 2002–2041, 2020.

[128] K. Shukla, A. D. Jagtap, and G. E. Karniadakis, “Parallel physics-informed neural net-

works via domain decomposition,” J. Comput. Phys., vol. 447, p. 110683, 2021.

176 BIBLIOGRAPHY

[129] T. Qin, Z. Chen, J. D. Jakeman, and D. Xiu, “Deep learning of parameterized equations

with applications to uncertainty quantification,” Int. J. Uncertain. Quantif., vol. 11, no. 2,

2021.

[130] Y. Sun, L. Zhang, and H. Schaeffer, “NeuPDE: Neural network based ordinary and

partial differential equations for modeling time-dependent data,” in Proceedings of The

First Mathematical and Scientific Machine Learning Conference (J. Lu and R. Ward,

eds.), vol. 107 of Proceedings of Machine Learning Research, pp. 352–372, PMLR,

20–24 Jul 2020.

[131] H. Xu, H. Chang, and D. Zhang, “Dlga-pde: Discovery of pdes with incomplete candi-

date library via combination of deep learning and genetic algorithm,” J. Comput. Phys.,

vol. 418, p. 109584, 2020.

[132] P. Fannin, C. Marin, I. Malaescu, and N. Stefu, “An investigation of the microscopic

and macroscopic properties of magnetic fluids,” Phys. B: Condens., vol. 388, no. 1-2,

pp. 87–92, 2007.

[133] D. Givon, R. Kupferman, and A. Stuart, “Extracting macroscopic dynamics: model

problems and algorithms,” Nonlinearity, vol. 17, no. 6, p. R55, 2004.

[134] A. N. Gorban, N. K. Kazantzis, I. G. Kevrekidis, H. C. Öttinger, and C. Theodoropoulos,

Model reduction and coarse-graining approaches for multiscale phenomena. Springer,

2006.

[135] M. G. Saunders and G. A. Voth, “Coarse-graining methods for computational biology,”

Annu. Rev. Biophys., vol. 42, pp. 73–93, 2013.

[136] S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein, “Coarse grain models and

the computer simulation of soft materials,” J. Condens. Matter Phys., vol. 16, no. 15,

p. R481, 2004.

BIBLIOGRAPHY 177

[137] J. Jin, A. J. Pak, A. E. Durumeric, T. D. Loose, and G. A. Voth, “Bottom-up coarse-

graining: Principles and perspectives,” J. Chem. Theory Comput., vol. 18, no. 10,

pp. 5759–5791, 2022.

[138] F. Müller-Plathe, “Coarse-graining in polymer simulation: from the atomistic to the

mesoscopic scale and back,” ChemPhysChem, vol. 3, no. 9, pp. 754–769, 2002.

[139] S. Dhamankar and M. A. Webb, “Chemically specific coarse-graining of polymers:

methods and prospects,” J. Polym. Sci., vol. 59, no. 22, pp. 2613–2643, 2021.

[140] Y. Mori and M. Sakai, “Visualization study on the coarse graining dem for large-scale

gas–solid flow systems,” Particuology, vol. 59, pp. 24–33, 2021.

[141] N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering.

Weiheim, Germany: John Wiley & Sons, Inc., 2010.

[142] R. L. Harrison, “Introduction to monte carlo simulation,” in AIP conference proceedings,

vol. 1204, pp. 17–21, American Institute of Physics, 2010.

[143] H. Wang, F.-B. Tian, and X.-D. Liu, “Lattice boltzmann model for interface capturing of

multiphase flows based on allen–cahn equation,” Chin. Phys. B, vol. 31, no. 2, p. 024701,

2022.

[144] R. E. Rudd and J. Q. Broughton, “Coarse-grained molecular dynamics and the atomic

limit of finite elements,” Phys. Rev. B, vol. 58, no. 10, p. R5893, 1998.

[145] H. H. Nax, M. N. Burton-Chellew, S. A. West, and H. P. Young, “Learning in a black

box,” J. Econ. Behav. Organ., vol. 127, pp. 1–15, 2016.

[146] E. Elkind, B. Genest, D. Peled, and H. Qu, “Grey-box checking,” in Formal Tech-

niques for Networked and Distributed Systems-FORTE 2006: 26th IFIP WG 6.1 Inter-

national Conference, Paris, France, September 26-29, 2006. Proceedings 26, pp. 420–

435, Springer, 2006.

178 BIBLIOGRAPHY

[147] O. Loyola-Gonzalez, “Black-box vs. white-box: Understanding their advantages and

weaknesses from a practical point of view,” IEEE access, vol. 7, pp. 154096–154113,

2019.

[148] F. P. Kemeth, S. Alonso, B. Echebarria, T. Moldenhawer, C. Beta, and I. G. Kevrekidis,

“Black and gray box learning of amplitude equations: Application to phase field sys-

tems,” Phys. Rev. E ., vol. 107, no. 2, p. 025305, 2023.

[149] S. Yaghoubi and G. Fainekos, “Gray-box adversarial testing for control systems with

machine learning components,” in Proceedings of the 22nd ACM International Confer-

ence on Hybrid Systems: Computation and Control, pp. 179–184, 2019.

[150] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,” Ieee Potentials,

vol. 13, no. 4, pp. 27–31, 1994.

[151] T. Barlow, “Feed-forward neural networks for secondary structure prediction,” J. Mol.

Graph., vol. 13, pp. 175–183, 1995.

[152] S. I. Gallant et al., “Perceptron-based learning algorithms,” IEEE Trans. Neural Netw.,

vol. 1, no. 2, pp. 179–191, 1990.

[153] A. G. Ivakhnenko and V. G. Lapa, “Cybernetic predicting devices,” tech. rep., PURDUE

UNIV LAFAYETTE IND SCHOOL OF ELECTRICAL ENGINEERING, New York,

USA, 1966.

[154] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural networks

for perception, pp. 65–93, Elsevier, 1992.

[155] B. J. Wythoff, “Backpropagation neural networks: a tutorial,” Chemom. Intell. Lab. Syst.,

vol. 18, no. 2, pp. 115–155, 1993.

[156] R. J. Erb, “Introduction to backpropagation neural network computation,” Pharm. Res.,

vol. 10, pp. 165–170, 1993.

BIBLIOGRAPHY 179

[157] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications,

vol. 5, no. 64-67, p. 2, 2001.

[158] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term

memory (lstm) network,” Phys. D: Nonlinear Phenom., vol. 404, p. 132306, 2020.

[159] G. Saon, Z. Tüske, D. Bolanos, and B. Kingsbury, “Advancing rnn transducer technol-

ogy for speech recognition,” in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 5654–5658, IEEE, 2021.

[160] S. P. Singh, A. Kumar, H. Darbari, L. Singh, A. Rastogi, and S. Jain, “Machine transla-

tion using deep learning: An overview,” in International conference on computer, com-

munications and electronics (comptelix), pp. 162–167, IEEE, 2017.

[161] H. A. Al-Muzaini, T. N. Al-Yahya, and H. Benhidour, “Automatic arabic image cap-

tioning using rnn-lstm-based language model and cnn,” Int. J. Adv. Comput. Sci. Appl.,

vol. 9, no. 6, 2018.

[162] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,

pp. 1735–1780, 1997.

[163] A. Graves, “Long short-term memory,” in Supervised Sequence Labelling with Recur-

rent Neural Networks, pp. 37–45, Berlin, Heidelberg, Germany: Springer, 2012.

[164] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru) neural networks,” in

2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS),

pp. 1597–1600, IEEE, 2017.

[165] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,

no. 8, pp. 1735–1780, 1997.

[166] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv

preprint arXiv:1511.08458, 2015.

180 BIBLIOGRAPHY

[167] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification:

A comprehensive review,” Neural Comput., vol. 29, pp. 2352–2449, 2017.

[168] S. Miao, Z. J. Wang, and R. Liao, “A cnn regression approach for real-time 2d/3d regis-

tration,” IEEE Trans. Med., vol. 35, no. 5, pp. 1352–1363, 2016.

[169] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings

of the 2014 Conference on Empirical Methods in Natural Language, (Doha, Qatar),

pp. 1746—1751, Association for Computational Linguistics, 2014.

[170] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, (Boston, MA , USA), pp. 1–9,

2015.

[171] A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series forecasting with

convolutional neural networks,” arXiv preprint arXiv:1703.04691, 2017.

[172] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep learn-

ing (part I): Data-driven solutions of nonlinear partial differential equations,” ArXiv,

vol. abs/1711.10561, 2017.

[173] A. D. Jagtap, Z. Mao, N. Adams, and G. E. Karniadakis, “Physics-informed neural net-

works for inverse problems in supersonic flows,” J. Comput. Phys., vol. 466, p. 111402,

2022.

[174] S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: A neural tangent

kernel perspective,” J. Comput. Phys., vol. 449, p. 110768, 2022.

[175] R. Rodriguez-Torrado, P. Ruiz, L. Cueto-Felgueroso, M. C. Green, T. Friesen, S. Ma-

tringe, and J. Togelius, “Physics-informed attention-based neural network for solving

non-linear partial differential equations,” arXiv preprint arXiv:2105.07898, 2021.

BIBLIOGRAPHY 181

[176] W. Li, C. Zhang, C. Wang, H. Guan, and D. Tao, “Revisiting pinns: Generative adver-

sarial physics-informed neural networks and point-weighting method,” arXiv preprint

arXiv:2205.08754, 2022.

[177] H. Gao, M. J. Zahr, and J.-X. Wang, “Physics-informed graph neural galerkin networks:

A unified framework for solving pde-governed forward and inverse problems,” Comput.

Methods Appl. Mech. Eng., vol. 390, p. 114502, 2022.

[178] L. Yang, X. Meng, and G. E. Karniadakis, “B-pinns: Bayesian physics-informed neural

networks for forward and inverse pde problems with noisy data,” J. Comput. Phys.,

vol. 425, p. 109913, 2021.

[179] W. La Cava, P. Orzechowski, B. Burlacu, F. O. de França, M. Virgolin, Y. Jin, M. Kom-

menda, and J. H. Moore, “Contemporary symbolic regression methods and their relative

performance,” arXiv preprint arXiv:2107.14351, 2021.

[180] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,”

science, vol. 324, no. 5923, pp. 81–85, 2009.

[181] M. F. Korns, Accuracy in Symbolic Regression, pp. 129–151. New York, USA: Springer,

2011.

[182] M. Kotanchek, G. Smits, and E. Vladislavleva, Trustable symbolic regression models:

using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware

models, pp. 201–220. Boston, MA: Springer US, 2008.

[183] L. Kammerer, G. Kronberger, B. Burlacu, S. M. Winkler, M. Kommenda, and M. Af-

fenzeller, Symbolic Regression by Exhaustive Search: Reducing the Search Space Us-

ing Syntactical Constraints and Efficient Semantic Structure Deduplication, pp. 79–99.

Cham: Springer International Publishing, 2020.

182 BIBLIOGRAPHY

[184] B. Can and C. Heavey, “Comparison of experimental designs for simulation-based sym-

bolic regression of manufacturing systems,” Comput. Ind. Eng., vol. 61, no. 3, pp. 447–

462, 2011.

[185] V. Aryadoust, “Application of evolutionary algorithm-based symbolic regression to lan-

guage assessment: Toward nonlinear modeling,” Psychological Test and Assessment

Modeling, vol. 57, no. 3, p. 301, 2015.

[186] P. D. Truscott and M. F. Korns, Detecting Shadow Economy Sizes with Symbolic Regres-

sion, pp. 195–210. New York, USA: Springer, 2011.

[187] H. Vaddireddy, A. Rasheed, A. E. Staples, and O. San, “Feature engineering and sym-

bolic regression methods for detecting hidden physics from sparse sensor observation

data,” Phys. Fluids, vol. 32, p. 015113, 2020.

[188] B. Babu and S. Karthik, “Genetic programming for symbolic regression of chemical

process systems.,” Eng. Lett., vol. 14, no. 2, pp. 42–55, 2007.

[189] W. B. Langdon, Genetic Programming — Computers Using “Natural Selection” to Gen-

erate Programs, pp. 9–42. Boston, MA: Springer, 1998.

[190] H. Tuan-Hao, R. I. McKay, D. Essam, and N. X. Hoai, “Solving symbolic regression

problems using incremental evaluation in genetic programming,” in 2006 IEEE Interna-

tional Conference on Evolutionary Computation, pp. 2134–2141, IEEE, 2006.

[191] J. J. Schnur and N. V. Chawla, “Information fusion via symbolic regression: A tutorial

in the context of human health,” Inf. Fusion., 2022.

[192] S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A. Mustapha, and K. Y. Leong, “Crossover

and mutation operators of genetic algorithms,” Int. J. Mach. Learn. Comput., vol. 7,

no. 1, pp. 9–12, 2017.

BIBLIOGRAPHY 183

[193] S.-M. Udrescu and M. Tegmark, “Ai feynman: A physics-inspired method for symbolic

regression,” Sci. Adv., vol. 6, no. 16, p. eaay2631, 2020.

[194] S. M. Allen and J. W. Cahn, “Ground state structures in ordered binary alloys with

second neighbor interactions,” Acta Metall., vol. 20, pp. 423–433, 1972.

[195] J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free

energy,” J. Chem. Phys., vol. 28, pp. 258–267, 1958.

[196] P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod.

Phys., vol. 49, p. 435, 1977.

[197] K. R. Elder and M. Grant, “Modeling elastic and plastic deformations in nonequilibrium

processing using phase field crystals,” Phys. Rev. E, vol. 70, p. 051605, 2004.

[198] D.-H. Yeon, Z.-F. Huang, K. Elder, and K. Thornton, “Density-amplitude formulation of

the phase-field crystal model for two-phase coexistence in two and three dimensions,”

Philos. Mag., vol. 90, no. 1-4, pp. 237–263, 2010.

[199] H. Zhang, X. Jiang, F. Zeng, and G. E. Karniadakis, “A stabilized semi-implicit fourier

spectral method for nonlinear space-fractional reaction-diffusion equations,” J. Comput.

Phys., vol. 405, p. 109141, 2020.

[200] T. Young, “An essay on the cohesion of fluids,” Philos. Trans. R. Soc. Lond., vol. 95,

no. 0, pp. 65–87, 1805.

[201] P.-S. d. Laplace, “Supplément au livre X du traité de mécanique céleste. sur l’action

capillaire,” in Traité de mécanique céleste, Paris, France: Gauthier-Vilars, 1805.

[202] N. Adam, “Use of the term ‘young’s equation’for contact angles,” Nature, vol. 180,

no. 4590, pp. 809–810, 1957.

[203] L. H. Tanner, “The spreading of silicone oil drops on horizontal surfaces,” J. Phys. D:

Appl. Phys., vol. 12, no. 9, p. 1473, 1979.

184 BIBLIOGRAPHY

[204] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev.

Mod. Phys., vol. 81, no. 2, pp. 739–805, 2009.

[205] G. McHale, N. Shirtcliffe, S. Aqil, C. Perry, and M. Newton, “Topography driven spread-

ing,” Phys. Rev. Lett., vol. 93, no. 3, p. 036102, 2004.

[206] S. L. Cormier, J. D. McGraw, T. Salez, E. Raphaël, and K. Dalnoki-Veress, “Beyond

tanner’s law: Crossover between spreading regimes of a viscous droplet on an identical

film,” Phys. Rev. Lett., vol. 109, no. 15, p. 154501, 2012.

[207] K. G. Winkels, J. H. Weijs, A. Eddi, and J. H. Snoeijer, “Initial spreading of low-

viscosity drops on partially wetting surfaces,” Phys. Rev. E, vol. 85, p. 055301, 2012.

[208] Q. Rao, Y. Xia, J. Li, J. McConnell, J. Sutherland, and Z. Li, “A modified many-body

dissipative particle dynamics model for mesoscopic fluid simulation: methodology, cal-

ibration, and application for hydrocarbon and water,” Mol. Sim., vol. 47, no. 4, pp. 363–

375, 2021.

[209] Y. Xia, J. Goral, H. Huang, I. Miskovic, P. Meakin, and M. Deo, “Many-body dissipa-

tive particle dynamics modeling of fluid flow in fine-grained nanoporous shales,” Phys.

Fluids, vol. 29, no. 5, p. 056601, 2017.

[210] Z. Li, G.-H. Hu, Z.-L. Wang, Y.-B. Ma, and Z.-W. Zhou, “Three dimensional flow struc-

tures in a moving droplet on substrate: A dissipative particle dynamics study,” Phys.

Fluids, vol. 25, p. 072103, 2013.

[211] P. Español and P. Warren, “Statistical mechanics of dissipative particle dynamics,” EPL,

vol. 30, no. 4, p. 191, 1995.

[212] R. D. Groot, “Applications of dissipative particle dynamics,” in Novel Methods in Soft

Matter Simulations (M. Karttunen, A. Lukkarinen, and I. Vattulainen, eds.), pp. 5–38,

Berlin, Heidelberg, Germany: Springer, 2004.

BIBLIOGRAPHY 185

[213] L. B. Lucy, “A numerical approach to the testing of the fission hypothesis,” Astron. J.,

vol. 82, p. 1013, 1977.

[214] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S.

Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, et al., “Lammps-a

flexible simulation tool for particle-based materials modeling at the atomic, meso, and

continuum scales,” Comput. Phys. Comms., vol. 271, p. 108171, 2022.

[215] C. Huré, H. Pham, and X. Warin, “Some machine learning schemes for high-

dimensional nonlinear PDEs,” Math. Comput., vol. 89, pp. 1547–1579, 2020.

[216] W. E, J. Han, and A. Jentzen, “Algorithms for solving high dimensional PDEs: From

nonlinear Monte Carlo to machine learning,” Nonlinearity, vol. 35, pp. 278–310, 2021.

[217] R. Ranade, C. Hill, and J. Pathak, “DiscretizationNet: A machine-learning based solver

for Navier–Stokes equations using finite volume discretization,” Comput. Methods Appl.

Mech. Eng., vol. 378, p. 113722, 2021.

[218] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlinear operators

via DeepONet based on the universal approximation theorem of operators,” Nat. Mach.

Intell., vol. 3, pp. 218–229, 2021.

[219] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “DeepXDE: A deep learning library

for solving differential equations,” SIAM Rev., vol. 63, pp. 208–228, 2021.

[220] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos, “Data-driven

forecasting of high-dimensional chaotic systems with long short-term memory net-

works,” Proc. R. Soc. Math. Phys. Eng. Sci., vol. 474, p. 20170844, 2018.

[221] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying LSTM to time series predictable

through time-window approaches,” in Neural Nets WIRN Vietri-01, pp. 193–200, Vi-

enna, Austria: Springer, 2002.

186 BIBLIOGRAPHY

[222] J. del Águila Ferrandis, M. S. Triantafyllou, C. Chryssostomidis, and G. E. Karniadakis,

“Learning functionals via LSTM neural networks for predicting vessel dynamics in ex-

treme sea states,” Proc. R. Soc. A, vol. 477, p. 20190897, 2021.

[223] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven discretiza-

tions for partial differential equations,” Proc. Natl. Acad. Sci., vol. 116, pp. 15344–

15349, 2019.

[224] C. Theodoropoulos and E. Luna-Ortiz, “A reduced input/output dynamic optimisation

method for macroscopic and microscopic systems,” in Model reduction and coarse-

graining approaches for multiscale phenomena, pp. 535–560, Berlin, Heidelberg, Ger-

many: Springer, 2006.

[225] T. N. Thiem, M. Kooshkbaghi, T. Bertalan, C. R. Laing, and I. G. Kevrekidis, “Emergent

spaces for coupled oscillators,” Front. Comput. Neurosci., vol. 14, p. 36, 2020.

[226] D. Qin, J. Yu, G. Zou, R. Yong, Q. Zhao, and B. Zhang, “A novel combined prediction

scheme based on CNN and LSTM for urban PM 2.5 concentration,” IEEE Access, vol. 7,

pp. 20050–20059, 2019.

[227] A. M. Turing, “The chemical basis of morphogenesis,” Bull. Math. Biol., vol. 52,

pp. 153–197, 1990.

[228] T. Leppänen, M. Karttunen, K. Kaski, R. A. Barrio, and L. Zhang, “A new dimension to

Turing patterns,” Phys. D: Nonlinear Phenom., vol. 168–169, pp. 35–44, 2002.

[229] P. Gray and S. Scott, “Sustained oscillations and other exotic patterns of behavior in

isothermal reactions,” J. Phys. Chem., vol. 89, pp. 22–32, 1985.

[230] B. Grossmann, K. R. Elder, M. Grant, and J. M. Kosterlitz, “Directional solidification in

two and three dimensions,” Phys. Rev. Lett., vol. 71, pp. 3323–3326, 1993.

BIBLIOGRAPHY 187

[231] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, “Phase-field simulation

of solidification,” Annu. Rev. Mater. Sci., vol. 32, pp. 163–194, 2002.

[232] B. Nestler, H. Garcke, and B. Stinner, “Multicomponent alloy solidification: Phase-field

modeling and simulations,” Phys. Rev. E, vol. 71, p. 041609, 2005.

[233] V. Heinonen, C. Achim, J. Kosterlitz, S.-C. Ying, J. Lowengrub, and T. Ala-Nissila,

“Consistent hydrodynamics for phase field crystals,” Phys. Rev. Lett., vol. 116,

p. 024303, 2016.

[234] E. Alster, K. Elder, and P. W. Voorhees, “Displacive phase-field crystal model,” Phys.

Rev. Mater., vol. 4, p. 013802, 2020.

[235] N. Provatas, J. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld, and K. Elder,

“Using the phase-field crystal method in the multi-scale modeling of microstructure

evolution,” JOM, vol. 59, pp. 83–90, 2007.

[236] N. Faghihi, S. Mkhonta, K. Elder, and M. Grant, “Phase-field crystal for an antiferro-

magnet with elastic interactions,” Phys. Rev. E, vol. 100, p. 022128, 2019.

[237] I. Aranson, V. Kalatsky, and V. Vinokur, “Continuum field description of crack propa-

gation,” Phys. Rev. Lett., vol. 85, p. 118, 2000.

[238] R. Spatschek, E. Brener, and A. Karma, “Phase field modeling of crack propagation,”

Philos. Mag., vol. 91, pp. 75–95, 2011.

[239] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep neural networks

with rectified linear units,” ArXiv, vol. 1611.01491, pp. 1–17, 2016.

[240] W. L. Ziegler, “Computational method to compute the derivative and antiderivative; with

concern for terminating a converging iterative process and considering accuracy, round-

off error, approximation, and extrapolation,” Math. Model., vol. 8, pp. 77–84, 1987.

188 BIBLIOGRAPHY

[241] W. H. Press and S. A. Teukolsky, “Numerical calculation of derivatives,” Comput. Phys.,

vol. 5, pp. 68–69, 1991.

[242] H. Arbabi and I. G. Kevrekidis, “Particles to partial differential equations parsimo-

niously,” Chaos Interdiscip. J. Nonlinear Sci., vol. 31, p. 033137, 2021.

[243] H. Arbabi, J. E. Bunder, G. Samaey, A. J. Roberts, and I. G. Kevrekidis, “Linking ma-

chine learning with multiscale numerics: Data-driven discovery of homogenized equa-

tions,” JOM, vol. 72, pp. 4444–4457, 2020.

[244] J.-F. Cai, B. Dong, S. Osher, and Z. Shen, “Image restoration: Total variation, wavelet

frames, and beyond,” J. Am. Math. Soc., vol. 25, pp. 1033–1089, 2012.

[245] B. Dong, Q. Jiang, and Z. Shen, “Image restoration: Wavelet frame shrinkage, nonlinear

evolution pdes, and beyond,” Multiscale Model. Simul., vol. 15, pp. 606–660, 2017.

[246] V. Oommen, K. Shukla, S. Goswami, R. Dingreville, and G. E. Karniadakis, “Learning

two-phase microstructure evolution using neural operators and autoencoder architec-

tures,” arXiv preprint arXiv:2204.07230, 2022.

[247] L. Prechelt, “Early stopping-but when?,” in Neural Networks: Tricks of the Trade,

pp. 55–69, Berlin, Heidelberg, Germany: Springer, 1998.

[248] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot, “Training convo-

lutional neural networks to estimate turbulent sub-grid scale reaction rates,” Combust.

Flame, vol. 203, pp. 255–264, 2019.

[249] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,

K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,

İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,

I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,

BIBLIOGRAPHY 189

P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental algorithms for

scientific computing in python,” Nat. Methods, vol. 17, pp. 261–272, 2020.

[250] A. C. Hindmarsh, “ODEPACK, a systematized collection of ODE solvers,” Sci. Com-

put., vol. 1, pp. 55–64, 1983.

[251] R. Rico-Martinez, J. Anderson, and I. Kevrekidis, “Continuous-time nonlinear signal

processing: a neural network based approach for gray box identification,” in Proceed-

ings of IEEE Workshop on Neural Networks for Signal Processing, (Ermioni, Greece),

pp. 596–605, IEEE, 1994.

[252] J. Fan and Q. Yao, Nonlinear time series: nonparametric and parametric methods. New

York, USA: Springer, 2003.

[253] E. Kiyani, S. Silber, M. Kooshkbaghi, and M. Karttunen, “Machine-learning-based data-

driven discovery of nonlinear phase-field dynamics,” Phys. Rev. E ., vol. 106, p. 065303,

2022.

[254] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear dynamics

for model predictive control in the low-data limit,” Proc. R. Soc., vol. 474, no. 2219,

p. 20180335, 2018.

[255] K. Fukami, T. Murata, K. Zhang, and K. Fukagata, “Sparse identification of nonlin-

ear dynamics with low-dimensionalized flow representations,” J. Fluid Mech., vol. 926,

p. A10, 2021.

[256] M. Hoffmann, C. Fröhner, and F. Noé, “Reactive sindy: Discovering governing reactions

from concentration data,” J. Chem. Phys., vol. 150, no. 2, p. 025101, 2019.

[257] Q. Lou, X. Meng, and G. E. Karniadakis, “Physics-informed neural networks for solv-

ing forward and inverse flow problems via the Boltzmann-BGK formulation,” J. Comp.

Phys., vol. 447, p. 110676, 2021.

190 BIBLIOGRAPHY

[258] K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman, and G. E. Karniadakis, “Physics-

Informed neural network for ultrasound nondestructive quantification of surface break-

ing cracks,” J. Nondestr. Eval., vol. 39, no. 3, p. 61, 2020.

[259] A. D. J. Karniadakis and G. Em, “Extended physics-informed neural networks (xpinns):

A generalized space-time domain decomposition based deep learning framework for

nonlinear partial differential equations,” Commun. Comput. Phys., vol. 28, no. 5,

pp. 2002–2041, 2020.

[260] K. Shukla, A. D. Jagtap, and G. E. Karniadakis, “Parallel physics-informed neural net-

works via domain decomposition,” J. Comput. Phys., vol. 447, p. 110683, 2021.

[261] L. Billard and E. Diday, “Symbolic regression analysis,” in Classification, Clustering,

and Data Analysis (K. Jajuga, A. Sokołowski, and H.-H. Bock, eds.), (Berlin, Heidel-

berg, Germany), pp. 281–288, Springer, 2002.

[262] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-

war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-

tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning

on heterogeneous systems,” 2015. Software available from tensorflow.org.

[263] P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod.

Phys., vol. 49, no. 3, pp. 435–479, 1977.

[264] P. Colli, C. Verdi, and A. Visintin, Free boundary problems: theory and applications,

vol. 147. Birkhäuser, 2012.

[265] J. E. Pearson, “Complex patterns in a simple system,” Science, vol. 261, no. 5118,

pp. 189–192, 1993.

BIBLIOGRAPHY 191

[266] T. Leppänen, M. Karttunen, R. A. Barrio, and K. Kaski, “Morphological transitions and

bistability in turing systems,” Phys. Rev. E, vol. 70, no. 6 Pt 2, p. 066202, 2004.

[267] N. Faghihi, N. Provatas, K. R. Elder, M. Grant, and M. Karttunen, “Phase-field-crystal

model for magnetocrystalline interactions in isotropic ferromagnetic solids,” Phys. Rev.

E, vol. 88, p. 032407, 2013.

[268] S. Najem and M. Grant, “Phase-field model for collective cell migration,” Phys. Rev. E,

vol. 93, no. 5, p. 052405, 2016.

[269] Z. Hong and V. Viswanathan, “Open-Sourcing Phase-Field simulations for accelerating

energy materials design and optimization,” ACS Energy Lett., vol. 5, no. 10, pp. 3254–

3259, 2020.

[270] S. A. Silber and M. Karttunen, “SymPhas —general purpose software for phase-field,

phase-field crystal, and reaction-diffusion simulations,” Adv. Theory Simul., vol. 5, no. 1,

p. 2100351, 2022.

[271] L.-Q. Chen, “Phase-Field models for microstructure evolution,” Annu. Rev. Mater. Res.,

vol. 32, no. 1, pp. 113–140, 2002.

[272] Y. Li, R. Shi, C. Wang, X. Liu, and Y. Wang, “Phase-field simulation of thermally

induced spinodal decomposition in polymer blends,” Model. Simul. Mater. Sci. Eng.,

vol. 20, p. 075002, 2012.

[273] A. A. Nepomnyashchy, “Coarsening versus pattern formation,” Comptes Rendus

Physique, vol. 16, no. 3, pp. 267–279, 2015.

[274] R. Mattey and S. Ghosh, “A novel sequential method to train physics informed neural

networks for Allen Cahn and Cahn Hilliard equations,” Comput. Methods Appl. Mech.

Eng., vol. 390, p. 114474, 2022.

192 BIBLIOGRAPHY

[275] C. L. Wight and J. Zhao, “Solving Allen-Cahn and Cahn-Hilliard equations using the

adaptive physics informed neural networks,” Commun. Comput. Phys., vol. 29, pp. 930–

954, 2021.

[276] Y. Shin, J. Darbon, and G. E. Karniadakis, “On the convergence of physics informed

neural networks for linear second-order elliptic and parabolic type PDEs,” Commun.

Comput. Phys., vol. 28, no. 5, pp. 2042–2074, 2020.

[277] W. Li, M. Z. Bazant, and J. Zhu, “Phase-Field DeepONet: Physics-informed deep oper-

ator neural network for fast simulations of pattern formation governed by gradient flows

of free-energy functionals,” arXiv preprint, 2023.

[278] S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis, “Physics-informed

neural networks for heat transfer problems,” J. Heat Transf., vol. 143, 2021.

[279] J. Stiasny, G. S. Misyris, and S. Chatzivasileiadis, “Physics-informed neural networks

for non-linear system identification for power system dynamics,” in 2021 IEEE Madrid

PowerTech, pp. 1–6, IEEE, 2021.

[280] N. Fatima, “Enhancing performance of a deep neural network: A comparative analysis

of optimization algorithms,” ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J., vol. 9, no. 2,

pp. 79–90, 2020.

[281] A. Mustapha, L. Mohamed, and K. Ali, “Comparative study of optimization techniques

in deep learning: Application in the ophthalmology field,” J. Phys.: Conf. Ser., vol. 1743,

no. 1, p. 012002, 2021.

[282] Y. Ma, X. Xu, S. Yan, and Z. Ren, “A preliminary study on the resolution of electro-

thermal multi-physics coupling problem using physics-informed neural network (pinn),”

Algorithms, vol. 15, p. 53, 2022.

BIBLIOGRAPHY 193

[283] Q. Zhu, Z. Liu, and J. Yan, “Machine learning for metal additive manufacturing: predict-

ing temperature and melt pool fluid dynamics using physics-informed neural networks,”

Comput. Mech., vol. 67, pp. 619–635, 2021.

[284] S. Choi, I. Jung, H. Kim, J. Na, and J. M. Lee, “Physics-informed deep learning for

data-driven solutions of computational fluid dynamics,” Korean J. Chem. Eng., vol. 39,

pp. 515–528, 2022.

[285] D. My Ha, C. Pao-Hsiung, W. Jian Cheng, and O. Chin Chun, “Physics-informed neural

network with numerical differentiation for modelling complex fluid dynamic problems,”

in International Conference on Offshore Mechanics and Arctic Engineering, vol. 85925,

p. V007T08A001, American Society of Mechanical Engineers, 2022.

[286] C. Broeckhoven and A. du Plessis, “Has snake fang evolution lost its bite? new insights

from a structural mechanics viewpoint,” Biol. Lett., vol. 13, no. 8, p. 20170293, 2017.

[287] J.-H. Bastek and D. M. Kochmann, “Physics-informed neural networks for shell struc-

tures,” Eur. J. Mech. A/Solids, vol. 97, p. 104849, 2023.

[288] R. Laubscher, “Simulation of multi-species flow and heat transfer using physics-

informed neural networks,” Phys. Fluids, vol. 33, p. 087101, 2021.

[289] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning

(still) requires rethinking generalization,” Commun. ACM., vol. 64, no. 3, pp. 107–115,

2021.

[290] B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro, “Exploring generalization

in deep learning,” in Advances in Neural Information Processing Systems (I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

eds.), vol. 30, Curran Associates, Inc., 2017.

194 BIBLIOGRAPHY

[291] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge: MIT press,

2016.

[292] G. Swirszcz, W. M. Czarnecki, and R. Pascanu, “Local minima in training of neural

networks,” arXiv preprint arXiv:1611.06310, 2016.

[293] N. Landro, I. Gallo, and R. La Grassa, “Mixing adam and sgd: a combined optimization

method,” arXiv preprint arXiv:2011.08042, 2020.

[294] L. Billard and E. Diday, “Symbolic regression analysis,” in Classification, Clustering,

and Data Analysis (K. Jajuga, A. Sokołowski, and H.-H. Bock, eds.), (Berlin, Heidel-

berg, Germany), pp. 281–288, Springer, 2002.

[295] Z. Hu, A. D. Jagtap, G. E. Karniadakis, and K. Kawaguchi, “When do extended

physics-informed neural networks (xpinns) improve generalization?,” arXiv preprint

arXiv:2109.09444, 2021.

[296] T. De Ryck, A. D. Jagtap, and S. Mishra, “Error estimates for physics informed neural

networks approximating the navier-stokes equations,” arXiv preprint arXiv:2203.09346,

2022.

[297] G. Farhani, A. Kazachek, and B. Wang, “Momentum diminishes the effect of spectral

bias in physics-informed neural networks,” arXiv preprint arXiv:2206.14862, 2022.

[298] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney, “Characterizing

possible failure modes in physics-informed neural networks,” Adv. Neural Inf. Process.

Syst., vol. 34, pp. 26548–26560, 2021.

[299] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and

A. Courville, “On the spectral bias of neural networks,” in International Conference on

Machine Learning, pp. 5301–5310, PMLR, 2019.

BIBLIOGRAPHY 195

[300] L. N. Trefethen and D. Bau, Numerical linear algebra, vol. 181. Siam, Philadelphia,

2022.

[301] O. Claveria, E. Monte, and S. Torra, “Assessment of the effect of the financial crisis on

agents’ expectations through symbolic regression,” Appl. Econ. Lett., vol. 24, pp. 648–

652, 2017.

[302] J. Fitzsimmons and P. Moscato, “Symbolic regression modeling of drug responses,” in

First International Conference on Artificial Intelligence for Industries (AI4I), pp. 52–59,

IEEE, 2018.

[303] T. Stephens, “Genetic programming in python, with a scikit-learn inspired api: gplearn,”

2016.

[304] M. Cranmer, “Interpretable machine learning for science with pysr and symbolicregres-

sion. jl,” arXiv preprint arXiv:2305.01582, 2023.

[305] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. I: The

New Millennium Edition: Mainly Mechanics, Radiation, and Heat. Basic Books, 2015.

[306] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics. No. v. 2 in

The Feynman Lectures on Physics, Pearson/Addison-Wesley, 2006.

[307] R. Feynman, Lectures on Physics: The Definitive Edition. Pearson/ Addison Wesley,

2006.

[308] J. Weiss, “A tutorial on the proper orthogonal decomposition,” in AIAA Aviation 2019

Forum, (Reston, Virginia), American Institute of Aeronautics and Astronautics, 2019.

[309] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second Edition. New York, USA: Springer, 2009.

[310] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular value decomposition and prin-

cipal component analysis,” in A Practical Approach to Microarray Data Analysis (D. P.

196 BIBLIOGRAPHY

Berrar, W. Dubitzky, and M. Granzow, eds.), pp. 91–109, Boston: Kluwer Academic

Publishers, 2005.

[311] J. G. Proakis, Digital signal processing: principles, algorithms, and applications, 4/E.

Pearson Education, India, 2007.

[312] Y. Zhang, D. Zhao, J. Zhang, R. Xiong, and W. Gao, “Interpolation-dependent image

downsampling,” IEEE Trans. Image Process., vol. 20, no. 11, pp. 3291–3296, 2011.

[313] C. A. De Moura and C. S. Kubrusly, “The courant–friedrichs–lewy (cfl) condition,”

AMC, vol. 10, no. 12, 2013.

[314] T. S. Edwards, “Effects of aliasing on numerical integration,” Mech. Syst. Signal Pro-

cess., vol. 21, no. 1, pp. 165–176, 2007.

[315] J. Ren and J. Duan, “Identifying stochastic governing equations from data of the most

probable transition trajectories,” arXiv preprint arXiv:2002.10251, 2020.

[316] C. B. Delahunt and J. N. Kutz, “A toolkit for data-driven discovery of governing equa-

tions in high-noise regimes,” IEEE Access, vol. 10, pp. 31210–31234, 2022.

[317] K. Meidani and A. B. Farimani, “Data-driven identification of 2d partial differen-

tial equations using extracted physical features,” Comput. Methods Appl. Mech. Eng.,

vol. 381, p. 113831, 2021.

[318] P. G. de Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys., vol. 57, no. 3,

pp. 827–863, 1985.

[319] S. Nishimoto and B. Bhushan, “Bioinspired self-cleaning surfaces with superhydropho-

bicity, superoleophobicity, and superhydrophilicity,” RSC Adv., vol. 3, no. 3, pp. 671–

690, 2013.

BIBLIOGRAPHY 197

[320] N. Jain, A. Lemoine, G. Chaussonnet, A. Flatau, L. Bravo, A. Ghoshal, M. Walock, and

M. Murugan, “A critical review of physical models in high temperature multiphase fluid

dynamics: Turbulent transport and particle-wall interactions,” Appl. Mech. Rev., 2021.

[321] E. Dussan, “On the spreading of liquids on solid surfaces: static and dynamic contact

lines,” Ann. Rev. Fluid Mech., vol. 11, no. 1, pp. 371–400, 1979.

[322] J. D. McGraw, T. S. Chan, S. Maurer, T. Salez, M. Benzaquen, E. Raphaël,

M. Brinkmann, and K. Jacobs, “Slip-mediated dewetting of polymer microdroplets,”

Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 5, pp. 1168–1173, 2016.

[323] A. M. J. Edwards, R. Ledesma-Aguilar, M. I. Newton, C. V. Brown, and G. McHale, “A

viscous switch for liquid-liquid dewetting,” Commun. Phys., vol. 3, no. 1, pp. 1–6, 2020.

[324] D. L. Poerschke and C. G. Levi, “Effects of cation substitution and temperature on the

interaction between thermal barrier oxides and molten CMAS,” J. Eur. Ceram. Soc.,

vol. 35, no. 2, pp. 681–691, 2015.

[325] V. L. Wiesner, U. K. Vempati, and N. P. Bansal, “High temperature viscosity of calcium-

magnesium-aluminosilicate glass from synthetic sand,” Scr. Mater., vol. 124, pp. 189–

192, 2016.

[326] D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more effi-

cient gas-turbine engines,” MRS Bull., vol. 37, no. 10, pp. 891–898, 2012.

[327] N. L. Ndamka, R. G. Wellman, and J. R. Nicholls, “The degradation of thermal barrier

coatings by molten deposits: introducing the concept of basicity,” Mater. High Temp.,

vol. 33, no. 1, pp. 44–50, 2016.

[328] A. Nieto, R. Agrawal, L. Bravo, C. Hofmeister-Mock, M. Pepi, and A. Ghoshal,

“Calcia–magnesia–alumina–silicate (CMAS) attack mechanisms and roadmap towards

198 BIBLIOGRAPHY

sandphobic thermal and environmental barrier coatings,” Int. Mat. Rev., vol. 66, no. 7,

pp. 451–492, 2021.

[329] K. M. Grant, S. Krämer, J. P. Löfvander, and C. G. Levi, “Cmas degradation of environ-

mental barrier coatings,” Surface and Coatings Technology, vol. 202, no. 4-7, pp. 653–

657, 2007.

[330] M. H. Vidal-Setif, N. Chellah, C. Rio, C. Sanchez, and O. Lavigne, “Calcium–

magnesium–alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings:

Characterization of CMAS damage on ex-service high pressure blade TBCs,” Surf. Coat.

Technol., vol. 208, pp. 39–45, 2012.

[331] W. Song, Y. Lavallée, K.-U. Hess, U. Kueppers, C. Cimarelli, and D. B. Dingwell, “Vol-

canic ash melting under conditions relevant to ash turbine interactions,” Nat. Commun.,

vol. 7, p. 10795, 2016.

[332] J. Zhao, S. Chen, K. Zhang, and Y. Liu, “A review of many-body dissipative particle dy-

namics (mdpd): Theoretical models and its applications,” Phys. Fluids, vol. 33, no. 11,

p. 112002, 2021.

[333] L. Lei, E. L. Bertevas, B. C. Khoo, and N. Phan-Thien, “Many-body dissipative particle

dynamics (MDPD) simulation of a pseudoplastic yield-stress fluid with surface tension

in some flow processes,” J. Non-Newtonian Fluid Mech., vol. 260, pp. 163–174, 2018.

[334] A. Ghoufi and P. Malfreyt, “Coarse grained simulations of the electrolytes at the water–

air interface from many body dissipative particle dynamics,” J. Chem. Theory Comput.,

vol. 8, no. 3, pp. 787–791, 2012.

[335] Z. Li, X. Bian, X. Yang, and G. E. Karniadakis, “A comparative study of coarse-

graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion

vs. stochastic parametric optimization,” J. Chem. Phys., vol. 145, no. 4, p. 044102, 2016.

BIBLIOGRAPHY 199

[336] K. C. Chan, Z. Li, and W. Wenzel, “A Mori-Zwanzig dissipative particle dynamics ap-

proach for anisotropic coarse grained molecular dynamics,” J. Chem. Theory Comput.,

vol. 19, no. 3, pp. 910–923, 2023.

[337] P. Español and P. B. Warren, “Perspective: Dissipative particle dynamics,” J. Chem.

Phys., vol. 146, no. 15, p. 150901, 2017.

[338] P. B. Warren, “Hydrodynamic bubble coarsening in Off-Critical Vapor-Liquid phase sep-

aration,” Phys. Rev. Lett., vol. 87, no. 22, p. 225702, 2001.

[339] P. B. Warren, “Vapor-liquid coexistence in many-body dissipative particle dynamics,”

Phys. Rev. E, vol. 68, no. 6 Pt 2, p. 066702, 2003.

[340] R. Naraparaju, J. J. Gomez Chavez, P. Niemeyer, K.-U. Hess, W. Song, D. B. Dingwell,

S. Lokachari, C. V. Ramana, and U. Schulz, “Estimation of CMAS infiltration depth in

EB-PVD TBCs: A new constraint model supported with experimental approach,” J. Eur.

Ceram. Soc., vol. 39, no. 9, pp. 2936–2945, 2019.

[341] N. P. Bansal and S. R. Choi, “Properties of desert sand and CMAS glass,” Tech. Rep.

NASA/TM-2014-218365, NASA Glenn Research Center Cleveland, Ohio, Aug. 2014.

[342] Z. Li, X. Bian, Y.-H. Tang, and G. E. Karniadakis, “A dissipative particle dynamics

method for arbitrarily complex geometries,” J. Comput. Phys., vol. 355, pp. 534–547,

2018.

[343] O. Pitois and B. François, “Crystallization of condensation droplets on a liquid surface,”

Coll. Polym. Sci., vol. 277, pp. 574–578, 1999.

[344] L. Chen, E. Bonaccurso, P. Deng, and H. Zhang, “Droplet impact on soft viscoelastic

surfaces,” Phys. Rev. E, vol. 94, p. 063117, 2016.

[345] G. Hassan, B. S. Yilbas, A. Al-Sharafi, and H. Al-Qahtani, “Self-cleaning of a hydropho-

bic surface by a rolling water droplet,” Sci. Rep., vol. 9, pp. 1–14, 2019.

200 BIBLIOGRAPHY

[346] A. Eddi, K. G. Winkels, and J. H. Snoeijer, “Short time dynamics of viscous drop spread-

ing,” Phys. Fluids, vol. 25, no. 1, p. 013102, 2013.

[347] K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman, and G. E. Karniadakis, “Physics-

informed neural network for ultrasound nondestructive quantification of surface break-

ing cracks,” J. Nondestruct. Eval., vol. 39, pp. 1–20, 2020.

[348] S. Mishra and R. Molinaro, “Estimates on the generalization error of physics informed

neural networks (pinns) for approximating pdes ii: A class of inverse problems,” arXiv

preprint arXiv:2007.01138, vol. 640, pp. 1–35, 2020.

[349] Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro, “Physics-informed neural net-

works for inverse problems in nano-optics and metamaterials,” Opt. Express, vol. 28,

pp. 11618–11633, 2020.

[350] Z. Mao, A. D. Jagtap, and G. E. Karniadakis, “Physics-informed neural networks for

high-speed flows,” Comput. Methods Appl. Mech. Eng., vol. 360, p. 112789, 2020.

[351] K. Bykov, M. M.-C. Höhne, A. Creosteanu, K.-R. Müller, F. Klauschen, S. Nakajima,

and M. Kloft, “Explaining bayesian neural networks,” arXiv preprint arXiv:2108.10346,

2021.

[352] C. M. Bishop, “Bayesian neural networks,” Journal of the Brazilian Computer Society,

vol. 4, pp. 61–68, 1997.

[353] T. Radivojević and E. Akhmatskaya, “Modified Hamiltonian Monte Carlo for bayesian

inference,” Stat. Comput., vol. 30, no. 2, pp. 377–404, 2020.

[354] S. Brooks, “Markov Chain Monte Carlo method and its application,” J. Roy. Stat. Soc.

D, vol. 47, pp. 69–100, 1998.

BIBLIOGRAPHY 201

[355] R. M. Neal, “MCMC using Hamiltonian dynamics,” in Handbook of Markov Chain

Monte Carlo (S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, eds.), pp. 113–162,

New York, USA: Chapman and Hall/CRC, 2011.

[356] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer New York, USA,

2012.

[357] A. Graves, “Practical variational inference for neural networks,” Adv. Neural Inf. Pro-

cess. Syst., vol. 24, 2011.

[358] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for

statisticians,” Am. Stat. Assoc. Bull., vol. 112, no. 518, pp. 859–877, 2017.

Curriculum Vitae

Publications:

1. E. Kiyani, K. Shukla, G. Em Karniadakis, M. Karttunen, A Framework Based on Sym-

bolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-

Box Learning of Equations of Motion from Data, Computer Methods in Applied Me-

chanics and Engineering, 415, p.116258, 2023.

2. E. Kiyani, H. Yazdani Sarvestani, H. Ravanbakhsh, R. Behbahani, B. Ashrafi, M. Rah-

mat, M. Karttunen, Designing architectured ceramics for transient thermal applications

using finite element and deep learning, accepted for publication in Modelling and Simu-

lation in Materials Science and Engineering (2023).

3. E. Kiyani, S. Silber, M. Kooshkbaghi, M. Karttunen, Data-driven discovery of nonlinear

phase field dynamics, Physical Review E, 106, p.065303, 2022.

4. H. Ravanbakhsh, R. Behbahani, H. Yazdani Sarvestani, E. Kiyani, B. Ashrafi, M. Kart-

tunen, and M. Rahmat, Architectured interlocked ceramics under thermal shock: finite

elementand machine learning methods, Advanced Engineering Materials, 25, p.2201408,

2023. Cover article.

5. R. Behbahani, H. Yazdani Sarvestani, E. Fatehi, E. Kiyani, B. Ashrafi, M. Karttunen,

and M. Rahmat, Machine learning-driven programming of alumina ceramics laser ma-

chining, Physica Scripta, 98, p.015834, 2022.

202

BIBLIOGRAPHY 203

6. E. Kiyani, S.M. Vaezpour, and J. Tavakoli, Nonconvex vector optimization and optimal-

ity conditions for proper efficiency, International Journal of Analysis and Applications,

20, p.11-11, 2022.

7. E. Kiyani, S. M. Vaezpour, and J. Tavakoli, Optimality conditions for approximate so-

lutions of real linear spaces, TWMS Journal of Applied and Engineering Mathematics,

407, p.395, 2021.

8. E. Kiyani, M. Soleimani-damaneh, Separation theorems and approximate proper effi-

ciency on real linear vector spaces, Pacific Journal of Optimization, 10, p.715-734, 2014.

9. E. Kiyani, M. Soleimani-damaneh, Algebraic interior and separation on linear vector

spaces: Some comments, Journal of Optimization Theory and Applications 161, p.994-

998, 2014.

10. E. Kiyani, M. Soleimani-damaneh, Algebraic (relative) interior on linear vector spaces,

Farhang va Andisheh Riazi, 53, p.55-71, 2013 (in Persian language).

204 BIBLIOGRAPHY

Name: Elham KianiHarchegani

Post-Secondary University of Tehran
Education and Tehran, Iran

2009 - 2011, M.Sc. of Applied Mathematics

Amirkabir University of Technology
Tehran, Iran
2013 - 2020, Ph.D. of Mathematics

University of Western Ontario
London, Canada
2018 - 2023, Ph.D. of Applied Mathematics and Computer Science

Related Work Teaching Assistant and Research Assistant
Experience: The University of Western Ontario

2018 - 2023

Honours and Ontario Graduate Scholarship (OGS)
Awards: 2020

Ontario Graduate Scholarship (OGS)
2021

Mitacs Globalink Research Award Abroad
At Division of Applied Mathematics, Brown University, USA
2022

Western University Science International Engagement Fund Award
At Department of Mathematics, ETH Zürich, Switzerland
2023

Flight 752 Memorial Graduate Scholarship in Engineering and Science
Western University
2023

	Data-Driven Exploration of Coarse-Grained Equations: Harnessing Machine Learning
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgements
	Co-Authorship Statement
	List of Figures
	List of Tables
	List of Abbreviations, Symbols, and Nomenclature
	Introduction
	Machine learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Neural networks
	Activation function
	Loss function
	Learning rate
	The general architecture and training of deep neural networks

	Differential equations
	Ordinary differential equations
	Partial differential equations

	Data-driven discovery of PDEs
	Coarse-graining: bridging the gap between microscopic and macroscopic properties
	Thesis outline

	Neural network models: An overview
	Feed-forward neural network
	Recurrent neural network
	Long short-term memory

	Convolutional neural network
	Physics-Informed Neural Networks
	eXtended Physics-Informed Neural Networks

	Symbolic regression
	Genetic programming approaches

	Data generation: An overview
	Phase-field modeling
	Simulation of phase-field models

	Droplet spreading
	Simulation of droplet spreading

	Machine learning based data-driven discovery of non-linear phase-field dynamics
	Introduction
	Phase-field modeling
	Phase-field modeling in a nutshell
	Phase-field models used in the current work
	The Allen–Cahn Model
	The Cahn–Hilliard Model
	The phase-field crystal model

	Simulation of phase-field models

	Data-driven PDEs with a spatial derivatives dictionary
	Multi-layer perceptron network architecture and performance
	Convolution and long short-term memory (CNN-LSTM) Network Architecture and Performance
	Hyper-parameter study

	Data-Driven PDEs without spatial derivatives dictionary
	Convolutional neural network (CNN) architecture
	CNN performance for learning PDEs
	Simulation of data-driven PDEs

	Conclusion

	A Framework Based on Symbolic Regression Coupled with eXtended Physics-Informed Neural Networks for Gray-Box Learning of Equations of Motion from Data
	Introduction
	Phase-field modeling
	Extended physics-informed neural network (X-PINN)
	Symbolic regression
	Noisy data analysis
	Optimal training datasets
	Summary

	Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs
	Introduction
	Multiphase many-body dissipative particle dynamics simulations
	Simulation parameters and system setup

	Simulation results
	Physics-informed neural networks (PINNs)
	Discovering parameters of ODE
	Generate more samples of feasible radii and contact angles

	Symbolic regression
	Bayesian physics-informed neural network: B-PINN results
	Conclusions

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Curriculum Vitae

