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Abstract

In biological neural networks (BNNs), structure provides a set of guard rails by which function

is constrained to solve tasks effectively, handle multiple stimuli simultaneously, adapt to noise

and input variations, and preserve energy expenditure. Such features are desirable for artificial

neural networks (ANNs), which are, unlike their organic counterparts, practically unbounded,

and in many cases, initialized with random weights or arbitrary structural elements. In this dis-

sertation, we consider an inductive base case for imposing BNN constraints onto ANNs. We

select explicit connectome topologies from the fruit fly (one of the smallest BNNs) and impose

these onto a multilayer perceptron (MLP) and a reservoir computer (RC), in order to craft “fruit

fly neural networks” (FFNNs). We study the impact on performance, variance, and prediction

dynamics from using FFNNs compared to non-FFNN models on odour classification, chaotic

time-series prediction, and multifunctionality tasks. From a series of four experimental studies,

we observe that the fly olfactory brain is aligned towards recalling and making predictions from

chaotic input data, with a capacity for executing two mutually exclusive tasks from distinct ini-

tial conditions, and with low sensitivity to hyperparameter fluctuations that can lead to chaotic

behaviour. We also observe that the clustering coefficient of the fly network, and its particular

non-zero weight positions, are important for reducing model variance. These findings suggest

that BNNs have distinct advantages over arbitrarily-weighted ANNs; notably, from their struc-

ture alone. More work with connectomes drawn across species will be useful in finding shared

topological features which can further enhance ANNs, and Machine Learning overall.

Keywords: Connectome, Fruit Fly, Multilayer Perceptron, Reservoir Computing
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Summary for Lay Audience

Biologically-motivated brain structure provides a unique set of constraints, which have been

sharpened through evolutionary pressures in order to achieve efficiency, versatility, and the

capacity to perform multiple tasks simultaneously. Such outcomes are desirable for artificial

neural networks (ANNs), which are often initialized with randomized connections or network

weights. Herein, we conduct a set of four studies to understand the benefits, disadvantages,

and dynamics of model behaviour resulting from using explicit brain structure – via a map

of brain connectivity – to inform the structure of numerous ANNs. As an initial step into

this line of investigation, we start small, using a brain map from the common fruit fly. We

determine how well a fly-based ANN classifies odours, how well it makes predictions across

time, and the extent to which it is able to perform two tasks simultaneously. We find that the fly

network topology translates well into a machine learning architecture for time-series prediction

and multi-tasking, and also that it resists parameter changes which typically lead to model

behaviours characterized by high sensitivity to initial conditions. Moreover, we report that the

position of neurons (in relation to others they are connected to) and the way that neurons cluster

together are important in a machine learning context for reducing performance variability. Our

findings suggest that the fly brain is wired in a way which is beneficial for learning from time-

series data or for completing multiple tasks concurrently. A follow-up idea from this work is

that such behavioural advantages are not unique to the fly, but common across brain networks.

To investigate this, we will run similar experiments on other animal brain maps.
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Chapter 1

Foreword

1.1 The “what” and the “why”

1.1.1 What is contained in this dissertation

This dissertation proposes an investigation into the behavioural1 impact of forcing structural

constraints from a fruit fly connectome (see Sec. 2.1.1) onto numerous machine learning

paradigms. Through a sequence of four related research contributions in an integrated format,

we present evidence of brain structure informing improvements in machine learning (ML)

function, and explore differences between randomly-weighted and brain-inspired model learn-

ing dynamics. We study fly connectome-based networks by way of multilayer perceptrons (Ch.

3) and reservoir computers (Ch. 4 - 6). Within reservoir computing, we consider connectome-

based topological variants (Ch. 5) and also investigate a connectome model’s capacity for

multifunctionality (Ch. 6). An introduction (Ch. 2) provides background materials and rel-

evant literature (Sec. 2.1), a problem statement (Sec. 2.2), research motivations (Sec. 2.3),

1By “behaviour”, we mean to say aspects of the system such as its prediction dynamics, task performance, and
performance robustness (i.e. model variance)

1
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objectives, a hypothesis, and a framework to address the hypothesis (Sec. 2.4). Ch. 7 discusses

findings from each chapter (Sec. 7.1) and across chapters (Sec. 7.2), and presents limitations,

future work, and a conclusion (Sec. 7.4, 7.5).

1.1.2 Why you should care

Whilst it is not advisable to make assumptions about you, the reader, here we anticipate that

you have heard – at least, in passing – about AI or “Artificial Intelligence”. AI, in short, is

a sub-field of Computer Science which is dedicated to the creation of algorithms for solving

human-centric cognitive tasks. It is, in some sense, touching all aspects of our increasingly-

digital daily lives: internet search algorithms [15]; stock trading [16]; medical image analysis

[17]; flight control of unmanned aerial vehicles [18]; self-driving cars [19]; non-player char-

acter (NPC) agents in video games [20]; chess engines [21]; and recommendations for which

movie to watch, or whom to date, or which product to buy [22]. One of the long-standing goals

of AI is to automate tasks which humans are already good at [23]. Another is the use of AI

as a tool for extending our cognitive abilities [24, 25]. ML, a sub-field of AI, is characterized

by algorithms which learn to make predictions from labelled or unlabelled input data. ML has

made headlines in recent years for mastering the game of Go [26], besting human competitors

to win an art prize [27], and outperforming radiologists in cancer cell identification [28, 29].

Over the past year in particular, models such as GPT-4 (Generative Pre-trained Transformer)2

have even shown “sparks of artificial general intelligence” (AGI)3 [31]. Following this, many4

have called for a pause on further development. Without speculating as to the validity of the

letter, it is at least apparent that, today, AI is an emerging disruptive technology.

The GPT models, in trend with a long list of models before them5, have shown that “bigger

2GPT-4 is a large language model (LLM) which generates natural language and code-based outputs to user
text prompts [30]

3We will not attempt to define this term.
4including Yoshua Bengio, John Hopfield, and Christof Koch, among others [32, 33]
5starting with AlexNet in 2012 [34]
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is better” for achieving state of the art (SOTA) performances6. The human brain, as a “scaled-

up” version of the primate brain, appears to support this view [36]. However, there is some

subtlety here: The human brain is the product of key evolutionary adaptations, such as the

expansion of the neocortex (see Sec. 2.1.1). Moreover, small differences in brains of the same

size may lead to complex mental disorders [37]. GPT, like the brain, is a product of progress.

It would be a discredit to call it no more than a blown up neural network. Small tricks over

many decades have led to its success7. Thus, while compute will undoubtedly continue to be

important to fuel the success of tomorrow’s GPTs, so too will inspirations found from various

sources. As these models continue to grow in complexity, it will also become increasingly

important to find tools and means of comparison for understanding them. The brain and mind

can be of great value here. The brain has, to this point, served as a rich source of ideas for

advancing AI. It is likely that this will continue, since neither the brain nor AI are “solved”.

Neuroscience also provides AI with access to an established suite of tools, which may be use-

ful to understand artificial neural networks (ANNs). It would also be unwise, in constructing

artificial learning agents, to ignore those which already exist in the natural world [38].

In this dissertation, we look to brain structure for advancing AI. Structure is an entry

point into capturing brain behaviours, as it constrains the space of functions that are possi-

ble [39]. We use a brain wiring diagram, or “connectome”, combined with neuromorphic

ML paradigms which may house said structure while also imposing minimal topological in-

terference. Through numerous brain-inspired implementations, and across learning tasks, we

determine the impact of connectome structure and structural features on model performance,

variance, and robustness. While suggesting improvements from structure outright, we also

take small steps towards understanding what makes BNNs special in an ML context, using the

toolkit of dynamical systems.

6Simpler architectures, with sufficient compute, have echoed these sentiments by achieving competitive per-
formance [35]

7i.e. perceptrons, and then multi-layer perceptrons (MLPs), backpropagation, convolutional neural networks
(CNNs), and transformers (see Sec. 2.1.2)



Chapter 2

Introduction

This chapter contains a broad-to-narrow background (Sec. 2.1) covering relevant history, the-

ory, and literature. This is followed by a problem statement (Sec. 2.2), which positions the

dissertation in the scope of a broader issue. We summarize project motivations in Sec 2.3, and

outline our hypothesis and objectives in Sec 2.4. Subsequent sections are flagged in Sec 1.1.1.

2.1 Background

Neuroscience Computer Science

NeuroAI

Connectome-
Inspired

ML

4



2.1. Background 5

This dissertation is, in many ways, a love letter between two fields: Neuroscience and

Computer Science (CS). As part of a combined PhD at Western, it covers broad research areas

whilst converging at a particular intersection. Reflected in this are general1 subsections which

introduce the fields, followed by a narrowing path towards our area of interest: connectome-

inspired machine learning. A road map of this background section is illustrated below.

1Neither the Neuroscience or CS sections are sufficiently detailed as to accomplish the near-impossible task
of providing a comprehensive summary. The CS section is also arguably biased towards Artificial Intelligence.

Neuroscience

Computational
Neuroscience Connectomics

Computer
Science

Artificial Intelligence (AI)

Machine
Learning (ML)

Graph Theory

NeuroAI

Multilayer
Perceptrons

Reservoir
Computing

Dynamical
Systems

Connectome-
Inspired MLThe Fruit Fly

primary topics

related sub-topics
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2.1.1 Neuroscience: theory, history, and topics of interest

Neuroscience

From the humble beginnings of science, the nature of that which allows us to sense and

respond to the stimuli around us has captured our curiosity. How is it, for example, that we can

recognize and differentiate between the faces of those close to us? Why do particular odours

invoke memories? What consolidates our capacity for solving complex or abstract problems?

These lines of questioning date back to the earliest scholars.

“ [We] ought to know that from nothing else but the brain come joys, delight, laugh-

ter and sports, and sorrows, griefs, despondency, and lamentations. And by this . . .

we acquire wisdom and knowledge, and see and hear and know what are foul and

what are fair . . . what are sweet and what are unsavoury... And by the same organ

we become mad and delirious, and fears and terrors assail us... In these ways I am

of the opinion that the brain exercises the greatest power in the [human].

–Hippocrates, Fourth century B.C. (taken from [40]) ”
Neuroscience is the study of the structure, function, and development of the nervous sys-

tem. The nervous system, broadly, is a complex network of cells and organs which receive

sensory information from the environment; store, integrate, and analyze this information; and

relay it to effectors which can act internally or onto the outside world.2

2There are alternative perspectives to this input-output view: for example, the skin brain thesis (SBT), which
posits that the skin mediates interactions between the nervous system and the environment [41].
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The nervous system mediates sensory inputs: isolating or integrating visual, auditory, ol-

factory, tactile, thermoceptory (temperature), proprioceptory (positional sense in the external

environment), and nociceptory (pain) inputs. It stimulates voluntary and autonomous control

of muscles and glands. Finally, it provides internalized representations (i.e. memories, plans,

and thoughts) which may precede actions: for example, the scrub jay has been observed to

have the capacity to anticipate future hunger needs, and store food provisions accordingly [42].

Let us highlight the nervous systems of humans, non-human primates, rodents, and insects.

This list is neither comprehensive nor exhaustive.

Human – The human nervous system is divided into the brain, spinal cord, and nerves.

More formally, it is composed of two subdivisions (see Fig. 2.1): the central nervous system

(CNS) and peripheral nervous system (PNS). The PNS connects the CNS to all other systems

of the body (bi-directionally) [43], and comprises the autonomic (ANS) and somatic nervous

systems (SNS). The ANS regulates involuntary bodily functions. The SNS is involved in con-

scious and unconscious sensory perception and conscious muscular activation: via afferent

sensory neurons – from tissues to the CNS – and efferent motor neurons, which transmit from

the brain and spinal cord to muscles and glands [43]. Sensory neurons form into clusters via the

dorsal root and cranial nerve ganglia [44]. Within the ANS, the sympathetic nervous system

(SyNS) mediates a bodily response to a perceived stressor or threat, which acts on the heart

(raising heart rate), dilates pupils, and slows digestion. The parasympathetic nervous system

(PaNS), conversely, lowers heart rate, constricts pupils, and stimulates digestion. The enteric

nervous system (ENS) is a division of the ANS which elicits control of the digestive system

independently from the CNS [44]3.

3Roles of the ENS for therapeutic means are an active area of research [45].
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Nervous System

CNS

brain spinal cord

PNS

SNS

sensory

dorsal root ganglia cranial nerve ganglia

motor

ANS

SyNS PaNS ENS

Figure 2.1: Divisions of the nervous system.

The CNS is comprised of the brain and spinal cord, which are surrounded by cerebrospinal

fluid (CSF) and enclosed in the meninges (membranes). The human brain has approximately

100 billion neurons [36] and can be roughly divided in myriad ways4. One view separates

the brain into three divisions: the cerebrum or telencephalon (forebrain), cerebellum (hind-

brain), and brain stem [48]. The cerebrum houses four lobes: the frontal lobe, parietal lobe,

temporal lobe, and occipital lobe. Lobes are separated by gyri (bumps) and sulci (grooves).

The frontal lobe is strongly correlated with executive functions such as planning, language,

social behaviour, and emotional regulation [48]. The parietal lobe is involved in motor plan-

ning, spatial awareness, and integration of sensory inputs. The temporal lobe is implicated in

auditory processing, memory formation, and emotions. It contains the hippocampus (includ-

ing the hippocampus proper and dentate gyrus) which is important for separation of patterns

for the purpose of memory formation [49]; the inferior temporal gyrus (IT), which is heavily

implicated in visual object recognition; and the amygdala, which plays a key role in regulating

4For example, using evolutionary layers (the reptilian brain, limbic brain, and neocortex) [46], via functional
pathways [47], or from different spatial orientations
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emotional states. The occipital lobe is attuned towards visual processing. It contains V1, the

primary visual cortex [48]. It is known that V1 detects simple visual features such as edges and

their orientations, integrates these into more complex representations, and maps onto higher

visual processing ROIs [50]. Importantly, while anatomical regions of interest (ROIs) may

correspond to particular functions, it is currently hypothesized that the integration of numer-

ous brain areas manifests behaviour [47]5.

Two views of the human brain (coronal and sagittal) are provided in Fig. 2.2. The first

(top image) has been cut at the basal ganglia – i.e. an approximately mid-brain slice. The

basal ganglia is a grouping of neuron clusters which are responsible for coordinating voluntary

movement, among other functions [51]. The bottom image is a lateral (side) view which points

to many of the same anatomical structures. The structures we have featured from the basal gan-

glia include the putamen and caudate nucleus (which comprise the striatum), globus pallidus,

subthalamic nucleus, and substantia nigra. Other identified brain areas include the thalamus

(in purple), corpus callosum, and cingulate gyrus [52, 51]. The thalamus acts as a communi-

cation hub between subcortical6 brain areas. The corpus callosum joins the left and right brain

hemispheres. The cingulate gyrus is heavily implicated in the mechanism of attention [53].

Non-human primate – Non-human primate (NHPs) nervous systems can be divided and

classified as in the human nervous system (Fig. 2.1). NHPs share most anatomical ROIs with

human brains, with the exception of key microstructures [54] and scaling of particular regions

[55]. Let us consider the macaque as a point of comparison. Macaque and human brains have

similar overall connectivities [56]; however, the volume of the human brain is 4.8 times that

of the macaque brain, if the differences in body mass are accounted for [57]. Beyond this

difference in scale, there is an expansion in particular macrostructures of the human brain, by

5We have opted out of including most of the well-known ROIs. Within the ROIs that we have discussed, our
descriptions of their implicated functions are not comprehensive

6below the cortex
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Figure 2.2: Coronal and lateral views of the primate (human) brain, cut at the basal ganglia.
Created with BioRender.com.
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comparison. The prefrontal cortex, for example, comprises 29% of the human neocortex (a

recently evolved section of the cerebral cortex), but only 11% in the case of the macaque neo-

cortex. As another example, Broca’s Area in the human brain (known for speech and language

comprehension), which has been mapped onto areas 44 and 45 of the NHP brain, contains a

significantly higher volume of neuron cell bodies per volume of tissue (approximately at least

14% versus at least 10%) [58]. Beyond size alone, differences in microstructure are also appar-

ent. For example, in the prefrontal cortex, dendritic (see Fig. 2.4) spine density of pyramidal

neurons (see later in this section) in layer III of Brodmann Area 467 is 70% greater in humans

than in macaques [59]. Some macaque ROIs are distinct from human ROIs, but may be homol-

ogous 8. For example, the middle face patch in the macaque is implicated in recognizing facial

features, and is hypothesized to be homologous to the fusiform face area (FFA) [60].

Rodent – The rodent nervous system, like the NHP nervous system, is divided as in Fig.

2.1 [61]. Within the CNS, the rodent brain is divided into three main parts: the telencephalon,

diencephalon, and mesencephalon. The telencephalon (cerebrum) houses the olfactory bulb,

cerebral cortex and subcortical ROIs (e.g. the neocortex, basal ganglia, and amygdala). The

diencephalon (middle of cortex) contains the corpus callosum, hypothalamus, and thalamus

among other ROIs. Dorsal and ventral thalami control sensory and motor responses, respec-

tively [62]. The mesencephalon (midbrain), as in the human brain, features the cerebral pe-

duncle9. Caudal to this (towards the hind) are the pons (a relay between the telencephalon and

cerebellum), cerebellum (for motor control and learning), medulla oblongata (for communica-

tion between the brain and spinal cord) and spinal cord (see Fig. 2.3) [62].

While the structure and size of the mouse and human brains are distinct, recent work has

attempted to establish additional anatomical homologues. In [63], for example, it has been

7The Brodmann Area value indexes a particular region of the cerebral cortex.
8A homologous structure is one which shares common evolutionary ancestry.
9The peduncle connects the telencephalon and brain stem
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mesencephalon

medulla oblongata
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Figure 2.3: Dorsal view of the rodent (mouse) brain. Created with BioRender.com.

shown that the striatum organization in mouse and human brains are preserved. [64], further-

more, has identified high cross-correlations between human and mouse cortical regions for

primary motor and visual areas. Whereas humans and rodents share a common ancestor, these

lineages have been thought to diverge 80 million years ago [64]. Rodents have particular non-

homologous ROIs, such as the vibrissal primary somatosensory cortex, which processes tactile

information from the act of whisking (sweeping) vibrissae (whiskers) [65]. The human brain,

as an example, has a significantly expanded neocortex [64].

Insect – The insect nervous system is roughly divided into the CNS, PNS, and visceral

nervous system (VNS) [66]. The VNS lies rostral to the brain and travels ventrally towards the

dorsal part of the esophagus. The VNS is responsible for secretion of hormones for develop-

ment and reproduction [66]. The CNS is comprised of the brain and ventral nerve cord, where

the brain is divided into three regions: the protocerebrum, deutocerebrum, and tritocerebrum.
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Soma

Dendrites

Axon

Direction of signal propagation

Figure 2.4: A simplified ball-and-stick representation of two neurons. An action potential is
propagated from the cell body via the axon to the dendrite of the subsequent neuron.

The protocerebrum innervates primary visual areas, whereas the deutocerebrum innervates an-

tennal nerves, and the tritocerebrum connects the brain to the frontal cerebrum and visceral

nervous systems, respectively. Some common brain areas across insect species include the

mushroom body, central complex, and subesophageal ganglion. The mushroom body is well

known to be involved in olfactory learning [67]. The central complex is a large neuropil (con-

nective tissue) which functions as a “navigation center” [68], coordinating decisions related to

flight and locomotion. The subesophageal ganglion regulates nerves controlling chewing and

salivation. We cover the insect brain in further detail in Sec. 2.1.4.

While we have discussed some of the basic blueprints of well-studied organism classes, it

is important to stress that there exists a wide range of variability both across and within species

[55].

What are the fundamental units of the nervous system? A classical view is that the neu-

ron is such a building block. Let us first consider this perspective. Neurons are specialized

cells which have the capacity to transmit electrochemical signals – action potentials and neu-

rotransmitters – to neighbouring neurons via synapses (gaps between the cells). A neuron (see

Fig. 2.4 contains a cell body (soma), which is comprised of a cellular membrane, cytosol (a

fluid which contains Na+ and K+ ions), and organelles (e.g. the nucleus) which accomplish cel-
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lular functions. Neurons may also contain some number of axons and/or dendrites. An axon is

an extension from the soma which carries electrochemical signals outwards (efferent) to other

neurons or to an effector, whereas a dendrite brings such signals into the cell body (afferent)

[69, 40, 70]. Axons may be myelinated, containing a myelin sheath which increases signal

transmission speeds. Glial cells – including astrocytes, oligodendrocytes (which form myelin),

microglia, and radial glia [71] –surround and support neurons, helping to facilitate their func-

tion. Glial cells outnumber neurons 10-fold in the human brain [40]. Organized clusters of

glial cells, axons, dendrites, and synapses are often referred to as a neuropil.

Neurons can take on a diverse range of types and morphologies. They, for example, can

exist without axons (anaxonic), with a single cell body projection (unipolar), with a single axon

and dendrite (bipolar), or with one axon and many dendrites (multipolar) [69]. Neurons can

also be grouped under separate classes: for example, pyramidal neurons have a distinct triangu-

lar shape, are excitatory (i.e. promoting neuronal firing), and are prominent in the mammalian

cerebral cortex [72]; another type of neuron, mirror neurons, have been shown to activate both

during a particular action and in response to viewing another performing said action [73].

In addition to the view of the neuron as the basic building block of the nervous system,

an alternate view is that dendrites may take on some form of this role. Beyond their role in

transmitting incoming signals to the neuron, dendrites can be passive (acting as a signal filter)

or active, generating dendritic spikes [74]. In [75]10, for example, it is proposed that dendritic

subunits are capable of independent learning and formation of memories in pyramidal cells.

While this distinction, on one hand, could be viewed as an exercise in semantics, it does also

have practical merit. For example, it may be used to impact the construction of Artificial Neural

Networks (ANNs) (see Sec. 2.1.3), as in [77], where a single dendritic arbour can approximate

a two-layer neural network.

10Panayiota Poirazi primarily discusses this in [76].
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Neurons transfer an electrochemical gradient called an “action potential” across synapses.

Neurotransmitters excite or inhibit the forming of action potential spikes. This signal is prop-

agated from one neuron’s axon to another’s dendrite by way of an electro-chemical reaction:

specifically, neurotransmitters within synaptic vesicles are transported across an inter-neuron

gap (the synaptic cleft) and bind to receptors on the next neuron’s dendrite, causing ion chan-

nels to open, which increases its internal voltage [78]. Given a neuron’s resting membrane

potential of approximately -70 mV, the activation of ion gates (i.e. Na+, K+) and the subse-

quent increase in voltage causes the postsynaptic neuron to fire (an action potential). Various

neurotransmitters have distinct actions: for example, in the insect brain, gamma-aminobutyric

acid (GABA), which is involved in sleep, typically acts to suppress postsynaptic firing; acetyl-

choline, conversely, is usually excitatory [79]. Some models of neuronal firing are highlighted

in Sec. 2.1.1.

History and major branches

The study of the nervous system is thought to date back to 1600 B.C.E, to the “Edwin Smith pa-

pyrus”, an ancient Egyptian text which provides the first account of treating a spinal injury [80].

However, it was not until the latter half of the 20th century that Neuroscience was formalized

as a field. This was, specifically, marked by the formation of the Society of Neuroscience in

1970 [40]. Prominent early contributors to Neuroscience as a field include anatomists Santiago

Ramón y Cajal and Camillo Golgi. Golgi first applied their novel stain technique to pyramidal

cells in the cat cerebral cortex, which brought a depiction of a neuron to the public light for

the first time. Ramón y Cajal described Golgi’s initial reports on cerebellar cortex structure,

and helped to discover the “synapse”, famously noting that the neurons did not appear to be

physically touching [40].
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Table 2.1: Research areas of Neuroscience, as labelled in [1]

Research Area Description
Molecular Explore the nervous system at the level of cells and biomolecules.
Clinical Study dysfunctions and diseases of the nervous system.
Cognitive Tie the brain and mind to learning, memory, and attention.
Computational Build mathematical models of neural processes.
Developmental Map changes in learning and behaviour with age.
Imaging Visualize structure and function of the nervous system.
Systems Develop theoretical frameworks of the brain at varying scales.

Neuroscience is an interdisciplinary field, drawing influence from the life sciences, physical

sciences, mathematics and computer science, philosophy, and psychology. Its subfields cover

a broad range of approaches: these are highlighted in Table.2.1.

Computational Neuroscience

“Computational Neuroscience” is Computational Science applied to the nervous system. Com-

putational Science is the use of computing to solve scientific problems. The goals of Computa-

tional Neuroscience (and those who apply this label to their own work) are not necessarily dif-

ferent from those of other Neuroscience subfields; however, the mechanism for achieving said

goals is distinctly theoretical, employing the use of algorithms and mathematics to construct

models of neurons, macroscale brain networks, or nervous system biomolecules or processes

at varying scales and complexities.

At the level of representing individual neurons, for example, two classical models include

“Leaky-Integrate-and-Fire” (LIF) and “Hodgkin-Huxley” (HH). The LIF neuron model de-

scribes the neuron as integrating synaptic inputs until its membrane potential (V) crosses a

firing threshold, which causes the neuron to “spike”. An external current I can be applied to

influence the firing rate of the neuron. This model can be represented as an RC (Resistor-

capacitor) circuit (Fig. 2.5), where Cm is the capacitance of the membrane, gL is the membrane

conductance, and EL is the membrane membrane potential. V(t) can be solved using numerical
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integration techniques such as Runge Kutta (RK4) [81, 82].

Cm
dV
dt
= −gL(V − Vth) + I (2.1)

The 1952 Hodgkin-Huxley model of Alan Hodgkin and Andrew Huxley, theorized from

squid axon conductances [83, 84], provided the first mathematical description of the underlying

shape of an action potential. The HH model considers the action of ion movement across

voltage-gated sodium and potassium channels, and also leak channels. Gated channels allow

for rapid depolarization (i.e. sodium) or repolarization (i.e. potassium) of the action potential,

whereas leak channels help to passively establish the resting potential. The circuit form of the

HH model is highlighted in Eq. 2.2. I is the total membrane current, Cm is the membrane

capacitance, Vm is the membrane voltage; gK , gNa, and gl are the potassium, sodium, and leak

conductances; and VK , VNa, and Vl are the potassium, sodium, and leak voltages. As with the

LIF neuron, RK4 can be used to find a solution for V(t) by posing it as an initial value problem.

When constructing Spiking Neural Networks (SNNs)11, the LIF model is more efficient to

compute, whereas the HH model more closely simulates neuronal activity.

I = Cm
dVm

dt
+ gK(Vm − VK) + gNa(Vm − VNa) + gl(Vm − Vl), (2.2)

Numerous other neuron models and learning rules have been proposed. For example, a

well known neuron model is the Izhikevich Model [85], which is efficient like the LIF model,

and can thus be useful in simulating populations of neurons. An example of a learning rule

is Hebbian learning – neurons that fire together, wire together [86]. Another is (symmetric)

spike time-dependent plasticity12 (STDP), which extends the Hebbian rule by adding time de-

pendence between spikes – coupling between neurons may increase or degrade depending on

whether the presynaptic (sending) or postsynaptic (receiving) neuron fired first.

11i.e. as opposed to rate-based ANNs
12Plasticity involves the strengthening or weakening of synaptic connections, or functional or structural changes

in response to neural activity, environmental fluctuations, or injury.
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Figure 2.5: Sample time series of an action potential (V) – given an external current I – across
the neuron cell membrane based on the LIF neuron model; created using [3] with parameters
Iext = 0.0101, gL = 0.16, Cm = 0.0049.

Figure 2.6: Sample time series of an action potential across the neuron cell membrane based
on the HH neuron model; created using [3] with parameters Iext = 7, gNa = 120, gK = 36,
gLeak = 0.3, ENa = 50, EK = −77, ELeak = −54.39.
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Connectomics

A connectome is a wiring map of a brain network. Connectomics is a formalization of the

creation, development, and analysis of connectomes. The term “connectome” was posited

by Olaf Sporns in 2005 for structurally representing the human brain [87]. Connectomes are

commonly represented as computational graphs (see Sec. 2.1.2), consisting of nodes – repre-

senting individual neurons – and weighted edges – representing, for example, the total number

of synaptic sites shared by pairs of neurons [14]. These can be enhanced with added morpho-

logical and spatial information [14]; however, typically one would start from a more detailed

model [14, 39, 88], and abstract away to a desired level of bio-realism. Numerous connec-

tomes have been proposed over the past decade alone: the hemibrain[14], the Allen Mouse

Brain Connectivity Atlas [88], CoCoMac [89], and the human brain project [90] are prominent

examples.

The scale of a connectome can vary and will depend on its research or implementation

purpose. At a macroscopic scale, neuropils or ROIs may be represented as individual nodes.

This may be helpful when attempting to construct a representation of a very large neural net-

work, such as the human brain. ROIs also do not need to be pre-defined. In [91], for example,

cortical regions obtained from human fMRI (functional magnetic resonance imaging) data on

66 subjects are divided into connectomes of 1000 nodes. These are then grouped into con-

sensus networks as described in [91]. At a mesoscopic scale, nodes or network weights may

be coarse-grained. For example, one network node may represent a cluster of neurons, or a

weighted edge might only exist in the network if it lies above a threshold value. Connectomes

constructed at a microscopic scale would include details to the level of single cells. Within

particular scales, complexity can vary depending on the desired degree of bio-realism. For ex-

ample, whereas point neurons may be easily captured and transferred over to machine learning

algorithms, models which have spatially faithful representations of neurons, axons, dendrites,

and surrounding biomolecules may serve to construct more accurate simulations [14].
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2.1.2 Computer Science: history, theory, and related sub-topics

Computer Science

Computer Science is the field of study dedicated to the principles and applications of com-

puters and computing. It is, for example, concerned with determining computability, with

constructing and analyzing algorithms (ordered sequences of instructions), and with writing

computer software. A list of Computer Science sub-areas are identified in Table 2.2.

From computability to computers

The history of Computer Science dates back to ancient Greece (80 B.C.), whereby the gear-

based “Antikythera”, was used to predict the movement of stars [92]. Arguably, this was the

first computer; however, the progenitor to the modern computer was the Analytical Engine,

which followed from Babbage’s Difference Engine [93]. This programmable machine, using

punch cards for input and output, performed logical and arithmetic operations, storage for hold-

Table 2.2: Areas of research within Computer Science.

Research Area Description
Computer Networks Create and analyze network protocols and architectures.
Scientific Computing Use computing architectures for solving complex problems.
Architecture and Systems Write and analyze systems-level software and middleware.
Software Engineering Employ engineering principles to the creation of software.
Human Computer Interaction Design computing solutions which are easy for human use.
Databases Store and retrieve data, and interface with data systems.
Artificial Intelligence Construct algorithms which automate human-centric tasks.
Algorithms Design and analysis of algorithms and data structures.
Programming Languages Implement and analyze formal languages and compilers.
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ing intermediate values in memory, and a control unit to loop through and point to locations in

memory. The Analytical Engine was Turing-Complete, or capable of simulating any Turing

Machine [94]. The Turing Machine, invented in 1936 [94], was created as a theoretical means

for determining computability. A Turing Machine consists of one or more tapes which can

be infinitely long in both directions. With the tape head starting from some initial position,

the Turing Machine can read inputs, write, and move left or right. An example of a Turing

Machine which flips the bit values of a binary number is shown in Fig. 2.7.

The Turing Machine was used to demonstrate that the Halting Problem is an undecidable

problem [95]. The Halting Problem (see Fig. 2.8) seeks a yes or no answer to the question of

whether a Turing Machine M halts on a word w. To show that this is undecidable, let us first

consider that it is decidable; that is, that there exists a Turing Machine M which accepts an

encoding of another Turing Machine e(M) and always halts and returns yes (it halts with input

word w) or no (if the input word w would result in an infinite loop). We can then design another

Turing Machine M2 (as in Fig. 2.8) which has the opposite action of M; that is, if M returns

yes (halts), M2 runs in an infinite loop, and if M returns no (infinite loop) then M2 halts. Given

e(M2) as input to M2, M2 will halt and return yes if M returns no, and M2 will not halt if M

returns yes. This contradiction renders the problem undecidable.

A (digital) computer uses binary values13 to store, retrieve, access, and control information

flow. Binary digits, as opposed to hexadecimal, octal, or decimal values, can only take on two

possible values: 0 or 1. To represent a number in binary, we break the value into its component

digits (20, 21, 22, . . .). We can complete this simply by subtracting the largest power of 2 from

the number, decrementing the power, and continuing until we reach the 0th power of 2 (Eqn.

2.3). The building block of the digital computer is a logic gate, which takes binary values as

inputs and applies a particular logical operator (e.g. not OR or “NOR”) to produce an output.

13which can be represented in any desired base
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q0start F

0/1,R

1/0,R

B/B,R

↓

B B 1 0 1 B B B

. . . . . .

Figure 2.7: A Turing Machine which flips the bits of a binary number [4]. B: “blank”, R:
“right”, F: “finish”.

e(M)

M

M2

yes (loop forever)

no return yes

Figure 2.8: The Halting Problem, which famously used Turing Machines (M, M2) to show
undecidability. e(M): encoding of M.



2.1. Background 23

Table 2.3: Truth table for the NOT, AND, and NOR operators

p q ¬p p ∧ q p ↓ q

0 0 1 0 1
0 1 1 0 0
1 0 0 0 0
1 1 0 1 0

A truth table (showing binary input and output values) for the NOR operator (and also the NOT

and AND operators) is provided on Table 2.3.

(43)10 = 1 ∗ 25 + 0 ∗ 241 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = (101011)2 (2.3)

With as few as two NOR logic gates, two AND gates, and a NOT gate, a computer is able to

store bits in memory. An example is shown below, with the D latch (flip-flop) circuit diagram

(Fig. 2.9). A single bit (1 or 0) enters at the D position, is negated, and is input to the two

AND gates. The E input is based on the computer’s internal clock (determined by the Central

Processing Unit or CPU), and is 1 if the latch is accepting new inputs or 0 if the latch is locked.

The circuit is initialized with F as 1, F as 0, D as 1, and E as 0. If D changes from 1 to 0, but E

is still 0, the outputs will remain (thus, are stored in memory until E is set to 1). If D changes

to 0 and E is set to 1, then the output to the top AND gate will be 1, and the output from the

NOR gate to F will be changed from 1 to 0; F will also flip from 0 to 1. With E turned to

1, the output entirely depends on the value of D; with E at 0, the output is stored in memory,

regardless of what D changes to.

Beyond storing memory, various logic gates can be combined to add, multiply, divide, sub-

tract, among other operations. Regarding memory, one can imagine that with many D latches

a computer can store many bits of data. This data can be stored in registers and accessed when

needed by the CPU. These registers have addresses. Data is typically stored and read from left

to right (“big-endian”). The overall picture of this von Neumann architecture [5] of a computer
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E

F

F

D

Figure 2.9: The D-latch, composed of NOR and AND gates, a NOT gate, and a clock-based
switch E. This logical circuit allows for values to be stored in memory.

Central
Processing

Unit

Control
Unit

Logic Unit

Main
Memory

OutputInput

Figure 2.10: The von Neumann computer architecture, drawn as it appears in [5].

is provided in Fig. 2.10.

Abstraction is a key concept in Computer Science, and is particularly important in writing

computer software. While the register values of a computer can be manually configured with

a low-level programming language, there also exist high-level languages which may restrict

hardware access and encapsulate lower level commands into built-in methods. Encapsulation

makes programming languages easier to use, increases portability, and improves productivity.
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Graph Theory

A network, or a computational graph, is comprised of nodes which are connected by edges

[96]. Edges may be weighted, or assigned numerical values. A graph may be directed or

undirected. Directed graphs have directions for all edges, whereas undirected graphs do not.

Beyond biological neural networks (BNNs) and artificial neural networks (see Sec. 2.1.3),

graphs can be used to represent networks of computers (the Internet), social connections, or

predator-prey relationships, among others [96]. A random graph is one which has been con-

structed from some random process14. One way to construct a random graph is to select a

number of nodes n, and randomly sample values from a parent distribution for all possible

node pairs [98]. Another method is to construct an Erdös-Renyi graph. To create this, one

would first generate an empty n-node graph. Next, for each node pair, and with probability p,

for a randomly drawn r ∈ [0, 1], if p < r then an edge is assigned [99]. Other well-known

methods for constructing random graphs include Watts-Strogatz and Barabási-Albert [100].

A

B

C D
Edge

0.4
1.3

-0.1

5.3

-3Node

Figure 2.11: A directed graph with nodes (A, B, C, and D) and edges. Each edge has a partic-
ular weight.

We define sparsity (or, in our case, density) of a graph as the proportion of zero-valued

edges out of all edge possibilities. For example, in a graph of 5 nodes with 8 edges (out of the

25 possible), we would say that this graph has a sparsity of 40% (see Fig. 2.12). In order to

impose sparsity onto a finite computational graph, one can apply a random zero-valued mask

onto the graph’s adjacency matrix. An adjacency matrix is a square matrix which compactly

14Randomness in computation is typically pseudo-random [97].
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represents all possible node pairs. Below is an adjacency matrix for the graph of Fig. 2.11,

where row indices and column indices are alphabetically ordered, corresponding to A, B, C,

and D, respectively.



0.4 0 1.3 0

0 0 −0.1 0

0 0 0 −3

0 0 5.3 0



Small-worldness describes a network which has, compared to a random network, a high

global clustering coefficient C and a low mean shortest path length (MSPL). Watts and Strogatz,

who authored the concept, have famously remarked in [101] that neural networks (using the

brain of the worm Caenorhabditis elegans as an example) have small-world properties. The

global clustering coefficient (see Eq. 2.4) is proportional to the number of triangles in a graph,

and inversely proportional to the number of connected triples. A triangle, in this context, is a

set of three nodes which form a closed loop, whereas a connected triple is any set of three nodes

which are connected (without necessarily forming a closed loop). The MSPL is calculated by

finding the shortest path between all node pairs and taking the average of these distances. See

Eq. 2.5, where d(i → j) is the shortest path length from node i to node j, and N is the number

of nodes in the network [102]. Random networks may have a low MSPL, but will not typically

have a high C [103, 104].

C =
3 × number of triangles

number of connected triples
(2.4)

MSPL =
1

N(N − 1)

∑
i, j

d(i→ j) (2.5)
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Figure 2.12: A graph with a sparsity (density) of 40% (8 out of 25 possible edges).

Artificial Intelligence

Artificial Intelligence (AI) is concerned with constructing “human-intelligent” algorithms. We

would define human-intelligent goals as those which humans have the capacity to accomplish:

for example, clearing a room of dust, travelling from point A to point B, beating an opponent

in a game of chess, or making stock market predictions. Of these mentioned tasks, while tools

already exist for completing them (vacuums, cars, chess guide books, and mathematical mod-

els, respectively), a goal for AI algorithms would be the capacity to automate them, requiring

minimal human involvement. AI algorithms can be imbued with knowledge and hard-coded

rules, or capable of learning from data. The former, called “Expert Systems”, grew to popular-

ity throughout the latter half of the 20th century. Notable applications from this domain include

Mycin, a LISP15-based medical diagnosis engine [105], and “Deep Blue”, which was famously

used to beat chess Grandmaster Garry Kasparov in a classical chess game [106]. Both of these,

for example, used hard-coded, knowledge based rules to inform their decisions. A develop-

ment which spawned from Expert Systems was fuzzy logic [107], which, as opposed to binary

15LISP is a high-level programming language.
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Figure 2.13: A membership function plot showing degree of membership (µx) to three cate-
gories, given age (x).

yes/no answers, assigns degrees of membership to a particular label. This is useful when there

is ambiguity in a set of outcomes; for example, in assigning temperature labels to a room, or

age-based labels to individuals (Fig. 2.13) [108].

Machine Learning

Machine Learning (ML) is the branch of AI (also Statistics) concerned with constructing mod-

els which learn from data. See Fig. 2.14 below. An ML model may learn by tuning towards

an objective function16 (in supervised, unsupervised, semi-supervised, and self-supervised17

learning), or by learning a policy to maximize rewards (in Reinforcement Learning).

Supervised Learning models learn from explicitly labelled data through training (see later

in this section), where the learning goal is to minimize the difference between ground truth la-

bels (known apriori) and the model’s predicted labels18, which can be discrete (classification)

or continuous (regression). Input features xi correspond to labelled outputs yi.

16The mechanism of the objective function varies depending on the approach. For example, Generative Ad-
versarial Networks (GANs) learn in a game-theoretic way; that is, by breaking the model into two components
(a generator and a discriminator) which compete in a zero-sum game, with the game’s Nash equilibrium as the
objective (this may not exist) [109], the idea being that the generator creates data which is difficult to distinguish
from ground truth samples.

17We do not discuss semi-supervised or self-supervised learning.
18However, additional constraints introduced through regularization penalize the model from overdoing this

(overfitting).
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AI

ESO

ML NN
RC

DL

Figure 2.14: A venn diagram depicting the relationship between Artificial Intelligence (AI) and
its subfields: Expert Systems and Others (ESO), Machine Learning (ML), Neural Networks
(NN), and Deep Learning (DL). Reservoir Computing (RC) is also included for context. We
have opted to include Deep RCs – i.e. [6] – under the umbrella of RC, extending RC to DL.

In linear regression, the aim is to determine the coefficients bi which minimize a particular

loss function with respect to the training data. Consider the following system (Eq. 2.6 and Eq.

2.7), where y are the ground truth outputs, and X is the design matrix containing a column

of ones (the bias) and subsequent columns of features (for simplicity we consider 1 feature).

Given x and y, our model is tasked with solving for coefficients bi. This can be accomplished,

for example, with gradient descent (see later in this section). Regarding the loss function, there

are many to choose from. One example isL1 loss or Least Absolute Deviation (Eq. 2.8), which

is more robust to outliers than L2 loss, but is also non-differentiable over 0, making for more

difficult optimization.

y = Xb (2.6)

where y =



y1

y2

...

yn


, X =



1 x1

1 x2

...
...

1 xn


, b =

b1

b2

 (2.7)
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Figure 2.15: Linear regression applied to the sklearn diabetes dataset (code from [7]).

L1 =

n∑
i=1

|yi − ŷi| (2.8)

Using a gradient descent approach (See Fig. 2.16, for a sample illustration of this), starting

from an initial guess, we can use the landscape of the objective19 function to determine, itera-

tively, how to reach the minimum loss in the parameter space (here, that is simply b1 and b2).

Given a learning rate α, we can compute and follow the gradient (which contains the partial

derivatives with respect to each parameter of interest) to find the direction in parameter space

that will result in the steepest decline in the loss (Eq. 2.9). In Eq. 2.9, an+1 is the n + 1th point

in parameter space, α is the learning rate in [0, 1], and ∇ f is the gradient of the loss function

f . A sample linear regression plot is provided in Fig. 2.15 (example from [7]). Here with the

sklearn diabetes dataset [7], we find the coefficients b1 = 152.91 and b2 = 938.23.

an+1 = an − α∇ f (an) (2.9)

Another Supervised Learning algorithm is the Decision Tree. This is based on the concept

of a computational tree, which is a specialized type of graph (mentioned in Sec. 2.1.2). A tree

has nodes and edges, a root, and a leaf at every terminal node. The depth of a tree is 1 at the

19Since we are minimizing this function, it is technically a loss function.
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Figure 2.16: The landscape of a particular objective function, f (x1, x2) = sin(x)cos(y) +
0.05(x2 + y2), and an illustration of the steps taken by gradient descent (shown in red).
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root, and increases by 1 as we move along each row. For a binary tree, each row can have 2n−1

nodes, where n is the tree depth. Like a linear regressor, a Decision Tree can be used for regres-

sion by fitting many constant-valued functions to the data which minimize a loss function. To

implement this, the feature space is split recursively (into successively smaller sections)20; the

choice of how many splits are required is greedy – that is, it makes an optimal choice per each

node. To illustrate, in Fig. 2.17, for a max tree depth of 1, the optimal constant-valued func-

tions occur when x1 < 0.391 and when x1 > .391. Because decision trees have high variance,

often we use an ensemble of them: some example techniques include Bagged Trees, Boosted

Trees (i.e. AdaBoost), and Random Forests. Decision Trees can also be used for classification.

Artificial Neural Networks (ANNs) – see Sec. 2.1.3 – are an ML paradigm characterized

by their relation to biological neural networks (BNNs). ANNs include nodes (neurons) which

are connected by edge weights (synapses), a learning rule (i.e. backpropagation [110]), an

activation function – for introducing nonlinearity into network training – and an ordering of

computation from an input layer, to m hidden layers, to an output layer. Examples of ANNs

include Multilayer Perceptrons (MLPs, see Sec. 2.1.3), Recurrent Neural Networks (RNNs),

Reservoir Computers (RCs, see Sec. 2.1.3), Convolutional Neural Networks (CNNs), and

Transformers. CNNs are ANNs which are specialized for learning from images.

CNNs fall under the umbrella of Deep Learning21. CNNs transform images using convolu-

tion and subsampling (e.g. max pooling, average pooling) operations; where a convolution is an

operation which applies a kernel (filter) to an image in order to get a transformed output image,

and where subsampling is a technique for extracting features from the image whilst reducing

its size – which is, in a sense, focusing on the data in the image. An example of subsampling

is max pooling, wherein a sliding window of pixels is applied row-wise and column-wise to

an image, and the maximum pixel value is taken from that image – other values are discarded.

20Recursion is defined as a function or process which calls onto itself in its implementation.
21Deep Learning is a term describing a subset of ANNs which have two or more hidden layers (see Sec. 2.1.3).
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Figure 2.17: A depiction of the progression of decision tree plots with increasing maximum
tree depth (d) for a given dataset with a single feature (x1) and output (x2). We observe that a
max tree depth of 3 is sufficient for representing the data (this can be determined numerically).
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One goal of a CNN is to solve for kernels which best extract particular features. A sample

convolution operation is provided below (Eq. 2.11). Here we provide the gaussian kernel (Eq.

2.10), then convolve a sample “image” (represented as an array, with pixel values correspond-

ing to intensity) with that kernel, which has a “blurring” effect on the image. Convolving can

be thought of as a sort of matrix multiplication, where the kernel is centred on each pixel, and

overlapping kernel and image entries are multiplied. The sum of these values results in the new

pixel intensity. The kernel slides across the entire image row, and follows this routine until all

pixels in the image have been visited. We can convolve our sample filter (Eq. 2.11) onto an

image which represents the digit “X” in 9 pixels (Eq. 2.12). The resulting image is a “blurred”

version of the original, in that differences in pixel intensities have decreased. In a CNN, convo-

lution and pooling operations are applied to input images, sequentially, in order to select (with

convolution) and extract (with pooling) features. In image classification, a terminal series of

fully-connected layers reduce to M neurons, where M is the number of class labels.

Gσ(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2.10)


0.06256912 0.12499996 0.06256912

0.12499996 0.24972366 0.12499996

0.06256912 0.12499996 0.06256912

 (2.11)


1 0 1

0 1 0

1 0 1

 ∗

0.06256912 0.12499996 0.06256912

0.12499996 0.24972366 0.12499996

0.06256912 0.12499996 0.06256912

 =

0.8125 0.25 0.8125

0.25 0.74999996 0.25

0.8125 0.25 0.8125


(2.12)

Transformer Neural Networks are a class of ANNs which were originally constructed for

natural language processing (NLP) tasks such as machine translation22 [8]. Variants of the

22In the original paper, this is a supervised task which requires translating text from one language to another
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Transformer architecture are currently employed in models such as GPT-4 [111]. The origi-

nal Transformer (Fig. 2.18) features two components: an encoder and a decoder. Consider

the source sentence “Zara drives a car” and its target translation in French, “Zara conduit une

voiture”. Prior to reaching the encoder or decoder, each word (token) is converted into a pre-

learned embedding[112] (vector representation). The positions of each word in the sentence

are also stored in vectors. The encoder takes all embeddings of source words and their position

vectors, in parallel, and feeds these into a multi-headed attention layer and then a feed forward

layer (see MLPs in Sec. 2.1.3). In the multi-headed attention layer, the context of each source

word in relation to the other source words is stored in trainable attention head vectors. In the

feed forward layer, attention vectors are transformed into vectors which are usable in subse-

quent encoder layers (an activation function is also applied). The decoder receives all output

embeddings and position vectors, and feeds these into a masked attention layer. This works

like the encoder attention layer, except that a mask of negative values is applied to future token

positions (i.e. “voiture”, when “conduit” is the considered token) in order to minimize their im-

portance and preserve sequential word order. A subsequent “encoder-decoder” attention layer

creates another set of attention vectors from these vectors and from those of the corresponding

encoder layer (i.e. encoder layer 1). These resulting vectors can pay attention to the relation-

ships between words in both languages23. After 6 encoder and decoder blocks, a linear layer

feeds final output representations into m nodes, where m is the vocabulary size. A softmax

layer converts these values into probabilities.

Unsupervised Learning makes output predictions based on input data; however, it uses

unlabelled data (i.e. with no known ground truth outputs). The learning goal is to search for

patterns within the input data. A sample use case for unsupervised learning is clustering. Hier-

archical Clustering, as an example, starts with n clusters, where n is the number of data points,

[8].
23To clarify, “self-attention” in the encoder layer pays attention to words in the source language. In this encoder-

decoder (Attn.) layer, the decoder can pay attention to source words in order to find source-target relationships.



36 Chapter 2. Introduction

Input
Embedding

Positional
Encoding

Attn.

Ffwd.

Encoder Layer 1

...

Attn.

Ffwd.

Encoder Layer 6

Output
Embedding

Positional
Encoding

Masked
Attn.

Attn.

Ffwd.

Decoder Layer 1

...

Masked
Attn.

Attn.

Ffwd.

Decoder Layer 6

Linear

Softmax

Model
Output

Figure 2.18: The Transformer architecture as proposed in [8]. Attn: Multi-Head Attention;
Ffwd: Feed Forward Neural Network. Here Softmax activation yields output probabilities.
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and then computes the distance between points (e.g. Euclidean). Next, it merges clusters which

are closest in similarity or lowest in distance, continuing until one cluster remains. Fig. 2.19

shows a Dendrogram for a sample dataset. At the bottom of the diagram, each data point

(given an index) is clustered with its minimally-distant cluster. This continues in a hierarchical

manner as the Euclidean distance increases. For example, at a distance of 0.75, there are four

distinct clusters – this is shown in the bottom subfigure.

Reinforcement Learning (RL) aims to learn an optimal policy whereby an agent can take

actions in an environment to achieve a globally maximal reward (see Fig. 2.20). Q-learning

is a model-free24 RL algorithm which stores and updates state-action pairs, assigning values

(i.e. Q-values) to them. The goal of Q-learning is to compute Q-values which correspond to π

(optimal policy) – i.e. Q∗. One can use the optimal Bellman Equation to estimate Q∗ (see Eq.

2.13 [113, 114]). Given a state-action pair (s, a), with an immediate reward R(s, a), discount

factor γ, and transition probability T (s, a, s′) from state s to state s′, we can determine the

corresponding optimal value Q∗. The term maxa′ ensures that we use the highest-value action

across all possible next actions. Each state-action pair produces a Q value, which can be stored

in a lookup (Q) table. Initially these values are zeroed. An example Q table is shown for the

OpenAI Taxi-v3 environment[115], taken before (Table 2.4) and after (Table 2.5) training with

Q-learning. During training, with probability ε the agent randomly explores the state space

and stores action-associated Q values in the table; alternatively, with probability 1 − ε, the

agent exploits the Q table and takes a greedy action. This process can continue across multiple

episodes. Once the model is trained, it can fully exploit its Q table in a test environment.

Q∗(s, a) = r(s, a) + γ
∑

s′
T (s, a, s′) maxa′Q∗(s′, a′) (2.13)

24in that the policy is learned from the agent interacting with its environment
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Figure 2.19: Top: A Dendrogram for a toy dataset of randomly-generated values; Bottom: The
corresponding data points have been split up into four clusters, using the provided Dendrogram.
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agent

environment

action (a)state (s) reward (r)

Figure 2.20: In Reinforcement Learning, an agent takes actions a which alter the environment,
putting it into a new state s. It then receives positive or negative feedback via a reward r.

Table 2.4: Q Table Prior to Training

Actions

States Move Down Move Up Move Left Move Right Pick Up Drop Off
0 0 0 0 0 0 0
1 0 0 0 0 0 0
...

...
...

...
...

...
...

Training, validation, testing, and regularization

Like a student studying for a test, ML models learn from practice materials (training) and

may take practice tests (validation) before performing out in the real world (testing). Training

involves tuning model parameters or weights in order to best fit an objective function. Valida-

tion involves selecting the best instance of each model class and/or tuning hyperparameters25.

25These are parameters, other than data fitting parameters, which control aspects such as the learning rate and
degree of regularization (see further in this section).

Table 2.5: Q Table After Training

Actions

States Move Down Move Up Move Left Move Right Pick Up Drop Off
0 -2.41837065 -2.36395109 -2.41837066 -2.3639511 -2.27325184 -11.36395013
1 -1.87014395 -1.45024022 -1.870144 -1.45024001 -0.7504 -10.45023995
...

...
...

...
...

...
...
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Figure 2.21: Three common train-test-validate schemes. Valid: Validation.

Parameters (weights) are not tuned during validation. Testing, ideally, provides an unbiased

appraisal of model performance. The problem whereby a ML algorithm is tested on the train-

ing data is called “double-dipping”. This would be not unlike a student studying for a test

using the test answers. It is thus common practice to construct, at the least, training and test

sets. Prior to dividing the data, these samples can also be shuffled in order to handle the case

where training data and test data come from different parent distributions. If validation is being

performed, one may also create a validation set. Beyond training, validation, and test sets,

n-fold cross-validation is another technique which helps to optimize the training and validation

sets for achieving more realistic validation scores. It works by splitting training and validation

sets into n folds (sections), and training and validating on different permutations of those folds.

Regularization – Overfitting is a problem wherein a model is fit too closely to the training

set. This is an issue because training data statistics may not be representative of population

statistics. Regularization punishes overfitting by adding a constraint (regularization) parame-

ter to the objective function. The idea is that sacrificing some of the accuracy on a training set

will allow for greater generalization on the test set. See Sec. 2.1.3 for a sample loss function

and its regularization parameter.
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2.1.3 NeuroAI

NeuroAI

NeuroAI is a subfield of both Neuroscience and Computer Science which aims to apply

insights from the brain to improve AI algorithms [116], and in turn, to use AI techniques to

further advance our understanding of the nervous system. NeuroAI offers a feedback loop

wherein brain and mind research and ML research can work towards shared aims.

Machine Learning
Models

for improving

for understanding

Looking to the brain

Neuro-for-AI research is, in fact, a many-decades-old approach, dating back to the 1943 McCulloch-

Pitts neuron model, which could represent AND, OR, and NOT operations using binary input

“neurons”, weights, and an activation threshold. This was extended by work conducted in the

Cornell Aeronautical Laboratory in 1958 [117]. Here, Henry Rosenblatt proposed the “percep-

tron”, which was inspired by the optic nerve [117]. In 1969, Minksy and Papert showed that

the perceptron could only classify linearly-separable inputs [118]. Multilayer Perceptrons (see

Sec. 2.1.3), however, would address this criticism. Hopfield Networks were another brain-
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inspired ANN from this era26. These were the first Recurrent Neural Networks (RNNs). In

the original paper, Hopfield describes the idea of “content-addressable memory”, alluding to

the brain, but more concretely to physical systems like the N Ising spin-glass – i.e. a system

of N magnetic dipole moments where coupling strength between neighbours is random [120].

Parallels were later drawn between Hopfield networks and the CA3 region of the hippocampus

– i.e. for associative memory tasks [121, 122]. In 1989, Yann LeCun, inspired by Hubel and

Wiesel’s 1962 work on receptive fields and functional architectures in cat visual cortex [123],

proposed the first Convolutional Neural Network (CNN) [124]. Around this time, Hinton and

Rumelhart proposed backpropagation (backprop). The CNN, in conjunction with backprop –

and improvements in graphical processing units – helped to facilitate the success of AlexNet.

AlexNet is a deep CNN which achieved state of the art (SOTA) performance on the ImageNet

Large Scale Visual Recognition Challenge (LSVRC) dataset in 2012 [125, 126]. This event has

been cited as triggering the era of Deep Learning [127]. Separately, in Reinforcement Learn-

ing (RL), the principles of positive and negative reinforcement were proposed by Thorndike

in 1911 [128]. Thorndike’s reinforcement states, for example, that responses in behaviour to

a stimulus followed by a positive response are strengthened. Beyond Thorndike’s work, the

seminal work of Sutton and Barto [129] clearly draws inspiration from studies of the brain

and mind. It, in particular, references work on the Reward Prediction Error Hypothesis (Mon-

tague, Dayan, Sejnowski), the Rescorla-Wagner Model of Pavlovian conditioning, the role of

dopamine as a reward signal, and Hebbian learning among others [129]. Transformers are, in

a sense, also brain-inspired. The mechanism of attention (see Sec. 2.1.2) is similar, both in

name and likeness, to Willhelm Wundt’s attention. Attention, as an idea in psychology, is the

act of focusing on a select and limited set of information from within an environment [130].

The brain-likeness of any of these ideas could be debated; but, a takeaway is that the brain,

which may or may not be a computer [131], shares key principles of “intelligence”27 with AI

algorithms. Uncovering more of these will likely lead to positive outcomes for both fields.

26Hopfield networks are used even today for SOTA implementations [119]
27As with AGI in the foreword, we will also not attempt to define intelligence.



2.1. Background 43

AI-for-Neuro can be split into two approaches: First, in the use of AI and ML as tools

for understanding the nervous system; Second, in reconciling Deep Learning architectures and

macroscale brain networks. For the former, the advent of Deep Learning has led to widespread

adoption of AI as a tool across health care domains[132], including Neuroscience. ML has

been used in, for example, capturing and predicting animal behaviours [133, 134], exploring

memorability of images in early visual processing stages [135], and improving the efficiency

of diffusion-weighted MRI (Magnetic Resonance Imaging) for neuroimaging [136]. For the

latter, a trend over the past decade has been to compare the architecture or learning rules of

ML models with brain representations. A well-known method for forming these comparisons

is Representational Similarity Analysis (RSA), which was proposed in 2008 by Kriegeskorte,

Mur, and Bandettini [137]. In this context, RSA has been used to unify computational models

of early visual cortex with brain activity measurements [138, 139]. In [140], for example, it was

found with RSA that a deep CNN was the closest out of 37 candidate computational models

to the human IT cortex. In [141], it was shown that CNNs which yielded higher object catego-

rization performance were more strongly correlated with monkey IT neural activity. In [142],

RNNs were able to capture the population dynamics of prefrontal cortex neurons in macaques

trained in a context-dependent manner to discriminate between color and motion on a random-

dot display. Using the RNN, it was found that integration and selection are two task types

which occur in the same prefrontal circuits simultaneously. In [143], the neural recordings of

102 subjects undergoing functional MRI (fMRI) are captured while reading sentences. These

are compared to responses from 36 transformer models which have been pre-trained to predict

words based on preceding context. [143] finds that Transformers converge towards brain-like

representations of sentences. In [144], it is found that a Transformer with recurrent positional

encodings (see Sec. 2.1.2) captures spatial representations from grid cells28 when trained on

stimulus-action pairs. With the recent rise in human-like capabilities of Large Language Mod-

els (LLMs) – and with this, greater model opacity – it is likely that continued comparisons

28Grid cells, found in human entorhinal cortex, are implicated in determination of one’s position in an environ-
ment [145].
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between neural representations and ANNs will yield useful Neuro and AI insights.

Ignoring the brain

Many are also looking for alternative avenues to inspiring AI models. In [146], the authors

point out that memory-based cognition is not exclusive to the CNS. They note that CNS neurons

do not possess some magical property that other cells lack, and cite numerous examples of

intelligent behaviour, ripe for AI practitioners to pick from29. For example, glial cells and

astrocytes (see Sec. 2.1.1) are capable of performing independent computations. As another

example, learned memories in planaria (flatworms) survive decapitation; the body is able to

reprint this information onto its regenerated brain. Another work, by Pruzynski, has shown

that the skin performs feature extraction of touch-processing inputs [148]. It also should be

mentioned that the vast majority of papers in ML and AI are not neurally inspired, and it would

be of nontrivial difficulty to mention them all. All of this is said, not to discredit the idea

that the brain is a rich source for inspiring ML models, but rather to highlight that interesting

cognitive architectures may be found in unexpected places.

The Multilayer Perceptron

The perceptron was one of the first ANNs – or Neural Networks (NNs), for short. It was

inspired by neurons in the human eye [117]. The perceptron has a sequential graph structure,

with a single layer30 for input and another for output. The output layer consists of a single node

which takes the sum of the product of each input node value with its corresponding weight. Fig.

2.22 shows a perceptron with a bias value of 1, input values xi, weights wi−1, and a single output

y. While the perceptron is capable of classification (see Sec. 2.1.2), the original model fails on

non-linearly separable data (i.e. the XOR problem)[118]. The XOR problem was solved with

the introduction of the MLP (see Fig. 2.23).

The Multilayer Perceptron (MLP) was proposed by Rosenblatt in 1962 [149]. The MLP is

29Michael Levins discusses the appeal of non-neural networks at NeurIPS 2018 [147]
30The term “layer” does not appear in the original paper [117]
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Figure 2.22: A perceptron with three inputs xi, a bias term of 1, and an output y.

an extension of the perceptron which adds activation functions for capturing nonlinearity in the

input data, and one or more hidden layers. Hidden layers add depth to the MLP, which, beyond

simply adding more parameters (and thus, flexibility) to the model, allows for learning of hier-

archical features or input representations. Fig. 2.25 shows an MLP with a single hidden layer.

In the forward pass of backpropagation, this network takes some inputs x1, x2, ..., xn ∈ R
n, has

hidden layer neurons h1, h2, ..., hm for m ∈ Rm, and output neurons y1, y2, ..., yl ∈ R
l. For a given

sample with n input features, inputs are fed into the network, get multiplied by some initialized

edge weights wnm, are added to a bias term, and have an activation function applied. From the

hidden layer to the output layer these basic steps are repeated (multiply by the weights, add

the bias term, and apply the activation function) until the output layer is reached. At the output

layer, a loss function (Eq. 2.14) is applied to provide a measure of how far off the predicted

output is from the ground truth output. After computing the loss, we begin the backward pass

of backpropagation. We apply the chain rule many times successively in the reverse direction

in order to compute changes in all of the network weights and biases. In stochastic gradient

descent, this change of weights would occur with each sample in a training set. After succes-

sive forward and backward passes on all of the training inputs, ideally the MLP has learned an

input-to-output function which is representative of the dataset population.
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Figure 2.23: Classification results for a Multilayer Perceptron on a toy dataset from [7] which
is not linearly separable. The model accuracy is shown in the bottom right corner.

L2 =
∑

i

|yi − ŷi|
2 (2.14)

Figure 2.24: The L2 loss function.

Reservoir Computing

The Reservoir Computer (RC) is an easily-trainable Recurrent Neural Network (RNN) char-

acterized by a customizable (typically randomly drawn) reservoir layer. Reservoir Computing

has origins as a neuromorphic paradigm, primarily in its Liquid State Machine (LSM) variant

[150], which is spiking-based, as opposed to rate-based. Independently, both the spiking LSM

and rate-based Echo State Network (ESN) were formulated in the early 2000’s. We will con-

flate RC and ESN throughout this dissertation, as the rate-based version is our only point of

focus. The RC (ESN) has a discrete-time formulation and a continuous-time formulation.

Discrete-time RCs

The discrete-time formulation of the Reservoir Computer works by driving a sequence of in-

puts (i.e. over discrete time steps) into its randomly-generated reservoir, and then fitting a

linear combination of reservoir neurons to a labeled output. The reservoir should be suffi-

ciently sparse so that the input may “echo around” in order to generate sufficiently complex
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Figure 2.25: A Multilayer Perceptron with three inputs in the input layer with a bias of 1, four
neurons in the hidden layer, an output y, and activation functions (sigmoid).

reservoir representations. Here a maximally-rich set of representations allows for minimal bias

in the final output prediction. An illustration (Fig. 2.27 and Fig. 2.26) of the action of the

discrete-time Reservoir Computer is provided below, in two parts: the loading of a time series

u(t) and creation of activation states x(t); and the training of the output weights Wout. First, in

the loading phase, the activation states are generated by non-linearly transforming the input;

this is done across time – each activation depends on previous activations – using Equation

2.15. Next, a linear combination of the activation states is trained to the coefficients of Wout,

using Equation 2.19. The (trained) Reservoir Computer can now make predictions, by follow-

ing the same procedure, except without re-training the output weights.

Formally, given a discrete-time input signal u(n) ∈ RNu and target signal y(n) ∈ RNy , the

goal is to learn ŷ(n) ∈ RNy such that an error measure E
(
ŷ(n), y(n)

)
is minimized. The recurrent

reservoir dynamics are described by the following equations:

x̃(n) = tanh
(
Win[1; u(n)] +Wx(n − 1)

)
, (2.15)

x(n) = (1 − α)x(n − 1) + αx̃(n), (2.16)
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Figure 2.26: The loading phase of the Reservoir Computer.
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Figure 2.27: The training phase of the Reservoir Computer.
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[·; ·] is a column vector; Win ∈ RNx×(1+Nu); W ∈ RNx×(Nx). α, the leaking rate, exists in the range

of (0, 1].

Only the readout weights (Wout) are trainable. The readout layer is defined as:

y(n) =Wout[1; u(n); x(n)] (2.17)

We can rewrite the Equation (3) in matrix notation:

Y =WoutX (2.18)

Finally, we can solve this linear system with L2-regularized regression (with coefficient λ).

Wout = YXT
(
XXT + λI

)−1

(2.19)

A key parameter in the Reservoir Computer is the spectral radius, ρ, which is defined as the

maximum eigenvalue of the reservoir (connectivity) matrix W. Historically, a spectral radius of

ρ = 1 has been desirable for satisfying the Echo State Property, which is said to ensure that the

recurrent network has sufficient memory to capture the input dynamics whilst also possessing

a fading memory wherein such dynamics are forgotten over time and not amplified (i.e. akin

to the “exploding” and “vanishing gradient” problems). Moreover, a spectral radius of 1 (or

below) has been implicated in preventing model dynamics from passing over the edge of chaos

– that is, where the system bifurcates (see Sec. 2.1.3). However, recent work exploring the

spectral radius has found that larger values are tenable [151]. Another key parameter is α,

which is labelled as the leaking rate in the discrete-time RC formulation, and as the decay

rate (γ) in the continuous time formulation. α controls the extent to which the RC activations

rely on previous activations (i.e. at earlier time steps). In a sense, this is also controlling the

memory of the system, which thereby has an impact on prediction dynamics.
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Continuous-time RCs

We also consider the continuous-time formulation of the Reservoir Computer (CTRC), as

in [151]. This approach was originally devised by [152]. Here Eq. 2.15 is re-written as a

nonlinear ODE (ordinary differential equation):

ṙ(t) = γ [−r(t) + tanh ( M r(t) + σWin u(t) )] , (2.20)

where r(t) ∈ RN is the state of the RC at a given time t, and r(0) = 0T . ρ is the spectral

radius (maximum eigenvalue). γ is the decay-rate parameter. M ∈ RN×N is the adjacency

matrix describing the reservoir. σ is the input strength parameter. Win ∈ R
N×D is the input

matrix, and u(t) ∈ RD is the D-dimensional input time series [151]. To train this formulation

of the RC, we retrieve solutions of Eq. 2.20 for t = tlisten and then obtain r(t) and u(t) for

tlisten ≤ t ≤ ttrain. The goal, thereafter, is to determine an output matrix Woutq(r(t)) which will

replace u(t), forming a closed-loop system for making predictions [151].

ṙ(t) = γ
[
−r(t) + tanh ( M r(t) + σWin Woutq(r(t)) )

]
. (2.21)

Here q(r(t)) =
(
r(t)r2(t)

)T
, and Wout is found using Eq. 2.19 as in the discrete-time for-

mulation. To speak more of q(r(t)), this modification comes from [153], where it is used to

reconstruct attractors. A chaotic attractor (see Sec. 2.1.3) is fed as input into the CTRC, and

the trained attractor is tasked with continuing some number of next time steps – that eliminates

the production of mirror attractors, which, as [153] notes, tend to show up at high spectral radii,

past the edge of chaos (see Chapter 6). Another modification of interest to the CTRC which is

used on multifunctionality tasks (see Chapter 6) is the introduction of a blending parameter, α

(not to be confused with the leaking rate) [154]. Given two input attractor response matrices,

Xγ and Xβ, their data is blended according to α [154]:
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XC = (αXγ, (1 − α)Xβ) (2.22)

In [153], α = 0.5 is used. If α = 0 or α = 1, we would note that only one attractor is used to

train the RC. We employ this technique (i.e. with α = 0.5 as in [153]) in Chapter 6. The trained

Reservoir Computer is a dynamical system. Central to the study of Reservoir Computers,

therefore – in particular, their prediction dynamics – is the field of nonlinear dynamics and

chaos. We will discuss this in Sec. 2.1.3.

Trends in Reservoir Computing

A variation of the RC which has been recently popularized31 is the Physical Reservoir Com-

puter. Here a physical medium, ranging from a neuromorphic chip, to a nanomaterial con-

ducting array, to a bucket of water [155] can be used as a reservoir within a real-world system.

Another recent variation is the “Next-generation Reservoir Computer” (NGRC) [156]. This

paradigm moves the non-linearity of the reservoir to the output layer, and modifies the out-

put layer to act as equivalent to the summation of reservoir activation states. Whilst reported

chaotic time series prediction performance is similar to the Reservoir Computer, the NGRC re-

duces the number of hyper-parameters required in model training, validation, and testing. The

result is a more efficient RC which does not require a randomly-generated reservoir. Another

trend in Reservoir Computing is Structured Reservoir Computing. Instead of a purely ran-

dom reservoir, structural variations are imposed which improve RC efficiency or performance

[157, 158]. [159], for example, creates an RC which uses both an exponential distance rule

and long-distance connections inspired by prefrontal cortex white matter connectivity. [159]

finds that temporal processing of word input narratives – using Wikipedia2Vec – is faster with

the inclusion of the brain-inspired long-distance connections than without them. A final line of

approaches to mention is those which vary architectural features of the RC. Regarding the spar-

31This emphasis, subjectively, is coming from discussions with C. Gallicchio, P.F. Dominey, and other RC
researchers.
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sity of the RC adjacency matrix, for example, [160] finds that a sufficient sparsity of weights is

needed to allow for the reservoir to generate rich representations. Furthermore, high sparsity is

reported to be important for short-term memory of the recurrent connections. [160] also notes

that the role of sparsity in structured topologies is of immediate interest.

Other brain-inspired approaches

Brain-inspired approaches in ML tend to start from an existing paradigm, and then adjust for

one of three features: the model architecture, the learning rule, or the loss function32. In [162],

the authors alter the architecture of a CNN by adding a photoreceptor layer at the beginning

of the network. This layer mimics the transduction of light into electricity in primary visual

receptors of the primate brain. It is modelled after the ODE described in [163]. Their PR-CNN

(photoreceptor CNN), which is trained to predict retinal ganglion cell (RGC) responses from

movie stimuli, is found to perform more robustly across varying light levels, compared to a

CNN without the photoreceptor layer. In [164], the authors use Resnet-1p and ResNet-2p –

a CNN, and another with 2 parallel layers which split in the first layer and converge at the

last layer – and Contrastive Predictive Coding (CPC)33 to model neural recordings from the

dorsal (“what”) and ventral (“where”) pathways of mouse visual cortex. Representations of

the ANN models were compared with mouse brain data using RSA. One finding is that the

2p model is able to represent both ventral and dorsal neural representations simultaneously.

Moreover, the authors are able to induce one pathway to become dorsal by pre-training one of

the pathways on self-motion video data [164]. Lastly, in [166], the authors modify the objective

function of a CNN on an object recognition task by adding a “neural regularizer”; a term which

punishes deviations between the CNN representational Similarity Matrix (RSM) and the RSM

of monkey early visual cortex (V1). They find that CNNs which are trained to also mimic V1

achieve greater object recognition accuracies than those which do not.

32This is a paraphrasing of Joel Zylberberg’s words at Montreal AI and Neuroscience 2022 [161]
33CPC is a self-supervised learning technique which learns from unlabelled, sequential data by making predic-

tions on future samples, contrasting those with positive (correct future samples) and negative samples (i.e. noise).
The model learns to reduce similarities between negative samples and increase similarities to positive ones [165].
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Dynamical systems and chaos

Dynamics is the field of study dedicated to any system that changes over time: for example, a

fractal is an object which is self-similar at all possible scales – the famous Koch curve is pro-

vided below in Fig. 2.28 [10]. Dynamical systems can be broadcast into two types: differential

equations and difference equations34.

Figure 2.28: The Koch curve [9].

Fixed Points – A fixed point is a point wherein the variables of the system are unchanging

through time. If one were to start at a (stable) fixed point as an initial condition, the sys-

tem would remain at this fixed point. A stable (sink) fixed point is attractive, wherein small

deviations from it will return to it; an unstable (source) fixed point is repulsive, where any de-

viations will move away from its centre. A semi-stable fixed point is one which can take on the

behaviour of a sink or a source depending on the initial conditions of an incoming or receding

trajectory.

A classic example of a dynamical system is the logistic equation, which measures the

growth of an organism population. We can represent this as a differential equation:

34We will consider the former
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x

ẋ

Fixed Point

Figure 2.29: Stable fixed points (sinks) are in black, whereas unstable fixed points (sources)
are white-filled (adapted from [10]).

ẋ = rx
(
1 −

x
K

)
(2.23)

where x(t) is the organism population for some time t, r is the growth rate, and K is a

particular carrying capacity. We can also represent this as an iterated map:

xn+1 = rxn

(
1 − xn

)
(2.24)

Both differential equations and iterated maps are valid ways of representing dynamical

systems [10]. Let us consider the iterated map of the logistic equation. We can solve for the

fixed point analytically:

x∗ = rx∗(1 − x∗)

x∗ − rx∗(1 − x∗) = 0

x∗(1 − r(1 − x∗)) = 0

→ x∗ = 0 or x∗ = (1 −
1
r

)
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Figure 2.30: The logistic map.

where

lim
n→∞

xn = x∗ (2.25)

We therefore have the fixed points x∗ = 0 and x∗ = (1 − 1
r ) [167]. As r increases, the fixed

points become unstable, splitting into a 2-cycle at r = 3 (see Fig. 2.30) – this particular be-

haviour is referred to as a bifurcation. Notice also in Fig. 2.30 that at r = 3.5 there is another

doubling of the period; and that period-doubling continues at smaller intervals. This is indica-

tive of chaos. A nonlinear system is chaotic if it is (a) highly sensitive to initial conditions; (b)

aperiodic in its long term dynamics; and (c) deterministic [167].

Informally, a chaotic attractor satisfies the conditions for chaos, while also possessing

the following properties: First, all trajectories within the attractor remain in the space of the

attractor; Second, all trajectories sufficiently close to the attractor are drawn into the attractor;
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Figure 2.31: A 1-dimensional Lorenz chaotic time series.

Finally, it does not contain a proper subset for which the first two properties hold [167]. Some

famous attractors which are often used in Reservoir Computing are the Lorenz attractor and the

Mackey-Glass attractor [168, 169]. The Lorenz attractor, for example, was proposed in 1963

by Edward Lorenz to represent hydrodynamic flows for long-term weather predictions [170].

It has been canonical as a tool for understanding nonlinear dynamical systems and chaos. The

lorenz attractor can be represented as a series of three differential equations:



dx
dt = σ(y − x)

dy
dt = x(ρ − z) − y

dz
dt = xy − βz

(2.26)

Using fourth-order Runge-Kutta [82], we can construct a 1-dimensional chaotic time series

(Fig. 2.31). The three-dimensional attractor from Eq. 2.26 is visualized in Fig. 2.32.



2.1. Background 57

Figure 2.32: The 3-dimensional Lorenz attractor.
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2.1.4 Connectome-Inspired Machine Learning

Connectome-
Inspired

ML

A connectome is a wiring diagram representation of a macroscale, mesoscale, or microscale

brain network (see Sec. 2.1.1 for more on connectomes). Connectome-inspired Machine

Learning is an approach characterized by the use of connectomes to inform ML paradigms.

Connectomes and the hemibrain

Connectomes are useful for understanding brain function through physical constraints. While

structure alone is not sufficient for a comprehensive understanding of function [39], it provides

guard-rails and ultimately shrinks the space of potential functions. For example, in [171], a

connectome of the fly mushroom body is used to test the hypothesis that specific mushroom

body output neurons (MBONs) are involved in determining the valence (positive or negative

associations) of memories. [172] posits that connectome constraints should be paired with neu-

rophysiological and behavioural data in order to realistically capture function.

Connectomes are also useful for exploring brain dysfunction. There are potential avenues,

for example, in comparing differences in brain structure between experimental and control sub-

ject connectomes, and also for studying brain development, by taking connectome snapshots

at different developmental stages [173].
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The hemibrain is a publicly available connectome which comprises the majority of the fruit

fly brain [14]. It includes neurons in all of the major neuropils in Table 2.6, with comprehen-

sive coverage of the Central Complex. The hemibrain is made up of 21,734 uncropped neurons

and 4,456 cropped neurons, and contains 20 million synapses [14]. It was constructed by way

of three major steps: First, a (female) fly was dissected in 20 µm slabs, and imaged using a

Focused Ion Beam Scanning Electron Microscope (FIB-SEM). Next, the scanned slabs were

stitched together and individual neurons were segmented using flood-filling networks (FFNs)

– these were trained apriori on five billion voxels of ground truth data. Finally, synapse pre-

diction and proofreading were conducted using custom algorithms (totalling 50 person-years

of work) [14]. The resulting 3-dimensional volume is accessible via an application program-

ming interface (API) key, and is built into the Neuprint package [174]. Since the release of

the hemibrain, a connectome of the fruit fly larvae has also been released [175]. This connec-

tome contains 3016 neurons and 548,000 synapses in total. All synapses in the larvae brain are

accounted for.

Connectome-inspired models

In [176], the connectome of C. elegans is used to inform a deep Reinforcement Learning algo-

rithm (deep Q-learning, an extension of Q-learning, mentioned in Sec 2.1.2). The connectome

is mapped to a connectivity matrix, which controls actions made by the agent. [176] finds

that their model, when used across training episodes on a chemotaxis task, yields movement

matching C. elegans behavioural experiments. Moreover, when [176] introduces gap junctions

– spaces between neurons which do not require neurotransmitter release for signal transmis-

sion – into their network, they also find that changes in chemotaxis behaviour match those

of a related procedure conducted on C. elegans experimentally. In [177], the author creates

a Recurrent Convolutional Neural Network (RCNN) based off of the fruit fly visual system –

using connectome-based weights – for an object detection task. The network is trained using

video clips of objects moving across a fixed camera (i.e. with the DAVIS 2016 dataset), and
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then validated with light and dark bars moving across a fixed camera35. Surprisingly, when

compared to the same architecture with randomly-generated weights, only the connectome-

initialized model is able to recapture orientation and directional selectivity from both light and

dark bars. In [179], sections of approximately 30 neurons from macaque, marmoset, and hu-

man brain connectomes are used to impose structure onto numerous Reservoir Computers. The

authors compare their networks to a random formulation on memory capacity tasks. A mem-

ory capacity task is wherein the Reservoir Computer is provided with some time series input

and must reproduce this input under the influence of an increasing delay step τ – here the final

version of τ is called the Memory Capacity (MC). The authors, ultimately, find no significant

improvement compared to a random RC when using their connectome-derived models. In [91],

1015-node human connectomes are constructed by applying deterministic streamline tractog-

raphy36 to diffusion spectrum MRI data from 66 human subjects. From these, 1000 group-level

consensus networks are constructed and imposed onto the reservoir layer of RCs. The authors

report that their consensus RCs yield a reduced wiring cost compared to null models which

have been rewired by randomly swapping edge pairs (while retaining key network statistics).

Moreover, they find that the memory capacities (MC) of their consensus networks are improved

compared to the rewired models at a spectral radius of ρ = 1, or the edge of chaos.

The fruit fly nervous system

The fruit fly (Drosophila Melanogaster) nervous system fits approximately 200,000 neurons

[181] into a 3-5 millimetre body [182]. It features three stages of brain development prior to

adulthood: embryo, larvae, and pupa. The adult (insect) nervous system is comprised of the

CNS, PNS, and visceral nervous system (VNS) – see Fig. 2.33. The VNS contains the sto-

modeal and proctodeal nervous systems, which innervate the foregut and hindgut [183], and

also the ventral VNS, which innervates the spiracles (respiratory organs). Within the CNS is

35This task is consistent with elementary motion detector experiments on fruit flies [178]
36Deterministic streamline tractography is a technique for mapping white matter connectivity. It involves trac-

ing the 3-d orientation of nerve fibres to construct candidate pathways [180].
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the brain and ventral nerve cord (rather than a spinal cord). The ventral nerve cord mediates

various motor outputs [71]. The brain is comprised of the gnathal ganglia and cerebral ganglia.

The former innervates mouth parts, such as the maxillary palp and mandibles [184]. The latter

is broken into three regions: the protocerebrum, deutocerebrum, and tritocerebrum. The pro-

tocerebrum contains neuropils for vision, learning, and memory. The deutocerebrum contains

antennae and the olfactory system. The tritocerebrum links the rest of the brain with the nerve

cord and VNS [183].

Nervous System

CNS

brain

proto-, deuto-, tritocerebrum

nerve cord
VNS

stomodeal, proctodeal, ventral

PNS

sensory, motor

Figure 2.33: Divisions of the insect nervous system.

A list of major structures and neuropils are provided in Table 2.6. Within the Optic Lobe

(OL), which is postsynaptic to the retina, visual stimuli propagate from the lamina, to the

medulla, to the lobula complex, for higher order processing. The accessory medulla allows

light levels to assist the fly circadian rhythm [185]. In the Mushroom Body (MB), the calyx is

the main site of olfactory learning. The accessory calyx is thought to receive non-olfactory in-

puts [186]. The pedunculus carries Kenyon Cell axons to the protocerebrum. The vertical and

medial lobes contain mushroom body output neurons (MBONs). The Central Complex (CX)

integrates sensory stimuli and controls motor behaviour, and is comprised of a core (central

body), protocerebral bridge, connecting left and right sides37, and noduli, which are implicated

in stabilizing head direction [187]. The Lateral Complex (LX), comprising the bulb and lateral

37The adult fly brain is symmetrical and comprised of left and right analogues.
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accessory lobe, facilitates communication between the CX and motor areas [188]. The Ventro-

lateral Neuropils (VLNP) receive input from the OL and project into the lobula complex [189].

The Lateral Horn (LH) is a higher order olfactory center which is largely implicated in innate

olfactory behaviours. The Antennal Lobe (AL) houses Olfactory Receptor Neurons (ORNs) for

receiving odour inputs, and projects into the MB and LH. The Superior Neuropils (SNP) link

the MB to the CX, and it is suggested that they are linked to motor actions of the appendages

[190]. The Ventromedial Neuropils (VNMP) include the ventral complex and posterior slope.

The posterior slope consists of descending neurons (DNs) which innervate the neck and wings.

The Periesophageal Neuropils (PENP) surround the esophagus. There is evidence of sexual

dimorphism between fruit flies. For example, male drosophila brain areas for fruitless gene

expression – implicated in male courtship – are significantly enlarged [191]. [192], moreover,

finds that male flies have additional recurrent connections in the lateral horn (LH), accounting

for their distinct pheromone responses [192].

Fly vision and olfaction

Fly vision is of a lower resolution than humans [193]. The fly visual system is comprised of

the retina, lamina, medulla, and lobula complex. Early fly visual stages, from the retina to the

lobula plate, are referred to as the elementary motion detection circuit. This circuit has been

modelled as a series of Reichardt Detectors (see Fig. 2.34) [194, 195]. To illustrate the idea

behind Reichardt detectors (RDs), let us assume that a light source is moving from the left to

the right, and that this RD tracks the “right” direction of motion. The left and right cups at the

beginning of the RD are photoreceptors. The stimulus hits the left photoreceptor first. Focus-

ing on the left side alone, a time delay τ allows for the right photoreceptor signal to coincide

with the left one at the multiplier, M. Since the left and right signals are multiplied as soon as

possible, the resulting intensity is high. The right M node will have low intensity, since the

light source hit the left receptor first. The final output of the left M minus the right M will

be a strong stimulus, indicating that the light moved from left to right. Though RDs have his-
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Table 2.6: Neuropils of the insect (fruit fly) brain, from [2]

Supercategory Neuropil Supercategory Neuropil

Optic Lobe
(OL)

lamina Ventrolateral
Neuropils (VLNP)

posteriorlateral
protocerebrum

medulla wedge

accessory medulla
Lateral Horn
(LH)

lobula complex
Superior Neuropils
(SNP)

superior lateral
protocerebrum

Mushroom Body
(MB)

calyx
superior intermediate
protocerebrum

accessory calyx
superior medial
protocerebrum

pedunculus
Inferior Neuropils
(INP)

crepine
spur clamp
vertical lobe inferior bridge
medial lobe antler

Central Complex
(CX)

central body
Antennal Lobe
(AL)

protocerebral bridge Ventromedial
Neuropils (VNMP)

ventral complex
noduli posterior slope

Lateral Complex
(LX)

bulb
Periesophageal
Neuropils (PENP)

saddle
lateral accessory lobe flange

Ventrolateral
Neuropils (VLNP)

anterior optic tubercle cantle
ventrolateral protocerebrum prow

Gnathal Ganglia
(GNG)
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torically been the “go-to” for modelling early insect vision, it has been recently shown, using

connectome data, that there are tertiary structures along the ON/OFF (T4 and T5) pathways

which are more intricate than their explanatory capacity allows [195].

τ

M

τ

M

−

Figure 2.34: The Hassenstein-Reichardt Detector model (adapted from [11])

The fruit fly olfactory system contains the Mushroom Body, Lateral Horn, and Antennal

Lobe. The Mushroom Body (MB) – a homologous structure of flies, bees, crickets, grasshop-

pers, and locusts [196] – is essential for short-term memory capacity. It is also highly impli-

cated in associative learning [196]. The MB is comprised of thousands of Kenyon Cells (KCs)

which terminate in the calyx. The Lateral Horn (LH) is responsible for innate responses to

olfactory inputs and also the simultaneous integration of multiple stimuli sources (i.e. auditory

and olfactory) [197]. With its single network, the LH is able to characterize odour strength

in addition to whether the odour is attractive or repulsive, simultaneously [198]. The An-

tennal Lobe (AL) is the site where odors bind to Olfactory Receptor Neurons (ORNs)[199].

Fig. 2.35 showcases the olfactory system sequence, from ORNs to MB outputs. Olfaction in

the fly is well studied; though, many of the internal mechanisms are unknown. For example,

there are competing theories on the mechanism by which odors bind to receptor sites. One

such theory, the vibrational theory of olfaction, describes odor molecules as exhibiting quan-

tum effects, wherein a particular vibrational frequency is required for successful odor-receptor



2.1. Background 65

pairing [200]. Another theory, referred to as lock and key, estimates that the three-dimensional

conformation of each odour molecule characterizes its affinity for particular olfactory receptors

[201, 202, 203]. The fruit fly relies on olfaction to navigate its environment, find sources of

food, and identify potential mates [204]. There are approximately 1000 ORN neurons com-

prised of 50 separate types. Each type is best-suited for a particular odor molecule. After an

odor is received at the ORN, ORN axons of the same type project into the Antenna Lobe (AL)

glomeruli (see Fig. 2.35), then synapse with excitatory (cholinergic) or inhibitory (GABAergic)

projection neurons (PNs), and either end in the MB or travel into the MB before terminating in

the LH.

The olfactory capabilities of D. Melanogaster are well-documented. Male drosophila can

determine the relative age of females based on their pheromones alone [205]. [206, 207] re-

port that fruit flies are capable of “one-shot” olfactory learning; specifically in that they can

classify a new odor with the same accuracy as one which has been sensed many times previ-

ously. Learning in the mushroom body is sparse: odor representations here are combinatorial,

meaning that drosophila has much greater memory than would have been possible if storage

was one-to-one (i.e. one odor per neuron) [208]. Fruit flies also excel in predictive learning.

Extinction learning is a particular branch of predictive learning characterized by a capacity to

introduce and combine new contradictory information with existing knowledge (for example,

forgetting an existing response trigger in lieu of a replaced response). In drosophila, it has been

shown that the fruit fly is capable not only of adopting preference for a conditioned odor (one

which would not be attractive if not for its pairing with an unconditioned food source) in few

trials, but also extinguishing this previously learned memory and forming an integrated asso-

ciation as a result of the odor being re-conditioned on an unfavourable stimulus (shock) [209].

Regarding the learning mechanism, [210] have determined that dopaminergic neurons (DANs)

equate to an error function. Stronger synaptic connectivity of DANs represents a larger error

and results in an avoidance behaviour (i.e. in response to shock) [210]. The extent to which

such an error metric is compatible with ML algorithms, like backpropagation, is unknown.
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behaviour

MBON

AL

ORN

PNs

LH

MB

KCs

Figure 2.35: Anatomy of the fruit fly olfactory system [12]. ORN: Olfactory Receptor Neuron;
AL: Antennal Lobe; PNs: Projection Neurons; KCs: Kenyon Cells; MB: Mushroom Body;
MBON: Mushroom Body Output Neuron; LH: Lateral Horn. Created with BioRender.com.
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Fruit fly based machine learning approaches

In [13] (see Fig. 2.36), the authors use the fly olfactory architecture to construct a word embed-

dings algorithm (see 2.1.2). Specifically, they mimic principles of sparse coding38 as observed

in the Kenyon Cells (KCs) of the MB to generate combinatorial word representations. [13]

achieves comparable results with SOTA Transformer-based approaches, with less training time

and memory. In [207], a fruit fly-inspired version of locality-sensitive hashing (LSH) improves

similarity searches on numerous benchmarking datasets. Authors copy the olfactory ORN-to-

PN layout of 50 PNs projecting to 2000 KCs. In [193], a CNN based off of the Elementary

Motion Detector (EMD) circuit of the fruit fly is able to correctly classify individual flies from

a lineup of 10 males and 10 females. After training on over 20,000 fly images (for each fly),

the fly-based network achieves an F1 score of 0.75. This marks a 20-fold improvement over

the recorded human score39, but a slightly worse result than SOTA CNNs which do not have

fly-imposed constraints. In [177], fly direction and orientation selectivity is captured in a CNN-

based model only when explicit connectome data is used to initialize model weights40.

KCs

PNs

APL

Figure 2.36: The general architecture of the fly mushroom body. PNs: projection neu-
rons(PNs); KCs: kenyon cells; APL: anterior paired lateral neuron. Figure adapted from [13].

38In the fly olfactory system, a small number of Kenyon Cells respond to a given stimuli. This allows for
efficient representation of many different odours [211].

39Human observers were provided with a lineup of 20 fly images, and were asked to select an exemplar speci-
men.

40For more on this, please see Sec. 2.1.1
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2.2 Problem Statement

Structure provides a set of guard rails in order to steer function. In artificial neural networks

(ANNs), layer depth may over-parameterize models and lead to utilization of unnecessary com-

putational resources [212]. Likewise, networks may contain mostly unproductive neurons,

whereby sub-networks (10% to 20% of the original network size) retain similar performance

[213]. Network weight initializations, which are typically random, may have a profound im-

pact on overall model behaviour [164]. In Reservoir Computing, where reservoir weights are

static, structural features such as sparsity, small-worldness, network size, and weight position

can affect a model’s capacity to learn sufficiently complex input representations [160, 214, 91].

Biologically-imposed structure may be of value to ANNs. Biological neural networks

(BNNs) have been sharpened over generations of evolutionary pressures in order to solve vari-

ous tasks for ensuring survival and reproduction. The structure-function relationship in brains

is positively correlated [39]. Moreover, structural connectivity can be used to predict func-

tional connectivity [215]. While there is clear variation in structural connectivity both within

and across species [216], it is also suggested that there are structural rules: for example, al-

terations in connectivity in key regions can lead to cognitive dysfunction [37]. For ANNs,

brain-inspired ideas have, to this point, catalyzed numerous key advances (see Sec. 2.1.3).

In this dissertation, we ask whether explicit connectome41 structure or structural rules can

inform behaviours in ANNs which are beneficial for various machine learning (ML) tasks; also,

if brain networks can better capture biologically relevant behaviours than random networks.

We use a recent and comprehensive connectome of the fruit fly, Drosophila Melanogaster,

focusing on the olfactory system. For its small size, the fly olfactory brain has impressive

odour-discriminating abilities. It can distinguish partner ages by their pheromones [217], cre-

41See Sec. 2.1.4 for more on connectomes.
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ate new odour associations in “one shot” [218], track time-varying, chaotic odour plumes

[219, 220], and learn to extinguish previously learned shock-associated odours in few trials

[221]. Fly-inspired ML algorithms have also presented improvements in performance [207],

and run time and compute efficiency [13]. It has also been shown previously that explicit con-

nectome weights are necessary for capturing fly-based behaviours [177].

We construct explicit and rule-based connectome-derived Multilayer Perceptrons (MLPs)

and Reservoir Computers (RC). For the MLP we construct 800-neuron and 150-neuron sam-

pled models, each with hidden layer connectivity coming from key olfactory system neuropils:

the antennal lobe (AL), mushroom body (MB), and lateral horn (LH). We compare the mod-

els on an odour classification task in order to determine whether greater connectome sampling

translates into higher classification performance. For the RC, under the umbrella of Struc-

tured RC [159], we investigate impacts on chaotic time series42 performance and variance

from imposing explicit connectome structure and also connectome-derived features such as

sparsity, the distribution and position of weights, and the clustering coefficient. We also vary

the spectral radius, as in [225], in order to investigate a fly connectome’s capacity to capture

multifunctionality as is exhibited by the animal [226]. This work serves as a base case for the

larger question of whether – and also how – connectome-based architectures, learning rules, or

objective functions can influence model behaviours in a machine learning context.

2.3 Motivation

2.3.1 Structure impacts behaviour in the brain and in ANNs

Structure in the brain is directly aligned with behaviour [227, 39, 228]. For example, in [229],

local structures in white matter connectivity are linked to individually distinct behaviours and

cognitive functions across human subjects. Structure also imposes restrictions on the range of

42The RC achieves best-in-class performance on this task type [156, 222, 223, 224]
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functions exhibited by the brain’s biological neural networks (BNNs). This is intuitive: BNNs

exist in the physical world, where longer distances between neurons have an energy and time

cost. Structural constraints, above being restrictive, create efficiencies, so that an organism can

better adapt to their environment. Likewise, structure in neural network-based learning algo-

rithms constrains model dynamics, leading to significant changes in performance across task

types [230, 231, 232]. For the MLP, it has been shown that architectural aspects such as the

number of hidden layers and number of neurons per hidden layer can impact prediction perfor-

mance [232, 233]. In the RC space, Structured RC counters the widely-used random generation

of reservoir topologies. In [159], an exponential distance rule – using white matter connectivity

of frontal and posterior areas as specified in [234] – between reservoir neurons improves narra-

tive alignment times 43. It is an open question as to whether microscale connectome constraints

can grant functional benefits to MLPs or RCs.

2.3.2 Brain-inspired rules have helped in the past, and recent calls to

action

The history of ML is rife with inspirations from the brain and mind, from the perceptron

as an abstraction of the human eye [117], to CNNs as inspired by cat visual cortex [124],

to Thorndike’s principle of reinforcement applied to RL [128]. More recently, use of brain

representations (i.e. RSA [137]) for imposing regularization on a cost function have yielded

improvements in CNNs on object recognition tasks [166, 235]. Brain-inspired rules have im-

proved MLPs and CNNs for predicting neural responses in varying light conditions [162], and

in few-shot image classification [236]. In addition, numerous prominent researchers44 in ML

propose an “acceleration of progress” [116] of NeuroAI; or, of using Neuroscience principles

to inform future AI algorithms. They cite cognitive flexibility, efficiency, and adaptability in

43Specifically, [159] provides in-tact and scrambled narratives – using Wikipedia2vec embeddings – and
records the time it takes for the RC to revert to a baseline activity pattern once the in-tact narrative is reintro-
duced

44Yoshua Bengio, Yann LeCun, Blake Richards, Tim Lillicrap, Matt Botvinick, James Di Carlo, David Sussilo,
Konrad Kording, Jeff Hawkins, and Surya Ganguli among others.
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various environments as key advantages over current LLMs, en route towards a proposed “Em-

bodied Turing test”. [237], who has investigated random sampling from numerous population

distributions for generating the RC reservoir layer, calls for a structured approach instead.

More recently, this approach has been branded as Structured RC [159].

2.3.3 Power in small models

If the past decade of progress in AI tells a story, it is that “bigger is better”. LLMs are a promi-

nent showcase of the power of trillions of parameters [111]. However, in contrast to the very

large, the space of smaller, simpler models is important in ML for three reasons: First, small

models – of the order of thousands or tens of thousands of neurons – are approachable by in-

dividuals or small research labs. Small groups have distinct advantages in project formulation,

particularly in the construction of disruptive technologies [238]. Second, small models may

serve as base cases for more complex systems. In searching for foundational structural rules

which affect model behaviour, a smaller parameter space – by the very nature of its size – al-

lows for a higher chance of success. Like searching for a needle in a haystack, versus an island

of haystacks, it should be easier to find key principles in the space of the small. Conversely,

in oversimplified models it is possible to miss out on emergent principles of larger networks

[239]. Third, there is evidence that small models may approximate performance of much larger

models using a fraction of their computational footprint [213, 156, 222, 224, 223].

2.3.4 Explainability in connectomes, and in using tools from dynamical

systems and graph theory

A key issue in AI is explainability of models at varying scales [240]. Brain networks are inher-

ently more explainable than random networks: First, because, there is consistency (within some

confidence interval45) in the behaviours which emerge from structure, and dysfunctions which

emerge from alteration of that structure [37]. Second, because BNNs are physical systems,
45There are also, of course, individual differences in functional connectivity [241].
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which must deal with the particular constraints which are inherent to an external environment,

and which may be visualized and analyzed with imaging techniques. Third, because the brain

and mind sciences have uncovered cause-effect relationships between (functional) brain con-

nectivity and function or dysfunction [242]. Separate from brain networks, there is additional

motivation from using the suite of tools provided by graph theory and dynamical systems. With

Reservoir Computers, which each have the capacity to take on the role of a dynamical system,

there is an opportunity to understand the sensitivity or robustness of model learning to sets of

initial conditions. Moreover, because of the fixed structure of the reservoir, we can also capture

and characterize topological features based on predefined properties, such as small-worldness.

2.4 Objectives

2.4.1 Primary Aim

The primary goal of this work is to uncover functional advantages to machine learning algo-

rithms conferred from connectome microstructure (see Sec. 2.1.4) and also associated topo-

logical features. We consider two machine learning architectures: the Multilayer Perceptron

(MLP) and Reservoir Computer (RC). An advantage which we consider for the MLP is in-

creased classification accuracy. Advantages considered for the RC are improvements in time-

series prediction performance, measured with Mean-squared Error, robustness to variations in

performance coming from non-deterministic training parameters (i.e. Win), and a greater ca-

pacity for multifunctionality. Multifunctionality is defined as the ability of a single network

to accurately represent the trajectories of two or more time-series trajectories simultaneously.

That is, without retraining the network weights, and by instead varying the initial activation

states of the reservoir.
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2.4.2 Hypothesis

Hypothesis

Imposing explicit fly connectome structure onto ANN hidden layers improves MLP clas-

sification performance on a fly-inspired task; increases RC chaotic time-series prediction

performance across numerous widely-used benchmark datasets, namely the Mackey-

Glass, Lorenz, and Rossler time series; and results in an increased magnitude of RC

multifunctionality on the Seeing Double problem, as proposed by [225]. Moreover,

there exist topological features in the fly connectome which can confer some of these

listed advantages. Connectome features which we consider include network sparsity, the

clustering coefficient, weight positions, and the population distribution of weights.

2.4.3 Sub-Aims

Objectives

Explicit Structure

Topological Features Prediction Dynamics

O1 (Explicit Structure) – Determine the classification (MLP), time series prediction per-

formance (RC), and multifunctionality impacts from imposing connectome microstructure.

This is piggybacking off of previously observed findings that explicit connectome topology

is sufficient for extracting animal behaviours [177, 243], and that functional connectivity is
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mostly accounted for by structural connectivity [244].

O2 (Topological Features) – Determine the aforementioned advantages (for the RC) from

using connectome-derived structural features: sparsity, the clustering coefficient (C), and the

distribution and position of weights. It is known that the population distribution of sampled

weights for the reservoir layer can impact performance and variance [237] on a memory task.

The sparsity of the connectivity matrix may facilitate activation state richness [160]. While

[157] proposes that small-worldness is a performance-improving feature, [158] do not find any

significant contribution. [91] shuffles the weights of consensus RCs by randomly swapping

edge pairs (10 times per pair) while retaining network statistics (i.e. size, sparsity, node de-

gree sequence, and node-level ROI assignment). They report, among other findings, a reduced

wiring cost compared to rewired models, and improved memory capacity (MC) at a spectral

radius (ρ) of 1.

O3 (Prediction Dynamics) – Explore connectome-derived and (Erdös-Renyi) random model

prediction dynamics with varying key hyperparameters (i.e. the spectral radius, ρ) on the See-

ing Double problem [225]. This continues from [151], where it is determined empirically that

the prediction dynamics of a random Reservoir Computer cross the edge of chaos at ρ = 1.8.

2.4.4 Framework to address hypothesis

MLP comparisons46 – (Ch. 3) For our connectome-derived MLP, we vary the network size

by sampling from an ordered list of all neurons in the AL, MB, and LH ROIs. Order, per each

neuron, is determined by the number of synaptic connections with all other neurons in the sam-

pled regions. Values are sorted in descending order. We consider 150-neuron and 800-neuron

models. We evaluate model performance by measuring classification accuracy on a structured

46Please see Fig. 2.37 for a more compact summary of these points.
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odour dataset with 16 features and 4 output classes. Data corresponds to electronic sensor (e-

nose) readings in response to air, ethanol, acetone, and a mixture of gases injected into a 60

mL chamber. Each sensor corresponds to a particular feature.

RC comparisons – (Ch. 4) First, we compare time series prediction performance of an ex-

plicit connectome-derived RC (from the LH ROI) to a seeded random network on the Mackey-

Glass 17 dataset, while varying the training input sizes47. We also consider two temporal se-

quence types: one where training and validation sets are temporally separated, and one where

the two are intermixed (see Ch. 4). Models are evaluated by measuring the mean-squared er-

ror (MSE) between ground truth and predicted output time-series. (Ch. 5) Second, we use a

subtractive model driven framework. Starting from a biological null model (explicitly derived

from the LH ROI), we construct four models which each isolate and remove one connectome-

derived feature. Model S removes the connectome’s particular sparsity. Model D re-samples

its weights from a non-connectome distribution. Model P randomly permutes edge positions.

Model C alters the clustering coefficient, C, to match that of a randomly-generated graph.

We also compare these models to numerous randomly-seeded RC networks (called E models).

Evaluation (MSE) is conducted across training input sizes for the Mackey-Glass 17, Lorenz,

and Rossler chaotic time series. (Ch. 6) Third, we construct an Erdös-Renyi random network

and an LH mesoscale connectome-derived model. The connectome model is mesoscale as it

applies a synapse threshold, removing those neurons which are connected to fewer than 50

others. In this case, we construct different newly-seeded random models across independent

trials, and also as we vary key hyperparameters (the spectral radius, ρ, and the decay rate, γ).

We evaluate all models by their multifunctionality capacity on the seeing double problem (see

Ch. 6). We also vary ρ and trace prediction dynamics for both model types.

47Training input (TRIN) corresponds to the number of inputs in the training set. The total training set, including
training input and training output, is 2TRIN. We reserve 200 time steps for the validation set.



76
C
h
a
pt
e
r

2.
In
t
r
o
d
u
c
t
io
n

START

“Hemibrain”
Connectome

Olfactory ROI
(sorted)

MLP

800-neuron
MLP

150-neuron MLP

LH (explicit)
RC

Thresholded LH
(426 neurons)

threshold?

Compare to
CT-RC on

“seeing double”

FFRC

Compare to
RC on MG-17

FFESN

Investigate Structural
Features (MG-17,
Lorenz, Rossler)

vary topology
∆ weights

∆ sparsity

∆ clus-
tering

coefficient

Model S

∆ Weight
Distn.

Permute
Weights

Model C

Model D

Model P

Figure 2.37: We use this model-driven framework for testing our proposed hypothesis. MLP: Multilayer Perceptron; ROI: region of
interest; RC: Reservoir Computer; LH: lateral horn; FFRC: Fruit Fly Reservoir Computer; CT-RC: continuous time Reservoir Computer;
FFESN: Fruit Fly Echo State Network; MG-17: Mackey-Glass 17; Distn: distribution.



Chapter 3

A connectome-derived Multilayer

Perceptron for classifying odors

A disclaimer: inclusion of this paper and chapter

We include this chapter and corresponding paper (and refer to it throughout this disserta-

tion) mostly with the intention of weaving the particular narrative of the fly connectome-

inspired architectures which we have considered over the past four years. Beyond this,

we believe that there is intrinsic value in the (discussed) methodological limitations.

3.1 Introduction: deriving hidden layer weights from the fly

olfactory system

In this paper we alter the connectivity of an MLP by imposing connectome structure onto three

hidden layers. We sample from three olfactory ROIs of the hemibrain: the antennal lobe (AL),

mushroom body (MB), and lateral horn (LH). Sampling is conducted by placing neurons in all

77
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of these ROIs into a list, sorting in descending order by the number of synaptic connections

between each neuron and all others (inclusive of the three olfactory ROIs only), and selecting

the top n neurons. We construct 150-neuron and 800-neuron MLPs using this approach1. We

train and test each MLP on the “Gas Sensor Array Drift” dataset in order to classify four odour

classes: air, ethanol, acetone, and mixed gases [245]. Each odour sample has 16 input features

and 4 class outputs. Features correspond to sensor readings (in kΩ) from a metal oxide sensor

array. The sensors all sit inside of a chamber housed within a gas delivery platform. Our dataset

consists of 33 samples, and is augmented to a size of 33,033 by adding random gaussian noise

to all samples 1,000 times. All data except for the last 16 samples are used for training (75%)

and validation (25%). The last 16 samples are used for testing. We use the L2 loss for 100

epochs of training via backpropagation. We also employ dropout regularization (p = 0.9) and

a learning rate of α = 0.001. We hypothesize that using more connectome-derived weights will

improve classification performance on this dataset.

3.2 Related work

[246] constructs a spiking neural network (SNN) inspired by the fruit fly olfactory system. It

features the AL (50 neurons) and MB (2000 neurons) ROIs, and a single output. The model

employs a Hebbian learning rule. The authors pair an input odour with a shock – represented

by a single dopaminergic neuron – and then pair this odour with a second odour. They find

that the re-introduction of the second odour to the network causes aversive behaviour2, as

would be expected from the fly. In [220], an RNN paired with two adversarial MLPs – an

actor and critic, each with 2 hidden layers – is trained with RL to track odour plumes in a

simulated environment. The odour plume simulation is a particle based model from real-world

data. The agent exists in a two-dimensional space and can turn left or right as time increases.

It exists in one of three states: tracking, lost, and recovering. Out of 14 agents, the authors

1Actual network sizes are n = 164 and n = 710 neurons.
2They note that the firing rate of the output neuron decreases in response to the second odour.
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select randomly from the five top-performing plume tracking agents. Without imposing any

fly-based architecture or learning rules, the model is able to track sparse odour plumes akin to

fly responses. [247] constructs an RCNN which learns from video data – including 5 hours of

road test video clips, divided into a 3:1 training and validation set – to output steering controls

on a self-driving task. This task is supervised, with provided ground truth steering reference

labels. The authors use a schematic neural circuit (wiring diagram) of C. elegans [248] in

sensory neuron, interneuron, and motor neuron layers. Their model outperforms a CNN, but

neither a continuous time RNN or LSTM (Long Short Term Memory) network.

3.3 Corresponding paper

The following student paper, entitled “A Fully-Connected Neural Network Derived from an

Electron Microscopy Map of Olfactory Neurons in Drosophila Melanogaster for Odor Clas-

sification”, was published in IEEE Xplore as part of the IEEE 2020 Conference on Systems,

Man, and Cybernetics (SMC) [249].

3.3.1 Reprint statement

© [2020] IEEE. Reprinted, with permission, from Morra and Daley, A Fully-Connected Neu-

ral Network Derived from an Electron Microscopy Map of Olfactory Neurons in Drosophila

Melanogaster for Odor Classification, October 2020. In reference to IEEE copyrighted mate-

rial which is used with permission in this thesis, the IEEE does not endorse any of Western Uni-

versity’s products or services. Internal or personal use of this material is permitted. If interested

in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes

or for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to learn

how to obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest

Library, or the Archives of Canada may supply single copies of the dissertation.





The architecture of an ANN — the number of nodes
in each layer, the number of layers, and the layout of the
network (i.e. which nodes are connected, which pathways
route from input to output, and how weights change with
each iteration) — directs its performance and capabilities.
For example, the architecture of UNet — a “gold standard”
Convolutional Neural Network (CNN) for image segmentation
— allows for rapid and accurate segmentation of volumes of
biomedical images; however, it and other CNNs suffer from
poor generalization — they, for example, perform well with
one dataset, but struggle to generalize this performance across
other datasets with the same format (i.e. same input size, data
types, and output classes). Generalization (i.e. in this case, the
ability to classify data with accuracy across multiple datasets)
is a wide-spread issue with ANNs [8]. Another problem with
modern ANNs is that many samples are required for training
datasets — UNet, for example, requires 210 image instances
on training for 2-class segmentation of neuronal structures
and requires 10 hours to train using a Nvidia Titan GPU (a
high-performance graphics card) [9].

Our proposed approach is two-fold: Firstly, we wish to
use an ANN to assess the functionalities and architecture of
the FFNN — specifically, we want to create a “bottom-up”,
FFNN-derived ANN from the hemibrain EM volume and
look into its middleware to investigate how its structure could
lend itself to behaviours such as odor classification; Secondly,
we hope to use the odor-classifying abilities of the true
FFNN to create an effective odor-classifying ANN. Since we
require a FFNN-derived ANN to properly assess the fruit fly
“middleware” — a translated model of the fruit fly olfactory
circuit in ANN format — we first focus our attention (i.e. for
the scope of this paper) on the latter goal. We see potential
here for two key reasons: firstly, because we know that
fruit flies have excellent olfactory generalization; secondly,
because the sample size for fruit fly olfactory learning is
theorized to be smaller than modern ANNs (requiring tens of
samples instead of thousands of samples) [4][6].

Using the “FlyEM hemibrain” (a near-complete connectome
of the adult drosophila brain [1]), our proposed ANN prototype
derives its architecture — at present, hidden layer counts and
specified weight values — from the fruit fly olfactory system
and classifies odors with a test accuracy of 37.5% (see Results
and Discussion); it is, however, “fully-connected”, meaning
that each neuron in a given layer is connected to all neurons
in the next layer. In addition, other aspects such as intra-
layer connections — connections within a brain region (i.e.
in the same layer) — and positive and negative signalling (i.e.
GABAergic and acetylcholinergic pathways) are not present
in our prototype, but will be necessary in future iterations to
explore both of our primary research goals (see Conclusions
and Future Work). Eventually with these additions — among
others — we hope to evaluate future iterations of our FFNN-
derived ANN against similar competitors (see Fig. 1) with
respect to both generalizability and sample size.

In the next section of this document (Methodology), we de-
scribe the creation of our FFNN-derived ANN. In the “Results
and Discussion” section we showcase our current prototype,
which features 800 neurons from the hemibrain dataset [1]
that are sampled from the olfactory circuit — Antenna Lobe,
Mushroom Body Calyx, Lateral Horn [2]. In the “Conclusion
and Future Work” section we summarize the features we
have implemented in our FFNN-derived ANN and highlight
areas which have yet to be implemented or which require
improvements going forward.

Fig. 1. Simulated Fly (as illustrated in [10, Fig. 1C]) has three layers
(with weights ω1 and ω2 between layers): an input layer with 50 neurons, a
hidden layer with 2,000 neurons, and an output layer with a single neuron. It
also features an inhibitory mechanism (retrograde signalling): a virtual odor
propagates through the network to the mushroom body, then to the output
neuron — this neuron, if activated, sends an inhibitory response via the
inhibitory neuron, resulting in avoidance. This differs from our approach
in two ways: First, it creates a “top-down” representation of the FFNN
whereas our approach is directly translated from an EM volume; Secondly,
its functionality is a one-class “avoid” or “don’t avoid” response to an input
chemical, whereas our approach aims to classify multiple odors. [10]

Fig. 2. FFNN-derived ANN — A graphical representation of our current
FFNN-derived architecture. N = number of cell bodies in each layer, wn =
weight vector between layer n and layer n + 1, AL(R) = Antennal Lobe
(Right), CA(R) = Mushroom Body Calyx (Right), LH(R) = Lateral Horn
(Right). In our model, weights are initially randomized, then assigned a value
if the two cell bodies they connect with have a corresponding weight. Nodes
are fully-connected: weights are present between each neuron (in a given
layer) and all neurons in the next layer. Inputs are vectors of size 16 x 1,
outputs are of size 4 x 1 with 4 output classes in total.
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II. METHODOLOGY

A. Extracting neuron and connection data

From the hemibrain dataset [1], we extract neuron
body data: specifically, body ID values (presynaptic and
postsynaptic) and “weights” (i.e. the number of synapses
between the neurons). Each entry (which is translated
to a “neuron” or “node” in our ANN) is thus actually
a “connection-unit”; it contains a presynaptic neuron, a
postsynaptic neuron, and a weight value. Within each layer
(i.e. Antenna Lobe) we use the weight parameter to order
our nodes — from highest weight to lowest weight —
with the assumption (from [1]) that neurons with greater
numbers of synaptic connections should hold more relevance
in the neural circuit than those with fewer connections; this
ordering is important in our early prototypes (150 neurons
and 800 neurons), as only the “top” entries are featured in
these models. Between layers, we use the weight parameter
for pairs of presynaptic neurons — in one layer — and
postsynaptic neurons — in another layer — to fill in the
weights of our ANN. Once we have extracted all of the
neuron data, we export our “top neurons” to a spreadsheet.
We then convert that data into a pandas dataframe; finally,
we extract our FFNN-derived ANN architecture from the
dataframe into a pytorch model which can then be trained
and validated with an odor dataset [11][12][13].

B. Extracting and augmenting the dataset

We use the “Gas Sensor Array Drift” sample dataset from
the UCI Machine Learning Repository [13]. The dataset was
intended for measuring sensor drift — changes in sensor
responses over time — but for our purposes we are using the
data to classify odors by their sensor resistance values [14].
The sampled portion from this dataset1 features 16 channels
of input, each corresponding to a sensor resistance value
in response to one of 4 output odors/classes (air, ethanol,
acetone, or mixed)2.

The data was obtained from a gas delivery platform
facility within the BioCircuits Institute at University of
California San Diego. The delivery platform was controlled
by National Instruments LabVIEW software on a PC. In the
experimental setup, 16 metal-oxide semiconductor gas sensors
were organized into a sensor-array. The sensors included a
Ruthenium Oxide (independently and electrically-controlled)
heating line with semiconductor film over top of the input
electrodes; this was posted to a substrate (aluminum) and
connected to sensor package pins. Each gas was injected into
a 60 mL chamber which also housed the 16-sensor array.
To acquire a set of sensor readings for a given input gas, a
continuous flow system (computer-controlled) maintained a
flow rate of 200 mL/min (and temperature of 450 ◦C) across
the chamber and the response of the 16-sensor array was

1Available upon request, but no longer accessible in its original format
2Our dataset has fewer output classes than the currently-available dataset

measured (i.e. the individual sensor resistance values). [14]

The compatibility of this odor dataset with the true
mechanism of fruit fly olfaction is ambiguous at best. More
work (in future iterations of this prototype) is needed to
either identify a relationship between the responses of gas
sensors and olfactory receptor neurons or use a dataset with
stronger ties to fruit fly olfaction. As it stands, however, this
dataset is a suitable “first-step” for our FFNN-derived ANN
prototype in that it meets the criteria of being both related
to fruit fly olfaction — in that olfactory receptor neurons
and metal oxide sensors are both types of odor receptors
which receive and transmit electrical impulses — and useful
for benchmarking (i.e. classes are balanced, which ensures
that training is not skewed to one output). One caveat of
the dataset is that it is very small, with 33 samples in total
(8 instances of class 0 or “air”, 8 instances of class 1 or
“ethanol”, 8 instances of class 2 or “acetone”, 9 instances of
class 3 or “mixture”); because of this, we augment the data
by copying the entire sample set, adding random Gaussian
noise to the inputs, and appending the resulting data to our
existing data — we repeat this process for 1,000 iterations,
resulting in a total sample size of N=33,033. Before training,
the dataset is split into a training set (75% of the data), a
validation set (25% of the data), and a test set (16 samples)
— the train:validate:test ratio was chosen arbitrarily.

C. Creating our architecture and weights

Fig. 2 showcases our current FFNN-derived ANN
architecture, created from the top 800 “neurons” in the
hemibrain EM volume — neuron counts for each layer
and selected weights between nodes are directly translated.
Specifically, we observe 391 neurons in the Antenna Lobe
(right side), 224 neurons in the Mushroom Body Calyx (right
side), and 75 neurons in the Lateral Horn (right side). As we
are attempting to preserve structure from the EM map, we
designate regions in the hemibrain as “layers” in our neural
network. It should be noted that some right-side hemibrain
neurons are missing; moreover, all neurons from the left
side are missing (i.e. we are therefore not including any
bilateral neuron-neuron connections). We hope to incorporate
these remaining neurons after making our ANN weights and
architecture closer to that of the EM volume (see Conclusion
and Future Work).

Weights are initially randomized using a Gaussian normal
distribution (µ = 0) and then filled in (partially) with
values from the hemibrain dataset. The decision to leave
non-hemibrain weights as random values is non-trivial:
In our 800-neuron FFNN-derived ANN, we observe only
113 connections from the hemibrain dataset between
neuron units in all hidden layers (out of a total of 17,820
possible connections); as a result, if only hemibrain-derived
weights were present in the architecture then most of the
inter-layer connections and pathways would be “cut-off”
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from the input layer to the output layer — thus, we use a
fully-connected network to achieve a baseline of functionality.

D. Applying t-SNE to the dataset

We have applied t-SNE (t-distributed stochastic neighbor
embedding) to our dataset in order to reduce the
dimensionality of our output classes for the purpose of
interpreting training errors. After 5,000 iterations (perplexity
= 6) we observe independent clustering in 2 dimensions for
class 0 and class 1; however, class 2 and class 3 data are
clustered together, which indicates that we can expect some
misinterpretation between these class outputs during the
training and validation of our ANN in both 2D and higher
dimensions.

E. Preliminary tests with 150 neurons

In preliminary testing we considered the “top” 150 neurons
in the FFNN olfactory system, with counts of 55, 86, and 3
for the Antenna Lobe (right side), Mushroom Body Calyx
(right side), and Lateral Horn (right side) respectively. The
architecture for this ANN has 16 input nodes, 4 output nodes,
and fully-connected layers. Weight vectors are comprised
mostly of random values (only 5 weight vector entries are
derived from the hemibrain volume out of 1,632 total weights).

Fig. 3 showcases the corresponding training and validation
loss results. Loss is calculated as the sum-squared error
between predicted output and labelled output. The network
is trained on our odor dataset for 100 epochs [13]. In this
model (and with our 800-neuron model) we use dropout
regularization (p = 0.9) and a learning rate of 0.001 with
a learning rate decay of 5 after every 10 epochs. During
training, we observe that the network reaches a minimum
loss value of 0.189 after 20 iterations. Validation loss holds
to approximately 0.188 for all iterations.

In Fig. 4 we observe the testing accuracy for our 150-
neuron model. Specifically, for 16 test inputs the network
predicts an output class of “acetone” (class 2) in 13 instances
with only 4 of those predictions being correct. Moreover, for
2 test inputs the network predicts an output class of “ethanol”
(class 1) incorrectly. The overall test accuracy for the model
is 31.25%, which is just above the expected accuracy from
random prediction (25%).

III. RESULTS AND DISCUSSION

A. Classification results with 800 neurons

In moving from a 150-neuron model to an 800-neuron
model (i.e. incorporating a larger proportion of the EM
volume neurons and weights) we observe an improvement in
our odor classification results. Fig. 5 illustrates our training
and validation losses for the 800-neuron FFNN-derived ANN.
As with our preliminary tests the network is trained on a

4-class odor dataset (“air”, “ethanol”, “acetone”, “mixed”)
with 24,742 samples (75% of the total) for 100 epochs.
Validation is conducted on 8,275 samples (25% of the total)
for 100 epochs.

We observe that training loss decreases and arrives at a min-
imum value of 0.217 within the first 15 iterations. Validation
loss oscillates around 0.217. As training is conducted on a
much larger dataset — i.e. 24,742 training samples vs. 8,275
validation samples — the difference in training loss variation
(after reaching a minimum) vs. validation loss variation is as
expected; specifically, we would expect greater variation in
validation loss as a result of having a lower population of
validation samples to work with. Moreover, during validation
the weight vectors between layers do not change — thus, small
(and random) oscillations in loss values are to be expected.

Fig. 3. Training and validation loss for preliminary tests with a 150-neuron
FFNN-derived ANN. Loss is calculated as the sum-squared error between
expected and predicted output vectors at the end of each iteration.

Fig. 4. A confusion matrix for a 150-neuron FFNN-derived ANN on 16 test
samples (class 0 = “air”, class 1 = “ethanol”, class 2 = “acetone”, class 3
= “mixed”). X-axis and y-axis ticks correspond to predicted and true class
labels, respectively.
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Fig. 6 showcases the accuracy of our trained 800-neuron
FFNN-derived ANN on a test set of 16 samples (class-
balanced); specifically, we observe an accuracy of 37.5%
overall, which is well above the threshold of random
prediction (25%). In the figure we observe that there is 1
correct prediction for class 0, 1 correct prediction for class
1, 1 correct prediction for class 2, and 3 correct predictions
for class 3. Incorrect predictions are made for class 0 (5 in
total), class 2 (3 in total), and class 3 (2 in total).

Taking the t-SNE results into consideration, it may be
permissible to tolerate some of the incorrect predictions
between classes 2 and 3; however, as our goal is to first
incorporate more of the fruit fly EM volume architecture into
our model, we will re-evaluate this aspect in future iterations.

In addition to the training and validation results for our
current prototype, it should be noted that some previous
training and validation results for our 800-neuron model
yielded higher accuracies (i.e. 78.9% and 93%). However,
upon further review it has been determined that these results
were likely a consequence of the dataset being augmented
dynamically; specifically, the augmentation was being
conducted at runtime — as a result, with every training
session the model saw a new dataset (with some datasets
lending themselves better to its architecture and weights).
Although dynamic data augmentation could be useful in
future iterations to determine the generalizability of the
FFNN, it does not allow for consistency in comparison
between models; as such, we have since implemented a static
dataset and will use this going forward to assess future models.

B. Comparison between 150-neuron and 800-neuron models

Comparing the 150-neuron model to our 800-neuron model,
we observe a decrease in loss performance (0.189 in Fig.
3 vs. 0.217 in Fig. 5) and an improvement in test accuracy
(31.25% in Fig. 4 vs. 37.5% in Fig. 6). The decrease in loss
performance could be attributed to the size difference of the
weight vectors for each model; specifically, the 800-neuron
model — with over 16,000 additional weight parameters —
would be expected to have a higher minimum loss value
as there are more parameters to be adjusted. The improved
accuracy from 150-neurons to 800-neurons could be due to
the introduction of additional nodes in the final hidden layer;
with only 3 neurons in this layer for the 150-neuron model,
the jump to 75 nodes for the 800-neuron model may have
alleviated a “bottleneck”.

C. Learning rate and dropout regularization in our ANNs

In training and validation we maintain a dropout regular-
ization of p = 0.9 and a learning rate of α = 0.001 with a
learning rate decay of 5 for every 10 epochs. We have included
these parameters for two reasons: Firstly, in our work we are
prioritizing a biologically-derived architecture before looking

into the biological relevance of standard ANN functions or pa-
rameters; therefore we hope to achieve a baseline of function-
ality with our models before proceeding — i.e. we wish to add
more aspects of the fruit fly EM volume architecture before
looking at the bio-relevance of ANN functionalities. Secondly,
it has been argued that learning rates (within backpropagation)
may be implemented in biological brains, though there is no
direct evidence of their occurrence — thus, their inclusion is
biologically plausible, albeit not directly observed [15]. With
regards to dropout, the concept of using a proportion of the
nodes in a network during training classification is not unlike
the way in which fruit flies tag odors; specifically, in that not
all olfactory receptor neurons (i.e. input receptors) are required
for “smelling” of odors — rather, the activation of a small
number of odor receptors triggers an overall activation which
leads to the perception of “smell”. [16][17]

Fig. 5. Training and Validation results for our current FFNN-derived ANN
(800 Neurons, 33,033 Samples).

Fig. 6. A confusion matrix which showcases the accuracy (37.5%) of our
800-neuron FFNN-derived ANN for 16 test samples in 4 output classes (class
0 = “air”, class 1 = “ethanol”, class 2 = “acetone”, class 3 = “mixed”). X-axis
ticks correspond to predicted class labels; y-axis ticks correspond to true class
labels.
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IV. CONCLUSION AND FUTURE WORK

We have presented a FFNN-derived fully-connected ANN
prototype which preserves the per-layer neuron counts and
selected weights from an 800-neuron subset of the hemibrain
EM volume. Our model achieves functionality as an odor
classifier with above-random (37.5%) prediction accuracy
on a very small dataset (with only 33 original samples);
this is an improvement over our initial implementation with
150 neurons, where test accuracy was slightly above-random
(31.25%).

Although our ANN is functional as a FFNN-derived
prototype, there are many factors to improve upon before
attempting to further address our primary goals for this work:
Firstly, we need to add more neurons and weight values from
the EM volume. Currently, we use 800 neurons and 113
weight values from the FFNN — this iteration incorporates
more of the EM volume than our previous 150-neuron model;
however, thousands of neurons remain. Secondly, we must
figure out a way to better restrict the architecture of our
model. In our 800-neuron prototype we insert FFNN-derived
weights into their corresponding weight vector locations and
randomize all other weight values; but, in order to truly
create a “bottom-up”, FFNN-derived ANN, we should only
allow for EM-derived connections in the architecture —
one way to accomplish this is by assigning all non-FFNN
weights to 0 (though, this creates a new issue, wherein many
ANN pathways are cut-off). Thirdly, we must account for
intra-layer connections which are observed in the EM volume.
At present we divide our ANN into 3 hidden layers and only
map inter-layer weights from the EM volume. For intra-layer
connections, a future iteration of our ANN could include
recurrence; this, however, could present new implementation
challenges. Fourthly, our efforts would benefit from the use
of a larger dataset which bears greater resemblance to the
mechanism of olfaction in the fruit fly. The dataset used for
this work was much too small; moreover, the relationship
between metal oxide sensors (used in electronic noses) and
fruit fly olfactory receptor neurons is uncertain. Finally, our
FFNN-derived ANN does not yet account for excitatory and
inhibitory pathways (i.e. acetylcholinergic or GABAergic).
These can be implemented by further restricting the weights
such that they are only able to increase or decrease depending
on which pathway they reside in.

To summarize, we have two overarching goals with this
work: Our first goal is to explore the FFNN “middleware”
through the lens of a “bottom-up”, FFNN-derived ANN; Our
second goal is to create a FFNN-derived ANN odor classifier.
In this paper we have contributed mostly to our second goal;
that is, we have created a FFNN-derived (800-neuron) fully-
connected ANN odor classifier which achieves above-random
accuracy on a 4-class odor dataset. Moving forward, we hope
that by incorporating our previously-mentioned improvement
factors we will be able to use our ANN to evaluate fruit

fly behaviour from the lens of the FFNN middleware —
answering, for example, questions concerning the fitness of
the FFNN architecture for odor classification (and potentially
relating that to behavioural data).
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3.4 Discussion

3.4.1 Contribution

These findings appear to suggest that increasing the proportion of fly olfactory connectome-

derived neurons and associated weights improves classification performance on the Gas Sensor

Array Drift dataset. Beyond its result, this work serves as a proof-of-concept, showcasing

the idea and execution of looking to explicit fly brain structure as inspiration for improving

machine learning performance. A similar idea of using a C. elegans wiring diagram to inform

an RCNN has been implemented previously in [247].

3.4.2 Limitations

Although classification performance on a test set is higher for an 800-neuron connectome-

derived model (37.5%) versus a 150-neuron model (31.25%), it is possible, as mentioned in

the paper, that the size difference of the networks is responsible for the performance change3.

Differences also may not be significant, as we report the results of one test versus another, and

thus cannot generate performance statistics. Another limitation of this paper is a strong imbal-

ance between training and test samples: 33,033 (augmented) training and validation samples

and 16 test samples. However, if we take into account that the models are essentially over-

training to the 33 original samples (before the dataset is augmented), it is possible that the 16

test samples belong to a distinct population distribution. Furthermore, since the training and

validation sets contain essentially the same samples (with some random noise), this may ex-

plain the near-constant loss value observed in Fig. 3.

An additional limitation from this work is present in the architecture of the MLP mod-

els: namely, the connectome weights which are present make up a small portion of the total

3More neurons does not always translate to better performance on a test set [250, 251].
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weights. Moreover, these weights are “trained away”, as they only serve as an initialization.

With this said, it has been suggested that even random initializations matter for controlling

ANN behaviours [252]. Another architectural issue, which is inherent to the MLP, is that intra-

layer connections are not used. This restricts the network from many valuable connections,

or in other words, those connectome-based neurons that would be partnered to others in the

same ROI. Finally, although performance of the connectome-derived models are both better

than random chance, it is not explored in this work whether the connectome initialization of

weights is superior to an arbitrary (random) initialization. We would, therefore, in a future

iteration of this paper, construct MLPs of the same size, follow a model pipeline – complete

with model training, model tuning through hyperparameter search from a validation set, and

testing – and report the final test accuracies of all models.



Chapter 4

Placing brain-inspired constraints on an

Echo State Network

4.1 Introduction: implanting a connectome into a Reservoir

Computer

In this paper we investigate chaotic time-series prediction performance and variance impacts

from imposing explicit fruit fly connectome topology – using the hemibrain [14] – onto a

Reservoir Computer. In the paper, we refer to the RC as an Echo State Network (ESN)1. We

construct two models: the FFESN, and the ESN. The FFESN, as in [249], orders neurons based

on the number of synaptic partners in three olfactory ROIs (the AL, MB, and LH regions). Here

we select those neurons (N = 2, 639) from the lateral horn ROI only, construct a connectivity

1The ESN and RC, for the purpose of this dissertation, are interchangeable. However, in Reservoir Computing,
the ESN is a rate-based RC, whereas the Liquid State Machine is a spike-based RC.
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matrix of presynaptic and postsynaptic partners, augment the diagonal with ones2, normalize

the weights in [0, 1], and transfer this architecture into the reservoir layer as a reservoir matrix

MFF . A heatmap of MFF is provided below (see Fig. 4.1). The lateral horn, which is, for

example, implicated in innate olfactory learning, has a pre-existing structure which is well-

suited for handling chaotic, time-varying odour plumes [197, 219]. The ESN is a size-matched

(N = 2, 639) RC with weights randomly sampled from a uniform distribution x ∼ U(−1, 1).

The ESN reservoir matrix M is filled with sampled values, and then overlaid with a randomly-

generated mask of zeros (with a sparsity of 20% [160, 253]).

dx
dt
= βx(t) +

γx(t − τ)
1 + x(t − τ)n (4.1)

We train and validate both models on different subsets of the Mackey-Glass 17 dataset or

MG-17 (Fig. 4.2). The Mackey-Glass delay differential equation (Eq. 4.1) is a time-delayed

dynamical system which is a chaotic attractor for a time delay τ = 17. It was originally used to

study feedback control of blood cell production. In Eq. 4.1, β controls positive feedback and γ

acts as a damping coefficient. If β is large, the system tends towards chaotic dynamics, crossing

over the edge of chaos. We select MG-17 because it is widely used in the RC literature, and

thus results on this benchmark may be valuable to others in the RC community [156, 222].

We characterize MG-17 dataset sizes using TRIN, which corresponds to the input component

of the training set. We consider TRIN = 900 and TRIN = 300, with validation sets of 200

time steps each. In total, the training set sizes are 1800 and 600 time steps, respectively. We

also vary the sequence of training and validation sets: specifically, we use train-train-validate-

validate and train-validate-train-validate schemes. In hyperparameter selection, we vary the

leaking rate α and regularization parameter λ. We maintain a spectral radius of ρ = 1, with

the intention to uphold the Echo State Property (ESP). Mean-squared Error (MSE) is used to

train our models. We compute this loss between the predicted and ground truth time-series. To

2Diagonalization and normalization are carried into Ch. 6, and are departures from the connectome which we
acknowledge as design decisions. Normalization is altered to a width of [−1, 1] in Ch. 6.
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Figure 4.1: A connectivity matrix derived from the lateral horn ROI of the hemibrain [14],
which represents our FFESN model reservoir. Here i represents the index of each neuron N.
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Figure 4.2: The MG-17 attractor, characterized by a time-delay τ of 17.
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generate performance statistics, we train and validate each model 50 times.

4.2 Related work

In [13], the network motif of the fruit fly olfactory system is employed for constructing word

embeddings (see Sec. 2.1.2). The authors report that their fly-based network is capable of

performing similar to much larger models, such as BERTlarge, whilst using a fraction of the

computing footprint (see Sec. 2.1.4). In [177], the authors impose a connectome sampled from

the optic lobe (OL) onto a Recurrent Convolutional Neural Network (RCNN). They are able to

infer fly directional selectivity and orientation selectivity from using connectome weights, but

cannot capture this behaviour when using the same architecture, but with randomly intialized

weights (see Sec. 2.1.4).

[254] constructs a physical Reservoir Computer, comprised of organic electrochemical

transistors, for heart beat classification. They prepare the RC reservoir by surrounding a mix-

ture of poly(3,4-ethylenedioxythiophene) and hexafluorophosphate with an electrolytic solu-

tion, and apply a time-varying sine wave current at a set of four electrodes (their input layer)

in order to grow the network. For training, four classes of pre-processed heartbeat signals

(totalling 3000 heartbeats) – with unique time-varying signatures – are applied at the input

electrodes, and the resulting readout layer signal is acquired at four output electrodes. Outside

of the network, and on 80% of the data (the training set) the authors use linear regression to

solve for the output electrode coefficients which minimize the error between a linear combina-

tion of the output signals and the ground truth output signal. They multiply the remaining 20%

of the reservoir-generated signal with the trained coefficients to generate a prediction signal,

which is compared with the ground truth classes in a winner-takes-all approach3. Their model

achieves a test accuracy of 88%, and is able to differentiate between regular and arrhythmic

heartbeats in 91% of cases.
3Whichever signal signature the predicted signal is closest to is deemed the “predicted class”
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In our previous work, we created three connectivity
matrices: one for each of the major ROIs (regions of interest)
of the olfactory system — the antenna lobe, the mushroom
body calyx, and the lateral horn. We then implanted these
matrices into a Multi-layer Perceptron (MLP) with three
hidden layers (one for each ROI); here the ROI neuron
counts were used to specify the number of nodes in each
corresponding hidden layer, and the connectivity matrices
were used as the weight vectors between layers [10].
This approach was limiting for two reasons: First, the
discrete structure of the hidden layers prevented within-layer
connections (thus many weights were not included); Second,
because hidden layer weights would change during training,
the connectome-derived weights were not preserved. The ESN
addresses both of these issues: First, the entire connectivity
matrix (i.e. as opposed to three separate connectivity matrices)
is preserved within the reservoir; Second, the reservoir weights
are fixed (only the readout layer of the network is trainable).

Our contribution in this work is a set of performance
comparisons between a control model ESN and an
experimental model ESN — one which has had its reservoir
topology constrained by that of the fruit fly connectome;
we call this latter model the “Fruit Fly ESN” (FFESN).
Ultimately, we predict that the FFESN will achieve superior
performance to the control model on one or more variants of
a particular time-series prediction task (see Methodology).

In the next section (“Methodology”) we will further
describe the process of generating a connectivity matrix from
the fruit fly connectome; we will also formally describe the
ESN, the time series prediction task (and variants) considered,
our particular model classes, and our process for selecting
optimal hyperparameters. In the “Results and Discussion”
section, we will identify the best selected models (from
hyperparameter optimization) and present and discuss the
performance of these models. Finally, in the “Conclusion”
section we will summarize the results, present the project
limitations, and highlight directions for future work.

II. METHODOLOGY

A. Generating the Connectivity Matrix

Here we describe the process of creating our connectivity
matrix, which is used to impose a topological constraint
on our ESN reservoir by forcing a particular, connectome-
derived structure, as opposed to a randomly-generated
one. For the connectome we consider Janelia’s hemibrain
[11]. The hemibrain is the largest and most complete fruit
fly connectome reconstruction to date. It is an Electron-
Microscopy-derived 3-d volume (from a particular female
subject) which comprises over 25,000 neurons, each grouped
by a specific cell type and in their respective brain regions
of interest. To retrieve the hemibrain data we first access
the API through a generated key; next, we query the
hemibrain database to select all neurons and connections

within the olfactory system (the antenna lobe, mushroom
body calyx, and lateral horn); we then store all neuron
body IDs, all connections (i.e. from each neuron body ID
to all other neuron body IDs it is connected to), and all
“weights” between neurons. Here, weight is the number
of synapse-synapse connections between two neurons (as
originally described in [11]). From this point, we select only
those neurons which reside in the right lateral horn: this is
a simplification which we have opted for in order to reduce
training times of our control and experimental models.

With all connectivity information (neuron body IDs plus
the weights between all other neuron body IDs) for the right
lateral horn in hand, we generate the connectivity matrix.
This nxn matrix — where n is the number of right lateral
horn neurons — identifies all connections from a particular
body ID (indicated by the row index) to a particular body ID
(indicated by the column index). As previously mentioned,
the cell values in this matrix correspond to the number of
synapse-synapse connections between neurons (the weights).
Under an assumption that each neuron is “connected to
itself”, the diagonal of the weight matrix is filled with ones.
We also normalize the weights. In Figure 2 we present a
small subsection of the connectivity matrix.

B. The Echo State Network

We formally describe the network dynamics of the ESN
from [2]. Given a discrete-time input signal u(n) ∈ RNu and
target signal y(n) ∈ RNy , the goal is to learn ŷ(n) ∈ RNy

such that an error measure E

(
ŷ(n),y(n)

)
is minimized [2].

The recurrent reservoir dynamics (as previously specified in
[2]) can be described by the following:

x̃(n) = tanh

(
Win[1;u(n)] +Wx(n− 1)

)
(1)

x(n) = (1− α)x(n− 1) + αx̃(n) (2)

Here [·; ·] is a column vector; Win is a weight vector
between the input and reservoir layers (Win ∈ RNx×(1+Nu));

Fig. 2. A subset of the connectivity matrix used for this work which illustrates
the number of synapse-synapse connections (normalized) between neurons in
the fruit fly connectome (the hemibrain). Blank entries are zero-valued.
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W is the reservoir weight vector (W ∈ RNx×(Nx)); x(n)
contains the reservoir activations (x(n) ∈ RNx ); x̃(n) contains
the updated activations; α is the leaking rate, (α ∈ (0, 1]).

The ESN is trained only at the readout (output) layer. The
readout layer is defined as:

y(n) = Wout[1;u(n);x(n)] (3)

We can rewrite this in matrix notation:

Y = WoutX (4)

A standard approach is to solve this system with L2-penalized
regression (Ridge Regression):

Wout = YXT

(
XXT + λI

)−1

(5)

Here λ is the regularization coefficient [2].

C. Time Series Prediction

For a time series prediction task we consider the Mackey-
Glass (MG-17) dataset (Figure 3) [12]. This chaotic, 1-d
time series (describing physiological control systems) is a
conventional benchmarking dataset for comparison of ESNs
[13], corresponding to the following ODE [14]:

dx

dt
= βx(t) +

γx(t− τ)

1 + x(t− τ)10
(6)

Here, x(t) is the value of the Mackey-Glass time series at
time t, and [γ, β, τ ] are some real-valued constants. We use
τ = 17, which allows the series to exhibit chaotic behaviour
[14]. The objective of the time series prediction task for a
series of size T , given x(t) for t ∈ [0, 1, ...,m − 1], is the
correct prediction of x(t) for t ∈ [m + r,m + r + 1, ..., T ].
Here r controls how far into the future our model predicts;
m ∈ Z+ and r ∈ Z+.

Consider a subset of the Mackey-Glass dataset: specifically
x(t) for t ∈ [0, T ]. We define the training input for this
dataset (on a time series prediction task) as the subset
[0, A], A << T ; here we consider A = 300 and A = 900. For
these two training input sizes we will also select from two
train-validate split variants: we will refer to these as “Variant
A” and “Variant B”. The Variant A (as in [15]) train-validate
split follows a train-validate-train-validate ordering whereby
the training input time series is followed by the validation
input time series, and then the training output time series
is followed by the validation output time series. Here the
inputs and outputs for each set must be the same sizes;
moreover, we select the majority of the data for training
(input and output). The Variant B train-validate split follows
a train-train-validate-validate ordering, where training output
follows training input and validation output follows validation
input. Figure 4 illustrates these split variants. A distinction

between the two variants lies in their perceived difficulty;
specifically, for a particular training input size A, we note
that Variant A requires prediction of values which are far into
the future as compared to Variant B — we therefore would
expect poorer performance from both models for the former
variant.

D. Two Classes of Models

We consider two classes of models: the Fruit Fly Echo
State Network (FFESN) and the Echo State Network (ESN).
Both are identical with the exception of the topology of their
reservoirs. The ESN (as previously defined in subsection B)
serves as a control model: it has a fixed, random reservoir
of 2,639 neurons, with all values drawn from a uniform
distribution over [0, 1). As in [15], a mask of 0’s is applied to
impose a sparsity of 20%; the locations of 0 elements in the
mask are determined by comparing the designated reservoir
density (0.2) with a 2-d array filled with values sampled from
a uniform distribution over [0, 1). By convention, we apply
the recommended spectral radius (ρ) value of 1 to retain
the Echo State Property (ESP) [16]–[18]. To ensure that
our ESN reservoir is fixed through all iterations, we enforce
a particular random seed. The FFESN (our experimental
model) has a fixed reservoir derived from a connectivity
matrix, as described in subsection A. As with the ESN, its
reservoir has 2,639 neurons. The FFESN has a sparsity of
5.7%. To implement all models we use the easyesn package
(operated under the MIT license) [15].

E. Hyperparameter Selection

Given the FFESN and ESN classes of models, for each
of the training input sizes and train-validate split variants
(described in subsection C of this section) we wish to
identify the best-performing models (of each class) for each
task. We therefore optimize the hyperparameters [λ, α] for
each task-specific model class using a grid search with
λ ∈ [0, 1], α ∈ (0, 1]. The leaking rate, α, determines the
contribution of the previous and current reservoir activations
on the current reservoir activation (see Equation 2). The
regularization coefficient, λ, determines the magnitude of the
Ridge Regression penalty (see Equation 5).

Fig. 3. The “Mackey-Glass” (MG-17) chaotic time series.
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For each training input size (900, 300) and train-validate
split variant (A, B), we train and validate a population of
models with varying hyperparameters. From this population
of models we then select the best performers and choose
their specific combination of hyperparameters for each class
of model (FFESN, ESN). For a given split variant and training
input size, we then repeatedly train and validate our chosen
models 50 times in order to generate 50 time series predictions.
Finally, for a performance metric we consider the Mean-
Squared Error (MSE) between each best-model prediction time
series and the ground truth time series; we report a 95%
Confidence Interval (CI) around each MSE (see Table I). The
Mean-Squared Error is defined as the following:

MSE =
1

n

n∑

i=1

(y(ti)− ŷ(ti))
2, (7)

where n is the number of time steps; y(ti) is the labelled
output at time ti, and ŷ(ti) is the predicted output at time ti.

III. RESULTS AND DISCUSSION

A. Time Series Prediction (Variant A)

For Variant A we consider training input sizes A = 900
and 300. For A = 900 we select the first 2000 discrete
time series points from the Mackey-Glass dataset. We assign
training input and output sets as x(t) for t ∈ [0 : 900]
and [1000 : 1900], respectively; validation input and output
sets are x(t) for t ∈ [900 : 1000] and [1900 : 2000].
We retain this train-validate sequence for A = 300 and
again use 200 time series points in the validation set (the
rest is used for training). After performing hyperparameter
optimization, for A = 900 we select [α, λ] = [0.1, 0.0024]
for the FFESN and [α, λ] = [0.2, 4.53E-05] for the ESN; for
A = 300 we select [α, λ] = [0.1, 0.0024] for the FFESN and
[α, λ] = [0.2, 0.0024] for the ESN.

Figures 5-8 illustrate our best-model predictions and
prediction errors on the validation set for 50 train-validate
iterations; here we consider training input sizes of 900 and
300 (Variant A). In Figure 5 (top subfigure) we observe (for
A = 900) that the FFESN better captures the two peaks in
the original data. In the bottom subfigure of Figure 5 we
observe that the ESN CI is much wider than the FFESN CI.
Intuitively, these results are congruent with the error-based
plots in Figures 6 and 7: In Figure 6, it is apparent that for
A = 900 the FFESN MSE is lower than the ESN MSE;
the distribution of errors is also narrower. In Figure 7, for
A = 300 again we see a tighter distribution of errors with
the FFESN, but also report similar MSEs. Figure 8 elucidates
our findings from the directly preceding figures: in summary,
for 50 train-validate iterations the FFESN significantly
outperforms the ESN for A = 900; importantly, the FFESN
also yields a fraction of the ESN’s variance (in MSE) for
both training input sizes (A = 900 and A = 300).

Fig. 4. The two variants of train-validate split considered in this work (in
this case, for a training input size of A = 300).

Fig. 5. Time series predictions (Variant A) for the last 100 steps of a portion
of the Mackey-Glass dataset (for A = 900 and 300, respectively from top
to bottom). The green and orange dotted lines around the prediction curves
(blue and red lines) denote their 95% Confidence Interval margins.

Fig. 6. A histogram illustrating the Mean-Squared Error for 50 iterations of
best-model (FFESN and ESN) predictions on the validation set (Variant A).
Here we consider a training input size of 900 time steps.
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TABLE I
SUMMARY OF COMPARISONS BETWEEN EXPERIMENTAL (FFESN) AND CONTROL (ESN) MODEL CLASSES

A = 900 (training input size) A = 300 (training input size)

Variant A Variant B Variant A Variant B
FFESN ESN FFESN ESN FFESN ESN FFESN ESN

Best λ 0.0024 4.53E-05 0.00127 0.0357 0.0024 0.0024 0.189 1
Best α 0.1 0.2 0.2 0.6 0.1 0.2 0.1 0.2
MSE 95% CI [0.042, 0.043] [0.046, 0.051] [0.016, 0.017] [0.013,0.025] [0.0048,0.0057] [0.0022, 0.0067] [0.0041, 0.0042] [0.0049, 0.0062]
MSE Variance 3.76E-08 1.46E-06 4.89E-08 9.03E-06 5.21E-08 1.24E-06 1.36E-09 1.03E-07

† Bold values indicate the (significantly) best-performing or lowest-variance model for particular train-validate split variants.

B. Time Series Prediction (Variant B)

For the Variant B train-validate split again we consider
large (A = 900) and small (A = 300) training input sizes. As
in Variant A, for A = 900 we select the first 2000 Mackey-
Glass data points. In contrast to Variant A, here the first 900
discrete time steps are for training input and the next 900
steps are for training output; following this, the next 100 steps
and remaining 100 steps are reserved for the validation input
and output, respectively. This train-train-validate-validate
split is maintained for A = 300, with the only difference
being that there are 800 time series points in total (instead
of 2000). After performing hyperparameter optimization, for
a training input size of 900 we select [α, λ] = [0.2, 0.00127]
for the FFESN and [α, λ] = [0.6, 0.0357] for the ESN; for
300 training inputs we select [α, λ] = [0.1, 0.189] for the
FFESN and [α, λ] = [0.2, 1] for the ESN.

Figure 9 provides an illustration of the prediction
performance of the best FFESN and ESN models for 50
train-validate iterations on the validation set for Variant B.
In the figure we observe that for 900 training inputs, whilst
there is no significant difference in prediction performance,
the variance of the FFESN is a fraction of that of the ESN.
For a training input size of 300, we observe that the FFESN
outperforms the ESN significantly and also has a fraction of
the MSE variance. Overall, this complements the results for
the Variant A train-validate split, suggesting that the FFESN
either outperforms and has lower variance than the ESN, or
simply has lower variance than the ESN.

Table I summarizes the results from Figures 5-9. It also
includes the optimal hyperparameters for each model class
on a particular train-validate split (i.e. A or B) with a
certain training input size (900 or 300). Importantly, from
this table it is evident that for all of the train-validate split
variants and training input sizes we observe an approximately
hundred-fold decrease in MSE variance for the FFESN
class of models (as compared to the ESN class of models).
We also observe that the FFESN significantly outperforms
the ESN (outside of two standard deviations of the mean)
in the A = 900, Variant A trials and A = 300, Variant B trials.

From our results, the observed reduction in variance from
the FFESN is surprising. It is particularly of importance as

Fig. 7. A histogram showing the MSE for 50 iterations of best-model (FFESN
and ESN) predictions on the validation set (Variant A). For this plot we have
used a training input size of A = 300 time steps.

Fig. 8. For Variant A, these boxplots show the Mean-Squared Error for 50
trials of predictions on the validation set for the FFESN and ESN (training
input sizes are A = 900 and A = 300).

Fig. 9. For Variant B, these boxplots show the MSE for 50 trials of validation
predictions for the FFESN and ESN with training input sizes of 900 and 300.
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high variance is a known challenge for ESNs [19]. To consider
a potential explanation for this outcome, we intuit that the fruit
fly brain retains a topological structure which (likely as a result
of selective evolutionary pressures) favours consistent output
responses (i.e. low variance); this idea is not unlike current
theories regarding brain modularity as a result of evolutionary
pressure [20]; however, at this stage it is purely speculative
and remains an open question.

IV. CONCLUSION

In summary, we have provided experimental evidence
supporting a significant (roughly 100-fold) reduction in
variance in conjunction with similar or improved performance
metrics after imposing brain-derived topological restrictions
on an Echo State Network. Specifically, after hyperparameter
optimization of the experimental (FFESN) and control (ESN)
classes of models on two train-validate split variants — each
with two training input sizes considered — we have observed
that the FFESN either significantly outperforms the ESN with
greatly reduced variance; or yields comparable performance
(not significantly different) to the ESN while maintaining
a significant reduction in variance. With our results we
have validated the initial proposition that the FFESN would
outperform the ESN in a time series prediction task — that
is, for a particular dataset, training input size, and split variant.

To extend our previous discussion above, it is apparent that
some particular aspect of the topological structure of the fruit
fly olfactory brain is capable of contributing to a reduction
in ESN variance (and a performance increase); however, we
do not yet know which specific feature is responsible. As a
next step, we therefore propose an investigation into three
structural components of the fruit fly neural network and
their contributions to ESN performance (and variance): small-
worldness (i.e. the clustering coefficient) [21], sparsity, and
network weights. Here we would create three experimental
models (one for each aspect). As another direction for future
work, a study on the impact of connectome topology on ESN
training efficiency would be worth considering; primarily
because the fruit fly is an efficient learner [7], [8]; but also
in light of recent work in the Reservoir Computing space on
“Next Generation Reservoir Computers”, where [1] reports
similar performance to conventional Reservoir Computers but
with reduced computational requirements (shorter training
time, lower data requirements).

Speaking to one of the inherent limitations of this work,
it should be noted here that whilst all of the right lateral
horn neurons are present in the hemibrain, future iterations
of this work — wherein we would hope to use the complete
olfactory neural system — would be missing a portion of
neurons which make up the network topology; for example,
only 83% of right antenna lobe neurons are mapped within
the hemibrain [11]. To mitigate this we will strive to only
consider ROIs with some tolerated level of trace completion.

Overall, with this work we have presented a particular
set of results which can serve as motivation for looking
towards biological brains to yield performance improvements
in a given class of machine learning models; moreover, from
our results we wish to facilitate further lines of comparison
between biologically motivated, topologically-constrained ma-
chine learning models and their conventional counterparts.
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4.4 Discussion

4.4.1 Contributions

We find that imposing explicit connectome topology onto the reservoir layer of an RC im-

proves time-series prediction performance on size and training sequence variants of the MG-17

dataset. For TRIN = 900, the FFESN achieves significantly improved performance on train-

ing sequence variant A. For 300 training inputs, the FFESN achieves significantly improved

prediction performance on variant B. We observe no significant difference in performance for

TRIN = 900, variant B, or TRIN = 300, variant A.

We also find that imposing connectome weights onto an RC reduces variance. The FFESN

yields significantly reduced variance across all validation sets. The reductions in variance

would suggest that the fruit fly connectome is structured in such a way that it is robust to

input-to-reservoir weight (Win) fluctuations. However, looking ahead, it should be noted that

variance benefits conferred by the connectome model do not last in repeated experiments, or

across different datasets (see Ch. 5).

4.4.2 Limitations

These findings are tempered by three setbacks: First, only one class of random model (i.e.

one random seed) is used to compare the ESN to the FFESN. While this does allow for fair

comparisons between the FFESN and a “snapshot” of what one could see with the random RC,

more of these snapshot comparisons would further ground the findings. Second, regarding the

significance of the observed differences, it should be noted that judging significance by observ-

ing overlap between confidence intervals is more of a “rule of thumb”, and is less rigorous than

using a statistical test [256]. Third, the spectral radius (ρ), which is a key parameter in con-
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trolling model dynamics, is held at 1 (in the ESN) for all comparisons. Varying this parameter

would allow for more model flexibility, and would also provide a more realistic assessment for

RC practitioners. While the Echo State Property is held at ρ = 1, recently it has been shown

that dynamics may be non-chaotic at higher ρ values [257].

This work is, moreover, limited in scope. It considers two size-variants of MG-17, and

two train-validate variants within those, for a total of four sets of comparisons between the

models. While these preliminary findings are interesting, here it would be valuable to extend

the methodology to include more datasets, in order to explore the generalizability of the fruit fly

connectome-based model. In the next chapter, we will incorporate other well-known chaotic

attractor systems, including the Lorenz and Rossler attractors (see Sec. 2.1.3). Another way in

which scope is limited is in the models being compared. It would be valuable to consider not

only a full connectome-derived model and its random analogue, but also structural variations

of these, so that we may determine if any topological features of the fly brain can construct

advantageous learning representations, at least more so than an arbitrary or random network.



Chapter 5

Isolating structural features from the fly

connectome

5.1 Introduction: extending previous work and removing con-

nectome topologies

In this paper we expand on the findings from Ch. 4 by comparing a connectome-derived

RC against multiple random RC models, and across benchmark chaotic time series datasets.

We furthermore exploit connectome-based topological features in order to construct feature-

subtracted models. We hypothesize that explicit connectome fruit fly topology is well-suited to

chaotic time series prediction, relative to a random topology; and that there exist key structural

elements of the topology which may be isolated for their impact on prediction performance.

We consider three chaotic time series datasets: Mackey-Glass 17, Lorenz (Sec. 2.1.3), and

Rossler [258]. The Rossler system, a set of three ordinary differential equations (Eq. 5.1), is

provided below. We consider a = 0.2, b = 0.2, and c = 5.7 as in [259].
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dx
dt = −y − z

dy
dt = x + ay

dz
dt = b + z(x − c)

(5.1)

As is done in Ch. 4, we use the lateral horn ROI of the hemibrain connectome. However,

here we search the hemibrain – using the Cypher query language [260] – for all neurons which

connect to all other neurons in the right LH ROI. We then use NetworkX [261] to construct

an adjacency matrix directly from the resulting query array. The resulting matrix size is 4,286

neurons. This comprises our null model, Model N. From Model N, we construct four mod-

els with particular structural features removed1: Model S (Sparsity), Model D (Distribution),

Model C (Clustering), and Model P (Position). Starting from Model N, we create Model S

by increasing the density to 20%. This is done by bootstrapping the connectome distribution

of weights, sampling from this distribution, and assigning values to random zero entries. For

Model D, starting from Model N, we replace all non-zero values with those sampled from a

uniform distribution. For Model P, from Model N we permute (row-wise and column-wise) the

non-zero entries of the connectivity matrix. For Model C, starting from Model N we compute

the clustering coefficient, C, using NetworkX.average_clustering [261]. If C is lower than that

of a corresponding random model, we re-wire the model by adding synapses to intermediate-

to-high degree nodes in the network, which raises C to be in line with this model. We also

consider a size-matched RC, Model E, which is constructed as in Ch. 4 (see Fig. 5.1). Fur-

thermore, we create additional models, Model ED, ES, E3, and E7. Models E3 and E7 use

different spectral radii (0.3 and 0.7, respectively). Model ED matches the width of the null

model, fitting values in [0, 1] instead of [−1, 1]. Model ES is a re-seeded version of Model E.

We train and validate Models N, S, D, P, and C on training input (TRIN) size variants of

1By “removed, we mean to replace a connectome-derived feature with an appropriate RC analogue. For
example, replacing connectome weights with those sampled from a uniform distribution for Model D.
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Is C < 0.5?
Sample from
Conn. Distn.

Add to
intermediate-

high degree node
DONE

Compute C

Figure 5.1: A routine to create Model C from Model N.
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the MG-17, Lorenz, and Rossler time series with an 83:17 split (as in variant B of Ch. 4)

between training and validation sets. Models ED, ES, E3, and E7 are trained and validated

on the Mackey-Glass time series only. We perform hyperparameter selection on the validation

set, varying the leaking rate α ∈ [0, 1] and regularization coefficient λ ∈ [0, 1E + 03], selecting

the instance of each model class which exhibits the lowest Mean-squared Error (MSE). Each

model undergoes training and validation in 30 separate trials, so that statistics of the validation

scores may be generated.

5.2 Related work

Regarding sparsity in Reservoir Computing, in [160], a 20%-dense reservoir is considered

optimal compared to other weight densities. The authors mention that sparseness can lead to

a greater richness of reservoir activations. 20% sparsity is also considered by default in the

easyESN package [262]. [157] finds that small-worldness can have a significant impact on RC

time series prediction performance – in particular, on the Mackey-Glass time series. [158],

however, reports that a small-world reservoir has no additional model flexibility compared to a

network which is not constrained to small-worldness. The parent weight distribution has been

varied previously in [237]. The authors consider uniform, normal, and arcsine distributions,

and find that an arcsine distribution results in the best RC performance for the task of chaotic

time-series prediction. The authors also mention that this is likely a confounding effect from

the altered sparsity of the model.

5.3 Corresponding paper
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example, the authors construct their reservoirs by “scaling up”
small (approximately 30-neuron) cross-sections of macaque,
marmoset, and human brain tissue, respectively; with their
RC models they are able to achieve similar performance
on memory capacity and sequence memory tasks compared
to a vanilla RC. In [7], patterns of human brain activity
from diffusion-weighted imaging are used to create functional
1015-node consensus RCs; the authors report that their brain-
inspired models have a lower “wiring cost” compared to their
rewired counterparts, and that these achieve improved memory
capacity at the edge of chaos – i.e. a spectral radius (ρ) of 1.

In line with these works, herein we adopt a two-part
strategy for imposing explicit brain structure onto the rate-
based flavour of RCs, the Echo State Network (see Fig. 1).
By “explicit”, we refer to a one-to-one mapping of neurons
onto an RC reservoir; this is distinct from, for example, the
scaled up mapping in [6]. In the first part of our approach, we
draw from a completely-mapped brain region of interest (ROI)
to create our derived reservoir. In the second part, we extract
topological features from the reservoir in order to determine
their – and the original reservoir’s – impact on (predictive)
performance. We use an early principles, mesoscale brain
structure: from the smallest animal which is behaviourally
most-capable (i.e. in learning from and responding to external
stimuli) and which also has a near-fully-mapped connectome
– where “neurons” are simple point neurons, and “weights”
are synapse affinities (i.e. the number of synaptic connections);
here we refer to the olfactory region of the fruit fly connectome.

The fruit fly is an excellent olfactory learner: it (males
specifically) can deduce the suitability of other flies for mating
(i.e. their fertility) based on odor cues alone [8]; the fly
can also be trained to increase or decrease its neurally-
traceable output response to an odor gradient when the odor is
followed with pleasure (i.e. food) or pain (i.e. electric shock),
respectively [9] – impressively, it often learns to master these
tasks in “one-shot” or “few-shots” [9]–[11].

Fruit fly olfactory-inspired algorithms, also, have success-
fully transferred many of these proficiencies to machine learn-
ing applications: [11] for example, use the architecture of
the ORN-to-MB (olfactory receptor neurons to mushroom
body) portion of the olfactory system to create a locality-
sensitive hashing algorithm – here the authors report numerous
improvements to various similarity search benchmarks. There
is further motivation from the hypothesis that biological brains
have been “sharpened” over time by natural selection to
accurately and efficiently predict specific output responses
from sensory inputs, which increase pleasurable outcomes and
avoid painful ones – in the fly brain, these have been shown
to follow a gradient of prediction errors [9], [12]. Whilst such
ideas are beyond the scope of this work, they have served as
a driving factor in our overall approach.

A. Hypothesis

We will investigate the contribution of explicit connectome-
derived topology and also four connectome-derived structural
features – each imposed onto a reservoir – on the performance

and variance of an Echo State Network (ESN) for size-variants
of the Mackey-Glass, Lorenz, and Rossler time series. For
structural features we will consider sparsity (or density) of
edges, the distribution of weights, weight positions (i.e. the
set of all synaptic partners), and global clustering. We will
measure performance as the Mean-Squared Error (MSE) –
see Eq. 1 – between model predictions and output labels
on a particular validation set; we will measure variance by
computing the squared standard deviation of MSE over all
validation sets for a particular training input size.

E

(
ŷ(n),y(n)

)
=

T∑

n=1

1

T

(
ŷ(n)− y(n)

)2

(1)

Here ŷ(n) is an output prediction at discrete time step n,
y(n) is a provided target label at step n, and T is the total
number of discrete time steps considered.

Mean-Squared Error is commonly used for ESN bench-
marking – i.e. in [13]–[15]; although, Root-Mean-Squared
Error (RMSE) and Normalized Root-Mean-Squared Error
(NRMSE) are also valid metrics [16], [17]. We select MSE
in particular since this is the particular objective function
used for ridge regression; thus, the model which achieves
the minimum MSE is, by design, best oriented towards the
objective function.

B. Objectives

From our hypothesis we derive five objectives. Each objec-
tive is concerned with determining the impact of a particular
connectome-derived feature (or all features) on ESN perfor-
mance and variance – by ESN, here we refer to a conventional
baseline (see Sec. III-D).

For our first objective, we impose the full connectome ROI
onto an ESN reservoir and measure the resulting time series
prediction performance and variance.

Our second objective explores the influence of connectome-
derived sparsity (or equivalently, density). We define “density”
as the proportion of all nonzero edges; for example, a 35%-
dense network of 10 neurons has 35 nonzero weights.

Our third objective is to identify the effect of altering the
parent distribution of reservoir edge weights.

For our fourth objective, we permute the set of all node
pairs – i.e. the “position” of edge weights.

Finally, we measure the changes in model performance
and variance as a result of adjusting the global clustering
coefficient (see Eq. 2) of the network, C; this is a descriptive
term for small-world networks – e.g. the fly brain [18]–[20].

C = 3× # of triangles
# of connected triples

(2)

Here a “connected triple” is any three nodes {D,E, F}
where {D,E} and {E,F} are connected by two edges. For
a triple to be closed it requires the nodes to be connected by
three edges. A triangle graph holds three closed triples.

To address our hypothesis and implement our objectives, we
propose a subtractive model-driven framework (Fig. 2). We
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start with a (biological) null model: an ESN with its reservoir
entirely replaced by a fruit fly connectome (i.e. its connectivity
matrix). We then “remove” connectome topological features,
replace these with conventional ESN analogues, and determine
the resulting impact on performance and variance for time
series predictions on subsets of the Mackey-Glass, Lorenz,
and Rossler time series. We construct four models: For Model
S (“Sparsity”), we increase the density of the null model
(from 1.3%) to 20% – as in [2], [21], [22]. To fill zero-
weight positions (selected randomly) with reservoir weights,
we sample from a bootstrapped population distribution of
nonzero connectome weights. For Model D (“Distribution”),
we switch each nonzero null model weight with one sampled
from a uniform distribution on [−1, 1] – as in [3], [21]. For
Model P (“Position”), we permute all nonzero null model
weights from the connectivity matrix row-wise and column-
wise, whilst retaining zero-valued positions. For Model C
(“Clustering”), we add bootstrapped connectome weights to
the null model to increase C from 0.27 (for our connectome)
to 0.5 – i.e. greater than that of a random ESN reservoir.

II. RELATED WORK

A. Structural features of Echo State Networks

Sparsity: In [22] and [2], a sparsely-connected reservoir –
of 20% density – is recommended for optimal performance;
this enables sufficient short-term memory capacity of the
network. [21] considers a 20%-density ESN by default. [23]
recommends 10 edges per node on average as a “rule of
thumb”. Conversely, [24] finds that varying density from 7%
to 20% has a negligible effect on average state entropy – i.e.
the richness of the space of input representations.

Weights: ESN reservoir weights are fixed, random values
from a uniform distribution on [−1, 1], by convention [2],
[22]. Some works have sought to incorporate dynamic weights:
[25], for example, found that a dynamic graph ESN could
perform twelve classification tasks with similar accuracy to
non-dynamic graph ESNs using less memory. The authors
of [3] sample reservoir weights from uniform, arcsine, and
gaussian distributions: they find that an arcsine distribution
can improve time series prediction performance, but speculate
that it is the sparsity resulting from the distribution (and not
the sampled values themselves) that is responsible. [2], in
particular, recommends an investigation into the behaviour of
reservoir topologies with structured (i.e. non-random) weights.

Small-worldness: A small-world network exhibits suffi-
ciently slow increase in mean shortest path length (MSPL)
with the addition of new nodes [19]. Alternatively, a network
is small-world in comparison to an Erdös-Renyi random graph
if it has lower MSPL and higher clustering coefficient (C)
[26]; C and MSPL are both important features to determine
small-worldness [18], [19]. [27] observe similar time series
prediction performance with fewer reservoir neurons when the
reservoir – after node removal – is small-world (in addition to
other constraints).

B. Fly-inspired machine learning approaches

[28] applies a connectome-derived approach to motion
detection. In their work, the authors create a Recurrent Con-
volutional Neural Network (RCNN) from the early anatomical
stages of fruit fly vision – the Elementary Motion Detection
(EMD) circuit, from retinal mapping of inputs to the T4
and T5 neurons at the lobula plate (ON/OFF pathway); [28]
imparts this topology explicitly and also includes all known
excitatory and inhibitory synapses. Their RCNN convolutional
layers form a hexagonal lattice structure; cells in each lattice
correspond to biological neurons, and each layer represents
an appropriate anatomical layer (i.e. multiple parallel layers
represent the retinal cells). [28] initially trains their network on
a subset of DAVIS 2016 – on video clips where objects move
across a fixed lens. They compare validation performance
versus an equivalent network with randomly-generated weights
on an object detection task; specifically they move light and
dark bars in 180 directions across the “visual field” of each
network. Surprisingly, their RCNN is able to capture the same
directional and orientation selectivity which is observed in the
fly brain, whereas the randomly-weighted network is not. This
suggests that fly-like functionalities can be recovered from a
connectome alone.

In contrast to [28]’s explicit approach, [29] takes “loose
inspiration” from the principles of sparse coding observed
in the mushroom body Kenyon cells and constructs a corre-
sponding network to learn semantic representations of words
and to generate word embeddings from an unstructured text
corpus; they report comparable performance to conventional
techniques (BERT, GloVe) whilst using less memory and
training time.

In our own previous work, we imposed fruit fly connectome-
derived weights onto an ESN reservoir for Mackey-Glass time
series prediction on 300 and 900 training inputs [30]. We
observed a significant reduction in model variance and an im-
provement in predictive performance; however, it was unclear
from our results whether the entire topology was responsible
for our results, or if particular structural features could be
isolated to provide equivalent (or greater) performance or
variance benefits. Furthermore, we were not aware of whether
our results would generalize across multiple datasets. These
aspects have motivated our current set of experiments.

III. METHODOLOGY

A. Building a connectivity matrix

We derive all null model weights – as previously in [30],
[31] – from the hemibrain: a connectome of an adult (female)
fruit fly, comprising 21,734 uncropped and 4,456 cropped
neurons, and over 20 million traced synapses [32]. We query
the hemibrain through its publicly-available API [32]; in
particular, selecting all neurons in the olfactory system major
ROIs (regions of interest) – the antennal lobe, mushroom
body, and lateral horn – and all of their presynaptic and
postsynaptic partners; we then store all neuron-neuron pairs
by body ID in addition to their edge weights – equivalent to
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Fig. 2. Model selection based on modifications to a null model; “Distn.” is short for “Distribution”.

the number of synaptic connections [32]; finally, we construct
an adjacency (connectivity) matrix from these pairs using
the NetworkX package [33], where row and column labels
correspond to particular neuron body IDs, and where each
cell value represents the “weight” from a particular row body
ID to a particular column body ID [34]. From here we enact
one assumption and a simplification: First, as in [35], [36]
we assume that each neuron is self-connected by filling the
diagonal of the connectivity (reservoir) matrix with ones.
Second, we truncate our connectome selection to include only
the right lateral horn; this holds the reservoir to a size of 4,286
neurons, which reduces training times and model complexities.

B. The Echo State Network

We describe the network dynamics of the ESN from [23].
For some discrete time series input u(n) ∈ RNu and known
output y(n) ∈ RNu , the ESN learns a prediction signal

ŷ(n) ∈ RNy which minimizes E
(
ŷ(n),y(n)

)
. The recurrent

reservoir layer of the ESN transforms the input time series
u(n) as illustrated in Eq. 3. The update equation for the
reservoir is provided in Eq. 4; and depends on the leaking
rate α. α ∈ (0, 1] controls the reservoir update speed.

x̃(n) = tanh

(
Win[1;u(n)] +Wx(n− 1)

)
(3)

x(n) = (1− α)x(n− 1) + αx̃(n) (4)

From Eq. 3, x̃(n) is the reservoir activation for time step n,
tanh is the network activation function, Win ∈ RNx×(1+Nu)

is the input-to-reservoir weight vector, [·; ·] represents a col-
umn vector, W ∈ RNx×Nx is the reservoir-to-reservoir weight
vector, and x(n− 1) is the previous reservoir activation.

The computation of the ESN’s predicted output time series
ŷ(n) is described in Eq. 5; and equivalently in Eq. 6 (matrix

notation). In Eq. 5, Wout ∈ RNy×(1+Nu+Nx) is the reservoir-
to-output weight vector. In Eq. 6, Ŷ ∈ RNy×T – where T is
the length of the input time series (not to be confused with
the transpose in Eq. 8) – includes all predictions ŷ(n), and
X ∈ R(1+Nu+Nx)×T is the design matrix which includes all
column vectors [1;U;X] from [1;u(n);x(n)].

ŷ(n) = Wout[1;u(n);x(n)] (5)

Ŷ = WoutX (6)

Consider Eq. 7 for finding optimal weights Wout. To
solve this system we use ridge regression (regression with L2
regularization). Here Y ∈ RNy×T is the known time series
output in matrix form, λ is the regularization coefficient, and
I is the identity matrix [23].

Y = WoutX (7)

Wout = YXT

(
XXT + λI

)−1

(8)

C. Time series prediction

We consider the Mackey-Glass 17 (MG-17), Lorenz, and
Rossler time series, which are used conventionally for bench-
marking ESNs. We observe that MG-17 is, in particular,
widely-used [2], [3], [37]–[40]; it is described by the following
differential equation.

dx

dt
= βx(t) +

γx(t− τ)

1 + x(t− τ)10
(9)

Here [β, γ, τ ] are some fixed, real-valued parameters. x(t)
is the value of the time series at time t, delayed by time τ
– τ = 17 produces chaotic behaviour [37]. The differential
equations for the Lorenz and Rossler time series, respectively,
are described below [41]:
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dx

dt
= σ(y − x),

dy

dt
= rx− y − xz,

dx

dt
= xy − bz. (10)

Here σ = 10, r = 28, and b = 8/3 are used.

dx

dt
= −z − y,

dy

dt
= x+ ay,

dx

dt
= b+ z(x− c). (11)

Here a = 0.15, b = 0.2, and c = 10 are used.
We task all models to perform multi-step prediction on each

time series. Specifically, for a time series segment of length
M ∈ {2m : m ∈ Z+} and given an input time series u(n)
for n ∈ [0, ..., M

2 ], each model must predict an output time
series ŷ(n) for n ∈ [M2 + 1, ...,M ]. We consider subsets of
the time series of length 600, 1200, 1800, and 2400 for MG-
17 – starting at time n = 0 from [42] – and 600 and 1800 for
Lorenz and Rossler. These sequence lengths are comparable
with other benchmarks [21], [24], [37], [43]. We use an 83:17
train-validate split and denote the training input size (TRIN )
for all experiments. We use EasyESN [21] to train and validate
our models. Data for all analysis are found at [42] and [41].

D. Model preparation and comparison

Model creation: Please see Sec. I-B for details on the con-
struction of the Null (N), S (“Sparsity”), D (“Distribution”), P
(“Position”), and C (“Clustering”) models. The conventional
ESN model – which, from here on we refer to as “E” –
has a reservoir comprised of (seeded) random values from
a uniform distribution on [−1, 1] [2], [22]; this is in addition
to all standard ESN trappings: for example, we use a spectral
radius (ρ) of 1, which is advised to retain the Echo State
Property (ESP) [21], [44], [45]. The spectral radius, ρ, is
the maximum eigenvalue of the reservoir weight vector, and
acts to alter the distribution of weights. The only difference
between each model – aside from randomly-initialized scaling
(i.e. from Win) – is the particular reservoir matrix. We
provide additional experiments with ρ = 0.3 and ρ = 0.7
– these models are called “E3” and “E7”, respectively. A final
parameter of consideration is the transient time τ . As a result
of setting x(0) = 0 arbitrarily, the reservoir activation is in
an “unnatural starting state”, and so the first τ time steps
need to be discarded [23]; we use τ = 100. In addition to the
conventional and varying spectral radius models, we consider
an additional conventional ESN with a new random seed –
we call this model “ES” (ESN seeded). Finally, we consider
a “distribution-matched” ESN, where we map weights from
[−1, 1] to [0,max(W )], where W is the set of all connectome
reservoir weights; namely, we apply a scaling factor after
taking the magnitude of all weights – we call this model “ED”.

Model selection: We select optimal hyperparameters (α, λ)
for each model class using a grid search: we train and validate
models on size-variants of the Mackey-Glass, Lorenz, and
Rossler time series and report those hyperparameters which
yield the best performance (MSE) on the validation set. The
relevance of Mean-Squared Error (MSE) as an evaluation

metric is that the “best” model is, by minimizing MSE, ori-
ented most closely to the objective function. We acknowledge,
however, that MSE punishes outlier predictions more than, for
example, Mean Absolute Error – thus, a small number of poor
predictions on an otherwise well-fit curve could lead to a high
MSE evaluation score. For the grid search we consider a small
subset of possible values within the specified parameter ranges
(35 total). For α we consider a range of [0, 1] [23]. For λ we
select in [0, 1E + 03].

Model evaluation: We create the best instances from each
model class with hyperparameters as discovered in the model
selection step. We then train and validate each instance 30
times on the Mackey-Glass, Lorenz, and Rossler time series
for training input (TRIN ) sizes of {250, 500, 750, 1000} and
{250, 750}, respectively. We also conduct 30 trials of train-
ing and validation following hyperparameter optimization for
experiments with additional models (ED, ES, E3 and E7).
Where applicable, significant differences are computed using
a Wilcoxon rank-sum test (p < 0.05). All model selection and
evaluation is conducted on an “e2-highcpu-8” Google Cloud
instance with 8 vCPUs (1 GB memory per CPU) and 8 GB
system RAM on an x86 platform – Debian 11 (Bullseye).

IV. EXPERIMENTS

A. Mackey-Glass 17 chaotic time series

Fig. 3B provides a comprehensive illustration of all MG-
17 prediction results for TRIN values of 250, 500, 750, and
1000; Fig. 3A provides a particular “snapshot” at each TRIN

value in ascending order. From these plots we observe a fairly
consistent improvement in predictive performance from the
conventional model (E) to the null model (N). For TRIN =
750 the difference is prominent: here we observe a ≈ 30%
reduction in error.

Regarding models S, D, P and C, we observe high variance
for models P and C through all training input sizes; at TRIN

= 750, for example, Model P yields an approximately 2-fold
increase in variance over the null model, whereas Model C
exhibits a 10-fold increase. Model S and Model D show a
dramatic reduction in variance compared to the null model for
all training input sizes considered – however, we note that their
overall performance in relation to other models across training
input sizes varies; they both, for example, yield the highest
MSE values at TRIN = 500 and the lowest for TRIN = 250.
Model results are summarized in Table I; which also highlights
differences between the null and conventional models. Bold
values – for this table, and all others – indicate the significant
winner for a particular TRIN value.

B. Lorenz chaotic time series

In Fig. 4 we observe that the conventional ESN outperforms
the null model – and all other models – for 250 training input
steps. We also observe that the null model outperforms the
conventional ESN and all other models as the dataset size
increases to TRIN = 750.

For Model C, in particular, we observe an error margin
which extends beyond the range of reported MSE values for
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Fig. 3. Validation scores across sets of 30 trials on MG-17 subsets. A) From left to right, box plots are for MG-17 on TRIN = 250, 500, 750, and 1000
time steps. B) A line plot with error margins summarizing model results across TRIN sizes.

TABLE I
PERFORMANCE AND VARIANCE COMPARISONS BETWEEN MODELS N, E, S, D, P, AND C ON MG-17

MG(TRIN=250) MG(TRIN=500) MG(TRIN=750) MG(TRIN=1000)
MSE σ2 MSE σ2 MSE σ2 MSE σ2

N 1.6E-02 ±4.3E−03 1.3E-04 2.2E-02 ±3.2E−04 7.2E-07 3.3E-02 ±5.7E−04 2.3E-06 2.91E-02 ±9.3E−05 6.1E-08
E 1.8E-02 ±1.2E−03 9.9E-06 2.4E-02 ±2.8E−05 5.4E-09 4.7E-02 ±4.4E−04 1.4E-06 2.95E-02 ±4.9E−05 1.7E-08

S 1.1E-02 ±1.7E−18 2.7E-35 2.6E-02 ±5.8E−11 2.4E-20 3.7E-02 ±3.8E−15 1.0E-28 3.1E-02 ±5.2E−13 1.9E-24
D 1.1E-02 ±8.8E−07 5.3E-12 2.6E-02 ±1.7E−06 2.0E-11 3.8E-02 ±3.2E−06 7.0E-11 3.0E-02 ±5.9E−06 2.4E-10
P 1.4E-02 ±2.0E−03 2.9E-05 2.3E-02 ±6.7E−04 3.1E-06 3.1E-02 ±7.1E−04 3.5E-06 3.0E-02 ±1.7E−04 2.0E-07
C 2.2E-02 ±2.5E−03 4.2E-05 2.6E-02 ±3.6E−04 8.8E-07 4.0E-02 ±1.9E−03 2.4E-05 3.1E-02 ±2.5E−04 4.5E-07

TABLE II
PERFORMANCE AND VARIANCE COMPARISONS BETWEEN MODELS N, E, S, D, P, AND C ON LORENZ AND ROSSLER

L(TRIN=250) L(TRIN=750) R(TRIN=250) R(TRIN=750)
MSE σ2 MSE σ2 MSE σ2 MSE σ2

N 8.5E+01 ±2.3E+00 3.7E+01 3.4E+01 ±2.1E+00 3.0E+01 7.3E+01 ±3.6E−01 9.0E-01 2.1E+01 ±1.7E−01 2.0E-01
E 2.1E+01 ±2.0E+00 2.8E+01 4.6E+01 ±2.9E−01 5.9E-01 9.6E+01 ±1.1E−01 9.1E-02 2.3E+01 ±1.0E−01 7.1E-02

S 2.0E+02 ±6.8E−11 3.2E-20 6.9E+01 ±0.0E+00 0.0E+00 6.5E+01 ±4.5E−07 1.4E-12 2.6E+01 ±5.1E−07 1.8E-12
D 3.0E+01 ±1.4E−01 1.3E-01 5.5E+01 ±1.1E−01 8.4E-02 6.2E+01 ±5.6E−03 2.2E-04 2.2E+01 ±8.3E−03 4.8E-04
P 4.4E+01 ±4.7E+00 1.5E+02 5.9E+01 ±1.3E+01 1.1E+03 7.6E+01 ±4.9E+00 1.6E+02 2.3E+01 ±1.4E−01 1.5E-01
C 7.4E+01 ±1.3E+02 1.1E+05 1.0E+02 ±6.2E+01 2.7E+04 8.5E+01 ±5.9E+00 2.4E+02 1.9E+01 ±4.0E−01 1.1E+00

TABLE III
PERFORMANCE AND VARIANCE COMPARISONS BETWEEN N AND RANDOM ALTERNATIVES (ED, ES, E3, AND E7)

N ED ES E3 E7

MG(TRIN=250) MSE 1.6E-02 ±4.3E−03 1.1E-02 ±1.7E−18 2.1E-02 ±1.6E−03 1.2E-02 ±3.5E−06 1.6E-02 ±9.9E−05

σ2 1.3E-04 1.2E-35 1.7E-05 8.7E-11 6.8E-08

MG(TRIN=750) MSE 3.3E-02 ±5.7E−04 3.7E-02 ±0.0E+00 4.7E-02 ±2.0E−04 3.8E-02 ±1.5E−05 4.3E-02 ±8.8E−05

σ2 2.3E-06 4.8E-35 2.8E-07 1.6E-09 5.4E-08
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TABLE IV
ADDITIONAL PERFORMANCE AND VARIANCE COMPARISONS BETWEEN N AND ED

N ED

MG(TRIN=500) MSE 2.2E-02 ±3.2E−04 2.6E-02 ±5.5E−11

σ2 7.2E-07 2.1E-20

MG(TRIN=1000) MSE 2.9E-02 ±9.3E−05 3.1E-02 ±5.5E−13

σ2 6.1E-08 2.1E-24
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Fig. 4. Lorenz validation scores for TRIN = 250 and 750 discrete time steps
for models N, S, D, P, C, and E.
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Fig. 5. Validation scores for models N, S, D, P, C, and E on the Rossler
chaotic time series for TRIN = 250 and 750.

all other models; and looking at Table II, we see for TRIN =
250 that the variance for Model C is an approximately 1000-
fold increase over the model which yields the next-largest
variance (P). Model P, in turn, has a four times variance
increase compared to the null model.

C. Rossler chaotic time series

In Fig. 5 we observe that the null model outperforms the
conventional ESN in both trials considered (TRIN = 250 and
TRIN = 750). We also note that Models S and D outperform
all others for TRIN = 250 while concurrently yielding the

lowest variances by multiplicative factors of 6E+12 and 4E+
03 over the null model, respectively.

Conversely, Models P and C exhibit the highest variance
of all models; C, in particular, yields an error margin which
extends beyond the range of errors across all other models.
Interestingly, the Rossler time series task is the only one
on which all models achieve performance improvements with
increasing TRIN .

D. Alternative Random Models

Comparing the null model (N) to a newly-seeded conven-
tional ESN (ES), we observe in Table III that performance
on MG-17 improves from ES to N with increasing TRIN .
Looking at all other null and alternative model results, we see
for TRIN = 750 that the null model achieves the best per-
formance; however, at TRIN = 250, Model ED outperforms
the null model. Additional experiments for models ED and N
(Table IV) show that N maintains a performance lead over ED
for TRIN values of 500 and 1000.

V. CONCLUSION

We present two major findings: First, that explicit con-
nectome topology informs significant improvements in chaotic
time series prediction performance across multiple benchmark
datasets when compared to a conventional Echo State Network
model of the same reservoir size; Second, that imposing small-
worldness onto an ESN reservoir can dramatically increase
model variance – and that this holds true, albeit to a lesser
extent, with non-connectome-derived weight positioning.

VI. BROADER IMPACT

A. Contribution

This work suggests that biologically-imposed structural
connectivity is well-suited for learning input-output represen-
tations; in particular, with respect to time-varying, chaotic
signals, and through the lens of a reservoir computer. Most sur-
prising is that this suitability is captured with structure alone,
independent from any application of biologically-motivated
function; we, for example, did not consider excitatory or
inhibitory synapses.

B. Limitations

Although we used a near-complete connectome ROI for our
null model and structural variants, here we opted out of using a
full-circuit mapping from olfactory input to output. While it is
suggested from our model comparisons that brain connectivity,
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broadly, is preferable to a random graph structure for chaotic
time series prediction, it is still unclear whether some aspect
of the fly is actually being recreated in silico; to develop a
better understanding of our model’s context within this larger
question, next steps will involve implementing an end-to-end
olfactory connectome via a Reservoir Computer.

REFERENCES

[1] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa, “Next
generation reservoir computing,” Nat. Commun., vol. 12, p. 5564, Sept.
2021.

[2] C. Gallicchio, “Sparsity in reservoir computing neural networks,” in
2020 International Conference on INnovations in Intelligent SysTems
and Applications (INISTA), pp. 1–7, Aug. 2020.

[3] Q. Wu, E. Fokoue, and D. Kudithipudi, “On the statistical challenges
of echo state networks and some potential remedies.” Feb. 2018, arXiv:
1802.07369 [stat.ML], 2018.

[4] D. Koryakin and M. V. Butz, “Reservoir sizes and feedback weights
interact non-linearly in echo state networks,” in Artificial Neural Net-
works and Machine Learning – ICANN 2012, pp. 499–506, Springer
Berlin Heidelberg, 2012.

[5] P. F. Dominey, T. M. Ellmore, and J. Ventre-Dominey, “Effects of
connectivity on narrative temporal processing in structured reservoir
computing,” in 2022 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, July 2022.

[6] F. Damicelli, C. C. Hilgetag, and A. Goulas, “Brain connectivity meets
reservoir computing,” PLoS Comput. Biol., vol. 18, p. e1010639, Nov.
2022.
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5.4 Discussion

5.4.1 Contribution

For the Mackey-Glass chaotic time series, the findings from our previous work (Ch. 4) have

been upheld, in part. The performance improvements of Model N as compared to a random

RC are still present: In 3 of 4 trials, for training input sizes of 250, 500, 750, and 1000, Model

N achieves a significant improvement in MSE across validation set instances. Model E (the

random RC) yields significantly improved performance for TRIN = 2502. Regarding variance

in performance across validation trials, the previous finding that a connectome-derived model

achieves a 10-fold to 100-fold reduction has not been preserved. On the contrary, taking MG-

17 as an example, the variance of Model N compared to Model E is higher in all trials. Model

S, however, does yield significantly lower variance than all other models (except for Model

ED).

The findings from Ch. 4 have also been extended. Across the Lorenz and Rossler chaotic

time series, for Model N we observe an improved and significant difference in MSE across

three of four sets of validation data. Significance has been re-computed and verified using the

Wilcoxon signed-rank test [263]. We moreover find that Model N significantly outperforms

Models ES, E3, and E7 on Mackey-Glass for TRIN = 250 and 750. For Model ED, when com-

paring across all Mackey-Glass size variants Model N is significantly improved in three of four

sets of trials. From the other models considered, we find that Model P has good average per-

formance across the Mackey-Glass, Rossler, and Lorenz time series. However, this is burdened

by high variance (compared to Models N and E) in most cases. Model C appears to yield the

worst average performance for the Mackey-Glass and Rossler time series. Though it achieves

2Although this is not stated in the paper, we have re-computed significance using the Wilcoxon signed-rank
test [263]. This is more appropriate than using the rank sum test, as we are comparing paired data – i.e. the same
training and validation sets with different models.
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the lowest average MSE for TRIN = 750 on the Lorenz time series, its high variance renders

it insignificant. Across all datasets, Model C yields the worst average performance. Model C

also yields the highest variance in performance, followed by Model P.

The performance of Model N compared to all other models considered reinforces the sug-

gestion from Ch. 4 that connectome topology is well-aligned to chaotic time series prediction.

Moreover, it is implied, from Model P, that the particular position of connectome weights lends

itself to higher model robustness; in that we observe a much higher variance in performance

when these positions are swapped. Model C, which achieves the poorest prediction scores

out of our proposed models, suggests that a connectome-like tendency for nodes to cluster in

the network is beneficial for generating useful learning representations of chaotic time-varying

signals.

5.4.2 Limitations

An issue with Model C, which was not fully addressed in the paper, is that sparsity acts as

a confounding factor for our model creation scheme in Fig. 5.1. More specifically, adding

new weighted edges to nodes alters the connectivity matrix by replacing zero values with non-

zero values, which alters the network sparsity. One way to prevent this would be to remove a

weighted edge for every added edge. It may thus be more correct to temper our Model C find-

ing. Specifically, this implies that connectome-like clustering, in conjunction with its particular

sparsity, can impact chaotic time series prediction performance. Another shortcoming of this

paper is that although the spectral radius (ρ) is varied by way of Models E3 and E7, a more

comprehensive study would include it during the hyperparameter selection process. Lastly, the

practicality of the reported improvement from using a connectome-derived topology – though

significant – is questionable. Although one alternative is to use different evaluation criteria

altogether, another is to use a more holistic task. For this reason, we propose to explore a

connectome-derived model’s capacity for multifunctionality (see Ch. 6).



Chapter 6

Exploring the limits of multifunctionality

with the fruit fly network

6.1 Introduction: multifunctionality and the fly

In this paper we explore the capacity for a fly connectome-based network to exhibit multifunc-

tionality on the Seeing Double problem [225]. Multifunctionality is defined as the capacity

for a single neural network to adopt multiple distinct behavioural dynamics without altering its

internal network structure. In the case of an ANN, this would mean a network which is trained

once and capable of taking on the coexistence of multiple prediction dynamics “simultane-

ously”1. The term multifunctionality has long been used in the biological sciences. However,

only recently has it been proposed in a machine learning context (i.e. in [154]). The Seeing

Double problem, introduced by Andrew Flynn in [225], requires the RC to – after training on

1By simultaneously, we mean that without re-training the RC is able to make accurate predictions on dis-
tinct output trajectory types. In our case, this involves re-visiting RC predictions from different reservoir initial
conditions.

116



6.1. Introduction: multifunctionality and the fly 117

2-panel, parametric functions for the x-component and y-component of each circle, which are

blended according to a blending parameter α – simultaneously re-construct two circles of ra-

dius sx, centered at (xcen, ycen), rotating in opposite directions. We consider the edge case where

the two circles are completely overlapping.

We train and test a modified version2 of Model N from Ch. 5 (N = 426) on 50 sets of 100

trials of the Seeing Double problem, and compare its performance to the Erdös-Renyi random

RC (ERRC) in continuous time (see Sec. 2.1.3). The topology of the random RC reservoir

(N = 500) is re-initialized for each trial. Weights in the ERRC are in [−1, 1]. For each trial,

a score is added to the model’s multifunctionality tally if it is able to reconstruct both circles

accurately and simultaneously. We also vary the spectral radius, ρ ∈ [0.0, 2.0] and decay rate,

γ ∈ [5, 95], running a set of 100 multifunctionality trials for each combination of these param-

eters. We furthermore investigate the reservoir’s internal activation states3 for multifunctional

and non-multifunctional trials across ρ ∈ [1.0, 2.0], and plot the number of unique local max-

ima per each reservoir neuron. Lastly, we capture and analyze the prediction dynamics of the

FFRC and ERRC for varying ρ ∈ [0, 2.0].

As an illustration of how we capture the FFRC and ERRC prediction dynamics on Seeing

Double, consider a random initial condition (IC) for the reservoir activations, ri (which, in the

426-neuron random model, would include a 426 × 1 vector). With the trained FFRC, we can

make a prediction from this random IC, by feeding it into the model as the initial activation

state, and exploring how the model predictions evolve with increasing ρ values. In Fig. 6.1,

we show the FFRC predictions from ρ = 0.78 explored from two distinct random ICs. From

one IC we get a limit cycle (LC), and from another we get a period-3 limit cycle. By exploring

these ρ values both forwards (i.e. increasing) and backwards, we can uncover unique fixed

2This version of Model N has been thresholded to only include neurons which have a combined synaptic
weight of 50. It is also formulated as a continuous-time RC (CT-RC). The weights are also normalized to [−1, 1].

3These are transformed representations of the inputs for each reservoir neuron ri.
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Figure 6.1: At ρ = 0.78, distinct prediction dynamics (top, bottom) arise from different ICs.
Directions of the trajectories are indicated by dot colours (green is “start”, red is “stop”).
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points, limit cycles, and bifurcations (see Sec. 2.1.3).

6.2 Related work

In their previous work, [154] uses a continuous-time formulation of the Reservoir Computer

(see Sec. 2.1.3). The authors train their networks using the same blending technique, wherein

given two input datasets (A and B), a blending parameter α ∈ [0, 1] determines the proportion

of input from dataset A versus dataset B used for training. This parameter is obtained such that,

depending on the provided initial condition, one dataset’s output or the other dataset’s output

can be reconstructed. The authors contrast multifunctionality across chaotic attractor datasets,

including the dynamical system introduced in [264], the single scroll chaotic attractors, and the

Lorenz chaotic attractor. Moreover, they vary key parameters such as the spectral radius ρ and

the blending parameter α. Finally, the evolution of fixed points in ρ-space and also in α-space

are computed.

In [151], the authors train various Reservoir Computer models – the continuous time model

(CT-RC), the leaky integrator model, and the next-generation Reservoir Computer (NGRC) – to

demonstrate the co-existence of the Halvorsen and Lorenz attractors with decreasing distance,

and find that the continuous time Reservoir Computer is able to best represent the attractor

coexistence in the case where they are entirely overlapping. All of the models considered

perform poorest on this edge case. The NGRC, in particular, has the worst reconstruction

results out of all models when two attractors are either nearly or entirely-overlapping.

6.3 Corresponding paper

The following paper has been accepted as a regular paper in the 2023 IEEE Conference on

Systems, Man, and Cybernetics (IEEE SMC 2023). Following presentation, the paper will be

published in IEEE Xplore.





weight given to the D-dimensional input, u(t) ∈ RD, as
it is projected into the RC. This input is taken from the
particular attractor or time series that one would like to either
reconstruct or make future predictions of. Solutions of Eq. (1)
are computed using the 4th order Runge-Kutta method with
time step τ = 0.01.

In our numerical experiments we consider two variations
of M. The first M is constructed with an Erdös-Renyi
topology where each of the non-zero elements are replaced
with a random value between −1 and 1; the matrix is then
scaled to a specific spectral radius, ρ. The second M is
constructed from the right lateral horn ROI from the hemi-
brain connectome [11]: further details on this construction
are outlined in Sec. III-A.2. The spectral radius, ρ, for each
M is a key parameter involved in the training: in particular,
ρ is associated with the RC’s memory as it is used to tune
the weight the RC places on its own internal dynamics.

To train the RC in Eq. (1), the system is first driven by
the input u(t) from t = 0 to time t = tlisten in order
to remove any dependency which r(t) has on its initial
condition r(0) = (0, 0, . . . , 0)

T
= 0T . The training data is

then generated by driving the RC with u(t) from t = tlisten
to t = ttrain.

A suitable readout layer needs to be calculated in order to
train the RC and replace the training input signal, u(t), in
Eq. (1) with a post-processing function, ψ̂ (·). If the training
is successful then we say that,

ψ̂ (r(t)) = û(t) ≈ u(t), for t > ttrain, (2)

where û(t) denotes the predicted time-series. This layer
‘closes the loop’ of the nonautonomous system in Eq. (1)
and provides a map from the N -dimensional state space of
the RC, S, to the D-dimensional ‘prediction state space’, P.

In this work ψ̂ (r(t)) = Woutq(r(t)) – where Wout is the
readout matrix – and we use q(r(t)) to break the symmetry
in Eq. (1) using the ‘squaring technique’ described by

q(r(t)) =
(
r(t), r2(t)

)T
. (3)

We calculate Wout using the ridge regression approach,

Wout = YXT
(

XXT + β I
)−1

, (4)

where

X=

[(
r(tlisten)
r2(tlisten)

)(
r(tlisten + τ)
r2(tlisten + τ)

)
· · ·

(
r(ttrain)
r2(ttrain)

)]
(5)

is the RC reservoir’s response to the input data, which is
represented as

Y =
[
u(tlisten) u(tlisten + τ) · · · u(ttrain)

]
. (6)

In Eq. 4, β is the regularization parameter which is used to
help prevent overfitting. I is the identity matrix.

We write the ‘predicting RC’ as the following autonomous
dynamical system:

˙̂r(t)=γ
[
− r̂(t)+tanh

(
M r̂(t)+σWinW(1)

outq(r̂(t))
)]
,

(7)

CB

(−xcen,−ycen)

CA

(xcen, ycen)

s

Fig. 1: Illustration of the fundamentals of the seeing double prob-
lem.

where r̂ denotes the state of the predicting RC at time t and
r̂(0) = r(ttrain).

For the case of multifunctionality, Eq. (1) is driven by two
different input signals, u1 and u2, that describe trajectories
on two attractors A1 and A2. Following the above steps, this
produces two corresponding RC response data matrices, X1

and X2, and in accordance with the input data matrices, Y1

and Y2. These X1 and X2, and Y1 and Y2 are ‘blended’
together according to the blending technique featured in
[2]. The resulting blended matrices are used to solve for
Wout according to Eq. (4). The predicting RC in this case
is described as in Eq. (7); if multifunctionality is achieved,
once Eq. (7) is initialised with either r̂1(0) or r̂2(0) then the
predicting RC will reconstruct the dynamics of either A1 or
A2.

B. The ‘Seeing Double’ task

The seeing double task was first introduced in [3] as
a benchmark task to compare how different RCs achieve
multifunctionality. An illustration of the basic setup which
is used in this numerical experiment is provided in Fig. 1.

For this task we consider training the RC in Eq. (1) to
reconstruct a coexistence of attractors which describe trajec-
tories on two (partially or completely) overlapping circular
orbits – CA and CB – that rotate in opposite directions (see
Fig. 1). The input data to train the RC in Eq. (1) is generated
by

u(t) =

(
x(t)
y(t)

)
=

(
sx cos(t) + xcen
sy sin(t) + ycen

)
. (8)

In this paper, to train the RC in Eq. (1) to become multifunc-
tional, sx and sy are assigned as sx = sy = 5 to create CA
and thus the training input signal u1; moreover, for CB we
use sx = −5 and sy = 5 to produce the corresponding u2.
In this case, the radius (s) of both CA and CB is equal to 5.

Formally, the RC achieves multifunctionality in this in-
stance if – after training on the input time series from Eq. (8)
– it reconstructs a coexistence of attractors in S such that the
dynamics in P resembles trajectories on both CA and CB . In
practice we determine whether the ‘reconstructed attractors’
in P – that is, ĈA and ĈB – follow the correct directional arcs
and satisfy a ‘roundness’ condition below 0.25 – determined
empirically in [3], [14] and is defined as the difference in
radii between the largest and smallest circular trajectories
which inscribe a particular circular orbit.
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While the seeing double problem may at first seem as
a relatively simple problem – i.e. in comparison to recon-
structing chaotic attractors – it is the overlap between CA
and CB that makes this task difficult for the RC to solve.
For instance, when the RC approaches a junction where
the circular trajectories intersect, it must use its memory of
the previous time steps in order to continue on its correct
trajectory.

In [3], [14], the critical role of ρ is revealed: in particular,
it is found that when CA and CB are completely overlapping
– i.e. when xcen = ycen = 0 – then multifunctionality is
achieved for a small range of relatively large values of ρ.
On the other hand, if ρ is too large, then multifunctionality
is lost.

In this paper we confine our study to this extreme scenario
where xcen = ycen = 0.

III. METHODS

A. Model Pipeline

1) The Erdös–Renyi Reservoir Computer (ERRC): As
mentioned in Sec. II-A, we use a weighted Erdös–Renyi
topology with a sparsity of 0.05. Weights are drawn ran-
domly from [−1, 1] to construct an adjacency matrix MER

of size N = 500. We vary the spectral radius, ρ, of the
resulting MER from 0 to 2.0 for Experiments 1-2 and 0 to
1.8 for Experiment 3 as outlined in Secs. III-B.1-III-B.3. We
also explore the ERRC’s dynamics at larger ρ values (up to
ρ = 2.2) in Experiment 4.

2) The Fruit Fly Reservoir Computer (FFRC): The “Fruit
Fly RC” (FFRC) is derived from the hemibrain [11]: Using
Neuprint [16], we access the hemibrain API with a provided
key, and run a set of Cypher queries on the Neo4j graph
database to select all neurons in the right lateral horn ROI
which are connected to all others (i.e. in the same ROI). We
define two neurons as being “connected” if they are synaptic
partners and have a sufficiently-large number of shared
synaptic sites; here we select a tolerance of 50 synapses in
order to reduce the size and complexity of the model – i.e. to
make the training pipeline more efficient. After querying the
hemibrain to collect neuron connection data, we construct
a NetworkX graph which retains all synaptic partners and
their weights (the number of synaptic sites); finally, from
this graph we construct our adjacency matrix MFF of size
N = 426. We interpolate the weight values into [−1, 1].
Following a common approach (as in [17] and [18]), we also
diagonalize the matrix. It is important to stress that MFF is
unchanging: it has a fixed structure, which is based off of the
hemibrain connectome data, whereas the ERRC by contrast
is randomly initialised.

B. Experiments

In each of the experiments listed below, we set tlisten =
6T and ttrain = 15T , where T is the period of rotation on
each orbit C. We also assign σ = 0.2 and β = 0.01.

1) Experiment 1 – Multifunctionality trials: We conduct
50 sets of 100 trials; in each set, the ERRC and FFRC are
both independently evaluated on the seeing double problem
for previously-found optimal hyperparameter values (ρ =
1.4, γ = 5.0) – see [3]. Win is randomly initialised on
each simulation for both the RC setups. While the FFRC,
as previously mentioned, uses a fixed M structure, the
corresponding MER for the ERRC is re-initialized for each
trial.

In a given set of trials, we count all instances where
multifunctionality is achieved according to the criteria in
Sec. II-B and as outlined in [3], [14].

2) Experiment 2 – Varying ρ and γ: As previously
observed in [3], depending on the choice of both ρ and
γ, these parameters can have a profound impact on the
multifunctionality of RCs on the seeing double problem.
Here, as in [3], we aim to determine the regions in the (ρ, γ)-
plane where multifunctionality is achieved for both the FFRC
and ERRC. We conduct one set of 100 multifunctionality
trials (as in Experiment 1) for each ρ, γ combination for
ρ, γ ∈ [0, 2.0]× [5, 95].

3) Experiment 3 – Comparing RC activations: As the
RC’s predicted time series is a trained linear combination of
RC activation states, it is reasonable to analyze the activity
of each neuron in the cases of multifunctionality and non-
multifunctionality, for both RC models.

Following this intuition, we compute the number of unique
local maxima – on the interval from t = ttrain to t = 27T –
for each neuron (r̂(i)) in both RC setups. We then construct a
heat map (see Fig. 5) which shows the count for each neuron
versus ρ for a multifunctional and a non-multifunctional – i.e.
in cases where only one orbit is reconstructed or neither –
instance of the FFRC and ERRC models, respectively.

4) Experiment 4 – Exploring seeing double dynamics:
Finally, we aim to shed some light on the differences between
how the FF and ER RCs solve the seeing double problem,
which follows the bifurcation analysis presented in [14] –
here we explore the changes in the dynamics of the FF and
ER RCs in P for changes in ρ. More specifically, we track the
evolution of predictions in the [ρ, x, y]-space and illustrate
how ĈA and ĈB come into existence in cases where both the
FF and ER RCs achieve multifunctionality. The influence of
‘untrained attractors’, attractors which exist in P but were
not present during the training (like in [2], [14]) are also
examined here.

IV. RESULTS AND DISCUSSION

Note: we recommend the use of ‘Adobe Reader’ or
‘Chrome PDF Viewer’ to view the figures in this section.

1) Experiment 1: Comparing the instances where mul-
tifunctionality (MF) occurs in the FF and ER RCs on the
seeing double problem across 50 sets of 100 trials – see
Fig. 2) – we observe that the FFRC achieves an average
multifunctionality count of 6.46 out of 100; conversely, the
RC scores 4.66 out of 100 on average. The distribution of
FFRC scores is neither positively nor negatively skewed;
whereas the RC is negatively skewed. Differences observed
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Fig. 2: A raincloud plot illustrating FF versus ER RC multifunc-
tionality (MF) across 50 sets of 100 trials on the seeing double
problem.
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Fig. 3: ERRC counts of multifunctionality in the [γ, ρ]-plane.
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Fig. 4: FFRC counts of multifunctionality in the [γ, ρ]-plane.

between the distributions of multifunctionality instances are
significant: here p = 0.00026 < 0.05 for the Wilcoxon
signed-rank test.

2) Experiment 2: In Fig. 3 we provide multifunctional-
ity counts (out of 100 trials, respectively) for the ERRC
on the seeing double problem across the [γ, ρ]-plane of
[5, 95] × [0, 2.0]. We report an approximate window of
multifunctionality in the [γ, ρ] range of [5, 35]× [1.25, 1.5].
Maximum multifunctionality occurs at [γ, ρ]=[15, 1.5] – here
we observe a count of 7 out of 100 trials. As previously
observed in [3], multifunctional capacity falls as ρ continues
to increase. At ρ = 2.0, for example, we observe no evidence
of multifunctionality for any of the reported γ values.

For the FFRC (see Fig. 4) we find the greatest occurrence
of multifunctionality at [γ, ρ] = [15, 1.5] and also [15, 2.0],

where the reported count is 10 instances out of 100 trials.
The hyperparameter region where multifunctionality occurs
is approximately [γ, ρ] ∈ [5, 75] × [1.5, 2.0], much larger
than the window of multifunctionality found for the ERRC.
Moreover, the frequency of multifunctionality across all
sets of 100 trials is greater overall. Importantly, the FFRC
is also capable of exhibiting multifunctionality at large ρ
values (the ERRC is not); which is particularly interesting
as this is where we observe – i.e. for γ = 15 – maximum
multifunctionality.

3) Experiment 3: Looking at the activity profiles of all
neurons r̂(i) in the ERRC and FFRC (Fig. 5), we first
compare the population dynamics of RCs exhibiting multi-
functionality (MF) and non-multifunctionality. For the FFRC
activations, we observe that the number of unique local
maxima is “high” (above 40) in more neurons during MF. We
speculate – as in [19] – that a higher proportion of reservoir
activation neurons with many unique local maxima would
indicate a greater richness of reservoir activation curves to
draw a set of predictions from. Between the MF and non-MF
ERRC heat maps, we observe a slightly larger population
of neurons with “high” (above 60) unique local maxima;
however, the differences are less pronounced. Between the
ERRC and FFRC models, we see that more neurons are
involved in the ERRC predictions overall in both MF and
non-MF cases. Moreover, in the ERRC there are neurons
with a higher magnitude of unique local maxima (roughly
70 in the ERRC versus 45 in the FFRC). This follows
intuitively: a small subset of neurons in the fly brain act
as “information highways for multisensory integration” [20];
conversely, randomly-weighted neurons have arbitrary im-
portance, and thus we would expect that an effective output
prediction would rely on a broad sampling of activations in
order to match to a ground truth signal. Finally, across all
figures in Fig. 5, we note that increasing the spectral radius
ρ also increases the proportion of neurons which have a high
number of unique local maxima.

4) Experiment 4: We now explore the prediction dynam-
ics of the ERRC and FFRC in the respective P for increasing
ρ.

For the ERRC, (see Fig. 6a), like in [14], at small ρ values
we find that four anti-symmetric fixed points exist which
subsequently bifurcate into two distinct limit cycles (LC) at
ρ ≈ 0.55, whose dynamics are shown above the bifurcation
diagram for ρ = 0.6. LC1 can no longer be tracked for
ρ > 0.62, while LC2 remains stable and exists up to ρ =
1.65. Coexisting with LC2 here is the reconstruction of CB ,
which first appears as a torus at ρ = 0.76 and begins to more
closely resemble CB from ρ = 0.78 to ρ = 1.25. The state
of the ERRC subsequently tends to LC3, which is born at
ρ = 0.91; this is initially a torus before it becomes a limit
cycle – as highlighted by the plots in P at ρ = 0.92, 1.15
(above the bifurcation diagram in Fig. 6a). LC3 can no longer
be tracked for ρ > 1.69. At ρ = 1.64, ĈB is reborn; however,
for ρ > 1.83 and beyond, ĈB becomes chaotic, where it
remains indefinitely (or for as far as it can be tracked with
reasonable accuracy).
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Fig. 5: Unique local maxima counts for each ith neuron vs. ρ in a case where multifunctionality (MF) is and is not achieved for the
FFRC in (a) and (b) and the ERRC in (c) and (d).
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Fig. 6: Dynamics of the ERRC in (a) and FFRC in (b) for increasing ρ. FPi: fixed point i; LCj : limit cycle j; ĈA: reconstructed CA;
ĈB : reconstructed CB .

The ERRC is shown to exhibit multifunctionality –
wherein ĈA is found to coexist with ĈB – for the intervals of
ρ = [1.17, 1.25] and [1.71, 1.76]. An additional limit cycle,
LC4, also briefly appears here, for ρ = [1.69, 1.71], and
its dynamics for ρ = 1.7 are shown above the bifurcation
diagram.

In Fig. 6b we illustrate the prediction dynamics of the
FFRC on the seeing double problem. We find that, as in
Fig. 6a, at small ρ values, four anti-symmetric fixed points
exist. However, as we continue to track the changes in these
fixed points the differences between how the FF and ER

RC solves the seeing double problem emerges. We find
that for FP3 and FP4 there is a small region of hysteresis
with an additional branch of stable fixed points – FP31 and
FP41, respectively. For ρ > 0.7, FP31 and FP41 can no
longer be tracked and the state of the RC tends to FP1

and FP2, respectively. At ρ = 0.73 there is a bifurcation
from these fixed points to a limit cycle, LC1 (potentially a
SNIPER/homoclinic bifurcation based on the characteristics
of LC1). For ρ > 0.84, LC1 can no longer be tracked and the
state of the FFRC tends to ĈA, which exists up to ρ = 2.08.
By tracking ĈA as ρ decreases, we find that it goes through
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several bouts of torii bifurcations, initially appearing as a
period-3 limit cycle at ρ = 0.75, highlighted by the plot
above the bifurcation diagram in Fig. 6b for ρ = 0.76; we
also show here for ρ = 0.79 that there are two antisymmetric
limit cycles LC2 and LC3 for ρ = [0.77, 0.80].

We see in Fig. 6b that the FFRC achieves multifunctional-
ity for ρ = [1.29, 2.08]; even though CB comes into existence
at ρ = 1.27, it is only properly reconstructed (according to
the criteria in Sec. II-B) at ρ = 1.29, and coexists with CA
until ρ = 2.08. We also note that another limit cycle (LC4)
exists while the FFRC is multifunctional. It is suggested that
additional limit cycles exist in P as ρ continues to increase.

Comparing the findings for the ERRC and FFRC, what is
perhaps most interesting is that we observe clear evidence of
multifunctionality for a much broader range of row values –
from ρ = 1.29 to 2.08, totalling a multifunctional ρ-interval
of 0.79, which is much larger than that of the ERRC (≈
0.13). Moreover, compared to the ERRC – which becomes
chaotic at large ρ values – the FFRC prediction dynamics
persist (without succumbing to chaos) long past this ρ limit.

V. CONCLUSION

A. Summary

In this paper we find that the FFRC outperforms the ERRC
on the seeing double problem in three ways:

1) A higher frequency of achieving multifunctionality for
ρ = 1.4, γ = 5 (Experiment 1).

2) A broader window of [ρ, γ]-space where multifunction-
ality is present, and a larger magnitude of multifunc-
tionality overall (Experiment 2).

3) Prediction dynamics of the FFRC persist as non-
chaotic, circular trajectories well beyond the observed
ρ threshold in the ERRC (Experiment 4).

These findings suggest that fruit fly brain structure –
relative to an arbitrary, random topology – possesses a
greater capacity for multifunctionality, and is more robust to
MF-related parameter fluctuations. Interestingly, the FFRC
appears to mimic analogous abilities observed in its biolog-
ical counterpart [8].

Fig. 5 suggests that the FFRC takes advantage of a smaller
population of neurons with higher importance – i.e. for a
given ρ value there are only a small number of neurons
which ‘fire’ with a large number of unique local maxima.
In comparison, we see here that for the ERRC there is a
larger proportion of highly activated neurons for a given ρ.

B. Limitations

We acknowledge that our FFRC adjacency matrix, MFF ,
is a translation of its corresponding connectome ROI; which
captures broad lateral horn connectivity, but does not include
all synapses – i.e. due to applying a threshold (see Sec. III).
As a structural translation only, the FFRC also fails to
capture functional aspects (e.g. the action of neurotrans-
mitters). Detailed structural elements are also absent, such
as neuron morphologies (we use point neurons). One could
therefore argue that this structurally-inspired model is only

providing a “taste” of the potential capacity of the fly brain
for multifunctionality.

C. Future Work

We will continue to analyse the nonlinear and chaotic
dynamics of the FFRC and ERRC in order to further explore
their limits of multifunctionality. We will also seek to (as in
[3]) determine the impact of additional model factors – such
as the input matrix designs (Win) – on multifunctionality.

We aim to transplant other animal connectome-based
networks, such as [21], [22], to RC setups to test whether
these networks can also be exploited in a machine learning
context.
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6.4 Discussion

6.4.1 Contribution

After training our fly connectome-inspired Reservoir Computer (FFRC) and the Erdös-Renyi

Reservoir Computer (EERC) to capture the dynamics of two overlapping circular orbits, we

find that the FFRC significantly outperforms the ERRC for ρ = 1.4 and γ = 5 (chosen as in

[151]) via a Wilcoxon signed-rank test. The Wilcoxon signed-rank test assumes that the un-

derlying data distributions are not Gaussian (i.e. it is a non-parametric test), and that trials are

paired. In our case, this means that the same test set is used to compare both models. We fur-

thermore find that the breadth and magnitude4 of values for which the FFRC is multifunctional

is greater than that of the ERRC. Specifically, for ρ, γ ∈ [0, 2.0] × [5, 95], the FFRC is multi-

functional for [5, 75] × [1.5, 2.0], where the ERRC is multifunctional for [5, 35] × [1.25, 1.5].

Regarding the reservoir activations observed in the FFRC and ERRC during multifunctional

and non-multifunctional trials, we find that, in both multifunctional and non-multifunctional

cases, the number of “high activity neurons” – those with what we identify as a greater rich-

ness of signal (characterized as having more unique local maxima) – increases in all cases as

the spectral radius increases. Moreover, the FFRC has fewer, highly active reservoir neurons,

whereas the ERRC has more, less active reservoir neurons. Finally, in exploring the prediction

dynamics of the trained CT-RCs on the Seeing Double problem, across varying ρ, we observe

that the FFRC is able to capture one trajectory or both of the circular trajectories simultane-

ously without delving past the edge of chaos. This model behaviour continues for ρ values

up to 7.0. This has not previously been found with a random network on the Seeing Double

problem [225]. [225] has found that prediction dynamics become chaotic as the spectral ra-

dius approaches ρ = 1.6. We observe such behaviour with the ERRC. Comparing the FFRC

and ERRC multifunctionality performances across ρ directly, we observe that the ρ window of

4We temper this with a previous observation of [265], where they observe higher multifunctionality for N =
500.
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multifunctionality is approximately 0.8 for the FFRC and 0.14 for the ERRC. It is suggested

from all of these results that the potential for multifunctionality (which is already observed

in the fly brain [226]) is preserved in the connectome. Regarding the observed robustness of

the connectome model to avoid bifurcating across increasing ρ values, it is possible that this

is a property inherited from the fly brain, but we are not aware of any experiments that have

validated this idea.

6.4.2 Limitations

Some experiment choices may limit the scope of the findings. First, the size of the FFRC and

ERRC networks are close, but not matching. From [265], however, it is known that multifunc-

tionality scales positively with reservoir size. Therefore, the FFRC model is at a disadvantage,

and is still able to surpass the ERRC networks considered in all experiments. Second, the

choice to use a blending parameter value of α = 0.5 is informed by [265]; however, this work

may benefit from considering it as a trainable hyperparameter. Finally, additional work explor-

ing the impacts on multifunctionality from controlling the input-to-reservoir weights Win, and

tracking additional trajectory dynamics – limit cycles, circular trajectories, and nonlinear and

chaotic dynamics – across further ρ values will be valuable in follow-up projects.



Chapter 7

Discussion

In this connected series of fly connectome-based studies, we have implemented the structural

connectivity of the fruit fly brain in silico via a series of machine learning models: namely, a

Multilayer Perceptron (MLP), and discrete-time and continuous time formulations of a Reser-

voir Computer (RC and CT-RC). We have observed by imposing hemibrain data alone onto

these model architectures that fruit fly connectome topology – as compared to various ran-

dom topologies – appears to take a small step towards capturing the potential evolutionarily-

sharpened behaviours offered by the brain. In the following sections, we provide more detail

on the specific findings from within each paper (chapters 3-6), in addition to major findings

across papers. We also highlight limitations, caveats, and contributions from these works, and

summarize this dissertation while pointing towards future steps to be taken. Let us first present

the primary results from the integrated articles featured in this document (Ch. 3-6).

128
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7.1 A summary of findings from within the chapters

7.1.1 Major findings from chapter 3: a connectome-derived Multilayer

Perceptron for classifying odors

Finding – a connectome-based MLP is capable of multi-class classification of odours.

We provide a proof-of-concept for the idea of a Multilayer Perceptron (MLP) with three hidden

layers taking weight instructions at the microscale level from a connectome, and using these

initial weights to guide classification performance on an odour-discriminating task. Beyond

this finding, we also note that this model, which is derived from sequential olfactory regions

in the fly connectome – the antennal lobe (AL), mushroom body (MB), and lateral horn (LH)

– achieves better-than-random test accuracy on the classification task. However, we temper

these results with three shortcomings: First, the Fruit Fly Neural Network (FFNN) is only ini-

tialized with connectome weights, as the values do not persist during training. Although, it is

worth pointing out that weight initializations can impact ANN behaviour [164]. Second, these

weights make up a small portion of the network, where the vast majority of the weights are

random. Third, the train:validate:test split used includes an augmented training and validation

set which is significantly larger than the test set. Although this is not inadmissable on its own,

it is also outside of the norm.

Even if the results did not come with a disclaimer, they would still be poor. The FFNN

achieves 38% classification accuracy on the four-class, 16 feature, “Gas Sensor Array Drift”

dataset [245]. This score is only slightly better than random chance (25%). Moreover, this is

markedly lower than other reported scores on this dataset. For example, [266], using a CNN,

achieves 80% to 90% classification accuracy. [267] uses a weighted ensemble of MLPs on a

related dataset [268] across 10 batches of samples, and achieves batch test accuracies between

68% and 98%.
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Finding – adding olfactory neurons improves odour classification performance

It is found that moving from an MLP with 150 connectome-derived neurons to one with 800

such neurons results in an overall increase in performance on a test set from 31.25% to 38%.

This would appear to suggest that a greater contribution of fruit fly olfactory system connec-

tome weights translates into odour classification performance. However, there is a confounding

factor in the size of the network. In particular, it is not known whether the improvement in per-

formance is due to an increased number of trainable parameters, or to more contribution from

connectome weights. Though, it is not always the case that increasing the number of neurons

per each hidden layer in an MLP improves classification performance [269]. Relating to the

bias-variance tradeoff, it is known that increasing model complexity allows for more flexibil-

ity in fitting to a true model; but, it may also be the case that the trained model is overfit to

the large training set, and thus underprepared to generalize to a test set. It is also not known

if the difference observed in performance is statistically significant, as it is a one-shot com-

parison between two results. Moreover, since the MLP is fully-connected, the contribution of

connectome-derived neurons as compared to random neurons is slight.

7.1.2 Findings from chapter 4: placing brain-inspired constraints on an

Echo State Network

Finding – a connectome-derived ESN yields improved performance on MG-17

We find in Ch. 4 that time series prediction performance on size-variants and train-validate

sequence variants of the Mackey-Glass 17 dataset is improved compared to a random-seeded

Reservoir Computer (Echo State Network). Specifically, for a training and validation set com-

prised of 2,000 discrete-time steps of MG-17, and another made up of 800 discrete-time steps,

prediction performance – after hyperparameter tuning on the leaking rate α and regularization

parameter λ – is improved in two of four sets of 50 train-validate trials. Performance is not

significantly different in the other two trial sets. Significance of the differences in performance
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means on the validation set are determined by comparing their 95% confidence intervals.

Finding – variance in prediction performance is greatly reduced

A Reservoir Computer with its reservoir layer replaced entirely by a fixed connectome topology

achieves a ten-fold to hundred-fold decrease in variance across all validation sets considered.

Mean-Squared Error (MSE) is used as the evaluation metric. We note that in our particular

experimental setup, the only weights which are able to change across train-validate trials –

other than the readout weights, which are trainable – are the input-to-reservoir weights (Win).

Without noise from Win, we would expect a completely deterministic system, and should see

zero variance across a validation set, as long as the reservoir topology is fixed. Since we do

have some variance in our models, we conclude that this is derived from the input-to-reservoir

weight changes. In particular, this means that our connectome-inspired model is more robust

to this noise, as the variance is significantly lower for different realizations of the validation

set. Looking forward, to Ch. 5, these improvements in variance are not preserved; however,

differences in connectome-based model construction1, in the particular random seed used, and

in the size and section of Mackey-Glass considered could be responsible for this change.

7.1.3 Findings from chapter 5: Isolating structural features from the fly

connectome

Finding – a connectome-derived RC yields good performance that generalizes well

Extending the finding from Ch. 4, we observe that a microscale connectome-based Reservoir

Computer (Model N) achieves improved time series prediction performance compared to nu-

merous random RCs on Mackey-Glass 17. Model N scores reduced MSE average losses on the

validation set compared to models ES, ED, E3, and E7 overall – these alter Model E’s random

seed, weight range, and spectral radius respectively. More broadly, we find that Model N is bet-

1The models are different sizes, for example. The RC from Ch. 4 is of size N = 2639, whereas the RC from
Ch. 5 is of size N = 4286.
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ter against a seeded random RC (Model E) across multiple size-variants of the Mackey-Glass

17, Lorenz, and Rossler datasets. Model N significantly2 outperforms Model E in 6 out of 8

sets of 30 validation trials. Model E significantly beats Model N in 1 of 8 sets. As mentioned

in Sec. 7.1.2, we do not find that the reduction in performance variance compared to a size-

matched random RC model – on the validation set – has been preserved. This could be due to

various model or dataset factors.

Finding – connectome-based small-worldness improves performance; weight positions

improve variance

Starting from a biological null model (Model N), we report, by isolating and varying the clus-

tering coefficient C (as illustrated in Fig. 5.1) to construct Model C, that the particular clus-

tering of neurons in the LH ROI of the hemibrain connectome are well-suited for time-varying

prediction tasks. More specifically, when the clustering coefficient of the connectome is al-

tered, both performance and variance on a validation set are degraded across the Mackey-Glass

17, Lorenz, and Rossler chaotic time series. However, a caveat to this is that our altering of

the clustering coefficient may coincide with changes in network sparsity. It may be more accu-

rate to say, therefore, that the particular clustering coefficient of the connectome in conjunction

with its sparsity is key to achieving good prediction performance and low variance.

Furthermore, we find that the particular positioning of weights in the connectome is useful

for maintaining a relatively low variance in performance on a validation set. That is, moving

from Model N – which has full connectome topology – to Model P, which swaps nonzero

values row-wise and column-wise, while holding the sparsity and distribution of weights, we

find that variance in performance on the validation set is increased across all three datasets

considered. As with Model C, findings here are also conflicted with the possibility that the

number of closed triangles in the network (C) may change when edge positions are swapped

2Significance has been re-validated with the Wilcoxon signed-rank test [263].
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– however, other features not accounted for may also be “conflating”. These findings appear

to complement those of [39], who have found that the memory capacity (MC) of a mesoscale

connectome-based RC supersedes a size-matched RC which has been re-wired (see Sec. 2.1.4).

7.1.4 Findings from chapter 6: Exploring the limits of multifunctionality

with the fruit fly network

Finding – a fly-based RC is more multifunctional than an Erdös-Renyi random RC

We consider three experiments for contrasting the multifunctional capacity of the connectome-

based FFRC and the Erdös-Renyi random RC on the Seeing Double task: First, we fix literature

values for the spectral radius ρ and decay rate γ and run 50 sets of 100 trials and count the num-

ber of multifunctional instances for each model. Next, we vary ρ and γ across [0, 2.0]× [5, 95]

and report multifunctionality counts in each [ρ,γ] cell. Third, we trace the prediction space of

the FFRC and ERRC through a fine-grained sweep of ρ values and analyze where multifunc-

tionality occurs, and also where the dynamics become chaotic. Across all experiments, it is

clear that the FFRC model is3 more multifunctional on the Seeing Double problem.

Finding – a fly-based RC is multifunctional for a broader parameter space than its ran-

dom counterpart

As mentioned in Sec. 7.1.4, we consider a window of ρ and γ values across [0, 2.0] × [5, 95]

for the Seeing Double problem in the second experiment of Ch. 6. We observe that the FFRC

is multifunctional for a wider range of these values than the ERRC. In particular, the FFRC

multifunctionality-observed space is [5, 75] × [1.5, 2.0], where for the ERRC it is [5, 35] ×

[1.25, 1.5]. Moreover, the average multifunctionality across these windows is increased. This

range accommodates a greater robustness to these parameter choices. For experiment four,

wherein we trace the prediction dynamics of the FFRC and ERRC on the Seeing Double prob-

3Here, again we check whether we can reject the null hypothesis of the Wilcoxon signed-rank test.
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lem while increasing and decreasing the spectral radius (ρ), we find that the FFRC achieves

multifunctionality for a width of 0.79, where the ERRC window is ≈ 0.13.

Finding – a fly-based RC passes the edge of chaos and retains circular prediction dynam-

ics past ρ = 1.8.

Previously it was found on the Seeing Double problem that prediction dynamics above a spec-

tral radius of ρ = 1.8 would pass over the edge of chaos, wherein said dynamics in the predic-

tion space Pwould, for example, undergo a bifurcation (Sec. 2.1.3). Our findings in experiment

four echo these sentiments. In particular, we find that above ρ = 1.83, the circular trajectory

CB diverts into a torus bifurcation and continues on a chaotic trajectory for all tracked ρ val-

ues beyond this. Conversely, the FFRC maintains its circular prediction dynamics in P up to

ρ = 2.2 and beyond. Empirically, we have found that this range extends up to ≈ ρ = 7.

7.2 Major findings across the chapters

7.2.1 Finding 1: fly abilities may be captured in a machine learning con-

text with connectome data alone

In Ch. 4, it is observed that a Reservoir Computer (RC) which has had its reservoir layer wholly

replaced with weights from a fruit fly olfactory connectome achieves improved performance

on a chaotic time series prediction task compared to a size-matched random RC. Furthermore,

in Ch. 5, it is found again that an explicit fly connectome translates into superior chaotic

time series prediction when compared to its randomly sampled equivalent. These results have

been echoed while varying dataset sizes, train:validate variants, and the datasets themselves,

wherein we considered the MG-17, Lorenz, and Rossler chaotic time series. As it is known that

the fruit fly is capable of sensing odour plumes across a time-varying, chaotic gradient [219],

it is suggested from our observations that these RC networks are capturing fly-like behaviours,
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using only connectome data which is housed in a machine learning architecture. Moreover, in

Ch. 6, we find that the FFRC – a fruit fly LH connectome-derived RC, wherein a tolerance of

50 synaptic connections to all other neurons in the LH ROI is applied – is more multifunctional

on the Seeing Double task than numerous realizations of the Erdös-Renyi random RC (ERRC).

We also find that the breadth of parameter space for which the FFRC is multifunctional is much

wider than that of the ERRC, and that the FFRC resists crossing over into chaotic prediction

trajectories, where the ERRC is unable to. Since the fruit fly is also capable of integrating and

responding to multiple sensory inputs simultaneously [226] – with a single, largely fixed ROI

(the lateral horn) – it is suggested that this ability is conferred from the fly. However, with this

and with chaotic time series prediction, it should be noted that model design decisions, such as

the choice to threshold at 50 synapses, could also have played a part in the observed results.

7.2.2 Finding 2: microscale and mesoscale connectome topologies im-

prove machine learning performance

Performance, in our experiments, ranges in its definition across chapters. In chapter 3, perfor-

mance is measured as the classification accuracy of a model on a test set. Accuracy is defined

as the number of correctly classified samples in the test set divided by the total number of test

set samples. The test set is comprised of a 16-feature input and single output from one of

four class labels. Features correspond to e-nose sensor resistances (kΩ) in response to one of

four odours [268]. In chapter 4, performance is measured as the Mean-squared Error (MSE)

between a ground truth signal y(n) and a predicted signal ŷ(n) for n ∈ [1, . . . ,T ] (see Eq. 7.1).

We measure MSE comparisons on 50 instances of four validation sets, where each instance

contain 100 discrete time steps of the MG-17 chaotic time series. In chapter 5, performance is

also measured as MSE. However, we extend the number of datasets considered and the training

input sizes (TRIN). For the Mackey-Glass 17 system, we consider 30 instances of four valida-

tion sets, where each validation set corresponds to training input sizes of TRIN = 250, 500, 750,

and 1000. For the Lorenz and Rossler systems, we consider 30 instances of two validation sets
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each (TRIN = 250 and 750). In chapter 6, performance is measured as the count of multi-

functional instances out of 100 multifunctionality trials on the Seeing Double problem. In this

task, trajectories for two overlapping circles are provided as input to the RC – mediated by

the blending parameter α – and the goal, after training once, is to reconstruct both trajectories

correctly and simultaneously (see Sec. 6.3).

E
(
ŷ(n), y(n)

)
=

T∑
n=1

1
T

(
ŷ(n) − y(n)

)2
(7.1)

Across these performance measures, a shared finding is that using explicit (microscale) and

mesoscale (in the case of multifunctionality) connectome structures is beneficial. For classi-

fication accuracy, we do find that using additional connectome weights – from the hemibrain

olfactory ROIs – improves four-class classification scores in an MLP; however, these scores

are confounded by test set imbalance, low connectome contribution, and poor performance

compared to competitive models on the same dataset [266, 267]. For time series prediction,

hemibrain connectivity derived from the lateral horn ROI leads to learned input representa-

tions (i.e. from the coefficients of Wout) which more faithfully represent ground truth, time-

varying signals when compared to size-matched random RCs on the Mackey-Glass, Lorenz,

and Rossler systems. Lastly, for multifunctionality on the Seeing Double problem, a mesoscale

(thresholded) connectome topology yields multifunctionality scores which are improved over

the ERRC. These are tempered by differences in model sizes, and lower scores than previously

observed in [265].

7.2.3 Finding 3: connectome-specific node clustering and edge positions

are useful structural features

A takeaway from Ch. 4 and from Ch. 5 is that the particular topology of the connectome

is well-suited for making predictions from training on time-varying signals. In Ch 5, we lean

more into determining which structural aspects of that topology are valuable. We find two such
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features: First, the clustering coefficient (C) of the network. Second, the position of nonzero

edge weights. For C, it is apparent that when we disturb sets of closed triples of nodes in the

connectome network we reduce the network’s capacity to make predictions on chaotic time-

series inputs. More prominently, we find that this disturbance leads to models which have much

higher variance in their predictions across validation sets. For weight position, those which are

inherent to the connectome are found to be important for keeping the variance low; conversely,

performance is similar when the edge weights are shuffled.

7.2.4 Finding 4: biologically-motivated topologies are more robust

Fixed topologies are unchanging by definition. Thus, it is evident that, compared to a contin-

uously re-seeded random topology, a fixed topology will contribute less to variance in perfor-

mance on a Reservoir Computing task such as time series prediction – with the only variance

coming from the input-to-reservoir weights, Win. We do find, however, that even across fixed

topologies, the particular model construction of Ch. 4 has resulted in an RC which is resistant

to fluctuations from Win compared to a seeded random model RC. This finding does not carry

into the connectome-derived model from Ch. 5, however. Moreover, in searching for structural

rules for improving time-series prediction behaviour of RCs4 we have found that the connec-

tomic positioning of edge weights and clustering coefficient can reduce performance variance,

thereby exhibiting lower sensitivity to variations from the input-to-reservoir weights (Win).

It is, in particular, when using multifunctionality as a performance metric that we observe a

surprising robustness to a breadth of model parameters which have a controlling effect on the

chaotic dynamics of the system – the spectral radius, ρ, and the decay rate, γ. We find that com-

pared to realizations of the Erdös-Renyi random model (ERRC), the fruit fly connectome-based

RC (FFRC) has the capacity to become multifunctional – i.e. to reconstruct the trajectories of

two circles simultaneously and with sufficient accuracy – in the parameter window of ρ, γ ∈
4This is in line with [159], who describes Structured RC as uncovering structural rules and patterns which are

useful in an RC context.
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[5, 75] × [1.5, 2.0], versus [5, 35] × [1.25, 1.5] for the ERRC. Moreover, when varying ρ only

and investigating the output prediction trajectories, we find that the FFRC is highly robust

to these fluctuations, and captures circular dynamics without veering into the chaotic regime.

The ERRC, conversely, bifurcates at ρ = 1.8. While this particular mesoscale connectome

structure is the primary differentiator in this series of experiments, we acknowledge that it is

not necessarily representative of all ROIs, or even of the same ROI across individuals [241].

The particular robustness of our BNN-imposed reservoir computers in the domain of multi-

functionality may point towards a broader point from evolutionary principles. That is, a rich

diversity of connectomes across individuals in a particular species is evolutionarily advanta-

geous; such variations are the cornerstone of natural selection. Similarly, adjusting the spectral

radius applies a scaling effect to our FFRC reservoir. It is suggested from this evolutionary per-

spective that we should expect a wider tolerance in the variety of multifunctionality-capable

brain networks, compared to arbitrary topologies. Our findings help to validate this idea.

7.3 Contributions

7.3.1 Neuroscience

In constructing models derived from the most comprehensive (to date) structural connectome

of the fruit fly [14], and implanting these into numerous ML paradigms, we have provided a

vehicle for assessing brain-inspired behaviours in this specialized context. That is, we have

shown that brain network topologies are particularly well-suited for practically useful tasks

such as predicting time-varying signals, modeling complex dynamical systems, and recon-

structing overlapping attractors. The latter is, for example, also useful for modelling of flight

navigation systems [270], and also the multistability of seizure dynamics [271]. This contribu-

tion also complements those of [140, 141] and others, who have shown that machine learning

models can better inform current models of the brain. To fully realize this approach, from our

end, more work will need to go in to mapping fly brain activities (i.e. via RSA [137]) onto



7.3. Contributions 139

connectome-derived activations in a machine learning container, as in [166] and [235].

7.3.2 Computer Science

Reservoir Computing is a best-in-class machine learning paradigm for capturing nonlinear and

chaotic dynamics [156, 222, 223, 224]. By way of an investigation into the structural impacts

of connectome-based RCs on RC performance, robustness, and behaviour, we have extracted

useful topologies and features for this research domain. Specifically, this work suggests that

explicit connectome weights, connectomic clustering, and the positioning of weights can im-

prove time series prediction performance, and also reduce variance in this performance on a

validation or test set. Moreover, the fruit fly network has exhibited a surprising capacity for

multifunctionality and robustness to parameter selection where two attractors are completely

overlapping. This task, in particular, is difficult for modern architectures such as the NGRC

[151]. Additional work which captures the fly connectome’s structural features and mesoscale

architecture to make these marketable to RC practitioners will prove to be even more useful.

7.3.3 In the long term

Looking forward, this is a contribution to the larger school of approaches which are captured

under NeuroAI (Fig. 7.1). A longer term goal of this work and further studies are to find

structural and functional rules for instilling greater performance, robustness, efficiency, and

multifunctionality into the machine learning architectures of tomorrow. We aim to continue to

look towards connectomes for acting as agents for conferring brain-inspired tricks onto future

AI algorithms. Conversely, we will look for shared structures of BNNs and ANNs with the

goal of achieving a higher understanding of their internal workings.
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Advance AI Advance Neuro

Figure 7.1: NeuroAI (see Sec. 2.1.3), which seeks to advance our understanding of the brain
and mind with insights from AI, and conversely, to exploit brain-inspired learning rules, archi-
tectures, and objective functions for advancing the state of current AI algorithms.

7.4 Limitations and future work

In this work we have explored the impacts of structure on machine learning function through

numerous models derived from the hemibrain connectome. One sweeping limitation with our

particular approach is in inconsistency between the construction of our networks across chap-

ters. In Ch. 3, for example, we sample and order all weights from the hemibrain in a dataframe,

and order that dataframe by the total number of presynaptic and postsynaptic sites between each

neuron and all other neurons in the AL, MB, and LH ROIs. Separately, in Ch. 4, we employ the

same pipeline for sampling connectome weights, but then select only those from the LH ROI.
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Later, in Ch. 5, we start from a hemibrain query targeting all connections within the lateral

horn, and then directly construct a connectivity matrix using NetworkX [261]. Furthermore,

in Ch. 6, starting from the network of Ch. 5, we apply a thresholding operation by removing

neurons which have fewer than 50 connections from the network. These differences in model

creation reduce the viability of making comparisons across papers5. Through exploration of

different connectome-derived architectures, however, we have discovered unique behavioural

advantages which we may not have observed with a single network (i.e. the low-variance model

in Ch. 4 versus Model N in Ch. 5). Accordingly, we will dedicate time towards constructing a

unified model with which to draw comparisons from in the future.

Another major limitation which appears throughout this work is in the compatibility of our

models with the fruit fly, its connectome, and the machine learning model classes and datasets

that we consider. In Ch. 3, for example, there is discordance with the MLP architecture in

representing the fruit fly connectome. On one hand, the separation of the olfactory connec-

tome into three distinct layers is incompatible, as it does not allow for intra-layer or recurrent

connections. In addition, backpropagation causes the network weights to change during train-

ing. This lessens the contribution of the weights towards model behaviours6. In the Reservoir

Computing chapters (Ch. 4 to Ch. 6), we find that the Reservoir Computer is an ideal sandbox

for exploring connectome structure in an ML context. Although, aspects external to the reser-

voir, such as the input-to-reservoir weights, and the training procedure, are not biologically

inspired. We will counter this in future models by looking to new architectural features and

learning rules. For instance, by representing Win with ORN weights, or by using learning rule

alternatives such as e-prop [272].

A third limitation from this work is that we only sample from a single connectome. The

hemibrain [14], which comprises over 25,000 neurons and 20 million synapses, while exten-

5Moreover, all of these design choices add distance between our models and the hemibrain connectome
6We do acknowledge, however, that weight initializations can impact said behaviours [164].
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sive, is coming from a single adult female. Other fly connectomes may exhibit age-related

differences [175], sex differences [191, 192], or individual differences [229]. One way to com-

bat this, as we have done in Ch. 5, is to look for structural features of the connectome which

may be shared across fly networks. Another way would be to construct consensus networks as

in [91], which could account for individual differences while also providing a unified model.

We are particularly interested in finding consensus-like features across animal brains, which

would involve reconciling vast differences in brain size and connectivity. In the near future, we

will attempt to start this undertaking by comparing the adult and larvae fly connectomes – the

latter having been recently mapped [175].

A final limitation which speaks to our approach more broadly is taken from the perspective

of the No Free Lunch (NFL) theorem [273], which tells us that there is no optimization strategy

which is better than all others on all tasks. In considering NFL, at best, an “ideal” represen-

tation of the fly brain can do things which flies are already good at – e.g. tagging olfactory

inputs, making predictions on time-varying signals, and interpreting multiple signals simulta-

neously. However, flies clearly cannot write poetry; nor can they solve abstract mathematical

problems (at least, not to our knowledge). It is therefore, for example, unlikely that a secret

for improving LLMs is embedded in the fly brain. Moreover, in looking across brain networks

for shared structural features, commonalities may dull the particular benefits that each species

has. This, however, does not necessarily discourage the value of understanding animal intel-

ligence through such commonalities; which can be further engineered and optimized in the

abstract (though, not boundless) space of computation. We must, nevertheless, maintain this

consideration, and tread carefully in pursuing these longer-term goals.

7.5 Conclusion

Our results from chapters 3-6 fail to refute the hypothesis that imposing microscale fruit fly

connectome topology onto numerous ANN paradigms improves chaotic time-series prediction
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performance – on the MG-17, Lorenz, and Rossler chaotic attractors – and multifunctionality

on the Seeing Double problem. Results from Ch. 2.25 do not support the hypothesis that such

connectivity informs odour classification performance, as too many confounding factors arise

from the training split, from the small contribution of connectome weights to the network, and

from the fact that the weights are trained away. Expanding on the increased multifunctionality

observed in Ch. 6, we note that we have also found a high robustness in parameters which con-

trol the nonlinear and chaotic dynamics of the RC (ρ and γ). While varying these parameters,

a fly-based RC is capable of maintaining multifunctionality on the Seeing Double problem,

and avoids delving into the edge of chaos, instead moving far beyond the previously observed

ρ-threshold [225]. Finally, we have verified the hypothesis that there are structural features

inherent to the connectome which can confer beneficial traits to the RC. Specifically, we have

found that the clustering coefficient and signature position of edge weights in the microscale

connectome network are topological features which can improve time series prediction per-

formance and variance, respectively. Future avenues directed at constructing consensus-like

networks [91] within species – or, eventually, across the connectomes of different animals –

will be valuable in highlighting shared features and architectures which could benefit Reservoir

Computers and additional ML paradigms. Another important line of work will be in moving

towards the consolidation of structural and functional connectome mappings in the fly, and in

larger animals. These two approaches could converge towards a unified framework for brain-

inspired structure and function. Such a framework could be helpful in understanding more

about the brain, from the perspective of a computational sandbox; and in constructing more

powerful, and more explainable artificial intelligence. We ultimately hope that this disserta-

tion, as an exploration into the relatively unknown waters of connectome-inspired machine

learning, can serve as a contribution to NeuroAI, and to the pursuit of crafting and under-

standing intelligence7 as it may exist in the brain, in non-neural networks, and in artificially

intelligent agents and computational models.

7We will not attempt to define this term.
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Appendix A

Bigger, better, faster, stronger: the rise of

Large Language Models, and what

remains

A.1 Sparks of artificial general intelligence

The 2012 ImageNet competition started a wave of increasing depth and complexity of neu-

ral network algorithms. It was here that AlexNet showed the machine learning community

that a deep convolutional neural network provided a non-trivial step up in classification per-

formance. In recent years, this has only continued with the advent of large language models

(LLMs) for natural language processing tasks. In particular, highly-publicized models, such

as OpenAI’s Generative Pre-trained Transformer 3 (GPT-3), DALLE-2, Chat-GPT, and GPT-4

models, have grown to hold parameter counts in the trillions [111]. Moreover, the sheer volume

and frequency of model releases from OpenAI, Microsoft, Meta, Google, NVIDIA, and others

175
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has been staggering; in particular, over the past few years.

Naturally, as with any paradigm shift (the “horse and buggy”, the printing press, the inter-

net), there is a mixed public attitude: Some may house fear towards ultimate change, where

others embrace it and are compelled to continue to propel forward. Of course, a proportion

also sits somewhere in the space between these two extremes. While we do not wish to throw

a coin in this pond of ideas for what horrors or delights await us, it would be short-sighted to

not ponder on these recent developments and their tremendous impact on machine learning as

a whole, in addition to our work’s place in this environment. Specifically, we wish to draw two

key connections from this dissertation to the future of LLMs and similar future models.

First, let us consider the space of the small. Historically, individual contributors or small

research labs could formulate entire ANN paradigms [117, 110]. However, the creation of mas-

sive production models like GPT-4 is far removed from this approach. GPT-3, for example, cost

tens of millions of dollars to pre-train [274]. Models like Chat-GPT and GPT-4 also require

infrastructure costs to maintain their active user bases, from whom they continue to learn [111].

Beyond dollar costs, there is also an environmental cost. Training GPT-3 indirectly consumes

700,000 litres of fresh water each day [275]. Due to these aspects, it is unlikely that we will see

a large number of GPT-sized LLMs. Conversely, we posit that there will be continued value

in at least two alternate approaches: In specialized models which fine-tune LLMs to particular

application areas, such as Med-PaLM 2 [276]; and in smaller projects, where we may discover

new learning rules and architectures, create and encode new training data and input represen-

tations, and explain underlying LLM mechanisms (among other directions). Our work serves

as a contribution to the latter camp. From the space of small, approachable models like the

Reservoir Computer, we are well-poised to look for rules, structures, and algorithms which are

translatable to larger models. A challenge with this approach, however, is that it may be non-

trivially difficult to find features which are highly portable. Conversely, as LLMs and similar



A.1. Sparks of artificial general intelligence 177

models continue to grow, such rules, structures and algorithms may only be further obscured.

Small models, therefore, might still be an avenue for finding beneficial “tricks”, as needles in

a haystack of learning rules and architectures.

Drawing a second connection to LLMs and the future of ML, let us focus on the importance

of brain-inspired models, in particular. Looking to the brain may provide value to LLMs on

two fronts: First, for those with little interest in LLMs, whom are otherwise focused on un-

derstanding the vast complexities of the nervous system, many of these individuals and groups

will continue to construct valuable tools for inferring function from structure, such as RSA

[137]. These techniques will be important for helping to better understand the complexities of

LLMs, or whichever AI paradigm is to follow. Second, and taking a leaf from NeuroAI, it is

likely that the brain – which houses functionalities that LLMs have not yet mastered, such as

causal reasoning, and a grounding in the physical world [116] – will continue to serve as an

invaluable resource to draw comparisons to. Moreover, in constructing brain-like AI (as with

the models featured in this dissertation) using mechanisms and structures of the brain which

we understand – or at least, can analyze – will be helpful in improving AI explainability. This

will become increasingly important, as patients with “AI doctors” will want to know why these

systems have made their decisions, and where flight control system model dynamics will need

to be well-understood in the interest of public safety.

Although the landscape of artificial intelligence and machine learning is rapidly changing,

week by week, it is undoubtable that science, which emphasizes truth and understanding, will

play an increasingly important role in their evolution.



Appendix B

Parameters of interest

In this appendix section, we highlight key model parameters used in Ch. 3 to 6. We first discuss

parameters used in the MLP chapter (Ch. 2.25), and then those from the RC chapters (Ch. 4-6).

B.1 Parameters used in our MLP models

• N: the number of neurons used in our network, which includes the input layer, hidden layers,

and output layer. We consider N = 150 and N = 800. Originally, only the 150-neuron model

was considered. The choice to include an 800-neuron MLP was influenced by a choke point

in the second hidden layer, which was pointed out by committee members.

• α: the learning rate used for gradient descent. Here we use a value of 1E − 03 as in [277].

• M: the number of hidden layers in our network: we consider three hidden layers, as this

corresponds to the number of ROIs included in our hemibrain sampled connectome.

• p: the dropout regularization parameter. We consider p = 0.9 as in [278].
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B.2 Parameters used in our RC models

• α (leaking rate): The leaking rate α ∈ [0, 1] controls the reservoir activation dynamics. In

Ch. 4, we vary the leaking rate during our hyperparameter search across 10 equally-spaced

values. In Ch. 5, similarly we consider 7 values.

• γ (decay rate): For the CTRC (Ch. 2.1.3), this is roughly equivalent to the leaking rate.

γ controls the degree to which the RC recalls or forgets previous activations. If γ is high

(γ ∈ [0, 100]), the RC’s memory is shortened. We vary the decay rate. We also, where noted

in Ch. 6, fix the decay rate to 5, which is used in [151].

• ρ (spectral radius): the maximum absolute eigenvalue of the reservoir, which is considered

to be ρ ∈ [0, 1] for Ch. 4 and 5. This scales the width of the distribution of nonzero elements

[279]. Historically, it has been said that ρ > 1 violates the Echo State Property [214]. It is

worth noting that recent RC works consider larger ρ values [39, 153]. In Ch. 6, we consider

ρ values beyond 1.0, which proves to be invaluable for capturing multifunctionality on the

Seeing Double problem.

• λ (regularization): λ penalizes large weights, which helps to prevent over-fitting of models

on a test set. We consider λ ∈ [0, 1E+03] for Ch. 4 and 5 in our hyperparameter searches.

• α (blending parameter): α controls the contribution of each time series input (see Eq. 2.22)

during training. As in [154], we fix this to 0.5.

• Win (input weights): Weights in Win are randomly drawn from [−1, 1] [153, 160, 279]. All

chapters feature this variant of Win.

• N (reservoir size): Ch. 4 and 5 use different reservoir sizes (N = 2639 and N = 4286,

respectively), as their connectome querying techniques differ. In Ch. 6, from applying a

50-synapse threshold our resulting reservoir size is N = 426.
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