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Abstract 
Microscopic fractional anisotropy (µFA) is a diffusion-weighted magnetic resonance imaging 

(dMRI) metric that is sensitive to neuron microstructural features without being confounded 

by the orientation dispersion of axons and dendrites. µFA may potentially act as a surrogate 

biomarker for neurodegeneration, demyelination, and other pathological changes to neuron 

microstructure with greater specificity than other dMRI techniques that are sensitive to 

orientation dispersion, such as diffusion tensor imaging. As with many advanced imaging 

techniques, µFA is primarily used in research studies and has not seen use in clinical settings.  

The primary goal of this Thesis was to assess the clinical viability of µFA by 

developing a rapid protocol for full brain µFA imaging and then applying it to the study of a 

neurological disease. Chapter 1 presents the motivation behind this Thesis and a detailed 

summary of general background information that supports the subsequent chapters. Chapter 

2 focuses on the development and optimization of a µFA imaging protocol that involves the 

acquisition of dMRI data in two encoding schemes, linear tensor encoding and spherical tensor 

encoding, and then a joint fit of the data to the powder kurtosis signal representation. The 

technique was shown to have good repeat measurement reliability in white matter and 

measured values strongly correlated with another µFA computed using the gamma signal 

representation. In Chapter 3, a modified signal representation was investigated to estimate 

µFA and other indices while mitigating contaminating partial volume effects from free water, 

such as the cerebrospinal fluid in ventricles. The work described in Chapter 4 explores the 

sensitivity of µFA to hippocampal abnormalities in patients with unilateral temporal lobe 

epilepsy. Chapter 5 summarizes the contributions of this Thesis and provides suggestions for 

future studies. 
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Summary for Lay Audience 
Medical imaging gives us the ability to noninvasively view tissues and organs that are hidden 

within the body. It plays a critical role in the detection and diagnosis of diseases and injuries, 

lets us monitor progression or recovery, and even allows for prenatal screening. There are many 

different medical imaging modalities, and each has its own specific strengths and weaknesses. 

 Diffusion magnetic resonance imaging (dMRI) is a specialized imaging technique that 

is sensitive to the motion of water molecules in tissue, which is affected by interactions with 

obstacles such as membranes and macromolecules. dMRI takes advantage of the relationship 

between water diffusion and tissue properties to reveal details about tissue architecture on a 

microscopic level. Microscopic fractional anisotropy (µFA) is a dMRI metric that quantifies 

the asymmetry of water diffusivity across different directions. For example, consider a typical 

neuron which has a long axon projecting from its cell body. Intracellular diffusivity is greater 

along the axon’s length than in the directions perpendicular to it because of restricting 

membranes; thus, diffusion in the neuron is highly anisotropic. Disease or injury can alter the 

neuron’s shape and properties, reducing anisotropy, and thus µFA may potentially serve as a 

surrogate biomarker of injury or disease in neuroimaging. 

The primary goal of this Thesis was to assess the clinical viability of µFA by 

developing a rapid protocol for full brain µFA imaging and then applying it to the study of a 

neurological disease. Chapter 1 presents the motivation behind this Thesis and a detailed 

summary of general background information that supports the subsequent chapters. Chapter 

2 focuses on the development and optimization of a µFA imaging protocol, and Chapter 3 

focuses on a modification to the technique that may improve its specificity to disease or injury 

in regions of the brain that are adjacent to cerebrospinal fluid-containing ventricles. The work 

described in Chapter 4 explores the sensitivity of µFA to hippocampal abnormalities in 
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patients with temporal lobe epilepsy. Finally, Chapter 5 summarizes the contributions of this 

Thesis and provides suggestions for future studies. 
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Chapter 1  

1 Introduction 

1.1. Overview 

Medical imaging provides a window into the interior of the body and plays a critical role 

in diagnosing disease and injury, planning treatments and surgeries, and monitoring 

progression or recovery over time. Though numerous imaging modalities have been 

developed, the most used techniques in clinical settings (in no particular order) are 

magnetic resonance imaging (MRI), x-ray imaging, nuclear medicine, ultrasound, and 

optical imaging. These modalities have different spatial resolution and depth penetration 

properties, as depicted in Table 1, and different methods from which image contrast is 

acquired. Among these techniques, MRI is unique in that it’s capable of imaging at any 

depth in the body without the use of potentially harmful ionizing radiation, it provides high 

soft-tissue contrast, and its contrast mechanism can be customized. However, the tradeoff 

for these traits is a low signal which often necessitates the use of long scan times and, for 

some specialized applications, poor imaging resolution. Furthermore, due to the powerful 

magnets used in MRI, electronics and other objects such as cardiac pacemakers and internal 

insulin pumps, are contraindicated. 

 The versatility of MRI as an imaging instrument comes from its ability to target 

different contrast mechanisms via the use of unique pulse sequences and acquisition 

protocols. Some examples of contrast targets are magnetization relaxation rates, blood 

oxygen level, and the diffusion of water. Diffusion-weighted MRI (dMRI) sensitizes the 

MRI signal to the net movement of water molecules, which reflects the interactions that 

water molecules have with obstacles such as membranes, fibers, and macromolecules; thus, 
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diffusion contrast provides information about tissue microstructure by probing these 

boundaries. dMRI has primarily found use in brain imaging because neural tissue is highly 

organized and intracellular diffusion within neuronal axons is highly restricted, and 

because the brain is reasonably static, making it an imaging target that is less prone to 

deleterious motion artifacts [1].  

Table 1-1: Spatial resolution and depth penetration of the major clinical imaging modalities. 

Adapted from [2] and modified. 

Modality Spatial Resolution Depth penetration 

MRI 0.25-2 mm Full body 

Computed tomography1 0.5-1 mm Full body 

Positron emission tomography2 5-10 mm Full body 

Single photon emission computed 

tomography2 

8-10 mm Full body 

Ultrasound 1-2 mm A few cm 

Optical fluorescence imaging3 2-3 mm <1 cm 

Photoacoustic imaging3 0.01-1 mm 0.6-3 cm 

 
*Modalities highlighted in gray utilize ionizing radiation. 
1X-ray imaging, 2Nuclear medicine, 3Optical imaging 
 

1.2. Scope of Thesis 

Microscopic fractional anisotropy (µFA) is a dMRI metric that is sensitize to neuronal 

microstructure but unaffected by neuron fiber orientation dispersion, potentially giving it 

high specificity to microstructural abnormalities that can result from disease or injury. 

However, µFA imaging protocols generally require prohibitively long scan times due to 

the use of specialized pulse sequences and other factors. The two primary goals of this 

thesis were to: (1) develop a protocol at 3T that can map µFA in the human brain with good 

repeat measurement reliability and high specificity to disease, within a clinically relevant 

scan time, and (2) apply the µFA protocol to the study of disease to assess its sensitivity to 

neuronal abnormalities. Chapters 2 and 3 involve developing and testing µFA imaging 
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protocols, while Chapter 4 describes a preliminary work applying the technique to the study 

of temporal lobe epilepsy. 

Chapter 2 outlines a protocol developed to estimate µFA, which involves a joint 

fitting of two types of dMRI signal data (linear tensor encoding, or LTE, and spherical 

tensor encoding, or STE) to the powder average kurtosis (paK) signal representation. The 

paK representation is advantageous as it can be computed rapidly using the method of least 

squares; furthermore, jointly fitting to LTE and STE signal reduces total data (and thus 

scan time) requirements. When the paK method was compared with another µFA technique 

in the white matter of four healthy volunteers, the measurements were found to correlate 

strongly albeit with a small bias. Additionally, the paK method showed good repeat 

measurement reliability in white matter. 

One of the challenges of measuring µFA outside of white matter is that gray matter 

regions tend to contain more free cerebrospinal fluid (CSF). The presence of free CSF in 

voxels reduces water diffusion anisotropy measurements, potentially confounding with 

microstructural features that also reduce anisotropy, such as axonal atrophy. In Chapter 3, 

a signal representation known as free water elimination powder average kurtosis (FWE-

paK) was proposed to estimate tissue-specific dMRI indices by separating the tissue signal 

from the free CSF signal. Simulations revealed that the FWE-paK yielded measurements 

that were more accurate than measurements made with the paK technique in regions with 

significant CSF partial volumes. In four healthy volunteers, the FWE method was found to 

yield higher µFA measurements than the paK technique in five regions-of-interest, and the 

difference between measurements correlated with the expected free CSF fraction of each 

region. 
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A preliminary study to assess the sensitivity of µFA (estimated from paK) and other 

dMRI indices to hippocampal abnormalities in temporal lobe epilepsy (TLE) is described 

in Chapter 4. µFA was found to be reduced in the ipsilateral side of the cornu ammonis 4 

hippocampal subregion relative to the contralateral side in all nine patients with unilateral 

temporal lobe epilepsy, while little asymmetry was observed in nine healthy volunteers. 

No statistically significant asymmetries were observed in the more common fractional 

anisotropy metric, suggesting that µFA has greater specificity to relevant disease-related 

microstructural abnormalities.  

The rest of this chapter provides background information regarding brain tissue 

[3]–[5], MRI [6], [7], diffusion and dMRI [6], [8], and TLE.  

1.3. Cell Types and Microstructure 

There are two main classes of cells in the nervous system: neurons, or nerve cells, and glia, 

or glial cells. 

The neuron is the functional unit of the nervous system, and it is estimated that 

there are about 100 billion neurons in the adult human brain, on average. The primary role 

of neurons is communication, and it is through the complicated architecture of neurons and 

sensory receptors throughout the central and peripheral nervous systems that functions such 

as cognition, movement, and sensation are possible. Externally, neurons communicate with 

each other via chemical signaling, in which specialized molecules known as 

neurotransmitters are released from one neuron and bind to another. Intraneuronal signals 

propagate as changes in membrane voltage known as action potentials. 

Although vertebrate neurons can vary in shape, size, and complexity, they generally 

have four specialized and morphologically defined regions known as the cell body, axon, 

synapses (which are comprised of presynaptic and postsynaptic terminals), and dendrites 
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(Figure 1-1). The cell body, or soma, is the genetic and metabolic center of the cell and it 

contains the nucleus and other organelles critical to the neuron’s survival and function. In 

most neurons, a single axon extends out of the cell body, which can then branch out to 

multiple synapses. The axon is a membrane-covered cylindrical tube that can range from 

0.1 mm to 2 m in length and acts as a conductor to propagate action potentials generated at 

the initial segment, where the axon and soma meet. Additionally, microtubules inside the 

axon provide a framework for intracellular transport, allowing vesicles containing 

neurotransmitters to move between the soma and presynaptic terminals. When an action 

potential reaches a presynaptic terminal, it triggers the release of neurotransmitters, which 

can bind to receptors on postsynaptic terminals on the dendrites (or other areas) of other 

neurons. Dendrites are branched extensions of the cell that receive these transmitting 

molecules and then propagate electrical signals to the cell body. They also act as resistors, 

isolating the cell from extracellular electrical events. Both dendrites and axons are 

categorized as neurites because they are projections from the neuronal cell body. 
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Figure 1-1. The structure of a typical neuron. The cell body, or soma, is the genetic and metabolic 

center of the cell and gives rise to dendrites, which receive chemical information from other neurons 

or from sensory receptors, and the axon, which transmits electrical signals to the synapses. Image was 

drawn and water painted by Kirsten Cardinell and full permission was granted for its use in this work. 
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Glial cells provide support and protection for neurons. It was previously believed 

that glia outnumber neurons by a factor of 10:1 in the human brain, but recent technological 

advances suggest that the ratio may be closer to 1:1 [9], [10]. Though there are many 

different types of glia, they can be divided into two major classes: microglia and macroglia. 

Microglia are immune cells that act as scavengers and protectors in the nervous 

system, responding to infection, injury, and degenerative disease. They become “activated” 

in response to various physiological conditions (such as the presence of inflammatory 

cytokines or necrosis factors) and proceed to destroy invasive microorganisms, remove 

harmful debris, and promote tissue repair. When activated, microglia proliferate rapidly 

and undergo several morphological changes to respond to the injury or threat, then later 

undergo apoptosis to return cell numbers back to baseline [11]. Deteriorated and defective 

microglia have been detected in disorders such as schizophrenia and Alzheimer’s disease 

and likely play a significant role in neurodegeneration [12]. 

Macroglia have a variety of supportive functions and can be further classified into 

four distinct subtypes called astrocytes, ependymal cells, oligodendrocytes, and Schwann 

cells. Astrocytes are star-shaped cells that perform a variety of roles including separating 

neurons for electrical insulation, regulating ion concentrations in the extracellular spaces, 

and providing nourishment and growth factors, among other functions. Ependymal cells 

line fluid-filled cavities in the central nervous system and regulate the flow of chemicals 

between these cavities and the brain. Oligodendrocytes and Schwann cells are small cells 

that form the myelin sheaths that concentrically wrap around axons; the prior are found in 

the brain and spine and can each provide a myelin sheath for multiple neurons (Figure 1-2), 
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while the latter are found in the peripheral nervous system and each envelope a single 

segment on one axon.  

Myelin is a lipid-rich material that acts as an insulator, much like the plastic 

covering on a standard electrical wire. However, myelin doesn’t form a single long sheath 

that covers the full length of an axon and instead covers it in segments (Figure 1-1). 

Between each myelinated section is a short gap called a node of Ranvier. The main purpose 

of myelin is to facilitate a process known as saltatory conduction, which increases the 

velocity at which action potentials propagate along an axon fiber. In unmyelinated fibers, 

electrical impulses travel as continuous waves, while in myelinated fibers they “jump” 

between nodes of Ranvier; this process increases the propagation speed of action potentials 

by a factor of 15- to 30-fold [13].  

 

Figure 1-2. Oligodendrocytes form the myelin sheaths in the brain. Image was drawn and water 

painted by Kirsten Cardinell and full permission was granted for its use in this work. 
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1.3.1. Macrostructure 

The three major macrostructural components of the brain are white matter (WM), gray 

matter (GM), and cerebrospinal fluid (CSF), as depicted in Figure 1-3. WM is primarily 

composed of myelinated axon fibers bundled together coherently to form tracts that 

connect various structures and regions of the brain, facilitating intra- and inter-regional 

communication. GM is primarily composed of neuronal cell bodies, dendrites, 

unmyelinated axons, and glial cells and includes most of the regions involved with motor 

control, cognition, and sensory perception. CSF is a clear, colorless fluid that is produced 

in cavities known as ventricles and can be found throughout the neurocranium. CSF 

cushions the brain from mechanical trauma, allows it to maintain its volume rather than 

collapse in on itself, helps maintain homeostasis by regulating chemical factors, and clears 

waste products [14].  

 

Figure 1-3. T1-weighted MRI slice depicting clearly delineable gray matter (GM), white matter (WM), 

and cerebrospinal fluid (CSF) regions. In this contrast scheme, CSF appears black, WM is a bright 

gray, and GM is a darker gray. Note that the extra-cranial space, while also black, does not represent 

CSF. This image was acquired with appropriate Research and Ethics Board approval. 
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In addition to the components listed above, the brain can also be divided into major 

identifiable zones based on clear anatomical divisions and their unique cognitive and motor 

functions. Examples include the four main lobes of the brain (frontal, temporal, occipital, 

and parietal), the cerebellum, and the brain stem. These zones can often be further sub-

divided into smaller anatomical regions, such as deep GM regions like the hippocampus 

and its even smaller subfields, and WM tracts like the corpus callosum. Segmenting the 

brain into these subsections is useful for delineating pathological regions in disease or 

following injury. 

1.3.2. Pathological Changes in the Brain 

Neurological diseases and injuries often result in pathological cellular alterations that can 

affect cognition or motor function and it is these abnormalities that lead to reduced quality-

of-life and increased mortality. Examples of microstructural changes are neuronal atrophy 

and death, demyelination and dysmyelination, changes in neurite shape, and gliosis. While 

some of these changes are generally irreparable, others can be partially or fully reversed if 

the necessary repair mechanisms are intact and functional. Some examples of neuronal 

changes/abnormalities are depicted in Figure 1-4. 

 Neuronal death respectively refers loss of neurons in the brain which can result in 

macrostructural deterioration. Many studies have observed age-related declines in GM and 

WM volume in healthy adults [15]–[17], suggesting that neuronal atrophy and death may 

be a normal consequence of aging. However, acute tissue loss can occur after traumatic 

injury [18] or stroke [19], and accelerated decline in brain volume is a hallmark of 

progressive diseases [20] like amyotrophic lateral sclerosis [21] and Alzheimer’s disease 

[22]. Decreases in brain tissue volume are generally accompanied by an increase in the 

volume of fluid in the extracellular space.  
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 Demyelination is the loss of myelin that surrounds axons, and dysmyelination 

describes a dysfunction in the myelinogenesis process that results in delayed or arrested 

myelin production or the formation of abnormal myelin sheaths, though the terms are often 

used interchangeably. Since myelin plays crucial roles in saltatory conduction and 

insulation, demyelinated axons transmit electrical impulses ineffectively and can be 

influenced by the electrical activity of neighboring cells. Multiple sclerosis (MS) is the 

most common demyelinating disease and the most common non-traumatic disabling 

disease in young adults [23], but demyelination may also play a causal role in seizure 

generation in patients with focal epilepsies, as the loss of the electrically-insulating myelin 

coating may promote axonal hyperexcitability [24].  

 Changes to neurite shape can result from neurodegenerative disorders, stretch 

injuries and brain trauma [25], stroke [26], or neurotoxins or drugs [27]. The mechanisms 

behind these changes are not fully understood; the classical explanation is that swelling 

occurs when ion pumps on the surfaces of neurons are compromised, causing an increased 

intracellular ion concentration that drives osmosis [28], though some contend this theory 

[29]. Beading occurs when the fluid within neurites is distributed abnormally as some 

segments expand while others constrict [25]. Though neurite expansion, constriction, and 

beading are often reversible and neurites can return to their cylindrical shapes following an 

insult, irreversible damage and cell death are possible if the magnitude of the osmotic shock 

or the rate at which the cell expands or constricts is too high [30]. 



12 

 

 

Figure 1-4. Examples of neuronal abnormalities that can result from injury or disease. Images were 

drawn and water painted by Kirsten Cardinell and full permission was granted for their use in this 

work. 
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Gliosis is an umbrella term that describes the non-specific changes that glial cells 

undergo in response to injury or disease. In most cases, gliosis involves glial cells 

undergoing hypertrophy and/or proliferation to respond to an injury. Microglial activation 

(as described in 1.3.2) is a form of gliosis, as are astrogliosis [31] and oligodendrocyte 

recruitment [32]. Though gliosis plays a protective and regenerative role in the brain, it can 

also lead to the formation of glial scars that inhibit axon regeneration [31]. 

1.4. Temporal Lobe Epilepsy 

Epilepsy is a brain disorder that affects nearly 1% of people worldwide [33]. It is 

characterized by recurrent seizures, which are abnormal excessive bouts of electrical 

activity in the brain that can have significant and potentially life-threatening effects on 

patients such as temporary involuntary shaking and loss of consciousness [34]. In addition 

to these seizures, which typically last a few minutes, epilepsy patients are more likely than 

the general population to suffer from neuropsychiatric disorders like anxiety and 

depression, pain disorders like migraine and chronic pain, and even certain physical 

disorders like asthma [35].  

For many patients, seizures can often be managed with anticonvulsant medications, 

though approximately 30% of adults with epilepsy progress to a drug-resistant or medically 

intractable form of the disease [36]. If the site of seizure onset is confined to one 

hemisphere of the brain (i.e., unilateral) and can be delineated using medical imaging 

and/or electroencephalography (EEG), surgery to remove the seizure focus may be a viable 

treatment option for patients with medically intractable epilepsy.  

 Temporal lobe epilepsy (TLE) is characterized by seizures that originate in the 

medial or lateral structures of the temporal lobe, and is one of the most common forms of 

focal epilepsy in both adults and children [37]. Approximately 70% of adults with 
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medically intractable TLE present with hippocampal sclerosis (HS) [38], which is defined 

as severe cell loss and gliosis in the hippocampus, a structure found in the medial temporal 

lobe. When HS is present in one hemisphere but not the other, a patient with medically 

intractable disease may be a candidate for surgery to remove the ipsilateral hippocampus 

(hippocampectomy).  

1.4.1. Hippocampus Physiology 

The hippocampus (also known as the hippocampal formation) is a bilaminar 

structure consisting of the cornu ammonis (CA) and the dentate gyrus (DG), folded into 

one another. The main functional cellular components of the CA are pyramidal neurons, 

which feature triangular soma with an axon emerging from the base and two distinct 

dendritic trees: a long branch of apical dendrites that can traverse the entire thickness of 

the CA emerging from the apex of the soma, and shorter radially-distributed basal dendrites 

emerging from the base [39]. In the DG, granular neurons are the main functional units, 

and they feature a monoconical branch of apical dendrites emerging from a small and round 

soma [39]. Figure 1-5 depicts a granular neuron and a pyramidal neuron. Glia and 

interneurons are also present in the hippocampus. 



15 

 

 

Figure 1-5. An isolated dentate gyrus granular neuron (left) and cornu ammonis 1 pyramidal neuron 

(right). The scale bar represents 50 µm. Image adapted from “Cranial Irradiation Alters Dendritic 

Spine Density and Morphology in the Hippocampus”, Chakraborti A. et al, PLoS ONE, 2012.  
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Functionally, the hippocampus plays a role in learning and memory, regulation of 

emotional behavior, and regulation of hormonal secretion [39]. Thus, in addition to 

seizures, TLE patients with HS may experience other cognitive symptoms such as long-

term memory deficits [40]. 

1.5. Magnetic Resonance Imaging 

1.5.1. Nuclear Magnetic Resonance 

Any atomic nucleus with an odd number of protons or an odd number of neutrons possesses 

an intrinsic property known as spin angular momentum. Nuclei with this property can be 

visualized as spinning charged spheres that possess a nonzero magnetic moment and are 

often referred to as “spins”. When subjected to an external magnetic field, individual spins 

have a slight tendency to point along the direction of the field and exhibit precession about 

that direction in a process known as nuclear magnetic resonance (NMR). For a group of 

many protons, referred to as a spin isochromat, the net magnetization aligns along the 

direction of the external magnetic field and can be analyzed according to the laws of 

classical electromagnetism rather than by those of quantum mechanics.  

 In MRI, a static magnetic field 𝑩𝟎 = 𝐵𝑜�̂� is employed to create a static net 

magnetization in the sample (𝑀0) along the direction of the unit vector �̂�. When time-

dependent magnetic fields are applied in addition to the static field, the net magnetic field 

can be described as: 

 𝑩(𝑡) = 𝐵𝑥(𝑡)�̂� + 𝐵𝑦(𝑡)�̂� + (𝐵0 + 𝐵𝑧(𝑡))�̂� (1.1) 

where 𝑡 is the time, and �̂� and �̂� are unit vectors in directions orthogonal to each other and 

to �̂�. The Bloch equation describes the effect of 𝑩 on the net magnetization (𝑴) in the 

sample and is given by [6], [7]: 
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 𝑑𝑴

𝑑𝑡
= 𝛾𝑴𝑥𝑩 −

𝑀𝑥�̂� + 𝑀𝑦�̂�

𝑇2
−

(𝑀𝑧 − 𝑀0)�̂�

𝑇1
 

(1.2) 

where 𝛾 is the gyromagnetic ratio, which is a property of atomic nuclei that relates their 

spin angular momentum to the nuclear magnetic moment. 𝑇1 is the spin-lattice relaxation 

constant characteristic of the time it takes for nuclei to recover to a less energetic state via 

thermal energy loss to surrounding molecules. 𝑇2 is the spin-spin relaxation constant 

characteristic of the time it takes for individual spins to desynchronize due to interactions 

with the magnetic moments of surrounding atoms. 

 In the simplest case, we can consider a homogeneous sample in a static, uniform 

magnetic field (i.e. 𝑩 = 𝐵0�̂�). Here, the solutions to the Bloch equation are: 

 
𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0)𝑒−𝑖𝛾𝐵0𝑒

−
𝑡

𝑇2 
(1.3) 

 
𝑀𝑧(𝑡) = 𝑀0 + (𝑀𝑧(0) − 𝑀0)𝑒

−
𝑡

𝑇1 
(1.4) 

where 𝑀𝑥𝑦 = 𝑀𝑋 + 𝑖𝑀𝑦 is the complex representation of the net magnetization in the xy-

plane, also known as the transverse magnetization, and 𝑀𝑧 is the net longitudinal 

magnetization along �̂�. The exponential terms in equations (1.3) and (1.4) reveal three key 

properties that are fundamental to MRI: 

I) Per Euler’s formula, the complex exponential 𝑒−𝑖𝛾𝐵0 reveals that the transverse 

magnetization vector undergoes precession at a frequency given by 𝜔0 = 𝛾𝐵0; 

this is referred to as the Larmor frequency. 

II) The term 𝑒
−

𝑡

𝑇2 reveals that the net transverse magnetization decays to 0 at a rate 

dictated by 𝑇2. 
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III) The term 𝑒
−

𝑡

𝑇1 reveals that the net longitudinal magnetization recovers to the 

equilibrium value of  𝑀0 at a rate dictated by 𝑇1. 

1.5.2. Signal Acquisition 

To generate a signal for MRI, the net magnetization within a sample is first tipped into the 

transverse plane to generate a nonzero 𝑀𝑥𝑦. This is achieved by applying a radiofrequency 

(RF) magnetic field oscillating at the Larmor frequency, represented as 𝐵1(𝑡) = 𝐵1𝑒−𝑖𝜔0𝑡. 

The B1 field applies an “effective torque” to the magnetization vector, causing it to rotate, 

and the tip angle depends on the strength of the B1 field and the duration of the RF pulse: 

 
𝜃(𝑡) = 𝛾 ∫ 𝐵1(𝑡)𝑑𝑡 

(1.5) 

 RF coils are used to detect the precessing transverse magnetization through 

Faraday’s Law of Induction, wherein a changing magnetic field generates an electric 

current in a conducting material. The net acquired signal, 𝑆(𝑡), is proportional to the 

transverse magnetization integrated through the entire sample volume: 

 
𝑆(𝑡) ∝ ∭ 𝑀𝑥𝑦(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑧 

(1.6) 

In practice, the static 𝐵0 field is not completely homogeneous, as deviations can occur 

throughout the volume due to factors such as hardware limitations and magnetic 

susceptibility, the latter of which quantifies how magnetized a material will become in the 

presence of a magnetic field. Factoring in these inhomogeneities, the signal equation 

becomes: 

 
𝑆(𝑡) ∝ ∭ 𝑀𝑥𝑦(𝑥, 𝑦, 𝑧, 𝑡)𝑒−𝑖𝜙(𝑥,𝑦,𝑧,𝑡)𝑑𝑥𝑑𝑦𝑑𝑧 

(1.7) 

where 𝜙 is a nonzero and spatially varying phase that accumulates due to the magnetic 

field deviations, Δ𝐵0, in the static 𝐵0 field, given by: 
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𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝛾 ∫ Δ𝐵0(𝜏)𝑑𝜏

𝑡

0

 
(1.8) 

This phase causes the net transverse magnetization to decrease due to destructive 

interference between spins. The net effect on 𝑀𝑥𝑦 (equation (1.3)) is that 𝑇2 effectively 

decreases to become 𝑇2
∗: 

 
𝑇2

∗ = (
1

𝑇2
+

1

𝑇2
′)

−1

 
(1.9) 

where 𝑇2
′ is the contribution to dephasing due to susceptibility.  

 The spin echo method is a technique that uses two RF pulses to reverse the effects 

of 𝑇2
′ on the measured signal and limit transverse decay to the effects of 𝑇2. The first pulse 

is a 90o excitation that tips 𝑴 into the xy-plane, after which individual spins begin to rapidly 

dephase relative to each other due to field inhomogeneities. After some time, 𝜏, a 180o 

refocusing pulse is applied to invert the phase accumulated in each of the individual spins 

(i.e. -𝜙). The spins then begin to rephase and an echo forms at a time 𝜏 after the second 

pulse. The total time between the first RF pulse and the peak of the echo is known as the 

echo time (TE), and the net transverse magnetization at this point is given by equation (1.3) 

after substituting t with TE.  

To acquire 2D images, a technique known as selective excitation is employed to 

ensure that only a thin slice of the sample is excited by the B1 RF pulse. Assuming the 

slices are to be orthogonal to the �̂� direction, a static gradient field (𝐺𝑧) is applied along z 

to introduce a spatially varying Larmor frequency that linearly depends on z: 

 𝜔0(𝑧) = 𝛾(𝐵0 + 𝐺𝑧𝑧) (1.10) 

The B1 field is then tuned to a particular frequency which determines the z-position of the 

slice to be excited (𝑧0) to produce a measurable signal. The thickness of the slice (∆𝑧) is 
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related to the frequency and bandwidth (BW) of the RF pulse and the strength of the 𝐺𝑧 

gradient, per: 

 𝐵𝑊 = 𝛾𝐺𝑧∆𝑧 (1.11) 

Figure 1-6 depicts how the B1 pulse frequency and bandwidth map to the slice position 

and thickness. 

 

Figure 1-6. The precession frequency as a function of the position along the z-axis in the presence of a 

static gradient. The frequency bandwidth (shaded) determines the thickness of the excited slice. Image 

adapted from Magnetic Resonance Imaging: Physical Principles and Sequence Design 2nd ed, Brown, 

R.W. et al, 2014 and modified to maintain consistency with the symbols and terminology used in this 

work. 

 

After selective excitation, time-varying gradients applied in the other base 

directions (here, �̂� and �̂�) induce spatially varying changes in the Larmor frequency: 

 𝜔0(𝑥, 𝑦) = 𝛾(𝐵0 + 𝐺𝑥(𝑡)𝑥 + 𝐺𝑦(𝑡)𝑦) (1.12) 

Ignoring the phase introduced by B0 inhomogeneity and the 𝑇2 decay exponential, the 

signal equation is given by: 
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𝑆(𝑡) ∝ ∬ 𝑀𝑥𝑦(𝑥, 𝑦, 𝑧)𝑒−𝑖(𝛾(∫ 𝐺𝑥(𝜏)𝑑𝜏

𝑡
0 )𝑥+𝛾(∫ 𝐺𝑦(𝜏)𝑑𝜏

𝑡
0 )𝑦)𝑑𝑥𝑑𝑦 

(1.13) 

Equation (1.13) resembles the 2D Fourier transform of 𝑀𝑥𝑦 if the following substitutions 

are made: (1.14) 

 𝛾

2𝜋
∫ 𝐺𝑥(𝜏)𝑑𝜏

𝑡

0

= 𝑘𝑥(𝑡) 

𝛾

2𝜋
∫ 𝐺𝑦(𝜏)𝑑𝜏

𝑡

0

= 𝑘𝑦(𝑡) 

(1.14) 

where 𝑘𝑥 and 𝑘𝑦 represent the variables in the spatial frequency domain, also referred to 

as “k-space”. The measured signal at any point in time is therefore proportional to the 

transverse magnetization 𝑀𝑥𝑦 sampled at the spatial frequencies 𝑘𝑥 and 𝑘𝑦: 

 
𝑆(𝑡) = 𝑆(𝑘𝑥, 𝑘𝑦) ∝ ∬ 𝑀𝑥𝑦(𝑥, 𝑦, 𝑧, 𝑡)𝑒−𝑖2𝜋(𝑥𝑘𝑥+𝑦𝑘𝑦)𝑑𝑥𝑑𝑦 

(1.15) 

By utilizing the 𝐺𝑥 and 𝐺𝑦 gradients to manipulate the k-space trajectory, and then 

measuring 𝑆(𝑡) at multiple time points, one can acquire enough samples of k-space to then 

reconstruct an image of the selected slice using the inverse 2D Fourier transform: 

 
𝑀𝑥𝑦(𝑥, 𝑦, 𝑧) = ∬ 𝑆(𝑘𝑥, 𝑘𝑦)𝑒𝑖2𝜋(𝑥𝑘𝑥+𝑦𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 

(1.16) 

1.5.3. Imaging Considerations 

In practice, the recorded signal is a discrete time series (rather than a continuous function) 

due to sampling limitations, and the resulting set of MRI data comprises a grid in k-space 

for each image slice. The recorded signal along either 𝑘𝑥 or 𝑘𝑦 can be represented as the 

multiplication of the continuous signal with a truncated comb function that introduces two 

significant limiting parameters: the total width of k-space acquired (𝑤𝑘𝑥
 or 𝑤𝑘𝑦

) and the 

sampling period (∆𝑘𝑥 or ∆𝑘𝑦). 
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The in-slice imaging resolution in 2D MRI is related to the size of the k-space grid 

per the following: 

 
∆𝑥 =

1

𝑤𝑘𝑥

 

∆𝑦 =
1

𝑤𝑘𝑦

 

(1.17) 

As revealed by equation (1.17), the spatial resolutions in the x and y directions are 

independent of each other, though in practice they are generally set to be equal. 

The field-of-view (FOV) in 2D MRI is determined by the sampling periods ∆𝑘𝑥 

and ∆𝑘𝑦. This relationship is given by the following: 

 
𝐹𝑂𝑉𝑥 =

1

∆𝑘𝑥
 

𝐹𝑂𝑉𝑦 =
1

∆𝑘𝑦
 

(1.18) 

As with spatial resolution, the FOVs in the x and y directions are independent of each other, 

though it can be desirable to have different FOVs in each direction depending on the 

geometry of the object being imaged. 

The truncation of the recorded signal due to sampling limitations introduces 

periodicity in the image domain because the Fourier transform of the k-space grid produces 

an infinite number of images. In practice, one such image is isolated and selected, while 

the rest are discarded. If the FOV in x or y is smaller than the width of the object being 

imaged, aliasing artifacts can occur, causing the images to overlap. The Nyquist criterion 

states that ∆𝑘 should be less than or equal to FOVmin
-1 where FOVmin is the width of the 

object being imaged along a particular direction. 
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1.5.4. Echo Planar Imaging 

A consequence of sensitizing the MR signal to the motion of water molecules is that dMRI 

is inherently susceptible to patient movement. To reduce the confounding effects of gross 

head motion and physiological motion on signal measurements, dMRI often uses an 

acquisition technique called echo planar imaging (EPI) to acquire an entire 2D k-space grid 

after a single RF excitation [41]. With EPI, it’s possible to obtain an MR slice in under 100 

ms. 

 A typical single shot EPI sequence used in dMRI resembles a spin echo pulse 

sequence with the addition of diffusion-sensitizing gradients and a modified readout 

strategy for sampling the signal, as depicted in Figure 1-7. Time-varying gradients in the 

two perpendicular in-plane directions (here, x and y) are applied during readout to 

manipulate the k-space trajectory, ultimately resulting in the acquisition of an entire k-

space grid after one excitation.   
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Figure 1-7. Simplified pulse sequence diagram for a diffusion-weighted echo planar imaging (EPI) 

acquisition. All waveforms are depicted as a function of time. Top: The slice selection gradient (blue, 

(a)) limits excitation from the initial 90o radiofrequency (RF) pulse to a single slice in the z-direction. 

On either side of the inverting 180o RF pulse are dephasing and rephasing diffusion-sensitizing 

gradients (green, (b)).  The gradients applied during readout manipulate the k-space trajectory: each 

rectangular gradient in the x-direction (orange, (c)) moves the k-space sampling trajectory through a 

line in the 𝒌𝒙 direction, while each “blip” gradient in the y-direction (yellow, (d)) shifts the sampling 

trajectory to a new line in 𝒌𝒚. The spoiler gradients at the end of the sequence (gray, (e)) remove any 

remaining transverse magnetization. Bottom: During readout, alternating lines of k-space are sampled 

in reverse directions. 

 

1.6. Diffusion-weighted MRI 

1.6.1. Physics of Diffusion 

Diffusion refers to the thermal motion small molecules experience at temperatures above 

absolute zero. The process was first described by Robert Brown in 1827, who was 

observing pollen immersed in water through a microscope [42]; random self-diffusion is 
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thus commonly referred to as Brownian motion. However, it was Adolf Fick who first 

described how solute particles are distributed over time because of nonuniform 

concentration, via Fick’s second law: 

 𝜕𝜑(𝒓, 𝑡)

𝜕𝑡
= 𝐷∇2𝜑(𝒓, 𝑡) 

(1.19) 

where 𝜑 is the concentration of a particular particle at time 𝑡 and position 𝒓, and 𝐷 is the 

diffusivity or diffusion coefficient in units of length2 time-1. In the presence of a 

concentration gradient, equation (1.19) describes the net movement of particles from a 

region of higher concentration to lower concentration; for example, a pinch of salt added 

to a glass of water would disperse until the salt was uniformly distributed throughout the 

glass. Albert Einstein demonstrated that in the absence of a concentration gradient, the 

above equation can be used to describe the stochastic nature of Brownian motion and 

𝜑(𝒓, 𝑡) can be interpreted as the probability density function of a particular individual 

particle’s location, 𝒓, after a time, 𝑡 [43]. 

For a particle in a solution that isn’t limited by any external barriers, the probability 

distribution of the particle’s one-dimensional displacement (along x) after a diffusion time, 

𝑡, resembles a Gaussian function: 

 
𝜑(𝑥, 𝑡) =

1

√4𝜋𝐷𝑡
𝑒

(−
𝑥2

4𝐷𝑡
)
 

(1.20) 

An example probability distribution of a particle’s displacement at three time points is 

depicted in Figure 1-8. The variance of this distribution expresses the mean squared 

displacement of the particle: 

 𝑥2̅̅ ̅ = 2𝐷𝑡 (1.21) 



26 

 

Particles that adhere to equations (1.20) and (1.21) are said to be undergoing free or 

Gaussian diffusion.  

 

Figure 1-8. Probability distributions for the location of a particle experiencing Gaussian diffusion in 

the x-direction. Depicted curves were generated using a diffusion coefficient of 𝟑. 𝟎 ∗ 𝟏𝟎−𝟑 mm2/s. 

 

In biological tissues, the assumptions of the Gaussian diffusion regime are violated 

because the movement of water molecules is impeded by the presence of membranes, 

boundaries, and various structures. When a molecule is constrained by the presence of an 

impermeable barrier, that molecule is said to be undergoing restricted diffusion, while a 

molecule that encounters a semi-permeable barrier or other obstacles that impede but don’t 

completely prohibit movement is said to be undergoing hindered diffusion. Let us consider 

a group of neuronal axons aligned coherently, as depicted in Figure 1-9a. Assuming that 

either the myelin sheath or axonal membrane are impermeable, water molecules within the 

axons are experiencing restricted diffusion. Water molecules in the area extracellular space 

are impeded by the axons but can otherwise move around them and are thus experiencing 
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hindered diffusion. Water molecules in a distant free CSF pool, which are unimpeded by 

obstacles or boundaries, are undergoing free or Gaussian diffusion.  

 

Figure 1-9. (a) Potential trajectories of water molecules experiencing restricted diffusion (red), 

hindered diffusion (blue), and free diffusion (green) along the x-direction. The circles represent cross-

sections of neuronal axons with impermeable membranes. (b) Mean squared displacement of molecules 

along the x-direction (𝒙𝟐̅̅ ̅) as a function of diffusion time. The asymptotic dotted line depicts the 

maximum 𝒙𝟐̅̅ ̅ of molecules undergoing restricted diffusion, resulting from the finite size of the 

impermeable axons.   
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1.6.2. Diffusion and the MRI Signal 

The effects of molecular diffusion on NMR experiments are described by the Bloch-Torrey 

equation, in which an additional term is introduced to the Bloch equation (equation (1.2)) 

to account for diffusion [44]: 

 𝑑𝑴

𝑑𝑡
= 𝛾𝑴𝑥𝑩 −

𝑀𝑥�̂� + 𝑀𝑦�̂�

𝑇2
−

(𝑀𝑧 − 𝑀0)�̂�

𝑇1
+ 𝐷∇2𝑴 

(1.22) 

The net transverse magnetization can be described by the following: 

 𝑑𝑀𝑥𝑦

𝑑𝑡
= −𝑖𝛾𝑮 ∙ 𝒓 −

𝑀𝑥𝑦

𝑇2
+ 𝐷∇2𝑀𝑥𝑦 

(1.23) 

where 𝑮 is an applied gradient magnetic field. Ignoring the phase accumulated due to 

applied gradient and the 𝑇2 relaxation decay to isolate the effects of diffusion on the MR 

signal, the solution to equation (1.23) is given by [45]: 

 
𝑆 ∝ 𝑒

−𝐷𝛾2 ∫ (∫ 𝑮(𝑡′′)𝑑𝑡′′𝑡′

0
)

2

𝑑𝑡′𝑡
0  

(1.24) 

Equation (1.24) reveals that diffusion of spins causes attenuation of the MRI signal due to 

the phase incoherence that arises from motion, and that this attenuation is modulated by 

the diffusivity and the strength and duration of the applied gradients.  

 In 1965, Stejskal and Tanner demonstrated the first MRI pulse sequence for 

diffusion-weighted image contrast; the Stejskal-Tanner sequence is one variation of the 

pulsed gradient spin echo (PGSE) sequence and is depicted with rectangular gradients in 

Figure 1-10 [46].  PGSE resembles a spin echo sequence with the addition of two (usually) 

identical gradient waveforms inserted before and after the 180o RF pulse to dephase and 

then, after some time, rephase spins. If spins remain fixed in position, the net phase induced 

by the diffusion gradients will be zero. However, if spins move along the direction of the 
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diffusion gradients during the time between the dephasing and rephasing waveforms, they 

acquire a net phase that accelerates the decay of 𝑀𝑥𝑦 due to phase dispersion.  

 

Figure 1-10. A conventional “Stejskal-Tanner” pulsed gradient spin echo sequence with rectangular 

gradients. The initial 90o radiofrequency (rf) pulse excites the slice of the sample that has a Larmor 

frequency matching the pulse frequency, which is determined by the slice selection gradient (GSS). 

After a time, a 180o rf pulse is applied to invert the magnetization vectors, leading to the production of 

an echo. The diffusion-encoding gradients (shaded gray) are applied on either side of the second rf 

pulse to dephase and then rephase the individual spins. Note that the diffusion gradients are each 

applied for a duration of δ, are separated by a time of Δ (start to start), and have a gradient strength 

of G. Not depicted in this image are the gradients used to manipulate the k-space trajectory (Gx and 

Gy). Image adapted from Magnetic Resonance Imaging: Physical Principles and Sequence Design 2nd 

ed, Brown, R.W. et al, 2014. 

 

The solution to equation (1.24) for a Stejskal-Tanner PGSE sequence, as depicted 

in Figure 1-10, is given by: 

 
𝑆 ∝ 𝑒

−𝐷𝛾2𝐺2𝛿2(∆−
𝛿
3

)
 

(1.25) 

where 𝐺 is the magnitude of the applied diffusion-sensitizing gradients, each of which has 

a duration 𝛿, and with a delay of ∆ between them. Equation (1.25) can be simplified by 

performing a substitution to replace all variables related to the diffusion gradients with a 
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single term that quantifies the degree of diffusion-weighting and is known as the b-value 

or simply 𝑏. The acquired signal can then be expressed as a function of the b-value, denoted 

𝑆𝑏. When 𝑏 = 0, there is no diffusion-weighting, and the measured signal depends only on 

other factors such as transverse and longitudinal relaxation. Expressing 𝑆𝑏 in terms of the 

signal absent diffusion-weighting, 𝑆0, gives: 

 𝑆𝒈,𝑏 = 𝑆0𝑒−𝑏𝐴𝐷𝐶 (1.26) 

where 𝒈 = (𝑔1, 𝑔2, 𝑔3) is a unit vector denoting the direction of the applied diffusion-

sensitizing gradients and ADC is the apparent diffusion coefficient along 𝒈. An assumption 

of equation (1.26) is that all movement of water molecules within the voxel-of-interest 

arises from Gaussian diffusion, which is often untrue in vivo (1.6.1). Hence, the ADC is an 

approximation of diffusivity rather than a true diffusion coefficient. 

1.6.3. Diffusion Tensor Imaging  

Diffusion tensor imaging (DTI) is a technique that uses PGSE acquisitions to estimate a 

symmetric 3×3 matrix that characterizes the diffusion of water molecules within a voxel, 

known as the diffusion tensor, 𝑫 = [𝐷11, 𝐷22, 𝐷33, 𝐷12, 𝐷13, 𝐷23] [47]. Typically, PGSE 

signals are acquired at 𝑏 = 0 and at a nonzero b-value (usually 1000 s/mm2), and are then 

fitted to the DTI signal representation to solve for 𝑫: 

 𝑆𝒈,𝑏 = 𝑆0𝑒−𝑏 ∑ 𝑔𝑖𝑔𝑗𝐷𝑖𝑗
3
𝑖,𝑗=1  (1.27) 

A minimum of six directions at the nonzero b-value are needed to solve for the six unknown 

elements in the diffusion tensor, but acquiring more directions spread out evenly along a 

sphere can mitigate rotational biases and improve signal-to-noise ratio (SNR).  

The most commonly used scalar quantities derived from DTI fall into two 

categories: measures of diffusion magnitude and measures of diffusion anisotropy [48]. 
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The first step in estimating these metrics is to compute the eigenvalue/eigenvector pairs of 

the 𝑫 matrix; the eigenvalues (𝜆1, 𝜆2, and 𝜆3) quantify the ADC along the three principal 

axes defined by the eigenvectors (𝒗𝟏, 𝒗𝟐, and 𝒗𝟑) and can be visualized as an ellipsoid, as 

depicted in Figure 1-11. 

 

Figure 1-11. An ellipsoid depicting the eigenvalue/eigenvector pairs corresponding to the diffusion of 

water within a voxel. The black arrows portray the directions of the eigenvectors, while the eigenvalues 

(red) quantify the average diffusivity along those directions. In this example, the principal eigenvalue 

(𝝀𝟏) is greater than the other eigenvalues, implying that diffusion within this voxel is anisotropic and 

that diffusivity is greatest along 𝒗𝟏. In a voxel with isotropic diffusion, the ellipsoid would instead 

resemble a sphere with  𝝀𝟏 = 𝝀𝟐 = 𝝀𝟑. 

 

The mean diffusivity (MD) is a measure of the average diffusivity in the voxel 

across all directions and is estimated by computing the mean of the eigenvalues [49]:   

 
𝑀𝐷 =

𝜆1 + 𝜆2 + 𝜆3

3
 

(1.28) 

At 37oC (the average human internal temperature) the diffusivity of free water is 3e-3 

mm2/s; however, DTI measurements made in WM and GM regions yield lower diffusivity 

estimates (~0.7-1e-3 mm2/s [50]) because of hindered and restricted diffusion due to 

membranes and other obstacles inside cells and in the extracellular space. Other DTI 
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diffusivity measurements of interest are the axial or longitudinal diffusivity, which is the 

principal eigenvalue, 𝜆1, and the radial or perpendicular diffusivity, which is the mean of 

the two smaller eigenvalues, 0.5(𝜆2 + 𝜆3). 

Fractional anisotropy (FA) is a normalized scalar measure of the variance in 

diffusivity across directions [49]. FA is 0 in a voxel in which diffusion is isotropic (i.e. 

equal in all directions), whereas FA is closer to 1 in a voxel in which the axial diffusivity 

is much greater than the radial diffusivity. FA is estimated using the following equation: 

 

𝐹𝐴 = √1.5√
(𝜆1 − 𝑀𝐷)2 + (𝜆2 − 𝑀𝐷)2 + (𝜆3 − 𝑀𝐷)2

𝜆1
2 + 𝜆2

2 + 𝜆3
2  

(1.29) 

Example slices of FA, MD, axial diffusivity, and radial diffusivity are depicted in Figure 

1-12. 

In addition to producing scalar measurements that characterize diffusion in vivo, 

DTI can also be used to estimate and model nerve tracts in the brain via a process known 

as tractography [51]. 
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Figure 1-12. Examples of mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity, and 

radial diffusivity maps from a patient with epilepsy, all normalized to pixel intensities ranging from 0 

to 1. This image was acquired with appropriate Research and Ethics Board approval. 

 



34 

 

The usefulness of DTI measurements arises from the relationship between water 

diffusion and neuroanatomy. Pathological changes to brain anatomy, such as those 

described in Section 1.3.3, often affect MD and FA measurements. For example, a 

significant decrease in MD can indicate acute cellular swelling after stroke or injury [52], 

[53], while an increase can indicate an increased extracellular fluid volume caused by tissue 

loss or atrophy [54]. FA is often considered a surrogate measure of WM integrity [48], as 

water diffusion within neuronal axons tends to be highly anisotropic, and changes in FA 

can result from many factors including demyelination, neurodegeneration, and axonal 

atrophy. Because of its sensitivity to neuroanatomy, DTI has been applied to a large variety 

of studies including traumatic brain injury [55], MS [56], aging [57], and schizophrenia 

[58]. 

Despite its wide usage, the DTI signal representation has some major limitations, 

three of which are significant to this thesis: (I) the assumption that all diffusion arises from 

Gaussian sources, (II) the confounding effects of axon fiber orientation dispersion on 

voxel-wide measurements of anisotropy, and (III) free water partial volume effects. 

Limitation I: Gaussian diffusion 

In DTI, the signal acquired at each diffusion direction is modeled by equation (1.26) and 

is assumed to result from free diffusion along said direction. In the mono-Gaussian 

diffusion scheme the diffusivity should remain constant regardless of the diffusion time, 

but in real brain tissue the apparent diffusivity exhibits diffusion time-dependence. If the 

diffusion time is short enough that most water molecules do not reach any restricting or 

hindering boundaries within the tissue, the measured ADC will be equal to the diffusivity 

of free water [59]. However, if the diffusion time is long enough that most molecules will 
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encounter barriers, the measured ADC will decrease to an asymptotic value called the 

steady state ADC. For consistency across studies, standard DTI experiments aim to probe 

long diffusion times and acquire steady-state ADC measurements. Given that 

microstructural brain tissue compartments (i.e. cells) are typically on the order of ~1 µm 

or less in size, equation (1.21) predicts that a diffusion time of ~20 ms or greater is needed 

to measure steady state ADC. 

The mono-Gaussian diffusion assumption is an oversimplification even when 

steady state measurements are achieved via long diffusion times because the diffusivity 

within a voxel represents the sum of diffusivities of all water molecules from multiple 

water-containing compartments (i.e. axons, soma, extracellular water, etc.) and over 

multiple directions. Water molecules in different compartments within the voxel may be 

diffusing at different rates, and the signal would be better characterized by a multi-

exponential decay function. Per equation (1.26), the logarithm of the dMRI signal should 

decrease linearly with increasing b-value, but in most tissue-containing voxels, the signal 

vs. b-value deviates from this straight line due to the variance in diffusivity (Figure 1-13). 

Though the signal deviation is not significant at the relatively low b-values used in DTI 

[60], more advanced signal representations that can quantify this deviation may provide 

more information about the underlying tissue [61], [62]. 
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Figure 1-13. Logarithm of a typical diffusion MRI signal (𝑺) from a tissue-containing voxel sampled at 

seven b-values. The low b-value signal fitted to the DTI signal representation (black), which assumes 

Gaussian diffusion within the voxel, resembles a straight line, while the measured signal (red) deviates 

from this representation at higher b-values. Plot generated using simulated data. 

 

Limitation II: Fiber orientation dispersion 

WM is a common target for DTI studies because it is primarily composed of neuronal 

axons bundled together to form tracts, and water within and around these structures exhibits 

restricted and anisotropic diffusion. When axons are aligned coherently within a voxel (i.e. 

parallel to one another), FA can reasonably act as a surrogate metric of neurodegeneration, 

but there are challenges associated with crossing or fanning axon alignments. First, the 

diffusion tensor exhibits a rounder shape and FA is in turn reduced, limiting the metric’s 

specificity to true pathological abnormalities (Figure 1-14). Second, there are 

circumstances in which voxelwise anisotropy increases while cellular/microscopic 

anisotropy decreases [63]; for example, FA was found to increase in a region containing 
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crossing axons when axons along one direction were preferentially damaged compared to 

those in a perpendicular tract [64].  

 

Figure 1-14. The effects of various tissue geometries on fractional anisotropy (FA). The cylinders can 

be said to approximate neuronal axons, while the spheres can represent non-neuronal, spherical cells. 

Though columns 1-3 all depict intact axons, the decreasing orientational coherence from left to right 

leads to decreasing values of FA. This confounding effect of axon orientation limits the specificity of 

FA to white matter neurodegeneration. The diffusion tensor signal representation cannot distinguish 

between incoherently arranged axons (column 3) and spherical cells (column 4), as diffusion appears 

isotropic in both cases. Image adapted from “Microanisotropy imaging: quantification of microscopic 

diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning 

of the q-vector”, Lasic S. et al, Frontiers in Physics, 2014. 

 

Limitation III: Free water partial volume effects 

Free water partial volume effects occur in voxels that contain both tissue and free water, 

such as at the interface between brain tissue and a CSF-containing ventricle. The diffusivity 

and 𝑇2-weighted signal of free water are much greater than those of brain tissue, and free 

water diffusion is isotropic, so voxel-wide DTI measurements are biased by free water even 
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when the free water volume fraction is low [65]. Typically, MD and other diffusivity 

measurements are increased in voxels contaminated by free water, while FA is reduced.  

1.6.4. Advanced Diffusion Imaging 

Advanced diffusion techniques have been developed to overcome one or more of the 

shortcomings of DTI. To probe more information about tissue, these techniques utilize 

different signal representations, unique diffusion-encoding pulse sequences, or both. 

Generally, these advanced techniques have some trade-offs compared to DTI such as 

increased scan times, lower SNR, or reduced reproducibility/robustness resulting from the 

use of more complex signal representations. 

 The diffusion kurtosis imaging (DKI) signal representation is an extension of DTI 

that introduces a fourth order symmetric tensor, known as the kurtosis tensor or 𝑾, to 

characterize non-Gaussian and/or multi-Gaussian diffusion by quantifying the variance in 

diffusivities within the voxel-of-interest. The DKI signal can be represented as [62], [66]: 

𝑆𝒈,𝑏 = 𝑆0𝑒−𝑏 ∑ 𝑔𝑖𝑔𝑗𝐷𝑖𝑗
3
𝑖,𝑗=1 +

1
6

𝑏2 ∑ 𝑔𝑖𝑔𝑗𝑔𝑘𝑔𝑙𝑊𝑖𝑗𝑘𝑙
3
𝑖,𝑗,𝑘,𝑙=1 +𝑂(𝑏3)

 
(1.30) 

where 𝑊𝑖𝑗𝑘𝑙 denotes the ijklth element of the kurtosis tensor and 𝑂(𝑏3) is a higher order 

term. DKI parameters have shown high specificity to WM and GM alterations in many 

diseases including Parkinson’s [67], Alzheimer’s [68], temporal lobe epilepsy [69], [70], 

and others. Figure 1-15 compares the DKI fit to DTI in a voxel with non-Gaussian or multi-

Gaussian diffusivity. 
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Figure 1-15. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) signal 

representations fitted to MRI signal (𝑺) from a tissue-containing voxel sampled at seven b-values. By 

characterizing the variance of diffusivities, or kurtosis, the DKI representation (blue) better fits the 

acquired data (red) than the DTI representation (black). Plot generated using simulated data. 

  

Microscopic fractional anisotropy (µFA) imaging is a dMRI technique that 

quantifies water diffusion anisotropy independent of neuron fiber orientation dispersion 

[71], [72]. Compared to the FA metric estimated in DTI, µFA is more specific to 

microstructural abnormalities in voxels containing crossing or fanning axons, as depicted 

in Figure 1-16. Some examples in which µFA outperforms FA due to its increased 

specificity are in evaluating WM degeneration [73], detecting lesions in MS [74], and 

differentiating between brain cancer types [75]. There are several different methods to 

estimate μFA, which are discussed in greater detail in Chapter 2. In this work, μFA is 

estimated from data acquired in both the linear tensor encoding (LTE) domain (Figure 

1-10), in which each acquisition probes diffusion in one linear direction, and the spherical 
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tensor encoding (STE) domain, in which diffusion is probed in all directions independently. 

While LTE acquisitions are affected by both the size dispersion of water-containing 

compartments within a voxel and diffusion anisotropy, STE acquisitions are only sensitive 

to size dispersion; thus by acquiring data in both schemes, anisotropy can be estimated 

[72]. An example of an STE gradient waveform is the qMAS technique described by 

Eriksson et al [76], though this work uses an alternative sequence that utilizes trapezoidal 

gradients. 

 

 

 

 

 

 



41 

 

 

Figure 1-16. The effects of various tissue geometries on both fractional anisotropy (FA) and 

microscopic fractional anisotropy (µFA). The cylinders can be said to approximate neuronal axons, 

while the spheres can represent non-neuronal, spherical cells. FA and µFA are equivalent in voxels 

containing coherently aligned axons (column 1) and voxels containing only spherical cells (column 4), 

but when voxels contain crossing axons, as in columns 2-3, µFA correctly detects anisotropic diffusion 

whereas FA reports reduced anisotropy due to the confounding effects of fiber orientation. Image 

retrieved from “Microanisotropy imaging: quantification of microscopic diffusion anisotropy and 

orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector”, Lasic S. 

et al, Frontiers in Physics, 2014. 

  

Techniques to eliminate or attenuate free water partial volume effects often utilize 

multi-compartment models that separate the dMRI signals arising from different sources. 

Free water elimination (FWE) signal representations decompose the signal into two 
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components: signal arising from water in and around tissue, and signal arising from free 

water sources [77]: 

 𝑆𝑉𝑜𝑥𝑒𝑙 = 𝑓𝑆𝑇𝑖𝑠𝑠𝑢𝑒 + (1 − 𝑓)𝑆𝐶𝑆𝐹 (1.31) 

where 𝑆𝑉𝑜𝑥𝑒𝑙 is the total signal recorded in the voxel-of-interest at a particular b-value and 

direction, 𝑆𝑇𝑖𝑠𝑠𝑢𝑒 and 𝑆𝐶𝑆𝐹 are the respective tissue and free water signal components, and 

𝑓 is the tissue volume fraction. Much like DKI and µFA, FWE techniques have 

demonstrated potentially greater specificity over DTI in diseases such as Parkinson’s [78], 

Alzheimer’s [79], and traumatic brain injury [80]. FWE techniques are discussed in greater 

detail in Chapter 3. 

 In addition to DKI, µFA, and FWE techniques, numerous other advanced dMRI 

techniques have been developed, though a comprehensive review is beyond the scope of 

this work. 
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Chapter 2 focuses on the development and optimization of an imaging technique that can 

acquire full-brain µFA image volumes within clinically viable scan times. 
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Chapter 2  

2 Rapid Microscopic Fractional Anisotropy 

Imaging via an Optimized Linear Regression 

Formulation 

2.1. Overview 

This chapter was published in Magnetic Resonance Imaging, volume 80, Arezza et al, 

Rapid Microscopic Fractional Anisotropy Imaging via an Optimized Linear Regression 

Formulation [81], pages 132-143, Copyright Elsevier, 2021. 

2.2. Introduction 

Diffusion-weighted MRI (dMRI) can noninvasively acquire information about the 

microstructural characteristics of biological systems by probing the displacement of water 

molecules in tissue [46], [82]. Microstructural features that affect the apparent diffusion 

rate of water include cell size, shape, density, orientation, and the presence of membranes 

and barriers; thus, dMRI has found use in the study of neurological diseases that alter tissue 

microstructure [56], [83]–[85].  

The most commonly used dMRI technique is diffusion tensor imaging (DTI) [86], 

in which dMRI data is fitted to the diffusion tensor signal representation to estimate metrics 

such as the mean diffusivity (MD) and fractional anisotropy (FA). DTI represents the dMRI 

signal as being entirely characterized by Gaussian diffusion [87], implicitly meaning the 

logarithm of the dMRI signal is assumed to depend on the b-value up to the first order in 

the cumulant expansion [88]. However, diffusion in tissues is too complex to be fully 

represented by Gaussian diffusion at high b-values [60], and characterizing the ”non-

Gaussian” signal provides more information about the underlying tissue [61], [89], [90]. 

Diffusion kurtosis imaging (DKI) was developed to capture the effects of non-Gaussian 
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diffusion by expanding the dMRI signal using cumulants up to second order in b-value 

[62]. Generally, DKI has been shown to be more sensitive than DTI towards quantifying 

microstructural changes that result from disease [67], [91], [92]. 

Non-Gaussian diffusion can be attributed to a number of sources including isotropic 

kurtosis from polydisperse diffusion tensors with different mean diffusivities, anisotropic 

kurtosis from diffusion tensors dispersed among multiple orientations, time-dependent 

diffusion [93], and microscopic kurtosis from restricted diffusion and microscopic 

structural disorder [89], [93]–[95]. Unfortunately, both DTI and DKI are unable to 

distinguish between true microstructural changes and neuron fiber orientation dispersion, 

reducing their specificity to disease in brain regions containing crossing or fanning axons 

[75], [96]. While DTI does not consider the effects of kurtosis at all, DKI cannot 

differentiate between any of the different sources of kurtosis without imposing assumptions 

about the underlying tissue [62], [97].  

In recent years, efforts have been made to develop dMRI techniques that can 

quantify water diffusion anisotropy independent of orientation dispersion [71], [72]. 

Microscopic anisotropy (μA) is an anisotropy metric that is independent of both reference 

frame and orientation dispersion, and microscopic fractional anisotropy (μFA) is a 

normalized variation of μA that additionally aims to remove the dependence on 

compartment size [98]. There are multiple techniques to compute μFA, which can be 

categorized into: (1) methods that involve the use of linear tensor encoding (LTE)  

sequences [99]–[101], (2) methods that utilize double diffusion encoding (DDE) [102], and 

(3) methods that use nonconventional continuous gradient waveforms such as spherical 

tensor encoding (STE) [72], [75], [103]–[105].  
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LTE methods utilize models to decouple microstructural properties from 

mesoscopic tissue orientation [106]. These techniques require prior knowledge or estimates 

of tissue properties such as the axonal volume fraction or the intracellular radial diffusivity 

[106] but are highly accessible because LTE sequences are commonly used in both DTI 

and DKI. Generally, anisotropy can be estimated by acquiring LTE signals across multiple 

directions and b-shells and fitting the powder-averaged signals to a constrained model such 

as the spherical mean technique (SMT) model [100], [101]. Recently, Henriques et al 

showed that μFA estimations using LTE are inaccurate compared to ground truth 

anisotropy, suggesting the techniques are not robust or do not sufficiently describe the 

underlying microstructure [106]. 

DDE techniques to estimate μA and μFA use two independent diffusion-encoding 

pulse vectors in succession to probe the correlation of water diffusion in different directions 

[71], [107]–[110]. DDE can distinguish between microstructural properties and orientation 

dispersion without imposing modeling constraints [102], [107], likely making the 

technique more robust and accurate than LTE techniques by eliminating the possibility of 

assumption misestimation. Furthermore, the clinical viability of DDE μFA imaging was 

demonstrated in a preliminary study of multiple sclerosis (MS) patients at 3T with a 5 

minute scan time and 3 mm isotropic resolution [74], and the minimalistic sampling 

scheme used in that work was further validated [111]. While DDE is a promising technique, 

it has some limitations. Due to the use of two consecutive diffusion-encoding pulses 

separated by a mixing time, DDE sequences require longer TEs than standard LTE 

sequences to achieve equal b-values. Furthermore, a twice-refocused implementation is 

required to avoid biases due to concomitant fields [112], [113], further increasing the TE. 
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A notable example of a DDE technique to estimate μFA is correlation tensor imaging (CTI) 

[94].  

Techniques that utilize nonconventional diffusion-encoding waveforms probe 

unique q-space trajectories that provide additional information about tissue microstructure 

beyond the capabilities of LTE. In STE-based methods, signal variance due to non-

Gaussian diffusion is characterized into two sources: isotropic variance arising from 

polydispersity in mean diffusivity, and anisotropic variance arising from microscopic 

anisotropy [75]; a general assumption underlying these techniques is that LTE signal 

depends on both isotropic and anisotropic variance while STE signals depend only on 

isotropic variance (i.e., time dependent diffusion and microscopic kurtosis are ignored). 

STE-based μFA protocols use unique waveforms to acquire single-shot STE diffusion 

weighted signals [72], [76]. Though more TE-efficient than DDE, STE waveforms can 

potentially introduce time-dependent effects due to varying spectral content over the 

different gradient channels [76]. Furthermore, STE-based techniques assume that the dMRI 

signal contains only Gaussian compartments, which is an approximation that more 

advanced techniques like CTI avoid [94]. Some examples of techniques that use STE 

acquisitions to estimate μFA and other parameters are the gamma signal representation, in 

which the inverse Laplace transform of the gamma distribution is fitted to powder averaged 

dMRI signals from LTE acquisitions and STE acquisitions [75], [114], and direct linear 

regression of the cumulant expansion of the diffusion signal [104], [115], [116].  

The application of μFA imaging to clinical research is appealing due to the unique 

insight it may provide into brain microstructure; for example, preliminary studies have 

found that μFA can better distinguish between different types of brain tumors than FA and 
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other MRI metrics [75] and that it provides improved delineation of MS lesions over FA 

as well as unique contrast compared to 𝑇1- and 𝑇2-weighted imaging [74]. The parameter’s 

insensitivity to orientation dispersion is advantageous over FA in the study or diagnosis of 

neuropathology in brain regions containing crossing or fanning fibers. However, μFA 

generally requires long scan times that are not clinically feasible, especially when used in 

conjunction with other imaging techniques that are required in the clinical workflow. Other 

demonstrations of μFA that have achieved shorter scan times did so at the cost of resolution 

[74], [117], producing μFA maps with poorer resolution than typical FA maps acquired 

with DTI. To maximize scan efficiency, it is essential to understand the optimal parameters 

required to measure μFA and use this information to design rapid protocols. To our 

knowledge, no comprehensive assessment of the optimal choices of b-value and relative 

numbers of LTE and STE acquisitions have been performed.  

The aims of this work were to optimize a protocol for acquiring μFA within a clinically 

viable scan time of <5 mins using the linear regression approach, and to demonstrate the 

feasibility of this method by comparing it to the highly cited gamma signal representation. 

We investigated the optimal b-values and ratio of STE to LTE acquisitions for the 

estimation of μFA in white matter and combined these findings with two implementations 

of direct linear regression to enable the acquisition of full-brain, 2 mm isotropic resolution 

μA and μFA maps in vivo within a 3.3 min scan time and a 2-minute computation time. 

Estimates of μFA using direct approaches strongly correlated with the gamma signal 

representation in white matter regions (ρ ≥ 0.9), and all approaches exhibited high test-

retest reliability (ρ ≥ 0.77).  
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2.3. Theory 

2.3.1. µFA Estimation 

The normalized signal intensity of powder-averaged dMRI acquisitions of a multi-

component system, assuming negligible time-dependent diffusion, can be represented by 

the cumulant expansion [72]: 
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𝑆

𝑆0
) = −𝐷𝑏 +

𝜇2

2
𝑏2 − ⋯ 

(2.1) 

where S is the powder-averaged signal, S0 is the mean signal with no diffusion encoding, b 

is the b-value, 𝐷 is the effective mean diffusivity, and μ2 is the second central moment or 

variance of diffusivity. Lasic et al [72] define the microscopic fractional anisotropy in 

terms of the scaled difference in variance between powder-average LTE and STE 

acquisitions: 
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𝐿𝑇𝐸 − 𝜇2

𝑆𝑇𝐸

𝐷2
 

(2.3) 

where μ2
LTE and μ2

STE are the second terms in the cumulant expansions of powder-averaged 

LTE and STE acquisitions, respectively. Using equation (2.1) up to the second cumulant 

term, the powder-averaged LTE and mean STE signals can be represented as: 

 
SLTE = 𝑆0𝑒−𝐷𝑏+

𝜇2
𝐿𝑇𝐸

2
𝑏2

 
(2.4) 

 
SSTE = 𝑆0𝑒−𝐷𝑏+

𝜇2
𝑆𝑇𝐸

2
𝑏2

 
(2.5) 

If it is assumed that the only sources of kurtosis are dispersion in size and orientation of 

diffusion tensors, then the diffusion coefficient, 𝐷, will be equal between LTE and STE 

[75]. By assuming 𝐷 is the same between LTE and STE signals acquired at the same b-
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value, equations (2.4) and (2.5) can be substituted into equation (2.3) to provide an estimate 

of the scaled difference in variance that notably does not depend on the non-diffusion 

weighted signal S0: 

 
∆𝜇2̃ =

2ln(𝑆𝐿𝑇𝐸/𝑆𝑆𝑇𝐸)

𝐷2𝑏2
 

(2.6) 

Substituting equation (2.6) into equation (2.2) provides an estimate of the μFA [116]: 
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(2.7) 

Microscopic anisotropy is defined here based on the difference in signal between LTE and 

STE dMRI acquisitions, similar to the equation used in DDE protocols [108]: 

 

𝜇𝐴 =
√ln (

𝑆𝐿𝑇𝐸

𝑆𝑆𝑇𝐸
)

𝑏2
 

(2.8) 

By ignoring the third and higher order cumulant terms in deriving equations (2.4) and (2.5), 

μA can be estimated from a single b-shell, reducing scan time; however, ignoring the higher 

cumulants comes with the cost of potentially introducing a bias to the measurement [118]. 

μFA can then be expressed in terms of μA by substituting equation (2.8) into equation 

(2.7): 

 

𝜇𝐹𝐴 = √
3

2

𝜇𝐴2

𝜇𝐴2 + 0.2𝐷2
 

(2.9) 

2.3.2. Diffusion Coefficient Estimation Using the Powder Average 

Diffusion Kurtosis Signal Representation 

Explicitly enforcing that the diffusion coefficient 𝐷 is the same between LTE and STE 

acquisitions causes the minimum number of powder-averaged samples required to estimate 

the four unknowns in equations (2.4) and (2.5), S0, 𝐷, 𝜇2
𝐿𝑇𝐸 and 𝜇2

𝑆𝑇𝐸, in a joint least squares 
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estimation to be only four (with at least one non-zero b-value sampled for each of LTE and 

STE). For example, a protocol could contain LTE and STE acquisitions at a single high b-

value (e.g., 2000 s/mm2), plus either STE or LTE acquisitions at two smaller b-values (e.g., 

STE at b = 0 and STE at b = 1000 s/mm2). Contrary to previously proposed approaches, 

both STE and LTE would not be required in each shell using this joint estimation approach. 

Then, ∆𝜇2̃ could be estimated from 𝜇2
𝐿𝑇𝐸 and 𝜇2

𝑆𝑇𝐸 using equations (2.3), and μFA 

estimated from equation (2.2). This approach will be referred to as “joint linear regression”.  

Alternatively, μA2 could be estimated directly from the STE and LTE acquisitions at the 

highest b-value (e.g., 2000 s/mm2) using equation (2.8) while 𝐷 could be estimated using 

a linear fit over the low b-values (e.g., LTE at b = 0 and LTE at b = 1000 s/mm2). Ignoring 

kurtosis in the estimation of 𝐷 may introduce a bias, but this approach is computationally 

efficient which may improve clinical relevance. This will be referred to as “simplified 

regression”. 

2.3.3. µA Optimization 

To optimize a protocol for μA and μFA, sequence parameters that maximize the ratio of 

the mean measurement to its standard deviation can be evaluated, similar to the approach 

used to determine optimal parameters for diffusivity measurements [119]. Using standard 

error propagation [120], the signal-to-noise ratio (SNR) of μFA estimated using equation 

(2.9) can be related to the variance in μA2 and 𝐷, with μFA image quality increasing with 

reduced variance in μA2 and 𝐷 measurements. It is expected that μA2 will generally have 

much higher variance than 𝐷 because it depends only on the highest b-shell data (equation 

(2.8)), which has the lowest SNR. Thus, we will focus on the optimization of μA2 as a 

surrogate for the optimization of μFA. The SNR of a μA2 image can be expressed as 

(Appendix A): 
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(2.10) 

where 𝑛𝐿𝑇𝐸 is the number of LTE directions acquired, 𝑛𝑆𝑇𝐸 is the number of STE averages 

acquired, 𝑆𝐿𝑇𝐸 and 𝑆𝑆𝑇𝐸 are the powder-averaged signals of the LTE and STE images, 

respectively, and σ is the mean image noise. Given that 
𝜇𝐴2

𝜎𝜇𝐴2
 is maximized when 

𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
=

𝑆𝐿𝑇𝐸

𝑆𝑆𝑇𝐸
  (see Appendix A), and that 𝑆𝐿𝑇𝐸 and 𝑆𝑆𝑇𝐸 are dependent on b-value, the optimal 

protocol parameters (b and 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
) can be determined using equation (2.10).  

Equations (2.4) and (2.5) can be substituted into equation (2.10), and assuming all 

STE and LTE acquisitions are performed with the same TE: 
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(2.11) 

Equation (2.11) reveals that the SNR depends on TE(b) by an exponential prefactor. Note 

that the TE is a function of the b-value, as higher b-value acquisitions will require longer 

TEs. 

2.4. Methods 

Two sets of MRI scans were performed on two sets of volunteers for this work. The study 

was approved by the Institutional Review Board at Western University and informed 

consent was obtained from each volunteer prior to scanning. The first set of scans consisted 

of LTE and STE acquisitions over a wide range of b-values and was acquired to provide 

the signal data needed to optimize μA using equation (2.10). The second set of scans 
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performed test-retest measurements with a comprehensive sequence that allowed for μFA 

mapping using the gamma signal representation, joint linear regression, and simplified 

linear regression. The various dMRI sequences and data subsets are summarized in Table 

2.1 and are described in detail below. 

 

Table 2-1: Summary of MRI sequences and data subsets for in vivo acquisitions. 

 Sequence optimization Comprehensive  

TE/TR (ms) 125/8700 94/4500 

Slices 45 axial 48 axial 

Parallel Imaging R = 2 in-plane R = 2 in-plane, 2 SMS (4 total) 

Resolution (mm3) 2 x 2 x 2 2 x 2 x 2 

Diffusion scheme 0 s/mm2 (6 LTE) 

500 s/mm2 (6 LTE + 6 STE) 

1000 s/mm2 (6 LTE + 6 STE) 

1500 s/mm2 (6 LTE + 6 STE) 

2000 s/mm2 (6 LTE + 6 STE) 

2500 s/mm2 (6 LTE + 6 STE) 

3000 s/mm2 (6 LTE + 6 STE) 

3500 s/mm2 (6 LTE + 6 STE)  

0 s/mm2 (5 LTE) 

100 s/mm2 (3 LTE + 6 STE) 

700 s/mm2 (3 LTE + 6 STE) 

1000 s/mm2 (15 LTE + 10 

STE) 

1400 s/mm2 (6 LTE + 10 STE) 

2000 s/mm2 (22 LTE + 27 

STE) 

 Data subsets  

Optimization validation  

(no denoising) 

- Suboptimal subset 

100 s/mm2 (3 LTE + 6 STE) 

700 s/mm2 (3 LTE + 6 STE) 

1400 s/mm2 (6 LTE + 10 STE) 

2000 s/mm2 (16 LTE + 6 STE) 

Standard subset 

100 s/mm2 (3 LTE + 6 STE) 

700 s/mm2 (3 LTE + 6 STE) 

1400 s/mm2 (6 LTE + 10 STE) 

2000 s/mm2 (6 LTE + 16 STE) 
Model comparisons 

(denoised) 

- Standard subset 

*Same as standard subset 

above 

Simplified subset 

100 s/mm2 (3 LTE) 

1000 s/mm2 (15 LTE) 

2000 s/mm2 (16 LTE + 22 
STE) 
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Minimalistic sequence 

(denoised) 

- 100 s/mm2 (3 STE) 

1000 s/mm2 (6 STE) 

2000 s/mm2 (16 LTE + 18 
STE) 

 

2.4.1. Sequence Optimization 

MRI scans were performed in 4 healthy volunteers (2 female and 2 male, mean age 22.4 ± 

1.7 years) on a 3T Prisma whole-body MR system (Siemens Healthineers) with 80 mT/m 

strength and 200 T/m/s slew rate. Multiple b-shell diffusion data were acquired in a single 

scan using LTE and STE sequences: 6 image volumes were acquired at b = 0 s/mm2, and 

6 LTE directions and 6 STE averages were acquired at b-values between 500 and 3500 

s/mm2, in increments of 500 s/mm2. The STE sequence was designed to avoid net phase 

accumulation from concomitant fields by using trapezoidal gradient schemes that are 

symmetric about a 180° pulse (Figure 2-1) [112], while a standard pulsed gradient spin 

echo sequence was used for LTE acquisitions [46]. The other parameters were TE/TR = 

125/8700 ms, FOV = 192x192 mm2, 2 mm isotropic resolution, 45 slices, rate 2 GRAPPA, 

2 averages, and total scan time = 29 minutes. Images were processed using Gibbs ringing 

correction and Eddy current correction with FSL eddy [121].  
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Figure 2-1. Schematic representation of the spherical tensor encoding gradient waveforms. Diffusion 

encoding blocks have been inserted on both sides of a 180° pulse in all three gradient directions to 

acquire an STE diffusion MRI signal. Implicit gradient reversal due to the 180° pulse has been applied. 

 

A region of interest (ROI) across multiple slices was manually selected in the 

frontal WM for each patient and used to measure the mean LTE signal and mean STE 

signal at each b-value. A joint regression was performed on the mean LTE and STE signal 

data to fit the curves to equation (2.1) up to the third cumulant, with the assumption that 𝐷 

is the same in LTE and STE acquisitions. The best-fit cumulant expansions for each of the 

4 volunteers were averaged and used together with equation (2.10) to determine the optimal 

b-value and optimal ratio of LTE to STE acquisitions in a μA protocol. In evaluation of 

equation (2.10), the 𝑇2 decay constant was assumed to be 80 ms to approximate WM at 3T 

[122]. These SNR calculations assume the same total number of acquisitions at each b-

value, with only the ratio of 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 acquisitions changing. 
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2.4.2. Comprehensive Acquisitions 

A comprehensive 113 acquisition dMRI protocol was used to acquire the data to compare 

μFA volumes generated with different methods. 4 healthy volunteers (2 female and 2 male, 

mean age 28.0 ± 6.6 years) were imaged at 3T with a 9-minute dMRI scan with TE/TR = 

94/4500 ms. The scan consisted of 3, 3, 15, 6, and 22 LTE directions and 6, 6, 10, 10, and 

27 STE averages at b = 100, 700, 1000, 1400, and 2000 s/mm2, respectively, as well as 5 

averages at b = 0 s/mm2. These directions were chosen to enable retrospective splitting of 

the data into the subsets described below. The other parameters were FOV = 220x220 mm2, 

2 mm isotropic resolution, 48 slices, and rate 2 in-plane parallel imaging combined with 

rate 2 simultaneous multislice (SMS). Volunteers were also scanned using 𝑇1-weighted 

MPRAGE with 1 mm isotropic resolution. After removing each volunteer from the MR 

scanner for a period of 5-10 minutes, a repeat measurement was performed using only the 

dMRI protocol. Data from these acquisitions is available online [dataset] [123]. 

Two separate post-processing pipelines were performed on the data to acquire two 

different data sets: a “noisy” data set that omitted denoising to test the effects of using an 

optimized vs. suboptimal ratio of STE to LTE scans to compute μA, since denoising is a 

non-linear operation that invalidates the assumptions used in the derivation of equation 

(2.10), and a denoised data set to compare the μFA approaches described in this work to 

the gamma representation. All the diffusion MRI data was processed using Gibbs ringing 

correction and FSL eddy [121], and PCA denoising [124] was performed prior to these 

corrections for the denoised data set. 

The 𝑇1-weighted anatomical volumes were segmented into WM and gray matter 

(GM) masks using FMRIB’s Automated Segmentation Tool (fast) [125] and were 

registered to the denoised dMRI volumes using symmetric diffeomorphic and affine 
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transforms with ANTS software (https://github.com/ANTsX/ANTs) [126]. The retest 

noisy and denoised volumes were also registered to the respective test volumes using a 

rigid transform with ANTS. 

To validate equation (2.10), the noisy dMRI data was split into two 56-acquisition 

subsets to represent a standard protocol that approximately complies with our optimization 

results and a suboptimal protocol that does not comply. The standard protocol was based 

on a rapid sequence proposed by Nilsson et al [117] and included 3, 3, 6, and 6 LTE 

directions and 6, 6, 10, and 16 STE averages at b = 100, 700, 1400, and 2000 s/mm2. The 

suboptimal protocol consisted of the same acquisitions with one exception: the ratio 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 

at the b = 2000 s/mm2 shell was 6/16 instead of 16/6, a suboptimal ratio. The 6 direction 

subset of LTE acquisitions used an icosahedral sampling scheme [117], and the 16 

direction subset was distributed using electrostatic repulsion [127]. Notably, no denoising 

was applied to these data subsets. 

To compare linear regression to the gamma representation, the denoised dMRI data 

was split into two subsets with each containing 56 acquisitions. The standard subset, to be 

used to compare the gamma signal representation versus joint linear regression, used the 

rapid sequence by Nilsson et al described above [117]. An additional subset, referred to 

herein as the “simplified subset”, included 22 STE averages at b = 2000 s/mm2 and 3, 15, 

and 16 LTE directions at b = 100, 1000, and 2000 s/mm2 (56 total acquisitions), and was 

designed to investigate whether a single b-shell to compute μA2 (b = 2000 s/mm2) can be 

added to a DTI acquisition (b = 100, 1000 s/mm2) to enable μFA imaging using the 

simplified regression approach. The b = 1000 and 2000 s/mm2 LTE shells were determined 

separately from each other using electrostatic repulsion. 
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An additional subset of the comprehensive scan containing 43 acquisitions was 

used to demonstrate the potential scan time advantage of the linear regression technique. 

This “minimalistic subset” contained 16 LTE directions at b = 2000 s/mm2 and 3, 6, and 

18 STE averages at b = 100, 1000, and 2000 s/mm2, respectively, and would have required 

only 3.3 minutes of scan time.    

2.4.3. Analysis 

To validate equation (2.10), the SNR of μA2 was compared between the standard and 

suboptimal subsets of the noisy dMRI data by first estimating μA2 at b = 2000 s/mm2 in 

both the test and retest volumes for each volunteer. Then, the test-retest coefficients of 

variance (CoVs) of the standard and suboptimal volumes across all volunteers were 

compared as a surrogate of SNR. 

For signal representation comparisons with the denoised data, the powder-averaged 

STE and LTE signals vs. b-value were fitted to the diffusion kurtosis signal representation 

using a joint non-negative least squares method assuming consistent 𝐷 between STE and 

LTE, and μFA was computed using equation (2.2) (μFAjoint). μFA was also estimated using 

Nilsson et al’s Multidimensional diffusion MRI software [128] 

(https://github.com/markus-nilsson/md-dmri) to fit the diffusion-weighted signals to the 

gamma representation (μFAgamma). μFA maps were generated for each volunteer using 

these two methods in the standard subset of data. 

Additionally, μFA was estimated using equation (2.9) in the simplified subset by 

decoupling μA2 and 𝐷 (μFAsimp): μA2 was estimated at b = 2000 s/mm2 using the direct 

cumulant method (equation (2.8)) while 𝐷 was estimated by fitting the b = 100 and 1000 

s/mm2 LTE data to the DTI signal representation using FMRIB’s DTIFIT tool. 
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The μFA maps from the different methods and subsets were then compared in WM 

using Bland-Altman plots and voxelwise scatter plots, and Pearson correlation coefficients 

were computed between each technique. To test the repeatability of the measurement 

techniques, Bland-Altman plots were generated for each patient to compare the initial and 

repeat μFA volumes and Pearson correlation coefficients were computed between initial 

and repeat μFA maps.  

The minimalistic subsets were used to generate full-brain μFA maps using the joint 

regression approach, and the repeatability of this measurement technique was assessed 

using the methods described above. The maps generated using these subsets were not 

compared to the gamma representation as they contained too few b-shells for gamma 

fitting. 

2.5. Results 

2.5.1. Sequence Optimization 

The logarithm of the powder-averaged WM dMRI signal as a function of b-value, averaged 

across all volunteers, is shown in Figure 2-2. As expected [75], the departure from 

monoexponential signal decay was greater in the LTE than STE signal curve due to the 

mesoscopic orientation of tensors. Figure 2-3 shows the variation in μA2/σμA2 with b-value 

and the ratio of 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 assuming a fixed total number of acquisitions (𝑛𝑆𝑇𝐸 + 𝑛𝐿𝑇𝐸). For any 

given b-value, the optimal 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 was computed to be equal to the ratio of the powder 

averaged signals, 
𝑆𝐿𝑇𝐸

𝑆𝑆𝑇𝐸
, at said b-shell. The highest 

𝜇𝐴2

𝜎𝜇𝐴2
 occurred when the b-value was 

2000 s/mm2, for which the optimal 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 was approximately 1.7. However, a wide range of 

dMRI parameter configurations yielded an SNR above 95% of the optimal parameters for 

μA2 SNR. 
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Figure 2-2. Logarithm of the diffusion MRI signal vs. b-value in frontal white matter. The plot shows 

the powder-averaged signal from a manually prescribed region of interest across four volunteers as 

measured with linear tensor encoding and spherical tensor encoding (black and blue circles, 

respectively), while the dashed lines show the third order cumulant fit. Also depicted are the standard 

deviations across the volunteers. 
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Figure 2-3. Simulated μA2 SNR in white matter as a function of the b-value and the ratio of STE to 

LTE acquisitions (nSTE/nLTE). Though the maximum SNR occurred when b = 2000 s/mm2 and nSTE/nLTE 

= 1.7 (marked by an ‘X’), a wide range of parameters yielded SNRs greater than 95% of the maximum 

SNR, suggesting that there is flexibility in parameter choice when designing a protocol. Notably, a 

significant drop off in SNR occurred for nSTE/nLTE < 1, suggesting that image quality is maximized when 

the number of STE acquisitions is greater than or equal to the number of LTE acquisitions. 

 

A significant drop off in SNR occurred for 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
< 1, suggesting that image quality 

is maximized when the number of STE acquisitions is greater than or equal to the number 

of LTE acquisitions. The suboptimal dataset it located in this region where the SNR sharply 

decreases, while the standard data set is in the high SNR region that varies slowly. Using 

the powder averaged STE and LTE WM signal data from the noisy data subset at b = 2000 

s/mm2 across all volunteers along with equation (2.10), the SNR of μA2 in the suboptimal 

subset was predicted to be 87% of the SNR of μA2 in the standard subset. Analysis of the 

test and retest μA2 volumes revealed a CoV of 22.94% in the standard measurement and a 
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CoV of 25.78% in the suboptimal measurement, yielding an experimentally acquired SNR 

ratio of approximately 89% (since CoV is analogous to SNR-1) which is comparable to the 

value of 87% predicted by equation (2.10). Example μA2 images estimated using the 

standard and suboptimal subsets are depicted in Figure 2-4. 

 

 

Figure 2-4. Example μA2 images acquired with the standard (left) and suboptimal (right) subsets of 

the data without denoising. Lower image quality is observed in the right case, with some irregular 

features highlighted by the yellow circles. Images were acquired with rate 2 in-plane parallel imaging 

combined with rate 2 simultaneous multislice. 
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2.5.2. Comparison Between Different µFA Techniques 

Example μFAgamma and μFAjoint maps computed from the standard subset, as well as 

μFAsimp maps computed from the DTI subset, are depicted in Figure 2-5. μFA was observed 

to be qualitatively consistent across the different techniques and data subsets and image 

quality was comparable between them. Notably, μFA and μA were observed to be 

negligible in regions containing only CSF, such as in the lateral ventricles, where diffusion 

is expected to be isotropic. 

Scatter plots and Bland-Altman plots comparing WM μFA using the three different 

estimation approaches in all volunteers are presented in Figure 2-6. Strong linear 

correlations were observed in the scatter plots comparing each volume, with respective 

Pearson correlation coefficients of 0.97 (μFAgamma vs. μFAjoint), 0.90 (μFAgamma vs. 

μFAsimp), and 0.90 (μFAjoint vs. μFAsimp). Relative to μFAgamma, the mean WM biases in the 

other volumes were -0.11 (μFAjoint) and -0.02 (μFAsimp). 
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Figure 2-5. Example μFA images from one volunteer. Images were acquired using the gamma signal 

representation with the standard subset (left), joint linear regression with the standard subset (center), 

and simplified linear regression (i.e., D computed from DTI using only b-values of 100 and 1000 s/mm2) 

(right). Comparable image quality is observed for the three methods. Images were acquired with rate 

2 in-plane parallel imaging combined with rate 2 simultaneous multislice. 
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Figure 2-6. Voxelwise correlations between μFA estimates acquired using different techniques in white 

matter (left) and Bland-Altman plots depicting biases between the methods in white matter (right): (a) 

μFAgamma vs. μFAjoint, (b) μFAgamma vs. μFAsimp, and (c) μFAjoint vs. μFAsimp. The dashed red line and 

solid black line in each of the scatter plots represent the identity and regression lines, respectively. The 

solid black line in the Bland-Altman plots represents the mean bias, and the dashed grey lines represent 

the ±1.96 standard deviation lines. 
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2.5.3. Analysis of Repeatability 

Bland-Altman plots comparing the test and retest μFA volumes across all volunteers 

revealed no biases in repeat measurements (Figure 2-7). The Pearson correlation 

coefficients between the test and retest μFA maps were 0.83 (μFAgamma), 0.79 (μFAjoint), 

and 0.84 (μFAsimp).  

 

Figure 2-7. Bland-Altman plots assessing the test-retest reliability of μFA estimates acquired using 

different techniques in white matter. The solid black line represents the mean bias, and the dashed 

grey lines represent the ±1.96 standard deviation lines. 
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2.5.4. Minimalistic Sequence 

Sample μFA, μA2, and LTE and STE variance maps generated using the minimalistic data 

subsets are depicted in Figure 2-8. Bland-Altman plots comparing the test and retest 

volumes (not depicted) revealed no biases between the measurements, a CoV of 5%, and a 

Pearson correlation coefficient of 0.77, demonstrating strong evidence of repeat 

measurement reliability. 

 

Figure 2-8. Example μFA, μA2, and LTE and STE variance maps acquired using equation 2.2 in a 

subsampled data set: The acquisition comprised of 16 LTE directions at b = 2000 s/mm2 and 3, 6, and 

18 STE directions at b = 100, 1000, and 2000 s/mm2, respectively. This direction scheme corresponds 

to a total scan time of approximately 3.3 min with 220 mm x 220 mm x 96 mm coverage at an isotropic 

2 mm resolution. All images were normalized to a maximum pixel value of 1. Images were acquired 

with rate 2 in-plane parallel imaging combined with rate 2 simultaneous multislice. 
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2.6. Discussion 

Microscopic anisotropy mapping has been gaining popularity in neuroimaging studies 

because it provides a marker of tissue microstructure independent of orientation dispersion. 

The aims of this work were two-fold: (1) to determine the optimal dMRI parameters (b-

value and 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
) needed to maximize image quality for a given scan time or number of 

acquisitions and use this information to design a rapid protocol with <5 minute scan time, 

and (2) to compare the linear regression-based μFA techniques described in this work 

against the gamma signal representation. The first aim was achieved by directly estimating 

μA2 from the cumulant expansion of powder-averaged LTE and STE acquisitions and then 

estimating the SNR of μA2 using standard error propagation theory. The optimal b-value 

of 2000 s/mm2 falls within the optimal range for DDE methods; Ianus et al found that b-

values between 2000 and 3000 s/mm2 are optimal for single-shell DDE estimations of μA 

because lower b-values result in noisy images while higher b-values result in large biases 

[108]. The optimal 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 is somewhat intuitive as STE images typically have lower SNR 

than LTE images due to the more rapid signal decrease with b-value. Notably, a steep drop-

off in SNR with 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 ratios below 1 was observed. These optimization findings were 

validated by the test-retest CoV ratio between the standard and suboptimal data sets 

agreeing with the SNR ratio predicted by equation (2.10). Notably, these findings are 

complementary to recommendations for the minimal number of LTE directions to avoid 

rotational variance [129] and for optimized STE waveforms to minimize the TE [130]. The 

second aim was achieved by acquiring all the data necessary for all the different μFA 

volumes in a single acquisition, mapping μFA from different subsets of data, and 

performing voxelwise comparisons on the maps. Notably, the linear regression approaches 
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yielded comparable reliability and strong correspondence with the gamma method when a 

maximum b-value of 2000 s/mm2 was used. 

The μFA imaging techniques proposed in this work are suitable for use in clinical 

research due to the relatively minimalistic acquisition protocols needed to estimate μA2 

and μFA. Furthermore, μFA computation time in the standard subset only took 

approximately 2 minutes per volume using joint regression (on a standard personal 

computer) and was virtually instantaneous for simplified regression. When designing a 

rapid protocol to acquire μFA images using linear regression, the authors recommend using 

the following steps: (1) acquire enough LTE acquisitions at the highest b-value (e.g. 2000 

s/mm2) to ensure rotational invariance in the powder-averaged signal [129], (2) acquire as 

many STE acquisitions as possible within the scan time limitation to bring the ratio of 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 

as close to the optimal value (1.7 in this work) as possible, without going below 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
= 1 

to avoid sharply decreasing SNR (Figure 2-3), and (3) acquire STE acquisitions at 2-3 

lower b-shells for curve fitting. The minimalistic sequence serves as an example of how 

this procedure can be used to develop a rapid imaging protocol. In designing this protocol, 

we first decided to include 16 LTE acquisitions at b = 2000 s/mm2 to ensure rotational 

invariance. Next, we opted for 18 STE acquisitions at b = 2000 s/mm2 to achieve an 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 

ratio of 1.125. Finally, we included 3 and 6 STE acquisitions at b = 100 and 1000 s/mm2, 

respectively, for curve fitting, which resulted in a total acquisition time under 3.3 minutes. 

Note that post-processing was performed on this subset after separating it from the rest of 

the data. Notably, if the number of slices, resolution, and use of parallel imaging for this 

protocol was set to be the same as the rapid protocol proposed by Nilsson et al that required 

3 minutes [117], the scan time would have been 2.3 min. Additionally, the joint regression 
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approach requires fewer low b-value acquisitions, which allows for more LTE directions 

at the highest b-value and potentially results in less error from rotational variance [129]. 

Nevertheless, this protocol demonstrates that the LTE variance can be estimated from a set 

of data containing only one LTE shell and three STE shells when 𝐷 is assumed to be the 

same between LTE and STE acquisitions. 

In this study, biases were observed in the μFA WM maps relative to the 

measurements produced by the gamma signal representation. The μFAjoint metric had a 

mean bias of -0.11 compared to μFAgamma, while the μFAsimp metric was biased against 

μFAgamma by a modest -0.02. We suspect that the most likely causes of this discrepancy 

between the techniques are the differences between the signal representations used to fit 

the data: the implementation of the gamma signal representation used in this work utilizes 

a soft Heaviside function to constrain the fit to use the lower b-values more heavily, similar 

to the DTI fit for 𝐷 in μFAsimp. Accordingly, strong correspondence was observed between 

μFAgamma and μFAsimp. Using a joint cumulant fit to estimate 𝐷 resulted in lower μFA 

values in the μFAjoint volume, which reveals a potential bias in the other two methods that 

results in physically implausible μFA values that are greater than 1 (see Figure 2-7). That 

said, μFA computed from the equation (2.2) approach could also be biased to lower values 

because the cumulant expansions of the powder-averaged signals were limited to the 

second order (equations (2.4) and (2.5)), ignoring the effects of higher order terms. Using 

the mean WM signal data across all volunteers from the sequence optimization dataset 

(Table 2-1, Figure 2-2) revealed that the second order cumulant fit using b-values up to 

2000 s/mm2 underestimated μFA by up to 9.3% compared to a third order fit using b-values 

up to 3500 s/mm2. A previous study that used DDE to estimate μA at a single b-value in 
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six different microstructural models [108] reported an underestimation of the metric when 

acquired at a single b-shell; to remove this bias, the use of a multiple b-shell approach 

utilizing a higher order cumulant expansion of the dMRI signal can be considered.  

Qualitatively, the biases between the different volumes did not have a significant 

impact on the images as contrast between structures or regions and image quality appeared 

similar in all the maps. Additionally, voxelwise comparisons between the maps showed 

strong linear relationships in WM regions, evidence that the biases between the different 

techniques are likely scalar or constant. We propose that each of the techniques described 

in this work may be suitable for use in clinical research under the caveat that studies 

assessing multiple patients or assessing patients longitudinally should use the same 

protocol and technique to avoid biases.  

There are several limitations potentially affecting the accuracy of this study. The 

STE sequence used in this work utilizes different gradient waveforms in each diffusion-

encoding direction, probing each at slightly different diffusion times and over different 

trajectories in q-space and potentially giving rise to orientational biases [93]. Given the 

small microstructural length scales in WM (<10 μm), the long diffusion time regime is 

likely an appropriate assumption for all 3 waveforms, though future studies may still wish 

to powder average STE data acquired using different gradient directions. This potential 

bias is not expected to have impacted our optimization findings or comparisons between 

regression and the gamma signal representation because they all used identical waveforms. 

Also, a slightly reduced minimum TE could likely have been achieved with optimized STE 

waveforms [130], but we implemented a simpler version that can be easily computed online 
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on the scanner. While this may have a slight impact on the optimal b-value, the optimal 

ratio of STE to LTE acquisitions had no dependence on TE. 

A relatively low number of LTE directions were acquired at b = 2000 s/mm2 in the 

standard data subsets, which may have slightly reduced the accuracy of the measurements 

by introducing a directional dependence to the powder-averaged signal [117]. This would 

not have affected comparisons between μFAjoint and μFAgamma, but the μFAsimp volume was 

computed with more acquisitions at b = 2000 s/mm2, which may have slightly advantaged 

measurements of reliability from that volume against the others. 

The regression technique described herein makes the assumption that the dMRI 

signal arises only from multiple Gaussian components, which is violated when time-

dependent diffusion is not negligible or when microscopic kurtosis is non-vanishing [93]. 

This potential confound may warrant the use of advanced techniques such as CTI, even at 

the expense of a longer TE, to yield μFA estimations without these assumptions [94]. 

2.7. Conclusions 

In conclusion, we have demonstrated an optimized linear regression technique based on 

the diffusion kurtosis signal representation that enabled full-brain mapping of μFA in a 

clinically relevant 3.3 min scan time at 3T. Two implementations of the proposed direct 

approach were validated against the gamma signal representation, and an approach to 

determine the optimal maximum b-value and ratio of STE to LTE acquisitions was 

proposed and validated. Though additional work is necessary to establish the roles of μA 

and μFA imaging in clinical research settings, the ability to rapidly probe these 

measurements in vivo opens the door for exploration into their abilities to assess 

neurodegeneration and other pathologies. 
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In Chapter 2, a technique to estimate µFA was developed and optimized, then tested to 

ensure good repeat measurement reliability. Though µFA solves the issue of neurite fiber 

orientation confounding dMRI measurements, it remains susceptible to free water partial 

volume effects. Chapter 3 presents a technique to mitigate these effects to acquire tissue-

specific measurements using a two-compartment signal representation known as the free 

water elimination powder kurtosis representation. 
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Chapter 3  

3 Estimation of Free Water-Corrected 

Microscopic Fractional Anisotropy 

3.1. Overview 

This chapter was published in Frontiers in Neuroscience, volume 17, Estimation of Free 

Water-Corrected Microscopic Fractional Anisotropy [131], 2023. 

3.2. Introduction 

Diffusion-weighted MRI (dMRI) is a non-invasive imaging modality that uses 

specialized pulse sequences to sensitize the MRI signal to the random molecular motion of 

water [46], [82]. On MRI-relevant time frames, water molecules traverse microscopic 

length scales in tissue, and their diffusion is dictated by the presence of restricting 

boundaries such as cell membranes and other structures. By exploiting the known 

relationships between dMRI signal and tissue properties, dMRI measurements can act as 

surrogate indicators of physical properties of neural tissue, and this capability has led to 

dMRI finding use in the study of neurological disorders like multiple sclerosis [56], [83], 

Alzheimer’s disease [84], and stroke [85], among others. 

The most widely used dMRI technique is diffusion tensor imaging (DTI). DTI is 

based on the first order cumulant expansion of the logarithm of the dMRI signal as a 

function of diffusion weighting or b-value [86], [88], which can be represented by the 

equation: 

 
 𝑆𝒈,𝑏 = 𝑆0𝑒

−𝑏 ∑ 𝑔𝑖𝑔𝑗𝐷𝑖𝑗

3

𝑖,𝑗=1  
(3.1) 

where 𝑆𝒈,𝑏 is the dMRI signal of a particular acquisition acquired with diffusion-weighting 

applied in the direction of the unit vector 𝒈 = (𝑔1, 𝑔2, 𝑔3), 𝑆0 is the MRI signal in the 
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absence of diffusion weighting, b is the b-value, which describes the strength of the 

diffusion weighting, and 𝐷𝑖𝑗 is ijth element of the fully symmetric second order diffusion 

tensor, 𝑫. DTI requires linear tensor encoding (LTE) acquisitions in different diffusion 

directions at a single b-value plus one or more acquisitions with no diffusion weighting 

and can report metrics such as the mean diffusivity (MD) and fractional anisotropy (FA) 

of water diffusion. However, the DTI representation assumes that diffusion follows a 

mono-Gaussian distribution, which is a reasonable assumption only at low b-values [132]. 

The diffusion kurtosis imaging (DKI) representation further expands the cumulant 

expansion of the logarithm of the dMRI signal to the second order to account for non-

Gaussian diffusion but requires the acquisition of dMRI data at two or more b-values. The 

DKI signal representation can be represented as [62], [66]: 

 
𝑆𝒈,𝑏 = 𝑆0𝑒

−𝑏 ∑ 𝑔𝑖𝑔𝑗𝐷𝑖𝑗

3

𝑖,𝑗=1
+

1
6

𝑏2 ∑ 𝑔𝑖𝑔𝑗𝑔𝑘𝑔𝑙𝑊𝑖𝑗𝑘𝑙

3

𝑖,𝑗,𝑘,𝑙=1
+𝑂(𝑏3)

 
(3.2) 

where 𝑊𝑖𝑗𝑘𝑙 denotes the ijklth element of the fully symmetric fourth order diffusion kurtosis 

tensor, 𝑾, and 𝑂(𝑏3) is a higher order term that is negligible in brain tissue at b-values 

lower than 3000s/mm2 [133]. The powder kurtosis signal representation (paK), in which 

data acquired from many diffusion directions are arithmetically averaged into a single 

image volume known as the powder average, can be represented as: 

 
𝑆𝑏 = 𝑆0𝑒−𝑏𝐷𝑒𝑓𝑓+

1
6

𝑏2𝐷𝑒𝑓𝑓
2 𝐾+𝑂(𝑏3)

 
(3.3) 

where 𝑆𝑏 is the dMRI signal of the powder averaged data at a particular b-value, 𝐷𝑒𝑓𝑓 is 

the effective diffusivity estimated from the powder average signals, and 𝐾 is the effective 

diffusion kurtosis [62], [66]. Note that diffusion metrics acquired from the powder 
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representation (e.g. 𝐷𝑒𝑓𝑓) differ from similarly-named metrics acquired from the tensor 

representation (e.g. MD) [134]. 

The DTI and DKI representations are limited by two major factors that affect their 

specificity to neuronal microstructure: (1) the tensors used to estimate anisotropy are 

sensitive to neuron fiber orientation dispersion within the voxel, causing FA to be reduced 

in brain regions containing crossing or fanning axons [75], [96], and (2) the presence of 

cerebrospinal fluid and other free water pools (e.g., cysts) biases diffusion measurements 

in both the tensor and powder representations, potentially confounding or masking true 

microstructural changes within the tissue [135]–[138]. Typically, a voxel with these free 

water partial volume effects will have elevated MD and reduced FA due to the high 

diffusivity and negligible anisotropy of free water. 

To overcome the first limitation, techniques such as microscopic fractional 

anisotropy (μFA) imaging, which reports water diffusion anisotropy independent of the 

neuron fiber orientation dispersion, were developed [71], [72], [98]. μFA can be estimated 

by fitting traditional LTE dMRI data to various signal representations using a priori 

knowledge of the underlying tissue [99]–[101] or by using advanced dMRI pulse sequences 

like double diffusion encoding [94], [102] or spherical tensor encoding (STE) [72], [75], 

[104]. Previous studies have demonstrated that μFA may be more suitable than FA for a 

number of applications such as in evaluating white matter degeneration in Parkinson’s 

disease [73], delineating lesions and detecting abnormalities in multiple sclerosis [74], 

[139], and differentiating between different types of brain tumors [75].  

The bias caused by free water partial volume effects on DTI and DKI measurements 

results from the fact that indices quantified using both representations represent the 
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weighted average of all water diffusion within a voxel rather than markers of a specific 

tissue. The diffusivity of free or unhindered water at 37⁰C is isotropic and approximately 

3-4 times higher than that of brain tissue, so it has a significant effect on the voxel-level 

dMRI parameters, even at low volume fractions [65]. Moreover, the free water signal is 

typically a factor of 2-3 times higher than brain-tissue for the 𝑇2-weighted scans used for 

dMRI, which further exacerbates these partial volume effects. Accordingly, dMRI 

measurements made in brain regions with significant free water partial volumes (Figure 

3-1), such as the fornix and other ventricle-adjacent regions, are greatly affected [140], 

[141]. 

 

Figure 3-1. Free water partial volume effects at the interface between brain tissue and a ventricle 

containing cerebrospinal fluid (CSF). The image on the right depicts an ideal slice in which the brain 

tissue and CSF are clearly delineated, while the center image depicts partial volume effects in voxels 

that contain both CSF and tissue, highlighted by yellow arrows. The goal of the proposed algorithm is 

to obtain parameter estimates specific to the tissue in these voxels. 
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The effects of free water partial volumes can be attenuated by using non-zero 

minimum diffusion weighting [138] and by implementing fluid-attenuated inversion 

recovery dMRI sequences [142], [143], but both techniques decrease signal-to-noise ratio 

(SNR), the former affects DTI metrics in tissue with minimal free water, and the latter 

increases specific absorption rate and scan time [77]. Alternatively, modifications to the 

DTI and DKI representations can be used to distinguish between dMRI signal from free 

water and dMRI signal from functional brain tissue. The free water elimination DTI (FWE-

DTI) representation separates the dMRI signal into two macroscopic components: one 

representing free water and one representing brain tissue [77], and can be expressed as: 

 
 𝑆𝑖 = 𝑆0 (𝑓𝑒

−𝑏 ∑ 𝑔𝑖𝑔𝑗𝐷𝑇,𝑖𝑗

3

𝑖,𝑗=1 + (1 − 𝑓)𝑒−𝑏(3𝑒−3)) 
(3.4) 

where 𝑓 is the apparent volume fraction of tissue (weighted by differences in S0 between 

free water and tissue) within the voxel of interest and 𝐷𝑇,𝑖𝑗 is the ijth element of the diffusion 

tensor corresponding to the tissue component (𝑫𝑻). The (3e-3) term represents the 

diffusivity of free water at 37⁰C in mm2/s. Note that signal arising from extracellular water 

that is hindered, such as the water between neuronal axons, will primarily contribute to the 

tissue component and not the free water component. This representation enables more 

accurate estimation of tissue-specific indices than traditional DTI and has attracted interest 

for use in studying neurodegeneration in Alzheimer’s disease [79], Parkinson’s disease 

[78], and traumatic brain injury [80], among others. Additionally, the volume fraction 

metric is a potential surrogate marker for edema [77], [144]. While traditional DTI can be 

performed using single b-shell data, FWE-DTI should be performed with data collected at 

multiple b-values to reduce fitting degeneracies at the expense of increased scan time [145]. 
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Recently, the FWE-DTI representation was expanded to account for non-Gaussian 

diffusion in the tissue compartment by expanding the cumulant expansion to the second 

order; this modification to FWE-DTI is referred to as the free water elimination DKI 

representation [146]. 

In this article, we propose a technique to measure water diffusion anisotropy that 

combines the STE-based μFA acquisition protocol to achieve insensitivity to neurite 

orientation [72], [75] with the free water elimination representations’ ability to distinguish 

between free water partial volume effects and true tissue properties.  

3.3. Materials and Methods 

Previously, we demonstrated that μFA can be estimated by jointly fitting multi-shell LTE 

and STE dMRI data to the powder average diffusion kurtosis representation, as per the 

following equations (Arezza, Tse, and Baron 2021): 

 
𝑆𝑏,𝐿𝑇𝐸 = 𝑆0𝑒−𝑏𝐷𝑒𝑓𝑓+

𝑏2𝐷𝑒𝑓𝑓
2 𝐾𝐿𝑇𝐸

6  
(3.5) 

 
𝑆𝑏,𝑆𝑇𝐸 = 𝑆0𝑒−𝑏𝐷𝑒𝑓𝑓+

𝑏2𝐷𝑒𝑓𝑓
2 𝐾𝑆𝑇𝐸

6  
(3.6) 

 

 𝜇𝐹𝐴 = √
3

2
(1 +

6

5(𝐾𝐿𝑇𝐸 − 𝐾𝑆𝑇𝐸)
)

−
1
2
 

(3.7) 

where the subscripts 𝐿𝑇𝐸 and 𝑆𝑇𝐸 denote the encoding scheme. By combining equations 

(3.5) and (3.6) with a FWE representation, the powder average free water elimination 

kurtosis representation (FWE-paK) can be defined in the LTE and STE encoding schemes 

via the following equations: 

 
 𝑆𝑏,𝐿𝑇𝐸 = 𝑆0 (𝑓𝑒−𝑏𝐷𝑇+

𝑏2𝐷𝑇
2𝐾𝐿𝑇𝐸
6 + (1 − 𝑓)𝑒−𝑏(3𝑒−3)) 

(3.8) 
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 𝑆𝑏,𝑆𝑇𝐸 = 𝑆0 (𝑓𝑒−𝑏𝐷𝑇+

𝑏2𝐷𝑇
2𝐾𝑆𝑇𝐸
6 + (1 − 𝑓)𝑒−𝑏(3𝑒−3)) 

(3.9) 

where 𝐷𝑇 is the effective diffusivity in the tissue compartment, 𝐾𝐿𝑇𝐸 is the effective 

diffusion kurtosis in the tissue compartment in the LTE scheme, and 𝐾𝑆𝑇𝐸 is the effective 

diffusion kurtosis in the tissue compartment in the STE scheme. The 𝐷𝑇, 𝐾𝐿𝑇𝐸, and 𝐾𝑆𝑇𝐸 

terms obtained using equations (3.8) and (3.9) characterize water diffusion in brain tissue 

independent of free water. Accordingly, μFA estimated from equation (3.7) using these 

corrected indices should characterize water diffusion anisotropy in tissue free of the bias 

caused by free water partial volumes. This imaging strategy which combines the FWE-paK 

signal representation with μFA imaging acquisition will be referred to herein as the FWE 

imaging method, whereas the technique that involves fitting the data to the powder kurtosis 

representation will be referred to as the conventional method. 

3.3.1. Fitting Algorithm 

In this work, a two-part algorithm (denoted Part I and Part II) was used to obtain a solution 

to the joint fitting of STE and LTE data. In the first part of the algorithm, low b-value 

(b≤1000s/mm2) powder average STE data were fitted to a FWE representation for effective 

powder average diffusivity (FWE-paD) to obtain estimates of 𝑓 and 𝐷𝑇. The equation was 

derived from equation (3.9) by setting 𝐾𝑆𝑇𝐸 = 0: 

 𝑆𝑏,𝑆𝑇𝐸 = 𝑆0(𝑓𝑒−𝑏𝐷𝑇 + (1 − 𝑓)𝑒−𝑏(3𝑒−3)) (3.10) 

The indices computed with equation (3.10) were used as initial guesses in the second part 

of the algorithm, in which powder average STE and powder average LTE data across all 

b-values were jointly fitted to equations (3.8) and (3.9). 

Part I of the algorithm exploits the FWE-paD representation’s lower complexity 

relative to the FWE-paK representation, reducing the number of unknown variables to be 
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solved for by omitting the effective kurtosis term. The effects of non-Gaussian diffusion 

on dMRI, while deleterious to signal representations based on the first order cumulant 

expansion of the dMRI signal, are minimal at low b-values; thus, 𝑓 and 𝐷𝑇 can be initially 

estimated despite omitting the second order term in the cumulant expansion. Using only 

the STE data as input further reduces the effects of non-Gaussian diffusion on the fit 

because it typically has minimal kurtosis. More specifically, LTE introduces a variance to 

the powder average signal due to the different diffusion encoding directions used for each 

acquisition; STE signals are free of this variance and deviate less from the mono-Gaussian 

diffusion assumption inherent to the FWE-paD signal representation in tissue-containing 

voxels [72], [94]. In this work, an iterative method was used to solve the FWE-paD 

equation. In each iteration, the low b-value STE data were first fitted to the FWE-paD 

representation (equation (3.10)) using the least squares method with a fixed estimate of 

𝐷𝑇 = 7𝑒 − 4 𝑚𝑚2/𝑠 used as an initial guess in the first iteration. Then, a correction was 

implemented to constrain 𝑓 and (1 − 𝑓) to be positive. The 𝐷𝑇 estimate was then updated 

by again fitting the data to equation (3.10) using the least squares method, this time with 𝑓 

and (1 − 𝑓) as fixed inputs. A correction was implemented at the end of each iteration to 

set 𝐷𝑇 to 0 in voxels with very small tissue compartments (𝑓 < 0.1). The FWE-paD fit 

performed in Part I could be replaced by other techniques to obtain initial estimates of 𝑓 

and 𝐷𝑇 depending on data availability; for example, if low b-value STE data is not 

available, LTE data can be fitted to the FWE-DTI signal representation depicted in 

equation (3.4). 

In Part II of the algorithm, the LTE and STE data across all b-values were jointly 

fitted to the FWE-paK representation using the 𝑓 and 𝐷𝑇 indices from Part I as initial 
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estimates. Again, an iterative method was employed that was similar to that of Part I. In 

each iteration, the data were first fitted to the equations (3.8) and (3.9) to solve for 𝐷𝑇, 𝐾𝐿𝑇𝐸 

and 𝐾𝑆𝑇𝐸 using a fixed 𝑓 value (the first iteration used the value of f that was obtained from 

Part 1). Corrections were performed to constrain 𝐾𝐿𝑇𝐸 to be positive and 𝐾𝑆𝑇𝐸 to be greater 

than or equal to -0.1. Then, the data were jointly fitted to equations (3.8) and (3.9), this 

time using fixed estimates of 𝐷𝑇, 𝐾𝐿𝑇𝐸 and 𝐾𝑆𝑇𝐸 to obtain an updated estimate of 𝑓. A final 

correction was performed at the end of each iteration to constrain 𝑓 and (1 − 𝑓) to be 

positive. 

Part I and Part II were each performed for 100 iterations for all simulated and in 

vivo implementations of FWE-μFA investigated in this article. For all cases, adding more 

iterations caused negligible changes in the output parameters. The fitting code is openly 

available at gitlab.com/coreybaron/fwe_ufa.  

3.3.2. Synthetic dMRI Simulations 

To investigate the differences between the FWE-μFA method proposed herein and 

standard fitting, equations (3.8) and (3.9) were used to generate synthetic LTE and STE 

powder average signals to simulate white matter (WM) and gray matter (GM) voxels. 

These simulations were designed to also probe the performance of the non-convex fitting 

algorithm under the influence of noise and incorrect estimates for the free water diffusivity. 

For each voxel, signals were generated for b-values of 0, 700, 1000, 1400, and 2000 s/mm2. 

To simulate a typical WM configuration, μFA was measured from publicly available dMRI 

data [123] using the conventional μFA method [81], and typical parameter values were 

extracted from frontal WM voxels in which free water contamination is expected to be 

minimal relative to tissue in other brain regions. The corresponding parameters are 𝐷𝑇 =

8𝑒 − 4𝑚𝑚2/𝑠, 𝐾𝐿𝑇𝐸 = 1.2, and 𝐾𝑆𝑇𝐸 = 0.1, which corresponds to a μFA of 0.85 as per 
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equation (3.7). These parameters were used to simulate the signal acquired in voxels with 

simulated tissue volume fractions (𝑓𝑠𝑖𝑚) of 0.2, 0.4, 0.6, 0.8, and 1 via equations (3.8) and 

(3.9). Rician noise was simulated by adding random Gaussian noise to the real and 

imaginary components of the signal and then computing the magnitude of the noisy signal. 

The standard deviation of the noise added to the signals was scaled by 1/√𝑁𝑎𝑐𝑞(𝑏), where 

𝑁𝑎𝑐𝑞(𝑏) is the number of acquisitions used experimentally for each b-value, to account for 

averaging from multiple acquisitions when the powder average is computed. Note that the 

noise standard deviation was chosen to achieve a specific SNR for the case in which 𝑓𝑠𝑖𝑚 =

1 and the b-value is 0. WM voxels were simulated at SNR values of 10, 20, and 40 (before 

scaling noise based on the number of acquisitions) with a fixed free water diffusivity of 

3𝑒−3 𝑚𝑚2/𝑠 to assess the effects of noise on the measurements. Also, WM voxels were 

simulated with free water diffusivities of 2.85𝑒 − 3 and 3.15𝑒−3 𝑚𝑚2/𝑠 at the SNR of 20 

to assess how deviations in free water diffusivity affect the measurements. Notably, PCA 

denoising [124] is typically used for in vivo data prior to parameter fitting and, accordingly, 

the simulations likely explore a more challenging fitting scenario than in vivo. 

Due to the presence of free water in cortical GM voxels, as well as the heterogeneity 

between different deep GM regions of the brain, a typical GM configuration is difficult to 

assess. For this work, GM μFA was set to 0.55 as this is within the range of values found 

in the hippocampus [147] and other deep GM regions [148]; using the same 𝐷𝑇 as the WM 

simulations, the 𝐾𝐿𝑇𝐸 and 𝐾𝑆𝑇𝐸 values were set to 0.9 and 0.6, which yields the desired 

μFA = 0.55 via equation (3.7). GM simulations were performed over the same tissue 

volume fractions, SNRs, and free water diffusivities as the WM simulations. 
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1000 realizations of random noise were generated for each simulation 

configuration. The FWE and conventional methods of estimating μFA were performed on 

the simulated voxels, and the mean and standard deviation of the following indices were 

computed across all setups for both methods: 𝐷𝑇, effective anisotropic kurtosis (𝐾𝑎𝑛𝑖𝑠𝑜), 

effective isotropic kurtosis (𝐾𝑖𝑠𝑜), and μFA. The effective kurtosis terms were computed 

as follows: 

 𝐾𝑎𝑛𝑖𝑠𝑜 = 𝐾𝐿𝑇𝐸 − 𝐾𝑆𝑇𝐸 (3.11) 

 𝐾𝑖𝑠𝑜 = 𝐾𝑆𝑇𝐸  (3.12) 

The relative error against the known ground truth was computed for each measurement 

using the following equation: 

 
𝑅𝑒𝑙. 𝐸𝑟𝑟𝑜𝑟 =

𝑋𝑚𝑒𝑎𝑠 − 𝑋𝐺𝑇

𝑋𝐺𝑇
 

(3.13) 

where 𝑋 is the metric of interest and the subscripts 𝑚𝑒𝑎𝑠 and 𝐺𝑇 denote the measured 

value and known ground truth, respectively. 

3.3.3. Monte Carlo Simulations 

The synthetic powder average signals simulated in the previous section were 

derived using the same equation as is used in Part II of the fitting algorithm, which may 

glamorize the FWE technique. To validate those results, Monte Carlo random walk 

simulations were performed using Camino [149] to compare FWE with the conventional 

signal representation in a scenario in which the ground truth was known. The simulation 

geometry was set to be infinitely long cylinders to represent neuronal axons with a 1 µm 

radius, 0.7 intra-tube volume fraction, and water diffusivity of  2𝑒 − 3 𝑚𝑚2/𝑠 [150]; note 

that this case is assumed to represent a tissue volume fraction of 𝑓𝑠𝑖𝑚 = 1 as the extra-tube 

water is restricted and thought to contribute to 𝐷𝑇. A free water compartment was simulated 
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using a diffusivity of 3𝑒 − 3 𝑚𝑚2/𝑠 and was added to the tissue to achieve 𝑓𝑠𝑖𝑚 values of 

0.2, 0.4, 0.6, 0.8, and 1. LTE and STE signals were simulated at b-values of 0, 700, 1000, 

1400, and 2000 s/mm2, with 15 diffusion directions acquired at each b-value in the LTE 

scheme. 

LTE and STE data were powder averaged and the following metrics were estimated 

using the conventional and FWE methods: 𝐷𝑇, 𝐾𝑎𝑛𝑖𝑠𝑜, 𝐾𝑖𝑠𝑜, and μFA. The metrics 

computed using the conventional paK method at 𝑓𝑠𝑖𝑚 = 1 were assumed to be the ground 

truth and were used to compute the relative error for all other measurements. 

3.3.4. In Vivo  

To assess the FWE μFA algorithm in real dMRI data, 4 healthy volunteers (2 female 

and 2 male, mean age 28.0 ± 6.6 years) were scanned on a 3T Prisma whole body MRI 

system (Siemens Healthineers) located in the Centre for Functional and Metabolic 

Mapping at Western University with 80 mT/m strength and 200 T/m/s slew rate. 

Volunteers first underwent 𝑇1-weighted MPRAGE acquisitions with 1 mm isotropic 

resolution to provide structural image volumes for segmenting regions-of-interest (ROIs). 

Then each subject underwent dMRI scans consisting of 5 acquisitions with no diffusion-

weighting (b = 0 s/mm2), and 3, 15, 6, and 22 LTE acquisitions plus 6, 10, 10, and 27 STE 

acquisitions at b-values of 700, 1000, 1400, and 2000 s/mm2, respectively. The STE pulse 

sequence used is described in Arezza et al [81]. The other parameters for the dMRI 

acquisitions were: TE/TR = 94/4500 ms, field-of-view = 220 x 200 mm2, resolution = 2 

mm (isotropic), 48 slices, and rate 2 in-plane parallel imaging combined with rate 2 

simultaneous multislice. Note that the b-values acquired in the dMRI acquisitions match 

those of the synthetic dMRI and Monte Carlo simulations. 
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Post-processing for the dMRI data included PCA denoising [124] and Gibbs 

ringing correction using MRtrix3 [151], [152], and eddy current artifact correction using 

FSL eddy [121]. Powder average signals were then computed from the LTE and STE data 

at each b-value and were then fitted to equations (3.8) and (3.9) to obtain μFA via the FWE 

method and fitted to equations (3.5) and (3.6) using ordinary least squares to obtain μFA 

via the conventional method. 

The 𝑇1-weighted image volumes were used to obtain masks for ROIs because of 

their superior resolution and soft-tissue contrast compared to the dMRI image volumes. 

WM ROI masks were generated using the fast tool from FSL [125] using a probability 

threshold of 99% and limiting the masks to the region of the brain superior to the thalamus. 

Masks for the hippocampus, putamen, and thalamus were generated using the first tool 

from FSL [153]. ROI masks for the fornix were manually drawn. The 𝑇1 volumes were 

then registered to the powder averaged b=0 s/mm2 volumes using symmetric diffeomorphic 

and affine transformations with ANTS software (https://github.com/ANTsX/ANTs); these 

transformations were then applied to each of the ROI masks to register them to dMRI space.  

The ROIs were selected to test several specific hypotheses. The WM and putamen 

are generally less contaminated by free cerebrospinal fluid than other regions, so it was 

expected that measurements made with the FWE and kurtosis μFA methods would be 

similar. The thalamus and hippocampus ROIs represent deep GM structures adjacent to 

free water, in which it was expected that the 𝐷𝑇 would be reduced and μFA would be 

elevated when using the FWE technique due to mitigation of free water signal. The fornix, 

which is both adjacent to the lateral ventricles and small relative to the image resolution, 

represents an ROI that is likely to have significant free water contamination; thus, much 



87 

 

lower 𝐷𝑇 and much higher μFA were expected in this region when the FWE technique was 

used.  

Mean and standard deviation of the following indices were computed in each of the 

ROIs to compare the FWE and conventional μFA techniques: 𝐷𝑇 , 𝐾𝑎𝑛𝑖𝑠𝑜, 𝐾𝑖𝑠𝑜, and μFA. 

Voxels with 𝑓<0.25 after fitting were excluded from this analysis because there is very 

little tissue signal for which the diffusion parameters correspond to, which leads to unstable 

estimations of the parameters. 

3.4. Results 

3.4.1. Synthetic dMRI Simulations 

The relative errors of measurements made with the FWE and conventional 

techniques at different SNR levels are depicted in Figure 3-2. Note that the for the 

conventional method, only the 20 SNR case is displayed because relative errors did not 

differ by more than the plot line thickness at the various SNR levels. For all volume 

fractions except 𝑓𝑠𝑖𝑚=1, and at all three SNR levels, the FWE μFA method yielded more 

accurate mean measurements of 𝐷𝑇 and μFA than the conventional method in both the WM 

and GM configurations. At 𝑓𝑠𝑖𝑚 = 0.2, the FWE method substantially overestimated 𝑓 in 

both the WM and GM simulations; however, resulting 𝐷𝑇 and μFA estimates were closer 

to the ground truth than measurements produced by the conventional method. FWE 

estimates of 𝐾𝑎𝑛𝑖𝑠𝑜 were higher than estimates produced by the conventional method across 

all 𝑓𝑠𝑖𝑚, while estimates of 𝐾𝑖𝑠𝑜 were lower. The variance of parameter estimations over 

the 1000 repetitions increased for decreasing 𝑓𝑠𝑖𝑚. 
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Figure 3-2. Relative error in diffusion MRI indices measured in synthetic white matter (WM) and gray 

matter (GM) voxels at various SNR levels and a free water diffusivity of 𝟑𝒆 − 𝟑𝒎𝒎𝟐/𝒔. The x-axis 

depicts the simulated volume fraction (𝒇𝒔𝒊𝒎), while the ground truth value for each metric is denoted 

as GT. The red line with crosses indicates the mean measurements made using the conventional (Conv) 

method at SNR=20, the black line with circles depicts the FWE method at SNR=20, the green line with 

inverted triangles depicts the FWE method at SNR=10, and the blue line with triangles depicts the 

FWE method at SNR=40.   

 

The relative errors of measurements made with the FWE and conventional 

techniques using different free water diffusivities are depicted in Figure 3-3. Note that for 

the conventional method, only the 3𝑒 − 3𝑚𝑚2/𝑠 case is displayed because relative errors 

did not differ considerably regardless of free water diffusivity. The FWE μFA method 

again yielded more accurate mean measurements of 𝐷𝑇 and μFA than the conventional 

method in both WM and GM configurations for all free water diffusivity values and across 

all volume fractions except 𝑓𝑠𝑖𝑚 = 1. 𝑓 was again overestimated at 𝑓𝑠𝑖𝑚 = 0.2, with the 

greatest relative error being observed in the signal with a simulated free water diffusivity 

of 2.85𝑒 − 3𝑚𝑚2/𝑠. FWE estimates of 𝐾𝑎𝑛𝑖𝑠𝑜 were again higher than estimates produced 

by the conventional method across all 𝑓𝑠𝑖𝑚, while estimates of 𝐾𝑖𝑠𝑜 were lower. 



89 

 

 

Figure 3-3. Relative error in diffusion MRI indices measured in synthetic white matter (WM) and gray 

matter (GM) voxels with various free water diffusivities (𝑫𝑪𝑺𝑭) and an SNR of 20. The x-axis depicts 

the simulated volume fraction (𝒇𝒔𝒊𝒎), while the ground truth value for each metric is denoted as GT. 

The red line with crosses indicates the mean measurements made using the conventional (Conv) 

method with 𝑫𝑪𝑺𝑭 = 𝟑𝒆 − 𝟑𝒎𝒎𝟐/𝒔 , the black line with circles depicts the FWE method with 𝑫𝑪𝑺𝑭 =

𝟑𝒆 − 𝟑𝒎𝒎𝟐/𝒔, the purple line with inverted triangles depicts the FWE method with 𝑫𝑪𝑺𝑭 = 𝟐. 𝟖𝟓𝒆 −

𝟑𝒎𝒎𝟐/𝒔, and the teal line with triangles depicts the FWE method with 𝑫𝑪𝑺𝑭 = 𝟑. 𝟏𝟓𝒆 − 𝟑𝒎𝒎𝟐/𝒔. 

 

3.4.2. Monte Carlo Simulations 

The relative errors of measurements made with the FWE and conventional 

techniques in the Monte Carlo simulations are depicted in Figure 3-4. Across all 𝑓𝑠𝑖𝑚, the 

FWE method underestimated 𝑓 by approximately 3%.  At 𝑓𝑠𝑖𝑚 = 1, measurements of 𝐷𝑇 

and 𝐾𝑖𝑠𝑜 made using the FWE method were underestimated by approximately 4.8% and 

35%, respectively, relative to measurements made using the conventional method, while 

measurements of μFA and 𝐾𝑎𝑛𝑖𝑠𝑜 were overestimated by 2.8% and 10.5%, respectively. 

Measurements made with the FWE technique were consistent across all 𝑓𝑠𝑖𝑚, while the 

relative error in all measurements made with the conventional technique increased with 

decreasing 𝑓𝑠𝑖𝑚 (except 𝐾𝑖𝑠𝑜 error, which appeared to peak at a volume fraction in the range 



90 

 

of 0.4 < 𝑓𝑠𝑖𝑚 < 0.6). All metrics measured with the FWE method were much closer to the 

ground truth than those measured with the conventional method at 𝑓𝑠𝑖𝑚 < 1.  

 

Figure 3-4. Relative error in diffusion MRI indices measured using the conventional (Conv) and FWE 

methods on signals simulated using a Monte Carlo technique. The geometry consisted of infinitely long 

cylinders with a 1 µm radius and 0.7 intra-tube fraction. The x-axis depicts the simulated volume 

fraction (𝒇𝒔𝒊𝒎), while the ground truth value for each metric is denoted as GT. The red line with crosses 

indicates the measurements made using the conventional (Conv) method while the black line with 

circles indicates measurements made using the FWE method. 

 

3.4.3. In Vivo  

Example slices of 𝐷𝑇, 𝐾𝑎𝑛𝑖𝑠𝑜, 𝐾𝑖𝑠𝑜, and μFA generated with the FWE and 

conventional methods are depicted in Figure 3-5, as well as a sample slice depicting voxels 

with 𝑓 < 0.25. Zoom-ins of a cortical region are depicted in Figure 3-6, where decreases 

in 𝐾𝑖𝑠𝑜 and 𝐷𝑇 , and increases in μFA and 𝐾𝑎𝑛𝑖𝑠𝑜, are observed for FWE relative to the 

conventional method throughout the cortex, which agrees with expectations from the 

simulations. The ROIs are depicted in 𝑇1-weighted images in Figure 3-7, as well as the 

mean and standard deviations of relevant diffusion indices generated using the two 

methods. Mean volume fractions in the WM, putamen, hippocampus, thalamus, and fornix 

regions were 0.96, 0.96, 0.82, 0.82, and 0.64, respectively. Differences in 𝐷𝑇 and μFA 

between the two methods were smallest in the WM and putamen ROIs. When the FWE 

method was employed, 𝐷𝑇 was reduced by 6.4% and 7.5% in the WM and putamen, 
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respectively, compared to measures made using the conventional method, while μFA was 

increased by 3.5% and 5.3%. Greater differences between methods were observed in the 

deep GM regions: 𝐷𝑇 was reduced by 37.1% in the hippocampus and 42.8% in the thalamus 

when FWE was used, while μFA was increased by 22.0% and 16.8% in those regions. The 

most significant differences between methods were observed in the fornix, in which 𝐷𝑇 

was reduced by 59.2% and μFA was increased by 30.5% when FWE was applied. In all 

ROIs, mean 𝐾𝑎𝑛𝑖𝑠𝑜 was reduced while mean 𝐾𝑖𝑠𝑜 was increased when FWE was used. 
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Figure 3-5. (a) Example slices of tissue diffusivity (𝑫𝑻), anisotropic kurtosis (𝑲𝒂𝒏𝒊𝒔𝒐), isotropic kurtosis 

(𝑲𝒊𝒔𝒐), microscopic fractional anisotropy (μFA), and fluid volume fraction (1-f) measured in one of the 

healthy volunteers. The images on the left were computed using the free water elimination (FWE) 

method while those on the right were computed using the conventional (Conv) method. Note that 𝑫𝑻 

is used interchangeably with 𝑫 for the conventional method. (b) Sample slice depicting a binary map 

showing voxels with tissue volume fractions less than 0.25, which were omitted in region-of-interest 

analyses. 
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Figure 3-6. Example cerebral cortex images of tissue diffusivity (𝑫𝑻), anisotropic kurtosis (𝑲𝒂𝒏𝒊𝒔𝒐), 

isotropic kurtosis (𝑲𝒊𝒔𝒐), microscopic fractional anisotropy (μFA), and tissue volume fraction (f) 

measured in one of the healthy volunteers. The images on the left were computed using the free water 

elimination (FWE) method while those on the right were computed using the conventional (Conv) 

method. Note that 𝑫𝑻 is used interchangeably with 𝑫 for the conventional method. The yellow arrow 

highlights a region in which a significant difference is observed between the FWE and conventional 

μFA measurements due to high free water contamination. 
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Figure 3-7. Comparison between the conventional (Conv) and free water elimination (FWE) methods 

in four healthy volunteers. Depicted on the left is a coronal T1-weighted MPRAGE slice from one of 

the volunteers highlighting the five regions-of-interest (ROIs). Note that volumetric ROIs were used, 

despite the single slice depiction. On the right are plots comparing the mean diffusivity (𝑫𝑻), 

microscopic fractional anisotropy (μFA), isotropic kurtosis (𝑲𝒊𝒔𝒐), and anisotropic kurtosis (𝑲𝒂𝒏𝒊𝒔𝒐) 

produced by the Conv and FWE methods. In all ROIs, 𝑫𝑻 and 𝑲𝒊𝒔𝒐 were reduced when FWE was 

applied, while μFA and 𝑲𝒂𝒏𝒊𝒔𝒐 were elevated, though the magnitude of this difference varied by region. 

Note that 𝑫𝑻 is used interchangeably with 𝑫 for the conventional method. 

 

3.5. Discussion 

The FWE method presented herein allows for rapid computation of free water-

corrected μFA because it uses alternating least squares estimations for 𝑓 and the various 

diffusion parameters, which are individually rapid. The total processing time was <1 min 

for each subject on a common personal desktop computer. In this work, 100 iterations were 

performed for each step, but computation time could be further reduced by setting 

termination criteria for instances in which 100 iterations would be excessive. One such 
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example would be to use the estimate of 𝑓 from Part 1 to omit voxels with very high CSF 

contamination (e.g. 𝑓 < 0.25) from Part 2. 

In synthetic dMRI simulations, the FWE method produced more accurate 

measurements of 𝐷𝑇 and μFA than the conventional method across all volume fractions 

except 𝑓𝑠𝑖𝑚=1. At 𝑓𝑠𝑖𝑚=1, the simulated signal vs. b-value curve has no free water 

component and resembles the paK signal representation (equations (3.5) and (3.6)), so the 

two-compartment representation is redundant and falsely detects a small free water 

compartment due to the added noise. In simulations with no added noise (data not shown), 

the FWE and conventional methods both correctly measure 𝐷𝑇 and μFA at 𝑓𝑠𝑖𝑚=1, though 

only the FWE method yields correct indices at lower 𝑓𝑠𝑖𝑚.  

The increase in 𝐾𝑎𝑛𝑖𝑠𝑜 when the FWE method was employed can be explained by 

the fact that 𝐾𝑎𝑛𝑖𝑠𝑜 arises solely from the tissue compartment. 𝐾𝑎𝑛𝑖𝑠𝑜 describes the variance 

in the dMRI powder average signal due to the eccentric shape of neuron fibers and other 

compartments [96]; for example, a dMRI acquisition in the direction parallel to neuronal 

axons will yield a lower signal than one perpendicular to the axons. By removing the 

isotropic free water compartment, the effect of 𝐾𝑎𝑛𝑖𝑠𝑜 on the remaining signal component 

is amplified. The reduction in 𝐾𝑖𝑠𝑜 when the FWE method was used can be attributed to 

the fact that 𝐾𝑖𝑠𝑜 describes the variance in diffusivity across compartments; thus, removing 

the free water compartment, which contains a significantly higher mean diffusivity than 

neural tissue, attenuates this metric. 

Comparisons between measurements made at different SNR values revealed that 

the FWE technique is susceptible to noise, as mean measurements accuracy decreased and 

standard deviation across 1000 voxels increased with decreasing SNR. Despite its 
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sensitivity to noise, the FWE technique still produced more accurate mean measurements 

at the low SNR of 10 than the conventional method did at any SNR level in regions with 

reduced 𝑓𝑠𝑖𝑚. These results suggest that the effects of free water partial volume 

contamination can be more deleterious to dMRI measurements than noise at the SNR levels 

typically achieved in vivo.  

Synthetic dMRI simulations assessing the effects of deviations in the assumed free 

water diffusivity revealed that measurements made with the FWE technique are generally 

less accurate when the diffusivity of free water is not exactly 3𝑒 − 3𝑚𝑚2/𝑠. In real tissue, 

deviations from the assumed temperature of 37⁰C and biases due to differences in 𝑇1 and 

𝑇2 can alter the free water diffusivity and affect the accuracy of the signal fitting algorithm 

[77], [144]. However, this limitation is shared by all multi-compartment signal 

representations that use fixed estimates of free water diffusivity and can only be overcome 

by determining the value prior to the fitting or by attempting to solve for the free water 

diffusivity in each voxel as an additional variable at the expense of computation time and 

potential misestimation. Note that despite this limitation, the FWE method still yielded 

more accurate mean measurements than the conventional method at lower 𝑓𝑠𝑖𝑚. 

In the Monte Carlo simulations, the FWE method underestimated 𝑓 by a relatively 

constant 3% for all simulated tissue volume fractions. At 𝑓𝑠𝑖𝑚 = 1, the water-containing 

cylinders comprise of 70% of the simulated volume, but the extra-tube water is restricted 

by their presence and likely contributes to 𝐷𝑇. This bias likely resulted from kurtosis arising 

from the simulation geometry being partially misattributed to a free water compartment. 

Nevertheless, the bias is small and consistent for different volume fractions, which 

mitigates deleterious effects when comparing different regions or subjects. Note that 
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repeating the Monte Carlo simulation with 60 directions at each b-value instead of 15 did 

not reduce the bias in 𝑓, which suggests that an inadequate number of directions in the 

powder average was not the cause.  

The FWE method also showed promising results when used to measure 𝐷𝑇 and 

μFA in healthy volunteers as differences between the two methods in the various ROIs 

agreed with expectations. In all ROIs, 𝐷𝑇 was reduced and μFA was elevated when the 

FWE method was used (Figure 3-7); these changes are intuitive as removing an isotropic 

signal compartment with high diffusivity from the overall signal, which also contains 

anisotropic signal components from neurites and other eccentric compartments, will raise 

the measured diffusion anisotropy and lower the mean diffusivity. The results of the in vivo 

imaging analysis agreed with the hypotheses that the effects would be smallest in the WM 

and putamen regions and greatest in the free water-adjacent fornix ROI (Figure 3-7). 

Furthermore, the 𝑓 parameter allowed for the removal of voxels with high CSF 

contamination from the ROI analysis, improving mean measurements. However, one 

drawback of the technique is that there are no ground truth measurements to validate the 

measured indices against. Comparing measured tissue volume fractions against known 

values from the literature can act as a pseudo-validation of the FWE method, though it 

should be noted that the measured 𝑓 index represents the 𝑇2-weighted signal fraction of the 

tissue compartment rather than the true volume fraction. To convert 𝑓 to the true volume 

fraction of tissue, 𝑓𝑇, a correction can be made as per the following equation [154]: 

 
 𝑓 =

𝑓𝑇𝑒−𝑇𝐸/𝑇2𝑇𝑖𝑠𝑠𝑢𝑒

𝑓𝑇𝑒−𝑇𝐸/𝑇2𝑇𝑖𝑠𝑠𝑢𝑒 + (1 − 𝑓𝑇)𝑒−𝑇𝐸/𝑇2𝐶𝑆𝐹
 

(3.14) 

Literature reports free water volume fractions of <2% for WM and 7-9% for GM with high 

standard deviations [155], [156], which correspond to 𝑓𝑇 values of >0.98 for WM and 0.91-
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0.93 for GM. Assuming 𝑇2𝐶𝑆𝐹 = 1250 ms [157], 𝑇2𝑊𝑀 = 70 ms [158], and 𝑇2𝑃𝑢𝑡𝑎𝑚𝑒𝑛 = 

𝑇2𝐻𝑖𝑝𝑝𝑜𝑐𝑎𝑚𝑝𝑢𝑠 = 𝑇2𝑇ℎ𝑎𝑙𝑎𝑚𝑢𝑠 = 95 ms [158], [159] at 3T, the approximate mean 𝑓𝑇 values 

for the WM, putamen, hippocampus, and thalamus regions were 0.99, 0.98, 0.92, and 0.92 

in the healthy volunteers imaged in this work. As expected, the volume fraction in the 

fornix was measured to be much lower than the other ROIs (𝑓 = 0.64); no correction was 

performed for this region because many voxels contained large volumes of pure CSF, 

which violates the assumptions of equation (3.14).  While previous studies have found 

evidence that brain tissue volume fraction decreases with age due to increased interstitial 

space [160], such effects are not expected to have impacted the results of this work due to 

the young age of the participant cohort. 

There are several limitations potentially affecting this study. Diffusion time 

discrepancies between the LTE and STE sequences, and between the three gradient 

channels in the STE sequence, were not taken into consideration in this work. Different 

diffusion times in the LTE and STE acquisitions could lead to slight differences between 

the respective powder average signals that are misattributed to be differences between 𝐾𝐿𝑇𝐸 

and 𝐾𝑆𝑇𝐸, while different diffusion times in the different gradient channels for the STE 

acquisitions could give rise to orientational biases [93]. These potential biases are not 

expected to have had a significant effect on the results of this work since both the FWE 

method and conventional method were applied to the same data, and any biases caused by 

time-dependent diffusion would affect both approaches. However, future studies should 

consider using optimized STE sequences to ensure that the diffusion time of the STE and 

LTE sequences match and that there are no orientational biases in the STE sequence. 
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Another limitation is that the time required for an acquisition protocol to acquire 

powder average signals at 4 b-values in both LTE and STE schema could be prohibitively 

long for some applications (our in vivo scan required 9 min).  

Both the conventional and FWE approaches used herein assume that any deviation 

from mono-Gaussian diffusion in the tissue arises exclusively from two distinct sources: 

𝐾𝑎𝑛𝑖𝑠𝑜 and 𝐾𝑖𝑠𝑜. However, restricted diffusion inside compartments, exchange between 

compartments, and microstructural disorder can also contribute to the overall kurtosis and 

are often categorized together in a term known as microscopic kurtosis (𝜇𝐾) [93], [94]. 

Though most μFA imaging techniques do not consider 𝜇𝐾, recent studies have found that 

it is non-negligible in the human brain and that ignoring it can lead to biases [161]. Despite 

this limitation, μFA techniques that do not distinguish 𝜇𝐾 from other kurtosis sources have 

shown promising diagnostic and research capabilities and still represent a significant 

advance over the widely used DTI metrics. 

The images produced by the FWE method (Figure 3-5 and Figure 3-6) appear 

grainier than those produced by the conventional method and higher standard deviations 

were measured in all metrics when the FWE method was used, both in simulations (Figure 

3-2 and Figure 3-3) and in vivo (Figure 3-7). This increased variance is expected due to the 

increased complexity of the FWE-pAK representation relative to the paK representation. 

Studies that use the FWE technique should design MRI protocols that sample more b-shells 

to improve the data fit and acquire more LTE and STE scans at each b-value to raise the 

SNR of the powder average signals. A minimalistic protocol, such as those described in 

the literature [81], [117], may be insufficient for FWE imaging. Also, regularization 
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enforcing spatial smoothness, similar to that applied in other applications of FWE, could 

likely help mitigate this issue [77], [145].   

The conventional and FWE methods used in this work both derive μFA and other 

metrics using orientationally-averaged signals in the LTE scheme, which can introduce 

biases into measurements due to the positively-skewed distribution of Rician noise [162], 

[163] and due to non-uniform or insufficient sampling of the diffusion sphere in the LTE 

regime [164]. While measures were taken to denoise and preprocess the in vivo dMRI data 

used in this work, some of the LTE b-shells were minimalistic (e.g. only 6 directions were 

acquired at 1400 s/mm2). The simple arithmetic averaging method used in this work to 

compute powder average signals may be suboptimal given the minimalistic LTE 

acquisition protocol used, and more advanced algorithms to compute the powder average 

signal could potentially reduce biases [164].  

In conclusion, the two-compartment μFA imaging technique presented in this work 

represents an extension to a conventional μFA imaging technique that integrates a free 

water compartment to extract tissue-specific indices of 𝐷, 𝐾𝑎𝑛𝑖𝑠𝑜, 𝐾𝑖𝑠𝑜, and μFA. This 

approach requires only modest assumptions about the content of the voxel and makes no 

assumptions about the tissue microstructure – it could be described as a “macrostructural 

model”. To solve the ill-conditioned fit of the data to equations (3.8) and (3.9), a two-part 

algorithm was employed to first determine initial guesses of key parameters and then to 

perform the joint fit. Any dMRI protocol designed to estimate μFA via the FWE method 

proposed in this work will be versatile due to the need for multiple b-shells in both LTE 

and STE schema and can also be fitted to the conventional μFA method and the DKI signal 

representation; furthermore, if a significant number of LTE directions are acquired at b = 
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1000 s/mm2, the data can be fitted to the widely adopted DTI signal representation as well. 

Both simulation and real data experiments indicated that the FWE method may be a 

feasible technique for measuring μFA and other dMRI indices with greater specificity to 

neural tissue characteristics by removing free water partial volume effects.  It should also 

be noted that other μFA approaches, such as the STE techniques that use the gamma signal 

representation, DDE techniques, and techniques that exclusively derive the metrics from 

LTE acquisitions, could likely also be modified to include a free water compartment. 
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While Chapters 2 and 3 focused on the development of µFA imaging protocols, Chapter 4 

introduces a potential clinical application for the technique: the detection of hippocampal 

abnormalities in patients with unilateral temporal lobe epilepsy. 
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Chapter 4  

4 Microscopic Fractional Anisotropy 

Asymmetry in Unilateral Temporal Lobe 

Epilepsy 

4.1. Overview 

This chapter is adapted from a manuscript currently in preparation titled Microscopic 

Fractional Anisotropy Asymmetry in Unilateral Temporal Lobe Epilepsy [165], which is 

posted as a preprint on medRxiv. 

4.2. Introduction 

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy in adults, with 

as many as two-thirds of seizure foci being localized to the temporal lobe [34], [37], [166]. 

Though TLE can often be managed with anticonvulsant medications, approximately 30% 

of adults with epilepsy eventually develop medically intractable epilepsy despite 

appropriate drug therapy [36], [37]. Surgical resection of the seizure focus has been shown 

to be superior to medical treatment and is the method of choice for managing medically 

intractable TLE [167], [168]. In most of these patients, the epileptic focus lies within the 

mesial region of the temporal lobe and can be identified by the presence of mesial temporal 

sclerosis (MTS), which manifests as scarring and atrophy that can often be detected by 

MRI [169]. Seizure freedom following surgical resection is achieved in 75% of patients 

with clearly delineated MTS in MRI (i.e. MR-positive or MR+ patients), but in only 51% 

of MR-negative (MR-) patients [170], perhaps because the seizure focus has not been 

adequately localized and the resection is incomplete. This demonstrates the need for highly 

sensitive imaging techniques to complement the current gold standard MRI, EEG, and 

nuclear medicine techniques, and improve seizure focus localization. 
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Diffusion-weighted MRI (dMRI) is a promising technique for visualizing 

pathological abnormalities in TLE due to its sensitivity to neuron microstructure. The 

diffusion tensor imaging (DTI) parameters fractional anisotropy (FA) and mean diffusivity 

(MD) are of particular interest because demyelination, reduced axon density, and widened 

extracellular spaces due to gliosis reduce FA and increase MD [171]. Previous studies have 

shown that increased MD and reduced FA are present in various brain regions in TLE 

patients [170]–[172], and that increased MD is present in the ipsilateral side of the 

hippocampus in patients with unilateral TLE [173], [174]. Despite these promising results, 

the DTI signal representation is inadequate for quantifying regions with crossing or fanning 

neuron fibers because of its sensitivity to intra-voxel fiber orientation dispersion [96], 

[175]. FA, in particular, significantly underestimates water diffusion anisotropy in regions 

with complex fiber orientations [176]; this limits its specificity to abnormalities in TLE 

because the most common pathology in medically intractable TLE is hippocampal sclerosis 

(HS) [177], [178] but the hippocampus contains crossing fiber regions [179]. 

Microscopic fractional anisotropy (μFA) is a recently developed dMRI metric that 

quantifies water diffusion anisotropy independent of both neuron fiber orientation 

dispersion and compartment size [72]. Generally, μFA imaging techniques distinguish 

between anisotropy resulting from microstructure and anisotropy resulting from axon 

orientation by exploiting the contrast between two different dMRI acquisitions [72], [75], 

[98], [102]: (1) acquisitions that each probe diffusion in a single direction (i.e. encoding 

that is typically used in dMRI), and (2) acquisitions that probe diffusion in multiple 

orthogonal directions simultaneously. Previous studies have demonstrated that μFA 

outperforms FA for delineating lesions in multiple sclerosis [74], for evaluating white 
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matter degeneration in Parkinson’s disease [73], and for distinguishing between different 

types of brain tumors [75], among other potential applications. In the TLE clinical 

workflow, μFA may provide a complementary metric to the current imaging and EEG 

techniques due to its sensitivity to microstructure and insensitivity to fiber orientation, 

particularly in brain regions containing crossing fibers, such as the hippocampus [147]. 

However, the benefits of μFA imaging in TLE have not yet been assessed. 

This preliminary work aims to evaluate the sensitivities of μFA, FA, MD, and 

regional volume to detect abnormalities in four hippocampal subregions in patients with 

unilateral TLE. Asymmetries in measurements of anisotropy, diffusivity, and volume 

between the ipsilateral and contralateral hemispheres may indicate unilateral abnormalities 

that can lateralize the epileptic focus. We hypothesize that μFA may be more sensitive to 

hippocampal abnormalities than FA due to its independence from neuron fiber orientation 

and may usefully complement the current standard-of-care for diagnostic or pre-surgical 

imaging in TLE. 

4.3. Methods 

4.3.1. Participants 

Nine TLE patients (four female and five male, mean age ± standard deviation = 33 ± 12 

years) and nine healthy volunteers (four female and five male, mean age ± standard 

deviation = 26 ± 6 years) were recruited for this study, which was approved by the health 

sciences research ethics board at Western University. Informed consent was obtained from 

all participants prior to their recruitment. The following inclusion criteria were used to 

determine eligibility for the TLE cohort: all patients (a) had a history of epilepsy, (b) 

underwent radiological and/or comprehensive EEG assessments to identify and lateralize 

the epileptogenic region, and (c) were suspected to have a unilateral seizure focus in the 
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temporal lobe. Three patients in the TLE cohort underwent unilateral temporal lobectomy 

after imaging and post-surgical pathology confirmed the presence of MTS; they are herein 

referred to as the “confirmed MTS” subgroup, while the other six patients are referred to 

as the “MR-negative” subgroup.  Clinical and demographic information for the patient 

participants is shown in Table 4-1. 

 

Table 4-1: Clinical characteristics of patients with left and right temporal lobe epilepsy. 

ID Age Sex Handedness Scalp 

EEG 

Intracranial 

EEG 

Ipsilateral 

Side 

1.5T MRI Radiological 

Findings (T1 and T2) 

Post-Surgical 

Pathology 

1 42 M R L TLE N/A L MTS MTS+ 

2 30 F R L TLE N/A L MTS MTS+ 

3 22 M R L TLE N/A L MTS MTS+ 

4 59 M R L TLE N/A L Smaller left hippocampus 

compared to right 

N/A 

5 23 F R L TLE L TLE L N/A N/A 

6 31 F R L TLE L TLE L 1.2 cm possible polyp in 

nasal cavity 

N/A 

7 38 F R R TLE R TLE R Chronic mucosal 

thickening in the 

paranasal sinuses 

N/A 

8 26 M L R TLE N/A R Apparent cyst near right 

lateral ventricle with 
stable appearance 

N/A 

9 28 M R L TLE N/A L Slightly thicker cortex 
and less myelination in 

left temporal pole 

compared to right 

N/A 

EEG-Electroencephalogram, L-Left, R-Right, TLE-Temporal Lobe Epilepsy, N/A-Not 

Available, MTS-MTS Detected, MTS+-MTS Confirmed Surgically 

4.3.2. MRI Acquisition and Processing 

Participants were scanned using a 3T full-body MRI system (Siemens Prisma) with a 32-

channel head coil. The protocol consisted of two anatomical MRI scans followed by two 

dMRI scans for separate DTI and μFA acquisitions. The first anatomical scan was a 𝑇1-
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weighted magnetization-prepared rapid acquisition with gradient echo (MPRAGE) 

sequence with repetition time/echo time (TE/TR) = 2.3/2400ms and inversion time = 1.06s, 

and the second anatomical scan was a 𝑇2-weighted sequence with TE/TR = 564/3200ms. 

Both the 𝑇1- and 𝑇2-weighted scans had a field-of-view (FOV) = 240x256mm2, 0.8mm 

isotropic voxel size, and used rate 2 generalized auto-calibrating partially parallel 

acquisitions (GRAPPA). The DTI scan used a multiband echo-planar imaging (EPI) 

sequence with TE/TR = 99/5500ms, rate 2 GRAPPA, FOV = 222x222mm2, and 1.6mm 

isotropic voxel size to acquire 6, 36, and 60 linear tensor-encoded (LTE) volumes at b-

values of 0, 1000, and 2000s/mm2, respectively, with a total scan time of 9 minutes. The 

μFA scan used a multiband EPI sequence with TE/TR = 92/4900ms, rate 2 GRAPPA, FOV 

= 229x229mm2, and 1.8mm isotropic voxel size to acquire 8 LTE volumes at b=2000s/mm2 

and 3, 6, and 16 spherical tensor-encoded (STE) volumes at b=100, 1000, and 2000s/mm2, 

respectively, with a total scan time of 3 minutes. The μFA scan was performed twice, first 

with anterior-to-posterior and then with posterior-to-anterior phase encoding directions, 

doubling the scan time to approximately 6 minutes. Principal component analysis 

denoising and Gibbs’ ringing artifact correction were performed on the dMRI volumes with 

the dwidenoise [124], [180] and mrdegibbs [151] toolboxes from Mrtrix3 [152] and the 

data were then corrected for EPI readout and eddy current distortions using topup [181] 

and eddy [121] from FSL [182]. 

 

4.3.3. Hippocampus Segmentation 

A deep-learning surface-based hippocampus unfolding pipeline (Hippunfold v0.5.1 [183]) 

was used to segment the hippocampus into subiculum (SB), cornu ammonis (CA) 1-4, and 

dentate gyrus (DG) subfields, using the 𝑇2-weighted volume as input. To reduce the 
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number of comparisons during analysis, some of the subfields were combined to form 

distinct subregions based on the following three International League Against Epilepsy 

(ILAE) histopathological HS classifications: HS ILAE Type 1 is defined as severe neuron 

loss and gliosis primarily in CA1 and CA4; in Type 2 loss and gliosis predominate in CA1; 

and in Type 3 they predominate in CA4 [178]. Although significant cell loss is observed 

in CA2 and/or CA3 in some TLE patients, these findings are not consistent across any of 

the HS ILAE types [178] so these adjacent regions were combined into one subregion. The 

CA4 subfield was combined with the adjacent DG since cell loss scores in the DG tend to 

be higher in CA4-predominant HS type 1 and type 3 than in type 2 [178]. The CA1 subfield 

was not merged with any others as it is of interest in HS type 1 and type 3.  

4.3.4. Estimation of dMRI Parameters 

To ensure that all dMRI metrics were mapped to the same coordinate system, the DTI 

volumes were registered to the μFA image space using the linear registration tool FLIRT 

[184] from FSL. MD and FA maps were computed by fitting the dMRI data with 

b≤1000s/mm2 from the DTI scan to the DTI signal representation using a weighted linear 

least-squares method [47], [185]. μFA maps were computed by performing a joint fit 

between the entire set of LTE and STE data from the μFA scan to the second order 

cumulant signal representation as described by Arezza et al [81]. The 𝑇1-weighted image 

volumes were registered to the μFA space and then the inverse transformations were used 

to register the MD, FA, and μFA maps to the anatomical space. To ensure good registration 

quality, outlines of the hippocampal subregions were overlaid on top of the registered MD, 

FA, and μFA maps and were visually inspected. 
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4.3.5. Statistical Analysis 

For each TLE patient, the mean MD, FA, and μFA were measured in the ipsilateral and 

contralateral sides of each of the four hippocampal subregions and full hippocampus, and 

the volume of each subregion was measured by computing the sum of the number of voxels 

in the region. The mean and standard deviation of each of the four measurements of 

interest, across all patients, were computed for the ipsilateral and contralateral sides. In the 

healthy volunteer cohort, the same measurements were made in the left and right sides for 

each subfield, as well as average measurements spanning both sides of the brain. For each 

metric in each subregion, a paired t-test was performed to test for significant differences 

between the ipsilateral and contralateral sides in the TLE cohort, and an unpaired t-test was 

performed to test for significant differences between the ipsilateral side of the TLE group 

and the average of the left and right sides in the healthy group. The Bonferroni correction 

was applied to account for multiple comparisons; since four metrics were compared, the 

significance threshold was reduced from 0.05 to 0.0125. 

 To quantify asymmetries between the two hemispheres, the percentage differences 

between the ipsilateral and contralateral measurements in the TLE group were computed 

in each subregion and in the whole hippocampus for each patient using the following 

equation: 

2(𝑋𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 − 𝑋𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙)/(𝑋𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝑋𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙) ∗ 100% (4.1) 

where X is the measurement of interest. It was hypothesized that volume, FA, and μFA 

may be reduced, and MD may be elevated, in some ipsilateral regions compared to their 

respective contralateral counterparts due to tissue atrophy, gliosis, and changes to 

microstructure. Notably, asymmetries may be more likely to be observed in the CA1 and 

CA4/DG subregions that are predominantly affected in HS than in the SB and highly 
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variable CA2/3 subregions. For the healthy group, asymmetry was measured within 

subregions and in the whole hippocampus by comparing the left and right sides. 

4.4. Results 

Example sagittal and coronal 𝑇1- and 𝑇2-weighted images from one of the healthy 

volunteers are depicted in Figure 4-1 with the four hippocampal subregions outlined. All 

hippocampal segmentations were manually inspected for accuracy in delineating the 

hippocampal tissue and subfields. Coronal slices of 𝑇1-weighted MRI, MD, FA, and μFA 

from a TLE patient with confirmed MTS are depicted in Figure 4-2 for comparison. 

Ipsilateral and contralateral measurements of volume (normalized against the mean 

contralateral volume), MD, FA, and μFA are plotted in Figure 4-3 for all subregions, in 

addition to average measurements spanning both the right and left side for all subregions 

in healthy volunteers. Notably, MD was significantly elevated and μFA was significantly 

reduced in the ipsilateral CA4/DG region relative to the contralateral side in TLE patients, 

with respective p-values of 0.012 and <0.01. Compared to the average values in the healthy 

cohort, ipsilateral MD was significantly elevated in every subregion except CA1, and 

ipsilateral μFA was significantly reduced in every subregion. Although the mean ipsilateral 

volume was reduced relative to the contralateral side in all four subregions and in the full 

hippocampus in the TLE cohort, this metric varied considerably from patient to patient and 

the difference was not statistically significant in any region. However, ipsilateral volume 

was significantly reduced in every region except SB relative to average measurements in 

the healthy cohort. For the FA metric, no significant asymmetries were observed in the 

patients in any of the subregions. 
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Figure 4-1. Sagittal and coronal T1-weighted (top) and T2-weighted (bottom) MR images from a 

healthy volunteer with insets highlighting the four hippocampal subregions used in this study: the 

subiculum (SB), cornu ammonis 1 (CA1), cornu ammonis 2 and 3 (CA2/3) and cornu ammonis 4 plus 

dentate gyrus (CA4/DG). Note that only the right hippocampus is labeled although both hippocampi 

were analyzed. 

 



112 

 

 

Figure 4-2. (a) Example T1-weighted coronal image from a TLE patient with confirmed MTS, with the 

four hippocampal subregions highlighted. (b) MD, FA, and μFA coronal slices from the same patient 

before registration to T1-space (left), and after registration to T1-space and interpolation (right) 

depicting the ipsilateral and contralateral hippocampal regions. Note that for this patient, the left side 

(L) is the ipsilateral side and the right side (R) Is the contralateral side. 
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Figure 4-3. Volume (normalized against the mean contralateral volume), MD, FA, and μFA 

measurements in the ipsilateral and contralateral sides of each of the four hippocampal subregions 

across 9 TLE patients, plus mean measurements of both hemispheres across 9 healthy control 

volunteers (HC). The horizontal black lines depict the mean measurement across the cohort, and the 

gray ovals highlight a region spanning two standard deviations above and below the mean. The two 

plots with pink ovals highlight significant MD (p=0.012) and μFA (p<0.01) asymmetries in the TLE 

cohort. 
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To further investigate asymmetries in the CA4/DG subregion, and to compare these 

asymmetries with full-hippocampus measurements, the percentage differences between 

ipsilateral and contralateral measurements in CA4/DG and in the full hippocampus were 

plotted in Figure 4-4. Overall, the mean percentage difference between the ipsilateral and 

contralateral measurements in the CA4/DG region was -24.4% for volume, +5.8% for MD, 

-6.6% for FA, and -12.9% for μFA; in the full hippocampus the mean percentage difference 

between ipsilateral and contralateral measurements was -16.5% for volume, +2.7% for 

MD,  +3.3% for FA, and -5.9% for μFA. 
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Figure 4-4. Percentage difference (%Δ) between ipsilateral and contralateral measurements of volume, 

MD, FA, and μFA in the full hippocampus (top) and CA4/DG region (bottom) in unilateral TLE 

patients, and %Δ between left and right measurements in 9 healthy control volunteers (HC). 

 

All three patients with confirmed MTS were found to have reduced volume and 

μFA and increased MD in both the full hippocampus and the ipsilateral CA4/DG subregion 

relative to the contralateral side. Only one of these patients had reduced ipsilateral FA in 

CA4/DG, and none had reduced ipsilateral FA in the full hippocampus. Of the six MR-
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negative patients, only three had reduced volume in ipsilateral CA4/DG and in the full 

hippocampus relative to the contralateral side. Five had reduced ipsilateral FA in CA4/DG 

and four had reduced ipsilateral FA in the full hippocampus. All six MR- patients had 

reduced μFA and increased MD in the ipsilateral CA4/DG subregion relative to the 

contralateral side, but only five had reduced μFA and increased MD in the ipsilateral full 

hippocampus. Generally, greater asymmetries were observed between hemispheres in the 

CA4/DG subregion than across the entire hippocampus in the TLE cohort.  

4.5. Discussion 

In this preliminary study, the dMRI metrics of MD, FA, and μFA were measured in several 

hippocampal subfields, and compared to a volumetric measurement, to assess whether they 

demonstrate sensitivity to unilateral hippocampal abnormalities in TLE patients. This study 

is the first to apply μFA imaging to the study of TLE. It was observed that MD was 

significantly elevated and μFA was significantly reduced in the ipsilateral CA4/DG region, 

relative to the contralateral side, in all patients. This subregion is affected by  severe cell 

loss and gliosis in TLE patients with ILAE HS types 1 and 3. The increased ipsilateral MD 

is consistent with other diffusion MRI studies of temporal lobe epilepsy [173], [186]–[189]. 

In particular, Goubran et al observed a strong negative correlation between MD and cell 

density in CA4/DG [174]. μFA values were more asymmetric (between hemispheres) than 

were MD values in the CA4/DG region, suggesting that it is more sensitive to hippocampal 

abnormalities. Although the mean CA4/DG volume asymmetry across patients was greater 

than those of the dMRI metrics, a decreased ipsilateral volume in the region correctly 

predicted the side of the epileptic focus in only six of nine patients, while MD and μFA 

measurements demonstrated asymmetry in the CA4/DG that was consistent with the EEG 

results in all nine patients.  
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We hypothesize that the reduced ipsilateral μFA stemmed from the loss of axons 

that invariably occurs when neurons die. Notably, axons are more sensitive to homeostatic 

imbalances than cell bodies, and so are generally lost earlier: when under stress axons can 

degenerate while the cell body remains [190]–[193]. Accordingly, these results, although 

from a small sample, suggest that μFA may be an early marker of mesial temporal sclerosis.  

4.5.1. Confirmed MTS vs. MR-Negative TLE 

Both full hippocampus and CA4/DG-specific asymmetries in region volume, MD, and μFA 

correctly lateralized the epileptic focus in all three patients with confirmed MTS. These 

patients exhibited considerable unilateral hippocampal atrophy which, when combined 

with concordant results from EEG and other clinical testing, made them candidates for 

anterior temporal lobectomy procedures. All three patients with confirmed MTS had total 

hippocampal volume asymmetries greater than 30% (prior to surgery) and CA4/DG 

volume asymmetries greater than 45%, while the six MR-negative patients had total 

hippocampal volume asymmetries of <10% and CA4/DG volume asymmetries of <20%. 

The confirmed MTS patients also had the greatest MD and μFA asymmetries. 

The inability of volume asymmetries to lateralize the epileptogenic zone in the MR-

negative cohort highlights the need for supplementary imaging techniques in the TLE 

clinical workflow. In the MR- subgroup, the full hippocampus and CA4/DG volume 

asymmetries correctly lateralized the epileptic focus in only half of the patients. Right-left 

hemispheric asymmetry of hippocampal volume occurs in healthy subjects and is not 

necessarily indicative of pathology or injury [194]. In contrast, diffusion metrics are linked 

to microstructural changes that suggest neuron damage or gliosis, perhaps giving said 

metrics better specificity to unilateral hippocampal abnormalities relevant to TLE. The 

results of this work support this theory as MD and μFA asymmetries in CA4/DG correctly 
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lateralized the epileptic focus for all six MR-negative patients, regardless of whether the 

ipsilateral side was in the left or right hemisphere, and regardless of whether CA4/DG 

volume was reduced or elevated in that side.  

4.5.2. Microscopic Fractional Anisotropy vs. Fractional Anisotropy 

Since both FA and μFA index water diffusion anisotropy, they are particularly comparable. 

Mean FA values typically fell in the 0.1-0.2 range across all hippocampal subregions and 

were consistently lower than mean μFA values, which fell in the 0.4-0.5 range. This 

discrepancy likely resulted from crossing and fanning fibers in the hippocampus, which 

attenuate FA measurements but do not affect μFA. The mean values for both anisotropy 

metrics were consistent with the results of Yoo et al [147], in which mean FA and μFA 

values of 0.2 and 0.47, respectively, were observed in the hippocampi of healthy 

volunteers. 

Although CA4/DG was the only region in which a statistically significant 

asymmetry in μFA was observed in the TLE cohort, mean ipsilateral μFA was consistently 

reduced relative to both the contralateral and average healthy control μFA across all four 

hippocampal subregions (Fig. 3). FA asymmetry in the TLE group was not statistically 

significant in any of the subregions and was inconsistent across regions. Given that FA 

values were significantly lower in all subregions relative to μFA values, and that no 

significant FA asymmetries were observed, it is likely that the sensitivity of FA in detecting 

hippocampal abnormalities in TLE is suppressed by its lack of specificity to neuron fiber 

microstructure and that μFA is a more suitable measure of diffusion anisotropy in brain 

regions containing crossing fibers. 
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4.5.3. Limitations 

This preliminary work was limited by the small size of the unilateral TLE patient cohort. 

Although μFA and MD measurements were reliably asymmetric in CA4/DG, future work 

should include larger patient cohorts to validate these findings and to potentially elucidate 

asymmetries in other subregions, such as CA1.  

Since ILAE HS type 1 is the most common subtype of HS, accounting for 60-80% 

of TLE-HS cases [178], [195], [196], it was expected that asymmetries might present in 

the CA1 and CA4/DG regions. However, no significant asymmetries were observed in 

CA1 in any of the metrics. It may be the case that MD and μFA are more sensitive to 

abnormalities in the CA4/DG region, but the small sample size may have affected the 

results.  

The spatial resolutions of the dMRI volumes acquired in this study (1.8 mm 

isotropic for μFA) are suboptimal for visualizing hippocampal subfields [197], so some 

partial volume effects near the boundaries between subregions and near CSF likely affected 

the results. Since the SB, CA1, and CA2/3 subregions encompass the periphery of the 

hippocampus, they could be more susceptible to partial volumes of extra-hippocampal 

brain tissue or CSF; contrarily, the CA4/DG region lies in the center of the hippocampus 

and would only be affected by partial volumes of other hippocampal subregions. The 

significant asymmetries in MD and especially μFA in CA4/DG demonstrate the potential 

for dMRI in lateralizing the epileptic zone in TLE and demonstrate the increased utility of 

μFA over FA in studying the hippocampus. In future work, the spatial resolution could be 

improved at the expense of increased scan duration; the μFA protocol used in this study 

required 3 minutes to achieve 1.8 mm resolution, but Yoo et al demonstrated a μFA 

protocol with 1.5 mm isotropic resolution that could be acquired in 15 minutes [147]. To 
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counter the increased scan time needed for higher resolution, the field-of-view and number 

of slices could be reduced to capture a smaller subvolume of the brain containing the 

hippocampus. Additionally, techniques to mitigate CSF partial-volume effects, such as a 

recently proposed free water elimination μFA protocol [131], could be employed. 

4.6. Conclusions 

This study demonstrated that the combination of hippocampal subfield segmentation with 

μFA and MD imaging may be helpful for lateralizing the epileptogenic zone in patients 

with unilateral TLE. Assuming the poorer surgical outcomes experienced by patients with 

MR- TLE are in part due to poorer identification of the epileptic focus, then dMRI 

techniques that can complement the current techniques for lateralizing and localizing the 

epileptic focus may be able to improve surgical outcomes in these patients.  

Both the DTI and μFA protocols in this work are clinically feasible and could easily 

be included in a clinical workflow, as both scans were performed at a clinical field strength 

of 3T and each only required 6 minutes or fewer of total scan time (as the b=2000s/mm2 

acquisitions in the DTI scan were redundant). To further optimize the protocol, MD and 

FA could be estimated from a μFA scan by fitting the low b-value data (<1000s/mm2) to 

the diffusion tensor signal representation, eliminating the need for a separate DTI scan, 

though this was not possible in this work because only STE scans were acquired at the 

lower b-values.  

 



121 

 

Chapter 5  

5 Conclusions  
Microscopic fractional anisotropy is a powerful tool that can probe brain microstructure by 

quantifying water diffusion anisotropy. Since µFA is not affected by the orientation of 

neurites, such as crossing axon fibers in WM and incoherently arranged dendritic branches 

in pyramidal and granular neurons of the hippocampus, it may serve as a useful biomarker 

to characterize pathological microstructural changes or abnormalities in neural tissue. 

Despite its potential, µFA imaging is still in the early research stages. As of 2019, the 

number of MRI scanners per 1 million population in Canada was only 10.4 [198], so scan 

time is limited and new techniques like µFA have to demonstrate clinical benefit to warrant 

their usage. 

The overarching goal of this Thesis was to assess the feasibility and efficacy of 

µFA imaging for clinical usage. In Chapter 2 it was shown that a data set acquired within 

a clinically viable scan time could be used to generate µFA maps with high repeat 

measurement reliability in WM brain regions. Furthermore, the powder average kurtosis 

signal representation used to estimate µFA can be rapidly computed via least squares, and 

yields other valuable metrics like MD and K. The FWE method investigated in Chapter 3 

demonstrates the potential for tissue-specific µFA imaging, which could improve the 

metric’s specificity to microstructural abnormalities in regions contaminated by CSF 

partial volumes. Finally, Chapter 4 provides an example of a clinical use case by 

demonstrating the benefit of µFA imaging over traditional DTI and relaxation-weighted 

MRI in patients with unilateral TLE. 
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5.1. Limitations and Suggestions 

Though many of the limitations of the work presented in this Thesis are discussed in the 

previous chapters, the following subsections investigate some of the broader limitations in 

greater detail, and how they can be addressed in future studies. 

5.1.1. Diffusion Time-Dependence 

The techniques presented in this work to estimate µFA rely on a joint fit between STE and 

LTE dMRI data and assume that the apparent mean diffusivity is equal regardless of 

encoding scheme (i.e., 𝐷𝑆𝑇𝐸 = 𝐷𝐿𝑇𝐸). This assumption holds true if the diffusion time is 

long enough that steady-state measurements are achieved, or if the STE and LTE sequences 

are calibrated to ensure they have the same effective diffusion time. Diffusion time 

differences between the LTE and STE waveforms, or between the different gradient 

channels in the STE sequence, may have introduced biases in µFA. 

To demonstrate how diffusion time differences between LTE and STE waveforms 

can bias measurements, consider dMRI data acquired such that 𝐷𝑆𝑇𝐸 > 𝐷𝐿𝑇𝐸 because of 

effective diffusion time inconsistencies. The joint fit will yield a mean diffusivity estimate 

that falls between the true values (i.e., 𝐷𝑆𝑇𝐸 > 𝐷𝑓𝑖𝑡 > 𝐷𝐿𝑇𝐸), and this deviation from the 

true values can affect estimates of 𝐾𝑆𝑇𝐸, 𝐾𝐿𝑇𝐸, and µFA. Table 5-1 depicts a scenario in 

which a 6% difference between 𝐷𝑆𝑇𝐸 and 𝐷𝐿𝑇𝐸 results in an 11% difference in the measured 

µFA value from jointly fitting the data to the powder kurtosis representation.  
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Table 5-1. Example diffusion MRI data in which the LTE and STE waveforms probe different 

diffusion times, resulting in different apparent diffusivities. When a joint fit to the powder average 

diffusion kurtosis representation is performed, the resulting µFA estimate is biased. 

Metric True value Estimate from joint fit 

𝐷𝐿𝑇𝐸 7.5 ∗ 10−3 𝑚𝑚2/𝑠  7.75 ∗ 10−3𝑚𝑚2/𝑠  

𝐷𝑆𝑇𝐸 8 ∗ 10−3𝑚𝑚2/𝑠  

𝐾𝐿𝑇𝐸 0.2 0.215 

𝐾𝑆𝑇𝐸 0.1 0.087 

𝜇𝐹𝐴 0.34 0.38 

 

Potential diffusion time differences between the STE and LTE sequences were not 

investigated in this Thesis, but any biases resulting from such inconsistencies would have 

been consistently replicated (i.e., the same bias would be present in both the test and retest 

measurements in Chapter 2, and between ipsilateral and contralateral measurements in 

Chapter 4). 

Potentially more deleterious to measurement reliability are effective diffusion time 

differences between the different gradient channels in the STE sequence. If the 𝐺𝑥, 𝐺𝑦, and 

𝐺𝑧 gradient waveforms in the STE sequence probe different diffusion times, it is possible 

to introduce a rotational bias into measurements that changes depending on how the subject 

is positioned inside the MRI scanner. Such a bias could limit the repeat measurement 

reliability of µFA and could confound comparisons made between multiple subjects. To 

assess this bias, a Monte Carlo simulation was performed using Camino software in which 

infinitely long cylinders were simulated with radii of 1 µm, a water diffusivity of 3 ∗

10−3mm2/s, and an extra-cylinder volume fraction of 0.25. The individual 𝐺𝑥, 𝐺𝑦, and 𝐺𝑧 
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waveforms from the STE sequence were then separately used to generate signals from the 

simulated geometry using a b-value of 667 s/mm2, which represents their individual 

contributions to the STE sequence with a b-value of 2000 s/mm2. These gradients were 

applied in a direction perpendicular to the cylinders and then separately applied parallel to 

the cylinders. All three gradient waveforms produced the same signal when applied parallel 

to the cylinders (<1% difference), which is the result of the simulated water molecules 

experiencing free diffusion along that direction. However, signal varied in the 

perpendicular direction, in which diffusing water molecules interact with the cylinders and 

experience restricted and hindered diffusion; in this direction the 𝐺𝑥 waveform yielded a 

signal that was ~7.3% greater than that of the 𝐺𝑦 waveform, and ~4.5% greater than that 

of the 𝐺𝑧 waveform. Future studies should aim to calibrate the sequences so that the 

effective diffusion times of the 𝐺𝑥, 𝐺𝑦, and 𝐺𝑧 gradient waveforms in the STE sequence 

match the effective diffusion time of the LTE sequences.  

5.1.2. Sample Size and Demographics 

The total sample size for each of the healthy volunteer cohorts in Chapter 2 and Chapter 3 

(𝑛 = 4), and the sample size for the epilepsy and healthy volunteer cohorts in Chapter 4 

(𝑛 = 9) were small. Furthermore, all healthy volunteer cohorts were primarily comprised 

of graduate students, potentially introducing selection biases related to age, education level, 

location, and other factors. The results of this Thesis work should thus be considered a 

proof-of-concept of methods (Chapter 2, Chapter 3) and a potential application for these 

methods (Chapter 4) that should be investigated further in a larger and more diverse cohort 

that better represents the global population. 
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5.1.3. k-space Trajectory 

The typical single shot EPI sequence used in dMRI has several drawbacks, many of which 

are discussed in Appendix B. Notably, the k-space sampling trajectory conferred by the 

sequence introduces two main issues: (1) it samples k-space non-uniformly, with greater 

temporal separation between adjacent points in the phase-encoding direction than 

frequency encoding direction, and (2) it begins sampling at higher spatial frequencies, 

rather than at the center of k-space, necessitating longer TEs. The non-uniform sampling 

introduces artifacts in the phase-encoding direction, while the higher TE reduces SNR. One 

potential solution for these limitations is to implement spiral k-space trajectories instead of 

the typical “crisscross” path. Spiral trajectories begin at the center of k-space (i.e., 𝑘𝑥, 𝑘𝑦 ≈

0) and can achieve lower TEs and higher SNR while also sampling k-space more uniformly 

in time and introducing fewer contaminating artifacts [199]. Though spiral imaging comes 

with a tradeoff in resolution (i.e., a conventional EPI sequence will have slightly greater 

effective resolution than a spiral sequence at the same nominal resolution*), this can easily 

be overcome by sacrificing some of the gained SNR in exchange for better resolution. 

Another drawback of spiral imaging is that it is more sensitive to field inhomogeneities 

and gradient imperfections along all sampling directions, potentially necessitating the use 

of concurrent field monitoring for correction [200].    

5.1.4. Microscopic Kurtosis  

The conventional and FWE techniques presented in this work assume that the total 

effective kurtosis arises from two sources: 𝐾𝑖𝑠𝑜 due to variance in apparent diffusion 

 

*
 Nominal resolution is defined here as the width of a voxel in the 𝑥 or 𝑦 direction in image space, while 

effective resolution is defined as the full-width-at-half-maximum of the point spread function along 𝑥 or 𝑦. 
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magnitude, and 𝐾𝑎𝑛𝑖𝑠𝑜 due to directional anisotropy. A third source of non-Gaussian 

diffusivity is microscopic kurtosis (𝜇𝐾), which describes non-Gaussian diffusivity arising 

from restricted diffusion and tissue disorder due to microscopic hindrances like membranes 

and organelles, and exchange between water-containing compartments [94], [201]. A 

recent study has shown that 𝜇𝐾 is non-negligible in the human brain, including the WM 

and hippocampus regions relevant to this Thesis work [161].  

Though disentangling 𝜇𝐾 from other kurtosis sources may provide clinical benefit, 

the µFA technique presented in this work demonstrated good repeat measurement 

reliability in WM (Chapter 2) and was sensitive to CA4/DG asymmetries in unilateral TLE 

patients (Chapter 4), evidence for its potential utility despite the assumption that 𝜇𝐾 is 

negligible. In future work, it may be desirable to compare the 𝐾𝑖𝑠𝑜 and 𝐾𝑎𝑛𝑖𝑠𝑜 

measurements derived from the methods presented herein with those derived from a 

technique that incorporates 𝜇𝐾 (such as CTI) to quantify potential biases.  

5.1.5. Protocol Optimized for White Matter 

The optimization performed in Chapter 2 was based on signal data from a frontal WM 

region. WM is primarily composed of axon fibers, making it a prime target for 

measurements of water diffusion anisotropy like FA and FA. However, the optimal b-

value and ratio of LTE to STE acquisitions may differ for other tissue types such as cortical 

GM and the deep GM structures. The sequence used in the TLE study (Chapter 4) may 

have been suboptimal for imaging the hippocampus, and it is likely that changing the 

parameters could have improved image quality and SNR. 

 If a rapid protocol for a study involving a non-WM ROI is desired, it may be 

desirable to perform another optimization to determine the best ceiling b-value and ratio of 
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LTE to STE scans for that region. Monte Carlo simulations of different geometries with 

added noise may be a sufficient substitute for true in vivo data. If scan time requirements 

are less prohibitive, optimization can be bypassed altogether in favor of a more thorough 

protocol in which more than three b-shells are probed and excess directions/acquisitions 

are obtained.  

5.1.6. Fitting Errors in the Free Water Elimination Algorithm 

The algorithm presented in Chapter 3 to fit dMRI data to the FWE signal representation 

consisted of two iterative methods and each was run for exactly 100 iterations with no other 

stopping criteria. To improve robustness in future studies, stopping criteria can be 

implemented to terminate the iterative fitting procedures after an optimal number of 

iterations. Repeat measurement reliability assessments should also be performed to gauge 

the algorithm’s robustness and reliability. 

5.1.7. Why no FWE in the TLE study? 

The TLE study described in Chapter 4 did not make use of the FWE technique despite the 

high likelihood of CSF partial volumes affecting measurements in the hippocampus. This 

was due to the fact that the projects described in Chapter 3 and Chapter 4 were performed 

in parallel, and the protocol used in the TLE study was designed and implemented before 

the FWE technique was developed and assessed. Since only three b-shells were acquired 

in the TLE study (and only one of those b-shells was acquired in the STE encoding 

scheme), the data set was too sparse to yield high quality FWE images. Ideally, four or 

more b-shells are desired for FWE fitting. 

Future studies observing FA in TLE patients can implement the FWE method to 

probe the following questions: 
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1. Does the significant FA asymmetry observed in CA4/DG in unilateral TLE 

patients arise from ipsilateral microstructural abnormalities (i.e., beading, 

demyelination, etc.), or from increased ipsilateral free water concentration (i.e., due 

to neuronal atrophy)? 

2. Do CSF partial volumes confound measurements made in peripheral hippocampal 

subfields such as CA1 and CA2/3? 

5.2. Future Work 

The demonstrated sensitivity of microscopic fractional anisotropy to abnormalities in 

temporal lobe epilepsy (and other pathologies via the literature) supports further 

investigation into its potential use as a biomarker in clinical or pre-clinical applications. 

The high repeat measurement reliability displayed in white matter in Chapter 2 suggests 

that µFA could be suitable for longitudinal studies that track the progression of disease, 

injury, or normal aging over time. When designing a µFA imaging protocol, parameters 

can be tailored to the needs of the application. A study quantitatively assessing water 

diffusion anisotropy in a progressive disease like dementia, for example, may require a 

comprehensive protocol with high SNR to enable accurate and precise measurements for 

comparison across different time points. A study in which µFA serves as a complimentary 

imaging tool and is only assessed qualitatively, such as one tracking the sizes of tumors 

over time or detecting lesions in multiple sclerosis, may instead opt for a rapid and 

minimalistic protocol. 

 The study of µFA in temporal lobe epilepsy described in Chapter 4 was intended to 

serve as a preliminary assessment of µFA as a biomarker of hippocampal abnormalities. 

Future works exploring µFA in TLE should probe higher resolutions for hippocampal 

subfield segmentation and should acquire more b-shells and acquisitions to improve SNR 
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in conventional µFA and allow for free water elimination, at the expense of increased total 

scan time. Surgical removal of the epileptic focus is an irreversible and highly risky 

procedure, so an acceptable tradeoff for pre-surgical imaging would be to prioritize image 

quality over acquisition time. Future studies could attempt to prospectively predict surgical 

outcomes in MR-negative patients based on µFA asymmetries, or retrospectively assess if 

there are differences in µFA features between patients with positive and negative surgical 

outcomes. 

 A potential future avenue for µFA research is to incorporate the metric into 

multiparametric imaging models. While µFA alone may demonstrate sensitivity to 

neuronal microstructure, other imaging techniques can probe different contrasts such as 

glucose metabolism (i.e., positron emission tomography (PET)), macrostructure (i.e, 

relaxation-weighted MRI), and blood flow (i.e, perfusion MRI), among others. Models that 

incorporate two or more contrasts together may have greater diagnostic or predictive power 

in clinical applications. As an example, PET is routinely used in the TLE workflow and 

glucose hypometabolism can correctly lateralize the epileptic focus in as many as 95% of 

MR-positive and 84% of MR-negative patients [202]. A model that combines relaxation-

weighted MRI measures of hippocampal (or subfield) volume and 𝑇2 signal intensity, PET 

intensity, and diffusion metrics such as diffusivity and µFA, may better lateralize and 

localize the epileptic focus and potentially lead to better surgical outcomes. 
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Appendices 

Appendix A: Signal-to-noise Ratio of µA2 Estimation 

This Appendix was published in Magnetic Resonance Imaging, volume 80, Arezza et al, 

Rapid Microscopic Fractional Anisotropy Imaging via an Optimized Linear Regression 

Formulation [81], pages 132-143, Copyright Elsevier, 2021. 

The variance of μA2 (σ2
μA2), assuming equal noise in STE and LTE images and that 

there is no covariance between the two acquisition types, can be approximated using the 

error propagation equation. Propagating error from equation (2.8) yields: 
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(A.1) 

where σ is the noise in an STE or LTE diffusion-weighted MR image, b is the b-value, 

𝑛𝐿𝑇𝐸 is the number of LTE directions acquired, 𝑛𝑆𝑇𝐸 is the number of STE averages 

acquired, and SLTE and SSTE are the mean signals in LTE and STE acquisitions, respectively. 

The SNR of a μA2 image or volume (SNRμA
2) can be estimated as the μA2 metric divided 

by its standard deviation:  
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Substituting equations (2.8) and (A.1) into (A.2) yields equation (2.10): 
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=
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To determine the optimal ratio of 
𝑛𝑆𝑇𝐸

𝑛𝐿𝑇𝐸
 as a function of the mean LTE and STE signal at a 

single b-value, we can express the above equation in terms of only 𝑛𝑆𝑇𝐸 and 𝑛𝐿𝑇𝐸, replacing 

most other terms with the constant C. We can also confine the total number of acquisitions 

to an integer value, 𝑁, and replace 𝑛𝑆𝑇𝐸 with 𝑁 − 𝑛𝐿𝑇𝐸 to reduce the number of unknown 

variables in the formula. The resulting expression is:   
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(A.3) 

The maxima and minima of equation (A.3) can be calculated by solving for the roots of the 

derivative of the SNR equation: 
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The roots of (A.4) are 𝑛𝐿𝑇𝐸 =
𝑁𝑆𝑆𝑇𝐸

(𝑆𝑆𝑇𝐸−𝑆𝐿𝑇𝐸)
 and 𝑛𝐿𝑇𝐸 =

𝑁𝑆𝑆𝑇𝐸

(𝑆𝑆𝑇𝐸+𝑆𝐿𝑇𝐸)
, the prior of which is not 

realizable because 𝑛𝐿𝑇𝐸 would be negative if 𝑆𝑆𝑇𝐸 < 𝑆𝐿𝑇𝐸. Rearranging the latter yields the 

optimal ratio of STE to LTE acquisitions: 
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Appendix B: Challenges of dMRI 

There are challenges associated with dMRI that amplify some image artifacts and 

necessitate various compromises to image quality. Some of these pitfalls result from the 

diffusion-encoding gradient waveforms, while others are associated with the EPI 

acquisition strategy. The main challenges associated with dMRI are summarized in this 

section [203], as well as techniques to mitigate them. Figure B-0-1 depicts the data 

acquisition and post-processing pipeline used in this work. 

 

Figure B-0-1. Data acquisition and post-processing pipeline for the diffusion MRI data used in this 

work. For Chapter 2, eddy_correct was used to correct eddy current artifacts, while in Chapter 3 and 

Chapter 4, topup and eddy were used instead.  
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Sensitivity to Unwanted Motion 

dMRI is highly sensitive to all forms of motion; thus, gross motion of the subject’s head 

and physiological motion (such as cardiac pulsations and respiratory motion) confound the 

diffusion of water molecules that provides clinically relevant information about tissue 

microstructure. Though post-processing techniques can reduce the effects of unwanted 

motion on dMRI signals, the main strategy to desensitize dMRI to this motion is to acquire 

data within a very short period. The EPI acquisition strategy allows for the acquisition of 

an entire dMRI slice after a single excitation, during which it is expected that minimal 

unwanted movement occurs.  

 Simultaneous multislice excitation, or SMS, is a technique to reduce scan time by 

simultaneously acquiring two or more slices [204]. After acquisition, various techniques 

can be employed to separate and reconstruct the acquired slices [205]. Unlike parallel 

imaging techniques discussed later in this Appendix, SMS does not significantly reduce 

SNR [206]. 

Partial Fourier acquisition is a technique to reduce scan time by taking advantage 

of the redundancy of k-space signal data [207]. Assuming there are no phase differences in 

the data, k-space possesses a property called conjugate symmetry, which suggests that: 

 𝑆(𝑘𝑥, 𝑘𝑦) = 𝑆∗(−𝑘𝑥, −𝑘𝑦) 

𝑜𝑟 

|𝑆(𝑘𝑥, 𝑘𝑦)| = |𝑆(−𝑘𝑥, −𝑘𝑦)| 

(B.1) 

In theory, only half of k-space must be sampled to generate an entire MR image. In practice, 

phase errors render the conjugate symmetry approximation imperfect, requiring that more 
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than half of k-space is sampled. For example, an acquisition using partial Fourier sampling 

in the 𝑘𝑦 direction with a fraction of 6/8 would omit 25% of k-space, as depicted in Figure 

B-0-2. The symmetrically sampled region at the center of k-space (i.e., the low 𝑘𝑦 region) 

would be used to estimate phase differences, which would then be used along with the 

asymmetrically sampled high 𝑘𝑦 data to estimate the rest of k-space. 

 

Figure B-0-2. Example k-space signal magnitude [A.U.] for a single diffusion-weighted MRI slice. The 

blue dotted outline highlights the region that would be asymmetrically sampled if 6/8 partial Fourier 

is used, while the yellow dashed outline highlights the symmetrically sampled region. Data below the 

yellow dashed region would be estimated by assuming conjugate symmetry with the blue dotted region 

while simultaneously incorporating phase error corrections derived from the yellow dashed region. 
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Low SNR 

By design, dMRI trades SNR for diffusion-weighted contrast as the recorded signal is 

attenuated by both the b-value and the diffusivity of water molecules. Furthermore, dMRI 

gradient sequences require longer TEs to achieve high b-values and to probe long diffusion 

times, further reducing the measured signal due to the TE-dependent 𝑇2 decay. These 

factors, along with others described in this Appendix (such as the use of parallel acquisition 

strategies), result in significantly lower SNR in dMRI images relative to traditional 

relaxation-weighted MRI techniques.   

 Some acquisition strategies to maximize SNR include acquiring large voxels and 

obtaining multiple dMRI volumes at each b-value and then averaging them together. 

However, the effectiveness of averaging is limited by the fact that MRI noise is governed 

by a Rician distribution that skews towards a positive bias in voxels with low signal [162]. 

In this work, a technique known as Marchenko-Pastur Principal Component Analysis (MP-

PCA) denoising [124], [180] was used to improve SNR in dMRI data via the dwidenoise 

tool in MRtrix3 [152]. 

 Principal component analysis is a technique used to analyze large datasets by 

reorganizing the data into principal components (PCs), which are independent linear 

combinations of the initial variables. An 𝑛-dimensional data set will in turn have 𝑛 PCs, 

and they represent the linear combinations of the initial variables that explain a maximal 

amount of the data set’s variance in descending order (i.e., the first PC contributes the most 

to the variance, followed by the second, etc.). Each PC is characterized by an eigenvector, 

which describes a line in 𝑛-space, and an eigenvalue, which describes its magnitude. In a 

typical multidirectional dMRI data set, most of the PCs arise due to noise and can be 
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identified by the fact that the noise eigenvalues are described by the Marchenko-Pastur 

distribution in a PCA eigenvalue histogram (see Figure B-0-3.) [180]. Removing the PCs 

associated with noise and then mapping the remaining PCs back into the original dMRI 

space enhances SNR and image quality [124]. 

 

Figure B-0-3: Eigenvalue (λ) spectrum of simulated dMRI data with the Marchenko-Pastur 

distribution superimposed. Image adapted from “Diffusion MRI noise mapping using random matrix 

theory”, Veraart, J. et al, Magnetic Resonance in Medicine, 2015, with permission from John Wiley 

and Sons (see Appendix C). 

 

Gibbs Ringing Artifact 

To perfectly recreate a finite image from k-space data, all of k-space must be sampled. In 

practice, MRI data are acquired up to some maximum 𝑘𝑥 and 𝑘𝑦, typically encompassing 

a finite rectangular portion of k-space, as depicted in Figure B-0-4. This truncation is 

equivalent to multiplying the entire k-space data set by a 2D rectangular (or rect) function. 
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After converting to image space using the 2D Fourier transform, the convolution theorem 

states that the resulting image is a convolution of the true image with a 2D sinc function 

(also depicted in Figure B-0-4). This convolution results in image blurring and an artifact 

known as Gibbs ringing, which manifests as oscillating fluctuations in image intensity. The 

single shot EPI technique is susceptible to Gibbs ringing artifacts because the width of k-

space (in both the 𝑘𝑥 and 𝑘𝑦 directions) that can be acquired after a single excitation is 

limited. 

 

Figure B-0-4. A truncated k-space is shown on the left, with the white square representing the sampled 

region and the black outer region representing unsampled higher spatial frequencies. When the 2D 

Fourier transform is applied to this data, the result in image space (on the right) is a 2D sine cardinal 

(or sinc) function.  

 

In this work, the Gibbs ringing artifact was corrected using the method of local 

subvoxel-shifts via the mrdegibbs tool [151] from MRtrix3. Since MR images are discrete, 

the severity of truncation-induced fluctuations depends on how the image is sampled. The 

true image and the acquired image (i.e., after convolution with a sinc) are equivalent at 

some points, known as zero crossings, as depicted in Figure B-0-5. The method of local 
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subvoxel-shifts involves shifting each pixel by a small distance (i.e., less than the size of a 

voxel) so that it is sampled at zero crossings, eliminating or mitigating ringing artifacts. 

 

Figure B-0-5. Plot of pixel intensities of a 1D image with a single edge. The black line depicts the true 

image, while the red line depicts the image after convolution with a sinc function, the result of 

truncation in k-space. The blue dots depict the pixels sampled to create a discrete image. In (a), the 

image is sampled at suboptimal positions, capturing the signal fluctuations introduced by truncation 

in k-space. In (b), the image is repositioned so that it is sampled only at zero crossings, minimizing the 

ringing artifacts at the image edge. Image adapted from “Gibbs-ringing artifact removal based on local 

subvoxel shifts”, Kellner, E. et al, Magnetic Resonance in Medicine, 2015, with permission from John 

Wiley and Sons (see Appendix C). 

 

Magnetic Susceptibility Distortions 

As discussed in 1.5.2, magnetic susceptibility quantifies how magnetized a material will 

become in the presence of a magnetic field. While the unwanted phase accrual that results 

from susceptibility contributes to 𝑇2
∗ decay, it also causes spatial distortions in images. 

Single shot EPI is particularly sensitive to susceptibility distortions in the phase encoding 

direction (Gy in Figure 1-7) because of the k-space trajectory used [208]: while adjacent 

points in 𝑘𝑥 are sampled at a high rate (i.e., separated by a duration of 𝑡𝑠𝑎𝑚𝑝𝑙𝑒) and minimal 

phase accrues between each sample, adjacent points at the center of 𝑘𝑦 are sampled at a 
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very low rate as they are temporally separated by the time needed to acquire an entire 𝑘𝑥 

line (i.e., separated by a duration of > 𝑛𝑡𝑠𝑎𝑚𝑝𝑙𝑒 where 𝑛 is the number of samples acquired 

along each line) or more.  

Parallel imaging is a technique that can attenuate EPI distortions by reducing the 

readout time in the phase encoding direction at the cost of reduced SNR. In this work, the 

Generalized Autocalibrating Partially Parallel Acquisitions [209], or GRAPPA, technique 

was used. In GRAPPA, k-space is under-sampled at higher frequencies to reduce readout 

time but fully sampled at lower frequencies using multiple receiving coils. The fully 

sampled lines at low frequencies are used to estimate weighting factors for each coil, which 

describe how each coil distorts and displaces k-space data. The weighting factors are then 

used to estimate the missing k-space points before the Fourier transform is used to recover 

images.  

EPI susceptibility distortions can be mitigated with post-processing techniques if 

two sets of image volumes with opposite phase-encoding trajectories (e.g., anterior-to-

posterior and then posterior-to-anterior) are acquired. Given that the two acquisitions will 

have distortions going in opposite directions, a susceptibility field map can be estimated 

by gauging the similarity between the acquisitions, and this field map can then be used to 

correct the distortions [181]. In this work, the topup command from FSL was used to 

correct for susceptibility distortions [182]. 

Eddy Current Artifacts 

Faraday’s Law of Induction states that a changing magnetic field will induce electrical 

currents in conductors; these currents are referred to as eddy currents and can occur in 

patients as well as in MRI scanners (i.e., cables, wires, gradient coils, etc.) [210]. Eddy 
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currents are particularly severe when strong gradients are rapidly turned on and off, as in 

high b-value diffusion-encoding waveforms and in EPI, which can result in image 

distortion, blurring, ghosting, and other artifacts. Since dMRI volumes acquired at a b-

value of 0 omit the diffusion-sensitizing gradients, they are free of the distortions caused 

by those waveforms. Volumes acquired at higher b-values can then be registered to the 

mean b=0 volume using rigid body transformations to correct for said distortions and can 

be further enhanced by incorporating susceptibility distortion correction into the eddy 

current correction algorithm [121]. The eddy_correct tool from FSL was used to correct 

for eddy current distortions in Chapter 2, while the topup and eddy tools from FSL were 

used to correct for susceptibility and eddy current distortions in Chapter 3 and Chapter 4. 

Chemical Shift 

Water and fat have different resonance frequencies and therefore accumulate phase at 

different rates when subjected to the same magnetic field and gradients. In EPI, significant 

phase differences between the two substances can accrue in the phase-encoding direction, 

resulting in an artifact characterized by a translation in the position of fat relative to water 

along the phase-encoding direction. Because dMRI is concerned with the signal arising 

from water, this artifact is typically corrected by suppressing the signal from fat. In this 

work, a fat saturation pulse was used to null the signal from fat without significantly 

affecting the signal from water [211]. To perform this technique, an RF pulse tuned to the 

resonance frequency of fat is applied before the main MRI sequence, which tips the net 

magnetization of fat molecules into the transverse plane and initiates the dephasing that 

occurs due to 𝑇2 decay; a spoiler gradient applied after the RF pulse further amplifies the 
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transverse dephasing. Since the magnetization from fat is “saturated” prior to the imaging 

sequence, fat signal does not contribute to the recorded k-space signal.  
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