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Abstract

This work deals with the modeling and control of automated drilling operations. Advances

in drilling automation are of substantial importance because improvements in drilling control

algorithms will result in more efficient drilling, which is beneficial from both economic and en-

vironmental points of view. While the primary application of the results is extraction of natural

resources, potentially there exists a wide range of applications, including offshore exploration,

archaeological research, and automated extraterrestrial mining, where implementation of new

methods and control algorithms for drilling processes can bring substantial benefits.

The main contribution of the thesis is development of new methods and algorithms for con-

trol of drilling processes in industrial drilling systems, ensuring stability and high performance

characteristics. The problems of regulation of vertical penetration rate and drilling power in

rotary drilling systems are solved; as a result, stability and vibration mitigation is ensured. A

number of challenges is addressed, such as complexity and nonlinearity of the drilling model,

lack of information about environment and parameters of the drilling system itself, and poor

communication between downhole sensors and ground-level equipment. Several cases are con-

sidered, depending on the amount of information that is available in advance or in real time.

Two mathematical models of the drilling system are investigated: one is finite-dimensional,

and another is a distributed parameter model. Several solutions are proposed for both of them,

using methods of adaptive, robust, and sliding mode control, and comparisons are made. Fea-

sibility and efficiency of the proposed control algorithms are confirmed by simulations in

MATLAB/Simulink.

Keywords: Drilling automation, Rotary drilling systems, Process control, Adaptive con-

trol, Robust control, Sliding mode control, Nonlinear systems.
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Summary for Lay Audience

Nowadays, extraction of natural resources is essential for generation of energy and raw

materials. Drilling is an important part of this process, because these resources often lie deep

underground. Automation of drilling processes (i.e., making a drilling system work with min-

imum human supervision and intervention) makes a positive impact from economic and envi-

ronmental points of view, because it may improve safety of operations, reduce the number of

breaks, failures, and wearouts, as well as make operators’ work easier and more effective.

In this thesis, we propose new methods for automatic control of drilling processes, assum-

ing that our knowledge about characteristics of the material that we are drilling is extremely

limited, and measurements from the bottom end are often unavailable. Utilizing a number of

mathematical models that describe a conventional drilling system with acceptable precision, we

design several control algorithms that generate control signal (in our case, electrical voltage)

in real time. This control signal, when applied to the motor on the ground level, successfully

brings the whole system into a certain desired stable mode of operation.

Results presented in this thesis correspond to gradual relaxation of simplifying assump-

tions, and complexity of control schemes described in different chapters depends on how much

we know about the drilling system and environment where it is operating. Effectiveness and

feasibility of the results are confirmed by simulation using the software package MATLAB.
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Chapter 1

Introduction

1.1 Motivation and Applications

Drilling is an important area of engineering which can be traced at least 2500 years back [4].

Recent technological advances allow for drilling boreholes up to 10 km of depth using complex

drilling mechanisms. Recently, the problem of control design for drilling processes have been

recognized as important by mining and control engineers, and the amount of research in this

area have substantially increased over the last several years (see, for example, [5]). The ultimate

goal of these works is design of a system which, for a given set of parameters (such as vertical

velocity of drilling, pressure in the wellbore, or a trajectory of the drill bit), is able to perform

drilling operations automatically in an optimal way in spite of any factors that may intervene.

Today, potential drilling applications are numerous. In addition to conventional oil and gas

extraction, it includes mineral excavation, offshore exploration [6], archaeological research [7],

and automated extraterrestrial mining (on the Moon [8], asteroids and/or other planets). Imple-

mentation of new methods and control algorithms for drilling processes can bring substantial

benefits into these fields. Moreover, the results can potentially be extended to other areas of

technology, such as industrial assembly lines [9] and medical applications [10].

This research is focused on drilling automation. Many challenges exist in automated

drilling today [1], and the ones that are addressed in this thesis are the following:

1. While there exists a large number of mathematical models of drilling systems, those

that are closest to reality are rather complex, highly nonlinear, and characterized by

both parametric and non-parametric uncertainties. Therefore, pertinent solutions to the

1



2 Chapter 1. Introduction

drilling control problem require applications of advanced theories and methods for non-

linear adaptive, and robust control design.

2. The drilling process is characterized by simultaneous applications of cutting and fric-

tion forces acting on a drill bit. Parameters of the model that describes these forces

are unknown beforehand, and may depend on many factors that may change during the

drilling process, including sharpness of the drill bit, characteristics of the material cut,

etc. Uncertainty of these cutting/friction processes involved in drilling should be taken

into account in control design.

3. The actual drilling may be performed at depths of up to 10 km, while the majority of the

control equipment is located at the surface. Communication process between the down-

hole and the surface in drilling applications is typically subject to substantial constraints

including time delays, limited bandwidth, noise, and information losses. Some mea-

surements can only be performed at a very low sampling rate. Design of control systems

that are operational in the presence of the above mentioned measurement/communication

constraints is difficult and require application of sophisticated observers.

The main goal of this thesis is to design automatic control solutions that are able to guaran-

tee stable and high-performance drilling operation in the presence of uncertainties, nonlineari-

ties, and measurement/communication constraints.

1.2 Literature Review

1.2.1 Types of drilling systems

First, it is important to note that several types of drilling systems exist in modern indus-

try [11], such as

• Percussive drilling systems [12], where the drill bit is continuously lifted and dropped,

thus creating pressure waves that crush the rock.

• Rotary drilling systems, where the bit is rotated under the constant pressure, while its

blades cut the rock.
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• Combined rotary-percussive drilling systems [13], where the drilling process is enhanced

to include both impact action on a rock and rotation of the bit in order to remove cuttings.

In this research, only rotary drilling systems are considered, as they are the most conven-

tional and commonly used.

1.2.2 Structure of a rotary drilling system

A detailed structure of a rotary drilling system is presented in Figure 1.1, taken from [1]. A

Figure 1.1: The structure of the rotary drilling system [1]

conventional drilling process is usually performed by means of a drilling rig [14] - a tower from

which ground and underground equipment is operated. Its mechanical frame is called derrick;

it provides sufficient vertical height of around 50 meters to perform operations with drill pipe

sections. Translational operations (such as lifting, lowering, or applying a certain upward force
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to the underground equipment) are functions of a hoisting system, whose hoisting mechanism

is called drawworks. It is a large powerful winch that controls a drilling line by spooling it

off or taking in. The drilling line is a wire rope that is connected to a hook; it passes through

a crown block on top of the derrick and another set of pulleys (travelling block). The hook

carries the weight of an underground part, and is coupled with the pipes through a swivel,

which prevents rotation of the hook and the drilling line.

Rotation of the drillstring (drill pipes and other underground components) is performed by

a rotary system which transfers the torque underground. There are two types of rotary systems:

top-drive and rotary-table. The former implies a motor mounted on top of the drillstring, while

in the latter a motor is geared to a rotary table, which is a heavy round platform located on

a derrick floor. Rotary table is attached to a squared pipe in its center, which is called kelly.

Kelly is then connected to the drillstring. When put in motion, rotary table rotates the whole

drillstring underneath.

Underground, the drillstring consists of multiple sections of drill pipes, Bottom Hole As-

sembly (BHA) and a drill bit. BHA is a lower part which contains heavy collars that apply

additional weight to the bit, and other equipment, such as sensors for measuring and transmit-

ting necessary data, and stabilizers for keeping BHA in the center of the well. On the bottom

end, the drill bit is located. It is a rigid body with cutting elements (blades) which perform the

actual drilling of the rock. There are many types of drill bits, but the most common are roller

cone, natural diamond, and Polycrystalline diamond compact (PDC) bits. Roller cone drill

bits cut the rock by indention and gouging, performed by a number of teeth placed on rotating

cones. Diamond bits show better performance and have either natural or polychrystalline di-

amonds embedded into their matrix. There exist other special types of drill bits, but PDC are

the most widely used.

The last important component is a circulation system. Its main function is removal of drill

cuttings, which is done by pumping a certain fluid (drilling mud) from the swivel down through

the drill pipes and then up the annulus. On the surface, the mud goes through mud pits, where

cuttings are removed, and the mud is conditioned for re-circulating. Through drilling mud,

hydrostatic pressure is also applied in order to prevent other fluids from entering the annulus

and to ensure stability of the hole. This pressure can also be controlled automatically during a

process which is called Managed Pressure Drilling. Other functions of the drilling mud include

cooling, lubrication, and often communication between downhole and surface levels.
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1.2.3 Models of rotary drilling systems

The first problem in drilling analysis is the choice of a mathematical model of the drilling

system. Typically, the models which are closest to reality are nonlinear and rather complicated.

In the literature, models are typically defined separately for different components of the drilling

system, such as drive model, drillstring model, and the model of bit-rock interaction.

The model of the drive usually includes dynamics of an electric motor, gearbox, and the

rotary table. Underground components, however, are more complicated. The review presented

in [15] classifies drill string models into three categories. The first category is lumped pa-

rameter models that represent the drill string as a finite-dimensional system with mass, spring,

and damper elements, and describe it by ordinary differential equations. For example, a rather

simple drive-drillstring model is presented in [16], where the drillstring is represented as a

torsional pendulum and described by a system of linear differential equations. Drillstring dy-

namics can also be represented by a model with multiple degrees of freedom, as an intercon-

nection of several segments [17]. In contrast, distributed parameter models take into account

axial and torsional forces continuously along the string, resulting in a system of partial differ-

ential equations with the top and the bottom boundary conditions related to torsional and axial

dynamics at the beginning and at the end of the drillstring [18]. The third category is neutral-

type time-delay models, which are essentially input-output descriptions with omitted damping

component. It describes the drillstring by means of differential equations with delays, where

delays represent the time that is required for the torsional and axial waves to travel from one to

the other extremity of the drillstring.

The third component is a model of bit-rock interaction which represents relationship be-

tween the weight-on-bit, the torque-on-bit, the rate of penetration, and the angular velocity of

the bit, all of which constitute the drilling response. A considerable effort in drilling response

description was undertaken by the research group of E. Detournay, who determined the model

by considering the cutting and the frictional contact processes separately [19]. This approach

is further developed in [20], where three phases of the response were identified, and the fric-

tional contact model was expanded. Furthermore, the results were generalized to directional

drilling [21], and an observer-based control strategy for directional drilling was proposed [22].

Another approach was presented in [23], where the drilling process is viewed as series of cy-

cles that include feeding and cutting motions. The work [23] extends Nishimatsu model [24]

which provided relations between the cutting forces and the rock strength, resulting in a more
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detailed bit-rock interaction description.

Considering the frictional contact component, it is worth to mention that, in general, pre-

cise friction models are also nonlinear [15]. In particular, combination of static and Coulomb

friction [25] as well as different modifications of Karnopp friction model [26], [27] can be

taken into account in drilling response description.

1.2.4 Communication between the borehole and the surface

In order to obtain the desired behaviour of the drilling system, it is very important to get cor-

rect and timely information about the processes at the bottom of the borehole. For that purpose,

special Measurement-While-Drilling (MWD) systems were developed [28]. MWD tools allow

for transmission of various data from the borehole to the surface, which can be then used in the

control algorithm. The most common transmission method is mud-pulse telemetry [29, 30],

where the information is transmitted through modulation of pressure waves propagating along

the drillstring. The bandwidth of mud pulse transmission can be as low as few bits per second

in the cases of extreme drilling depths and high noise levels, and typically up to 100 bps in

the most favourable conditions [31], although rates about 140 bps are reported for some state-

of-the-art systems [32]. In addition to limited bandwidth, low sampling rates with sampling

periods 3 sec or higher are typical [33]. Another substantial communication constraints typi-

cal for drilling systems are propagation delays. Propagation speed of pressure waves through

the drilling mud depends on many factors, such as depth of a wellbore, pressure level in the

annulus, mud composition, etc. Experiments show that propagation velocity of pressure waves

through the drilling mud may vary between 40 m/s and 1250 m/s [34], which for typical drilling

depths may result in communication delays anywhere from less than a second to tens of sec-

onds.

In addition, there exist several problems that complicate restoration of the signal. In par-

ticular, it includes noises generated by mud pump and electrical equipment, signal echoes and

reflections, signal attenuation and dispersion, rock formation particles and gas fractions in the

mud flow [35], along with external disturbances [36]. A number of solutions was proposed

in the literature to address these issues [29]. For example, wavelet transformation allows to

decompose the original signal and identify the carrier’s frequency characteristics in the pres-

ence of noise [37]. A number of low-pass filters with the use of improved Empirical Mode
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Decomposition was proposed [38, 39]. A method of adaptive stochastic resonance can be used

to detect weak mud pulses under low signal to noise ratio [40]. The researchers apply this

method to transform part of noise energy into signal energy, while adjusting the parameters of

the stochastic resonance system by a certain genetic algorithm. In [41], the authors proposed an

adaptive differential noise cancellation algorithm, where the Recursive Least Squares filter is

used to minimize the cost function of the output and generate the reference input signal, so that

components in the primary input signal that correlate with the reference signal could be filtered

out. Another approach is the use of artificial neural networks for signal recognition [42]. The

method combines wavelet neural network with autoencoder, and is based on the deep learning

techniques.

There are other types of telemetry as well. Electromagnetic telemetry is another way of

getting the necessary information from the borehole by means of electromagnetic waves [43].

Even though it can be faster and more reliable, the signal is severely attenuated if comes

through conductive formation (such as salt water). Another new method is acoustic telemetry

technology, which can be used in deep wells with acoustic repeaters or even without them [44].

Data is transmitted by acoustic waves propagating through pipe walls. This technique is cur-

rently at experimental stage [45].

Finally, wired pipe telemetry [46] can offer the transmission rate of at least 57 kbps (for

example, IntelliServ products [47]). The data is transmitted to the surface acquisition system

on the ground through an electric cable, with repeaters every 300-400 m along the drill pipes.

However, the use of such systems is limited due to high price and exploitation difficulties.

It is also worth to mention that some parameters, such as rock formation characteristic, can-

not be measured directly. There exist many adaptive techniques for parameters estimation [48],

[49], that can be used in the drilling control algorithms (see, for example, [50]).

1.2.5 Control strategies for vibrations suppression and stabilization

One more challenge that arises in drilling systems is vibrations, because they may lead to

wearout or failure of bits and drill strings; therefore, vibration suppression is desirable. Axial,

torsional and lateral vibrations can be induced during the drilling process. However, the most

important type is torsional, which, under certain conditions, results in stick-slip oscillations.

Torsional stick-slip oscillations can be described by periods when the bit stops completely and
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periods when its angular velocity increases several times more than the desired value.

Starting from 1980s [51], researchers have investigated the vibration problem, and ini-

tially the proposed solutions considered the torsional dynamics only (for example, [16], [52]).

However, this approach failed to explain many aspects of the stick-slip vibrations. The axial

dynamics were taken into account in the subsequent research, and it was shown that the axial

dynamics in fact cause stick-slip limit cycle [53]. The stick-slip vibrations can be described

in terms of a lumped model of the drill string [53], a distributed model [54], as well as delay-

differential equations [55]. Even though distributed parameter models typically provide a more

realistic description of the dynamics, however, in many cases a lumped parameters approxima-

tion can be sufficient. Based on these models, researchers attempted to develop some strategies

for control of vibrations. Two main categories of these strategies are passive and active meth-

ods. The former involve redesign of certain parts of drillstring or using specific devices at the

bottom end to achieve better performance. We, however, are more interested in active methods

that involve control algorithms based on feedback. The papers [56], [15] provide classification

of the recent advances. The methods include:

• Soft Torque Rotary Systems [57, 58], where angular velocity is adjusted according to the

drillstring torque variations, while the torque can be measured or estimated through the

motor current;

• Adaptive PID control [59] which compensates a rotational velocity error and adjusts the

dynamic response speed to improve the transition adjustment process;

• H∞ control [60], where a controller is designed for a system with multiple degrees of

freedom to ensure observability and controllability by solving corresponding Riccati

equations;

• Active vibration damping at the bottom end [16] that provides a controller which, if

properly tuned, can increase working range of rotational velocities where vibrations are

attenuated;

• Sliding mode control [61] and sliding backstepping method [62], where an output is

forced to evolve along a certain sliding surface (which typically involves tracking errors

that, in turn, tend to zero);



1.2. Literature Review 9

• Weight-on-bit adjustment [63] depending on the rotational velocity of the bit, which

reduces stick-slip, but does not guarantee lack of oscillations;

• Flatness-based control [64], where a control scheme is derived from the flatness property

(i.e. all system variables can be parametrized through a so-called flat output). It solves

the trajectory tracking problem and suppresses both axial and torsional vibrations;

• Torsional rectification controller [65] which solves the wave equation that describes vi-

bration propagation, identifies ”up” and ”down” moving components, and maintains con-

stant energy of the downward wave;

• PI-control [66], which ensures convergence of a rotational velocity to a desired value for

a 3-DOF drilling system;

• Nonlinear friction compensation [67] through feedback linearization;

• Model-based controller [68] which predicts the vibration intensity and adjusts rotational

velocity and weight on bit accordingly.

• Fuzzy Smith predictor–based control [69], where the state observer is combined with the

predictor in order to compensate for the torque transmission delay, and a fuzzy online

correction contributes to robustness under bit load uncertainty;

• Robust µ-synthesis [70], which optimizes robustness towards parametric uncertainty,

measurement noise and actuator constraints, ensuring stability and robust performance

of the closed-loop system.

• Infinite dimensional backstepping [71], where a control law is defined through a certain

state transformation which brings the original system to an exponentially stable target

system.

Even though the above listed methods successfully address some aspects of vibration sup-

pression, they often rely on simplifying assumptions, such as availability of the downhole mea-

surements, knowledge of parameters of the environment, or model simplifications. Moreover,

the problem is often formulated as regulation of rotational velocity instead of vertical pene-

tration rate. Further developments are still beneficial, especially in terms of balance between

simplicity and effectiveness.
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1.3 Thesis Contribution

In this thesis, we overcome challenges described in section 1.1 by designing several ad-

vanced drilling control algorithms that are able to ensure stability of a closed-loop system,

mitigating vibrations and disturbances. In particular, we are solving the problem of regulation

of vertical penetration rate (i.e., ensuring that it is converged to the desired value in a reasonable

time) and, in some cases, regulation of drilling power. Stability, performance, and efficiency of

the developed drilling control algorithms is investigated analytically and tested in simulations.

The main contributions are as follows:

• The problem of drilling power regulation is solved for the case of finite-dimensional

model of the rotational dynamics, known parameters of the environment, and available

downhole measurements. A novel two-step control algorithm is introduced: first, ref-

erence rotational velocity of the drill bit is calculated from the desired level of drilling

power, and then its tracking and disturbance rejection is ensured through proportional

control together with high-order sliding mode (HOSM) observers.

• Similar approach is extended to the case where parameters of the environment are un-

known. Here, speed gradient algorithm is used in order to generate reference rotational

velocity; however, its stability is only proved for vertical velocity regulation and a limited

case of drilling power regulation.

• One more control scheme is designed for regulation of penetration rate, using a more

sophisticated model of the rotational dynamics with distributed parameters. This model

is closer to the reality than a finite-dimensional one, therefore, provides more precision.

The solution still uses similar cascaded structure with first step being a speed gradient

algorithm for reference angular velocity, but for the tracking part an infinite-dimensional

reference model and a disturbance observer are utilized.

• The problem of vertical velocity regulation is solved with further relaxation of simplify-

ing assumptions: the case where only ground-level measurements are available is consid-

ered. Again, a cascaded controller is used, together with a HOSM observer for estimation

of non-measurable signals. This scheme is designed for a finite-dimensional model of

the rotational dynamics, but tested in simulations with a distributed-parameter model,

proving that it works effectively in real world.
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• Finally, we relax the assumptions to the case where even mechanical characteristics of the

drilling system itself are not known precisely. Parameters are estimated by an observer

in the first phase, and then the estimates are used for the design of the controller. We

propose a different control scheme based on a super-twisting sliding mode algorithm for

tracking of the reference rotational velocity.

1.4 Thesis Outline

This thesis is organized according to the published papers (see Co-Authorship Statement)

and thesis contributions (see Section 1.3) in the following way:

• In Chapter 2, drilling power regulation problem is solved with an assumption that pa-

rameters of the drilling system and of the environment are known, and downhole mea-

surements are available immediately and without interruptions.

• In Chapter 3, control algorithms are designed for the case where parameters of the

environment are unknown. Vertical velocity regulation problem is considered, as well as

a limited case of drilling power regulation.

• In Chapter 4, a problem of regulation of vertical penetration rate is solved for a more

complicated infinite-dimensional model of the drilling system.

• In Chapter 5, previous approach presented in Chapter 3 is extended to the case where

downhole measurements are unavailable.

• In Chapter 6, a new control strategy is proposed for regulation of penetration rate for

drilling systems with unknown mechanical characteristics, parameters of the environ-

ment, and unavailable measurements from downhole.

• In Chapter 7, results are summarized, and conclusions are given.



Chapter 2

Algorithm for Power Stabilization in

Rotary Drilling Systems

This chapter is based on the following article:

Maksim V. Faronov and Ilia G. Polushin. Algorithm for power stabilization in rotary

drilling systems. In 2019 IEEE 15th International Conference on Automation Science and

Engineering (CASE), pp. 867–872, Vancouver, Canada, August 2019.

2.1 Abstract

This paper deals with synthesis of a control algorithm for regulation of drilling power in

rotary drilling systems. Under some simplifying assumptions, we present a two-steps control

design approach where the drilling power is stabilized to a prescribed level through an appro-

priate control algorithm for angular velocity of the drill bit. Simulation results for the case

of nonzero bluntness of the bit are presented that illustrate the validity of the proposed design

approach.

2.2 Introduction

Automatic control of the drilling process is an important problem in drilling practice, as

it allows to free a human operator from constant and direct engagement into this work. The

research of this topic can be traced back to 1950s [72], with focus on development of mathe-

12
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matical models of drilling systems and their applications to improving performance of drilling

operations. In particular, in [19, 20], mathematical models for drilling response of a drill bit

were developed that take into account the effect of both cutting and frictional contact processes.

Recently, the problem of automatic control of drilling processes attracted increased attention

in control systems literature [73, 50, 74, 36]. Possible applications of the automatic drilling

may include exploration and mineral excavation, oil and gas extraction, extra-terrestrial min-

ing [75, 76], as well as medical applications to dentistry and orthopaedic surgery.

In this paper, the problem of design a control algorithm for stabilization of drilling power in

rotary drilling systems is addressed. The approach is based on some preliminary developments

presented in [50], where the problem of stabilization of the vertical velocity to the desired value

defined by a human operator was addressed. One of the main drawbacks of the approach of [50]

is high probability of quick wearout of the bit. This may occur because the exact structure of

the rock layers is not always known, and there exists a possibility that the bit can hit very hard

rock while the control system sill maintaining high vertical velocity of drilling. In this paper,

we instead consider a problem of drilling power stabilization. For a constant drilling power,

increase in rock hardness automatically results in decrease of the vertical velocity of drilling,

which makes stabilization of constant power more appropriate control objective as compared

to stabilization of the vertical velocity. Moreover, in [50] the drill bit was assumed ideally

sharp and friction forces were not taken into account. In this paper, we utilize a more detailed

model of interaction between the rock and the drill bit [20], which takes into account friction

forces and non-ideal sharpness of the drill bit. The algorithms in this paper are developed under

simplifying assumptions that all parameters are known and the measurements are performed

continuously and available to the control system without delays.

The structure of the paper is as follows. In Section 2.3 the mathematical model of the

drilling system is described. Based on the model, the drilling power stabilization problem

is formulated in Section 2.4. Design of the control algorithm is presented in Section 2.5.

Simulation results which illustrate efficiency of the proposed algorithm are given in Section 2.6.

Finally, in Section 2.7 conclusions are made and possible future directions are outlined.
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2.3 Mathematical model of the drilling system

In this section, a mathematical model of the drilling system is described; this model is

used for control design in the subsequent sections. The general structure of a drilling system

is shown in Figure 2.1. It consists of a hoisting system, a rotational system, drill pipes, and

the Bottom Hole Assembly (BHA). The drill bit is located at the very end of the BHA. In the

Figure 2.1: The structure of the drilling system [2]

literature, there exist a large number of mathematical models describing drilling systems. In

this work, the model proposed in [16] is used, where the the drill string is modeled as a torsional

pendulum and the drill pipes as a torsional spring; similar models was also used in [50]. The

model in [16] is based on several simplifying assumptions, including the assumption that the

drill collars (which are thick-walled tubes in the BHA) behave as a rigid body.

Under this assumption, the dynamics of the drill string can be described by the following

equation:

J1ϕ̈ + c1ϕ̇ + k(ϕ − ϕr) + T = 0, (2.1)

where ϕ is the angular position of the drill bit, ϕr is the angular position of the rotary table,

J1 > 0 is the equivalent moment of inertia of the BHA and the drill pipes, c1 ≥ 0 is the

equivalent viscous damping coefficient, k > 0 is the equivalent torsional stiffness of the drill

pipes, and T is the torque-on-bit generated as a result of the rock cutting process. On the other
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hand, the dynamics of the rotary table and drive system are described as follows:

J2ϕ̈r + c2ϕ̇r − k(ϕ − ϕr) − nTm = 0, (2.2)

where J2 > 0 is the combined equivalent moment of inertia of the rotary table and the rotor of

the drive, c2 ≥ 0 is the equivalent viscous damping coefficient of all components of the drive

system, and Tm is the motor torque. In the above equation (2.2), the motor is assumed to be

coupled with a gearbox with a gear ratio 1 : n. The drilling system is assumed to be powered

by an electric DC motor which is described by the following equations

Lİ + RI − Vb − V = 0, Vb = Kmnϕ̇r, Tm = KmI, (2.3)

where I is the armature current, L is an equivalent armature inductance, R is an equivalent

armature resistance, Vb is the back emf, V is the armature voltage, and Km is a constant which

depends on the motor characteristics. Introducing a new variable ϕ̃ := ϕr−ϕ, and using notation

ω := ϕ̇, ωr := ϕ̇r, the model (2.1)–(2.3) can be represented in the following matrix form [50]:
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İ


=


−

c1
J1

k
J1

0 0

−1 0 1 0

0 − k
J2
−

c2
J2

Kmn
J2

0 0 −
Kmn

L −R
L




ω

ϕ̃

ωr

I


+


− 1

J1

0

0

0


T +


0

0

0
1
L


V. (2.4)

The model (2.4) represents the rotational dynamics of the drilling system powered by an elec-

tric DC motor.

The translational dynamics of the drilling system are described by the following equation

Mv̇ = W0 −W − K f v, (2.5)

where v is the vertical penetration velocity of the drill bit, M > 0 is the combined mass of the

drill string and BHA, W0 is the difference between the submerged weight of the drilling system

and the constant upward force applied at the top of the drilling rig, K f > 0 is the viscous friction

coefficient, and W is the weight-on-bit, which is a force applied in the vertical direction as a

result of the interaction between the bit and the rock.

The rotational dynamics (2.4) and the translational dynamics (2.5) interact through the
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process of rock cutting by a drill bit. The mathematical model of the drill bit cutting rocks used

in our work is based on the drilling response model proposed in [20]. The force interaction

between the bit and the rock is a sum of two components which are torque-on-bit T and weight-

on-bit W. The weight-on-bit is applied in the vertical direction while the torque-on-bit is

applied in the direction of rotation, as illustrated in Figure 2.2. Both torque-on-bit and weight-

T,!

W, v

Figure 2.2: Weight-on-bit W, the torque-on-bit T , the vertical penetration velocity v, and the
rotational velocity ω.

on-bit can be decomposed into its cutting and frictional components, as follows

T = T c + T f , W = Wc +W f , (2.6)

where the superscripts c and f correspond to the cutting and frictional components, respec-

tively. Assuming the drill bit is full, which means that there are no hollow regions inside the

bit, and the ratio of the inner to the outer bit radius is zero, the cutting components are described

as follows [19, 20]:

T c :=
1
2

a2ϵd, Wc := aζϵd, (2.7)

where a > 0 is the radius of the drill bit, ϵ ≥ 0 is the intrinsic specific energy which is defined

as the amount of energy needed for cutting a unit volume of the material by an ideally sharp

bit, ζ represents the ratio of the vertical force to the horizontal force between the rock and the

cutter contact surfaces, which in practice is usually in the range 0.5 – 0.8, and d ≥ 0 represents

the depth of cut per revolution.

To define the frictional components, it is necessary to consider three phases of the drilling

process [20]. The phases are defined based on the value of the depth of cut. In the beginning,

the contact forces increase proportionally to the depth of cut as a result of increase of the contact

area between the cutters’ wear flat and the rock. In the second phase (which occurs after the

depth of cut exceeds some critical value), the contact area reaches its limit, and contact forces
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stay constant. The third phase is characterized by further increase of the contact surface due to

insufficient cleaning of the cut material.

Overall, the frictional components are described by the following formulas:

T f :=


(a2/2) · µγσκd, for d < d∗,

(a2/2) · µγσκd∗, for d∗ ≤ d ≤ db,

(a/2) · µγ( d−db
β
+ aσκd∗), for d > db,

(2.8)

W f :=


aσκd, for d < d∗,

aσκd∗, for d∗ ≤ d ≤ db,

d−db
β
+ aσκd∗, for d > db,

(2.9)

where µ > 0 is the friction coefficient defined as a ratio between parallel and normal compo-

nents of the cutter force which acts along the wear flat, γ > 0 is the bit constant which depends

on the bit design and determines the distribution and orientation of the contact forces, σ > 0 is

the contact strength defined as a limiting value of the normal stress that can be transmitted by

the wear flat, κ > 0 is the rate of change of contact length with d, d∗ > 0 is the critical value

of d when contact forces are fully mobilized, which depends on the bit bluntness, db > d∗ is

the critical value of d when the contact surface between the bit and the rock increases (due to

insufficient cleaning), which depends on the bit geometry and mud and rock properties, and β

is a coefficient characterizing the slope of W f at the phase 3. Equations (2.4)-(2.9) describe the

overall mathematical model of the drilling system under consideration.

Remark 1. It is frequently convenient to use notions of the drilling specific energy E and

the drilling specific strength S , defined as follows [19]:

E :=
2T
a2d
, S :=

W
ad
. (2.10)

Both E and S have dimension of stress and describe the amount of effort that is required to cut

a rock of unit depth; in particular, E and S increase as hardness of the rock cut increases. •

Remark 2. In the normal mode of operation, where the angular velocity of the drill bit

ω > 0 is sufficiently separated from zero, the depth of cut d can be approximately calculated
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based on the vertical velocity of drilling v and ω according to the formula

d = 2π
v
ω
, (2.11)

see for example [20, 50]. •

2.4 Problem formulation and assumptions

Our goal is to design a control algorithm which brings the system (2.4)-(2.9) into a pre-

scribed steady-state mode of drilling. Mathematically, this corresponds to regulation (i.e., sta-

bilization of a prescribed constant value) of a certain control variable. In [50], the vertical

velocity of the drill bit was chosen as the regulated variable. This choice, however, is inappro-

priate in certain cases, in particular, keeping constant vertical velocity in the situation where

the stiffness/hardness of the rock suddenly increases is dangerous and may lead to breakdown

of the drill bit. In this work, our goal is to design a control algorithm that regulates the drilling

power. The drilling power is defined by the formula

P = Tω, (2.12)

where T and ω are the torque-on-bit and the angular velocity of the drill bit, respectively, as

defined above in Section 2.3. Taking into account (2.10) and (2.11), one concludes that

P = πa2Ev, (2.13)

where E is the drilling specific energy, and v is the vertical velocity. It is clear that, in the case

of constant power, increase in E (which corresponds to increase of rock hardness) results in

decrease of the vertical velocity v, which makes regulation of drilling power more appropriate

control objective as compared to regulation of the vertical velocity.

The problem of regulation of drilling power, however, appears to be substantially more

involved as compared to that of stabilization of the vertical drilling velocity. In this work,

we solve the drilling power regulation problem under a number of simplifying assumptions.

These include assumptions that torque-on-bit and weight-on-bit are continuously measurable,

all parameters of the drilling system and the environment are known and can be directly used
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for calculation of the desired values, and that the results of these measurements are available

to control system immediately, i.e., all communication delays are negligible.

2.5 Control design

In this section, we discuss the design of a control algorithm that stabilizes the drilling

power (2.12) to a prescribed constant value under the assumptions described above in Sec-

tion 2.4. Our approach to the control design that achieves the above defined goal consists of

two steps described as follows. During the first step, we exclude the rotational dynamics (2.4)

from consideration, and design a control algorithm that stabilizes the drilling power of the sys-

tem (2.5)-(2.9) assuming ω is a constant but otherwise arbitrary control input which can be

assigned at will. In the second step, we design a control algorithm for the rotational dynam-

ics (2.4) that stabilizes the angular velocity of the drill bit ω to the desired constant value while

rejecting the (measurable) disturbances T .

Step 1(a): Steady-state analysis

Consider the equation of translational dynamics (2.5). In the steady state (v̇ = 0), it gives

v = (W0 −W(d)) /K f . On the other hand, equation (2.11) in steady state gives d · ω = 2πv.

Combining these two formulas, one obtains

ω =
2π (W0 −W(d))

K f d
, (2.14)

which describes the steady-state relationship between the angular velocity ω and the depth of

cut d. Combining the last equation (2.14) with formula for power (2.12), we get the following

expression for power in the steady state:

P =
2πT (d) (W0 −W(d))

K f d
. (2.15)

One can conclude that, in the steady state, the drilling power is a function of depth of cut d.

Power regulation, therefore, can be achieved through regulation of depth of cut. Specifically,

given a desired value of the drilling power Pd > 0, the desired value of the depth of cut dd > 0
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can be calculated by inversion of the formula (2.15), as follows.

dd =


πa2W0(ϵ+µγσκ)−K f Pd

πa3(ζϵ+σκ)(ϵ+µγσκ) , for Pd > P(d∗),
−z1+
√

z2
1−z2

2πa3ζϵ2
, for P(d∗) ≥ Pd ≥ P(db),

−z3+
√

z2
3−z4

2πa(1+aβϵζ)(aβϵ+µγ) , for Pd < P(db),

where

z1 =K f Pd + a2πϵ (aσκd∗ −W0) + a3πζϵµγσκd∗,

z2 =4π2a5ζϵ2µγσκd∗ (aσκd∗ −W0) ,

z3 =K f Pdβ
2 − πa (µγ(2db +W0β) − a2d∗β2ϵσκ(1 + µγζ) + aβϵ(db +W0β + dbµγζ)−

2aβµγσκd∗) ,

z4 =4π2a2µγ(1 + aβϵζ)(aβϵ + µγ)(db − aβσκd∗) · (db + βW0 − aβσκd∗),

Step 1(b): Desired depth of cut stabilization

At this step, we assume that we have direct control over the angular velocity ω. In this

case, the exponential convergence of the depth of cut d(t) to a given desired value dd > 0 can

be achieved by an appropriate choice of a constant angular velocity ω = ωd > 0, as follows.

From (2.11), for ω > 0 one obtains

ḋ = 2π
v̇ω − vω̇
ω2 . (2.16)

Also, using (2.11), equation (2.5) can be rewritten in the form:

v̇ = M−1
(
W0 −W(d) −

K f · d · ω
2π

)
. (2.17)

Substituting (2.17) into (2.16), one gets the following differential equation which describes the

dynamics of the depth of cut:

ḋ =
2π (W0 −W(d))

Mω
−

(
K f

M
+
ω̇

ω

)
d. (2.18)
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Given dd > 0, denote

ωd :=
2π (W0 −W(dd))

K f dd
. (2.19)

Assuming ω ≡ ωd, and taking into account that ω̇d ≡ 0, equation (2.18) becomes

ḋ =
2π (W0 −W(d))

Mωd
−

K f

M
d. (2.20)

Taking into account (2.19), equation (2.20) can be rewritten in the form

ḋ =
2π (W0 −W(dd))

Mωd
+

2π (W(dd) −W(d))
Mωd

−
K f

M
d = −

K f

M
(d − dd) +

2π (W(dd) −W(d))
Mωd

,

and using notation d̃ := d − dd, one gets:

˙̃d = −
K f

M
d̃ +

2π (W(dd) −W(d))
Mωd

. (2.21)

It is easy to see that d̃(t) → 0 exponentially. Indeed, it follows from (2.6), (2.7), (2.9), that

W(d) satisfies

K1 (d1 − d2) ≤ W(d1) −W(d2) ≤ K2 (d1 − d2) (2.22)

for some constants 0 < K1 ≤ K2 and for any d1 ≥ d2 ≥ 0, therefore d̃ ·(W(dd) −W(d)) ≤ −K1d̃2.

Choosing a Lyapunov function V := d̃2/2, and calculating its derivative along the trajectories

of (2.21), one gets

V̇ = −
K f

M
d̃2 + d̃

2π (W(dd) −W(d))
Mωd

≤ −
K fωd + 2πK1

Mωd
d̃2,

i.e.,

V̇ ≤ −
2K fωd + 4πK1

Mωd
V,

which implies that the system (2.21) is exponentially stable, i.e., d(t) → dd exponentially as

long as ω(t) ≡ ωd. Finally, taking into account that the exponential stability property of a

system described by a differential equation (such as (2.20)) is robust with respect to small per-

turbations of the right-hand side (see for example [77, Section 9.2]), one concludes that any
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trajectory d(t) of the system (2.18) with initial conditions from an arbitrary large compact set

converges exponentially to an arbitrarily small neighbourhood of dd as long as ω(t) is suffi-

ciently close to ωd and ω̇(t) is sufficiently close to zero. More precisely, for any given δ, D

such that 0 < δ ≤ D < ∞, there exists ϵ > 0 such that |ω(t) − ωd| ≤ ϵ and |ω̇(t)| ≤ ϵ for all t ≥ t0

imply that any trajectory of (2.18) with initial condition |d(t0)| ≤ D converges exponentially to

a set {d : |d − dd| ≤ δ}.

Step 2: Stabilization of the angular velocity ω

The goal of this section is to design a control algorithm that stabilizes the angular velocity

ω to its desired value ωd. Let us rewrite the system (2.4) in the standard state-space form

ẋ = Ax + Bu + DT,

y = Cx,
(2.23)

where

A =


−

c1
J1

k
J1

0 0

−1 0 1 0

0 − k
J2
−

c2
J2

Kmn
J2

0 0 −
Kmn

L −R
L


, B =


0

0

0
1
L


, D =


− 1

J1

0

0

0


, C =


1

0

0

0



T

, (2.24)

x =
[
ω ϕ̃ ωr I

]T
, u = V. (2.25)

In the above model (2.23), u = V is the control input while T is the disturbance to be

rejected. We design a control algorithm of the form

u = −Kx + ud + uT , (2.26)

where K :=
[
k1 k2 k3 k4

]
is the feedback gain matrix chosen such that the state matrix of the

closed-loop system A−BK has desired properties, ud is the component of the control algorithm

which guarantees tracking of the desired value of the output, and uT is the component which

ensures disturbance rejection. Substituting (2.26) into (2.23), one can calculate the transfer
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matrix of the closed-loop system as follows

Ω(s) =
[
Wu(s) WT (s)

] Ud(s) + UT (s)

T (s)

 , (2.27)

where Ω(s) is the Laplace transform of the output y = ω, and Wu(s) := C [sI − A + BK]−1 B,

WT (s) := C [sI − A + BK]−1 D are transfer functions that correspond to a part of the control

input ud +uT and the disturbance input T , respectively. Let Ωd(s) denote the Laplace transform

of ωd(t). From (2.27), it follows that the choice of control inputs

UT (s) = −
WT (s)
Wu(s)

T (s), (2.28)

Ud(s) =
1

Wu(s)
Ωd(s), (2.29)

results in Ω(s) = Ωd(s). However, taking into account the fact that ωd is a constant signal

(i.e., Ωd(s) = s−1ωd), and applying the final value theorem, one concludes that, instead of

using (2.29), the control signal ud can be chosen in a simpler form, as follows

ud = G · ωd, (2.30)

where G := lim
s→0

W−1
u (s). For our model, where the matrices A, B, and C are given by (2.24),

and the feedback matrix has a form K :=
[
k1 k2 k3 k4

]
, direct calculations reveal that

G := lim
s→0

W−1
u (s) =

(k4 + R)(c1 + c2)
Kmn

+
c1k2

k
+ k1 + k3 + Kmn. (2.31)

On the other hand, calculating the transfer function in the right-hand side of (2.28), one obtains

−
WT (s)
Wu(s)

= β(s) = β3s3 + β2s2 + β1s + β0, (2.32)

where β3 =
J2L

kKmn , β2 =
J2(k4+R)+c2L

kKmn , β1 =
c2(k4+R)+Kmn(k3+Kmn)+kL

kKmn , β0 =
k(k4+R)+k2Kmn

kKmn .

Therefore, implementation of (2.28) requires knowledge of up to the third time derivative of

T (t). To obtain estimates of the time derivatives, one can use a hybrid differentiator proposed

in [78]. It combines two components: high-order sliding mode (HOSM) differentiator and

a classic high-gain differentiator. The HOSM component ensures exact differentiation of a
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continuous input signal as well as robustness with respect to high-frequency measurement

noise. The second component provides faster convergence and improves the behaviour of the

estimates. The differentiator is described by the following equations:

ż0 = −λ4L
1
5 |z0 − T |

4
5 sign(z0 − T ) − µ4σ(z0 − T ) + z1,

ż1 = −λ3L
1
4 |z1 − ż0|

3
4 sign(z1 − ż0) − µ3σ(z1 − ż0) + z2,

ż2 = −λ2L
1
3 |z2 − ż1|

2
3 sign(z2 − ż1) − µ2σ(z2 − ż1) + z3,

ż3 = −λ1L
1
2 |z3 − ż2|

1
2 sign(z3 − ż2) − µ1σ(z3 − ż2) + z4,

ż4 = −λ0L sign(z4 − ż3) − µ0σ(z4 − ż3),

(2.33)

where z ∈ R5 is the state of the estimator, a vector of estimates of T and its time deriva-

tives, specifically zi(t) is an estimate of i-th derivative of T (t), i = 0, . . . , 4, L is a sufficiently

large number, λi > 1, i = 0, . . . , 4, are HOSM differentiator parameters that may be cho-

sen recursively [79], µi > 0, i = 0, . . . , 4 are coefficients chosen such that the polynomial

α(s) = s5 + µ4s4 + µ4µ3s3 + µ4µ3µ2s2 + µ4µ3µ2µ1s+ µ4µ3µ2µ1µ0 is Hurwitz, and σ > 0 is a gain

which can be adjusted in order to ensure the desired dynamic properties.

The obtained estimates can be used in place of T in the controller (2.28), specifically,

uT =

[
β3 β2 β1 β0

] [
z3 z2 z1 z0

]T
, (2.34)

where β0, . . . , β3 are defined after equation (2.32).

It is known [79], that observer (2.33) achieves exact differentiation of T (t) as long as

the corresponding derivatives are well-defined. It is worth to mention that the existence of

derivatives of T (t) within each phase of the drilling process is guaranteed by our mathemati-

cal model. Specifically, taking into account that within each drilling phase both torque-on-bit

T and weight-on-bit W are linear functions of the depth of cut d, the fact that derivatives of

T (t) are well defined can be easily established by comparing equations (2.4) and (2.18) and

using induction arguments (e.g., equation (2.4) implies that ω̇ is well defined, therefore equa-

tion (2.18) implies that ḋ is well defined and so are Ṫ , Ẇ, therefore equation (2.4) implies that

ω̈ is well-defined, etc.) Thus, in the noise-free case, the observer (2.33) allows for exact re-

construction of derivatives of T and consequently exact compensation of the effect of T on the

rotational dynamics (2.4). In the presence of measurement noise, it is known [79, Theorem 6]
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Table 2.1: Numerical values of the parameters used in simulations (Chapter 2)

Parameter Value Parameter Value
Parameters set by human

Pd, W 1500
Drilling system parameters

J1, kgm2 400 n 5.7
J2, kgm2 2516 W0, N 4000
c1, Nms 51 M, kg 49300
c2,Nms 396 K f , Nm 15
k, Nm 526 a, m 0.089
R, Ω 0.019 ζ 0.8
L, H 0.003 d∗, m 2 · 10−3

Km, V s 8.4 µγ 2.86
Drilling controller parameters

s1 . . . s4

[
−7 −2.5 −5 −1.2

]
µ0 . . . µ4

[
0.438 1.218 2.647 5.667 15

]
λ0 . . . λ4

[
1.1 1.5 2 3 5

]
L 10000
σ 15

Parameters of the environment
ϵ, J/m3 5 · 106/2 · 107/6 · 107

σκ, N/m2 0.07ϵ

that small magnitude of the noise results in small deviations of the derivatives’ estimates from

their actual values, which would result in approximate compensation of the effect of T on the

rotational dynamics. Detailed investigation of the effect of measurement noise is outside of the

scope of this paper and will be addressed in our future research.

2.6 Simulation results

In this section, we present an example of simulations of the power stabilization algorithm

in the drilling control system. Numerical values of the parameters used in the simulations

are given in Table 2.1. Based on the parameters of the drilling system and the desired poles

of the closed-loop system (s1 . . . s4 in Table 2.1), the parameters of the control law (2.26),

(2.30), (2.34) are calculated as follows: K = [−1.912; 20.764;−35.826; 0.027], G = 12.5876,

β0 = 0.04, β1 = 0.024, β2 = 0.005, β3 = 0.0003.
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Simulation results for the overall system are presented in Figures 2.3 - 2.5. We simulate

drilling through several rock layers with different intrinsic specific energies. It can be seen that

for the given parameters the system demonstrates rather good performance: the drilling power

converges to the reference value for each layer in around 5 seconds with some undershoot or

overshoot at the border of the layers. The control scheme also ensures rather fast convergence

of the angular velocity to its reference value.

Figure 2.3: Drilling power P(t) (left plot); vertical velocity of the drill bit v(t) (right plot).

Figure 2.4: Output rotational velocity of the drill bit ω(t) vs. reference rotational velocity
ωd(t) (left plot); depth of cut d(t) (right plot).

2.7 Conclusions

In this paper, a control algorithm for power stabilization in rotary drilling systems is pre-

sented. The proposed method is based on a constant tracking and disturbance rejection scheme
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Figure 2.5: Intrinsic specific energy ϵ(t) (left plot); input control signal V(t) (right plot).

which, in particular, requires measurability of the parameters at the bit level, such as torque

on bit and the angular velocity of the bit. The reference angular velocity of the drill bit is

then calculated such that the drilling power converges to its reference value. Simulation results

demonstrate feasibility of the proposed approach and good performance of the closed-loop sys-

tem. The goals of future work include relaxation and/or complete elimination of some technical

assumptions used in this paper which may not necessarily hold in real life applications, includ-

ing knowledge of all system’s parameters, continuous noise-free measurability of torque-on-bit

and weight-on-bit, and the absence of communication delays within the closed-loop system.



Chapter 3

Regulation of Penetration Rate and

Drilling Power in Rotary Drilling Systems

This chapter is based on the following article:

Maksim V. Faronov and Ilia G. Polushin. Regulation of penetration rate and drilling power

in rotary drilling systems. In IEEE 16th International Workshop on Advanced Motion Control

(AMC 2020), pp. 97–104, Kristiansand, Norway, September 2020.

3.1 Abstract

The problems of regulation of penetration rate and drilling power in rotary drilling systems

are addressed. Regulation algorithms are proposed which do not require knowledge of majority

of the parameters of the drilling systems and those of the rock-bit interaction. The algorithms

are designed using a two-step process, where first the target angular velocity is generated using

the speed-gradient control algorithms, and subsequently tracking of the target angular velocity

is achieved using tracking and disturbance rejection scheme. Simulation results are presented

which illustrate the efficiency of the proposed control design.

3.2 Introduction

Drilling automation is an important part of the drilling practice [80]. First attempts to create

automatic feed control of the drill bit can be traced back to 1860s [81], however, early research

28
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was mostly concentrated on mathematical models of the drilling process and appropriate choice

of drilling techniques rather than actual control design [72], [82]. Recently, an increasing

number of results have been reported in the literature related to applications of control systems

methods and techniques to different aspects of drilling problems [73, 31, 50, 74, 36].

In this paper, we address problems related to design of control algorithms for rotary drilling

systems. Specifically, we address the problems of regulation of the vertical rate of penetration

as well as regulation of the drilling power in the case where majority of the parameters that

describe the drilling system’s dynamics and the bit-rock interaction are unknown. We provide

a complete solution to the problem of regulation of the vertical rate of penetration, and partially

extend it to regulation of the drilling power. To solve these problems, we implement a two-step

approach to the control design where, in the first step, we design control algorithms assuming

that the angular velocity of the drill bit is directly available for control. This step is performed

using speed-gradient control design method [49]. In the second step, we use the desired angular

velocity signal generated during step one as a reference, and implement a control algorithm

that guarantees tracking of the reference angular velocity with disturbances attenuations. For

implementation of the latter algorithm, a number of derivatives of the reference signal as well

as those of the disturbance input are required which are not available for direct measurement.

For this purpose, we use a hybrid differentiator proposed in [78] which combines theoretically

perfect estimation of derivatives and robustness with respect to measurement noise. Simulation

results are presented which illustrate the applicability of the proposed methods. The results of

this paper can be considered an extension of the previous work of the authors [83], where the

problem of drilling power regulation was solved under the assumption that all the system’s

parameters as well as the parameters of rock-bit interaction are known.

The paper is organized as follows. The mathematical model of the drilling system is de-

scribed in Section 3.3. In Section 3.4, the control problems are formulated, and assumptions are

stated. Design of the control algorithms is addressed in Section 3.5. Simulation results which

illustrate feasibility and efficiency of the proposed algorithms are presented in Section 3.6.

Finally, in Section 3.7, conclusions are made and future work directions are outlined.
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3.3 Mathematical model of the drilling system

In this section, we present a mathematical model of the vertical rotary drilling system. Its

structure is shown in Figure 3.1. The set consists of a part located on the ground and the

underground components. The former is represented by a drilling rig which carries, among

other equipment, a rotational system and a hoisting system. The rotational system contains

a rotary table and an electric drive that rotates the underground components by generating a

torque and transferring it down. The hoisting system controls a hook, which is installed at

some level, and may lift or drop the underground part, if necessary. A rigid body equipped

with blades which performs the rock cutting process is called a drill bit; it is located at the

very bottom of the borehole. The bit is attached to the Bottom Hole Assembly (BHA), which

contains some additional equipment and applies pressure on the bit. The rotary table and the

BHA are connected by hollow tubes called drill pipes. Altogether, the underground part of the

drilling system constitutes the drill string. The model of the drilling system used in this paper

Figure 3.1: The structure of the drilling system [3]

is similar to the one utilized previously in [83]. It consists of three parts: rotational dynamics,

translational dynamics, and the interaction between the bit and the rock.
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3.3.1 Rotational dynamics

The rotational dynamics are described by a simplified finite-dimensional model introduced

in [16], where the dynamics of the drill string are represented by those of a torsional pendulum.

Assuming that the BHA behaves as a rigid body, dynamics of the drill string are described by

the following equation

J1ϕ̈ + c1ϕ̇ + k(ϕ − ϕr) + T = 0, (3.1)

where ϕ is the angular position of the drill bit, ϕr is the angular position of the rotary table,

J1 > 0 is the equivalent moment of inertia of the BHA and the drill pipes, c1 ≥ 0 is the

equivalent viscous damping coefficient, k > 0 is the equivalent torsional stiffness of the drill

pipes, and T is the torque-on-bit generated as a result of the rock cutting process. The dynamics

of the rotary table and the top drive system are described as follows:

J2ϕ̈r + c2ϕ̇r − k(ϕ − ϕr) − nTm = 0, (3.2)

where J2 > 0 is the combined equivalent moment of inertia of the rotary table and the rotor of

the drive, c2 ≥ 0 is the equivalent viscous damping coefficient of all components of the drive

system, and Tm is the motor torque. The motor is coupled with a gearbox with a gear ratio

1 : n. The following formulas describe the DC motor with an independent excitation:

Lİ + RI + Vb − V = 0, Vb = Kmnϕ̇r, Tm = KmI, (3.3)

where I is the armature current, L is an equivalent armature inductance, R is an equivalent

armature resistance, Vb is the back emf, V is the armature voltage, and Km > 0 is a motor

constant which depends on its characteristics. The model (3.1)-(3.3) can be written in the

state-space form [50, 83]:


ω̇

˙̃ϕ

ω̇r

İ


=


−

c1
J1

k
J1

0 0

−1 0 1 0

0 − k
J2
−

c2
J2

Kmn
J2

0 0 −
Kmn

L −R
L




ω

ϕ̃

ωr

I


+


− 1

J1

0

0

0


T +


0

0

0
1
L


V, (3.4)
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where we use notation ϕ̃ := ϕr − ϕ, ω := ϕ̇, ωr := ϕ̇r.

3.3.2 Translational dynamics

The translational dynamics describe the vertical movements of the drilling system. They

are modeled by the following differential equation

Mv̇ = W0 −W − K f v, (3.5)

where v is the vertical velocity of the drill bit, M > 0 is the combined mass of the drill pipes

and the BHA, W0 is the difference between the submerged weight of the drilling system and

the constant upward force applied by a hoisting system at the top of the drilling rig, K f > 0 is

the viscous friction coefficient, and W is the weight-on-bit, which is a reaction force applied to

the bit in the vertical direction.

3.3.3 Bit-rock interaction

The bit-rock interaction is defined by the drilling response [20], which is the relationship

between torque-on-bit, weight-on-bit, and rotational and vertical velocities of the drill bit. Both

torque and weight-on-bit are induced as a reaction to the rock cutting process and applied in

the direction of rotation and the vertical direction, respectively. An important parameter in the

drilling response model is the depth of cut. This parameter represents the vertical displacement

of the bit per revolution. Usually, when the angular velocity of the drill bit ω is sufficiently

large, it may be assumed constant during one revolution; this allows for the following approx-

imate calculation of d [20]:

d = 2π
v
ω
. (3.6)

Both torque-on-bit and weight-on-bit consist of cutting and frictional components:

T = T c + T f , W = Wc +W f , (3.7)

where the superscripts c and f correspond to the cutting and frictional components, respec-

tively. In case where no hollow areas exist inside the bit, the cutting components are described
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as follows [19, 20]:

T c :=
1
2

a2ϵd, Wc := aζϵd, (3.8)

where a > 0 is the radius of the drill bit, ϵ ≥ 0 is the intrinsic specific energy, which is the

amount of energy needed for cutting a unit volume of the material by an ideally sharp bit, ζ

represents the ratio of the vertical force to the horizontal force between the rock and the cutter

contact surfaces, and d > 0 is the depth of cut per revolution.

Unlike the cutting components, frictional components are different for each of the three

phases of drilling [20], where the latter are defined by the depth of cut. In the first phase,

the contact forces increase with the depth of cut. After the contact forces reach the limit at

some critical value of d, in the next phase the frictional components stay constant regardless

of d. With further increase of the depth of cut, at some point contact surface increases again

due to poor cleaning of the cut rock. At this stage, the bit response may vary, as it depends

on the loading path. Generally, the frictional components can be expressed by the following

equations:

T f :=


(a2/2) · µγσκd, for d < d∗,

(a2/2) · µγσκd∗, for d∗ ≤ d ≤ db,

(a/2) · µγ( d−db
β
+ aσκd∗), for d > db,

(3.9)

W f :=


aσκd, for d < d∗,

aσκd∗, for d∗ ≤ d ≤ db,

d−db
β
+ aσκd∗, for d > db,

(3.10)

where µ > 0 is the friction coefficient defined as a ratio between parallel and normal compo-

nents of the cutter force which acts along the wear flat, γ > 0 is the bit constant which depends

on the bit design and determines the distribution and orientation of the contact forces, σ > 0 is

the contact strength defined as a limiting value of the normal stress that can be transmitted by

the wear flat, κ > 0 is the rate of change of contact length with d, d∗ > 0 is the critical value of

d (which depends on the bit bluntness) at which the contact forces are fully mobilized, db > d∗

is the critical value of d when the contact surface between the bit and the rock increases (due



34Chapter 3. Regulation of PenetrationRate andDrilling Power inRotaryDrilling Systems

to insufficient cleaning), which depends on the bit geometry and mud and rock properties, and

β is a coefficient characterizing the slope of W f in phase 3. Equations (3.4)-(3.10) describe the

overall mathematical model of the drilling system.

Remark 3.1 The cut material can also be characterized by means of the drilling specific en-

ergy E and the drilling specific strength S [19]:

E :=
2T
a2d
, S :=

W
ad
. (3.11)

Both E and S characterize hardness of the cut rock together with the amount of energy dissi-

pated due to friction.•

3.4 Problem formulation and assumptions

In this paper, we address the following two problems:

• Problem 1: Regulation of the vertical rate of penetration. Given vd > 0, find a control

algorithm that achieves

v(t)→ vd as t → ∞. (3.12)

• Problem 2: Regulation of the drilling power: The drilling power P can be defined as

follows

P = Tω, (3.13)

where T is the torque-on-bit, and ω is the angular velocity of the drill bit. Taking into

account (3.11) and (3.6), it can be seen that

P = πa2Ev, (3.14)

where E is the drilling specific energy, and v is the vertical velocity. The problem is to

design a control law that guarantees

P(t)→ Pd as t → ∞. (3.15)
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The motivation behind this goal is the fact that in this case the vertical velocity of the bit

is inversely proportional to the drilling specific energy, which can be seen from (3.14).

This prevents the bit from breaking or excessive wearout in case of sudden increase of

the hardness of the rock.

Below, we solve Problem 1; we also solve Problem 2 under the assumption that the process

of drilling is happening in phase 1, i.e., where d ≤ d∗ in (3.9), (3.10). Both Problem 1 and Prob-

lem 2 are solved under the assumption that the parameters of the environment and of the drill

bit are unknown. More precisely, the combined mass M > 0 of drill pipes and the BHA, the

viscous friction coefficient K f > 0, the intrinsic specific energy ϵ > 0, force ratio ζ > 0, radius

of drill bit a > 0, friction coefficient µ > 0, bit constant γ > 0, contact strength σ > 0, rate of

change of contact length κ > 0, phase boundaries 0 < d∗ < db, and slope coefficient β > 0 are

all assumed unknown. Additionally, both Problems 1 and 2 are solved assuming the upward

force applied by the hoisting system at the top of drilling rig is constant (i.e., we do not use this

force as a control variable). Some simplifying assumptions used in our work include knowl-

edge of the parameters of the drilling system model (3.1)-(3.3) (equivalently, model (3.4)). In

addition, it is assumed that the torque-on-bit, rotational velocity, vertical velocity and angular

displacement of the bit are continuously measurable, and there are no communication delays

between the borehole and the ground level, where the controller is located.

3.5 Control design

The general approach to the control design used in this paper is similar to that of [83].

Specifically, we first design the control algorithms that achieve the control goals formulated

above under the assumption that the angular velocity of the drill bitω can be controlled directly.

In other words, we design an auxiliary control signal ωd such that setting ω ≡ ωd solves the

corresponding control problem. As a second step, we design a control algorithm for armature

voltage V which guarantees that ω tracks ωd while simultaneously rejects the disturbances

which in our case is torque-on-bit T .
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Step 1: Design for the desired angular velocity ωd

At this first step, we design control algorithms that solve Problems 1 and 2 assuming the

angular velocity of the drill bit ω can be controlled directly. As described above in Section 3.4,

we do this under the assumption that all the parameters entering the equation of the translational

dynamics (3.5) as well as the formulas that describe the rock-bit interaction (3.7)-(3.10) are

constant and unknown. Under these assumptions, we solve Problems 1 and 2 using the speed-

gradient method [49].

Problem 1: Rate of penetration regulation. We begin with deriving the equations that

relate the angular velocity ω to the translational dynamics (3.5). Taking into account (3.7),

(3.8), and (3.10), one can write

W(d) = awd + bw, (3.16)

where aw > 0 and bw are the coefficients that depend on the phase of drilling and the parameters

of the rock-bit interaction model. Substituting (3.16) into (3.5), one can write

v̇ = −
(

K f

M
+

2πaw

Mω

)
v +

W0 − bw

M
, (3.17)

and using notation K1 := K f

M > 0, K2 := 2πaw
M > 0, K3 := W0−bw

M > 0, equation (3.17) can be

written in the form

v̇ = −(K1 + K2ω
−1)v + K3. (3.18)

It is clear that for any constant ω(t) ≡ ω∗ > 0, equation (3.18) has a globally exponentially

stable equilibrium at

v∗ =
K3

K1 + K2ω−1
∗

. (3.19)

Conversely, given v∗ ∈ (0; K3
K1

), the choice ω(t) ≡ ω∗ where

ω∗ =
K2v∗

K3 − K1v∗
, (3.20)
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makes v∗ the globally exponentially stable equilibrium of (3.18). Let vd > 0 be a desired

vertical rate of penetration, and let ω∗ > 0 be found from (3.20) by setting v∗ = vd. Denote

θ := K1 + K2ω
−1, θ∗ := K1 + K2ω

−1
∗ , and θ̃ := θ − θ∗. From (3.19) one can see that K3 = θ∗vd.

Equation (3.18) becomes

v̇ = −θv + θ∗vd. (3.21)

Using notation ṽ := v − v∗, one can write

˙̃v = −(θ̃ + θ∗)v + θ∗vd = −θ̃v − θ∗ṽ. (3.22)

In order to apply the speed-gradient method to equation (3.22), consider a family of goal func-

tions

Qv,q :=
1
q
· |ṽ|q , where q = 1, 2, . . . (3.23)

Calculating the time derivative of Qv,q along the trajectories of (3.22), one obtains

Q̇v,q = |ṽ|q−1 sign{ṽ} ˙̃v = |ṽ|q−1 sign{ṽ}
(
−θ̃v − θ∗ṽ

)
= −θ̃v |ṽ|q−1 sign{ṽ} − q Qv,qθ∗. (3.24)

Taking into account θ̃ := θ − θ∗, one can calculate

∂Q̇v,q

∂θ
= −v · |ṽ|q−1 sign{ṽ}, (3.25)

and the corresponding family of speed-gradient algorithms [49, Chapter 3] can be obtained as

follows

θ̇ = −γ1
∂Q̇v,q

∂θ
= γ1 v |ṽ|q−1 sign{ṽ}, q = 1, 2, . . . (3.26)

Sufficient conditions for algorithms (3.26) to guarantee convergence Qv,q(t) → 0 as t → +∞

are given for example in [49, Theorem 3.1]. It is easy to check that all conditions of [49,

Theorem 3.1] are satisfied for the system (3.22) and any of the goal functions Qv,q, q = 1, 2, . . .

Thus, any algorithm of the form (3.26) guarantees that Qv,q(t) → 0 as t → +∞ and, therefore,

solves the problem of regulation of the rate of penetration (Problem 1). On the other hand, we
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have θ = K1 + K2ω
−1, and therefore

θ̇ = −K2
ω̇

ω2 . (3.27)

Using (3.27), we see that (3.26) is equivalent to the following algorithms for the desired rota-

tional velocity ωd:

ω̇d = −γω
2
d v |ṽ|q−1 sign{ṽ}, q = 1, 2, . . . (3.28)

where γ := γ1/K2 > 0.

Problem 2: Drilling power regulation. The algorithm (3.28) generates the desired angular

velocity that guarantees regulation of the rate of penetration. The method used above can be

extended to solve the problem of regulation of the drilling power in phase 1 of the drilling

process (d ≤ d∗ in (3.9), (3.10)). Combining formula for power (3.13) with the model of

the rock-bit interaction (3.7)-(3.10), and using relationship (3.6), it is easy to conclude that, in

phase 1 of drilling, the drilling power P is proportional to the rate of penetration v, i.e., P = c̄1v,

where c̄1 > 0 is a constant which depends on parameters of the rock-bit interaction. Let Pd > 0

be a desired value of the drilling power, and denote P̃ := P − Pd. We have

P̃ = c̄1ṽ. (3.29)

Consider the following family of goal functions:

QP,q :=
1
q
|P̃|q, where q = 1, 2, . . . (3.30)

Calculating the time derivative of (3.30) along the trajectories of (3.22) and using (3.29), one

obtains

Q̇P,q = |P̃|q−1 sign{P̃}c̄1

(
−θ̃v − θ∗ṽ

)
= −|P̃|q−1 sign{P̃}Pθ̃ − qQP,qθ∗. (3.31)

From (3.31), the family of speed gradient algorithms can be obtained as follows:

θ̇ = −
∂Q̇P,q

∂θ
= γ2 P|P̃|q−1 sign{P̃}, q = 1, 2, . . . , (3.32)
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and using (3.27), one obtains

ω̇d = −γ0ω
2
dP|P̃|q−1 sign{P̃}, q = 1, 2, . . . , (3.33)

where γ0 := γ2/K2. Alternatively, taking into account P = c̄1v, the family of algorithms (3.33)

can be written in the form

ω̇d = −γω
2
dv|P̃|q−1 sign{P̃}, q = 1, 2, . . . , (3.34)

where γ := γ0c̄1. Again, it is straightforward to check that the system (3.22), (3.29) with any

goal function of the form (3.30) satisfy all conditions of [49, Theorem 3.1] and, therefore, the

family of algorithms (3.33) (equivalently (3.34)) solves the power regulation problem as long

as the drilling process is in phase 1. Outside of phase 1, the relationship between power P, pen-

etration rate v and rotational velocity ω becomes more complicated, and the power regulation

problem apparently does not allow for direct solution using the speed-gradient methods. De-

velopment of the power regulation algorithms for phases 2 and 3 is a topic for future research.

Step 2: Tracking of the desired angular velocity

At this step, our goal is to design a control algorithm that guarantees that the angular ve-

locity of the drill bit ω tracks its desired trajectory ωd, where the latter was designed during

the previous step. The control algorithm presented in this section is largely similar to the one

of [83]; the difference is that in this paper ωd is no longer a constant signal and therefore provi-

sions must be made to guarantee tracking of time-varying ωd(t). Let us rewrite the system (3.4)

in the state-space form

ẋ = Ax + Bu + DT,

y = Cx,
(3.35)
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where

A =


−

c1
J1

k
J1

0 0

−1 0 1 0

0 − k
J2
−

c2
J2

Kmn
J2

0 0 −
Kmn

L −R
L


, B =


0

0

0
1
L


, D =


− 1

J1

0

0

0


, C =

[
1 0 0 0

]
, (3.36)

x =
[
ω ϕ̃ ωr I

]T
, u = V. (3.37)

In the above model, u = V is the control input signal, and T is the disturbance which has to be

rejected. The control algorithm has the following form

u = −Kx + ud + uT , (3.38)

where K :=
[
k1 k2 k3 k4

]
is the feedback gain matrix chosen such that the closed-loop

system has desired dynamical properties, ud is the component which is responsible for tracking

of the desired value of the output, and uT is the component which ensures disturbance rejection.

In order to define these components, one can represent the system (3.35)-(3.38) in the input-

output form:

Ω(s) =
[
Wu(s) WT (s)

] Ud(s) + UT (s)

T (s)

 , (3.39)

where Ω(s) is the Laplace transform of the output y = ω, and Wu(s) := C [sI − A + BK]−1 B,

WT (s) := C [sI − A + BK]−1 D are transfer functions that correspond to a part of the control

input ud +uT and the disturbance input T , respectively. Let Ωd(s) denote the Laplace transform

of ωd(t). From (3.39), one concludes that the following control inputs

UT (s) = −
WT (s)
Wu(s)

T (s), Ud(s) =
1

Wu(s)
Ωd(s), (3.40)

result in Ω(s) = Ωd(s).

Assuming that the system’s parameters are known, it is possible to calculate the transfer
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functions in (3.40) directly. In this case, they can be represented as polynomials:

−
WT (s)
Wu(s)

= β(s) = β3s3 + β2s2 + β1s + β0, (3.41)

1
Wu(s)

= α(s) = α4s4 + α3s3 + α2s2 + α1s + α0, (3.42)

where

β3 =
J2L

kKmn
, (3.43)

β2 =
J2(k4 + R) + c2L

kKmn
, (3.44)

β1 =
c2(k4 + R) + Kmn(k3 + Kmn) + kL

kKmn
, (3.45)

β0 =
k(k4 + R) + k2Kmn

kKmn
, (3.46)

α4 =
J1J2L
kKmn

, (3.47)

α3 =
L(c2J1 + c1J2) + J1J2(k4 + R)

kKmn
, (3.48)

α2 =
1

kKmn
(J1Kmn(k3 + Kmn) + kL(J1 + J2)

+ c1c2L + (c1J2 + c2J1)(k4 + R)), (3.49)

α1 =
1

kKmn
(Kmn(c1k3 + c1Kmn + J1k2) + kL(c1 + c2)

+ (c1c2 + kJ1 + kJ2)(k4 + R)), (3.50)

α0 =
k(c1 + c2)(k4 + R) + c1k2Kmn

kKmn
+ k1 + k3 + Kmn. (3.51)

It follows from (3.41), (3.42) that in order to implement perfect tracking and disturbance re-

jection, knowledge of up to the third time derivative of T (t) and up to the fourth derivative of

ωd(t) is necessary. In order to estimate these derivatives, we use a hybrid differentiator pro-

posed in [78]. It consists of two parts: high-order sliding mode (HOSM) differentiator and

a classical high-gain differentiator. The HOSM component ensures exact differentiation of a

continuous input signal as well as robustness with respect to measurement noise. The high-gain
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component contributes to faster convergence of the estimates. Two differentiators are necessary

to implement: one for T and another for ωd. They have the following form:

ż0i = −λ4L
1
5
i |z0i − Γi|

4
5 sign(z0i − Γi) − µ4σi(z0i − Γi) + z1i,

ż1i = −λ3L
1
4
i |z1i − ż0i|

3
4 sign(z1i − ż0i) − µ3σi(z1i − ż0i) + z2i,

ż2i = −λ2L
1
3
i |z2i − ż1i|

2
3 sign(z2i − ż1i) − µ2σi(z2i − ż1i) + z3i,

ż3i = −λ1L
1
2
i |z3i − ż2i|

1
2 sign(z3i − ż2i) − µ1σi(z3i − ż2i) + z4i,

ż4i = −λ0Li sign(z4i − ż3i) − µ0σi(z4i − ż3i), (3.52)

where i = 1, 2, i = 1 corresponds to the estimator for T (t), i = 2 corresponds to the estimator for

ωd(t), Γ1 = T , Γ2 = ωd, zi ∈ R
5 are the state variables of the estimators, specifically, z1 j(t) is an

estimate of j-th derivative of T (t), z2 j(t) is an estimate of j-th derivative of ωd(t), j = 0, . . . , 4,

Li > 0 are sufficiently large numbers, λ j > 1, j = 0, . . . , 4, are HOSM differentiators parameters

that may be chosen recursively [79], µ j > 0, j = 0, . . . , 4 are coefficients chosen such that the

polynomial r(s) = s5 + µ4s4 + µ4µ3s3 + µ4µ3µ2s2 + µ4µ3µ2µ1s + µ4µ3µ2µ1µ0 is Hurwitz, and

σi > 0 are gains which can be adjusted in accordance with the desired dynamic properties. The

obtained estimates are used in the expressions (3.40)-(3.42) instead of the actual derivatives,

specifically,

uT =

[
β3 β2 β1 β0

] [
z31 z21 z11 z01

]T
, (3.53)

ud =

[
α4 α3 α2 α1 α0

] [
z42 z32 z22 z12 z02

]T
(3.54)

where β0, . . . , β3, α0, . . . , α4 are given by (3.43)-(3.51). Overall, the algorithm for stabilization

of angular velocity of the drill bit has the form (3.38), where uT , ud are calculated according

to (3.52) - (3.54), and β0, . . . , β3, α0, . . . , α4 by (3.43)-(3.51).

Remark 3.2 It is proven in [79] that the filter (3.52) provides exact differentiation of T (t),

ωd(t) as long as noise is absent, sample time tends to zero, and the corresponding derivatives
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exist. It is possible to demonstrate that, within each phase of the drilling process and within

each layer, the derivatives of T (t) are well-defined. The bit-rock interaction model implies that

T (t), W(t) are piecewise-linear functions of d. Therefore, Ṫ id defined by ḋ, which can be

represented as follows:

ḋ =
2π (W0 −W(d))

Mω
−

(
K f

M
+
ω̇

ω

)
d. (3.55)

One can establish by induction, using equations (3.55) and (3.4), that higher derivatives of T (t)

are well-defined as well. Therefore, the hybrid HOSM differentiator ensures exact compensa-

tion of the disturbance T (t) in the noise-free case and small sampling time. If the measurement

noise is present, [79, Theorem 6] shows that small magnitude of the noise results in small devi-

ations of the derivatives’ estimates from their actual values, which would result in approximate

compensation of the effect of T on the rotational dynamics.•

Step 3: Anti-chattering filtration

Simulations of response of the closed-loop system with the control law (3.38), (3.43)-

(3.54), (3.33) with q = 1 reveal presence of some chattering in the steady state (see Section 3.6).

Chattering magnitude grows with the increase of the coefficient γ. It happens because of im-

perfect tracking of ωd, as the estimates of derivatives are not always exact due to non-zero step

size and derivatives’ uncertainty at the switching moments. Therefore, it is desirable to reduce

chattering in the steady state. In order to reduce the number of switches, first a small dead zone

is introduced, i.e., the following approximation of the sign function is used:

signd f̃ :=


−1, for f̃ < −∆ f ,

0, for − ∆ f ≤ f̃ ≤ ∆ f ,

1, for f̃ > ∆ f ,

(3.56)

where f is either v or P depending on the task, and ∆ f ≥ 0 is the size of the dead zone defined

by designer. A simple anti-chattering filter was proposed in [84], which, when applied to our

model, can be written as follows:

ω̇d = −(γ|η| + δ)ω2
dv signd f̃ , (3.57)
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τη̇ + η = signd f̃ , (3.58)

where f is either v or P depending on the task, γ > 0 is an arbitrary number, δ > 0 is a

sufficiently small design parameter, η is an average value of signd f̃ , and τ > 0 is the time

constant of the averaging filter. The structure of the overall system is shown in Figure 3.2.
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Figure 3.2: Structure of the closed-loop system

3.6 Simulation results

In this section, we present samples of simulation results of the rate of penetration and

drilling power regulation schemes developed above. Numerical values of all parameters used

in the simulations are presented in Table 3.1. The parameters of the drilling controller are

calculated using the drilling system parameters and the desired poles of the closed-loop system

(s1 . . . s4 in Table 3.1). Their values are the following: K = [−1.397; 8.792;−46.962; 0.012],

β0 = 15.83 · 10−3, β1 = 9.95 · 10−3, β2 = 2.12 · 10−3, β3 = 1.48 · 10−4, α0 = 5.032, α1 = 8.798,

α2 = 4.662, α3 = 0.96, α4 = 0.067.
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Table 3.1: Numerical values of the parameters used in simulations (Chapter 3)

Parameter Value Parameter Value
Parameters set by operator

Pd, W 6000 vd, m/s 0.02
Drilling system parameters

J1, kgm2 450 n 6.9
J2, kgm2 2236 W0, N 4200
c1, Nms 46 M, kg 48500
c2,Nms 415 K f , Nm 21
k, Nm 575 a, m 0.095
R, Ω 0.016 ζ 0.75
L, H 0.002 d∗, m 0.0015 / 0.01
Km, V s 7.6 µγ 2.23

Drilling controller parameters
s1 . . . s4

[
−6.5 −2.9 −4 −1

]
µ0 . . . µ4

[
0.438 1.218 2.647 5.667 15

]
λ0 . . . λ4

[
1.1 1.5 2 3 5

]
L1 104 L2 10
σ1 15 σ2 10
q 1 / 2 / 4 τ 1.2
δ 0.001
∆P, W 15 ∆v, m/s 0.0005

Parameters of the environment
ϵ, J/m3 5 · 106/1 · 107/2 · 107

σκ, N/m2 0.9ϵ
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3.6.1 Rate of penetration regulation

In this part of simulations, the desired value of the vertical rate of penetration is set to

vd = 0.02 m/s, and the velocity control algorithms described in the previous section are imple-

mented. Figure 3.3 shows vertical velocity of the drill bit for q = 1 for different layers with

and without an anti-chattering filter. One can observe that in the presence of the filter chat-

tering is reduced significantly. All subsequent plots with q = 1 are simulated with the filter.

Simulation results for different q are presented in Figures 3.4 - 3.6. Analyzing the plots, one

can observe that there are more oscillations when q = 1; this is because of the presence of

chattering. However, in each layer, this chattering is quickly filtered out. It is also possible

to make the following observation: with the increase of q, processes around the border of the

layers become faster, which is caused by larger magnitude of the control signal, but the subse-

quent convergence of v to its desired value vd turns out to be slower. Combining these facts, we

conclude that q = 2 seems to be an optimal value in the case of rate of penetration regulation.

Figure 3.3: Rate of penetration regulation for q = 1 and different γ: rate of penetration v(t)
without anti-chattering filter (left plot), with filter (3.56)-(3.58) (right plot).
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Figure 3.4: Rate of penetration regulation: output angular velocity of the drill bit ω(t) vs.
reference angular velocity ωd(t) (left plot); rate of penetration v(t) (right plot) for different q.

3.6.2 Drilling power regulation

In this section, the power regulation algorithm is simulated assuming the drilling process

is in phase 1. The desired value of the drilling power is set to Pd = 6000 W. Results of

simulations of the algorithm (3.34), (3.57), (3.58) for different q are shown in Figures 3.7 - 3.9.

It can be seen that, in every case, the drilling power converges to its desired value. Similarly

to the velocity regulation case, the choice q = 2 seems to result in a smoother response and

overall better behaviour as compared to other values of q. Additionally, one can observe that,

in the first phase of drilling, the desired and the actual angular velocities of the drill bit remain

approximately constant, regardless of the rock hardness.

3.7 Conclusions

In this paper, algorithms for regulation of the rate of penetration and the drilling power

in rotary drilling systems are proposed. The speed gradient method is implemented for the

purpose of generation of reference signal, while the latter is subsequently fed into a tracking
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Figure 3.5: Rate of penetration regulation: intrinsic specific energy ϵ(t) (left plot); input
control signal V(t) for different q (right plot).

and disturbance rejection scheme. Regulation is achieved without knowledge of majority of

system’s parameters, including parameters of the bit-rock interaction as well as parameters that

describe the translational dynamics of the drilling system. The control algorithms in this work

are designed under some simplifying assumptions, including absence of communication delays

between the bottom and the ground levels, as well as continuous and noise-free measurements.

Elimination or relaxation of these assumptions constitutes the goal of future research.
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Figure 3.6: Rate of penetration regulation: torque-on-bit T (t) (left plot) and depth of cut d(t)
(right plot) for different q.

Figure 3.7: Drilling power regulation: drilling power P(t) (left plot); output angular velocity
of the drill bit ω(t) vs. reference angular velocity ωd(t) (right plot) for different q.
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Figure 3.8: Drilling power regulation: torque-on-bit T (t) (left plot); input control signal V(t)
(right plot) for different q.

Figure 3.9: Drilling power regulation: depth of cut d(t) (left plot); rate of penetration v(t)
(right plot) for for different q.



Chapter 4

Control of Penetration Rate in Distributed

Parameter Rotary Drilling Systems

This chapter is based on the following article:

Maksim V. Faronov and Ilia G. Polushin. Control of penetration rate in distributed parame-

ter rotary drilling systems. In 2021 IEEE Conference on Control Technology and Applications

(CCTA), pp. 1095–1102, San Diego, USA, August 2021.

4.1 Abstract

This paper deals with control of vertical penetration rate in a spatially distributed rotary

drilling system with limited measurements at the bottom level and unknown parameters of

the rock-bit interaction. Rotational dynamics of the drilling system are represented using an

infinite-dimensional model. A control algorithm which allows for regulation of the vertical

penetration rate to a desired constant level is presented. The proposed algorithm has a cascaded

structure and consists of two parts. First, a reference signal for the rotational velocity of the

drill bit is derived based on the speed gradient method. Second, an algorithm for tracking of

reference velocity signal by the distributed parameters rotational dynamics is designed which

involves an infinite-dimensional reference model and a disturbance observer. Stability of the

closed-loop system is proved using Lyapunov method. Efficiency of the obtained results is

illustrated by simulations.

51
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4.2 Introduction

Drilling automation is an important area of control engineering which was a subject of

active research over recent decades [80, 31]. Advanced results were obtained in many specific

areas of drilling automation including conventional vertical and directional drilling [20, 22],

offshore drilling [36], extraterrestial drilling [85], etc. However, efficient automatic control of

drilling systems remains an open challenge due to complexity of the drilling models as well as

the fact that drilling systems operate in unknown and frequently unpredictable environmental

conditions.

In authors’ previous works [83, 86], control algorithms for regulation of vertical veloc-

ity and drilling power were developed based on simplified finite-dimensional drilling models.

However, more realistic mathematical models of drilling systems are infinite-dimensional and

use partial differential equations (PDEs) with control action applied at the boundary. In the lit-

erature, a number of methods were presented which deal with boundary control of distributed-

parameter systems of similar type. In [87, 88], backstepping design methods were developed

for systems described by PDEs with and without damping and for various boundary condi-

tions. The paper [89] specifically deals with the problem of control of drilling systems with

distributed parameters, however, a simplified model of the drilling response was used and only

the problem of tracking of constant angular velocity was addressed. A number of works deal

with boundary control of wave PDEs with disturbances [90, 91, 92]. Most of these results,

however, are limited to the case of input disturbances which act on the same extremity as the

control input, while in drilling systems the disturbances mostly appear at the drill bit level and

the control action is applied at the opposite end of the drillstring located on the surface. An

alternative approach was used in [15], where the authors apply a special transformation which

transforms a distributed parameter model of drilling system into a finite-dimensional model

with delays (neutral-type time-delay equations), and subsequently design control algorithms

that use motor torque and hook force as control variables.

In this paper, we address the problem of regulation of the vertical penetration rate with

disturbance rejection in rotary drilling systems. We extend our previous results [86] to a more

realistic (and also substantially more difficult) case where the rotational dynamics are described

by a distributed parameters model. Combining it with a detailed nonlinear model of the rock-

bit interaction developed in [20] and a model of translational dynamics from [93], we present a
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cascaded control design approach, where the vertical penetration velocity is regulated through

tracking of the reference angular velocity of the drill bit. The paper is organized as follows.

Section 4.3 presents the mathematical model of the drilling system. In Section 4.4, the control

problem is formulated and the assumptions are stated. The control design approach is presented

in Section 4.5. Numerical simulations which illustrate efficiency of the proposed solution are

demonstrated in 4.6. Finally, in Section 4.7, conclusions are presented and possible future

research is outlined.

4.3 Mathematical model of the drilling system

The structure of a vertical drilling system is shown in Figure 4.1. The system includes

Figure 4.1: The structure of the drilling system

a drilling rig, which is located above the ground, and an underground drillstring. A drilling

process itself is conducted at the bottom hole by a drill bit. The Bottom Hole Assembly (BHA)

is located close to the bit, and its function is to apply additional pressure and carry the necessary

equipment, such as sensors. The BHA is connected to a rotary table on the ground through

drill pipes joined together via threaded connectors. The rotational system is equipped with

a powerful motor which generates torque, transferring it underground and rotating the whole
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drillstring. The string is also connected to a hoisting system that regulates a vertical force by

lifting or dropping the underground components.

The mathematical model of the drilling system consists of three parts which are the rota-

tional dynamics, the translational dynamics, and the model of interaction between the bit and

the rock.

4.3.1 Rotational dynamics

For the rotational dynamics of the rotary drilling system, we use a distributed parameter

model adapted from the one in [15]. Let x ∈ [0, 1] denote a normalized distance between the

ground level and the corresponding point along the drillstring; in particular, x = 0 and x = 1

correspond to positions of the rotary table and the drill bit, respectively. By ϕ(x, t) we denote

the angle of rotation along the drillstring as a function of normalized distance x and time

t. Following standard practice, we use subscripts to denote partial derivatives; for example,

ϕt(x, t) := ∂ϕ(x, t)/∂t, ϕx(x, t) := ∂ϕ(x, t)/∂x, ϕtt(x, t) := ∂2ϕ(x, t)/∂t2, etc. The rotational

dynamics are described by the following partial differential equation (PDE) [15]:

ρJ2ϕtt(x, t) =
GJ2

L2 ϕxx(x, t) +
ϵϕ

L2ϕtxx(x, t) − γϕϕt(x, t), (4.1)

where L > 0 is the length of the drillsting, G > 0 is the shear modulus, ρ > 0 is density of the

drillstring material, J2 > 0 is geometric moment of inertia of the drill pipes (J2 = Ip/ρ, where

Ip is the moment of inertia), ϵϕ ≥ 0 is the rotational viscoelastic Kelvin-Voigt internal damping

coefficient, and γϕ ≥ 0 is the rotational viscous damping coefficient. The boundary conditions

for PDE (4.1) are of the form

GJ2

L
ϕx(0, t) = −ITϕtt(0, t) − nTm(t), (4.2)

GJB

L
ϕx(1, t) = −IBϕtt(1, t) − T (t), (4.3)

where IT > 0 and IB > 0 are lumped moments of inertia at the rotary table and the drill bit

levels, respectively, JB := IB/ρ is the geometric moment of inertia at the BHA/bit level, Tm(t)

is motor torque, n is a gearbox ratio, and T (t) is the torque-on-bit which represents a reaction
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torque that appears as a result of rock cutting. The torque generated by the DC motor in (4.2)

is proportional to the armature current:

Tm(t) = KmI(t), (4.4)

where Km > 0 is a motor constant, I(t) is armature current. Thus, the control variable here is

current through the motor armature, and since the control variable enters the boundary condi-

tion (4.2) the control problem is that of boundary control [87].

In a number of recent works [89, 15, 56], the damping torques, i.e., the last two term in the

right-hand side of (4.1), are assumed zero. The motivation is that majority of energy dissipation

in drilling systems is due to the rock-bit interaction, and therefore dissipation due to damping

torques acting on the drillstring can be considered negligible. In this work, we assume that the

Kelvin-Voigt internal damping is null (i.e., ϵϕ = 0), however, the viscous damping is generally

speaking non-negligible (γϕ > 0). Under these assumptions, one can rewrite the model (4.1)-

(4.4) in the following form:

ϕtt(x, t) = c2ϕxx(x, t) − k1ϕt(x, t), (4.5)

ϕx(0, t) = −k2ϕtt(0, t) − k3I(t), (4.6)

ϕx(1, t) = −qϕtt(1, t) + τ(t), (4.7)

where c := 1
L

√
G/ρ > 0, k1 := γϕ

ρJ2
> 0, k2 := IT L

GJ2
> 0, k3 := KmnL

GJ2
> 0, q := ρLG > 0 are known

coefficients, and τ(t) = − L
GJB

T (t) is a non-measurable disturbance.

4.3.2 Translational dynamics

In this work, we address the case where the longitudinal deformations of the drillstring

are assumed negligible. Therefore, for the translational dynamics, we use a lumped parameter

model of the form [93]:

Mv̇(t) = W0 −W(t) − K f v(t), (4.8)
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where v(t) is the vertical rate of the bit penetration, M > 0 is the overall mass of the drillstring,

W0 is the difference between the submerged weight of the drilling system and the force applied

by the hoisting system, K f > 0 is the viscous friction coefficient, and W(t) is the weight-on-

bit which is a reaction force generated in response to the drillstring’s pressure applied to the

bottom hole.

4.3.3 Bit-rock interaction

To describe the interaction between the drill bit and the rock, we use a mathematical model

for the drilling response developed in [20, 19]. The drilling response model relates the torque-

on-bit T and the weight-on-bit W to the vertical rate of penetration v and the rotational velocity

of the bit ω := ϕt(1, t). To obtain these relations, one can decompose T and W into their cutting

and frictional components, as follows

T = T c + T f , W = Wc +W f , (4.9)

where the superscripts c and f denote the cutting and the frictional components, respectively.

The cutting components are given by the following formulas [20, 19]:

T c :=
1
2

a2ϵd, Wc := aζϵd, (4.10)

where a > 0 is the bit radius, ϵ ≥ 0 is the intrinsic specific energy which represents the amount

of energy spent for cutting a unit volume of the material by an ideally sharp bit, ζ is the ratio

of the vertical force to the horizontal force between the rock and the cutter contact surfaces,

and d > 0 is the depth of cut. The depth of cut d is an important variable which describes

the vertical penetration distance per one revolution of the bit. In the steady state, it can be

approximated using the following formula [20]

d = 2π
v
ω
. (4.11)

In contrast with the cutting components T c, Wc, expressions that describe the frictional

components T f , W f depend on the specific drilling phase [20]. The drilling phases are func-

tions of the depth of cut d. There are three phases: phase 1 in which d < d∗, phase 2 where

d∗ ≤ d ≤ db, and phase 3 in which d > db, where d∗ > 0 and db > d∗ are some critical (gener-
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ally unknown) values of d that correspond to transitions between drilling phases. The frictional

components T f , W f are described as follows

T f :=


(a2/2) · µγσκd, for d < d∗,

(a2/2) · µγσκd∗, for d∗ ≤ d ≤ db,

(a/2) · µγ( d−db
β
+ aσκd∗), for d > db,

(4.12)

W f :=


aσκd, for d < d∗,

aσκd∗, for d∗ ≤ d ≤ db,

d−db
β
+ aσκd∗, for d > db,

(4.13)

where µ > 0 is a ratio between parallel and normal components of the cutter force which acts

along the wear flat, γ > 0 is the bit constant which depends on the bit design, σ > 0 is the

contact strength defined as a bound of the normal stress that can be transmitted by the wear

flat, κ > 0 is the rate of change of contact length with d, and β is a coefficient characterizing

the slope of W f in phase 3.

4.4 Problem formulation and assumptions

In this paper, we address the problem of regulation of the vertical rate of penetration in

the rotary drilling system described by the mathematical model (4.5)-(4.13). Specifically, we

design a control algorithm which, for a given arbitrary desired constant value vd > 0, guarantees

that

v(t)→ vd as t → ∞. (4.14)

We solve the above formulated problem under the following assumptions.

Assumption 4.1 Parameters in the equations (4.5)-(4.7) that describe the rotational dynamics

of the drilling system (i.e., c, k1, k2, k3, q) are constant and known.

Assumption 4.2 The angular velocity of the rotary table ϕt(0, t), the angular velocity of the

drill bit ϕt(1, t), and the vertical rate of penetration v(t) are continuously measured and avail-

able to the controller without delays.
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It is worth to mention that the parameters of the drill bit and the environment that enter

the equations (4.8), (4.10), (4.12), (4.13), are assumed unknown. Also, the control algorithm

presented below does not use real-time measurement of the torque-on-bit T (t) and the weight-

on-bit W(t).

4.5 Control design

Step 1: Design for the desired angular velocity ωd

At this step, our goal is to design a reference rotational velocity of the drill bit, which brings

the vertical velocity to a desired constant level vd. In doing so, we use the speed gradient

approach, details of which can be found in our previous paper [86]. The algorithm for the

reference rotational velocity ωd is defined as follows:

ω̇d = −γv ω
2
d v |ṽ|z−1 sign{ṽ}, (4.15)

where z ∈ {1, 2, . . .}, γv > 0 is an arbitrary constant which impacts the speed of convergence,

and ṽ := v − vd is a vertical velocity error. It was demonstrated in [86] that ω(t) ≡ ωd(t) re-

sults in convergence v(t) → vd as t → +∞. Moreover, taking into account the persistency of

excitation property, which holds in this case, it can be shown that the system is globally uni-

formly asymptotically stable (the corresponding analysis is straightforward and can be based

for example on [49, Theorem 3.10]).

Step 2: Tracking of the desired angular velocity

At this step, our goal is to design a control algorithm for the rotational dynamics (4.5)-(4.7)

that guarantees exponential convergence of the angular velocity of the drill bit ϕt(1, t) to its

desired value ωd(t) as t → +∞, where ωd(t) is generated by the algorithm (4.15). Our approach

is based on that from [94], where a similar problem was solved for a wave equation with

different boundary conditions and without damping. Consider the rotational dynamics (4.5)-

(4.7), where the armature current I plays the role of control input. Let us redefine a control
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input as follows

I = −k−1
3

[
k2ϕtt(0, t) + ū

]
, (4.16)

where ū is the new control input. Substitution of (4.16) into (4.5)-(4.7) results in the following

equations of the rotational dynamics

ϕtt(x, t) = c2ϕxx(x, t) − k1ϕt(x, t), (4.17)

ϕx(0, t) = ū, (4.18)

ϕx(1, t) = −qϕtt(1, t) + τ(t). (4.19)

In order to implement a control strategy for (4.17)-(4.19), we use a reference model and a

disturbance observer. The reference model is of the form

gtt(x, t) = c2gxx(x, t) − k1gt(x, t), (4.20)

gt(1, t) = ωd(t), (4.21)

gx(1, t) = −qω̇d(t) + τ̂(t), (4.22)

where τ̂ is an estimate of disturbances τ at the bit level. The model (4.20)-(4.22) produces

trajectories of the system that correspond to the reference (i.e., desired) rotational velocity of

the drill bit ωd. An estimate τ̂ of disturbances τ used in (4.22) is obtained using a disturbance

observer of the form

ftt(x, t) = c2 fxx(x, t) − k1 ft(x, t), (4.23)

subject to boundary conditions

fx(0, t) = ū(t) − c1 (ϕt(0, t) − ft(0, t)) , (4.24)

ft(1, t) = ϕt(1, t), (4.25)
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where c1 > 0 is a design parameter. An estimate τ̂ is subsequently generated according to the

formula

τ̂(t) = q ftt(1, t) + fx(1, t). (4.26)

Finally, the control input ū applied to the right-hand side of (4.18) is

ū(t) = gx(0, t) + c2 ·
[
ϕt(0, t) − gt(0, t)

]
, (4.27)

where c2 > 0 is a design parameter.

Using notation g̃(·) := ϕ(·) − g(·), f̃ (·) := ϕ(·) − f (·), the equations for g̃(·), f̃ (·) along the

trajectories of the closed-loop system (4.17)-(4.27) are as follows

g̃tt(x, t) = c2g̃xx(x, t) − k1g̃t(x, t), (4.28)

f̃tt(x, t) = c2 f̃xx(x, t) − k1 f̃t(x, t), (4.29)

subject to conditions

g̃x(0, t) = c2 g̃t(0, t), (4.30)

f̃x(0, t) = c1 f̃t(0, t), (4.31)

g̃x(1, t) = −qg̃tt(1, t) + f̃x(1, t), (4.32)

f̃t(1, t) = 0, (4.33)

where, in particular, equation (4.33) follows from (4.25), while (4.32) can be obtained by

combining (4.19), (4.25), and (4.26).

In order to formulate the stability result, let us introduce the spatial L2-norms of signals

g̃t, g̃x, according to the formulas ∥g̃t(t)∥2 :=
 1∫

0
g̃2

t (x, t)dx
1/2

, ∥g̃x(t)∥2 :=
 1∫

0
g̃2

x(x, t)dx
1/2

, and

similarly for f̃t, f̃x. The following result is valid.

Theorem 4.5.1 Consider the system (4.28)-(4.33). Suppose the coefficients c, k1 that enter

equation (4.5) satisfy the condition

k1 < c/2. (4.34)
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Then for any gains c1, c2 > 0, along the trajectories of the system (4.28)-(4.33), ∥g̃t(t)∥2 → 0,

∥g̃x(t)∥2 → 0, ∥ f̃t(t)∥2 → 0, ∥ f̃x(t)∥2 → 0 exponentially as t → +∞.

Remark 4.1 The condition (4.34) means that the viscous damping along the drillstring is suf-

ficiently small. The assumption is reasonable, in fact, in the literature the viscous damping is

frequently assumed zero as majority of energy dissipation happens at the bit-rock interface (see

for example [15, Section 2.2.2] and references therein).

Proof Consider the following Lyapunov functional candidate:

V := K · V f + Vg, (4.35)

where

V f :=
1
2

1∫
0

f̃ 2
t (x, t)dx +

c2

2

1∫
0

f̃ 2
x (x, t)dx

−β1

1∫
0

x f̃t(x, t) f̃x(x, t)dx − β2

1∫
0

(1 − x) f̃t(x, t) f̃x(x, t)dx,

(4.36)

and

Vg :=
1
2

1∫
0

g̃2
t (x, t)dx +

c2

2

1∫
0

g̃2
x(x, t)dx +

qc2

2
g̃2

t (1, t) + β3

1∫
0

(x − 2)g̃t(x, t)g̃x(x, t)dx. (4.37)

In the above functional, the parameters K > 0, β1 > 0, β2 > 0, β3 > 0 are chosen such that

β2 < min
{

c,
2c2c1

1 + c2c2
1

}
, (4.38)

β3 < min
{

c
2
,

c2c2

1 + c2c2
2

}
, (4.39)

β1 < β2

(
1 −

k1

c

)
, (4.40)

K >
c2

β1β3
. (4.41)

It is easy to verify that V f , Vg are positive definite; more precisely, there exist κ1 f , κ2 f , κ1g,
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κ1g > 0 such that

κ1 f

(
∥ f̃t∥

2
2 + ∥ f̃x∥

2
2

)
≤ V f ≤ κ2 f

(
∥ f̃t∥

2
2 + ∥ f̃x∥

2
2

)
, (4.42)

κ1g

(
∥g̃t∥

2
2 + ∥g̃x∥

2
2

)
≤ Vg ≤ κ2g

(
∥g̃t∥

2
2 + ∥g̃x∥

2
2

)
. (4.43)

Indeed, collecting the terms in (4.36), we have

V f =

1∫
0

[
1
2

f̃ 2
t +

c2

2
f̃ 2
x + ((β2 − β1)x − β2) f̃t f̃x

]
dx. (4.44)

From (4.40), (4.38), it follows that 0 < β1 < β2 < c. Taking into account 0 ≤ x ≤ 1, we see that

c2 − ((β2 − β1)x − β2)2 > 0. The latter implies that the expression under the integral in (4.44) is

a positive definite quadratic form, which implies (4.42). Similarly, (4.39) implies (4.43).

In the derivations below, the arguments (x, t) will be omitted unless x = 0 or x = 1. The

time derivative of the Lyapunov function (4.36) is

V̇ f =

1∫
0

(
f̃t f̃tt + c2 f̃x f̃xt

)
dx − β1

1∫
0

x
(

f̃tt f̃x + f̃t f̃xt

)
dx − β2

1∫
0

(1 − x)
(

f̃tt f̃x + f̃t f̃xt

)
dx.

Using (4.29), and integrating by parts, one gets

V̇ f = c2 f̃x f̃t

∣∣∣1
0
−

c2β1

2
x f̃ 2

x

∣∣∣∣∣∣1
0

−
β1

2
x f̃ 2

t

∣∣∣∣∣1
0
−

c2β2

2
(1 − x) f̃ 2

x

∣∣∣∣∣∣1
0

−
β2

2
(1 − x) f̃ 2

t

∣∣∣∣∣1
0

−

(
β2

2
−
β1

2
+ k1

) 1∫
0

f̃ 2
t dx − c2

(
β2

2
−
β1

2

) 1∫
0

f̃ 2
x dx − k1

1∫
0

((β2 − β1)x − β2) f̃t f̃xdx

= c2 f̃x(1) f̃t(1) − c2c1 f̃ 2
t (0) −

c2β1

2
f̃ 2
x (1) −

β1

2
f̃ 2
t (1) +

c2β2c2
1

2
f̃ 2
t (0) +

β2

2
f̃ 2
t (0)

−

(
β2

2
−
β1

2
+ k1

) 1∫
0

f̃ 2
t dx − c2

(
β2

2
−
β1

2

) 1∫
0

f̃ 2
x dx − k1

1∫
0

((β2 − β1)x − β2) f̃t f̃xdx.
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Taking advantage of the fact that f̃t(1) = 0, we obtain

V̇ f = −

(
c2c1 −

β2

2
−
β2c2c2

1

2

)
f̃ 2
t (0) −

β1c2

2
f̃ 2
x (1)

−

(
β2

2
−
β1

2
+ k1

) 1∫
0

f̃ 2
t dx − c2

(
β2

2
−
β1

2

) 1∫
0

f̃ 2
x dx − k1

1∫
0

((β2 − β1)x − β2) f̃t f̃xdx.

Next, the time derivative of Vg is

V̇g =

1∫
0

g̃tg̃ttdx + c2

1∫
0

g̃xg̃xtdx + qc2g̃t(1)g̃tt(1) + β3

1∫
0

(x − 2)g̃ttg̃xdx + β3

1∫
0

(x − 2)g̃tg̃xtdx.

After integration, one can see that

V̇g = c2g̃xg̃t

∣∣∣1
0
+ qc2g̃t(1)g̃tt(1) +

c2β3

2
(x − 2)g̃2

x

∣∣∣∣∣∣1
0

+
β3

2
(x − 2)g̃2

t

∣∣∣∣∣1
0
−

(
β3

2
+ k1

) 1∫
0

g̃2
t dx

−
c2β3

2

1∫
0

g̃2
xdx − k1β3

1∫
0

(x − 2)g̃tg̃xdx

= c2g̃t(1) f̃x(1) − c2c2g̃2
t (0) −

c2β3

2
(−qg̃tt(1) + f̃x(1))2 −

β3

2
g̃2

t (1) + c2β3c2
2g̃2

t (0) + β3g̃2
t (0)

−

(
β3

2
+ k1

) 1∫
0

g̃2
t dx −

c2β3

2

1∫
0

g̃2
xdx − k1β3

1∫
0

(x − 2)g̃tg̃xdx.

and using Young’s quadratic inequality g̃t(1) f̃x(1) ≤ δ1
2 g̃2

t (1) + 1
2δ1

f̃ 2
x (1) which holds for an

arbitrary δ1 > 0, one obtains:

V̇g ≤ −(c2c2 − β3 − β3c2c2
2)g̃2

t (0) −
c2β3

2
(−qg̃tt(1) + f̃x(1))2 −

(
β3

2
−

c2δ1

2

)
g̃2

t (1) +
c2

2δ1
f̃ 2
x (1)

−

(
β3

2
+ k1

) 1∫
0

g̃2
t dx −

c2β3

2

1∫
0

g̃2
xdx −

c2β3

2

1∫
0

g̃2
xdx − k1β3

1∫
0

(x − 2)g̃tg̃xdx.

Now, for the overall Lyapunov function(al) candidate (4.35), we would like to show that
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there exists σ > 0, such that V̇ + σV < 0. We have:

V̇ + σV = KV̇ f + V̇g + σKV f + σVg

≤ −K
(
c2c1 −

β2

2
−
β2c2c2

1

2

)
f̃ 2
t (0) − (

Kβ1c2

2
−

c2

2δ1
) f̃ 2

x (1) − (c2c2 − β3 − β3c2c2
2)g̃2

t (0)

−
c2β3

2
(−qg̃tt(1) + f̃x(1))2 −

β3 − c2δ1 − σqc2

2
g̃2

t (1) −
Kβ2 − Kβ1 − σ

2

1∫
0

f̃ 2
t dx

−
c2

2
(Kβ2 − Kβ1 − σ)

1∫
0

f̃ 2
x dx + (σ − Kk1)

1∫
0

((β2 − β1)x − β2) f̃t f̃xdx −
β3 − σ

2

1∫
0

g̃2
t dx

−
c2

2
(β3 − σ)

1∫
0

g̃2
xdx + (σ − k1)β3

1∫
0

(x − 2)g̃tg̃xdx.

It can be shown that, if the conditions (4.34)-(4.41) are met, the inequality V̇ + σV < 0 is

satisfied with

σ = min
{
β3 − c2δ1

qc2 ,
(c + 2k1 sign{β3 − k1})β3

2β3 sign{β3 − k1} + c
,

cK(β2 − β1) + Kk1β2 sign{β2 − β1 − k1}

β2 sign{β2 − β1 − k1} + c

}
.

Thus, V̇ ≤ −σV , which implies V(t) ≤ V(0)e−σt, and the statement of theorem follows

from (4.35), (4.42), and (4.43). •

Theorem 4.5.1, in particular, states that ∥g̃t(t)∥22 :=
1∫

0
g̃2

t (x, t)dx → 0 exponentially as t →

+∞. Taking into account the uniform boundedness of g̃tx = g̃xt along the trajectories of the

closed-loop system, this implies g̃t(1, t) := ϕt(1, t) − ωd(t) → 0 exponentially as t → +∞.

Indeed, integrating by parts, one obtains

1∫
0

g̃2
t (x, t)dx = g̃2

t (x, t) x
∣∣∣1
x=0
− 2

1∫
0

xg̃t(x, t)g̃tx(x, t)dx = g̃2
t (1, t) − 2

1∫
0

xg̃t(x, t)g̃tx(x, t)dx,
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and therefore

g̃2
t (1, t) =

1∫
0

g̃2
t (x, t)dx + 2

1∫
0

xg̃t(x, t)g̃tx(x, t)dx ≤ ∥g̃t(t)∥22 + 2


1∫

0

g̃2
t (x, t)dx


1
2


1∫
0

x2g̃2
tx(x, t)dx


1
2

≤ ∥g̃t(t)∥22 + 2


1∫

0

g̃2
t (x, t)dx


1
2


1∫
0

g̃2
tx(x, t)dx


1
2

= ∥g̃t(t)∥22 + 2 · ∥g̃t(t)∥2 · ∥g̃tx(t)∥2,

where we used the Cauchy-Schwartz inequality and an (obvious) fact that x2 ≤ 1 for all x ∈

[0, 1]. From the last string of inequalities, it follows that uniform boundedness of g̃tx(x, t)

together with the fact that ∥g̃t(t)∥2 → 0 exponentially as t → +∞ imply g̃t(1, t) := ϕt(1, t) −

ωd(t)→ 0 exponentially as t → +∞.

Step 3: The overall stability analysis

Now, in order to justify the stability properties of the overall drilling control systems, con-

sider a block diagram shown in Figure 4.2. Assuming g̃t(1, t) ≡ 0, the feedback loop consisting

of translational dynamics and speed-gradient control algorithm (4.15) is globally uniformly

asymptotically stable (Section 4.5 Step 1). On the other hand, as shown in Section 4.5, Step 2,

the output g̃t(1, t) := ϕt(1, t) − ωd(t) of the controlled rotational dynamics exponentially con-

verges to zero for arbitrary bounded signalsωd, ω̇d. Thus, the overall system can be represented

as a cascade interconnection of a driving subsystem whose output converges exponentially to

zero and a globally uniformly asymptotically stable driven subsystem (Figure 4.3). Under mild

technical assumptions, such a cascade is globally asymptotically stable [95, Corollary 1]. In ad-

dition, the initial conditions for the driving system (i.e., the controlled rotational dynamics) can

be set equal to zero by resetting the initial states of the model (4.20)-(4.22), the observer (4.23)-

(4.25), as well as that of the speed gradient controller (4.15). This would theoretically result

in the output of the controlled rotational dynamics being totally equal to zero, i.e., g̃t(1, t) ≡ 0,

which effectively reduces the overall cascade dynamics to those of the driven system (i.e. the

controlled translational dynamics) which are globally uniformly asymptotically stable.

Remark 4.2 As it was mentioned before, the angular acceleration on the upper extremity

ϕtt(0, t) is used in the control algorithm (4.16). Due to the assumption that only ϕt(0, t) and

ϕt(1, t) are measurable but their derivatives are not, this acceleration should be estimated. It
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can be done by using a high order sliding mode (HOSM) observer, which theoretically can

provide perfect real-time differentiation while staying robust to noises. Adapting the result

from [78], one can use the following structure:

ϕ̇1 = −λ1M1/2
0 |ϕ1 − ϕt(0, t)|1/2 sign{ϕ1 − ϕt(0, t)} − µ1σ(ϕ1 − ϕt(0, t)) + ϕ2,

ϕ̇2 = −λ2M0 sign{ϕ2 − ϕ̇1} − µ2σ(ϕ2 − ϕ̇1), (4.45)

where M0 > 0 is a sufficiently large number, λi > 1 are HOSM differentiator parameters that

may be chosen recursively [79], µi > 0 are arbitrary positive coefficients, and σ > 0 is an

adjustable gain. An estimate of the second time derivative is defined by ϕ̂tt(0, t) = ϕ2(t). This

signal can be used in place of the real value in (4.16).

4.6 Simulation results

In this section, we present an example of simulation results of the drilling system with the

proposed control algorithm. For simulation of PDEs, we use a simple implicit finite difference

method. A discrete version of the algorithm for reference rotational velocity (4.15) (with z = 2)

is obtained using second-order Taylor method [96]:

ωd( j + 1) = ωd( j) − γω2
d( j)v( j)ṽ( j)∆t + γ2ω3

d( j)v2( j)ṽ2( j)∆t2.
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Table 4.1: Numerical values of the parameters used in simulations (Chapter 4)

Parameter Value Parameter Value
Parameters set by operator

vd, m/s 0.025 c1 0.1
c2 1200 γv 50

Drilling system parameters
G, N/m2 79.3 · 109 ρ, kg/m3 8000
L, m 1400 W0, N 4150
Ib, kgm2 352 M, kg 52000
IB,kgm2 110 K f , Nm 28
IT , kgm2 91 a, m 0.093
Ip, kgm2 2317 ζ 0.82
n 5 d∗, m 0.002
Km, V s 8.6 µγ 2.7
γϕ, Ns 100

Parameters of the environment
ϵ, J/m3 5 · 106/1 · 107/2 · 107

σκ, N/m2 0.89ϵ

The exact discretization of the (linear) equation of the translational dynamics (4.8) is obtained

as follows:

v( j + 1) = e−
K f
M ∆tv( j) −

W0 −W( j)
K f

(
e−

K f
M ∆t − 1

)
.

Numerical values of all parameters that are used in the simulations are presented in Ta-

ble 4.1. We simulate the drilling process through several rock layers with different intrinsic

specific energy. Simulation results obtained using time step ∆t = 0.15 s and spatial discretiza-

tion step of ∆x = 7 m are presented in Figures 4.4 - 4.8. It can be seen that the proposed

controller solves the regulation problem, specifically the rate of penetration converges to its

desired value vd = 0.025m/s in a reasonable time. Rotational velocity of the drill bit ϕt(x, t)

tracks the reference rotational velocity ωd(t) almost ideally, and the disturbance is estimated

rather precisely. Also, the error g̃(x, t) converges to a small neighborhood of zero in each layer.

4.7 Conclusions

In this paper, the problem of regulation of the vertical penetration rate in rotary drilling

systems is addressed in the situation where the parameters of the rock-bit interaction are un-
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Figure 4.4: Rate of penetration v(t)

Figure 4.5: Output angular velocity of the drill bit ϕt(1, t) vs. reference angular velocity ωd(t)
(left plot); disturbance τ(t) vs. its estimate τ̂(t) (right plot).

known. The rotational dynamics of the drilling system are assumed to be infinite-dimensional

and modeled using partial differential equations. A cascaded approach for control of transla-

tional dynamics is developed which is based on regulation of the angular velocity of the drill

bit using a distributed parameter reference model, where unmeasured variables at the bit level

are estimated using a distributed parameter observer. The convergence is proved using Lya-
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Figure 4.6: Angular velocity along the drillstring ϕt(x, t) (left plot); error between the
reference and the actual angle of rotation g̃(x, t) = ϕ(x, t) − g(x, t) (right plot).

Figure 4.7: Intrinsic specific energy ϵ(t) (left plot); input control signal I(t) (right plot).

punov methods. An example of simulations is presented which demonstrate the validity and

efficiency of the proposed results. Future research will deal with investigation of robust proper-

ties of the proposed algorithm and possible development of adaptive versions in the case where

parameters of the system are unknown and/or subject to change.
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Figure 4.8: Torque-on-bit T (t) (left plot); depth of cut d(t) (right plot).



Chapter 5

Observer-Based Control of Vertical

Penetration Rate in Rotary Drilling

Systems

This chapter is based on the following article:

Maksim V. Faronov and Ilia G. Polushin. Observer-based control of vertical penetration

rate in rotary drilling systems. Journal of Process Control, Volume 106, pp. 29–43, 2021.

5.1 Abstract

An algorithm for regulation of the vertical penetration rate in rotary drilling systems is de-

veloped under the assumption that parameters of the rock-bit interaction as well as those of the

translational dynamics are unknown. The control design utilizes a multi-step approach, where

the vertical penetration velocity is regulated through an appropriate assignment of a reference

rotational velocity signal, while the tracking of the latter is achieved using tracking with dis-

turbance rejection scheme. In contrast with the existing results, the algorithm does not require

real-time measurement and communication to the ground level of the downhole variables, such

as angular position, rotational velocity, and torque-on-bit. This is achieved through the use of

high-order sliding mode observers which estimate the required downhole variables based on

measurements performed at the ground level. Simulation results are presented which confirm

efficiency of the proposed control method.

71
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5.2 Introduction

In modern drilling systems, automation is an important component which allows for safer,

cheaper, and more efficient operations [5]. Industrial companies currently employ drilling

automation systems with different degrees of autonomy, from monitoring to fully automated

solutions [97]. Over the recent decades, researchers have worked on different aspects of auto-

matic drilling, such as modeling and control of the drill bit in conventional vertical drilling [98,

56], trajectory control for directional drilling [99, 100], pressure control in managed pressure

drilling [36, 101], and other challenges. However, many areas of drilling automation remain

underdeveloped [31], and the existing solutions can be made more effective by introduction of

new methods and elimination of simplifying assumptions.

One of the typical tasks in automatic control of drilling systems is to bring the drilling

operation to a certain desired stable mode and maintain it automatically while suppressing

vibrations and rejecting disturbances. A number of approaches to modeling and control of

the drilling systems have been developed over the years (see [102]). Models of the drilling

process differ substantially in their complexity. On one end of the complexity spectrum are

finite-dimensional lumped parameter models [16, 68]. Even though these models do not typ-

ically describe the processes happening in the wellbore in full detail, they nevertheless allow

for design of observers and control algorithms that were proven practically effective. Exam-

ples of such controllers include soft torque algorithm [57], impedance matching [58], H∞-

based method [103], and others. On the other end of the complexity spectrum are infinite-

dimensional models which allow for more realistic description of the drilling systems [15],

where the most complex models combine distributed torsional dynamics with axial [104] as

well as lateral [105] dynamics. In particular, infinite-dimensional models reveal complex

dynamics and patterns of behavior of the drillstrings which are impossible to predict using

lumped-parameter models [18, 106]. The control approaches for infinite-dimensional drilling

models include flatness based feedforward control with disturbance rejection [107], observer-

based robust stabilization of interconnections that involve hyperbolic partial differential equa-

tions [108], prediction-based adaptive backstepping-like controller [89], and the use of a trans-

formation which transforms partial differential equations into a system of finite-dimensional

neutral-type time delay equations [15]. Recently in [109], a design of observer for parameters

of the bit-rock interaction law is presented based on an infinite-dimensional model for torsional
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dynamics.

Previously in [86], we addressed the problems of regulation of the vertical penetration rate

and the drilling power in rotary drilling systems in the situation where the process of rock-bit

interaction is described by the nonlinear drilling response model [20], parameters of which are

assumed unknown. We presented a two-step control design that solves the problem of regula-

tion of the vertical penetration rate, while also solving the drilling power regulation problem

under the assumption that the drilling process is in the phase 1 [20]. The major limitation of the

control design presented in [86] is the assumption that the angular position and the rotational

velocity of the drill bit, as well as the torque-on-bit are continuously and precisely measured

and available to the ground-level controller without delays. This assumption is unrealistic [31];

in fact, in real life drilling automation systems, the borehole measurements are noisy, and the

communication process between the bottom hole and the ground level is subject to severe data

rate limitations as well as latency and jitter.

In this paper, we address the problem of regulation of the vertical penetration rate in rotary

drilling system assuming unknown parameters of the rock-bit interaction process. We improve

upon the results developed in [86] by completely removing the assumptions of direct measure-

ment of the angular position and the rotational velocity of the drill bit, as well as that of the

torque-on-bit. This is achieved through design of a hybrid high-order sliding mode observer

which generates theoretically exact estimates of the dynamic variables at the downhole level as

well as those of input disturbances including torque-on-bit and its time derivatives. Since these

estimates are generated based on measurements performed at the ground level, the proposed

approach also allows for complete elimination of any and all assumptions related to real-time

communication between the downhole and the ground levels. The design approach used in our

work utilizes a lumped parameter model of the drilling system dynamics which allows for use

of tools from finite-dimensional observer and control theory. The designed control and obser-

vation algorithm is subsequently simulated in conjunction with infinite-dimensional distributed

parameter model of drillstring rotational dynamics similar to that of [15], and the simulation re-

sults demonstrate validity of the design approach. A preliminary version of some of the results

from this paper is reported in [110].

The paper is organized as follows. In Section 5.3, the mathematical model of the drilling

system is described, including rotational dynamics, translational dynamics, and the rock-bit

interaction model. In Section 5.4, the control problem is formulated, and the assumptions are
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Figure 5.1: The structure of the drilling system

stated. The design of control/observation algorithm is discussed in Section 5.5. Simulation

results are presented in Section 5.6, while in Section 5.7 concluding remarks are given.

5.3 Mathematical model of the drilling system

The purpose of the drilling system is to create a borehole by rotating a drill bit which

crushes the surrounding rock. The structure of a vertical rotary drilling system is shown in

Figure 5.1. The system consists of ground components, which include a drilling rig together

with the drive and the hoisting systems, and the underground parts which include the drillstring

and the Bottom Hole Assembly (BHA). On the ground, a large rotary table controlled by a

powerful DC motor is connected to the drillstring. The drive system generates torque, and

the drillstring transfers the torque to the drill bit. The drillstring mainly consists of hollow

drill pipes. The upper end of the drill string is attached to the hoisting system, which controls

the hook and applies a specified upward force. The BHA is attached to the lower end of the

drillstring, and contains the drill bit as well as other components such as sensors.

The mathematical model of the drilling system that we use includes three major compo-

nents: rotational dynamics, translational dynamics, and the interaction between the bit and the
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rock. The rotational dynamics are described by the following equations [16]:

J1ϕ̈ + c1ϕ̇ + k(ϕ − ϕr) + T = 0, (5.1)

J2ϕ̈r + c2ϕ̇r − k(ϕ − ϕr) − nTm = 0, (5.2)

where (5.1) describes the dynamics of BHA and the drill pipes while (5.2) those of the rotary

table and the drive. In these equations, ϕ denotes the angular position of the drill bit, ϕr is the

angular position of the rotary table, J1 > 0 is the equivalent combined moment of inertia of

the BHA and the drill pipes while J2 > 0 is that of the rotary table and the drive, c1, c2 ≥ 0

are the equivalent nominal viscous damping coefficients, k > 0 is the equivalent torsional

stiffness of the drill pipes, Tm is the torque generated by the motor, n is the gearbox ratio, and

T is an equivalent torque applied to the drill bit which includes the “torque-on-bit” [20] (i.e.,

the reaction torque generated due to rock cutting process) as well as an equivalent sum of all

other torques due to different effects not accounted for in the model (5.1). The dynamics of

the electric drive (a DC motor with a separated excitation circuit) are described by standard

equations

Lİ + RI − Vb − V = 0, Vb = Kmnϕ̇r, Tm = KmI, (5.3)

where I is the armature current, L is an equivalent armature inductance, R is an equivalent

armature resistance, Vb is the back EMF, V is the armature voltage, and Km > 0 is a motor

constant which depends on its characteristics. Using notation ϕ̃ := ϕr − ϕ, ω := ϕ̇, ωr := ϕ̇r,

the rotational dynamics (5.1)-(5.3) can be represented in the state-space form [50, 83, 86], as

follows 
ω̇

˙̃ϕ

ω̇r

İ


=


−

c1
J1

k
J1

0 0

−1 0 1 0

0 − k
J2
−

c2
J2

Kmn
J2

0 0 −
Kmn

L −R
L




ω

ϕ̃

ωr

I


+


− 1

J1

0

0

0


T +


0

0

0
1
L


V. (5.4)

The translational dynamics of the drill string are represented by the following differential
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equation

Mv̇ = W0 −W − K f v, (5.5)

where v is the vertical velocity (penetration rate) of the drill bit, M > 0 is the combined mass of

the drill pipes and the BHA, W0 is the difference between the submerged weight of the drilling

system and the constant upward force supplied by the hoisting system, K f > 0 is the viscous

friction coefficient, and W is the weight-on-bit which is the upward reaction force applied to

the bit.

The interaction between the drill bit and the rock is described by the so called drilling re-

sponse model [20], which defines (generally speaking, nonlinear) relationships between the

angular ω and the vertical v velocities of the bit, the torque-on-bit (denoted below by Tb to dis-

tinguish from an equivalent torque T used in equation (5.1)) and the weight-on-bit W. Specif-

ically, both the torque-on-bit and the weight-on-bit are decomposed into sums of cutting and

frictional components:

Tb = T c + T f , W = Wc +W f , (5.6)

where the superscripts c and f denotes the cutting and the frictional components, respectively.

In the case of a bit without hollow areas, the cutting components are defined as follows [20, 19]:

T c :=
1
2

a2ϵd, Wc := aζϵd, (5.7)

where a > 0 is the radius of the bit, ϵ ≥ 0 is the intrinsic specific energy, which is the amount of

energy consumed for cutting a unit volume of the material by an ideally sharp bit, ζ represents

the ratio of the vertical force to the horizontal force between the rock and the cutter contact

surfaces, and d > 0 is the depth of cut, i.e., the vertical distance to which the bit moves during

one revolution. In the steady state, the depth of cut can be approximated by the following

expression [20]:

d ≈ 2π
v
ω
. (5.8)

The frictional components T f , W f depend on the so-called drilling phase. Depending on the
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depth of cut, three phases of drilling are defined [20]. In phase 1, which corresponds to small

d > 0, the frictional components depend on d linearly. In phase 2, which begins as d reaches

some critical value d∗, the frictional components remain constant regardless of changes in d.

Phase 3, which begins once d reaches another critical value db, is characterized by a “lack of

uniqueness in the response of the bit” [20, Section 3.3], however, for the sake of simplicity, T f ,

W f can be approximated in phase 3 as linear (more precisely, affine) functions of d with un-

known slopes. Overall, the frictional components are described by the following mathematical

model:

T f :=


(a2/2) · µγσκd, for d < d∗ (phase 1),

(a2/2) · µγσκd∗, for d∗ ≤ d ≤ db (phase 2),

(a/2) · µγ(d−db
β
+ aσκd∗), for d > db (phase 3),

(5.9)

W f :=


aσκd, for d < d∗ (phase 1),

aσκd∗, for d∗ ≤ d ≤ db (phase 2),
d−db
β
+ aσκd∗, for d > db (phase 3),

(5.10)

where µ > 0 is the friction coefficient, which is a ratio between parallel and normal components

of the cutter force which acts along the wear flat, γ > 0 is the bit constant which reflects the

bit design and the distribution of the contact forces, σ > 0 is the contact strength defined as a

bound of the normal stress that can be transmitted by the wear flat, κ > 0 is the rate of change of

contact length with d, d∗ > 0 is the critical value of d when contact forces are fully mobilized,

which depends on the bit bluntness, db > d∗ is the critical value of d when the contact surface

between the bit and the rock increases, and β is a coefficient which characterizes the slopes

of T f , W f in phase 3. In the following, we will use the specific mathematical structure of the

weigh-on-bit W described above. As for torque-on-bit Tb, we will not use its mathematical

description explicitly, but instead assume that the equivalent torque applied to the drill bit has a

form T (t) := Tb(t)+T ′(t), where T ′(t) is a sufficiently regular function of time which represents

an equivalent of all physical effects not accounted for in the above model.
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5.4 Problem formulation and assumptions

In this section, we state the control problem addressed in this work and formulate the cor-

responding assumptions.

5.4.1 Problem formulations

In this paper, the following problem is addressed.

Problem 1: Regulation of the vertical rate of penetration. Given vd > 0, find a control

algorithm that guarantees

v(t)→ vd as t → ∞. (5.11)

5.4.2 Assumptions

The problem formulated above is addressed in this work under the following two assump-

tions.

Assumption 5.1 The following signals/variables are available for measurement: i) vertical

penetration rate v; ii) rotary table velocity ωr; iii) armature current I. •

It is worth to notice that both velocity of the rotary table ωr and the armature current I

are ground level signals which in practice are readily available for measurement and can be

communicated to the (ground level) controller without delays. We also assume that the stiffness

of the system in the vertical direction is infinite, so that the vertical penetration rate can also be

measured at the ground level. On the other hand, measurement of the downhole level variables

(such as equivalent torque T , rotational velocity of the drill bit ω, and the angular displacement

of the bit ϕ̃) is not assumed. Since measurement of the downhole variables are not used in the

control algorithm, no assumptions about the communication process between the downhole

and the ground level are necessary.

Assumption 5.2 The following parameters are known to the designer: i) equivalent moments

of inertia J1, J2 > 0; ii) nominal equivalent viscous damping coefficients c1, c2 ≥ 0; iii) equiv-

alent torsional stiffness k > 0; iv) gearbox ratio n. •
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All parameters mentioned in Assumption 5.2 are nominal parameters related to the struc-

tural design of the drilling system and therefore can be assumed known with reasonable pre-

cision. Dynamic effects due to variation of these parameters, such as additional torques, are

considered disturbances and can be accounted for in the equivalent torque signal T (t). On the

other hand, parameters of the translational dynamics (5.5) and those of the bit-rock interaction

model (5.6), (5.7), (5.9), (5.10) are assumed to be (constant) unknown.

5.5 Control design

The design of control algorithms that solve the problem of regulation of the vertical pene-

tration rate formulated in Section 5.4 is presented below. The control design process consists

of four steps. In Step 1, we present design of a family of control algorithms that solve the

vertical penetration rate problem under the assumption that the angular velocity of the drill bit

ω can be controlled directly. More precisely, we design an auxiliary control signal ωd such

that ω ≡ ωd solves the control problem. In Step 2, we present a trajectory tracking with dis-

turbance rejection control algorithm for the rotational dynamics that guarantees tracking of the

reference angular velocity ωd while simultaneously rejecting the disturbance which physically

corresponds to the equivalent torque applied to the drill bit. Implementation of this control

algorithm requires knowledge of the equivalent torque as well as its derivatives, as well as

derivatives of the reference angular velocity, none of which are immediately available. There-

fore, in Step 3 we present design of higher-order sliding mode (HOSM) observers that provide

estimates of the required signals and their derivatives. HOSM observers have a unique property

of finite-time convergence, and the corresponding estimates are exact in the absence of distur-

bances and robust in their presence. Finally, in Step 4, all components of the control algorithm

are combined, and stability of the overall control system is justified.

5.5.1 Step 1: Design for the reference angular velocity

At this first step, we design control algorithms that solve the problem of regulation of

the vertical penetration rate assuming the angular velocity of the drill bit ω can be controlled

directly. As described above in Section 5.4, we do this under the assumption that all the pa-

rameters entering the equation of the translational dynamics (5.5) as well as the formulas that
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describe the rock-bit interaction (5.6)-(5.10) are constant and unknown. Under these assump-

tions, Problem 1 is solved below using the speed-gradient methodology [49]. We begin with

deriving the equations that relate the angular velocity ω to the translational dynamics (5.5).

Taking into account (5.6), (5.7), and (5.10), one can write

W(d) = awd + bw, (5.12)

where aw > 0 and bw are coefficients that depend on phase of drilling and the parameters of the

rock-bit interaction model. Substituting (5.12) into (5.5), one can write

v̇ = −
(

K f

M
+

2πaw

Mω

)
v +

W0 − bw

M
, (5.13)

and using notation K1 := K f

M > 0, K2 := 2πaw
M > 0, K3 := W0−bw

M > 0, equation (5.13) can be

written in the form

v̇ = −(K1 + K2ω
−1)v + K3. (5.14)

It is clear that for any constant ω(t) ≡ ω∗ > 0, equation (5.14) has a globally exponentially

stable equilibrium at

v∗ =
K3

K1 + K2ω−1
∗

.

Conversely, given v∗ ∈ (0; K3
K1

), the choice ω(t) ≡ ω∗ where

ω∗ =
K2v∗

K3 − K1v∗
,

makes v∗ the globally exponentially stable equilibrium of (5.14).

Let vd > 0 be a desired vertical rate of penetration, and let ω∗ > 0 be determined by (5.5.1)

by setting v∗ = vd. Denote

θ := K1 + K2ω
−1, θ∗ := K1 + K2ω

−1
∗ , θ̃ := θ − θ∗. (5.15)

From (5.5.1) one can see that K3 = θ∗vd. Equation (5.14) becomes

v̇ = −θv + θ∗vd.
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Using notation ṽ := v − v∗, one can write

˙̃v = −(θ̃ + θ∗)v + θ∗vd = −θ̃v − θ∗ṽ. (5.16)

Equation (5.16) describes the dynamics of the vertical penetration. For the purposes of control

design, let us augment the dynamics (5.16) with the following equation

˙̃θ ≡ θ̇ = −K2
ω̇

ω2 . (5.17)

which can be obtained by differentiating (5.15) with respect to time while taking into account

that K1, K2 are positive constants. Equation (5.16) together with (5.17) describe the relationship

between the vertical rate of penetration and the rotational velocity.

Our goal at this step is to design a control algorithm that guarantees the global asymptotic

stability of the system (5.16), (5.17) assuming the rotational velocity ω is directly available for

control. The global asymptotic stability (5.16), (5.17) would, in particular, imply that ṽ → 0

as→ +∞, which solves the problem of regulation of the vertical penetration rate. In order to

solve this problem, we apply the speed-gradient control design methodology [49]. To this end,

consider a family of goal functions

Qv,q :=
1
q
· |ṽ|q , where q = 2, 3, . . . (5.18)

Calculating the time derivative of Qv,q along the trajectories of (5.16), one obtains

Q̇v,q = |ṽ|q−1 sign{ṽ} ˙̃v = |ṽ|q−1 sign{ṽ}
(
−θ̃v − θ∗ṽ

)
= −θ̃v |ṽ|q−1 sign{ṽ} − q Qv,qθ∗. (5.19)

Taking into account θ̃ := θ − θ∗, one can calculate

∂Q̇v,q

∂θ
= −v · |ṽ|q−1 sign{ṽ}, (5.20)

and the corresponding family of speed-gradient algorithms [49, Chapter 3] can be obtained as
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follows

˙̃θ ≡ θ̇ = −γ1
∂Q̇v,q

∂θ
= γ1 v |ṽ|q−1 sign{ṽ}, q = 2, 3, . . . (5.21)

Taking into account (5.17), we see that (5.21) is equivalent to the following algorithm for the

rotational velocity ω:

ω̇ = −γv ω
2 v |ṽ|q−1 sign{ṽ}, q = 2, 3, . . . (5.22)

where γv := γ1/K2 > 0.

The following result is valid.

Theorem 5.5.1 The translational drilling dynamics (5.16), (5.17) controlled by algorithm (5.22)

is globally asymptotically stable. In particular,

v(t)→ vd as t → +∞. (5.23)

Proof. Conditions for asymptotic stability of a nonlinear system controlled by a speed-

gradient algorithm can be found in [49, Theorem 3.10]. The statement of Theorem 5.5.1 for-

mulated above can therefore be proven by demonstrating that system (5.16), (5.17), (5.22)

satisfies all conditions of [49, Theorem 3.10]. Theorem 3.10 of [49] contains a relatively high

number of technical assumptions, however, essential conditions are as follows. First, Qv,q must

grow without bound as |ṽ| → ∞, which obviously follows from the definition of Qv,q given by

equation (5.18). Second, convexity of Q̇v,q with respect to θ, which in our case trivially follows

from the fact that the right-hand side of (5.19) is linear w.r.t. θ. The third essential condition is

the existence of a constant θ∗ and ρ > 0 such that Q̇v,q ≤ −ρ ·Qv,q whenever θ = θ∗. This is also

satisfied in our case for θ∗ as defined above (i.e., θ∗ := K1 + K2ω
−1
∗ ), and ρ := q · θ∗, which can

be shown by combining (5.16), (5.18), and (5.19). Finally, the vertical penetration velocity v

must be a persistently exciting signal [49, Definition 3.1], which is trivially satisfied due to the

fact that in normal mode of drilling operation v(t) ≥ ϵv for some ϵv > 0. The rest of conditions

imposed by [49, Theorem 3.10] are related to regularity of different functions that comprise the

system’s description, all of which are immediately satisfied for the system in question. Thus

all conditions of [49, Theorem 3.10] are satisfied, and the statement of Theorem 5.5.1 follows.
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•

Theorem 5.5.1 implies that any algorithm of the form (5.21) solves the problem of regula-

tion of the rate of penetration (Problem 1).

5.5.2 Step 2: Tracking of the reference angular velocity

At this step, our goal is to design a control algorithm for rotational dynamics (5.4) which

guarantees tracking of the reference velocity signal ωd while simultaneously rejecting the dis-

turbances represented by an equivalent torque T (t). The algorithm is designed here under the

assumption that all state variables of the rotational dynamics (5.4) as well as the reference

velocity signal ωd and the torque T (t) together with required number of their derivatives are

available for controller. This assumption will be fundamentally relaxed in the subsequent part

of the paper. Let us rewrite the system (5.4) in the state-space form

ẋ = Ax + Bu + DT,

y = Cx,
(5.24)

where

A =


−

c1
J1

k
J1

0 0

−1 0 1 0

0 − k
J2
−

c2
J2

Kmn
J2

0 0 −
Kmn

L −R
L


, B =


0

0

0
1
L


,D =


− 1

J1

0

0

0


, C =


1

0

0

0



T

, (5.25)

x =
[
ω ϕ̃ ωr I

]T
, u = V. (5.26)

In the above model, u = V is the control input signal, and T is the disturbance which is to be

rejected. The control algorithm has the following form

u = −Kx + ud + uT , (5.27)

where K :=
[
k1 k2 k3 k4

]
is the feedback gain matrix chosen such that the closed-loop

system has desired dynamical properties, defined by a matrix A − BK, ud is the component



84Chapter 5. Observer-BasedControl ofVertical PenetrationRate inRotaryDrilling Systems

which is responsible for tracking of the desired value of the output, and uT is the component

which ensures disturbance rejection. In order to define these components, one can represent

the system (5.24)-(5.27) in the input-output form:

Ω(s) =
[
Wu(s) WT (s)

] Ud(s) + UT (s)

T (s)

 , (5.28)

where Ω(s) is the Laplace transform of the output y = ω, and Wu(s) := C [sI − A + BK]−1 B,

WT (s) := C [sI − A + BK]−1 D are transfer functions that correspond to a part of the control

input ud +uT and the disturbance input T , respectively. Let Ωd(s) denote the Laplace transform

of ωd(t). From (5.28), one concludes that the following control inputs

UT (s) = −
WT (s)
Wu(s)

T (s), Ud(s) =
1

Wu(s)
Ωd(s), (5.29)

result in Ω(s) = Ωd(s).

Assuming that the system parameters are known, it is possible to calculate the transfer

functions in (5.29) directly. In this case, they can be represented as polynomials:

−
WT (s)
Wu(s)

= β(s) = β3s3 + β2s2 + β1s + β0, (5.30)

1
Wu(s)

= α(s) = α4s4 + α3s3 + α2s2 + α1s + α0, (5.31)

where the coefficients β0, . . . , β3, α0, . . . , α4 are functions of the system’s parameters that enter

equations (5.24)-(5.27). Explicit formulas for β0, . . . , β3, α0, . . . , α4 are given in Appendix A.

5.5.3 Step 3: HOSM observers design

Direct implementation of the control strategy (5.27) is not possible under the assumptions

formulated in Section 5.4 because a number of variables and/or signals are not available for

measurement. Specifically, among the four state variables (5.26) of the rotational dynamics

equations, only ωr and I are available for measurement. In addition, the implementation of

control algorithm (5.29), (5.30) for uT requires knowledge of the equivalent torque T as well as

its time derivatives up to the third order, none of which are available. Finally, algorithm (5.29),
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(5.31) for ud requires knowledge of derivatives of ωd up to the order four. In order to obtain

estimates of all these variables/signals, we use approach which is based on hybrid high-order

sliding mode (HOSM) homogeneous observers. These observers have unique properties in

that they provide theoretically exact estimates of state variables as well as derivatives of sig-

nals [111], which makes them perfectly suitable for various control tasks, in particular those

that require precise compensation of signals.

In order to design an observer, consider the equations of rotational dynamics (5.4). As-

suming the armature current I is an independent measurable variable, one can augment the

system (5.4) with a state-like equations for equivalent torque T and its derivatives to arrive at

the following system:

˙̄x = Āx̄ + B̄I + D̄T4

ωr = C̄ x̄
(5.32)

where

x̄ =



ωr

ϕ̃

ω

T

T1

T2

T3


, Ā =



−
c2
J2
− k

J2
0 0 0 0 0

1 0 −1 0 0 0 0

0 k
J1
−

c1
J1
− 1

J1
0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


, B̄ =



Kmn
J2

0

0

0

0

0

0


, C̄ =



1

0

0

0

0

0

0



T

, D̄ =



0

0

0

0

0

0

1


, (5.33)

and Ti := T (i), i = 1, 2, 3, 4, are i-th derivatives of T . In the above system (5.32), the rotational

velocity of the rotary table ωr plays the role of the measurable output, the armature current I is

known (measurable) input, while T4 := T (4) is an unknown input.

Our task is to design a state observer for the system (5.32). For this purpose, we design a

hybrid HOSM homogeneous observer [111, Section 7.2.3] which provides exact estimates of

the state variables in the presence of an unknown bounded disturbance input (in our case, T4).

The hybrid HOSM observer consists of linear and HOSM parts. The linear part is of the form

˙̂z = Āẑ + B̄I + L̄ (ωr − ẑ1) , (5.34)
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where ẑ ∈ R7, and L̄ ∈ R7 is such that Ā − L̄C̄ is stable. The HOSM component has a form

v̇1 = −λ11M1/7
1 · |v1 − ωr + ẑ1|

6/7
· sign {v1 − ωr + ẑ1} + v2,

v̇2 = −λ12M1/6
1 · |v2 − v̇1|

5/6
· sign {v2 − v̇1} + v3,

v̇3 = −λ13M1/5
1 · |v3 − v̇2|

4/5
· sign {v3 − v̇2} + v4,

v̇4 = −λ14M1/4
1 · |v4 − v̇3|

3/4
· sign {v4 − v̇3} + v5,

v̇5 = −λ15M1/3
1 · |v5 − v̇4|

2/3
· sign {v5 − v̇4} + v6,

v̇6 = −λ16M1/2
1 · |v6 − v̇5|

1/2
· sign {v6 − v̇5} + v7,

v̇7 = −λ17M1 · sign {v7 − v̇6} (5.35)

where M1 > 0 is a sufficiently large constant, and λ11, . . . , λ17 are to be chosen recursively [79].

The overall estimate ˆ̄x ∈ R7 of the state x̄ can be found according to the formula

ˆ̄x = ẑ + P−1v, (5.36)

where

v =



v1

v2

v3

v4

v5

v6

v7


, P =



C̄

C̄(Ā − L̄C̄)

C̄(Ā − L̄C̄)2

C̄(Ā − L̄C̄)3

C̄(Ā − L̄C̄)4

C̄(Ā − L̄C̄)5

C̄(Ā − L̄C̄)6


. (5.37)

It is straightforward to check that the relative degree of system (5.32), (5.33) with respect

to unknown input T4 is equal to the system’s order (both are equal to 7), and therefore the

system is strongly observable [111, Definition 7.2 and Theorem 7.2]. Applying Theorem 7.3

from [111], one concludes that if T4 is bounded then for sufficiently large M > 0 the hybrid
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HOSM observer (5.34)-(5.37) guarantees that, in the absence of measurement noise, the esti-

mate ˆ̄x converges to the actual state x̄ in finite time, i.e., ˆ̄x(t) ≡ x̄(t) for all t ≥ t0 + T with some

T > 0, where t0 is the initial instant of the estimation process.

For implementation of the algorithm (5.29), (5.31) it is also necessary to estimate the time

derivatives of ωd. For this purpose we use a hybrid differentiator proposed in [78], which

combines a HOSM differentiator and a classical high-gain differentiator; the latter component

improves the speed of convergence. Based on the reference signal ω̇d generated by the algo-

rithm (5.22), the following observer is designed:

ḟ1 = − λ21M1/4
2 | f1 − ω̇d|

3/4 sign{ f1 − ω̇d} − µ4σ2( f1 − ω̇d) + f2,

ḟ2 = − λ22M1/3
2 | f2 − ḟ1|

2/3 sign{ f2 − ḟ1} − µ3σ2( f2 − ḟ1) + f3,

ḟ3 = − λ23M1/2
2 | f3 − ḟ2|

1/2 sign{ f3 − ḟ2} − µ2σ2( f3 − ḟ2) + f4,

ḟ4 = − λ24M2 sign{ f4 − ḟ3} − µ1σ2( f4 − ḟ3),

(5.38)

where fi(t), i = 1, 2, 3, 4 is an estimate of i-th derivative of ωd(t), M2 > 0 is a sufficiently large

number, λ2i > 1 are HOSM differentiators parameters to be chosen recursively [79], µi > 0 are

coefficients chosen such that the polynomial r(s) = s4 + µ4s3 + µ4µ3s2 + µ4µ3µ2s + µ4µ3µ2µ1

is Hurwitz, and σ2 > 0 is an adjustable gain. The observer state variables f2, f3, f4 provide

estimates for ω̈d, ...
ω d, and ω(4)

d , respectively.

5.5.4 Step 4: Overall control algorithm

The block diagram of the drilling control system is shown in Figure 5.2. The overall con-

trol algorithm combines algorithms described in Sections 5.5.1, 5.5.2, where the unmeasurable

variables are replaced with their corresponding estimates obtained using observers from Sec-

tion 5.5.3. Specifically, the reference (desired) rotational velocity signal ωd is generated using

the algorithm identical to (5.22), as follows

ω̇d = −γv ω
2
d v |ṽ|q−1 sign{ṽ}, (5.39)

where γv > 0 and q ∈ {2, 3, . . .}. The reference signal ωd(t) is then fed into the tracking control

algorithm described in Section 5.5.2, where the necessary higher derivatives of ωd are restored

using hybrid differentiator (5.38). Similarly, the tracking control algorithm uses estimates of
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the equivalent torque T and its derivatives generated by hybrid HOSM observer (5.34)-(5.37).

Overall, the control law for armature voltage V is obtained from (5.27) by replacing ω and ϕ̃

with their estimates ˆ̄x3 and ˆ̄x2, respectively, i.e.,

V = −K
[
ω̂ ˆ̃ϕ ωr I

]T
+ ûd + ûT , (5.40)

where

ûT =

[
β3 β2 β1 β0

] [
T̂3 T̂2 T̂2 T̂

]T
, (5.41)

ûd =

[
α4 α3 α2 α1 α0

] [
f4 f3 f2 ω̇d ωd

]T
, (5.42)

are obtained from (5.29), (5.30), and (5.29), (5.31), respectively, by replacing T and its deriva-

tives with their estimates produced by hybrid HOSM observer (5.34)-(5.37) and derivatives of

ωd with their estimates produced by (5.38).
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for t � t0 + T0

Figure 5.2: Structure of the control system

Now consider the overall interconnected system which consists of the translational dynam-

ics (5.16), (5.17), the rotational dynamics (5.24)-(5.26) with control algorithm (5.39)-(5.42),

and the HOSM observers (5.34)-(5.37) and (5.38). The state of this interconnection comprises

the states of the individual subsystems. The stability of the overall system can be justified as
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follows. First, given an arbitrary compact set of initial conditions I and a constant T0 > 0, it

can be shown that if the overall system’s state at a time instant t0 belongs to I, and if γv > 0

in (5.39) is sufficiently small, then the trajectories of the interconnected system are uniformly

bounded on the interval [t0, t0 + T0]. On the other hand, uniform boundedness of system’s

trajectories on [t0, t0 + T0] implies that, if coefficients (gains) of the HOSM observers (5.34)-

(5.37) and (5.38) are chosen appropriately, then the states of these observers converge to the

actual estimated variables in finite time before the instant t0 + T0. Therefore, starting from

instant t0 + T0 at the latest, the disturbance input T to (5.24) is rejected, and the controlled

rotational dynamics (denoted by the dashed rectangle on the left of Figure 5.2, top) is uni-

formly globally exponentially stable with δω(t) := ω(t) −ωd(t)→ 0 exponentially as t → +∞.

On the other hand, Theorem 5.5.1 implies that the controlled translational dynamics (denoted

by the dashed rectangle on the right of Figure 5.2, top) is uniformly globally asymptotically

stable. Therefore, starting from the instant t0 + T0, the overall system can be represented as

a cascade interconnection of two subsystems (see Figure 5.2, bottom), where the driving sys-

tem is time varying and uniformly globally exponentially stable, while the driven system is

uniformly globally asymptotically stable. The uniform global asymptotic stability of such a

cascade system follows from the existing results (see for example [95, Corollary 1]).

5.6 Simulation results

In this section, we present several examples of simulation results of the closed-loop drilling

system. We simulate the process of drilling through several rock layers of different hardness

using the control algorithms described in the previous section. Numerical values of the param-

eters used in the simulations are given in Tables 5.1, 5.2.

5.6.1 Calculation of parameters

In order to calculate some of the drilling system parameters, we apply approximate formu-

las given in [16]:

J1 = ρIcLc +
ρIpLp

3
, Ic =

π

32
(D4

c − d4
c ), Ip =

π

32
(D4

p − d4
p), (5.43)
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Table 5.1: Numerical values of the drilling system and environment parameters (Chapter 5)

Parameter,
Units Description Value Parameter,

Units Description Value

Given drilling system parameters
Lp, m Length of drill pipes 1100 Lc, m Length of drill collars 250

Dp, m Outer diameter of drill pipes 0.127
(5.0 in)

Dc, m Outer diameter of drill collars 0.178
(7.0 in)

dp, m Inner diameter of drill pipes 0.109
(4.28 in)

dc, m Inner diameter of drill collars 0.057
(2.25 in)

mp, kg/m Unit mass of drill pipes 29.02 mc, kg/m Unit mass of drill collars 175.58

ρ, kg/m3 Density of steel 7900 G, N/m2 Shear modulus of steel 79.6·109

c1,
Nms/rad

Damping of top-drive system 25.7 c̃, Ns/rad Damping per unit length 0.027

Jr, kgm2 Mass moment of inertia of
the rotary table 1000 Jm, kgm2 Mass moment of inertia of

the motor’s rotor 35

Km, V s Motor torque constant 6.5 n, − Gearbox ratio 2

R, Ω Motor armature resistance 0.015 L, H Motor armature inductance 0.0025

a, m Drill bit radius 0.11 µγ, −
Coefficient of friction at the
wear flat – rock interface
multiplied by bit constant

1.1

ζ, −

Ratio of the vertical force to
the horizontal force between
the rock and the cutter con-
tact surfaces

0.75 d∗, mm
Critical value of depth of cut
between phase 1 and phase 2 0.5

W0, N

Difference between sub-
merged weight of drilling
system and constant upward
force

7000 K f ,
Nm/rad

Viscous friction coefficient 25

Calculated drilling system parameters

J1, kgm2 Mass moment of inertia of
drill collars and drill pipes 226.11 J2, kgm2 Mass moment of inertia of

top-drive system 1140

c2,
Nms/rad

Equivalent viscous damping
coefficient 10 k, Nm

Equivalent torsional stiffness
of drill pipes 859.57

M, kg Mass of drill string 75813

Parameters of the environment

ϵ, MPa Intrinsic specific energy {30, 35,
31, 25} σ, MPa Contact strength 2ϵ

κ, − Rate of change of contact
length with depth of cut 1.5

c2 =
Lpc̃
3
, k =

GIp

Lp
, J2 = Jr + n2Jm, M = mpLp + mcLc, (5.44)



5.6. Simulation results 91

Table 5.2: Numerical values of the drilling controller parameters (Chapter 5)

Parameter Description Value

Parameters set by operator
vd, mm/s Desired penetration rate {4, 6}

γv
Coefficient that defines speed of
ω→ ωd convergence {1500, 700}

Given controller parameters

σ{A − BK}
Spectrum of the state matrix of the
closed-loop system

[
−2.5 −2 −1.5 −1

]
σ{Ā − L̄C̄}

Spectrum of the state observer ma-
trix (5.34)

[
−0.5 −0.35 ± 0.35 j −0.43 ± 0.25 j −0.48 ± 0.13 j

]
µ1 . . . µ4

Coefficients of the HOSM observer
(5.38)

[
0.48 1.43 3.5 10

]
λ24 . . . λ21

Coefficients of the HOSM observer
(5.38)

[
1.1 1.5 2 3

]
λ17 . . . λ11

Coefficients of the HOSM part of
the state observer (5.35)

[
1.1 1.5 2 3 5 8 10

]
{M1,M2, σ2}

Gains of HOSM observers (5.35),
(5.38) {1, 10, 10}

q
Exponent number in the control
law for the angular velocity (5.22) 2

Calculated controller parameters

K
Vector of proportional control
gains (5.40)

[
−2.2336 −2.9836 −10.292 0.0022

]
L̄

Vector of gains of the state ob-
server’s linear part (5.34)

[
2.92 0.98 −10.37 −495.1 −155.6 −28.48 −2.34

]T

β0 . . . β3

Coefficients of the disturbance re-
jection part of the overall controller
(5.41)

[
−2.1484 3.3581 1.7564 0.255

]
· 10−3

α0 . . . α4
Coefficients of the tracking part of
the overall controller (5.42)

[
0.4325 1.1101 1.0236 0.4037 0.0577

]

where subscripts c and p denote parameters of drill collars and drill pipes, respectively, L means

length, I is a polar moment of inertia, D and d are outer and inner diameters, c̃ is a damping

coefficient per unit length, m is mass per unit length, G and ρ are sheer modulus and density of

the pipes’ material, and Jm, Jr mean mass moment of inertia of the motor and the rotary table.

In order to define parameters of the environment properly, we take into account the follow-
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ing relations that are usually met in practice [20]:

ζ ∈ [0.5; 0.8], µγζ < 1,
σ

ϵ
∈ [1; 10], κ ∈ [1; 10]. (5.45)

The parameters of the drilling controller are calculated based on the open-loop system

parameters and desired location of the poles of the closed-loop system and the observer denoted

by σ{A − BK}, σ{Ā − L̄C̄}, respectively. Their values are presented in Table 5.2.

5.6.2 Simulation results for piecewise constant parameters of the envi-

ronment

First, we simulate drilling through uniform rock layers with constant intrinsic specific en-

ergy, a situation which corresponds to our theoretical assumptions. In every simulation pre-

sented below, the initialization process is performed as follows. During the first 15 seconds of

each simulation, a constant voltage V = 390 V is applied to the system’s input while the con-

trol algorithm is turned off. This is done to allow the estimation processes converge before the

corresponding estimates are used in the control algorithm. At t = 15 s, the control algorithm is

turned on and remain active until the end of each simulation process.

Examples of simulation results of the closed-loop system for the vertical penetration rate

regulation are presented in Figures 5.3 - 5.6. In these simulations, the reference vertical ve-

locity is set vd = 4 mm/s until approximately t = 175 s, and is subsequently increased to

vd = 6 mm/s. The control law consists of the algorithm (5.22) that generates reference ro-

tational velocity ωd, and algorithms (5.40)-(5.42) where all estimates are obtained using the

corresponding observers from Section 5.5.3. A dashed red line on all plots shows the time

(t = 15 s) when the controller is turned on. Most of the time the drilling process happens in

phase 2, going into phase 1 in the second layer only (see dashed green line in Figure 5.5). One

can observe that the estimates ˆ̃ϕ, ω̂, T̂ converge to the actual values of the signals ϕ̃, ω, and

T , respectively, and the reference angular velocity ωr is tracked almost perfectly. It also con-

firms the efficiency of the proposed tracking and disturbance rejection scheme, as the vertical

velocity converges to its desired value in every rock layer.

Remark 5.1 It is important to note that the results presented in the above simulations are

feasible in practice. Indeed, maximum armature voltage and current for modern commercially
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Figure 5.3: Piecewise constant parameters: actual and estimated output angular velocity of the
drill bit ω(t), ω̂(t) vs. reference angular velocity ωd(t) (left plot); rate of penetration v(t) (right

plot).

Figure 5.4: Piecewise constant parameters: intrinsic specific energy ϵ(t) (left plot); input
control signal V(t) (right plot).

available DC motors are around 810 V and 2100 A, respectively (see, for example, Siemens

specifications [112]). In general, maximum achievable penetration rate in steady state depends

on the motor’s power. An example for a drilling system with parameters from Table 5.1 is shown

in Figure 5.7. It can be seen that with reduction of applied force and increase of rock hardness,

maximum velocity drops drastically, especially when it is not possible to achieve phase 2 of the

drilling process.
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Figure 5.5: Piecewise constant parameters: actual torque on bit T (t) vs. estimated
torque-on-bit T̂ (t) (left plot);
depth of cut d(t) (right plot).

Figure 5.6: Piecewise constant parameters: actual angular difference ϕ̃(t) vs. estimated
angular difference ˆ̃ϕ(t) (left plot);
armature current I(t) (right plot).

5.6.3 Simulation results in the case of random variations of intrinsic spe-

cific energy

In practice, rock layers may not be perfectly uniform, and the hardness of the drilled ma-

terial may slightly vary. As long as the overall control algorithm provides global asymptotic

stability, one can expect the closed-loop system to have robustness property. In the following
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Figure 5.7: Maximum achievable penetration rate in steady state for a drilling system with
parameters from Table 5.1 and maximum armature voltage 810 V.

simulation, we examine robustness of stability of the closed-loop system with respect to small

variations in the rock structure.

We introduce random variations by adding a white noise of small magnitude to the param-

eter ϵ(t). The discrete-time white noise signal is generated, such that its sample time approxi-

mately corresponds to a new sample every 2 mm of the bit’s vertical displacement. This signal

then comes through a low-pass filter and is added to the nominal value of intrinsic specific

energy. All other parameters remain the same as in Section 5.6.2.

Simulation results are shown in Figures 5.8 - 5.11. It can be seen that, even though pene-

tration rate is not constant, it converges to some small neighborhood of the reference vertical

velocity, which means that the stability is preserved. Another important observation is the

following: the reference rotational velocity ωd is tracked perfectly, despite the fact that it is

subject to random changes.

5.6.4 Simulation results for a distributed parameter model of the drilling

system

In the simulation results presented above, the underlying assumption is that the finite di-

mensional lumped parameter model (5.4) used for the purpose of control design accurately

describes the actual rotational dynamics of the system. In practice, the dynamics of the drilling
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Figure 5.8: The case of small random variations of the intrinsic specific energy: actual and
estimated output angular velocity of the drill bit ω(t), ω̂(t) vs. reference angular velocity ωd(t)

(left plot); rate of penetration v(t) (right plot).

Figure 5.9: The case of small random variations of the intrinsic specific energy: intrinsic
specific energy ϵ(t) (left plot); input control signal V(t) (right plot).

systems can be extremely complex [102] and generally speaking are more adequately described

by infinite-dimensional distributed parameter models (see for example [106]). In this sec-

tion, we test the robustness of our control design approach by simulating the designed con-

trol/observation algorithms in conjunction with a distributed parameter model of the drilling

system. Specifically, we simulate the situation where the rotational dynamics of the drilling
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Figure 5.10: The case of small random variations of the intrinsic specific energy: actual
torque on bit T (t) vs. estimated torque-on-bit T̂ (t) (left plot); depth of cut d(t) (right plot).

Figure 5.11: The case of small random variations of the intrinsic specific energy: actual
angular difference ϕ̃(t) vs. estimated angular difference ˆ̃ϕ(t) (left plot);

armature current I(t) (right plot).

system are described by partial differential equations of the following form [15]:

ρIpϕ
p
tt(x, t) =

GIp

L2
p
ϕp

xx(x, t) −
c1

Lp
ϕ

p
t (x, t) (5.46)

ρIcϕ
c
tt(x, t) =

GIc

L2
c
ϕc

xx(x, t) −
c1

Lc
ϕc

t (x, t) (5.47)
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with the following boundary conditions:

GIp

Lp
ϕp

x(0, t) = J1ϕ
p
tt(0, t) + c2ϕ

p
t (0, t) − KmnI(t), (5.48)

GIc

Lc
ϕc

x(1, t) = −JBϕ
c
tt(1, t) − T (t), (5.49)

ϕ
p
t (1, t) = ϕc

t (0, t), (5.50)

ϕp
x(1, t) =

IcLp

IpLc
ϕc

x(0, t), (5.51)

where ϕp(x, t), ϕc(x, t) are the angles of rotation along the drill pipes and the BHA, respec-

tively, as functions of normalized distance 0 ≤ x ≤ 1 and time t. In the above equations, sub-

scripts denote partial derivatives, for example, ϕp
t (x, t) := ∂ϕp(x, t)/∂t, ϕp

x(x, t) := ∂ϕp(x, t)/∂x,

ϕ
p
tt(x, t) := ∂2ϕp(x, t)/∂t2, etc. Parameters ρ, G, Lp, Lc, Ip, Ic, c1, c2, Km, n, J1 are the same as

those used in the lumped parameter model (see Table 5.1), and JB := ρIcLc. The control signal

I(t) is calculated as follows:

İ = −
Kmn

L
ϕ

p
t (0, t) −

R
L

I +
1
L

V, (5.52)

where V is a control voltage obtained in Section 5.5.4. The following signals are used in the

control algorithm:

ωr = ϕ
p
t (0, t), ω = ϕc

t (1, t), ϕ̃ = ϕ
p(0, t) − ϕc(1, t). (5.53)

Numerical simulation scheme for the model (5.46) - (5.51) is described in Appendix B. Our

preliminary simulations demonstrate that the distributed parameter model (5.46) - (5.53) ex-

hibits somewhat more oscillatory response as compared to the lumped parameter model (5.4).

In order to cope with this, we adjust the coefficients of the HOSM observer (5.34)-(5.37) with
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the goal of slowing down its dynamics. Specifically, we choose M1 = 0.01 and

σ{Ā − L̄C̄} =
[
−0.01 −0.0071 ± 0.0071 j −0.0087 ± 0.005 j −0.0097 ± 0.0026 j

]
.

Coefficient γv is also reduced to {750, 350}. Simulation results for the case of distributed param-

eter model (5.46) - (5.53) are presented in Figures 5.12 - 5.13. It can be seen from these figures

that mismatch between the lumped and the distributed parameter models leads to noticeable

discrepancies between the estimated T̂ (t) and the actual T (t) torques-on-bit as well as between

the the estimated ˆ̃ϕ(t) and the actual ϕ̃(t) differences in angular positions. These estimation er-

rors however do not appear to affect the process of regulation of the vertical penetration rate, as

it can be seen that the vertical penetration rate v(t) converges to its desired value(s) vd, and the

transient response around the times when either the reference value vd or the intrinsic specific

energy ϵ changed is very similar to that in the case of the lumped parameter model. Also, the

angular velocity ω(t) tracks its reference trajectory ωd(t) very closely.

Figure 5.12: Distributed parameter model: actual and reference vertical rate of penetration
v(t), vd(t) (left plot); actual, estimated and reference angular velocity of the drill bit ω(t), ω̂(t),

ωd(t) (right plot).

In the next and final example of simulations, we illustrate the situation where the drilling

system recovers from sudden application of a strong torque-on-bit disturbance which results

in both angular velocity of the drill bit and the vertical rate of penetration dropped to near

zero values. Such strong disturbances that momentarily stall the rotation of the drill bit is the

primary cause of the so-called stick-slip oscillations, which have multiple negative effects on
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Figure 5.13: Distributed parameter model: actual and estimated angular difference ϕ̃(t), ˆ̃ϕ(t)
(left plot); actual and estimated torque-on-bit T (t), T̂ (t)(right plot).

the performance of drilling systems and should be avoided [16, 106]. The simulated scenario

consists of the following steps:

1. Phase I, 0 s - 15 s: similarly to the previous sets of simulations, a constant voltage V =

390 V is applied to the system’s input while the control algorithm is turned off.

2. Phase II, 15 s - 50 s: the control algorithm is on. By the end of this phase the vertical

penetration rate is approximately in the steady-state.

3. Phase III, 50 s - 60 s: the control algorithm is turned off, while the motor torque Tm

(essentially, the armature current I) is kept constant. An additional counter-torque Tadd

is applied at the lower end of the drill string, such that rotational and vertical velocities

are driven to near-zero.

4. Phase IV, 60 s - 120 s: the disturbance Tadd is switched off, and the control algorithm is

turned on again.

The results of simulations are shown in Figures 5.14, 5.15. It can be seen that, after the

disturbance Tadd is removed, the system returns to the steady state with little to no oscillations.



5.7. Conclusions 101

Figure 5.14: Transient processes in the distriputed parameter model: Actual and reference rate
of penetration v(t), vd(t) (left plot); actual, estimated and reference angular velocity of the drill

bit ω(t), ω̂(t), ωd(t)(right plot).

Figure 5.15: Transient processes in the distriputed parameter model: Armature current I(t)
(left plot); actual and estimated torque-on-bit and additional torque T (t), T̂ (t)(right plot).

5.7 Conclusions

In this paper, the problem of the vertical penetration rate regulation in rotary drilling sys-

tems is addressed. A control algorithm that guarantees global asymptotic stability of the closed-

loop system is developed. The proposed solution does not require real-time measurement of

the downhole variables and their communication to the ground level. This is a practically im-
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portant improvement upon existing results as the measurements of the downhole variables are

noisy and the communication channel between the downhole and the ground level is charac-

terized by latency and low bandwidth thus creating a bottleneck in the control design process

for drilling systems. In this type of systems, the measurements of the downhole variables can

be used for process monitoring; in particular, substantial discrepancy between the results of

measurement and the estimates obtained using observers can serve as an indication that the

model used in the control design may require an update. Simulation results demonstrate va-

lidity and efficiency of the proposed solutions. Extension of the control design approach from

the finite-dimensional approximate models of the drilling systems used in this paper to more

realistic infinite dimensional models while addressing the corresponding spectrum of complex

dynamical phenomena is a topic for future research.

Appendix 1. Coefficients of the transfer functions (5.30), (5.31)

The coefficients β0 . . . β3, α0 . . . α4 of the transfer functions (5.30), (5.31) can be expressed

in terms of parameters of the rotational dynamics (5.1)-(5.3) as follows [86]:

β3 =
J2L

kKmn
,

β2 =
J2(k4 + R) + c2L

kKmn
,

β1 =
c2(k4 + R) + Kmn(k3 + Kmn) + kL

kKmn
,

β0 =
k(k4 + R) + k2Kmn

kKmn
,

α4 =
J1J2L
kKmn

,

α3 =
L(c2J1 + c1J2) + J1J2(k4 + R)

kKmn
,

α2 =
1

kKmn
(J1Kmn(k3 + Kmn) + kL(J1 + J2) + c1c2L + (c1J2 + c2J1)(k4 + R)),

α1 =
1

kKmn
(Kmn(c1k3 + c1Kmn + J1k2) + kL(c1 + c2) + (c1c2 + kJ1 + kJ2)(k4 + R)),

α0 =
k(c1 + c2)(k4 + R) + c1k2Kmn

kKmn
+ k1 + k3 + Kmn.



5.7. Conclusions 103

Appendix 2. Numerical simulation scheme for the distributed

parameter model (5.46) - (5.51)

For simulation of the system (5.46) - (5.51) we use a simple implicit finite difference

method. The drill string is divided into n = 1
∆x + 1 intervals with step size equal to ∆x. Simi-

larly, there are m = tsim
∆t + 1 time intervals, where tsim is a total simulation time, and ∆t is a time

step size. Let i, j be space and time step numbers, respectively. We calculate time and space

derivatives in each node (i, j) according to the following formulas:

d
dt

(·)i, j =
(·)i, j − (·)i, j−1

∆t
,

d2

dt2 (·)i, j =
(·)i, j−2 − 2(·)i, j−1 + (·)i, j

∆t2 , (5.54)

d
dx

(·)i, j =
(·)i, j − (·)i−1, j

∆x
,

d2

dx2 (·)i, j =
(·)i+1, j − 2(·)i, j + (·)i−1, j

∆x2 , (5.55)

where (·) is a corresponding function (ϕp or ϕc). Substituting these formulas into the equations

(5.46) - (5.51), one can rearrange them in the following way:

a1ϕ
p
1, j + a2ϕ

p
2, j = b1, (5.56)

a3ϕ
p
i−1, j + a4ϕ

p
i, j + a5ϕ

p
i+1, j = bip , ip ∈ {2, .., np − 1} (5.57)

a6ϕ
p
np−1, j + a7ϕ

p
np, j
+ ϕc

np+1, j − ϕ
c
np+2, j = 0, (5.58)

ϕc
np+1, j − ϕ

c
np+2, j = bnp+1, (5.59)

a8ϕ
c
i−1, j + a9ϕ

c
i, j + a10ϕ

c
i+1, j = bic , ic ∈ {np + 2, .., n − 1} (5.60)

a11ϕ
c
n−1, j + a12ϕ

c
n, j = bn, (5.61)
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where np = round
{ Lp

Lp+Lc

}
+ 1, a1 = −

1
∆x −

J1Lp

GIp∆t2 −
c2Lp

GIp∆t , a2 =
1
∆x , a3 = a5 = −

G
ρL2

p∆x2 , a4 =

1
∆t2 +

2G
ρL2

p∆x2 +
c1

LpρIp∆t , a6 = −
IpLc

IcLp
, a7 =

IpLc

IcLp
, a8 = a10 = −

G
ρL2

c∆x2 , a9 =
1
∆t2 +

2G
ρL2

c∆x2 +
c1

LcρIc∆t ,

a11 = −
1
∆x , a12 =

1
∆x+

JBLc
GIc∆t2 , b1 =

J1Lp

GIp∆t2ϕ
p
1, j−2−

Lp

GIp∆t

(
2J1
∆t + c2

)
ϕ

p
1, j−1−

KmnLp

GIp
I j−1, bip = −

1
∆t2ϕ

p
1, j−2+(

2
∆t2 +

c1
ρLpIp∆t

)
ϕ

p
1, j−1, bnp+1 = ϕ

p
np, j−1 − ϕ

c
np+1, j−1, bic = −

1
∆t2ϕ

c
1, j−2 +

(
2
∆t2 +

c1
ρLcIc∆t

)
ϕc

1, j−1, bn =

−
JBLc

GIc∆t2

(
ϕc

n, j−2 − 2ϕc
n, j−1

)
−

Lc
GIc

T j−1.

The equations (5.56) - (5.61) can be solved in the matrix form with respect to angular

positions in every node at every moment of time:



ϕ
p
1, j

ϕ
p
2, j

...

ϕ
p
np−1, j

ϕ
p
np, j

ϕc
np+1, j

ϕc
np+2, j

...

ϕc
n−1, j

ϕc
n, j



=



a1 a2 0 0 . . . 0 0 0 . . . 0

a3 a4 a5 0 . . . 0 0 0 . . . 0

...
. . .

...

0 . . . a3 a4 a5 0 0 0 . . . 0

0 . . . 0 a6 a7 1 −1 0 . . . 0

0 . . . 0 0 1 −1 0 0 . . . 0

0 . . . 0 0 0 a8 a9 a10 . . . 0

...
...

. . .
...

0 . . . 0 0 0 0 . . . a8 a9 a10

0 . . . 0 0 0 0 . . . 0 a11 a12



−1

[
b1 b2 . . . bnp−1 0 bnp+1 bnp+2 . . . bn−1 bn

]T

(5.62)

In the simulation, we use the following step sizes: ∆x = 0.05, ∆t = 0.01.



Chapter 6

Sliding Mode Control of Rotary Drilling

Systems with Full Parametric Uncertainty

This chapter is based on the following article:

Maksim V. Faronov and Ilia G. Polushin. Control of rotary drilling systems with uncer-

tain parameters. In 2023 IEEE Conference on Control Technology and Applications (CCTA),

Bridgetown, Barbados, August 2023 (accepted).

6.1 Abstract

We propose an algorithm for regulation of vertical penetration rate in rotary drilling systems

for the case where parameters of the environment are unknown, and only nominal (approxi-

mate) values of the drillstring parameters are available. The algorithm is implemented in two

phases: identification and control. First, we identify the values of drilling system’s parameters,

and subsequently use these parameters in the control scheme. The controller is based on a

super-twisting high-order sliding mode control algorithm, as well as several high-order sliding

mode observers. The proposed approach utilizes two measurements at the drill bit level during

the identification phase only; however, in contrast with the existing results, it does not require

knowledge of any parameters except for the motor characteristics. Feasibility of the proposed

algorithm is confirmed by simulation results.
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6.2 Introduction

Drilling automation in an important engineering field which has attracted substantial atten-

tion from control researchers over the recent years [5]. Automatic control solutions not only

provide valuable assistance to drilling operators, but also allow to address some challenges

associated with the drilling process, such as mitigation of vibrations [15], pressure regula-

tion [36], and others. A number of control strategies for drilling systems was developed, such

as sliding mode control with uncertainties [113], H∞-based method [103], adaptive backstep-

ping [89], to name a few. Nevertheless, the area of drilling automation remains relatively

underdeveloped, and improvements can be made in terms of relaxation of simplifying assump-

tions and finding an appropriate balance between complexity of the control law and precise

modeling of the real physical processes.

In this work, we extend the results presented in earlier papers [114, 110], where we devel-

oped a control algorithm for regulation of the vertical penetration rate in rotary drilling systems

using only ground level measurements. It was assumed that parameters of the environment and

of the drill bit are unknown; however, knowledge of parameters of the rotational dynamics was

required. Here, we relax this assumption and design the control algorithm under full paramet-

ric uncertainty of the drillstring. We propose a multi-step approach, where at first we estimate

unknown parameters, using two downhole measurements. After that, in the control phase, only

the ground-level measurements are required. The control algorithm for regulation of the rate of

vertical penetration is designed under the assumption that the angular velocity of the bit is con-

trolled directly. The reference angular velocity is then tracked using estimates of non-measured

signals as well as their derivatives. Even though we require some underground measurements

for parameters identification, it may be conducted offline, or in the systems where wired pipe

telemetry is used [115].

The rest of the paper is organized as follows. Description and the mathematical model

of the drilling system is presented in Section 6.3. In Section 6.4, the control problem is for-

mulated, and the assumptions are stated. We describe identification of unknown parameters in

Section 6.5, and estimation of non-measured signals in Section 6.6. Control design is discussed

in details in Section 6.7. Simulation results are given in Section 6.8. Finally, in Section 6.9,

conclusions are made, and future research topics are outlined.
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6.3 Model of the drilling system

6.3.1 Components of the system

A rotary drilling system drills the layers of rock by rotating a drillstring and applying certain

weight and torque to its lower end. A rigid body on that bottom end of the drillstring is called a

drill bit. When rotated, the bit performs actual rock cutting by means of its blades. Bottom Hole

Assembly (BHA) consists of heavy collars; it applies additional pressure to the bit and carries

important equipment. BHA is connected to the ground level through the drill pipes - hollow

tubes, joined together in a single string. On the ground, a drilling rig contains, among other

components, an electric drive that generates torque and rotates the drillstring, and a hoisting

system which can regulate weight-on-bit. A basic structure of the drilling system is shown in

Figure 6.1.

Figure 6.1: The structure of the drilling system

6.3.2 Model of rotational dynamics

The rotational dynamics can be represented by the following equations [16]:

J1ϕ̈ + c1ϕ̇ + k(ϕ − ϕr) + T = 0, (6.1)

J2ϕ̈r + c2ϕ̇r − k(ϕ − ϕr) − nTm = 0, (6.2)
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where (6.1) describes the dynamics of BHA and the drill pipes while (6.2) those of the rotary

table and the drive. In these equations, ϕ denotes the angular position of the drill bit, ϕr is the

angular position of the rotary table, J1 > 0 is the equivalent combined moment of inertia of the

BHA and the drill pipes while J2 > 0 is that of the rotary table and the drive, c1, c2 ≥ 0 are

the equivalent nominal viscous damping coefficients, k > 0 is the equivalent torsional stiffness

of the drill pipes, Tm is the torque generated by the motor, n is the gearbox ratio, and T is an

equivalent torque applied to the drill bit which includes the torque-on-bit [20] (i.e., the reaction

torque generated due to rock cutting process) as well as an equivalent sum of all other torques

due to different effects not accounted for in the model (6.1).

The dynamics of the electric drive (a DC motor with a separated excitation circuit) are

described by standard equations

Lİ + RI − Vb − V = 0, Vb = Kmnϕ̇r, Tm = KmI, (6.3)

where I is the armature current, L is an equivalent armature inductance, R is an equivalent

armature resistance, Vb is the back EMF, V is the armature voltage, and Km > 0 is a motor

constant which depends on its characteristics. Using notation ϕ̃ := ϕr − ϕ, ω := ϕ̇, ωr := ϕ̇r,

the rotational dynamics (6.1)-(6.3) can be represented in the state-space form [50, 83, 86], as

follows

ẋ = Ax + Bu + DT,

y = Cx,
(6.4)

A =



a1 a2 0 0

−1 0 1 0

0 a3 a4 a5

0 0 a6 a7


, B =



0

0

0

b4


,D =



d1

0

0

0


,C =



1

0

0

0



T

, x =



ω

ϕ̃

ωr

I


, u = V, (6.5)

where, for convenience, we denote
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a1 = −
c1

J1
, a2 =

k
J1
, a3 = −

k
J2
, a4 = −

c2

J2
, a5 =

Kmn
J2
,

a6 = −
Kmn

L
, a7 = −

R
L
, d1 = −

1
J1
, b4 =

1
L
. (6.6)

6.3.3 Model of translational dynamics

A model of the translational dynamics is defined by the following equation:

Mv̇ = W0 −W − K f v, (6.7)

where v is the vertical penetration rate of the drill bit, M > 0 is the total mass of the drillstring,

W0 is the difference between the submerged weight of the drilling system and the constant

upward force supplied by the hoisting system, K f > 0 is the viscous friction coefficient, and W

is the weight-on-bit which is the upward reaction force applied to the bit.

6.3.4 Model of bit-rock interaction

The interaction between the drill bit and the rock is defined by relationships between the

rotational ω and the vertical v velocities of the bit, the torque-on-bit (denoted by Tb to distin-

guish from an equivalent torque T used in equation (6.1)), and the weight-on-bit W. These

relationships constitute so called drilling response model [20], which is briefly described be-

low.

The torque-on-bit and the weight-on-bit are decomposed into sums of cutting and frictional

components:

Tb = T c + T f , W = Wc +W f , (6.8)

where the superscripts c and f denotes the cutting and the frictional components, respectively.

In the simplest case, where a bit does not contain hollow areas, the cutting components are

defined as follows [20, 19]:

T c :=
1
2

a2ϵd, Wc := aζϵd, (6.9)
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where a > 0 is the radius of the bit, ϵ ≥ 0 is the intrinsic specific energy, which is the amount of

energy consumed for cutting a unit volume of the material by an ideally sharp bit, ζ represents

the ratio of the vertical force to the horizontal force between the rock and the cutter contact

surfaces, and d > 0 is the depth of cut, i.e., the vertical distance to which the bit moves during

one revolution. In the steady state, the depth of cut can be approximated by the following

expression [20]:

d ≈ 2π
v
ω
. (6.10)

The frictional components T f , W f are defined depending on the drilling phase. In total, there

are three phases of drilling [20]. In phase 1, which corresponds to small d > 0, the frictional

components are linear functions of d. In phase 2, which begins as d reaches some critical value

d∗, the frictional components remain constant regardless of d. Phase 3 starts once d reaches

another critical value db and can also be approximated as linear with respect to d with unknown

slopes. Overall, the following mathematical model describes the frictional components:

T f :=


(a2/2) · µγσκd, for d < d∗ (phase 1),

(a2/2) · µγσκd∗, for d∗ ≤ d ≤ db (phase 2),

(a/2) · µγ(d−db
β
+ aσκd∗), for d > db (phase 3),

(6.11)

W f :=


aσκd, for d < d∗ (phase 1),

aσκd∗, for d∗ ≤ d ≤ db (phase 2),

d−db
β
+ aσκd∗, for d > db (phase 3),

(6.12)

where µ > 0 is the friction coefficient, which is a ratio between parallel and normal components

of the cutter force which acts along the wear flat, γ > 0 is the bit constant which reflects the

bit design and the distribution of the contact forces, σ > 0 is the contact strength defined as a

bound of the normal stress that can be transmitted by the wear flat, κ > 0 is the rate of change of

contact length with d, d∗ > 0 is the critical value of d when contact forces are fully mobilized,

which depends on the bit bluntness, db > d∗ is the critical value of d when the contact surface

between the bit and the rock increases, and β is a coefficient which characterizes the slopes of
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T f , W f in phase 3.

6.4 Control goal and assumptions

The problem that we are solving in this paper can be formulated as follows. Given vd > 0,

find a control algorithm that guarantees

v(t)→ vd as t → ∞. (6.13)

We solve this problem in two phases: identification phase, where unknown parameters

of the drilling system are identified using a number of downhole measurements, and control

phase, where we design a control algorithm using estimated parameters. The following three

assumptions are used:

Assumption 6.1 The following signals/variables are available for measurement at all times:

i) vertical penetration rate v; ii) rotary table velocity ωr; iii) armature current I. •

Assumption 6.2 The following signals/variables are available for measurement during iden-

tification phase only: i) angular difference between the top and the bottom of the drillstring ϕ̃;

ii) torque-on-bit T . •

Assumption 6.3 In the matrices (6.5), constant parameters of the drillstring c1, J1, k, c2, J2

are unknown, while parameters of the motor Km, n, R, L are known exactly. •

Remark 6.1 Parameters of the motor are assumed to be known because they can be easily

obtained from specifications or simple tests.

6.5 Identification of drillstring parameters

Due to the fact that I is measurable, and its equation does not contain any uncertainties, we

can consider the following reduced third-order model with current as an input:

ẋk = Akxk + BkI + DkT, (6.14)

yk = Ckxk, (6.15)
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where xk =
[
ωr ϕ̃ ω

]T
. Further, we represent all its parameters as a sum of nominal values and

parametric errors:

Ak = Āk + ∆Ak, Dk = D̄k + ∆Dk, (6.16)

Āk =


ā4 ā3 0

1 0 −1

0 ā2 ā1


, ∆Ak =


∆a4 ∆a3 0

1 0 −1

0 ∆a2 ∆a1


, D̄k =


0

0

d̄1


, ∆Dk =


0

0

∆d1


, (6.17)

Bk = B̄k + ∆Bk, Ck =


1 0 0

0 1 0

 , B̄k =


ā5

0

0


, ∆Bk =


∆a5

0

0


, (6.18)

where bar notation means nominal value of the corresponding parameter (6.6), and ∆ is the

difference between actual and nominal values.

We define a generalized input and its matrix as

ug = [I T ]T , Bg = [Bk Dk] . (6.19)

The model (6.14), (6.15) becomes

ẋk = Ākxk + B̄gug + EΘ, (6.20)

yk = Ckxk, (6.21)

where xk ∈ Rn, ug ∈ Rm, Θ ∈ Rm, yk ∈ Rm, m = 2, n = 3. An uncertain part can be reformulated

as follows

EΘ = ∆Ax + ∆Bgug, (6.22)
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E =


1 0

0 0

0 1


, Θ =


θ1ϕ1

θ2ϕ2

 , (6.23)

and θ1 =
[
∆a4 ∆a3 ∆a5

]
, θ2 =

[
∆a2 ∆a1 ∆d1

]
, ϕ1 =

[
ωr ϕ̃ I

]T

, ϕ2 =

[
ϕ̃ ω T

]T

. In

this model, uncertainties that have to be estimated are θ1, θ2.

Definition 6.1 The system (6.20), (6.21) has a vector relative degree (r1, ..., rm) with respect to

the inputs Θ if the following conditions are met [116]:

ciAs
kE = 01×m, i = 1, ..,m, s = 0, 1, .., ri − 2, (6.24)

where ci are i-th rows of the matrix Ck, and

det Q , 0, Q =


c1Ār1−1

k E

...

cmArm−1
k E


. (6.25)

If there are no numbers ri, such that both conditions (6.24), (6.25) are met, the system does not

have a vector relative degree. •

Direct calculation shows that the system (6.20), (6.21) has a vector relative degree r =(
r1 r2

)
=

(
1 2

)
.

Following [117], we define the hybrid high order sliding mode (HOSM) observer as fol-

lows:

ż = Ākz + B̄gug (6.26)

yz = Ckz (6.27)

x̂k = z + T−1
k vk, (6.28)
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where

Tk =

[
c1 c2 c2Āk

]T

, (6.29)

and HOSM component of the order m · (max{r1, r2} + 1) = 6 has the form:

v̇i,1 = − λi,3M1/3
i ·

∣∣∣vi,1 − yi + yzi

∣∣∣2/3 sign
{
vi,1 − yi + yz,i

}
+ vi,2,

v̇i,2 = − λi,2M1/2
i ·

∣∣∣vi,2 − v̇i,1

∣∣∣1/2 sign
{
vi,2 − v̇i,1

}
+ vi,3,

v̇i,3 = − λi,1Mi · sign
{
vi,3 − v̇i,2

} (6.30)

where i = 1, 2, Mi > 0 are sufficiently large numbers, λi j > 1, j = 1, 2, 3 are HOSM differen-

tiators parameters to be chosen recursively [79]. In our case,

vk =

[
v11 . . . v1,r1 v21 . . . v2,r2

]T

=

[
v11 v21 v22

]T

. (6.31)

It is proven [117] that the observer (6.26)-(6.31) exactly converges in finite time if matrix

Āk is Hurwitz, the triple {Āk, E,Ck} has no invariant zeros, the system (6.20), (6.21) has full

vector relative degree, and the input ug and its derivative u̇g are bounded by amplitude. Direct

calculations reveal that these conditions are satisfied.

The following expression is defined as an equivalent output injection:

zeq =


v1,r1+1

...

vm,rm+1


−


c1Ār1

k

...

cmĀrm
k


T−1

k vk =


v12

v23

 −

c1Āk

c2Ā2
k

 T−1
k vk. (6.32)

Assuming that the observer (6.26)-(6.31) exactly converges at time T0, it can be shown that

for t > T0

zeq = QΘ, Q =


c1Ār1−1

k E

...

cmĀrm−1
k E


=


c1E

c2ĀkE

 . (6.33)
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Therefore,

Θ = z̄eq, z̄eq = zeqQ−1, (6.34)

or, using the definition of Θ,

θiϕi = z̄eqi . (6.35)

Multiplying both sides of (6.35) by ϕT
i and taking integral, the following equality that holds

for T0 < t0 < t1 can be obtained: ∫ t1

t0
z̄eqiϕ

T
i dτ =

∫ t1

t0
θiϕiϕ

T
i dτ (6.36)

We define the following matrix:

Γi =

(∫ t1

t0
ϕiϕ

T
i dτ

)−1

. (6.37)

Now, using (6.36), estimates of the errors can be written in terms of measured and calcu-

lated values:

θ̂i =

(∫ t1

t0
z̄eqiϕ

T
i dτ

)
Γi. (6.38)

For simulation convenience, one can set t1 = t, t0 = t − ∆ti, where ∆ti is an adjustable time

delay. Finally, estimated coefficients of the rotational dynamics model are

â1 = ā1 + θ̂22, â2 = ā2 + θ̂21, â3 = ā3 + θ̂12,

â4 = ā4 + θ̂11, â5 = ā5 + θ̂13, d̂1 = d̄1 + θ̂23, (6.39)

where θ̂1 j, θ̂2 j are j-th elements of vectors θ̂1, θ̂2.

6.6 Estimation of non-measured variables

With identified parameters of the rotational dynamics, we can now estimate additional vari-

ables that will be used in the control design. Specifically, we need to design an observer for



116Chapter 6. SlidingModeControl ofRotaryDrilling Systems with Full ParametricUncertainty

ϕ̃ and T , which are not measured outside of identification phase, as well as ω and derivatives

Ṫ , T̈ . For this purpose, we use a HOSM observer which provides estimates of the state vari-

ables and unknown input(s). It is based on the technique [111] and discussed in details in our

previous works [114], [110]. In short, we extend the rotational dynamics model to include

derivatives of T :

ẋe = Aexe + BeI + DeT3

ωr = Cexe,

(6.40)

where

xe =



ωr

ϕ̃

ω

T

T1

T2



, Ae =



â4 â3 0 0 0 0

1 0 −1 0 0 0

0 â2 â1 d̂1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0



, Be =



â5

0

0

0

0

0



,Ce =



1

0

0

0

0

0



T

,De =



0

0

0

0

0

1



, (6.41)

and Ti := T (i), i = 1, 2, 3, are i-th derivatives of T . For the system (6.40), (6.41), the following

observer is used:

˙̂z = Aeẑ + BeI + Le (ωr − ẑ1) , (6.42)

where Le is such that Ae − LeCe is stable,

v̇i = −λ1iM
1/(7−i)
1 · |vi − v̇i−1|

(6−i)/(7−i) sign {vi − v̇i−1} + vi+1, (6.43)

where i = 1, 2, .., 6, v̇0 = ωr + ẑ1, v7 = 0, M1 > 0 is a sufficiently large number, and λ1i are to

be chosen recursively [79], and

x̂e = ẑ + P−1v, (6.44)
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where

v =



v1

v2

v3

v4

v5

v6



, P =



Ce

Ce(Ae − LeCe)

Ce(Ae − LeCe)2

Ce(Ae − LeCe)3

Ce(Ae − LeCe)4

Ce(Ae − LeCe)5



. (6.45)

6.7 Control design

In order to achieve the control goal outlined in Section 6.4, we first assume that we can

control rotational velocity of the bit directly. In the first step, we design an algorithm for

reference angular velocity, such that rate of penetration is converged to the desired value. After

that, we ensure tracking of that reference signal by employing sliding mode techniques and

using estimated variables and identified parameters.

6.7.1 Algorithm for reference angular velocity

The reference angular velocity signal ωd is generated by an algorithm based on the speed-

gradient methodology [49]. It is fully described in our paper [86], which is why we only give

its equation here:

ω̇d = −γω
2
d v |ṽ|q−1 sign{ṽ}, (6.46)

where q ∈ {1, 2, . . .}, ṽ := v−vd, vd > 0 is a constant desired vertical penetration rate, and γ > 0

is an adjustable parameter chosen by a designer.
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6.7.2 Tracking of the reference velocity

Our goal is to ensure tracking of the reference rotational velocity of the bit ω→ ωd in finite

time. Let us define the following sliding variable:

σ =
...e + k1ë + k2ė + k3e, (6.47)

where e = ωd−ω, and k1, k2, k3 are coefficients chosen such that polynomial s3+k1s2+k2s+k3

is Hurwitz. It can be shown that the derivative of σ can be expressed in the following way:

σ̇ = e(4) + k1e(3) + k2ë + k3ė = f (x,T, Ṫ , T̈ ,T (3), ω̇d, ω̈d, ω
(3)
d , ω

(4)
d ) − ru, (6.48)

where function f is assumed to be bounded, i.e. | f | ≤ M for some M > 0, and r > 0 is a

constant that depends on the parameters of the system.

The fact that control signal u appears explicitly in (6.48) allows us to apply a super-twisting

control algorithm [111]

u = csm|σ|
1/2 sign{σ} + w, (6.49)

ẇ = bsm sign{σ}, (6.50)

where csm > 0, bsm > 0. It is possible to show that the closed-loop compensated σ dynamics is

converged to zero in finite time (see [111, sections 1.8 and 4.3]).

In order to implement the control law (6.49), (6.50), it is necessary to estimate σ (6.47).

One way to do it is to estimate the derivatives of e, using HOSM observers. However, sim-

ulations show that practical implementation is quite difficult in this case due to significant

chattering. The following method demonstrates better results: using the definition of tracking

error e = ωd − ω, we express ω̇, ω̈, ω(3) through other measured and estimated state variables,

using the model (6.4), and substitute it into the equation (6.47):

σ = ω(3)
d + k1ω̈d + k2ω̇d + k3ωd −

(
m1ω + m2ϕ̃ +m3ωr + m4I + m5T + m6Ṫ + m7T̈

)
, (6.51)
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where

m1 = a3
1 − 2a1a2 + a2

1k1 − a2k1 + a1k2 + k3, (6.52)

m2 = a2
1a2 − a2

2 + a2a3 + a1a2k1 + a2k2, (6.53)

m3 = a1a2 + a2a4 + a2k1, (6.54)

m4 = a2a5, (6.55)

m5 = d1(a2
1 − a2 + a1k1 + k2), (6.56)

m6 = d1(a1 + k1), (6.57)

m7 = d1. (6.58)

It is clear that we need to estimate the derivatives ω̈d, ω(3)
d , which is done by means of

HOSM observer:

ḟ1 = − λ11M1/3
ω | f1 − ω̇d|

2/3 sign{ f1 − ω̇d} − µ13σω( f1 − ω̇d) + f2,

ḟ2 = − λ12M1/2
ω | f2 − ḟ1|

1/2 sign{ f2 − ḟ1} − µ12σω( f2 − ḟ1) + f3,

ḟ3 = − λ13Mω sign{ f3 − ḟ2} − µ11σω( f3 − ḟ2),

(6.59)

where fi(t), i = 1, 2, 3 are estimates of ω(i)
d , Mω > 0 is a sufficiently large number, λ1i > 1 are

HOSM differentiators parameters to be chosen recursively [79], µ1i > 0 are coefficients chosen

such that the polynomial s3+µ13s2+µ13µ12s+µ13µ12µ11 is Hurwitz, and σω > 0 is an adjustable

gain.

Taking into account all estimates of parameters and signals, the overall expression for esti-

mated sliding variable σ is

σ̂ = f3 + k1 f2 + k2ω̇d + k3ωd −
(
m̂1ω̂ + m̂2

ˆ̃ϕ +m̂3ωr + m̂4I + m̂5T̂ + m̂6
ˆ̇T + m̂7

ˆ̈T
)
, (6.60)

where f2, f3 are defined in (6.59), estimates ω̂, ˆ̃ϕ, T̂ , ˆ̇T , ˆ̈T are taken from x̂e described in

Section 6.6, and m̂1, ..., m̂7 are coefficients (6.52) - (6.58) with estimated parameters from Sec-

tion 6.5.

The estimate σ̂ is then used in the super-twisting control algorithm (6.49), (6.50).
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6.8 Simulation results

Simulation results of the estimation and control algorithms designed in Sections 6.5, 6.6,

6.7 are presented here. We simulate drilling process through several rock layers with dif-

ferent stiffness. Moreover, because in real world rotational dynamics are described by even

more complex infinite-dimensional models, we use one of them [15] to demonstrate that our

approach works well in real applications. The model is described by the following partial

differential equations:

ρIpϕ
p
tt(x, t) =

GIp

L2
p
ϕp

xx(x, t) −
c1

Lp
ϕ

p
t (x, t) (6.61)

ρIcϕ
c
tt(x, t) =

GIc

L2
c
ϕc

xx(x, t) −
c1

Lc
ϕc

t (x, t) (6.62)

with the following boundary conditions:

GIp

Lp
ϕp

x(0, t) = J1ϕ
p
tt(0, t) + c2ϕ

p
t (0, t) − KmnI(t), (6.63)

GIc

Lc
ϕc

x(1, t) = −JBϕ
c
tt(1, t) − T (t), (6.64)

ϕ
p
t (1, t) = ϕc

t (0, t), (6.65)

ϕp
x(1, t) =

IcLp

IpLc
ϕc

x(0, t), (6.66)

where ϕp(x, t), ϕc(x, t) are the angles of rotation along the drill pipes and the BHA, respec-

tively, as functions of normalized distance 0 ≤ x ≤ 1 and time t. In the above equations, sub-

scripts denote partial derivatives, for example, ϕp
t (x, t) := ∂ϕp(x, t)/∂t, ϕp

x(x, t) := ∂ϕp(x, t)/∂x,

ϕ
p
tt(x, t) := ∂2ϕp(x, t)/∂t2, etc. Parameters ρ, G, Lp, Lc, Ip, Ic are physical characteristics of the

drill pipes and BHA (density, sheer modulus, length and polar moment of inertia, respectively),
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and JB := ρIcLc. The control current I(t) is calculated as follows:

İ = −
Kmn

L
ϕ

p
t (0, t) −

R
L

I +
1
L

V, (6.67)

where V is a control voltage generated by the algorithm from Section 6.7. The following

variables are used in the control algorithm:

ωr = ϕ
p
t (0, t), ω = ϕc

t (1, t), ϕ̃ = ϕ
p(0, t) − ϕc(1, t). (6.68)

We simulate two modes of operation: identification and tracking. During identification

mode (the first 30 seconds) we keep the loop open and set a multiharmonic input voltage

u = 390+10 sin(0.4t)+8 sin(0.6t) to ensure persistence of excitation, and perform identification

of the parameters (we use lumped parameters model (6.4) in this phase). At the same time, we

turn on the observer (6.42) - (6.45) to let its outputs approximately converge to the actual

values. After that, we switch control voltage to super-twisting control algorithm (6.49), (6.50),

using parametric estimates at t = 30s to estimate, in turn, non-measured variables and calculate

σ̂ in real time.

Numerical values of the drilling system parameters and parameters of the environment are

presented in Table 6.1

We simulate the system with some parametric errors, specifically,



∆J1

∆c1

∆k

∆J2

∆c2


=



50

−10

−100

260

−5


. (6.69)

In terms of distributed parameter model, it also corresponds to ∆Lc = 59.3m, ∆Lp =

145.6m. Estimates of the coefficients a1 - a5, d1 are presented in Figure 6.2. The whole

amplitude in the beginning is not shown; however, large overshoots do not affect the work

of the system, because these variables are purely computational for t < 30s. Nominal and real

values correspond to black and red dashed lines, respectively. It can be seen that the estimates
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Table 6.1: Numerical values of the parameters used in simulations (Chapter 6)

Parameter Value Parameter Value

Parameters set by operator
vd, mm/s {3,2} γv {1000, 3000}

Drilling system parameters
L̄p, m 1100 L̄c, m 250

Ip, m4 1.19·10−5 Ic, m4 9.71·10−5

J̄1, kgm2 226.1 n 2

J̄2, kgm2 1140 W0, N 7000

c̄1, Nms 25.7 M, kg 75813

c̄2,Nms 10 K f , Nm 25

k̄, Nm 859.6 a, m 0.11

R, Ω 0.1 ζ 0.75

L, H 0.025 d∗, mm 0.5

Km, V s 6.5 µγ 1.1

Drilling controller parameters
λi3 . . . λi1

[
1.1 1.5 2

]
σω 5

M1 0.0005 Mω 3

∆t1, s 3 ∆t2, s 7

csm 0.95 bsm 0.44

[−0.5 −0.35 ± 0.35 j −0.43 ± 0.25 j

σ{Ae − LeCe} −0.48 ± 0.13 j]

k1, k2, k3

[
6 11 6

]
µ13 . . . µ11

[
12 3.92 1.28

]
Parameters of the environment

ϵ, MPA {30,35,31,25}

σκ, N/m2 3ϵ
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converge to either actual values or very small neighborhood of actual parameters.

Simulation results for state variables, torque-on-bit, depth of cut, control signal, and sliding

variable are shown in Figures 6.3 - 6.6. Red dashed line separates identification and tracking

modes. One can see that stability is ensured, and all variables converge to their desired values in

reasonable time. There is a small mismatch between real and estimated torque due to imperfect

parameters identification and different models, but the error does not affect the result in terms

of velocity regulation.

6.9 Conclusions

In this paper, a problem of vertical velocity regulation in rotary drilling systems with para-

metric uncertainties is addressed, and an observer-based control algorithm is designed for this

task. In contrast with previous results, the proposed algorithm is robust with respect to paramet-

ric errors, which means that only approximate nominal values of the drilling system’s mechan-

ical parameters can be used. Additionally, parameters of the environment are also considered

unknown, and underground measurements are only required in the identification phase. The

proposed approach was tested by simulations; the results showed that it is feasible and efficient.

In the future, it could be possible to extend these results to the case of directional drilling

systems, where the tasks of velocity regulation and trajectory tracking should be solved simul-

taneously.
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Figure 6.2: Actual, nominal, and estimated coefficients of the rotational dynamics model a1,
a2, a3, a4, a5, d1
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Figure 6.3: Rate of penetration v (left plot); actual, estimated, and reference rotational
velocity of the drill bit ω, ω̂, ωd (right plot)

Figure 6.4: Control voltage V (left plot); armature current I (right plot)
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Figure 6.5: Depth of cut d (left plot); actual and estimated torque-on-bit T , T̂ (right plot)

Figure 6.6: Sliding variable σ (left plot); intrinsic specific energy of the rock ϵ (right plot)



Chapter 7

Conclusions

7.1 Summary

In this thesis, we presented new control algorithms for conventional rotary drilling systems.

These algorithms ensure safe and stable automated drilling operations according to the desired

values set by a human operator. It translates into two problems that we considered: regulation

of vertical penetration rate and regulation of drilling power. Solution of the second problem

has an advantage in a way that it better protects the drill bit from wearout and is generally

safer; however, control laws that we obtained for drilling power regulation can only be proved

theoretically if parameters of the environment are known beforehand; otherwise, it works in the

first phase of drilling only. For this reason, the research is mainly focused on vertical velocity

regulation.

In Chapters 2 to 6, different cases were considered, and several control strategies were pro-

posed depending on the amount of available information and required precision of the drilling

model. In all of them, we had a multi-step approach: first, a reference rotational velocity of

the drill bit is generated, such that the control goal is achieved, as if the angular velocity was

controlled directly. After that, it is ensured that the actual signal tracks the reference one with

good precision.

First, in Chapter 2, we defined the drilling power and designed a control law to regulate

it, assuming that all parameters are known, and downhole measurements are available contin-

uously without delays. Reference rotational velocity was calculated and then tracked using

high-order sliding mode observers, while disturbance introduced by torque-on-bit was also re-

127
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jected. In the next chapter, we relaxed the assumption that parameters of the environment are

available. We generated reference angular velocity by use of speed gradient method, taking

advantage of the fact that torque-on-bit and weight-on-bit are linear functions with respect to

depth of cut. In Chapter 4, we used an infinite-dimensional model of the rotational dynamics,

which describes the real-world drilling system more precisely. With the same algorithm for ref-

erence rotational velocity, we introduced a method for its tracking that guarantees exponential

convergence. The algorithm uses a distributed-parameter reference model and a disturbance

observer. Next, in Chapter 5, we eliminated the necessity of downhole measurements (and,

therefore, any and all communication requirements) by using a HOSM observer for estimation

of all downhole signals that utilizes only two ground-level measurements - angular velocity

of the rotary table and armature current of the motor. We tested this controller against small

disturbances in the rock structure, as well as with infinite-dimensional model of the rotational

dynamics. Finally, in Chapter 6, we investigated the case of uncertain parameters of the drilling

system itself (i.e. mechanical characteristics and damping coefficients), proposed a strategy to

identify them, and then used the estimates in a new tracking scheme based on a super-twisting

sliding mode controller.

All results were tested in simulations, where we simulated a drilling process through several

(homogeneous in most cases) rock layers with different stiffness. We defined one or two desired

levels of penetration rate or drilling power, and showed that in every layer the proposed control

algorithms successfully converge all variables to their desired values in reasonable time.

7.2 Future Work

In the future, our approach may be enhanced in the areas of directional drilling and adap-

tive control. In the former problem, most efforts are focused on a precise trajectory tracking;

however, it would be useful to investigate how tracking of both spacial trajectory and desired

velocity can be achieved together. Another improvement may include identification of all

drilling parameters within a single mode of operation.

There exist many other challenges in drilling automation, including pressure control during

MPD in a closed annulus, trajectory control in directional drilling, detection of undesirable

events in the wellbore, automatic well control by means of managing dangerous influxes of

fluids or gases into the well, precise modeling of the wellbore in real time, and other problems.
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Novel automatic control solutions in these areas would improve quality and safety of drilling

and greatly benefit the industry.
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