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Chapter 1 

Introduction· 

An inherent evil of model-based control is the inevitable discrepancy between the actual system and 

the system model for which the controller was designed. Failure to consider these discrepancies, or 

modeling errors, can lead to undesirable - and potentially unstable - results. Often, such errors are 

unavoidable due to insufficient information about the system. In many instances, however, they are 

intentional, resulting from simplifying assumptions in the model. 

One such simplification is the approximation of a system with constraints on the states (saturation 

nonlinearities on the state variables) as a purely linear system. Suppose the controllable, single-input, 

· linear, time-invariant (LTI) system, (1.1), (1.2), has limits on the magnitude of the state variables 

and on the available input. 

x = Ax + Bu, x E Rn 

y ~ Cx+Du 

(1.1) 

(1.2) 

Specifically, the following linear inequality constraints exist, where each inequality is assumed to 

contain the origin. 

Gi = {xlrix~l},i=l, ... ,k 

U = { ul lul ~ u} 

(1.3) 

(1.4) 

Definition 1.1 The maximal state .. space, G, is given by the intersection of the inequality con

straints, (1.5). 

(1.5) 

Obviously, such a system is indeed linear so long as the states remain in the unsaturated mode, 

so one approach is to keep the state in this linear range. However, this method generally results in 
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overly conservative restrictions on the operating space, limiting both the range of operation and the 

achievable performance characteristics. The problems of performance and stability are compounded 

by the limit on the available control effort. 

The problem of remaining inside a set of prescribed bounds on the states is non-causal, requiring 

prediction to determine if the available control effort is sufficient to keep the state within these 

bounds. Essentially, it is a two point boundary value problem since the initial condition, x(t0 ), and 

the final state, x(t1) (e.g., the origin for the regulator problem), are known. If no realizable control 

signal exists to take the ~ystem from x (to) to x (ti) without violating the state constraints, then 

the point x(t0 ) is not admissible. 

Definition 1.2 A trajectory, x (t), or control signal, u (t), is said to be admissible on t E [t1 , t2] 

if x (t) E G, u (t) EU (t E [t1, t2]), respectively. 

In general, the issue is whether or not two points, Xa,Xb E G, can be accessed from one another 

along some admissible trajectory using some admissible control signal. The origin being of particular 

interest in most control system designs, the following definitions are stated with the note that x2 

is taken as the origin for the remainder of the thesis. These definitions adapt those established by 

LeMay [32], who studied the constrained input problem, by including restrictions on the states, as 

well. 

Definition 1.3 An element x1 E Rn is a recoverable state in (to, ti) with respect to x2 if there 

exists an admissible control which will drive the system from state x1 at time t0 to x2 at time t f 

along an admissible trajectory. The maximum region of recoverability with respect to x2, S11 , 

is the set of all recoverable states in (to, t f) with respect to t f. 

Definition 1.4 An element x1 E Rn is a reachable state in (to, ti) with respect to x2 if there 

exists an admissible control which will drive the. system from x2 at time to to state x1 at time t f 

along an admissible trajectory. The maximum region of reachability with respect to x2, Se, is 

the set of all reachable states in (to,t1) with respect to ti. 

Definition 1.5 Two elements x 1 ,x2 E Rn., are a dual pair of states, or dual states, in (to,t1) 

if there exists an admissible control which will drive the system from x1 at t0 to x2 at t f along an 

admissible trajectory, and if there exists an admissible control which will drive the system from x2 at 

to to X1 at t f along an admissible trajectory. The maximum region of controllability in (to, t f), 

Sc, is that set of states in Rn for which: 

1. Any pair of states in that set is a dual pair in (to, ti). 
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2. There does not exist a state in Rn not in the set which is the dual in (to, t1) of each state in 

the set. 

Remark 1.1 The problem of control of systems with constrained states and input first received 

widespread attention in the 1960's and early 1970's but apparently faded due to the complexity of the 

problem and the proposed solutions. Interest was revived by the availability of computers in the late 

1980's and onwards. However, the terms used in the earlier publications often differ from those used 

in the more recent ones. In addition, technologies originating in other fields have been applied to the 

problem, introducing additional words and phrases to the mix. The result is a lack of consistency in 

the terminology. The terms recoverable, reachable, and controllable are used here because of 

their introduction in one of the earliest complete works in the field of constrained input set theory 

and because they help to describe what is physically occurring. In {16}, controllable, reachable, 

and maneuverable are used to describe the same sequence of sets. Other terms may be encountered 

in the literature, most notably viable as an alternative for recoverable (e.g. [4},{13}) and attainable 

as an alternative for reachable (e.g. {1},[2]). 

To better illustrate the issues involved, one may imagine a simple, second order mass-spring

damper system traveling at some positive velocity (which for this case is assumed to be its maximum 

admissible velocity) and consider what control effort is necessary to maintain the system inside a 

position limit. The point designated Xe in Figure 1.1, the phase plane of the system's control 

canonical form ( with state bounds denoted by the dotted lines), illustrates the point in time when 

the system state has reached the maximum position bound as a result of traveling at the maximum 

velocity. 

To maintain the system state inside the prescribed limit, a negative impulse signal (control effort) 

must be sent to the system to drive the velocity to zero (point Xe) instantaneously. Obviously, such 

a signal violates any finite constraint on the input. Consequently, one must determine the point, 

x*, at which maximum negative control effort must be applied to ensure that the system state will 

remain inside the constraint. 

From this illustration, it is seen that the point Xe is not recoverable in the sense that no admissible 

control signal exists which will maintain the system trajectory inside the state bounds. However, 

the point is reachable since the state can be accessed from at least one other point in G via some 

trajectory remaining in G. 

These ideas of recoverability and reachability can be expanded by considering other points in the 

state-space. Figure 1.2 shows, in addition to Xe, two additional points, xv, Xe, and representative 

3 



~ - - - - ~~--~~--<1..-~~--+------
x* X e I 

I 8G1 

\ .. I 

\1 
\1 

------r 
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Figure 1.2: Illustration of Recoverable, Reachable, and Controllable Points. 
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trajectories through the points (The precise path is, of course, control dependent, but for this 

discussion it is only· important to . note that trajectories must tend to the right if the velocity is 

positive and to the left if the velocity is negative.) In contrast to Xe, the point xv is recoverable 

but not reachable, while Xe is both reachable .and recoverable, a property which is referred to as 

controllable. 

1.1 Comments on Invariance 

As discussed in Chapter 2, several options exist for solving the problem of control with constrained 

states and input. The method used in this thesis is that of identifying a priori a subset, S, of the 

state-space so that, for every state in that subset, there exists an admissible control law such that the 

state is reachable/recoverable/controllable, depending on the desired set. This involves the notion 

of invariance, and it is important to clarify the terminology with a few definitions. 

Definition 1.6 {8} The set SC Rn is said positively invariant for a system of the form 

d 
dtx(t) = f (x(t)) 

if for all x (0) ES the solution x (t) ES fort> O. If x (0) ES implies x (t) ES for all t ER then 

we say that S is invariant. 

Definition 1.7 {8} The set SC Rn is said controlled invariant for the system 

d . 
dtx(t) = f (x(t)) 

y (t) = g (x (t)) 

if there exists a continuous feedback control law 

u (t) = cp (y (t)) 

which assures the existence and uniqueness of the solution on R;+ and it is such that S is positively 

invariant for the closed loop system. 

Remark 1.2 As noted in {8}, the formal definition of invariant, referring to time future and past, 

rarely finds use in engineering applications. In this thesis, when a set is said to be invariant, positive 

or controlled invariance is implied. 

The objective of this research is to identify a reasonable approximation to a maximal set, without 

regard for any fixed control law. The proposed approach specifies a structure for the set ( ellipsoidal 
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or semi-ellipsoidal) as well as for the control law (state-feedback), then searches over the param

eter space (matrix elements) of both the set and the control law to find maximal sets subject to 

the constraints of invariance, bounded states and input, etc. However, performance requirements 

(settling time, etc.) are not incorporated into the problem formulation; the state-feedback structure 

is assumed solely to prove that there exists an admissible control making the set invariant. In fact, 

response characteristics under the computed state-feedback law may be far from ideal even though 

admissibility of the trajectories is ensured, so the computed control law is simply discarded. 

Adhering to the definitions of Bianchini, the algorithms presented in this thesis are technically 

solving a positive invariance problem. However, the only information of interest is the set itself, 

which can be said to be controlled invariant since there is known to exist at least one control law 

{the discarded state feedback rule) making the set positively invariant in the closed-loop, all of which 

adds unnecessary confusion to the discussion. For the sake of clarity, then, the phrase "controlled 

invariant" is used throughout, with the admission that this may not be in keeping with the strict 

definition in all instances. 

Remark 1.3 If, for a given system, a state feedback control law has been computed which gives 

desirable performance characteristics, the Matlab code in the appendices could be easily adapted to 

solve the maximal (positively} invariant set problem for a fixed control law by allowing the algorithm 

to search over the set of ellipsoid/semi-ellipsoid parameters only. 

1.2 Outline of Thesis 

The remainder of the thesis is organized as follows. Chapter 2 surveys the currently available 

literature related to control of constrained systems, motivates the problem addressed in this work, 

and highlights the contributions. Chapters 3 and 4 present the theory and exam.pies of ellipsoidal 

set approximations, which provides the foundation for the semi-ellipsoidal sets. Chapter 5 presents 

the main contribution of the thesis, the semi-ellipsoidal approximating set, and Chapter 6 provides 

exam.pies illustrating the application of this theory to second- and third-order systems. Chapter 7 

makes some concluding remarks and comments on possible avenues for future research. 

Several appendices are included to provide details of certain portions of the work. Appendix A 

addresses the existence of a solution to the pair of Ricatti equations for the controllable ellipsoid, 

while Appendices B and C derive the ellipsoid volume objective function and state constraint inequal

ities, respectively. Appendix D provides the analytic derivatives of the cost functions and constraints 

required for the Matlab algorithms of Appendices F and G. Finally, Appendix E presents a modified 
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semi-ellipsoidal state constraint inequality based on a variable structure rather than state feedback 

control. 
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Chapter 2 

Literature Review 

Research into the control of systems with state and input constraints can generally be classified into 

one of two broad categories: predictive schemes and set membership methods. Among those ap

proaches falling into the first category are time-optimal and model predictive methods. Time-optimal 

control for constrained systems is a classic problem and has been investigated extensively (see, 

e.g., [30]). Using a model predictive scheme, Bemporad [5] proposes an alternative reference gover

nor for discrete time systems. At each time step, an admissible control sequence is generated which 

minimizes a cost function measuring the sum squared error between the predicted system trajectory 

and the desired reference trajectory for N future time steps. Furthermore, the constraint is imposed 

that the system's state will remain inside the state bounds for at least the N time steps of the 

cost function. Instead of imposing a terminal state constraint, the author relaxes the constraint to 

membership in an ellipsoidal set. The primary drawback of this and other model predictive methods 

is the computational burden for predicting states at future time steps. 

The set membership methods seek to identify a priori a subset of the state-space contained in the 

constraint set which is invariant under an admissible control. One of the earliest papers investigating 

the reachable, recoverable, and controllable regions of the state-space is the doctoral dissertation 

by LeMay [32], in which the maximal subsets for linear systems with input constraints (i.e., no 

state constraints) are computed using time-optimal trajectories. A large body of work by LeMay's 

doctoral committee chairman, Dr. Elmer G. Gilbert, attempts to extend the results to autonomous 

discrete time systems with both input and state constraints using polyhedral approximations to the 

maximal recoverable set. (Typically, only the recoverable set is treated in the literature, primarily 

because this is the set defining the safe range of operation.) Most notable is a paper co-authored 

by K. T. Tan [20], which identifies the recoverable set (or "output admissible set," as referred to 
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by the authors) for systems with state-feedback control. The set is characterized by taking the 

system forward in time and identifying those initial conditions which do not violate the constraints. 

Among the applications of this technology is a reference governor, which modifies the reference 

signal to the controller so that the system remains in the un-saturated region ([17], [18], [19]), and 

a multimode control, which switches the control law when necessary to ensure safety at the expense 

of performance ([31]). 

• Gutman and Cwikel [21], [22]investigated the use of polyhedra for discrete time non-autonomous 

systems. This work was extended in [29] and most recently in [35], in: which an approach is proposed 

for discrete time systems based on level sets of time-optimal control. That is, the authors generate 

backward in time the set of all points (within the admissible range of the state variables) which can 

reach the origin in N steps, resulting in polyhedra characterizing each Nth level set. 

Bitsoris and Gravalou [7] adopt a linear programming approach to solving the constrained state 

and input problem for discrete time systems given an a priori specified, bounded convex polyhedral 

set, X0 , of initial conditions. Solution of the control problem lies in finding ari admissible control for 

each vertex of X 0 , then computing a control law for any other point as a linear combination of the 

vertices' control laws. However, this method does not (and cannot) guarantee that an admissible 

solution exists for each vertex. 

Most relevant to the present note are the studies utilizing a Lyapunov or invariant ellipsoid ap

proach. Suarez, et al., applies this method to linear systems with control constraints [44]. Among 

the first to employ the ellipsoid approach for systems with state constraints was Gutman and Ha

gander [23]. Similar works by Shewchun and Feron [42], [43] and Wredenhagen and Belanger [47] 

investigate the use of nested ellipsoids to regulate systems with bounds on the control and control 

rate. The state is moved from one ellipsoid to the next inner one using subsequently higher control 

gains, resulting in improved performance without saturating. Both papers rely on LQR theory to 

develop the control law, with the ellipsoid being the solution to the Riccati equation. The primary 

difference in the two papers is that, in the latter, the authors develop a recursive algorithm to 

compute the parameters for the nested ellipsoids, while, in the former, the authors rely on a linear 

matrix inequality (LMI) approach. 

Hou and Michel [24} investigate the asymptotic and global stability ofstable, linear, autonomous 

systems operating on the unit hypercube or some less restrictive partial state constraint set using 

ellipsoidal Lyapunov functions. However, the autonomous form is not assumed to be the closed loop 

structure resulting from state feedback, and, consequently, no conditions are placed on control effort. 

To the author's knowledge, the work of LeMay [32] has not been formally extended to the case 
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of constrained input and control. However, the results of his· study, as well as those of Mayne and 

Schroeder [35], suggest that the boundaries of the maximal regions are characterized by a combina

tion of time-optimal {or maximal input) trajectories and the state constraints, Gi, themselves. Such 

a region would be difficult to characterize quantitatively for a generic system. Thus, approximations 

such as the polyhedra suggested by Gilbert, et al., or Mayne and Schroeder are more realistic for 

practical applications. Furthermore, Blanchini and Miani [9] have shown that the maximal set can 

be arbitrarily closely approximated by polyhedra. However, these approaches themselves become 

markedly more complex for systems higher than second or third order, due to the number of vertices 

needed to adequately describe maximal sets in higher dimensions. (As an indicator, see Table 1 of 

Mayne and Schroeder [35], which shows the total number of vertices for an N = 8 level set design 

increasing from 78 for a second order system to 566 for a fifth order system, and note that each vertex 

requires n data points to describe, for a total of 156 and 1698 parameters, respectively.) Although 

some work has been done to minimize the number of vertices without degrading performance ([37]), 

data storage space remains an issue for many applications. 

2.1 Motivation & Contributions 

Blanchini makes the following statement in the conclusion of his survey paper on set invariance in 

control [8]: 

The techniques based on ellipsoidal sets are conservative. This fact is well estab

lished in robustness analysis as well as in the determination of domains of attraction 

under constraints. Polyhedral sets provide non-conservative solutions but they lead to 

computationally intensive algorithms. This is one of the most serious troubles although 

the fast improving computer performances alleviate the problem. 

We believe that there are still several open problems that are worth an investigation. 

For instance, we have seen that the only family of sets of practical use having a bounded 

complexity are the ellipsoids. For the reasons explained above it would be important to 

develop algorithms to find other classes of invariant sets to achieve a reasonable tradeoff 

between conservatism and complexity. 

While computer performance has improved tremendously in recent years; numerous situations 

exist in which system resources (processing time, available storage space, etc.) are limited. For 
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such systems, the comments by Blanchini are even more applicable, and they motivate a need for 

approximations to the maximal sets with better conservativeness and complexity properties than 

those methods currently available. 

For the primary contribution, it is proposed that the maximal sets be approximated by subsets 

of ellipsoids defined by the intersection of the ellipsoid itself and the state constraint sets. These 

semi-ellipsoidal sets are shown to be invariant via an admissible state-feedback control law. This 

approach addresses the concerns of Blanchini by offering an approximation to the maximal sets 

which is less conservative than the·ellipsoidal approach but simpler than the polyhedral approach. 

· As a foundational step to the main result, the maximal sets are first approximated by invariant 

ellipsoids completely contained within the state constraint set. The more general parent problem, 

that of finding the largest invariant ellipsoid contained in a polyhedral set, has been formulated by 

Boyd, et al. [10, Sec. 5.2]. Consequently, the ellipsoidal approach is· effectively an extension of this 

concept to the specific problem of control in the presence of state and input constraints. 

In light of the published results, the research presented.in this thesis offers the following contri

butions: 

1. The ellipsoidal method provides approximations to the maximal recoverable, reachable, and 

controllable sets for continuous time systems with constraints on both the input and linear 

combinations of the states. The approximation is characterized by only n( n + 1) /2 parameters 

specifying an (n x n) symmetric ellipsoid matrix. 

2. The semi-ellipsoidal method provides approximations to the maximal recoverable, reachable, 

and controllable sets for continuous time systems with constraints on both the input and 

linear combinations of the states which are less conservative than the ellipsoidal approach 

but less complex than the polyhedral approach. The approximation is characterized by only 

n((2k + n) +1)/2 parameters specifying an (n x n) symmetric ellipsoid matrix and k state 

constraint matrices of dimension ( n x 1). 

3. The ellipsoidal and semi-ellipsoidal approximations transfer the problem of control with con

strained states and input from one of point-in-time. prediction to one of point-in-time set 

membership, greatly reducing the on-line computational burden. 

4. In general, the ellipsoidal and semi-ellipsoidal methods are applicable for the constrained-input 

problem {i.e., no state constraints), as well. In certain cases, such as the recoverable set for 

a strictly stable system or the reachable set for a strictly unstable system, the algorithm will 

not converge, since the maximal set is the entire state-space. 
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Chapter 3 

Ellipsoidal Sets 

The objective of this chapter is to twofold: (i) to extend, at least in a conservative sense, the concepts 

of recoverable, reachable, and controllable sets due to LeMay [32] to systems with state constraints 

and (ii) to provide a foundation for the semi-ellipsoidal sets to follow in Chapter 5. Consideration 

is first given to approximating the recoverable set, which can essentially be thought of as solving 

a constrained regulator problem. The reachable and controllable sets are then adapted from these 

results. 

3.1 Recoverable Ellipsoidal Set 

Suppose the maximal recoverable set for a particular system is as shown in Figure 3.1. 

Lemma 3.1 The maximal recoverable set, Sv, is invariant under some control law, Uv (x). 

Proof. Note that the maximal recoverable set is, by definition, complete (i.e., there are no points 

outside Sv which can reach the origin along some admissible trajectory using an admissible control 

signal, Uv (x).) Suppose an admissible trajectory of some point in Sv passes outside 8Sv using an 

admissible control. This implies that Sv is not complete, contradicting the definition. • 

Lemma 3.2 A sub-maximal recoverable set Sv C Sv ~ G satisfies the state and input constraints if 

Sv is invariant under some control law Uv (x), where Uv EU for x E Sv. 

Proof. Since Sv is invariant, then x (xo, t) E Sv, t E [O, oo), which implies that x (xo, t) E G, 

t E (0, oo). This, in turn, implies that Uv (x, t) EU, t E [O, oo). • 
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Figure 3.1: Maximal Recoverable Set. 

The condition on Sv in Lemma 3.2 is sufficient but not necessary, since it may be possible, using 

another admissible control law, Uv (x), to generate another recovery trajectory which exits Sv for 

t E [t1, t2] but remains inside G, as illustrated in Figure 3.2. 

Suppose that the boundary of the sub-maximal set, 8Sv, can be expressed as the level set of 

a Lyapunov function, V (x). A necessary and sufficient condition for invariance of Sv is that (3.2) 

hold for some control law, u11 (x), where V denotes the time derivative of V. 

.ij.. 

dVdz < Q 
dz dt -

(3.1) 

(3.2) 

In general, V (x) and u (x) can be any of a number of functions (provided, of course, that the 

candidate V qualifies as a Lyapunov function). However, simplifying assumptions must be made to 

bring the generic problem into a tractable form. Specifically, the following structur~s are chosen, 

where Pv > 0 implies that Pv is a positive definite matrix (Note: V satisfies the usual requirements 

for a Lyapunov function, in particular that it is positive definite): 
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Figure 3.2: Approximate Maximal Recoverable Set. 

Ellipsoids are quadratic functions of the states defined by positive definite matrices. Conse

quently, each level set of (3.3) defines an ellipse, as shown in Figure 3.3. In particular, attention 

may be focused (without loss of generality) on the level set V (x) = 1, leading to Problem 3.1. 

Problem 3.1 Find the largest ellipsoid, "tv = { xjxT Pvx :::; 1} and corresponding control law, 

Uv = -Kvx, such that {a) "tv ~ G, (b) luv (x)I:::; u for x E &v, and (c) "tv is a controlled invariant 

set for the system (1.1} and control law -Kvx. 

Remark 3.1 It is important to emphasize the fact that the computed state feedback gain, Kv, is 

used only as a tool to establish invariance of the maximal recoverable ellipsoid, and is not necessarily 

intended to serve as the implemented controller for the system. (The same holds for the discussion 

on the reachable and controllable sets to follow.) 

Remark 3.2 Suppose asymmetric constraints exist on a state (or input}. Since the ellipsoid is 

symmetric and assumed centered on the origin, then its size is determined by the more restrictive 

condition, such that the asymmetric constraint effectively becomes a symmetric constraint. Conse

quently, state and input constraints are assumed symmetric for the duration of the thesis. 

Invariance of the ellipsoid is ensured by forcing the time derivative of V, (3.5), to be negative 

semi-definite. 
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Figure 3.3: Ellipsoidal Level Sets of V. 

= XT Pv (Ax+ Buv) +(Ax+ Buvf Pvx 

= xTPv (A- BKv)x +xT (A-BKvf Pv 

= XT [Pv (A- BKv) + (A - BKvl Pv] X (3.5) 

The requirement that this time derivative be negative semi-definite imposes the equivalent condition 

that the matrix in brackets be negative semi-definite, as shown in (3.6). 

(3.6) 

Note the similarity of (3.6) with the Control Algebraic Riccati Equation (CARE), shown in (3.7), 

along with the state feedback gain in (3.8). 

PA+ATP-PBR-1BTP+Q = 0 (3.7) 

(3.8) 

Restricting the form of the state feedback matrix to (3.8) (as is done in (42], (48]) will result in a 

solution which, although optimal for the LQR problem, may not necessarily be "optimal" for the 

problem of finding the largest invariant set. Consequently, no such restrictions are placed on the 

form of the state feedback matrix. 

Problem 3.1 can be formulated as a linear matrix inequality problem, or, more generally, as a 

constrained optimization problem. The following sections summarize the problem development. 

3.1.1 Objective Function 

For an ellipsoid ( centered at the origin) defined by a given Pv matrix, it is known that the lengths 

of the principal axes of the ellipsoid are given by the eigenvalues of pv-1 • Furthermore, the volume 
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of an ellipsoid is proportional to the product of these eigenvalues. Since the determinant of a matrix 

is equal to the product of its eigenvalues, (3.9) may be used as an objective function to find the 

largest ellipsoid, where t_he logarithm function is included to improve the search (See Appendix B 

for derivation.) 

maxlogdet (P;1 ) (3.9) 

3.1.2 Constraints 

In this section,· constraints on ellipsoid invariance, on the states, and on the control input are 

expressed as functions of the optimization parameters, Pv and Kv. 

Invariance Constraint 

To ensure that the ellipsoid is controlled invariant, the following matrix inequality is imposed. In 

comparison with (3.7), the parameter Q is set to zero. A positive-definite symmetric Q matrix forces 

a minimum decay rate on V, yielding a certain level of robustness. For the present work, however, 

the robustness issue is not considered, hence the choice of Q. 

. . T 
Pv (A.:... BKv) + (A - BKv) PT} :'.S 0 (3.10) 

Several options exist to test for negative semi-definiteness of matrices ([27]), most notably for 

this application that the eigenvalues must be negative semi-definite. Consequently, the constraint 

imposed is that the eigenvalues of the matrix L, where Lis equal to the left hand side of (3.10), be 

less than or equal to zero (Note that they are guaranteed to be real since Pv is symmetric). 

State Constraints 

Constraints expressible as linear combinations of the states (as in {1.3)) can be written in the form 

of an inequality in the ellipsoid matrix, Pv, and constraint matrix, ri, as derived in Appendix C. 

r .p-lrT < , . - 1 k 
i T} i - .. , i - ' ... ' (3.11) 

Control Constraint 

Since the control law is of the state feedback form, constraints on the input magnitude can be 

expressed as a modified version of (3.11). 

(3.12) 
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Positive Definiteness Constraint 

It has been noted that ellipsoids are described by positive definite, symmetric Pv matrices. Conse

quently, the following constraint is also imposed. 

Pv >0 {3.13) 

3.1.3 Implementation Issues 

To demonstrate the concepts presented in this chapter, optimization routines were written for use 

with the Matlab software package {in particular, the function constr .m). The comments which 

follow describe several implementati9n problems encountered, as well as the solutions that were 

developed. 

Remark 3.3 This constrained optimization problem fits nicely into the framework of the linear 

matrix inequality (LMI} problem {In fact, the text on LMI's by Stephen Boyd, et al., discusses 

application of the technology to finding an invariant ellipsoid for the constrained input problem {10 ]. } 

In particular, freeware packages such as SDPSOL {49} and MAXDET {50} (specially developed for 

the maximum determinant problem, {3.9}},. appear to be well suited and might be considered for 

future implementations of these algorithms. . 

Initial Conditions 

Often, Matlab's search routine fails to find the optimal ellipsoid from a random initial guess of Pv 

and Kv. More consistent results are obtained by using the approach of Corollary A.2 (page 101) 

to initialize the search parameters. The resulting ellipsoid is scaled down (such that the ellipsoid 

boundary only comes to some fraction ( say 90%) of the admissible control effort or state constraint 

bounds) and used as the initial condition for the combined state and input constrained problem. 

Unstable Systems 

To. improve the stability of the search for systems with positive eigenvalues, a nominal stabilizing 

state feedback control gain, Ki, is imposed. The search routine remains the same, with the exception 

of the following changes to {3.10) and (3.12). 

Pv [A- B (Kv + K~)] + [A- B (Kv + K~)f Pv ~ 0 

(Kv + Ki) P,;-1 (Kv + Ki{ ~ u2 
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3.2 Reachable Ellipsoidal Set 

Drawing from the previous results, the observation is made that a given ellipsoid is reachable if 

condition (3.16) holds for some control law Ue (x). 

dV/dr::; 0, r = -t (3.16) 

In other words, if, in negative time, a set of points can reach a neighborhood of the origin under a 

given control law, then those same points can be reached from the neighborhood of the origin using 

the same control law in positive time. The problem is thus formally stated next. 

Problem 3.2 Find the largest ellipsoid, Ee = { xjxT Pex ::; 1} and corresponding control law, 

Ue = -Kex, such that {a) Ee f;: G, {b) lue (x)I::; u for x E Ee, and {c) Ee is a controlled invari

ant set for the system {1.1) and control law -Kex in negative time. 

Reevaluating the derivative of V with respect tor yields (3.17), the counterpart to (3.6). 

(3.17) 

This relation serves as the invariance constraint (see (3.10)) for the reachable ellipsoid problem. 

All other inequalities remain the same, except that the nominal controller, K~, must stabilize the 

system in negative time (i.e., it must stabilize the pair [-A,-B]). 

3.3 Controllable Ellipsoidal Set 

A set is both recoverable and reachable if, for some control law(s), each point can both reach some 

neighborhood of the origin and be reached from some neighborhood of the origin along an admissible 

trajectory using an admissible control. 

Problem 3.3 Find the largest ellipsoid, Ee = { xlxT Pex :S 1} and corresponding pair of control 

laws, Uv = -Kvx, Ue = -Kex such that (a) Ee f;: G, {b) iuv (x}I, lue (x)I::; u for x E Ee, and {c) 

Ee is a controlled invariant set for the system {1.1) and control law -Kvx in positive time and for 

the system {1.1) and control law -Kex in negative time. 

This problem is solved by imposing (3.10) and (3.17} on Kv, Ke, respectively. Existence of a solution 

to this pair of inequalities is treated in Appendix A. 
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3.4 Summary 

The optimization problems for finding ellipsoidal approximations to the maximal recoverable, reach

able, and controllable sets are summarized in Problems 3.4, 3.5, and 3.6, respecthrely. The elements 

of the ellipsoid and state feedback matrices are search parameters for the optimization routine, where 

the ellipsoid matrix is symmetric by construction. 

Problem 3.4 (Recoverable Ellipsoidal Set) 

Maximize 

log det (P;-1) 

subject to 

Pv (A-BKv)+ (A-BKvf Pv $ 0 

-Pv-1 < 0 

riP;1 rr $ 1, i = 1, ... , k 

K p-1KT <u2 
V V V -

Problem 3.5 (Reachable Ellipsoidal Set) 

Maximize 

subject to 

-Pe (A - BKe) - (A - BKef Pe $ 0 

-Pe <0 

ripe-1rr $ 1, i = 1, ... ,k 

KePe-1 K; $ u2 

Problem 3.6 {Controllable Ellipsoidal Set) 

Maximize 

subject to 

!'c (A - BKv) + (A - BKvl Pc $ 0 

-Pc (A - BKe) - (A - BKe)T Pc $ 0 

-Pc <0 

ripc-1rr $1, i = l, ... ,k 

KvPc-1 K'[ $ u2 

KePc-1 K'{ $ 'fi,2 
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Chapter 4 

Ellipsoidal Set Examples 

This chapter presents example test cases which illustrate the maximal ellipsoids for different types 

of systems. As the results are reviewed, the following general comments should be kept in mind: 

• Ellipsoid shape tends to be biased toward system modes that are easier to operate along (a 

stable mode is easier to recover along than an unstable one, while an unstable mode is easier 

to reach along than a stable one). This means that recoverable ellipsoids will be larger than 

reachable ellipsoids for strictly stable systems, and vice versa for strictly unstable systems. 

• The more difficult the ellipsoid is to achieve, the more tightly the trajectories will follow the 

bound (e.g., the trajectories of an unstable ellipsoid will decay very little in the recovering 

mode if the system is near its operating limit). 

4.1 Second Order Systems 

Contained in this section are the computed maximal controlled invariant ellipsoids for six differ-

. ent second-order, linear systems in control canonical form: stable, stable focus, marginally stable, 

unstable, unstable focus, and saddle. Neither the theoretical development nor the Matlab code re

quires canonical form. However, this structure does allow for an easier interpretation of the imposed 

constraints, namely, a ±1 limit on both the "position" and "velocity" and a ±1 limit on the control 

effort. 

Trajectories ( coming from the ellipsoid boundary when recovering, going to the ellipsoid boundary 

when reaching) are plotted for all three cases. Note that for the controllable ellipsoid plots, one (or 

both). of the sets of trajectories cycles about the ellipsoid (compare with individual recoverable and 

reachable plots). It is difficult to show control effort on the plots without losing clarity, so for 
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simplicity it is merely stated that maxe IKxl ::; 1 in all cases (Note: The objective is to obtain 

the largest ellipsoid, which may or may not mean that maximal control is used, although, generally 

speaking, the maximum observed control is near 1.) 

4.1.1 Stable 

The eigenvalues of the following A matrix are -1, -3. 

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.1, 4.2, and 4.3, respectively. Ellipsoid matrices are given in Equations (4.1), (4.2), and (4.3). 

Pv = [ 1.00l9 0.0432 l (Kv = [ -1.0000 -2.5000 ] ) 
0.0432 1.0019 

Pe = [ !6.912 O.OOOO ] (Ke = [ -1.0000 -5.5000 ] ) 
0.0000 22.950 

P, - [ :::: :~: l ( :: : f =:::::: =::: l ) 

(4.1) 

(4.2) 

(4.3) 

Since the system is stable, it is expected that all of the points in the state-space can recover to 

the origin, although it is not clear that this can be done along trajectories which do not violate the 

state constraints. The purpose of the input, then, is to try to maximize the ellipsoidal set of states 

whose recovering trajectories do not violate the constraints. The trajectories originating from the 

ellipse boundary illustrate this. 

In contrast, the stability of the system naturally limits the set of states which can be reached 

from the origin, since the control input must fight the natural dynamics of the system to move the 

state away from this critical point. Comparing Figures 4.1 and 4.2, it is seen that, indeed, the 

diameter of the reachable ellipse is roughly 0.25 that of the recoverable ellipse. Also, it is seen that 

trajectories oscillate near the boundary of the ellipse, indicating that maximal effort is needed to 

reach these points. 

Finally, since the points in the controllable ellipsoid must be both reachable and recoverable, it 

is expected to be approximately equal to the intersection of these two sets. In this case, since the 

reachable set is contained entirely inside the recoverable set ( all reachable points are recoverable, 
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but not all recoverable points are reachable}, the controllable set is nearly the same as the reachable 

set, though it may differ somewhat in shape to remain invariant for recovery. 

Figure 4.1: Recoverable Ellipsoid for Second Order Stable System. 

. . . . . . . . . . 
O.I ···.-··t······-r·····-~·······~·······1· ····i·······t·······~····-·r····· 
o., .. · ···; · · · .. · / · · .. · t · · · · · · ;· · .... · 1 •... · · ·( · · · · ·--~ • .. · · • +·· · · .. ~-- · · .. 

: : : : j : ; j 

0A ······'.·······'.······t······t······1·······1·······1·······'.······t····· 

·~•••ITISIT! 
-a, ······f ······r·····l·····"i"······i·· .. ···i·······l······-f-····+···· 
-0.I ...... t. ·······1·······1·······~---···:··1.·······1.· .. ····t. ······t·····-~·-···· 

i : 1 

"'° .. ······t······-t······1·······r······i······-r······t·····-t······i······ 

~ - - - = • ~ ~ u u , x1 

Figure 4.2: Reachable Ellipsoid for Second Order Stable System. 

4.1.2 Stable Focus 

The eigenvalues of the following A matrix are= -1 ± l.414i. 

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.4, 4.5, and 4.6, respectively. Ellipsoid matrices are given in Equations (4.4), (4.5), and (4.6). 

P., = [ l.0078 0.0888 l (K., = [ -1.0000 -0.5000 ]) 
0.0888 1.0078 
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Figure 4.3: Controllable Ellipsoid for Second Order Stable System. 

[ 9 .. 3.120 0.000. 0 l ( [ ] ) Ke= -1.0000 -3.5000 
0.0000 4.3404 

[ 
9.1717 0.0000 l ( Kv = r-0.9172 1.9680 ] ) 

0.0000 4.4043 Ke= -0.9175 -2.0000 ] 

(4.5) 

(4.6) 

The comments for the stable (negative real eigenvalue) system hold for the stable focus system 

as well. The eigenvalue locations for this system are generally closer to the imaginary axis, implying 

that a larger set of states can be reached from the origin, as seen in the figures. 

Figure 4.4: Recoverable Ellipsoid for Second Order Stable Focus System. 
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Figure 4.5: Reachable Ellipsoid for Second Order Stable Focus System. 

Figure 4.6: Controllable Ellipsoid for Second Order Stable Focus System. 
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4.1.3 Marginal 

The eigenvalues of the following A matrix are 0, 0. 

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.7, 4.8, and 4.9, respectively. Ellipsoid matrices are given in Equations (4.7), (4.8), and (4.9). 

Pv = [ l.OOOO O.OOOO ] (Kv = .[ 2.0000 1.5000 ] ) 
0.0000 1.0000 

Pe = [ l.OOOO O.OOOO ] (Ke = [ 2.0000 -1.5000 ] ) 
0.0000 1.0000 

Po - [ ~::: ::::: l ( :: : f :::: ::::: l ) 

(4.7) 

(4.8) 

(4.9) 

Since the system's eigenvalues are on the imaginary axis, there is no bias towards the recoverable 

or reachable sets. Consequently, both sets are approximately the same size (the unit circle), the 

only difference being the direction of the spirals ( one set of trajectories going to the origin, the other 

away from it). The slight change in the ellipsoid needed to create the controllable set dramatically 

alters the trajectories needed to make set invariant in both positive and negative time. 

Figure 4.7: Recoverable Ellipsoid for Second Order Marginal System. 

25 



Figure 4.8: Reachable Ellipsoid for Second Order Marginal System. 

Figure 4.9: Controllable Ellipsoid for Second Order Marginal System. 
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4.1.4 Unstable 

The eigenvalues of the following A matrix are 1, 3. 

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.10, 4.11, and 4.12, respectively. Ellipsoid matrices are given in Equations (4.10), (4.11), and 

(4.12). 

Pv = [ 16"910 O.OOOO ] (Kv = [ -1.0000 5.5000 ] ) 
0.0000 22.953 

Pe = [. l.OOl.9 -0.0432 l (Ke= [ -1.0000 2.5000 ] ) 
-0.0432 1.0019 . 

Pc [ 16.912 0.0000 l ( Kv = [ -2.2631 4.0000 ] ) 

0.0000 22.950 Ke = [ -2.2628 -2.7382 ] 

(4.10) 

(4.11) 

(4.12) 

The reverse is true of the unstable system results compared with the stable system results. Here, 

the recoverable set is smaller than the reachable set. 

Figure 4.10: Recoverable Ellipsoid for Second Order Unstable System. 

4.1.5 Unstable Focus 

The eigenvalues of the following A matrix are 1 ± l.414i. 
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Figure 4.11: Reachable Ellipsoid for Second Order Unstable System. 
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Figure 4.12: Controllable Ellipsoid for Second Order Unstable System. 

28 



The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.13, 4.14, and 4.15, respectively. Ellipsoid matrices are given in Equations (4.13), (4.14), and 

(4.15). 

Pv = [ 9·2020 O.OOOO ] (Kv = [ -1.0000 3.5000 ] ) 
0.0000 4.3895 

Pe = [ l.0078 -0.0888 l (Ke = [ -1.0000 0.5000 ] ) 
-0.0888 1.0078 

P, = [ ::::: :,:~: l ( :: : f =:::::: ::::: l ) 

(4.13) 

(4.14) 

(4.15) 

Again, the results can be contrasted to the stable focus system, where the recoverable set was 

larger than the reachable, opposite, of what is seen here. 

Figure 4.13: Recoverable Ellipsoid for Second Order Unstable Focus System. 

- - - - 0 ~ U M M 1 ,, 

Figure 4.14: Reachable Ellipsoid for Second Order Unstable Focus System. 
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- ~ - - 0 ~ ~ U U 1 

" 

Figure 4.15: Controllable Ellipsoid for Second Order Unstable Focus System. 

4.1.6 Saddle 

The eigenvalues of the following A matrix are 1, -3. 

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.16, 4.17, and 4.18, respectively. Ellipsoid matrices are given in Equations (4.16), (4.17), and 

(4.18). 

Pv = [ 9.0000 3.0000 ] (Kv = [ 5.0000 - 0.5000 ] ) 
3.0000 2.0000 

Pe = [ 9·2744 - 8. 7601 ] (Ke = [ 5.0000 -3.5000 ] ) 
-8.7601 9.2744 

P, - [ t~:: :2o::: l ( :: : f: ::: =::::: l ) 

(4.16) 

( 4.17) 

( 4.18) 

The results for this system are the most unique seen thus far. The eigenvectors of the system (and 

their associated eigenvalues) are v1 = [ 0.707 0.707 ] T (..\1 = 1) and v2 = [ -0.316 0.949 ] T 

(..\1 = -3). The recoverable set is strongly skewed along the stable eigenvector, while the reachable 

set is strongly skewed along the unstable eigenvector. The controllable set is significantly smaller 

than either of these, since the region of intersection is limited (Also, the trajectories seen in the 

controllable set's plot are for recovery, while those for reaching cycle close to the bound. This may 

be a consequence of the stable pole being "stronger" than the unstable pole due to the relative 

magnitudes. Consequently, less effort is required to recover from a state than to reach it.) 
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- - - - I ~ U M ~ " 

Figure 4.16: Recoverable Ellipsoid for Second Order Saddle System. 

Figure 4.17: Reachable Ellipsoid for Second Order Saddle System. 

-1 '--'---''----'----"---'--'----'---"--' 

~ - - - - 0 ~ U M ~ " 

Figure 4.18: Controllable Ellipsoid for Second Order Saddle System. 
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4.2 Third Order Systems 

Computational difficulty obviously increases with higher order systems, due to the increased number 

of parameters and constraints. However, the results for the third order systems in this section suggest 

that, in principle, the procedure is applicable to systems of any order, the only limitation being the 

increased computational load with higher dimensions and the stability of the optimization routine. 

It is somewhat difficult to illustrate (in a limited number of figures) the nature of a third order 

ellipsoid and its associated trajectories. The figures in this section are of a quadrant of the three 

dimensional ellipsoid which allows for trajectories internal to the ellipsoid to be viewed. Additionally, 

the recovering and reaching trajectories are plotted in separate sub-figures (Note that the same 

quadrant is plotted for each, although some scaling differences may exist between the pairs.) 

4.2.1 Stable 

The eigenvalues of the following A matrix are -1, -1, -1. 

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.19, 4.20, and 4.21, respectively. Ellipsoid matrices are given in Equations (4.19), (4.20), and 

(4.21). 

I 1.0000 0.0000 0.0000 I 
Pv = 0.0000 1.0000 0.0012 ( Kv = [ 0.0000 8.0000 2.0000 ]) (4.19) 

0.0000 0.0012 1.0000 

Pe= I ~:~~;:8 ~:~~::8 
~:~~::

8 1 (Ke= [ -6.0000 20.000 2.0000 ]) (4.20) 

-12.008 24.015 12.002 

Pc= I ~:~~:3 ~:~~::
3 

~:~~::
6 1 ( Kv = f 1.2661 -4.6526 -1.4317] ] ) (4.21) 

Ke = -3.0004 3.8809 2.0003 
-13.546 27.092 13.151 

As with the second order system, the trajectories for the recoverable set draw towards the origin, 

while those of the reachable set appear to oscillate about the ellipsoid boundary (In this case, they 
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tend to outline the rest of the ellipsoid which was cut away for this figure .) The more restrictive of 

these two sets (recoverable/reachable) determines the size of the controllable ellipsoid. In this case, 

the controllable ellipsoid is approximately the size of the reachable ellipsoid, the limiting behavior 

further illustrated by the fact that the reaching trajectories oscillate about the ellipsoid boundary, 

while the recovering trajectories readily converge toward the interior. (Also, note that the reachable 

and controllable figures have been rotated 180° about the x3 axis relative to the recoverable ellipsoid 

to provide a better view of the trajectories.) 

M 
x . 

0.5 

0 

-0.5 

_, , 

x2 
_, -0.5 

x1 

Figure 4.19: Recoverable Ellipsoid for Third Order Stable System. 

4.2.2 Unstable 

The eigenvalues of the following A matrix are 1, 3, 5. 
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Figure 4.20: Reachable Ellipsoid for Third Order Stable System. 
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Figure 4.21: Controllable Ellipsoid for Third Order Stable System. 
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The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.22, 4.23, and 4.24, respectively. Ellipsoid matrices are given in Equations (4.22), (4.23), and 

(4.24). 

I 676.08 0.0000 103.281 

Pv = 0.0000 847.32 0.0000 ( Kv = [ 18.000 -12.000 12.000 ]) 

103.28 0.0000 145.22 

Pe = I ~~~::;5 ~~~:::
5 

~~~:;;O I (Ke = [ 12.000 -12.000 6.0000 ] ) 

0.8911 -1.4220 1.3169 

Pc= I :~:~:: :~:~:: ~~Ol~:: I ( Kv = f 15.000 -16.250 9.0000 l ) 
Ke = 11.006 -16.250 3.4437 

101. 77 0.0000 141.57 

(4.22) 

(4.23) 

(4.24) 

The results for the unstable system are opposite the results for the stable system. Here, the re

covering trajectories appear to oscillate about the ellipsoid boundary, while the reaching trajectories 

clearly emanate from the origin. 

Contrasting the stable system's controllable ellipsoid, the unstable system's ellipsoid is restricted 

by the recovering trajectories, which tend to oscillate about the boundary. The reaching trajectories, 

however, readily expand from the interior. 

4.2.3 Marginal 

The eigenvalues of the following A matrix are 0, 0, 0. 

The ellipsoidal approximations of the recoverable and reachable sets are given in Figures 4.25, 4.26, 

and 4.27, respectively. Ellipsoid matrices are given in Equations (4.25), (4.26), and (4.27). 

I 1.5000 0. 7500 0. 7500 I 
Pv = 0.7500 1.5000 0.7500 ( Kv = [ 3.0000 11.000 3.0000 ] ) 

o. 7500 o. 7500 1.5000 

(4.25) 

Pe = I ~~~:::o ~~~:::o ~~~;::o I ( Ke = [ -3.0000 11.000 -3.0000 ] ) 

0.7500 -0.7500 1.5000 

(4.26) 
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Figure 4.22: Recoverable Ellipsoid for Third Order Unstable System. 
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Figure 4.23: Reachable Ellipsoid for Third Order Unstable System. 
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Figure 4.24: Controllable Ellipsoid for Third Order Unstable System. 
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Pc = I :::::: :::::: :::::: I ( Kv = f 0.0036 1.2599 0.0057 ] ] ) (4.27) 

Ke = -0.0009 1.2599 -0.0014 
1.5875 0.0000 2.5200 

In both the recovering and reaching sets, the trajectories tend to a plane where they oscillate 

about the origin (in the reaching case, tend from a plane) , although the shape of the ellipsoid and 

the position of this plane differ . . The controllable ellipsoid is restricted by neither the recovering nor 

reaching conditions, with both sets of trajectories oscillating about the bound. 

0.5 

M 0 
>< 

-0.5 

_, , 

x2 
_, _, 

x1 

Figure 4.25: Recoverable Ellipsoid for Third Order Marginal System. 

4.2.4 Mixed 

The eigenvalues of the following A matrix are -1.28, 0.14 ± l.53i. 

1 0 

0 1 

-2 -1 
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Figure 4.26: Reachable Ellipsoid for Third Order Marginal System. 
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Figure 4.27: Controllable Ellipsoid for Third Order Marginal System. 
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The ellipsoidal approximations of the recoverable and reachable sets are given in Figures 4.28, 4.29, 

and 4.30, respectively. Ellipsoid matrices are given in Equations (4.28), (4.29), and (4.30). 

I 1.8577 1.2586 0.72551 

Pv = 1.2586 1.9398 0.7993 ( Kv = [ 0.0000 9.0000 2.0000 ] ) 

o. 7255 0. 7993 1.3705 

Pe = I ~~~:::2 ~~~:::
2 

~~~:::71 ( Ke = [ -6.0000 9.0000 -4.0000 ] ) 

4.6095 -0.9067 3.2044 

Pc= I ~~~::: ~::::: :::::: I ( Kv = 1-1.0255 0.1458 0.3117]] ) 

Ke= -3.0000 0.1458 -1.0000 
5.0437 0.0000 3.3505 

(4.28) 

(4.29) 

(4.30) 

Since the system contains both stable and unstable eigenvalues, neither the recoverable nor 

reachable trajectories restrict the ellipsoid in its entirety. Rather, it appears that they tend to 

restrict particular ·modes. Along an unstable mode, for example, it is "easier" to move away from 

the origin than towards it. Thus, in the direction of the unstable mode, it is expected that the range 

of recoverable trajectories should be more restrictive than the range of reachable trajectories, and 

vice versa for stable modes. 
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Figure 4.28: Recoverable Ellipsoid for Third Order Mixed System. 
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Figure 4.29: Reachable Ellipsoid for Third Order Mixed System. 
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Figure 4.30: Controllable Ellipsoid for Third Order Mixed System. 
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4.3 Comparison Against Published Result 

As mentioned in Chapter 2, the maximal set, S, can be approximated to any degree of accuracy 

using the polyhedral approach. Though it is also known that the ellipsoidal approach is inherently 

conservative, it is informative to provide an example illustrating this fact. 

In [22], Gutman and Cwikel find a polyhedral approximation to the maximal (recoverable) set 

for the double integrator system, (4.31), where state constraints are x1 E [-25,25], x2 E [-5,5], and 

the control constraint is u E [-1, l]. (For the purpose of discussions to follow, the states are treated 

as having units of {m) and (m/s), respectively). 

{4.31) 

Since the polyhedral approach requires a discrete time model, (4.31) was sampled with a period of 

Ts = l{s), to give the discrete time model, {4.32). 

. [ 1 1 l [ 0.5 l x= x+ u 
0 1 1 

(4.32) 

Using the algorithm presented in their paper, the authors find a maximal {recoverable) polygon 

with vertices given in (4.33). 

Xma:r: ~ { ± (12.5, 5) , ± {15, 4.5) , ± {19, 3.5) , ± (22, 2.5) , ± (24, 1.5) , ± (25, 0.5) , ± (25, -5)} ( 4.33) 

Applying the approach of the preceding chapter, the recoverable ellipsoidal set is defined by (4.34). 

[ 
0.0016 0.0000 l ( [ ] ) Pv = Kv = 2.0000 1.5000 
0.0000 0.0400 

(4.34) 

Figure 4.31 shows the vertices of the polygon (connected by a dotted line) and the ellipsoidal set. 

As expected, the ellipsoidal method does not capture as much of the state-space as the polyhedral 

method, particularly in the upper-left and lower-right quadrants, highlighting the conservativeness 

of the approach. 
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Figure 4.31: Comparison of Ellipsoidal and Polyhedral Methods for Double Integrator System. 
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Chapter 5 

Semi-Ellipsoidal Sets 

In this chapter, it is shown that, under certain conditions, the subset of an invariant ellipsoid 

satisfying the state constraints is also invariant (as illustrated in Figure 5.1 for state constraints of 

±1). This subset potentially provides a better approximation of the maximal operating set without 

resorting to polyhedra. As with Chapter 3, the recoverable case is addressed first, the results of 

which naturally lead to the reachable and controllable cases. 

R emark 5.1 Figures are used heavily in this chapter to illustrate the ideas presented in the theorems. 

As in previous chapters, constraints are assumed symmetric throughout, although generally only one 

side is shown for clarity of the figure. 

Figure 5.1: Invariant Subset of an Invariant Ellipsoid. 
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5.1 · Recoverable Semi-Ellipsoidal Set 

Consider a linear state constraint, (5.1), 

(5.1) 

and note that, to avoid violation of the constraint, states on the constraint boundary must satisfy 

the following condition. 

(5.2) 

This is stated formally in Lemma 5.1 

Lemma 5.1 Given a linear state constraint, rix $ 1, and a point, xo, on the boundary of the 

constraint (T\x0 = 1}, the system trajectory satisfies the state constraint for xo if and only if, for 

some control law, uo, rix (xo, uo):::; o. 

The proof is intuitive, and stems from the fact that, if r iX ( x0 , u0 ) > 0, the function r iX increases 

and the constraint is violated, 

Figure 5.2, which shows a constraint bound, 8Gi, as well as state trajectories emanating from 

that bound, illustrates the general concept. Since (5.2) is linear in x, there exists a point (more 

generally, a dimension (n - 1) hyperplane) on 8Gi for which rix = 0. 

x2 aai 

Figure 5.2: illustration of Trajectories Emanating from State Constraint. 

Suppose an ellipsoid £ exists which is controlled invariant under the state feedback control law 

u = -Kvx. Further, assume that£ is such that some of the states in the set violate a particular 
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state constraint, as shown in Figure 5.3. If, for the intersection of & and 8Gi {which may be the 

null set), relation {5.2) holds {which it does:not, in this case), then the set defined by & n Gi is also 

controlled invariant under u. 

The objective, then, is to construct & such that the subset Sv, defined as the intersection of the 

ellipsoid and all state constraints, is controlled invariant under u. The procedure is to first develop 

the theory showing that an ellipsoid satisfying (5.2) for all regions of intersection with the constraints 

does indeed yield a controlled invariant set, Sv, and then to apply the theory by defining rules for 

construction of such an ellipsoid, leading to' the main result in Theorem 5.3. 

Figure 5.3: Illustration of Ellipsoid Violating a State Constraint. 

5.1.1 Theory 

For completeness, define the following subsets (see Figure 5.4) related to the derivative of the con

straint boundary function {where u has been defined as the state feedback law, -Kvx, for the 

controlled invariant ellipsoid): 

8Gi = {xlri(A- BKv) x = O} 

Gt = {xlri (A - BKv) X > O} 

G-; = {xlri(A- BKv) x < O} 

(5.3) 

(5.4) 

(5.5) 

These subsets define the acceptable regions of overlap {if any) of the ellipsoid and state con

straints, as presented in Theorem 5.L 
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Figure 5.4: Derivative Function Subsets. 

Theorem 5 .1 Given an ellipsoid, £, which is controlled invariant for system ( 1.1) under the control 

law u = -'-Kvx, and set of state constraints, Gi (i = 1, ... , k}, whose intersection is G, define the 

subset of £ satisfying the state constraints as Sv = £ n G. The set Sv is controlled invariant under 

u if and only if Sv n 8Gi n at = 0 r/ i. 

Loosely interpreted, Theorem 5.1 says that the set Sv cannot be invariant if, for any region of 

its boundary (particularly, those formed by the state constraints), the trajectories point "out." In 

Figure 5.5, the region which is "unacceptable," 8Gi n Gt, is given by the ray b-;,,, while the region 

which is "acceptable," 8Gi n ( 8Gi U a-;), is given by the ray b""c (inclusive of point b). 

Proof. ( =>) Suppose that for some constraint, Gi, Sv n 8Gi n Gt =f. 0. This implies that a portion 

of the boundary of Sv, 8Sv, is formed by a region of the state constraint boundary, 8Gi, for which 

ft (rix) > 0, which further implies that the trajectories in this region violate the bound (i.e., do not 

remain within Sv), contradicting the assumption of invariance of Sv. 

( {=) The trivial case here is Sv n 8Gi = 0 \;/ i (i.e., the ellipsoid is entirely within the constraints), 

such that Sv = £. Since £ is invariant by construction, it follows that Sv is invariant as well. 

Assuming, then, that Sv n 8Gi =f. 0 r/ i, invariance must be shown for a set, Sv, whose boundaries 

are defined by piecewise continuous regions of 8£ and 8G/s. Geometrically, this means that the 

time derivatives of x on the boundary must always be pointing "in." Since the ellipsoid is controlled 

invariant under u = -Kvx, those portions of 8Sv belonging to 8£ satisfy the condition ft (xT Px) ::; 
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Figure 5.5: Acceptable and Unacceptable Regions of a Constraint Boundary. 

0, implying that trajectories do not exit Sv in regions defined by the boundary of the ellipsoid. Also, 

since Sv n 8Gi n Gt = 0 V i, any portion of Sv composed of a region of a state constraint bound, 

8G; must satisfy ft (r;x) $ 0, implying that trajectories do not exit Sv in these regions, either. 

The last point of concern is those areas where the surface 88v is non-smooth (i.e., where regions 

of 8Sv are formed by the intersection of 8£ and 8G;, or 8G; and 8Gk, etc.) Since the same 

control law, u = -Kvx, is used everywhere, it follows that, for any combination of boundaries 

that might intersect, ft (!1), ... , ft (fk) $ 0, where Ii is any of the ellipsoidal or linear constraint 

functionals, XT Px, rix. Consequently, Sv is invariant at these intersection areas, as well, completing 

the proof. • 
Remark 5.2 Although variable structure control could be used, in which separate regions of Sv are 

made invariant using a different control law, it is generally more difficult to prove invariance of 

Sv. For example, Figure 5.6 illustrates a section of Bv where 8Sv is formed by two state constraint 

boundaries, 8G1 and 8G2, with separate control laws defined for each. Although the trajectories 

of points lying on only one of the constraints satisfy the invariance requirement, the trajectory of 

the point lying at the intersection of the two does not ( under either control law). This condition is 

avoided in Theorem 5.1 by using a single control law which simultaneously satisfies all constraints 

forming Bv. 
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Figure 5.6: Variable Structure Control Failing Invariance of Sv. 

5.1.2 Design 

Theorem 5.1 establishes the foundation by providing the necessary and sufficient condition for in

variance of Sv. Theorem 5.2 provides a sufficient condition for invariance of Sv. Although more 

conservative, this leads to more feasible algorithms for the optimization routines. 

Theorem 5.2 Given an ellipsoid,&, which is controlled invariant for system (1.1) under the control 

law u =. -Kvx, and set of state constraints, Gi (i = 1, ... , k), whose intersection is G, define the 

subset of £ satisfying the state constraints as Sv = & n G. The set Sv is controlled invariant under 

u if enaainat = 0 vi. 

The proof of this theorem is similar to that for Theorem 5.1, where the region of overlap was 

restricted to the points belonging to Sv, not & . Figure 5. 7 illustrates the difference in the two 

theorems, in that ft (r1x) ~ 0 must hold for points only on the line segment ab for Theorem 5.1, 

but must hold for the segment ac for Theorem 5.2. In the optimization routines to follow, this allows 

for a simple check on the ellipsoid matrix, Pv, · rather than on the more complex set Sv. 

A relationship between & and G is now sought to assist in the design of ellipsoids satisfying Theo

rem 5.2. As illustrated in Figure 5.5, the region of acceptable overlap of an ellipsoid and constraint is 

defined by 8G, (5.3). To determine the required relationship, then, three categories of constraints are 

identified by considering the properties of the matrix ri (A - BKv)- These categories are presented 

formally in Corollary 5.1, which addresses the case where trajectories lie in the hyperplane 8Gi, 
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Figure 5.7: Comparison of Requirements for Theorems 5.1 and 5.2. 

Corollary 5.2, which addresses the case where the trajectories are the same for the entire hyperplane 

8Gi, and Corollary 5.3, the most general case, in which trajectories _are admissible for only certain 

regions of 8G i. 

Corollary 5 .1 If r i ( A - BK v) = 0, then £ n G i is controlled invariant for any ellipsoid £ which 

is controlled invariant under u = -Kvx. 

Proof. Here, aai is Rn. Consequently, at = 0, implying that £ n 8Gi n at = 0 for any £, so that 

£ n Gi is controlled invariant if£ is controlled invariant. • 
Corollary 5.2 Ifri (A - BKv) = airi {ai a non-zero constant), then£ n Gi is controlled invariant 

for any ellipsoid£ which is controlled invariant under u = -Kvx. 

Proof. In this degenerate case, aai is parallel to 8Gi, so that rif,,x has the same value (more 

importantly, the same sign) for all points on 8Gi. 

Since ri (A - BKv) = airi, this implies that ri is a left eigenvector and O:i is an eigenvalue 

of A - BKv [27, pg. 663]. If ai > 0, the closed loop system A - BKv has at least one unstable 

mode, and (A- BKvf P + P (A- BKv) > 0 for any P > 0, violating the invariance assumption 

on the ellipsoid. It therefore follows that ai s 0. Thus, for points on the state constraint boundary, 

ft (rix) = air ix= ai s O (since rix = 1 on 8Gi), so that the constraint is met for any controlled 

invariant ellipsoid. • 
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Corollary 5.3 If ri (A - BKv) -:f. /3ri {where /3 is any real-valued constant) and£ is any ellipsoid 

which is controlled invariant under u = -Kvx, then£ n Gi is controlled invariant under u = -Kvx 

if and only if int { £} n 8Gi n 8Gi = 0, where int{£} denotes the interior of£. 

The condition ri (A - BKv) -:f. {3ri serves to eliminate frQm consideration those cases treated in 

Corollaries 5.1 and 5.2. Proof of this corollary requires a preliminary result presented in Lemma 5.2, 

which highlights a useful property ofinvariant ellipsoids in relation to an intersecting hyperplane. 

In this lemma, hyperplanes are considered in the general sense, but this is specialized in the proof 

of Corollary 5.3 to state constraints defined by hyperplanes. 

Lemma 5.2 Suppose an ellipsoid, £, where £ = { x!xT Px ~ 1}, is controlled invariant under some 

control law, u = -Kx, and that the set is intersected by the hyperplane defined by rx = 1. Then it 

cannot be true that ft [rx (x0 , u)] > 0 for all points satisfying rx0 = 1 and x0 E £. 

Proof. To prove this lemma, it must be shown that (5.6) holds for at least one point x0 satisfying 

rxo = 1 and Xo E £. 

r(A-BK)x0 ~ O (5.6) 

Since the hyperplane intersects the ellipsoid, any number of points (or, a minimum of one point 

if the hyperplane just touches the boundary of the set) satisfy the conditions rx0 = 1 and xo E £. 

However, only existence need be proven, so consideration is limited to that point x0 where the 

hyperplane defined by r is tangent to a level set of the ellipsoid function, as in Figure 5.8 (i.e., xo 

satisfies rx0 = 1 and x'{; Px0 = a, where O <a~ 1). 

For the hyperplane to be tangent to a level set, the gradients of the hyperplane and ellipsoid 

functions must be parallel, as shown in the following relations. 

y' (xTPx) oc y' (rx) 

.lJ. 

2Pxo = 13rT 

Furthermore, since x0 must satisfy rx0 = 1, it is found that /3 = 2/ (r p-1 rT), so that /3 is a positive 

constant (due to the fact that Pis a positive definite matrix and rp-1rT is a quadratic form). 

Since the ellipsoid is controlled invariant under u, the invariance inequality ft ( xT Px) ~ 0 must 
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rx = 1 

Figure 5.8: Illustration of Invariant Ellipse and Intersecting Hyperplane. 

hold at x = x0 under the control law u, resulting in the following derivation. 

xf P(A- BK)xo +xf (A-BKf Pxo:::; 0 

.IJ. 

( ~ p-l rT) T P (A - BK) ( ~ p-l rT) + ( ~ p-l rT) T (A - BKf P ( ~ p-l rT) :::; 0 

.IJ. 

(P-1rr{ P(A-BK) (~p-lrT) + (~p-lrT)T (A- BKf P (P-1rT):::; 0 

.IJ. 

r(A- BK) (~p-lrT) + (~p-lrT) T (A- BKf rT:::; 0 

.IJ. 

2r ( A - BK) ( ~ p-l rT) :::; 0 

.IJ. 

f(A-BK)xo:::; 0 

Thus, it is shown that %t [rx(x0,u)]:::; O for the point x0 = (rp-1rr)-1 p-1rr, completing the 

proof. • 
The proof of Corollary 5.3 can now be presented. 
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Proof. (=>) Assume£ n Gi is controlled invariant but that int{£} n 8Gi n 8Gi =Ti- 0. It follows 

from the definition of 8Gi that, for any neighborhood of a point xo E T, there exist points in 

int { £} n 8Gi which belong to the set ct, implying that the trajectories violate the constraint and 

that the set En Gi is not controlled invariant, contradicting the original assumption. 

( {=) As shown in Figure 5.9, three possibilities exist to describe the intersection of the ellipsoid 

with the constraint boundary: (i) En 8Gi = 0 (they do not intersect), (ii) En 8Gi n 6-; = T 1 ::/- 0 

(the ellipsoid intersects the constraint in the region where derivatives of the constraint are negative), 

and (iii) En 8Gi n ct = T 2 -:j:. 0 (the ellipsoid intersects the constraint in the region where deriva

tives of the constraint are positive). By Theorem 5.2, cases (i) and (ii) both result in En Gi being 

invariant. By Lemma 5.2, case (iii) cannot happen since E is invariant. • 

( ii) 

Figure 5.9: Illustration for Proof of Corollary 5.3. 

5.1.3 Main Result 

It has been established in the preceding section that state constraints giving the matrix conditions 

discussed in Corollaries 5.1 and 5.2 effectively impose no restriction on£. Therefore, the final step 

is to develop a relationship between ri and Pv such that Corollary 5.3 holds. 

As Figure 5.10 illustrates for a second order system, the intersection of 8Gi with the ellipsoid 

and linear constraint bound defines a line segment and point, respectively, in R2 (more generally, 

dimension (n -1) ellipsoid and hyperplane). Defining a new coordinate z1 E R1 , where z1 lies along 
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8Gf.,,."' 

Figure 5.10: Illustration of Reduced Dimension Ellipsoid and State Constraint Boundary in R2 • 

the line 8(h gives the "reduced dimension" ellipsoid, £f, and state constraint bound, 8Gf, as 

shown in Figure 5.11. 

0 

Figure 5.11: Illustration of Reduced Dimension Ellipsoid and State Constraint Boundary in R1. 

It is apparent from this example that the condition of Corollary 5.3 holds {i.e., no point in 

8Gi n 8Gi is contained in int { £}) if the reduced dimension ellipsoid does not violate the reduced 

dimension state constraint. Thus, if Pf and rf are matrices defining the ellipsoid and constraint 

in the new coordinates, it follows that the result in (3.11) (cf. Appendix C) can be used to give the 

constraint (5.7) which satisfies Corollary 5.3 (For the remainder of this section, the subscript "v" 

is omitted from the reduced-dimension ellipsoid matrix to avoid confusion with the stat~constraint 

index.) 

rf {Pf)-1 (rf) T ~ 1 (5.7) 

To define the matrices Pf and rf, the new coordinate system must first be identified. Since 

the boundary of the state constraint derivative, 8Gi is defined by the relation ri (A - BKv) x = 0, 

it follows that the null space of this matrix defines the vectors lying in the hyperplane, 8Gi (Note: 
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The minimum norm solution to this equation is O. Also, an infinite number of vector sets could be 

chosen for Wi, but for computational purposes the orthonormal set is preferred, hence the condition 

WtWi = I.). 

(5.8) 

Consequently, any vector, xR, lying in this hyperplane is given by a linear combination of these 

vectors. 

The ellipsoid and state constraint can now be redefined in the new coordinate system: 

&f = {zjzT (Wl PvWi) z:::; 1} 

Gf {zl (riwi) z:::; 1} 

(5.9) 

(5.10) 

(5.11) 

The ellipsoid and state constraint matrices for the reduced dimension coordinate system are taken 

as (5.12), (5.13). 

(5.12) 

(5.13) 

Remark 5.3 For the case where ri (A - BKv) = airi (ai a non-zero constant}, it is apparent that 

Wi = rf {where rirf = OJ. Thus, rf = riWi = 0, so that rf (Pf)-1 (rf)T = 0:::; 1 for any 

Pv defining a controlled invariant ellipsoid, which agrees with Corollary 5.2. The reduced-dimension 

inequality constraint, (5. 7), can therefore be applied for the more general case ri (A - BKv) =I 0. 

The results of this section are summarized in the following theorem, the proof of which flows 

naturally from Theorem 5.2, Corollaries 5.1, 5.2, 5.3, and the preceding inequality derivation. 

Theorem 5.3 Given an ellipsoid, £, controlled invariant for system {1.1} under u = -Kvx, and 

state constraints Gi, whose intersection is G, the set Sv = £ n G is controlled invariant under u if, 

for ri (A - BKv) =IO (i = 1, ... , k), the following inequality holds: 

rf (Pl)-1 (rf) r :::; 1 (5.14) 

where 

rR-r,Wv i - 1, i (5.15) 

Pf= (Wtf PvWt (5.16) 

Wt= null {ri (A - BKv)} (5.17) 
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5.1.4 Implementation Issues 

The implementation issues discussed in Chapter 3 hold for the search for optimal semi-ellipsoidal 

sets, as well, as do the inequality constraints for invariance and positive definiteness of the ellipsoid 

matrix. However, the nature of S,;'s construction requires modification of the objective function and 

control constraint. 

Objective Function 

Although the case may occur where Sv = £ (the ellipsoid is entirely within the state constraints), 

the volume of Sv is generally not equal to the volume of £, where "volume" is used in the sense 

given in (5.18). 

Vsv = I I···! dx1dx2 · · · dxn 

Bv 

(5.18) 

However, it should also be apparent that analytically computing the exact volume of Sv, which is 

defined by changing boundaries, would be extremely difficult, particularly for a general n-dimensional 

system. 

Although a finite element approximation to the area could be computed, it was decided that a 

measure of the ellipsoid itself would be used as an indicator of the volume of Sv. The objective 

function used for the ellipsoid search, (3.9), was tested, but the optimization routine generally 

failed to converge to a solution. Figure 5.12, which illustrates a hypothetical search progression 

a -t b -t c, shows the potential difficulty in using the volume as the objective function. As the 

ellipse is lengthened along one axis, it is "pinched" along the other by the time-optimal trajectories 

(which define the bounds of invariance under limited control). A typical search sequence with 

Matlab's constr .m would begin with initial conditions similar to ellipse a, then continue through 

c until it "collapsed" along the minor axis, followed by a restart with an ellipse similar to, but 

generally smaller than, a. 

After evaluating several functions, (5.19) was selected as the objective function for the semi

ellipsoidal set optimization. 

minlogtr(P) (5.19) 

It is known that the trace of a matrix yields the sum of the eigenvalues. This objective function, 

then, seeks to minimize the sum of the inverse of the axes' lengths (since the eigenvalues of p-1 give 

the lengths of the axes), (5.20). 

1 1 1 
tr (P) = ..\i(P-1) + ..\2 (P-1) + ... + ..\n (P-1) (5.20) 
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X2 

.... ······ 

····· ..... 

Figure 5.12: Progression of Search Using Ellipsoid Volume as Objective Function. 

Since the value of this function grows quickly if any of the eigenvalues of p-1 approaches zero, 

the search is generally stable and cases such as that shown in Figure 5.12 are avoided. Although 

admittedly imprecise, searches using (5.19) do provide results comparable to what is available in the 

literature ( as is shown in Chapter 6) and, most importantly, serve to establish proof-of-concept for 

the theory. 

Control Constraints 

To this point, no mention has been made of the input constraint with respect to the semi-ellipsoidal 

set. If the constraint, (3.12), is imposed, the control may not reach its maximum value inside S11 

even if though it is reached on 8£, as shown.in Figure 5.13. 

Computing the maximum control on S11 is a difficult problem best done using a search technique. 

However, this approach is computationally inefficient if performed at each iteration of the optimiza

tion of (5.19). To solve this problem, several search passes are made using a pseudo-maximum 

control, u, in place of u in (3.12). For the first pass, u is set to the value of u and an optimal 

ellipsoid computed. A separate constrai~ed optimization algorithm then finds the largest value of 

IKxl, ii.1, within Sv. If ii.1 is within some tolerance of u the search is terminated. However, if ii.1 is 

not within this tolerance, u is increased and a new ellipsoid and corresponding ii.2 computed. Again, 

if ii.2 is within some tolerance of u, the search is terminated, with the second ellipsoid as a solution 

(see Figure 5.14). If not, the pairs (u1,ii.1) and (u2,ii.2) are used to select a new u via a false-position 
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linear search formula [12, pg. 138], and the process repeated. 

X2 ---- I 8G1 
_......- - I 

_.. _.. IK xi = u 1 --

IKxl =u _......-_.. 

---..-
--

Figure 5.13: Maximal Control Occurring Outside of Sv. 

Positive Definiteness of Ellipsoid Matrix 

Even though a positive definiteness constraint is imposed on the ellipsoid matrix, P, it may occur 

during the search that one of the eigenvalues will be slightly negative ( although within the tolerance 

of the search routine). To prevent this from happening, Pis parametrized in terms of an auxiliary 

symmetric matrix, P, where the two matrices are related by (5.21). 

(5.21) 

By imposing the positive definiteness constraint on P, positive (semi-) definiteness of Pis ensured 

via the quadratic form of (5.21). 

5.2 Reachable Semi-Ellipsoidal Set 

As in Chapter 3, computation of the reachable set merely requires a sign change on any time 

derivatives involved (note that this means 8Gi changes, as well). For regions of 8Sv formed by the 

state constraints, d~ (rix) must be negative for points on the boundary of the set to be reachable 

from points within the set. However, note that since (5.22) holds, no significant change need be 

made to Theorem 5.3. This is reflected in its reformulation for the reachable case in Theorem 5.4, 
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X2 -- I --
1 IKxl =u -- __ _,... 

--- °1.Kxj =u I 8G1 
I 

I 

I 

. I 

8G2 

--

Figure 5.14: Maximal Control Occurring Inside of Sv. 

where the control gain is now Ke. 

null {-ri (A - BKe)} = null {ri (A - BKc)} (5.22) 

Theorem 5 .4 Given an ellipsoid, £, controlled invariant in negative time for system ( 1.1) under 

u = -Kex, and state constraints Gi, whose intersection is G, the set Be = t:na is controlled 

invariant in negative time under u if, for ri (A - BKe) '/: 0 (i = 1, ... , k), the following inequality 

holds: 

r~ p!l (r~{ < 1 
i 'l, t -

(5.23) 

where 

rR-r.we i - 'l, i (5.24) 

piR = (W{f PeW{ (5.25) 

W{ = null {ri (A - BKe)} (5.26) 

5.3 Controllable Semi-Ellipsoidal Set 

Similarly to Chapter 3, the controllable semi-ellipsoidal set is computed by imposing the constraints 

of Theorems 5.3 and 5.4 on£ and Kv, Ke. Reduced-dimension state constraints must be imposed 

for both reaching and recovering conditions, although in certain instances a simplification can be 

made, as noted in Remark 5.4. 
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Remark 5.4 IfriB = 0, then the inequality constraintforGi is not a function of the control gains, 

and the derivative boundary, 8Gi, is the same for both positive and negative time. As illustrated 

in Figure 5.15, this implies that there is no region of8Gi which£ may overlap, since all points on 

£ n 8Gi would be either recoverable but not reachable or reachable but not recoverable. Consequently, 

for the case riA =f. 0, rB = 0, the state constraint inequality simplifies to {5.27}, which was used in 

Chapter 3 and implies that £ must lie entirely within the state constraint. 

at (+t) 

a-; (-t) 
aai 

Figure 5.15: Duality of Constraint Derivative Regions when riB = 0. 

5.4 Summary 

The optimization problems finding the ellipsoid matrix for the semi-ellipsoidal set approximations 

to the maximal recoverable, reachable, and controllable sets are summarized in Problems 5.1, 5.2, 

and 5.3, respectively, where Wt is defined as in (5.17), and W{ is defined as in (5.26). 

Problem 5.1 (Recoverable Semi-Ellipsoidal Set) 

Minimize 

log tr (P,,,) 

subject to 

P,,,(A-BK,,,)+(A-BK,,,f Pv ~O 
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-Pv <0 

(riWi") [(Wtf PvWtr1 (riWtf $ 1, ri(A-BKv) # 0 

where 

Problem 5.2 (Reachable Semi-Ellipsoidal Set) 

Minimize 

log tr (Pe) 

subject to 

-Pe (A - BKe) - (A - BKef Pe ::; 0 

-Pe <0 

(riwn [(W{f PeW{r1 (riwnT $ 1, ri(A- BKe) # 0 

where· 

Problem 5.3 (Controllable Semi-Ellipsoidal Set) 

Minimize 

subject to 

log tr (Pc) 

Pc (A - BKv) + (A - BKvf Pc $ 0 

-Pc (A - BKe) - (A - BKe)T Pc $ 0 

-Pe <0 

(riWi") [(Wtf PcWtr1 (riWtf::; 1, ri(A-BKv) # 0 

(riwn [(wnT PcW{r1 (riW{f::; 1, ri (A-BKe) # 0 

K p-1 KT < ,a2 u >_ u 
. tJ C tJ - ' 

where 

K p-l KT < u2 U >_ U e c e - , 

maxe(u)nG IKvxl $ u 

maxe(u)nG IKexl ::; u 
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Chapter 6 

Semi-Ellipsoidal Set Examples 

This chapter presents the example test cases considered in Chapter 4 for ellipsoidal approximations. 

The same general comments apply to these-results of semi-ellipsoidal sets. Additionally, it is noted 

that, if the ellipsoidal solution to a particular case does not touch the state constraints, the solution 

for the semi-ellipsoidal set will be the same (This 'is the condition where insufficient control effort 

· exists to operate far beyond the origin.) 

6.1 Second Order Systems 

Contained in this section are the computed maximal semi-ellipsoidal sets for six different second

order, linear systems in control canonical form: stable, stable focus, marginally stable, unstable, 

unstable focus, and saddle ( one stable, one unstable pole). 

As in the previous example chapter, trajectories (coming from the ellipsoid when recovering, 

going to the ellipsoid when reaching) are plotted for all three cases. For simplicity, it is merely 

stated that maxena IKxl :5 1 in all cases. 

6.1.1 Stable 

The eigenvalues of the following A matrix are -1, -3. 

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given 

in Figures 6.1, 6.2, and 6.3, respectively. Ellipsoid matrices are given in Equations (6.1), (6.2), 
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and (6.3). 

[ 1.ornro 0.1468 l 
( Kv = [ 0.6953 0.2019 ] ) Pv = (6.1) 

0.1468 0.0409 

[ 18.128 0.0000 l 
(Ke = [ -2.1581 -4.0000 ]) Pe = (6.2) 

0.0000 21.532 

[ 17.5W 0.0000 l ( K. = f -2.2118 -l.TIIB9 l ) Pc = (6.3) 
0.0000 22.206 · Ke= -2.2117 -4.0000 

Since the system is stable, it is expected that all of the points in the state-space can recover 

to the origin (even without actuator effort), although not necessarily along admissible trajectories. 

The recoverable semi-ellipsoidal set· generated for this system (Figure 6.1) is considerably larger 

than the ellipsoidal set, Figure 4.1. The trajectories originating from the ellipse boundary illustrate 

invariance. 

In contrast, the stability of the system naturally limits the set of state which can be reached 

from the origin. Since insufficient control effort exists to even reach the state constraint boundaries, 

the "semi-ellipsoidal set" of Figure 6.2 is in fact equivalent to the ellipsoidal set of Figure 4.2. 

Finally, since the points in the controllable ellipsoid must be both reachable and recoverable, 

it is expected to be approximately equal to the intersection of these two sets, which in this case 

is dictated by the reachable set. Thus, the controllable semi-ellipsoidal set, Figure 6.3, does not 

increas~ in size compared to the ellipsoidal set, even though the recoverable set is expanded with 

the semi-ellipsoidal approach. · 

Figure 6.1: Recoverable Semi-Ellipsoidal Set for Second Order Stable System. 
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0.1 ...... · ............ • ....... • .. . 

0.11 '"'')·······t ...... ,: ...... · ...... 
0.4 .. , ... 1··· .. ··~·······:·· ····:····· .; ....... ; ....•.. t····· .. ; ....... i" .... . 

: : : : : ; : 

~ ·: ·(-··t· ... t .. ··a· .. ·;·· . . 
-aa .. ::r::::1::::::J::::::.J::·····i-····:::.:::::r: : : 
-OA ; ; ; ; ; ; : : ; 
-o.l ............. · .............. ~ ....... ; ....... j ....... ; •.•..• ~ ••. ' ... ~- •..•. 

-oJI .. " ............... ~ .. " ... ; ....... ; ....... ; ... 

~'---'-~"---'-~ ....... __.~...._~..._ ....... ~..___, 
~ - - - - 0 ~ ~ U U 

" 

Figure 6.2: Reachable Semi~Ellipsoidal Set for Second Order Stable System. 

0~ ······r·- .... ~ ............. ./ ....... ; ....... ; ....... ; ....... : ....... ~ ..... . 

~ ······~·······~······t······~·······,·:·····'.·······~·······:········'.······ 
OA ....... :·"""':"""· f"'"'":""'"':""""'j"'"","""· ............ .. 

. . . . . . . . 
~ .. , ... } .. , .... 1····· .. 1·······f······i·· .. ···;·······;·· .. ···?····"1"·"· 
-o.l ...... , ....... ~··· "+······~ ....... ; ....... ; ······1·······:····· .. ~···· .. 

-o.l ·····:'""""":'""" ......... .. . ."""1"" 

~ ~ - - - 0 ~ ~ U U 1 

" 

Figure 6.3: Controllable Semi-Ellipsoidal Set for Second Order Stable System. 
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6.1.2 Stable Focus 

The eigenvalues of the following A matrix are= -1 ± 1.414i. 

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given 

in Figures 6.4, 6.5, and 6.6, respectively. Ellipsoid matrices are given in Equations (6.4), {6.5), 

and {6.6). 

[ 1.0000 o.om] 
(Kv = [ -0.8161 0.1698 ]) Pv = (6.4) 

0.0799 0.1716 

[ 8.6982 · 0.0000 ] 
( Ke = [ -1.1644 -2.0000 ] ) (6.5) Pe = 

0.0000 4. 7387 

Pc = 
[ 8.7051 0.0000] ( K, = f -1.1605 0.6164 l ) 

0.0000 _4.7318 Ke= -1.1603 -2.0000 ] 
{6.6) 

The comments for the stable system hold for this stable focus system as well. As with the ellip-

soidal approximation, the eigenvalue locations for this sy-stem are generally closer to the imaginary 

axis, implying that a larger set of states can be reached from the origin, as seen in the figures. 

Figure 6.4: Recoverable Semi.:.Ellipsoidal Set for Second Order Stable Focus System. 

6.1.3 Marginal 

The eigenvalues of the following A matrix are 0, 0. · 

66 



.. ······?······t·······; ....... ; ....... :······+··· . >······i······1····· 
D.I .. , ... ; ....... ; ..... , j"·,, .. , ~ ... ,,, · j·, • •• .. ! .. , ., , .; , .. , ... : ...... , ~- .... . 

:: _· :·;::::::;: ::.-!:m:·:; __ :: .:.::.:.: ·: .::;:.:··::;: ::·:;: ::: 
\1 o .. ;· .. ·r ....... -~ .... :· .... : ... :· .... r-·····~ .. . 

-0.2 .. ···~· .... ~- .... : .. . -~ .. 1 .•.• ; ..••••.• ~- .. -~ •••• 
. . : . . : 

-OA ...... ~ ...... ~ ..... r .... "': , ""~'""' : ....... , ....... ~ ...... i ... . 

-0.t ...... : ....... : ...... : ....... : ..... ·.·······. ······f .. ·····:" .... -······ 

-0.1 ...... ; ....... : ....... i ....... ; ....... ; ....... ; ....... L ...... ~------~---··· · 

-!1 -G.1 -0.1 -OA -0.2 0 0.2 U O.I G.I 

" 

Figure 6.5: Reachable' Semi-Ellipsoidal Set for Second Order Stable Focus System. 

0.1 ...... ; ....... ~---··-~·-· .... ,: .... " .; ....... i ....... ~ ....... : ..... .; ..... . 

. . . . . . . . . 
0.1 ..... -~ ...•.. -~ ...... ~-- .... -~· ..... ·;· .. '. "'! ..... --~-- .. ···:·.' .... ~- .. ' .. 

. ~ '.T\i\\Fi!•••• 
:: .: .. :L:::: .. : .. ::.::.:W:r:::r::·::.: .. :. 
-u ' ..... ~ ...... I;, .. .. l .. '' ... t .. '.'. I ....... ! ....... ; ... '.· l· ... ' -~· .... . 
..0.1 ...... : ....... : ...... : ....... : ....... :, ...... : ....... : .. : .. : ...... : ..... . 

' " 
0.2 0A 0.1 0.1 

Figure 6.6: Controllable Semi-Ellipsoidal Set for Second Order Stable Focus System. 
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The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given 

in Figures 6.7, 6.8, and 6.9, respectively. Ellipsoid matrices are given in Equations (6.7), (6.8), 

and (6.9). 

[ 
1.0000 0.3379 l ( [ ] ) Kv = 0.7026 0.7374 
0.3379 0.6079 

[ 
1.0000 -0.3379 l ( [ ] ) Ke= 0.7026 -0.7374 

-0.3379 0.6079 

[ 
1.0000 

0.0000 

0.0000 l 
1.0000 

( 
Kv = f 1.0000 0.0001 ] ) 

Ke = 1.0000 -0.0001 ] 

(6.7) 

(6.8) 

(6.9) 

Since the system's eigenvalues are on the imaginary axis, there is no bias towards the recoverable 

or reachable sets. Consequently, both sets are approximately the same size though shifted in orien

tation. Although both recoverable and reachable sets share a common boundary along the maximal 

velocity limit (x2 = ±1, x1 E [-0.4, 0.4]), the controllable ellipse barely touches this bound. Had 

a larger control been permitted, the controllable ellipsoid would have extended past this bound, as 

seen in Figure 6.10 (cf. (6.10)) for u = 10, where recovering and reaching trajectories are shown in 

separate plots. 

P, ~ [ ::: ::::: l ( :: : f :::: ~:111
1
3
1] l ) (6.10) 

For this system, no amount of control effort would be sufficient to allow overlap of the controllable 

ellipsoid and the position constraint, via the arguments of Remark 5.4. 

Figure 6.7: Recoverable Semi-Ellipsoidal Set for Second Order Marginal System. 
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Figure 6.8: Reachable Semi-Ellipsoidal Set for Second Order Marginal System. 

Figure 6.9: Controllable Semi-Ellipsoidal Set for Second Order Marginal System. 

Recovering Trajectories 

0.5 

~ 0 ..... 

-0.5 ........... · 

-1'-'"~ ......... ~~,..._~..,__~ ....... ~~...L...I 

-1 -0.5 0 
x1 

0.5 

Reaching Trajectories 

0.5 ... 

~ 0 

-0.5 

-1'-'"~.J-~~'--~-'-~-"~~~ 
-1 -0.5 0 

x1 
0.5 

Figure 6.10: Controllable Semi-Ellipsoidal Set for Second Order Marginal System using Increased 

Control Effort. 
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6.1.4 Unstable 

The eigenvalues of the following A matrix are 1, 3. 

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in 

Figures 6.11, 6.12, and 6.13, respectively. Ellipsoid matrices are given in Equations (6.11), (6.12), 

and (6.13). 

[ 
18"118 O.OOOO ] . (Kv = [ -2.1589 4.0000 ] ) 
0.0000 21.542 

[ 1.0000 -0.1423 l (Ke = [ 0.7975 -0.3018 ] ) 
-0.1423 0.0392 

[ 
1.0000 

0.0000 :.:: l ( :: : f =:::::: :::::: l ) 

(6.11) 

(6.12) 

(6.13) 

The reverse is true of the unstable system results compared with the stable system results. Here, 

the recoverable set is smaller than the reachable set, which dictates the size of the controllable set. 

; 1 1 1 : i ; ; • 
O.I ....• t ...... t·· ... · t···· ··1· ..... ·;· ...... , ..... ··t·· .. ··t ...... f .... . 
u ······t······t······t······f······t·······t·······1······-;-·······1······ 

.~ l]lffill1 
: : : : : ! :· : : 

-OA ••·•·'f······t······t······1·······1·······1····· .. f·······r··••··t····· 
-0.1 ······;·······;·······;:······t······:·······t·······t·······;·······:······ 
-o.a ...... t······t······~·······1· .. ·····t······i·······;, ..... i' ...... 1' .... . 
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Figure 6.11: Recoverable Semi-Ellipsoidal Set for Second Order Unstable System. 

6.1.5 Unstable Focus· 

The eigenvalues of the following A matrix are 1 ± 1.414i. 
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Figure 6.12: Reachable Semi'-Ellipsoidal Set for Second Order Unstable System. 
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Figure 6.13: Controllable Semi-Ellipsoidal Set for Second Order Unstable System. 
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The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in 

Figures 6.14, 6.15, and 6.16, respectively. Ellipsoid matrices are given in Equations (6.14), (6.15), 

and (6.16). 

[ 
8.6977 0.0000 l ( [ ] ) Kv = -1.1647 2.0000 
0.0000 4.7392 

(6.14) 

Pe = [ 
1.0000 -0.0799 l ( [ ] ) · . Ke = -0.8161 -0.1698 

-0.0799 0.1716 
(6.15) 

[ 
1.0000 0.0000 l ( Kv = f 0.7143 5.1752 ] ) 

0.0000 0.2692 Ke= 0.7148 -1.2137 ] 
(6.16) 

Again, the results can be contrasted to the stable focus system, where the recoverable set was 

larger than the reachable, opposite ofwhat is seen here. 

l 1 1 
O,I ······t······t······t······:·······;·······!·······:·······:·······1······ 
G.I ······r--····t······(·····i·······(······t·······f·····)······i·"""' 

u --·--'["-····-f······i"·m····~ --- .. /----- ;---.. ·-f----- .. f----··i-····· 
. 02 ····· i·····-;-···--j--· ··-r···)····t· ··(· --t-·····j---··· 

·: Fil_•••Jl._!TEI 
= : : 

-u ·····r·····t······r·····r·····:t····l·····-~-- ·· ;······· -······ 
~ ······j······t······f······r······i·······;·······t······t······t····· 

O.Z OA 0.1 0.1 1 

Figure 6.14: Recoverable Semi-Ellipsoidal Set for Second Order Unstable Focus System. 

Figure 6.15: Reachable Semi-Ellipsoidal Set for Second Order Unstable Focus System. 
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Figure 6.16: Controllable Semi-Ellipsoidal Set for Second Order Unstable Focus System. 

6.1.6 Saddle 

The eigenvalues of the following A matrix are 1, -3. 

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in 

Figures 6.17, 6.18, and 6.19, respectively. Ellipsoid matrices are given in Equations (6.17), (6.18), 

and (6.19). 

Pv = ·[ 9.0000 3.0000 l (K" = [ 3.0000 1.0000 ] ) 
3.0000 1.0000 

Pe = [ 9.0000 - 9.0000 ] (Ke = [ 3.0000 -3.0000 ] ) 
-9.0000 9,0000 

P. = [ ~::: ::::: l ( :: : f ::::: ~:::71 l ) 

(6.17) 

(6.18) 

(6.19) 

The eigenvectors of the system (and their associated eigenvalues) are v1 = [ 0.707 0.707 ] T 

(>.1 = 1) and v2 = [ -0.316 0.949 ] T (>.1 = -3). The recoverable set is strongly skewed along 

the stable eigenvector, while the reachable set is strongly skewed along the unstable eigenvector. 

The ellipsoids found for the recoverable and reachable sets have axes lengths of (0.1, 1.5 x 105) and 

(8.8 x 103 , 0.06), respectively, with the principle axis lying along the stable (unstable) mode for the 

recoverable (reachable) case. This relatively large principle axis length may indicate that, under 

certain conditions, the optimal ellipsoid is unrestricted in one dimension (i.e., axis length is oo). 
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The controllable set using the semi-ellipsoidal method is the same as using the ellipsoidal method, 

since the region of intersection is limited (As before, the trajectories seen in the controllable set's 

plot are recovering, while the reaching trajectories cycle close to the bound.) 

Figure 6.17: Recoverable Semi-Ellipsoidal Set for Second Order Saddle System. 

Figure 6.18: Reachable Semi-Ellipsoidal Set for Second Order Saddle System. 
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Figure 6.19: Controllable Semi-Ellipsoidal Set for Second Order Saddle System. 
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6.2 Third Order Systems 

The figures in this section include both a complete view of the semi-ellipsoidal set and a quadrant 

of the three dimensional ellipsoid which allows the trajectories to be viewed. Additionally, the 

recovering and reaching trajectories of the semi-ellipsoidal set are plotted in separate sub-figures 

(Note that the same· quadrant is plotted for each, although some scaling differences may exist 

between the pairs,) 

6.2.1 Stable 

The eigenvalues of the following A matrix are -1, -1, -1. 

The semi-ellipsoidal approximations of the recoverable and reachable sets are given in Figures 6.20 

and 6.21, while Figures 6.22 and 6.23 show the controllable set and representative trajectories. 

Ellipsoid matrices are given in Equations (6.20), (6.21), and (6.22). 

0.1302 0.1266 
-o.roM I 

Pv= [ 0.1266 0.2281 0.1981 ( Kv = [ 0.3312 _;0.0556 -0.6952 ]) (6.20) 

-0.0304 0.1981 1.0071 

[ 9.7015 -19.403 
-6.1~5 l 

Pe= -19.403. 54.236 12.297 ( Ke = [ -3.0000 4.9567 2.0000 ] ) (6.21) 

-6.1485 12.297 9.5471 

[ 9 7012 . -19.402 -6.1741 I ( K, = f 2.7011 -6.4480 -1.6284 l ) 
Pc= -19.402 54.239 12.348 ] (6.22) 

Ke= -3.0000 4.9546 2.0000 
-6.1741 12.348 9.5409 

As seen in Figure 6.20, the boundary of the recoverable semi-ellipsoidal set is formed by the state 

constraints on the front and back surfaces and by a combination of the ellipsoid and state constraint 

on the top and bottom surfaces. As with the second order stable system, insufficient control effort 

exists for the reachable set to touch the constraint boundaries, so both the reachable and controllable 

sets are similar to those found using the ellipsoidal method (note that the orientation of the figures 

differs compared to Figures 4.20 and 4.21). 
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Figure 6.20: Recoverable Semi-Ellipsoidal Set for Third Order Stable System. 
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Figure 6.21: Reachable Semi-Ellipsoidal Set for Third Order Stable System. 
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Figure 6.22: Controllable Semi-Ellipsoidal Set for Third Order Stable System. 
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Figure 6.23: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Stable System. 
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6.2.2 Unstable 

The eigenvalues of the following A matrix are 1, 3, 5. 

A= ~ :1,B=1:1 
15 -23 9 1 

0 

0 

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given 

in Figures 6.24 and 6.25, while Figures 6.26 and 6.27 show the controllable set and representative 

trajectories. Ellipsoid matrices are given in Equations (6.23) , (6.24) , and (6.25). 

I 578.17 0.000.0 139.831 

Pv = 0.0000 777.99 0.0000 ( Kv = [ 15.000 -18.865 9.0000 ] ) 

139.83 0.0000 221.98 

Pe = I ~~~:::3 ~~~:::
3 ~~~::;l I ( Ke = [ 1.0550 - 1.6332 -0.2911 ]) 

0.0891 -0.2661 0.4165 

I 535.37 0.0000 118.88 

Pc = 0.0000 839.85 0.0000 

118.88 0.0000 212.88 

( 
Kv = [ 15.000 -18.496 9.0001 ] ) 

Ke = 4.9481 -18.496 -9.0004 ] 

(6.23) 

(6.24) 

(6.25) 

Following the established pattern, the results for the unstable system are opposite the results for 

the stable system. Here, the recovery trajectories appear to oscillate about the ellipsoid boundary, 

while the reaching trajectories clearly emanate from the origin. 
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Figure 6.24: Recoverable Semi-Ellipsoidal Set for Third Order Unstable System. 
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Figure 6.25: Reachable Semi-Ellipsoidal Set for Third Order Unstable System. 
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Figure 6.26: Controllable Semi-Ellipsoidal Set for Third Order Unstable System. 
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Figure 6.27: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Unstable System. 

6.2.3 Marginal 

The eigenvalues of the following A matrix are 0, 0, 0. 

The semi-ellipsoidal approximations of the recoverable and reachable sets are given in Figures 6.28 

and 6.29, while Figures 6.30 and 6.31 show the controllable set and representative trajectories. 

Ellipsoid matrices are given in Equations (6.26), (6.27), and (6.28). 

I 1.1478 0.5516 0.38591 

0.5516 1.5179 0.7385 ( K v = [ 0.6527 0.8875 0.9545 ]) 

0.3859 0. 7385 1.0078 

I ~~~:::9 ~~~:::
9 

~~~:::31 (Ke= [ -0.6535 0.8875 .-0.9544 ] ) 

0.3860 -0. 7383 1.0083 

1.5477 O.OOOO l.0947 I ( K v = f 0.0007 1.4138 0.0014 ] ) 
0.0000 1.9988 0.0000 ] 

Ke = -0.0020 1.4138 -0.0040 
1.0947 0.0000 2.1881 

(6.26) 

(6.27) 

(6.28) 

Here, both the recoverable and reachable set boundaries are partially formed by the state con

straints. In both cases, the trajectories tend to a plane where they oscillate about the origin. The 

controllable ellipsoid does not touch the state constraints with the given control limit. 
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Figure 6.28: Recoverable Semi-Ellipsoidal Set for Third Order Marginal System. 
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Figure 6.29: Reachable Semi-Ellipsoidal Set for Third Order Marginal System. 
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Figure 6.30: Controllable Semi-Ellipsoidal Set for Third Order Marginal System. 
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Figure 6.31: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Marginal System. 
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6.2.4 Mixed 

The eigenvalues of the following A matrix are -1.28, 0.14 ± l.53i. 

A=[:~ :1,B=1:1 
-3 -2 -1 1 

The semi-ellipsoidal approximations of the recoverable and reachable sets are given in Figures 6.32 

and 6.33, while Figures 6.34 and 6;35 show the controllable set and representative trajectories. 

Ellipsoid matrices are given in Equations (6.29), (6.30), and (6.31). 

I 1.3459 1.0517 0.13721 

Pv = 1.0517 1.9292 0.5561 ( Kv = [ -0.6704 -0.0417 0.6315 ] ) 

0.1372 0.5561 0.7538 

Pe= I ~~~;::8 ~\:::
8 

~~~:;:61 (Ke= [ -3.0003 0.3836 -1.2839]) 

3. 7675 -0.5576 2.5709 

Pc = I ~~~::: :::::: :::::: 1 ·( Kv = r-1.6877 0.3934 -0.1479 l ) 
Ke = -3.0000 0.3934 -1.0000 

4.3167 0.0000 2.8035 

(6.29) 

(6.30) 

(6.31) 

Although the system contains both stable and unstable eigenvalues, only the recoverable set 

touches the state constraints. In this case, the "strength" of the stable mode relative to the unstable 

pair apparently restricted the size of the reachable state-space. 
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Figure 6.32: Recoverable Semi-Ellipsoidal Set for Third Order Mixed System. 
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Figure 6.33: Reachable Semi-Ellipsoidal Set for Third Order Mixed System. 
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Figure 6.34: Controllable Semi-Ellipsoidal Set for Third Order Mixed System. 
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Figure 6.35: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Mixed System. 
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6.3 .. Comparison Against Published Result . 

The recoverable semi-ellipsoidal algorithm was applied to the double integrator example of Sec

tion 4.3. The search was somewhat slow to converge, probably due to the fact that the state con

straint limits differed fairly significantly. This implied that, more than in the preceding examples, 

much of the ellipsoid was contained outside of the state constraint·bounds and contributed nothing 

to the volume of the semi-ellipsoidal set, although the present cost function does not accurately 

account for this. Nevertheless, the solution, (6.32), was eventually found. 

[ 
0.0016 0.0027 l (. [ . ] ) 

Pv = Kv = 0.0281 0.1475 
0.0027 0.0243 · 

(6.32) 

Figure 6.36 compares the semi-ellipsoidal set (solid line) with the ellipsoidal set (dashed line) 

and polyhedral set (dotted line). In general, the semi-ellipsoidal set captures a larger area than the 

ellipsoidal set. Furthermore, the semi-ellipsoidal set requires only 7 parameters to define (3 for the 

symmetric ellipsoid matrix and 2 for each of the state constraint matrices), while the polyhedral 

set requires 14 (cf. (4.33)). This information is summarized in Table 6.1 along with information on 

the enclosed area of the state-space relative to the polyhedral approach, which may be computed 

analytically for this relatively simple case. 

Method Parameters Area (m2/s) Change(%) 

Polyhedral 14 458.8 -
Ellipsoidal 3 392.7 -14.4 

Semi-Ellipsoidal 7 435.3 -5.1 

Table 6.1: Comparison of Number of Required Parameters and Enclosed Area. 

For this double integrator system, the maximal set, Sv, is formed by the state constraints and a 

second order curve (the time-optimal curve, (fx (u, t) dt, f fx (u, t) dt) => (ut + Co, iut2 + eot + c1)). 

Thus, a modest number of vertices closely approximates the pure integrator system's maximal set 

for the polyhedral approach. More generally, though, the maximal set surfaces are described by 

much more complex functions. Consequently, the number of parameters needed to gain the accuracy 

advantage of the polyhedral form increases significantly with both system order and complexity, while 

the parameters for the ellipsoidal and semi-ellipsoidal remains modest ((n2 + n) /2 and (3n2 + n) /2, 

respectively, assuming a constraint on each state). 
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Remark 6.1 The existence of asymmetric constraints on a state or input is one instance in which 

the polyhedral method has a distinct advantage, since the ellipsoidal and semi-ellipsoidal methods, 

as formulated here, cannot capture the additional freedom available in the one direction, while the 

polyhedral method can (cf. Remark 3.2 on page 14). 

Interestingly, the ellipsoidal set includes a portion of the state-space not belonging to the semi

ellipsoidal set. This shortcoming of the semi-ellipsoidal method might be minimized by the use of a 

different objective function (one which computes the actual enclosed volume, rather than using the 

trace of the ellipsoid matrix as an approximation) or by investigating the possibility of piecewise

quadratic ([25], [51]) or non-quadratic ([52]) Lyapunov functions (both of which could potentially 

better approximate a higher-order surface than a single quadratic function). However, both of these 

modifications introduce considerably more complexity to the problem. 
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Figure 6.36: Comparison of Semi-Ellipsoidal, Ellipsoidal, and Polyhedral Methods for Double Inte

grator Systexp.. 
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Chapter 7 

Concluding Remarks 

This thesis investigates alternative approximations to the maximal operating sets for linear systems 

· with constrained states and input. The need for such approximations is highlighted in the following 

comments by Blanchini [8]: 

The techniques based on ellipsoidal sets are conservative. This fact is well estab

lished in robustness analysis as well as in the determination of domains of attraction 

under constraints. Polyhedral sets provide non-conservative solutions but they lead to 

computationally intensive algorithms. This is one of the most serious troubles although 

the fast improving computer performances alleviate the problem. 

We believe that there are still several open problems that are worth an investigation. 

For instance, we have seen that the only family of sets of practical use having a bounded 

complexity are the ellipsoids. For the reasons explained above it would be important to 

develop algorithms to find other classes of invariant sets to achieve a reasonable.tradeoff 

between conservatism and complexity. 

As the primary contribution, it is shown that the intersection, S, of an invariant ellipsoid,£, and 

state constraints, G, is itself invariant under certain conditions. Specifically, the following theorem 

is proved for the recoverable case, and a similar theorem provided for the reachable case. 

Theorem 5.3 Given an ellipsoid, E, controlled invariant for system {1.1} under u = -K,,x, and 

state constraints Gi, whose intersection is G, the set S,, =En G is controlled invariant under u if, 

for ri (A - BK,,) =/= 0 (i = 1, ... , k}, the following inequality holds: 

rf (Pl)-1 (rf) r :5.1 
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where 

rf =riwt 
Pl= (WnT PvW{ 

Wt = null {ri (A - BKv)} 

The proposed semi-ellipsoidal approach satisfies the original objective of providing an approxima

tion which is less conservative than the ellipsoidal method but simpler than the polyhedral method, 

as illustrated by the example of Section 6.3. Furthermore, the algorithms are implemented in the 

form of Matlab script routines available in the appendices. These routines are evaluated on second

and third-order systems in Chapte:rs 4 and 6, which serve as proof-of-concept of the approach. The 

only limitation for systems with higher dimension is the efficiency and stability of the optimization 

routine, since the theoretical development contains no inherent restriction on system order. Al

though application of the technology is not demonstrated in this thesis, the theory is now mature 

enough to allow that phase of work to begin. 

7.1 Future Research 

A number of avenues are available for future research, in both the theory and application of this 

new technology. The following list highlights some of the more prominent ones. 

Theory: 

• Discrete Time Systems. To date, the research has focused solely on continuous time sys

tems. However, practical appHcation of the theory would almost certainly be implemented 

using digital controllers. Consequently, the theory must be adapted to discrete time sys

tems. In principle, this could be accomplished by replacing the Lyapunov constraint, 

(3.1), with (7.1). 

V (k + 1) ::5 V (k) (7.1) 

This relationship, in turn, implies a discrete time (on-sample) invariance constraint, (7.2), 

replacing the continuous time invariance constraint, (3.10). 

(7.2) 

A primary concern here is that this relation does not guarantee state-constraint compli

ance of the inter-sample points of a continuous time plant. 
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• Robustness Issues. In this thesis; no consideration is given to the robustness of the set's 

invariance to external disturbances, modeling errors, etc. For example, with many of the 

· · optimal ellipsoids found, maximal control was needed to maintain system trajectories just 

inside the boµnd, so that no control effort remains in reserve to counteract the effects of a 

disturbance. Consequently, application of the technology to actual control problems will 

require modification to compensate for this shortcoming, perhaps by specifying minimum 

decay rates on the Lyapunov function, (3.1). 

Since the objective of the research presented in this thesis is not to design the control 

law, but to approximate the operating bounds, it is not within the context to specify a 

decay rate for the entire admissible state-space. A more appropriate specification is a 

minimum decay rate on the boundary of the ellipse, say -r,. By construction, xT Pvx = 

· 1 for points, x, on the ):>oundary of the maximal ellipse: Consequently, the following 

derivation, leading to the modified invariance constraint, (7.3), ensures a decay rate of 

-:-TJ on the boundary of the ellipsoid. 

dV/dt $ -r, 

.lJ. 

xT [Pv (A-BKv) + (A-BKvf Pv] x $ -rJ (xTPvx) 

.lJ. 

Pv (A - BKv) + (A - BKv)': Pv $ -r,Pv 

Pv[(A.,... ¥I) -BKv] + [(A- ¥J) -BKvt Pv $ 0 (7.3) 

For the semi~ellipsoidal sets, though, (7.3) does not provide robustness for those por

tions of the boundary formed by the state constraints. Imposing the relation, 1,, (fix)$ 

-r, (as opposed to 1,, (rix) ::; O) introduces a bias (non-trivial solution) to the expression 

of Wi in (5.8). This requires a re-derivation of the reduced-dimension state constraint, 

similar to that of Appendix E. 

• Asymmetric State and Input Constraints. H the bounds on a particular state or on 

the input are asymmetric, the quadratic nature of the state and input constraints on 

the ellipsoid, (3.11), (3.12), imply that smaller in magnitude of these two bounds will 

be restricting quantity (i.e., the proposed method can handle constraints of the form 

j_ $ f ::; 7 - so long as these bounds contain the origin - but it cannot take advantage of 

the. asymmetric bounds.) 
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• Multi-Input Systems. As derived, the ellipsoidal and semi-ellipsoidal methods are appli

cable only to single,.input systems. The results need to be adapted to multi-input systems 

to have a broader range of application . 

. • Characterization of Absolute Maximal Sets. To the author's knowledge, no work exists 

which adapts the theory in LeMay's thesis [32] (true maximal sets for constrained input 

systems) to systems with constrained states and input. Intuitively, it seems that the direct 

application of this theory to control applications would be limited due to the complexity. 

However, a characterization of the true maximal sets could serve as a benchmark by which 

to quantify the quality of approximating sets. 

• Alternative Lyapunov Functions. Several papers have recently been published investi

gating unique Lyapunov functions for special applications, including piecewise quadratic 

functions [51], [25], and non-quadratic functions [52]. If such functions could be sub

stituted for the quadratic ellipsoidal function, the boundaries of the true maximal set 

could be more closely approximated (since more degrees of freedom would be available to 

approximate the maximal set's surfaces). Such functions may also be necessary to fully 

take advantage of asymmetric constraints. 

• Output Feedback. The ellipsoidal and semi-ellipsoidal methods presented in this thesis 

assume that full state feedback is available for making control decisions. For most ap

plications, however, only a limited number of states (outputs) are available. Thus, an 

observer will most likely be required to provide estimates of the states, which will, in 

turn, require a more conservative ellipsoidal or semi-ellipsoidal set to account for the 

uncertainties of the estimates. 

Application: 

• Reference Governor. The concept of modifying a signal to avoid saturation of the control 

or control rate has been investigated extensively in a variety of forms (see, e.g., [19] 

for the "reference governor," [41] for the "measurement governor"). McNamee [36] has 

presented a reference governor which ensures that the system state remains within a 

specified polyhedral set. This method could be adapted to use the semi-ellipsoidal set as 

a first application. 

• Reference Trajectory Generation. Many existing control schemes, such as sliding mode 

control, utilize reference trajectories to move from set-point to set-point. If the semi

ellipsoid could be used to generate trajectories which naturally met state and input 
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constraints, then the theory could have immediate application to a number of different 

problems using these existing control techniques. 

• Modified Backstepping Control. In [38], a modified backstepping approach is investigated 

in which constraints are placed on each of the states in the backstepping controller. It was 

discovered that.this approach still suffered from the non-causal nature of the problem and 

could only avoid saturation of the control and control rate, but not of other states. The 

bounding semi-ellipsoidal set might be used to dynamically manipulate the saturation 

levels of the states to eliminate this flaw. 

• Modified Variable Structure Control. The principle of the variable structure controller 

commonly known as sliding mode is to define an ( n - 1) dimension hyperplane and then 

design the controller so that this surface is bi-directionally attractive (i.e., states to the 

"left" of the plane are drawn to the "right," and states to the "right" of the plane are 

drawn to the "left"). Using a similar approach, it may be possible to design a variable 

structure controller in which the semHillipsoid's boundary is uni-directionally attractive. 

In this scheme, points exterior to the ellipse are drawn to it, while points. interior are 

not, but are, rather, governed by a different control law (state-feedback, sliding mode, 

etc.) Hence, the semi-ellipsoidal set merely acts to restrain trajectories resulting from 

pre-existing control law from violating state constraints. 
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Appendix A 

Existence of Controllable Ellipsoid 

In this section, the issue of existence of a controllable ellipsoid is treated by solving the following 

problem (where A, B a.re real matrices and the pair [A, B] is assumed controllable throughout): 

. . 

Problem A.I Find a triplet (P, Kv,Ke), P > 0 such that the following holds: 

P(A-BKv)+(A-BKv)T P < 0 

-P (A - BKe) - (A - BKel P < 0 

· Noting the similarity of these relations to the algebraic ruccati equation, the possibility of utilizing 

previously established results in linear optimal control theory is investigated. 

The first requirement for the solution to Problem A.l is that P must be positive definite. In 

general, _though, the solution to the algebraic ruccati equation is not unique, so that nothing can 

be said about the sign definiteness of all solutions. However, Willems notes that, for the algebraic 

ruccati equation, (A.l), there exists1 a unique real symmetric solution matrix, P+ (the maximum 

· solution), having as one of its properties that P+ ~ P (i.e., P+ - P ~ 0) for any other solution 

· matrix, P [45]. 

Remark A.I The ei!Jenvalues of P+ are real via the property that P+ is a real, symmetric matrix {3]. 

Furthermore, Kawasaki and Shimemura [28] provides the following useful lemma related to this 

maximum solution. 

Lemma A.I {28} Let ,\1, ,\2, ... , X'i be the left half plane eigenvalues (Re(,\;) ~ OJ of A and 

{1, {2, ... , e; be the corresponding eigenvectors. The maximum solution P + of the equation 

PA+ATP-PBR-1BTP =0 (A.1) 

1 Existence of a solution, for this simplified form of the algebraic Riccati equation, is guaranteed so long as R ;:;: 0 [45]. 
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( where R > 0) satisfies 

null (P+) = span (€1, €2,. · ·, €;) (A.2) 

where span ( €1, €2, ... , f;) denotes the linear subspace spanned by vectors €1, €2, ... , f;. 

Lemma A.I is now used to give the positive definiteness requirement in Corollary A.I. 

Corollary A.I If the eigenvalues of A are contained in the open right half of the complex plane 

(Re(.~i) > OJ, then the maximum solution, P+, to the algebraic Riccati equation 

(A.3) 

is a positive definite matrix. 

Proof. Since the matrix Po = 0 is a solution to (A.3), then P+ ~ Po = 0 {i.e., P+ is positive semi

definite) by definition of the maximum solution. This implies that the eigenvalues of P+ (which 

are real via Remark A.I) are at least greater than or equal to zero, so it must be shown that the 

eigenvalues of P + are strictly non--zero to prove strict positive definiteness. 

Define A - as the set of all left half plane eigenvalues of A and 3- as the set of corresponding 

eigenvectors. Since the eigenvalues of A are contained in the open right half of the complex plane, 

A- and 3- are empty sets. From Lemma A.I, this implies 

null(P+) = span{0} 

which further implies that P + is full rank and that its eigenvalues are strictly non-zero, completing 

the proof. • 
For a general system, no assumptions can be made about the location of the eigenvalues of A. 

However, since the system is assumed controllable, a state feedback matrix, Ko, may be defined 

such that the eigenvalues of A - BKo are contained in the open right half plane. By defining 

Ao = A - BK0 , the maximum solution, P+, to the modified Riccati equation, (A.4), is positive 

definite via Corollary A.I. 

(A.4) 

To apply this result to the first inequality of Problem A.I, the recoverable state feedback matrix 

is assumed to be of the form Kv =Ko+ avR-1 BT P+, where the scalar av is a real constant, and 

the necessary restriction on av is investigated such that the recoverable inequality, (A.5), holds. 

P+ (A - BKv) + (A - BKvf P+ :5 0 (A.5) 
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Since R > 0, -P+BR-1 BT P+ is negative semi-definite. Hence, (A.5) holds for av ~ !· 
Similarly, the form Ke= Ko+ aeR-1 BTP+ is assumed for the reachable state feedback matrix 

and the necessary restriction on ae considered. 

-P+ (A - BKe) - (A - BKef P+ ~ 0 

Here, (A.6) holds for ae ~ l· 
The results of this section are summarized in Corollary A.2. 

Corollary A.2 A family of solutions, (P,Kv,Ke), P > 0, to the set of matrix inequalities 

P(A-BKv) + (A-BKvf P < 0 

-P (A - BKe) - (A - BKef P < 0 

(A.6) 

is given by (P+,Ko + avR-1BTP+,Ko +aeR-1BTP+), where P+ is the maximum solution to the 

algebraic Riccati equation 

P (A- BKo) + (A- BK0 )T P- PBR-1 BTP = 0 

and the parameters R, Ko, av, ae satisfy 

R>O 

Re [eig(A - BKo)] > 0 
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Appendix B 

Derivation of Ellipsoid Volume 

Cost Function 

The objective of the optimization routine for the ellipsoidal method is to maximize the volume of 

the ellipsoid subject to the state and control constraints. The ellipsoid is expressed in (B.2) in terms 

of the ellipsoid function, (B.l), where Pis an n x n real, positive definite, symmetric matrix. 

() (x) = xTPx 

£1 = {xlO (x) ~ 1} 

(B.1) 

(B.2) 

Strictly speaking, it is not necessary that P be symmetric, only that it be positive definite. 

A:n.y real, square matrix can be written as the sum of a symmetric matrix and a skew-symmetric 
. . 

matrix, (B.3), where PH = PJ; and Pss = -P[s. 

(B.3) 

However, the skew-symmetric component contributes nothing to the ellipsoid function. 

Consequently, no degrees of freedom are lost by restricting to the symmetric form, but this does 

allow for simplifications to be made in computing the volume, (B.4). . . 

Ve1 = / /· · ·/dx1dx2 · · ·dxn 

£1 
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Specifically, a linear change of variables will be introduced to convert the integral of an ellipsoid to 

an integral of a spheroid, for which explicit solutions are available. 

It is known that, for any real, positive definite symmetric matrix, P, there exists a unitary 

transformation, U, mapping P to its diagonal form. 

where 

UTPU=A 

detU = 1 

uTu = 1 

(B.5) 

and the Ai are the eigenvalues of P, all of which are positive, real numbers due to the properties of 

positive definite matrices and symmetric matrices, respectively. 

Furthermore, it is possible to define a transformation, M, mapping P to the identity matrix. 

(B.6) 

where 

M = U ( A1/2)-1 

A1l2 = diag { A, ~' ... , A} 

Invoking the property. of determinants for two square matrices, Pi, P2, that IP1P2I = IPil IP2I [11, 

pg. 128], relation (B.8) is noted, where the last step is possible since a positive definite, square 

matrix is invertible. 

IMTPMI = III 

,IJ.. 

IMI = 1/M 

,IJ. 

IMI = Jw-1 1 

Define a sfate transformation as in (B.9)', 

103 

(B.7) 

(B.8) 

(B.9) 



such that the ellipsoid can be. written as in (B.10). 

fJ(z) . ....:· (Mzf P(Mz) (B.10) 

(B.11) 

This change of variables transforms the ellipsoidal set, £1, into the special case of a spherical set, 

S1. 

S1 = {zlfJ (z) ~ 1} (B.12) 

Consequently, the integral equation for the ellipsoid volume may be rewritten. 

Vei = ff· ··fdx1dx2 · ··dxn (B.13) 

£1 

~ ~ ~ 
8z1 8z1 8z1 

f f:··f 
~ ~ ~ 
8z2 8z2 8z2 dz1dz2 · · ·dzn = (B.14) 

S1 
~ ~ ~ 
8z .. 8z,. az .. 

= ff·· ·f lMTI dz1dz2 · ··dzn (B.15) 

S1 

= J1P-1I ff·· ·f dz1dz2 · · ·dzn (B.16) 

S1 

= J1P-1I Vs1 (B.17) 

The explicit equation for the volume of a spheroid of dimension n, (B.18), has been previously 

established [53, pg. 315] (Note: To keep with standard notation, the symbol r is used uniquely in 

this section to represent the gamma function; elsewhere in the text it is used in reference to a linear 

state constraint. Also, the symbol r refers to the radius of the sphere, which, for this case, (B.10), 

(B.12), has a value of 1.) 

(B.18) 

where 

n = 2,4,6, ... 
(B.19) 

n = 1,3,5, ... 

It is therefore apparent (as expected) that the volume of a unit spheroid is a constant for any 

fixed number of states, n, implying that the ellipsoid volume is proportional to the function, (B.20). 

j = y'jP-11 (B.20) 
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However, it is noted that J maps the parameters of P to only positive values of R1 . In particular, 

resolution of of /8P (when searching for optimal parameters) becomes increasingly difficult for 

J :5 1. This suggests that the accuracy of a search would be affected by any pre-scaling of the states 

(for example, to set the state bounds as the unit hypercube). To minimize this effect, the following 

equivalent objective functions are used, where the 1/2 from the square root, which simply scales 

these functions, is omitted for simplicity. 

maxlog jP-1 j 

min { - log ,p-1 1} 
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Appendix C 

Derivation. of. State Constraint 

· Inequalities 

This section details how bounds on the states are converted to explicit bounds on the ellipsoidal 

approximating set's size and shape. Specifically, if the ellipsoidal set is denoted as E and the linear 

state constraint by G, then the following problem is to be solved. 

Problem C.1 Determine the restrictions on the size and shape of E such that every point x E E 

satisfies the constraint G. 

C.1 Level Sets 

In essence, the constraint development· centers on finding a tangent point on the boundary of the 

ellipsoidal set which is parallel to the affine boundary constraint, then determining the necessary 

restriction(s) so that this tangent lies interior to the constraint line. Formal development of the 

constraint involves the concept of level sets of functions. 

C.1.1 Ellipsoidal Set Boundary as a Level Set 

Define the ellipsoid function, ellipsoidal set, and boundary of the ellipsoidal set as in (C.1), (C.2), 

and (C.3), respectively. 

9 (x) = xTPx (C.1) 

E13 = {xl9 (x) $ ,B} (C.2) 

8E13 = {xl9 (x) = ,B} (C.3) 
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With respect to the problem of finding the maximal ellipsoidal set, the parameter f3 is a scaling 

factor adjusting the size of the ellipsoid. Without loss of generality, then, the value f3 = 1 is chosen 

to define the maximal ellipsoid. 

C.1.2 Linear Constraint Boundary as a Level Set 

A linear state constraint can be defined as in (C.4), 

(C.4) 

where singl&-sided constraints can be described by appropriately defining one of the o parameters 

to ±oo, and where the following properties hold (Note that the strict inequalities on Q, 6 guarantee 

inclusion of the origin.} 

Equation (C.4) can be split as in (C.5) 

where 

IWil = 1 

Qi < 0 

"Ji > 0 

. fi,lX < 1 

fi,2X < 1 

ri,1 = Wi/6i 

ri,2 = -Wi/§.;, 

(C.5) 

(C.6) 

In general, then, a linear inequality constraint (containing the origin) can be written as in (C.7). 

rx :5 1 (C.7) 

Consequently, define the linear constraint function, constraint set, and boundary of the constraint 

set as in (C.8), (C.9), and (C.10), respectively. 

7(x) = rx 

Go, = {xl'Y (x) :5 a} 

fJG°' = {xl7(x)=a} 

In light of (C,7), attention is focused on the unit level subset and its boundary (a= 1). 

(C.8) 

(C.9) 

(C.10) 

Lemma C.1 highlights a property of these regions which is necessary for the development of the 

constraints. 
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Lemma C.1 

Proof. (::;,-) Assume that Ga1 ~ Ga2 but that a1 > a2. Then, there exists some xo E Ga1 for which 

1' (xo) = ao, a2 < ao ::; a1. However, this implies that xo ¢ G2, violating the original assumption. 

Thus, G1 ~ G2 ::;,- a1 ::; a2 is shown by contradiction. 

( <=) By definition, 1' (xo) ::; a1 'v xo E Ga1 • Since a1 ::; a2, this implies that 1' (xo) ::; a2 'v xo E 

Gai, hence Ga1 ~ Ga2 , completing the proof. • 

C.2 Derivation of Inequality 

For preciseness, the following lemma is stated to formalize the state constraint as a set relation. The 

proof is intuitive and, consequently, omitted here. 

Lemma C.2 The set of points· defining an ellipsoid, E1, satisfy a state constraint, G1, if and only 

if E1 c G1. 

The objective of this line of investigation, then, is to develop a constraint on P ensuring that 

Lemma C.2 holds. In light of Lemma C.1, the following definition is stated relating the boundary 

constraints to the ellipsoid, E1. 

Definition C.1 Let A= {aJE1 C Ga}. The minimal bounding value, g, is defined as g = min A. 

It is now possible to propose the following theorem. 

Theorem C.1 

Proof. (::;,-) Assume that E1 C G1. By definition of g, Gg_ ~ G1. Lemma C.1 then gives g $ 1. 

(<=) Assume that g $ 1. From Lemma C.1, this implies Gg_ ~ G1 • By definition of g, E1 C Gg_, 

which gives E1 C G1, completing the proof. • 

The practical application of Theorem C.l is to find some constraint on P such that g (P) $ 1, 

ensuring that the corresponding ellipsoid, E1 (P) is within G1 . The steps in converting an inequality 

constraint on the states to a constraint on the ellipsoid are, first, to determine the minimal bounding 

value, g (P) $ 1, and, second, to develop a constraint on P such that g < 1. 
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Figure C.l: illustration of Boundary Intersection. 

Lemma C.3 formally states the idea that the minimal bounding value, g, is equal to the value of 

a for which the boundary of the linear constraint, 8Go,, is tangent to the boundary of the ellipse, 

8£1, 

Lemma C.3 For some a* > 0, a* = g_ if and only if 8G°'. n 8£1 is a single point. 

This lemma implies that, for the minimal bounding value, 8Gg;_ is tangent to 8£1. Proof of this 

lemma is somewhat intuitive, and utilizes concepts illustrated in Figure C.l. 

Proof. ( =>) It is known that the intersection of a hyperplane and the boundary of an ellipsoid defined 

by a positive definite matrix, P, is (i) the null set, (ii) a ~ingle point, or (iii) a "ring." These cases 

are considered independently, 

Suppose a* = g_ (8Gg;_ = 8Go,• ), but that 8Gg;_n 8£1 is the null set. This implies (a) that 

e1 c Gg;_ and (b) that there exists some positive quantity, "1..a, such that 8£1 C Gs_-Ao, C Gg;_, 

Consequently, g_ is not the minimum bounding value, contradicting the assumption. 

Similarly, assume that a* = g_ , but that 8G°' n 8£1 is more than one point. For a second 

order system, the intersection is two points, { Xa, Xb}, but for higher dimensions, the intersection is a 

"ring" formed by an infinite number of points, any two of which can be chosen as { Xa, Xb }. Defining 

a closed set, X, as X = {Axa + (1- A) xblO :5 A :5 1}, convexity of the ellipsoidai set implies that 

X c e1, and convexity of 8G 9;. implies that X c 8G 9;.· Furthermore, it can be shown that the open 

set X, where X = {Axa + (1- A) xblO <A< 1}, is strictly interior to 8£1, thus implying that there 
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are points in a neighborhood of elements of X which are interior to &1 but exterior to GQ. (i.e., 

GQ.n&1 'I, &1, see Figure C.l), violating the definition of g. Consequently, 8GQ.n8&1 must be a 

single point. 

( <=) Assume that 8G a• n 8&1 is a single point but that a* $ O. This implies that 8G a• passes 

through the origin (in the case of equality) or that Ga• does not contain the origin, hence a* must 

.· be positive. If 8Ga• n 8£1 is a single point and a* > 0, the proof follows similarly as above to show 

that a* = g. (Note: there are two solutions, ±g yielding a single intersection point (on opposite 

sides of the ellipse), necessitating the positive restriction.) • 
It is widely known that the gradient of a function gives normals to the function's isoclines [34, 

pp. 149-150]. Consequently, the gradient of the function() (x) gives the inward pointing normals to 

the 8&13's, as defined in (C.11). 

'v() (x) = 2Px (C.11) 

Similarly, the gradient of the function 'Y (x) gives the inward pointing normal to the 8Ga's. 

(C.12) 

The linear constraint bound is parallel to the tangent hyperplane of the ellipse at x* if the 

gradients are parallel, (C.13), 

Px* ocrT (C.13) 

or, equivalently, if the gradient of one is normal to the null space of the gradient of the other, as in 

(C.14). 

(r.L) T Px* = o, r.L = riull {r} 

The linear constraint bound is the tangent hyperplane of the ellipse at x* if (C.15) holds. 

The solution to the first relation in (C.15) proceeds as follows: 

(r.L)T Px* = 0 

.fJ. 

(r.L{ z = o 

.fJ. 

z* = rT /a* (null {r.L} = r) 
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rT fa.*= Px* 

(C.16) 

Substituting (C.16) into the second relation yields to intersection solution, (C.17), where, via 

Lemma C.3, g is substituted for a.*. 

(rP-1 /g) P (P-1rT /g) = 1 

.1,1. 

Theorem C.l requires g::; 1, yielding the state constraint inequality, (C.18). 

C.3 Derivation of Control Constraint Inequalities 

(C.17) 

(C.18) 

Since linear state feedback is used, the control law is of the form u = -K x. Consequently, the input 

amplitude constraint may be written as a pair of linear state constraints as in (C.19). 

{ ut = {xi [-K/ (~u)] x::; 1} 

U:1 = {xi [-K/ (-u)] x:::; 1} 

· Substituting ±K/u for r in (C.18) yields the control constraint inequality, (C.20). 

(K/u) p-1 (Kfuf::; 1 
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Appendix D 

Gradients of Cost Functions and 

Constraints 

Matlab's constr .m optimization routine uses gradients to calculate the s_earch direction. If analytical 

gradients are not provided, the routine automatically implements a finite difference approximation. 

However, the search is generally more stable and convergence faster if the analytical gradients 

are supplied. In this chapter, expressions for the gradients of the cost functions and constraint 

inequalities are derived. 

D .1 Preliminaries 

As implemented in the code of Appendices F and G, the parameter space is defined as a vector 

composed of the component elements of the pseudo-ellipse {cf. {5.21)) and state feedback matrices. 

The vector is formed by stacking the lower diagonal columns of the ellipse matrix on top of the 

feedback gain elements, as in (D.l). 

A [ Pll 'P21 l [ P= A A 'K= ku 
P21 P22 

k12 ] => X = [ Pu P21 P22 ku k12 ] T {D.l) 

Gradients of any of the scalar functions are expressed as column vectors the size of X, each element 

of which can be computed as a derivative with respect to a scalar value, Xi. 
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D.2 · Iderttities 

Several matrix identities az.id special forms are used to derive the gradients. The following are all 

taken from [6, pp. 50, 59-60, 66-68]. In these identities, bold face letters denote matrices (upper 

case) and vectors (lower case), while normal type denotes a scalar. Subscripted letters refer to an 

individual matrix/vector element. 

Special Forms The matrix (EL)J denotes a matrix the same dimensions as Y whose elements are 

all zeros except for the (ij)th element, which is one. 

Traces of Matrices 

Derivatives of Matrices 

tr(Y) == LYii 

tr (XYZ) = tr (YZX) = tr (ZXY) 

tr (X + oY) = tr (X) + otr (Y) 

tr [(EL)J Y] = tr [Y (EL)~] = Yii 

(D.2) 

(D.3} 

(D.4) 

(D.5) 

aY /aYii = (EL)J (D.6) 

T yT ( ) ay /aYii = (EL};i D.7 

aXY /ax= (aX/ax) Y + X (aY /ax) (D.8) 

awY /ax= W (aY /ax) (if W not a function of x) (D.9} 

aWYWT /ax= W {aY /ax) WT (D.10) 

aYTWY /8x = (aYT /ax) WY+ yTw (aY /8x) (D.11) 

atr(Y) /aY = I (D.12) 

atr (YT AY) /aY::,; AY + ATY · (D.13} 

aloge IYlfaY = (YT)-1 (D.14} 

ay-i /8x = -Y-1 (8Y /ax) y-1 (D.15} 

8v/8x = tr [(av;az) (azT ;ax)] (D.16} 

Also required are analytic derivatives of the eigenvalues of matrices with respect to the search 

parameters. A large body of work has been published investigating the derivatives of eigenvalues 

and eigenvectors with respect to matrix parameters, particularly as it is related to flexible structures 
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(see, e:g., [15], [26], [39], [40]). Wittrick [46] shows that, if ei is a normalized (e[ ei = 1) eigenvector of 

a self-adjoint matrix Y, and Ai is its corresponding eigenvalue, then the derivative of the eigenvalue 

with respect to the (ij)th element ofY is given in (D.17). 

8.\i = e[ ( 8Y ) ei 
8yij 8yij . 

(D.17) 

Analytical expressions for the gradients of the positive definiteness and invariance constraints 

only require the derivatives of the eigenvalues. However, the reduced dimension state constraint 

matrix, rf, in (5.7) is a function of the state feedback matrix (a search parameter) via Wi, the null 

space of ri (A - BKv) (or Ke), The null space corresponds to the eigenvectors ofri (A- BKv) with 

eigenvalues of 0. Thus, the analytic derivative of the state constraint requires the derivative of these 

eigenvectors, which is complicated by the fact that ri (A - BKv) is non-self-adjoint (asymmetric) 

and the eigenvectors in question belong to repeated eigenvalues of multiplicity (n - 1). 

Eigenvector derivatives have been investigated in [33] for non-self-adjoint systems with distinct 

eigenvalues and in [14] for self-adjoint systems with repeated eigenvalues, but the case where both 

conditions occur is apparently still an open research issue. Furthermore, the algorithms presented 

in [14], [33] involve multiple steps, adding to the computational burden for an optimization search. 

Given the unresolved theoretical issue of eigenvector derivatives of non-self-adjoint systems with re

peated eigenvalues as well as the. desire to minimize the search time, a finite difference approximation 

to the eigenvector derivatives is used. 

D.3 Analytic Derivatives 

The derivatives of the objective functions and constraints are presented here for the case of the 

recoverable ellipsoidal/semi-ellipsoidal set, though the subscript "v" has been dropped to avoid 

confusion with the indexing subscripts, For the reachable case, all that is required is a sign change 

(and change of feedback matrix) on the invariance constraint. Before presenting the equations, a 

few remarks are necessary regarding the notation used. 

• The ellipsoid matrix, P, is defined in terms of an auxiliary symmetric matrix, P via the 

relation P = PP, (5.21). Because of the forced-symmetric structure of P (i,;i = Pi;), the 

partial derivatives of P with respect to the elements of P are different for on- and off-diagonal 

elements, as shown in (D.18). 

8P { (EL)f;, 

8fii; = (EL);; + (EL)t, 

i=j 
(by (D.6),(D.7)) (D.18) 
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This relation then implies that the derivatives of P are also dependent on the parameter 

location, (D.19). 

8P 
8fti; = 

· a (Pfa) 
8fti; 

;.. ·( aP ) ( aP ) ~ = P 8fti; + 8pi; P (by (D.B)) 

= { f:, (EL)f; + (EL)f; P, 
f:, [(EL)f; + (EL)t] + [(EL)f; + (EL)t] f:,, 

• In all cases, Acl = A- B (K + K0 ). 

i=j 
(D.19) 

i =I= j 

• The subscript "i" has been dropped on the state constraint matrix, r to avoid confusion with 

the parameter indexing subscripts. 

• Matlab requires constraints to. be written in the form g ( x) $ 0, which means that the con

straints derived in the preceding chapters must be expressed as f (x)-1 $ 0, but this constant 

does not alter the expression of the gradient of the constraint function. 

Ellipsoidal Set Cost Function 

a (loge IPD 
8fti; 

= tr { [ 8 (lo;PIPI)] (;~) } (by (D.16)) 

= tr (p-1 :~) (by (D.14)) 

tr [ ( f:,f:, )-1 (P (EL)f; + (EL);; f:,)] , i = j 

tr [ (PP)-1 (P [(EL);,+ (EL)t] = 
+ [(EL)f; + (EL)t] f:,)] , i =I= j 

I tr [(P-1P-1).P(EL);] +. tr [(P-1P-1) (EL);,~], 

= · tr [( f:,.,.1 f:,-1) f:, (EL)t] + tr [ (P-1 f:,-1) f:, (EL)~] 

. +tr [ (P-1 f:,-1) (EL)t, P] + tr [ (P-1 f:,-1) (EL)t P] , 

= (by (D.3)) { 
2 tr [P-1 (EL)f;], i = j 
2 tr [P-1 (EL)f;] + 2 tr [P-1 (EL)t] , i =I= j 

{ 2(P-1).. . 
= ,, . (by (D.5)) 

2 (P-1) .. +,2 (P-1) . . i =I= i 
· i3 · 3i 

i=j 

= J (since P = f:,T) { 
2 (P-1) i• i = i 
4{P-1) ij i Cf' j 
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Semi-Ellipsoidal Set Cost Function 

8 [loge tr (P)] 
8pij 

= [ 1 ] [8tr(P)] 
tr(P) 8pi; 

= [tr~)] ·tr [at;f) :~] (by (D.16)) 

= [tr;P)] ·tr[%~] (by (D.12)) 

[ 1 ] [ A p p A] tr(P) · tr P (EL)i; + (EL)i; P , 

(D.21) 

i=j 

= { [ tr(P)] · tr { .P [(EL)f, + (EL)~] + [(EL)f, + (EL)~] .P}, i # j 

= I 
= { 

= { 

[ tr(P)] { tr [P (EL)f,] + tr [ (EL)f, P]}, i = j 

[ trfi3Y] { tr [P (EL)f,] + tr [(EL)~ P] 
+tr [f>(EL)f,] +tr [(EL)~.P]}, 

[tr(P)] {2 tr [P (EL)f,]} , i = j 
[tr(P)] { 2 tr [P (EL)f,] + 2 tr [(EL)~ P]}, i ¥, j 

[ tr(P)] (2Pij) , 

[ tr(P)] (2Pij + 2fi;i) , 

i=j 
(by (D.5)) 

i#j 

_ { (2fii;) I [tr(~~)], 

(4f>i;)/ [tr(PP)], 
a (loge IPD = 0 

8kij 

i=j 
(since .P = f>T) 

i#j 

(by (D.4)) 

(by (D.3)) 

(D.22) 

(D.23) 

Invariance Constraint Let A = { ..\1, ..\2, ... , ..\n} and 2 = { 6, {2, ... , {n} be the set of eigenvalues 

and eigenvectors of PAc1 + A~P. 

: = <f [ a (P A~/~P) l <, (by (D.10),(D.17)) 

= T ( 8P T 8P) 
{k Bpi; Ac1 + Ac1 a'Pi; {k (by (D.9)) 

T { [ A p p A] {k P (EL)i; + (EL)i; P Ac1 

T [ A f> p A]} +Ac1 P (EL)i; + (EL)i; P {k, i=j 

= 
T ({ A [ . f> j,] {k P (EL)i; + (EL);i 

+ [(EL)f; + (EL)~] .P} Ac1 
(D.24) 

T { A [ j, j,] +Acl P (EL)i; + (EL);i 

+ [(EL)f; + (EL)~] .P}) {k, · i#j 
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;~i: . = ·.{[ [ a (PA~k: A~P)] ek (by (D.10),(D.17)) 

~ f.'f [pa (Aa~:K) + 8 (A;,::Kf pl e,. (by (D.9)) 

= ef { (f>f>) [-B (EL)!] + [-B (EL)!r (f>f>)} ek (by (D.8),(D.6)) (D.25) 

Positive Definiteness Constraint Let A = { .>.1, .>.2, ... , >.n} and 3 = { e1, e2, ... , en} be the set 

· of eigenvalues and eigenvectors of -P (recall that Matlab requires constraints of the form f(x) $ 0). 

(D.26) 

= 0 (D.27) 

Ellipsoidal State Constraint 

= 

r [-p-l (%~) p-1] rT (by (D.10),(D.15)) 

-r(f>f>)-1 [f>(EL)f; 

+ (EL)f; f>] (f>f>)-l rT, i = j 

-r (f>f>)-1 
{ P [(EL);;+ (EL)t] 

+[(EL);;+ (EL)~] P} (f>f>)-1 rT, i # j 

(D.28) 

(D.29) 

Semi-Ellipsoidal (Reduced-Dimension) State Constraint Let W = null {r (A- BK)}, 

rR = rw, pR = WTPW, where r(A- BK)# 0. 

a{rR [(PR)-1] (rR{} 
= rR [- (PR)-1 ( !:i;) (PR)-1] (rR{ (by (D.10),(D.15)) 

= -rR (PR)-1 wT ( 8:) W (PR)-1 (rR) T (by (D.10)) 
OPi; 

= 

-rw(wTf>f>w)-1wT [f>(EL)f; 

+ (EL)f;f>] (wTf>f>w)-l wTrT, i =(b.30) 

-rw (wTf>f>w)-l wT {f> [(EL);;+ (EL)t] 

+ [ (Et )f; + (EL )t] f>} ( wT f> f>w )-1 wTrT, i # i 
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Before deriving the partial derivative with respect to the state feedback gain parameters, recall 

that the derivative of Wis computed numerically, as in (D.31), where e is a small constant. (Care 

must be taken to ensure that the ordering of the eigenvalues and eigenvectors is consistent when 

computing the new set of null vectors.) 

aw w ( K +€(EL)!) - w (K) 
akij ~ e · 

(D.31) 

To simplify the derivation to follow; the derivatives of rR and pR with respect to ki; are first 

presented in (D.32), (D.33), respectively. 

arR 
kij 

apR 
kij 

aw 
= r aki; (by (D.9)) 

= (aw)T PW+ wTp (aw) (by (D.11)) 
akij akij 

(D.32) 

(D.33) 

The derivative of the reduced-dimension state constraint function with respect to ki; is given 

in (D.34). 

Control Constraint 

a [(KP- 1KT) /u2 ] 

apij 
= (K/u) [-p-l ( :~) p-l] (K/u? (by (D.10),(D.15)) 
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a [(KP-1KT) /u:2] 
8kij 

= 

- (K/u) (PP)-1 [P (EL)f; 

+ (EL);; P] (PP )-1 (Kfuf, i=j 

- (K/u) (PP)-1 
{ P [(EL);;+ (EL)t] 

+[(EL);;+ (EL)t] P} (PP)-1 (Kfuf, i =I j 

= (~r [ (!~) p-lKT + KP- 1 c:;)] (by (D.11)) 

= (~r [(EL)t (PP)-1 KT 

+K (PP)-l (EL}tT] (by (D.6),(D.7)) 
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Appendix E 

Overlapping Ellipsoid Constraint 

Derivation for Variable Structure 

Control 

In Chapter 5, a sufficient condition for controlled invariance of a semi-ellipsoidal set is derived using 

state feedback control. Another option is to use a separate control law for each surface. In this 

appendix, the control is assumed to be constant (i.e., either u or y) on each state constraint surface 

forming a portion of the semi-ellipsoidal set boundary (this implies a bias in the equation defining 

8Gi, as _in Figure E.l). In a sense; this defines the limiting case by identifying the "maximum" 

region on each 8Gi for which -9i (rix) :5 O. However, invariance of the semi-ellipsoidal set is still an 

unresolved issue with this form of control. The inequality derivation is similar to that of Chapter 5, 

but involves a modified definition of the derivative of the state constraint function. 

The development of 8Gi proceeds as follows. 

where 

rix::; o 

riAx + riBu* :5 0 
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X2 8Gi 

aai 
.,.. .,.. .,.. .,.. 

.,.. .,.. .,.. 
.,.. 

.,.. .,.. 

0 X1 

.,.. .,.. .,.. 

Figure E.l: Illustration of Biased Constraint Derivative Boundary. 

wp = - (fiAl [(riA) {fiAlr1 (fiBu*) 

(riA)J_ = null {fiA} 

u* = { -Y, TiB > 0 (y < O) 

u, riB < o (u > o) 

(Note that Wiand wp are constant in P. Also, note that it is assumed riAx =I 0. The trivial case, 

riAx = 0, riB =I 0, implies that all points on 8G satisfy (E.1) for u = u*, so that no constraint on 

the region of overlap is needed. The case riAx = 0, riB = 0 implies that ri is an uncontrollable 

mode of the system, contradicting controllability assumptions.) 

In reduced dimensions, the set of points satisfying both£ and 8G is given in (E.2). 

(E.2) 

To use the previous results, this relation must be transformed to one of the form 

(E.3) 

using some linear state transformation, (E.4). 

(E.4) 
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E.1 Derivation of Linear Transformation 

For simplicity, define the following constant matrices, 

such that 

M2 = Wl PWi (M2 positive definite, symmetric) 

M1 = (Wi0) T PWi 

Mo = (WP) T PWP 

Substituting z for v in (E.2) yields (E.6). 

ZT c'[ M2C1z + ( CJ' M2C1 + M101) z 

(E.5) 

+zT ( CJ' M2C1 + M101{ + ( CJ' M2Co + M1 Co + CJ' M[ + Mo) ~ 1 (E.6) 

To obtain the desired form, (E.3), 0 0 and 0 1 must be chosen such that the coefficient of z (and 

z7) is zero. 

Cf M2C1 + M101 = O 

CfM2+M1 =0 

This choice for 0 0 reduces (E.6) to (E.8). 

(E.7) 

(E.8) 

Any number of basis sets, which define the structure of 0 1 , could be chosen for this transformation. 

For simplicity, choose the scaled identity matrix, (E.9). 

(E.9) 

These choices for 0 1 and 00 yield the desired form, (E.3), where Pl is defined as in (E.10). 

(E.10) 

and where Ii is a scalar quantity defined as follows: 

(E.11) 
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Redefining 8Gi in terms of z gives representation shown in (E.12) .. 

The set of points satisfying both (E.12) and (5.1) is found by substituting into the state constraint: 

.IJ. 

[riwi/fi (P)112] z $ 1- ri [1 - wi (Wl PWi)-1 WlP] wp 

This relation can be manipulated into the desired form, 

8Gf = {zlrfz $ 1} 

via the following definition: 

(E.13) 

where gi is a scalar quantity defined as 

(E.14) 

Finally, using the previous result, (3.11), the inequality constraint for overlap of the ellipsoid and 

state constraint, (E.15), is obtained. 

rf (Pl)-1 (rf) T $ 1 

.IJ. 

(riWi/ [f(P) 112 g(P)]) [(WlPWi)/f(P)r1 (riWi/ [f(P) 112 g(P)])T $1 

.IJ. 

[criwi) (WlPWi)-1 (riwif] / [gi (P)] 2 $ 1 

.IJ. 

[criwi) (WlPWi)-1 (riwif] / [1- riwp + riwi (WlPWi)-1 wtPwpJ2 $ 1 (E.15) 

E.2 Analytic Gradient of Constraint 

As a preliminary step to computing the gradient of the modified constraint, (E.15), the derivative 

of the function gi (P) is first presented. To avoid confusion with the parameter indexing subscripts, 
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the subscript i is dropped from the state constraint and related matrices (r, W, W0 ). 

8 [g (P)] 
8'fiiJ 

8 [(wTPw)-1] 
= rw wTpw0 

8'fiiJ 

+rw (WTPW)-1 wT 8: w 0 (by (D.8),(D.9)) 
OPiJ 

= -rw (WT PW)-1 8 (W~PW) (wT PW)-1 wT pwo 
8PiJ 

+rw (WTPW)-i. wT ::, w 0 (by (D.15)) 

= -rw (WTPW)-1 wT 8: w (WTPW)-1 wTpw0 
8pij 

+rw (WT PW)-1 wT ::, w 0 (by (D.10)) 

= rw (WT PW)-1 wT 8: [1 - w (WT PW)-1 wT P] w 0 

8PiJ 

rw (WTPw)-:1 WT [i> (EL);;+ (EL)f; i>] 
· [1 -W (WTPW)-1 WTP] W0 i = j 

= rw(wTPw)-1 wT{f>[(EL)f;+(EL)~] (by(D.19)) (E.16) 

+[(EL);;+ (EL)~] P} 
·[1-W(WTPW)-1WTP]w0 i=/:j 

The derivative of the modified state constraint is now presented, where substitution of (E.14), (D.19), 

and (E.16) should be made into (E.17) where appropriate. 

a!ij {[ (rW) (WT PW)-1 (rW) T] / [g (P)]2} 

8 [ (rW) (WT PW)-1 (rW) T] 
= [g (P)]-2 8'fiiJ 

. o{[g(P)J-2 } 

+ [(rW) (WTPW)-1 (rwf] OPij (by (D.8)) 

8 [(WT PW)-1] 

= [u (P)J-2 (rW) ~ (rwf 
OPiJ 

-2[g(P)]-3 [(rW) (WTPw)-1 (rwf] B[gf P)] {by (D.10)) 
OPiJ 

= - [g (P)]-2 {rW) [(wT PW)-1 8 (W~ PW) (WT PW)-1] (rwf 
OPiJ 

-2 [g (P)r3 [(rW) (WT PWf 1 (rwf] a [g f P)] {by {D.15)) 
8PiJ 

= - [g (P)]-2 (rW) [(wT PW)-1 wT 8: W (WT PW)-1] (rwf 
8pij 

-2[g{P)r3 [(rW) (WTPW)-1 {rwf] o[gf P)] {by {D.10)) (E.17) 
8PiJ 
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a:ij { [ (rW) (WT PWf 1 (rwf] / [g (P)J2} = 0 {E.18) 
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Appendix F 

Matlab Code for Ellipsoidal Sets 

F.1 Function Files for Computing Recoverable Ellipsoidal 
Set 

F.1.1 Optimization Routine 

function [P,Kv,U,X]=recover(A,B,GAMMA,UMAX,QO,PO,KOv); 
% 
% RECOVER finds the largest.recoverable ellipsoid for a linear system with 
% constrained states and inputs. 
% 
% Parameter definitions; 
% 
% 
7. 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

[A,B]: 
GAMMA: 
UMAX: 
QO: 
PO: 
KOv: 

P: 
Kv: 
U: 
X: 

% Usage: 

state-space description of linear system 
state constraints of the form GAMMA•x<=1 
maximum allowable control (assumed symmetric) 
specifies decay rate of the Lyapunov function 
initial guess for the ellipsoid matrix (x'Px<=1) 
initial guess for state feedback (must stabilize [A,B]) 

the optimal ellipsoid 
the corresponding state feedback gain matrix 
the maximum control effort on the boundary of P 
the final parameter search vector (elements of P, Kv) 

% [P,Kv,U,X]=recover(A,B,GAMMA,UMAX,QO,PO,KOv) finds the largest 
% recoverable ellipsoid, P ,. and corresponding state-feedback 
% matrix, Kv, for the system [A,B] and the constraints, GAMMA, 
% UMAX. Definitions of QO, PO, and KOv are optional. If not 
% provided, QO is assumed to be zero and PO is initialized using 
% an LQR-based approach. If KOv is not specified, or if the given 
% KOv does not stabilize [A,B], it is chosen (arbitrarily) using 
% the LQR technique . 

. % 
% Notice: 
% 
% This algorithm is based on the dissertation "Ellipsoidal and 
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained 
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% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999. 
% 

% Start counter for run-time 
tic 

% DEFINE SIMULATION CONSTANTS 
fig..:.handle=1; 
ON=1; 
OFF=O; 
PARTIAL=0.5; 
beta=0.95; 

[n,m]=size(B); 
pe=(n~2-n)/2+n; 
pg=n*m; 
p=pe+pg; 

PET=1; 

% Set the figure handle 

% Decrease factor for size of P; MUST BE LESS THAN 1.0 

% 'n' is number of states, 'm' is number of inputs 
% Defines number of ellipse parameters 
% Defines number of state feedback gain parameters 
% Defines the total number of parameters. 

% 'Percent Error Tolerance' for terminating searches 

plotting=PARTIAL; % Turn plotting 'on/off' 
plot_pts=150; % Number of points to use in plotting 

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions') 
max_passes=20; 
min_iters=30*p; 
max_iters=70*p; 
weight=5e1; 
pd_weight=1e3; 
options(1)=1; 

% Maximum number of search iterations per cycle (nom 70*p) 
% Weighting coefficient for constraint vector (nom 50) 
% Additional (multiplicative) weight for pos. def. const. 
% Turns off display & suppresses warnings 

. options (6)=1; 
option~(14)=max_iters; 
options(16)=1e-10; 
options(17)=1e-8; 

% Set the maximum number of iterations per pass 

% INITIALIZE SEARCH DATA VECTORS 
Fstart=[]; 
Gstart=[]; 
Fstop=[]; 
Gstop=[]; 
search_log=[]; 

% Vector of cost function values before each pass 
% Matrix of constraint function values before each pass 
% Vector of cost function values after each pass 
% Matrix of constraint function values after each pass 
% Matrix of parameter values after each pass 

% CHECK VALIDITY OF INPUT DEFINITIONS 
N=nargin; 
if N<4 

error('Not enough input arguments.') 
elseif N==4 

QO= [] ; PO=[] ; KOv= [] ; 
elseif N==5 

PO=[] ; KOv= [] ; 
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elseif N==6 
KOv=[]; 

end 

1. CHECK SIZE OF A,B 
if size (A; 1)-=size (A, 2) 

error('A is non-square.') 
elseif size(A,1)-=n 

error('A and B must have same number of rows.') 
end 

1. CHECK CONSTRAINT SPACE SIZE 
if rank(GAMMA)<n· 

error('State constraints do not form closed set.') 
end 

1. CHECK UMAX 
if min(UMAX)<=O 

error('Control constraints must be positive.') 
end 

Y. CHECK QO 
if isempty(QO) Y. Check for proper initialization 

Y. Display initialization message 
disp(' ') 
disp('Initializing QO matrix:') 
disp(' ') 
QO=zeros(size(A)) 

elseif max(max(abs(QO-QO')))>O Y. Check for symmetry 
error('QO is not symmetric.') 

elseif min(eig(QO))<O Y. Check for positive definiteness 
error('QO is not positive definite.') 

end 

1. USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS 
poles=[1:n]; Y. Define (arbitrary) positive pole locations 
kO=place(A,B,poles); Y. Compute state-feedback gain 
R=eye(m); Y. Arbitrary pos. def. weighting matrix for LQR 
[temp,p20]=lqr(A-B*k0,B,QO,R); Y. Compute stabilizing controller and ellipse 
dk=inv(R)*B'*p20; Y. Define stabilizing controller 

Y. CHECK KOv 
if isempty(KOv) Y. Initialize with LQR if KOv not given 

Y. Display initialization message 
disp(' ') 
disp('Initializing KOv matrix:') 
disp(' ') 
KOv=kO+dk/2 Y. Define marginally stabilizing controller 
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Kv=dk/4 1, Define gain such that (KOv+Kv) is stabilizing 
1, (in positive time) 

else 
if (size(KOv,1)-=m)l(size(KOv,2)-=n) 1, Check size of KOv 

error('KOv must be same size as B transpose.') 
end 
if max(real(~ig(A-B*KOv)))>O 1, Check stability of A-B*KOv 

error ( 'KOv does not stabilize A. ' ) 
end 

end 

1, CHECK PO 
if isempty(PO) 1, Check for proper initialization 

1, Display initialization message 
disp(' ') 
disp('Initializing PO matrix:') 
disp(' ') 
con=[(KOv+Kv)/UMAX;GAMMA]; 
p20=p20*max(diag((con*inv(p20)*con'))); 

1, Define matrix of all bounds 

.. PO=~eal (sqrtm (p20)) 
P20=PO'*PO 

1, Normalize ellipsoid to touch one 
1, of the bounds . 
Y,·Compute PO from p20 

elseif max(max(abs(PO-PO')))>O 1, Check for symmetry 
error('PO is not symmetric.') 

elseif min(eig(PO))<O 1, Check for positive definiteness 
error('PO is not positive definite.') 

end 

1, ASSIGN PO,KOv TO ELEMENTS OF SEARCH SPACE VECTOR 
X=pk2x(PO,Kv,n,m); 1, Parametrize search with PO, the square root of the 

1, ellipsoid matrix, to minimize search errors with 
1, positive definiteness of ellipse. (P=PO*PO) 

if plotting==ON 
1, Plot initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
ellipse(P20, [] ,plot_pts) ;gr.id on;axis square; 
title('INITIAL CONDITION') 
drawnow; 

1, Plot trajectories of initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
recover_p(X,A,B,KOv,plot_pts); 
title('TRAJECTORIES OF INITIAL CONDITION') 
drawnow; 

end 

save recover.mat X 

pvol=det(inv(P20)); 
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save recover_best.mat X pvol 

% ============================================================================ 

% OPTIMIZE SOLUTION 

options(14)=max_iters; 
pass=!; 
control_const=ON; 

% Set the maximum nwnber of iterations to max_iters 
:~ Reset the counter 

change=100; 
options(10)=max_iters; 

% Turn the control constraint 'on' 

while (pass<=max_passes)&((abs(change)>PET) l(options(10)>(0.8*options(14)))) 
% Loop until change in ellipsoid size< 2'l. 

disp(' ') 
disp(sprintf (' 

change)) 
disp(' ') 

========== OPTIMIZING: CHANGE~ %6.2f %% 

% Increase search iterations if necessary 
if round(pass/5)*5==pass 

options(14)=min([min_iters,round(options(14)/1.1)]); 
end 

% Log start-of-pass search constraint vector and cost function 
[fstart,g]=recover_fg(X,A,B,KOv,GAMMA,UMAX,QO,control_const, ... 

weight,pd_weight); 
Gstart=[Gstart g]; 
Fstart=[Fstart fstart]; 

'l. Scale ellipse dow by factor of beta to start the next pass off the 
% constraints 
X(1:pe,1)=X(1:pe,1)/sqrt(beta); 

% Perform search. 
options(9)=0FF; 
[X,options]=con.str('recover_fg' ,X,options,{], [], 'recover_dfg', ... 

A,B,KOv,GAMMA,UMAX,QO,control_const,weight,pd_weight); 

% Log end-of-pass search constraint vector and cost function 
[fstcp,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX,QO, ... 

ccntrol_const,weight,pd_weight); 
Gstop=[Gstop g]; 
Fstop=[Fstop fstop]; 

% Compute change in cost function 
change=100*(exp(fstart)-exp(fstop))/exp(fstart); 

% Log parameter space,control value, and number of iterations 
search_log= [search_log X] ; 

% Parameter Assignments 
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P=x2pk(X,n,m); 
P2=P'*P; 

Y. Plot ellipsoid in state space 
if plotting==ON 

fi-gure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
ellipse(P2,[],plot_pts);grid on;axis square; 
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change)); 
drawnow 

end 

save recover.mat XU 

if det(inv(P2))>pvol 
pvol=det(inv(P2)); 
save recover_best.mat X P2 Kv pvol 

end 

pass=pass+1; 

end 

Y. ========================================================================= 

% DISPLAY TERMINATION CRITERIA 

disp(' ') 
disp(sprintf('Search terminated on change in cost function of Y.0.4g %%.', ... 

change)) 
disp(' ') 

Y. ========================================================================= 

Y. CLOSING TASKS 

Y. Plot trajectories 
if plotting>=PARTIAL 

figure(fig_handle);clf;drawnow; 
recover_p(X,A,B,KOv,plot_pts); 
title('RECOVERABLE ELLIPSOID') 

end 

Y. Compute composite gain. 
Kv=Kv+KOv; 

Y. Define output ellipsoid matrix 
P=P2; 

Y. Compute maximum gain on ellipse, U 
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[f,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX,QO, ... 
control_const,weight,pd_weight); 

·%Cleanup hard drive 
delete recover.mat 
delete recover_best.mat 

% Terminate counter and display elapsed time 
toe 

%·------------------------- END OF FILE: RECOVER.M ------------------------
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F .1.2 Cost Function and Constraints 

function [f,g,Uv,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX,Q, ... 
control_const,weight,pd_weight); 

% RECOVER_FG is the cost functfon and constraint routine for use with RECOVER. 

% parametrizes in terms of sqrt(P) and Kv 
% modifies definition of (at end) and pos. def. inequalities 

% SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
[p]=max(size(X)); 
[c]=size(GAMMA,1); 

% PARAMETER ASSIGNMENTS 
[P,Kv]=x2pk(X,n,m); 
P2=P'•P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(det(P2)); 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; % clear array 
constraints=[];% constraints assignments (below) don't work with older Matlab 

% Invariance constraint 
Acl=A-B•(Kv+KOv); 
temp=P2•Acl+Acl'•P2+Q; % Write as negative definite form 
[v,d]=eig(temp); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; % Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Invariance'); 
end 

% Positive definiteness constraints. 
[v,d]=eig(-P2•pd_weight); % Write as negative definite form 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; % Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Positive Definiteness'); 
end 

% State constraints 
for i=1:c; 

g=[g; GAMMA(i,:)•inv(P2)•GAMMA(i,:)'-1]; 
constraints=char(constraints,['State Constraint 'num2str(i)]); 

end; 
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% Control .constraints 
if controi_const==l 

Uv=sqrt( (Kv+KOv)•inv{P2)•(Kv+KOv) '); 
g=[g; (Uv•Uv)/(UMAX•UMAX)-1]; % Normalize to 1 
constraints=char(constraints,'Control'); 

end 

% -------:-----------"'.'"--- END OF FILE.: RECOVER_FG. M ----------------------
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F.1.3 Derivatives of Cost Function and Constraints 

function [df_dX,dg_dX]=recover_dfg(X,A,B,KOv,GAMMA,UMAX,Q, •.. 
control_const,weight,pd_weight); 

% RECOVER_DFG is the derivative cost function and constraint routine 
% for use with RECOVER. 

% parametrizes in terms of sqrt(P) and Kv 
% modifies definition of (at end) and pos. def. inequalities 

% Empirical weights on constraints (experimented w/weighting pos.def. 1e3) 

% SYSTEM SIZE DEFINITJON 
[n,m] =size(B); 
p=max(size(X)); 

.c=size(GAMMA,1); 
pg=n•m; 
pe=p-pg; 

% number of state feedback gain parameters 
% number of ellipsoid parameters 

% PARAMETER ASSIGNMENTS 
[P,Kv]=x2pk(X,n,m); 
P2=P'•P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(det(P2)); 

Pi=inv(P); 

df_dP=[]; 
xindex=O; 
for i=1:n 

for j=i:n 

end 

if i==j 
df_dP=[df_dP;2•Pi(i,j)]; 

else 
df_dP=[df_dP;4•Pi(i,j)]; 

end 

end 
df_dKv=zeros(size(Kv))'; 
df_dX=[df_dP;df_dKv]; 

% ========================================================================= 

% CONSTRAINTS (Must be of form<= 0) 
g= [] ; % clear constraint array 
dg_dX=[]; % clear constraint derivative array 

% Invariance constraint 
Acl=A-B•(Kv+KOv); 
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IC=P2*Acl+Acl'*P2+Q; 
[v,d]=eig(IC); 
[Di,sort_index]=esort(diag(d)); 
Vi=v(:,sort_index); 
g=[g;Di]; Y. Write as 'less than' constraint 

dDi_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL); 
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)']; 

end 
end 
dDi_dKv=[]; 
for i=1 :m 

for j=1 :n 
EL=zeros(size(Kv)); 
EL(i,j)=1; 
dAcl_dKv_ij=-B*EL; 
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2; 
dDi_dKv=[dDi_dKv; diag(Vi'*(dIC_dKv_ij)*Vi)']; 

end 
end 

dDi_dX=[dDi_dP; dDi_dKv]; 
dg_dX=[dg_dX dDi_dX]; 

Y. Positive definiteness of P2 constraint. 
PDC=-P2*pd_weight; 
[v,d]=eig(PDC); 
[Dpd,sort_index]=esort(diag(d)); 
Vpd=v(:,sort_index); 
g=[g;Dpd]; Y. Write as 'less than' constraint 

dDpd_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dPDC_dP~ij=-1*(EL'*P+P*EL)*pd_weight; 
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)']; 

end 
end 
dDpd_dKv=zeros(pg,n); Y. 'n' eigenvalues 

dDpd_dX=[dDpd_dP;dDpd_dKv]; 
dg_dX=[dg_dX dDpd_dX]; 

Y. State constraints 
for k=1:c; 
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SC=GAMMA(k,:)*inv(P2)*GAMMA(k,:)'-1; 
g=[g;SC]; 

dSC_dP=[]; 
for i=1:n 

end 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j,i)=1; 
dSC_dP_ij=GAMMA(k,:)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*GAMMA(k,:)'; 
dSC_dP=[dSC_dP; dSC_dP_ij]; 

end 

dSC_dKv=zeros(pg,1); 
dSC_dX=[dSC_dP;dSC_dKv]; 
dg_dX=[dg_dX dSC_dX]; 

end; 

Y. Control constraints 
if control_const==1 

CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1; 
g=[g;CC]; 

end 

dCC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j,i)=1; 
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2)) ... 

end 

*(Kv+KOv)'); 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
dCC_dKv=[]; 
for i=1:m 

end 

for j=1:n 

end 

EL=zeros(size(Kv)); 
EL(i,j)=1; 
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)'); 
dCC_dKv=[dCC_dKv; dCC_dKv_ij]; 

dCC_dX=[dCC_dP; dCC_dKv]; 
dg_dX=[dg_dX dCC_dX]; 

Y, ~---------------------- END OF FILE: RECOVER_DFG.M ----------------------
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. F.1.4 Plotting Routine 

fun.ction [U,P,Kv]=recover_p(X,A,B,KOv,plot_pts); 
Y. RECOVER_P is the trajectory plotting routine for use with RECOVER 

Y. Plotting options 
N=5; Y. plot trajectory from every Nth data point on ellipsoid 

if nargin<4 
error('Not enough input arguments.') 

end 

% Message to screen 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Plotting recovering trajectories') 
disp.('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

Y. Parameter Assignments (extract P,K's from X) 
[n,m]=size(B); 
[P,Kv]=x2pk(X,n,m); 
P2=P'•P; 

.Kv=Kv+KOv; Y. Construct composite gain 

if n==2 % 2-D ELLIPSOID 
Y. Compute ellipsoid boundary 
[x1,x2]=ellipse(P2,[],plot_pts); 

Y. Compute corresponding control effort 
ue=Kv•[x1;x2]; 

Y. Compute maximum control effort on boundary 
U=ma.x(ue); -

Y. Plot boundary vs. control 
plot(x1,x2,'k');grid on;axis square;hold on 

% Compute reaching and recovering state-space descriptions 
syse=ss(A-B•Kv,B,eye(n),zeros(n,m)); 

% Plot trajectories for every Nth point on the ellipsoid boundary 
for i=1:N:max(size(x1)); 

[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]); 
plot(x(:,1),x(:,2),'r') 

end 

xlabel('x1'),ylabel('x2'),zlabel('u') 
elseif n==3 Y, 3-D ELLIPSOID 

% Compute ellipsoid boundary 
[x1,x2,x3]=ellipse(P2,[],plot_pts); 
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Y. Compute corresponding control effort 
for i=1:size(x1,1) · 

for j~1:size(x1,2) 
ue(i,j)=Kv•[x1(i,j);x2(i,j);x3(i,j)]; 

end 
end 

Y. Compute maximum control effort on boundary 
U=max(max(abs(ue))); 

Y. Plot boundary vs. control 
surf(x1,x2,x3,ue/U);grid on;axis square;hold on 

Y. Compute reaching and recovering state~space descriptions 
syse=ss(A-B•Kv,B,eye(n),zeros(n,m)); 

Y. Plot trajectories for every Nth point on the ellipsoid boundary 
hold on 
for i=1:N~2:size(x1,1); 

for j=1:r2:size(x1,2) 
[y,t,x]=initial(syse, [x1(i,j) ,x2(i,j) ,x3(i,j)J, [O: .01: 10]); 
plot3(x(:,1),x(:,2),x(:,3},'r') 

end 
end 
drawnow 
grid on 
colormap('copper') 
lighting phong 
light('Position',[1 -1 5]) 
h=findobj('Type','surface'); 
set(h,'FaceLighting','phong', ... 

'FaceColor','interp', ... 
'EdgeColor',[.4 .4 .4], .•. 
'BackFaceLighting','reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel( 'x1 ') ,ylabel ( 'x2') ,zlabel( 'x3') 

end 

Y, ----------------------- END OF FILE: RECOVER_P.M ----------------------
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F .2 Function Files for Computing Reachable Ellipsoidal Set 

F .2.1 Optimization Routine 

function [P, Ke, U, X] =reach (A, B, GAMMA, UMAX, Q.O, PO, KOe) ; 
% 
% REACH finds the largest reachable ellipsoid for a linear system with 
% constrained states and input. 
% 
% Parameter definitions: 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

[A,B]: 
GAMMA: 
UMAX: 
QO: 
PO: 
KOe: 

P: 
Ke: 
U: 
X: 

% Usage: 
% 

state-space description of linear system 
state constraints of the form GAMMA*x<=1 
maximum allowable control (assumed symmetric) 
specifies decay rate of the Lyapunov function 
initial guess for the ellipsoid matrix (x'Px<=1) 
initial guess for state feedback (must stabilize [-A,-B]) 

the optimal ellipsoid 
the corresponding state feedback gain matrix 
the maximum control effort on the boundary of P 
the final parameter search vector (elements of P, Ke) 

% [P,Ke,U,X]=reach(A,B,GAMMA,UMAX,QO,PO,KOe) finds the largest 
. % reachable ellipsoid, P, and corresponding. state-feedback 
% matrix, Ke, for the system [A,B] and the constraints, GAMMA, 
% UMAX. Definitions of QO, PO, and KOe are optional. If not 
% provided, QO is assumed to be zero and PO is initialized using 
% an LQR-based approach. If KOe is not specified, or if the given 
% KOe does not stabilize [A,B], it is chosen (arbitrarily) using 
% the LQR technique. 
% 
% Notice:· 
% 
% This algorithm is based on the dissertation "Ellipsoidal and 
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained 
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999. 
% 

% Start counter for run-time 
tic 

% DEFINE SIMULATION CONSTANTS 
fig_handle=1; 
ON=1; 
OFF=O; 
PARTIAL=0.5; 
beta=0.95; 

[n,m]=size(B); 
pe=(nA2-n)/2+n; 
pg=n*m; 

% Set the figure handle 

% Decrease factor for size of P; MUST BE LESS THAN 1.0 

% 'n' is number of states, 'm' is number of inputs 
% Defines number of ellipse parameters 
% Defines number of state feedback gain parameters 
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p=pe+pg; Y. Defines the total number of parameters. 

PET=l; Y. 'Percent Error Tolerance' for terminating searches 

plotting=PARTIAL; Y. Turn plotting 'on'/'off' 
plot_pts=150; Y. Number of points to use in plotting 

Y. DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions') 
max_passes=20; 

Y. Maximum number of search iterations per cycle (nom 70•p) 
Y. Weighting coefficient for constraint vector (nom 50) 

min_iters=30•p; 
max_iters=70•p; 
weight=5e1; 
pd_weight=1e3; 
options(1)=1; 
options(6)=1; 
options(14)=max_iters; 
options(16)=1e-10;. 
options(17)=1e-8; 

Y. Additionai (multiplicative) weight for pos. def. const. 
Y. Turns off display & suppresses warnings 

Y. Set the maximum number of iterations per pass 

Y. INITIALIZE SEARCH DATA VECTORS 
Fst~=[]; Y. Vector of cost function values before each pass 
Gstart=[]; Y. Matrix of constraint function values before each pass 
Fstop=[]; Y. Vector of cost function values after each pass 
Gstop= [] ; Y. Matrix of constraint function values after each pass 
search_log=[]; Y. Matrix of parameter values after each pass 

Y. CHECK VALIDITY OF INPUT DEFINITIONS 
N=nargin; 
if N<4 

error('Not enough input arguments.') 
elseif .. N==4 . 

QO= [] ; PO= [] ; KOe= [] ; 
elseif N==5 

PO= [] ; KOe= [] ; 
elseif N==6 

KOe=[]; 
end 

Y. CHECK SIZE.OF A,B 
if size(A,1)-=size(A,2) 

error('A is non-square.') 
elseif size(A,1)-=n 

error('A and B must have same number of rows.') 
end 

Y. CHECK CONSTRAIN'],' SPACE SIZE 
if rank(GAMMA)<n 

error('State constraints do not form closed set.') 
end 
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% CHECK UMAX 
if min(UMAX)<=O 

error( 'Control constraints must be positive.') 
end 

% CHECK QO 
if isempty(QO) % Check for proper initialization 

% Display initialization message 
disp(' ') 
disp('Initializing QO matrix:') 
disp(' ') · 
QO=zeros(size(A)) 

elseif max(max(abs(QO-QO')))>O % Check for symmetry 
error('QO is not symmetric.') 

elseif min(eig(QO))<O % Check for positive definiteness 
error('QO is not positive definite.') 

end 

% USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS 
poles=[1:n]; % Define (arbitrary) positive pole locations 
kO=place(A,B,poles); % Compute state-feedback gain 
R=eye(m); % Arbitrary pos. def. weighting matrix for LQR 
[temp,p20]=lqr(A-B*k0,B,QO,R); % Compute stabilizing controller and ellipse 
dk=inv(R)*B'*p20; % Define stabilizing controller 

% CHECK KOe 
if isempty(KOe) % 

% Display initialization message 
disp(' ') 
disp('Initializing KOe matrix:') 

Initialize with LQR if KOe not given 

disp(' ') 
KOe=kO+dk/2 
Ke=-dk/4 

% Define marginally stabilizing controller 
% Define gain such that (KOe+Ke) is stabilizing 

% (in positive time) 
else 

if (size(KOe,1)-=m)l(size(KOe,2)-=n) % Check size of KOe 
error('KOe must be same size as B transpose.') 

end 
if max(real(eig(A-B*KOe)))>O % Check stability of A-B*KOe 

error('KOe does not stabilize A.') 
end 

end 

% CHECK PO 
if isempty(PO) % Check for proper initialization 

% Display initialization message 
disp(' ') 
disp('Initializing PO matrix:') 
disp(' ') 
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con=[(KOe+Ke)/UMAX;GAMMA]; 
p20=p20*max(diag((con*inv(p20)*con'))); 

PO=real(sqrtm(p20)) 
P20=PO'*PO 

% Define matrix of all bounds 
% Normalize ellipsoid to touch one 
% of the bounds. 
% Compute PO from p20 

elseif max(max(abs(PO-PO')))>O % Check for symmetry 
error('PO is not symmetric.') 

elseif min(eig(PO))<O % Check for positive definiteness 
error('PO is not positive definite.') 

end 

% ASSIGN PO,KOe TO ELEMENTS OF SEARCH SPACE VECTOR 
X=pk2x(PO,Ke,n,m); % Parametrize search with PO, the square root of the 

% ellipsoid matrix, to minimize search errors with 
% positive definiteness of ellipse. (P=PO*PO) 

if plotting==ON 
% Plot initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
ellipse(P20,[] ,plot~pts);grid on;axis square; 
title ('INITIAL CONDITION') 
drawnow; 

% Plot trajectories of initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
reach~p(X,A,B,KOe,plot_pts); 
title('TRAJECTORIES OF INITIAL CONDITION') 
drawnow; 

end 

save reach.mat X 

pvol=det(inv(P20)); 

save reach_best.mat X pvol 

% ============================================================================ 

% OPTIMIZE SOLUTION 

options(14)=max_iters; % Set the maximum number of iterations to max_iters 
pass=1; % Reset the counter 
control_const=ON; % Turn the control constraint 'on' 

change=100; 
options(10)=max_iters; 
while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(0.8*options(14)))) 

% Loop until change in ellipsoid size< 2% 

disp(' ') 
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disp(sprintf(' 
change)) 

disp(' ') 

OPTIMIZING: CHANGE= %6.2f %% 

% Increase search iterations if necessary 
if round(pass/5)*5==pass 

options(14)=min([min_iters,round(options(14)/1.1)]); 
end 

% Log start-of-pass search constraint vector and cost function 
[fstart,g]=reach_fg(X,A,B,KOe,GAMMA,UMAX,QO,control_const, ... 

weight,pd_weight); 
Gstart=[Gstart g]; 
Fstart=[Fstart fstart]; 

% Scale ellipse dow by factor of beta to start the next pass off the 
% constraints 
X(1:pe,1)=X(1:pe,1)/sqrt(beta); 

% Perform search. 
options(9)=0FF; 
[X,options]=constr('reach_fg',X,options,[],[J,'reach_dfg', ... 

A,B,KOe,GAMMA,UMAX,QO,control_const,weight,pd_weight); 

% Log end-of-pass search constraint vector and cost function 
[fstop,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,QO, ... 

control_const,weight,pd_weight); 
Gstop=[Gstop g]; 
Fstop=[Fstop fstop]; 

% Compute change in cost function 
change=100*(exp(fstart)-exp(fstop))/exp(fstart); 

% Log parameter space,control value, and number of iterations 
search_log=[search_log X]; 

% Parameter Assignments 
P=x2pk(X,n,m); 
P2=P'*P; 

% Plot ellipsoid in state space 
if plotting==ON 

figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
ellipse(P2,[],plot_pts);grid on;axis square; 
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change)); 
drawnow 

end 

save reach.mat XU 

if det(inv(P2))>pvol 
pvol=det(inv(P2)); 
save reach_best.mat X P2 Ke pvol 
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end 

pass=pass+1; 

end 

% ================================· ·==========-============================= 

% DISPLAY TERMINATION CRITERIA 

disp(' ') 
disp(sprintf('Search terminated on change in cost function of %0.4g %%.', ... 

change)) 
disp(' ') 

% ========================================================================= 

% CLOSING TASKS 

% Plot trajectories 
if plotting>=PARTIAL · 

figure(fig_handle);clf;drawnow; 
reach_p(X,A,B,KOe,plot_pts); 
title('REACHABLE ELLIPSOID') 

end 

% Compute composite gain. 
Ke=Ke+KOe; 

% Define output ellipsoid matrix 
P=P2; 

% Compute maximum gain on ellipse, U 
[f,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,QO, ... 

control_const,weight,pd_weight); 

% Clean up hard drive 
delete reach.mat 
delete reach_best.mat 

% Terminate counter and display elapsed·time 
toe 

% ========================= END OF FILE: REACH.M ------------------------
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F .2.2 Cost Function and Constraints 

function [f,g,Ue,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,Q, ... 
control_const,weight,pd_weight); 

Y. REACH_FG is the cost function and constraint routine for use with REACH. 

Y. parametrizes in terms of sqrt(P) and Ke 
Y. modifies definition of (at end) and pos. def. inequalities 

% SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
[p]=max(size(X)); 
[c]=size(GAMMA,1); 

% PARAMETER ASSIGNMENTS 
[P,Ke]=x2pk(X,n,m); 
P2=P'*P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(det(P2)); 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; Y. clear array 
constraints=[]; Y. constraints assignments (below) don't work with older Matlab 

Y. Invariance constraint 
Acl=A-B*(Ke+KOe); 
temp=P2*(-Acl)+(-Acl)'*P2+Q; Y. Write as negative definite form 
[v,d]=eig(temp); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; Y. Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Invariance'); 
end 

Y. Positive definiteness constraints. 
[v,d]=eig(-P2*pd_weight); Y. Write as negative definite form 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; Y. Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Positive Definiteness'); 
end 

Y. State constraints 
for i=1:c; 

g=[g; GAMMA(i,:)*inv(P2)*GAMMA(i,:)'-1]; 
constraints=char(constraints,['State Constraint' num2str(i)]); 

end; 
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Y. Control constraints 
if control_const==1 

Ue=sqrt ((Ke+KOe) *inv(P2) * (Ke+KOe) ') .; 
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; Y. Normalize to 1 
constraints=char(constraints,'Control'); 

end 

Y. ----------------------- END OF FILE: REACH_FG.M ----------------------
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F .2.3 Derivatives of Cost Function and Constraints 

function [df_dX,dg_dX]=reach_dfg(X,A,B,KOe,GAMMA,UMAX,Q, ... 
control_const,weight,pd_weight); 

% REACH_DFG is the derivative cost function and constraint routine 
% for use with REACH. 

% 1) parametrizes in terms of sqrt(P) and Ke 
% 2) optional weights on constraints 

% SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
p=max(size(X)); 
c=size(GAMMA,1); 
pg=n*m; 
pe=p-pg; 

% number of state feedback gain parameters 
% number of ellipsoid parameters 

% PARAMETER ASSIGNMENTS 
[P,Ke]=x2pk(X,n,m); 
P2=P'*P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(det(P2)); 

Pi=inv(P); 

df_dP= []; 
xindex=O; 
for i=1:n 

for j=i:n 

end 

if i==j 
df_dP=[df_dP;2*Pi(i,j)]; 

else 
df_dP=[df_dP;4*Pi(i,j)]; 

end 

end 
df_dKe=zeros(size(Ke))'; 
df_dX=[df_dP;df_dKe]; 

% ========================================================================= 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; % clear constraint array 
dg_dX=[]; % clear constraint derivative array 

% Invariance constraint 
Acl=A-B*(Ke+KOe); 
IC=P2*(-Acl)+(-Acl)'*P2+Q; 
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[v ,ci]=eig(IC); 
[Di,sort_index]=esort(diag(d)); 
Vi=v(: ,sort_index); 
·g=[g;Di]; % Write as 'less than' constraint 

dDi_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dIC_dP_ij=(EL'*P+P*EL)*(-Acl)+(-Acl)'*(EL'*P+P*EL); 
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)']; 

end 
end 
dDi_dKe=[]; 
for i=1:m 

for j=1:n ·· 
EL=zeros(size(Ke)); 
EL(i,j)=1; 
dAcl_dKe_ij=-B*EL; 
dIC_dKe_ij=P2*(-dAcl_dKe_ij)+(-dAcl_dKe_ij)'*P2; 
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)']; 

end 
end 

dDi_dX=[dDi_dP; dDi_dKe]; 
dg_dX=[dg_dX dDi_dX]; 

% Positive definiteness of P2 constraint. 
PDC=-P2*pd_weight; 
[v,d]=eig(PDC); 
[Dpd,sort_index]=esort(diag(d)); 
Vpd=v{:,sort_index); 
g=[g;Dpd]; % Write as 'less than' constraint 

dDpd_dP=O; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i ,j )=1 ;EL(j ,i)=1; 
dPDC_dP_ij=-1*(EL'*P+P*EL)*pd_weight; 
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)']; 

end 
end 
dDpd_dKe=zeros(pg,n); % 'n' eigenvalues 

dDpd_dX=[dDpd_dP;dDpd_dKe]; 
dg_dX=[dg_dX dDpd_dX]; 

% State constraints 
for k=1:c; 

SC=GAMMA(k,:)*inv(P2)*GAMMA(k,:)'-1; 

149 



g=[g;SCJ; 

dSC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P)); 
EL (i, j)=1; EL(j, i):,;,1; 
dSC_dP_ij=GAMMA(k,:)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*GAMMA(k,:)'; 
dSC_dP=[dSC_dP; dSC_dP_ij]; 

end 
end 
dSC_dKe=zeros(pg,1); 
dSC_dX=[dSC_dP;dSC_dKe]; 
dg_dX=[dg_dX dSC_dX]; 

end; 

Y. Control·constraints 
if control_const==1 

CC=(1/UMAX~2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1; 
g=[g;CC]; 

dCC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j ,i)=1; 
dCC_dP_ij=(1/UMAX~2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2)) ... 

*(Ke+KOe)'); 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
end 
dCC_dKe=(]; 
for i=1:m 

for j=1:n 
EL=zeros(size(Ke)); 
EL(i,j)=1; . 
dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)'); 

. dCC_dKe=[dCC_dKe; dCC_dKe_ij]; 
end 

end 
dCC_dX=[dCC_dP; dCC_dKe]; 
dg_dX= [dg_dX dCC_dXJ; 

end 

Y, ----------------------- END OF FILE: REACH_DFG.M -----------------~---
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F .2.4 Plotting Routine 

function [U,P,Kv]=reach_p(X,A,B,KOv,plot_pts); 
% REACH~P is the trajectory plotting routine for use with REACH 

% Plotting options 
N=5; % plot trajectory from every Nth data point on ellipsoid 

if nargin<4 
error('Not enough input arguments.') 

end 

% Message to screen 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Plotting reaching trajectories') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') · 

% Parameter Assignments (extract P,K's from X) 
[n,m]=size(B); 
[P,Kv]=x2pk(X,n,m); 
P2=P'•P; 

Kv=Kv+KOv; % Construct composite gain 

if n==2 % 2-D ELLIPSOID 
. % Compute ellipsoid boundary 

[x1,x2]=ellipse(P2, 0 ,plot_pts); 

% Compute corresponding control effort 
ue=Kv•[x1;x2]; 

% Compute maximum control effort on boundary 
U=max(ue); 

% Plot boundary vs. control 
plot(x1,x2,'k');grid on;axis square;hold on 

% Compute reaching and reaching state-space descriptions 
syse=ss(-(A-B•Kv),B,eye(n),zeros(n,m)); 

% Plot trajectories for every Nth point on the ellipsoid boundary 
for i=1:N:max(size(x1)); 

[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]); 
plot(x(: ,1) ,x(: ,2), 'b') 

end 

xlabel('x1'),ylabel('x2'),zlabel('u') 
elseif n==3 % 3-D ELLIPSOID 

% Compute ellipsoid boundary 
[x1,x2,x3]=ellipse(P2,[],plot_pts); 
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% Compute corresponding control effort 
for i=1:size(x1,1) 

for j=1:size(x1,2) 
ue(i,j)=Kv•[x1(i,j);x2(i,j);x3(i,j)]; 

end 
· end 

% Compute maximum control effort on boundary 
U=max(max(abs(ue))); 

% Plot boundary vs. control 
surf(x1,x2,x3,ue/U);grid on;axis square;hold on 

% Compute reaching and reaching ·state-space descriptions 
syse=ss(-(A-B•Kv),B,eye(n),zeros(n,m)); 

% Plot trajectories for every Nth point on the ellipsoid boundary 
hold on 
for i=1:N-2:size(x1,1); 

for j=1:N-2:size(x1,2) 
[y,t,x]=initial(syse,[:x:1(i,j) ,x2(i,j) ,x3(i,j)], [0: .01:10]); 
plot3(x(:,1),x(:,2),x(:,3),'b') 

end 
end 
drawnow 
grid on 
colormap ( 'copper') 
lighting phong 
light('Position',[1 -1 5]) 
h=findobj ('Type', 'surface'); 
set(h,'FaceLighting','phong', ... 

'Fa.ceColor' , 'interp' ; .. . 
'EdgeColor', [.4 .4 .4], .. . 
'BackFaceLighting','reverselit', •.. 
'AmbientStrength',1, ... 
'DiffuseStrength' , 1) ; 

shad,ing interp 
xlabel( 'x1') ,ylabel( 'x2') ,zlabel( 'x3') 

end 

% ------~-~------~----- END OF FILE: REACH_P.M ----------------------
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F .3 Function Files for Computing Controllable Ellipsoidal 
Set 

F.3.1 Optimization Routine 

function [P,Kv,Ke,U,X]=control(A,B,GAMMA,UMAX,QO,PO,KOv,KOe); 
Y. 
Y. CONTROL finds the largest controllable ellipsoid for a linear system with 
Y. constrained states and input. 
Y. 
Y. Parameter definitions: 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 
Y. 

[A,B] : 
GAMMA: 
UMAX: 
QO: 
P9: 
KOv: 
KOe: 

P: 
Kv: 
Ke: 
U: 
X: 

Y. Usage: 

state-space description of linear system 
state constraints of the form GAMMA*x<=1 
maximum allowable control (assumed symmetric) 
specifies decay rate of the Lyapunov function· 
initial guess for the ellipsoid matrix (x'Px<=1) 
initial guess for recovering state feedback matrix 
initial ·guess for reaching state feedback matrix 

the optimal ellipsoid 
the corresponding recovering state feedback matrix 
the corresponding reaching state feedback matrix 
the maximum control effort on the boundary of P 
the final parameter .search vector (elements of P, K) 

Y, [P ,Kv ,Ke·, U ,X] =control(A,B,GAMMA,UMAX,QO,PO ,KOv ,KOe) finds the 
Y. largest ellipsoid, P, which is both reachable and recoverable, 
Y. · and corresponding state-feedback matrices, Ke, Kv, for the 
Y. system [A,B] and the constraints, GAMMA, UMAX. Definitions of 
Y. QO, PO, and KO's are optional. If not provided, QO is assumed 
Y. to be zero and PO is initialized using an LQR-based approach. 
Y. If KOe is not specified, or if the given KOe does not stabilize 
Y. [-A,-B], it is chosen (arbitrarily) using the LQR technique. 
Y. Similarly, if KOv is not specified, or if the given KOv does 
Y. not stabilize [A,B], it is chosen (arbitrarily) using the LQR 
Y. technique. 
Y. 
Y. Notice: 
Y. 
Y. This algorithm is based on the dissertation "Ellipsoidal and 
Y. Semi-Ellipsoidal Controlled Invariant Sets for Constrained 
Y. Linear Systems" by Brian O'Dell, Oklahoma State University, 1999. 
Y. 

Y. Start counter for run-time 
tic 

.Y. DEFINE SIMULATION CONSTANTS 
fig_handle=1; 
ON=1; 
OFF=O; 

Y. Set the figure handle 
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PARTIAL=0.5; 
beta=0.95; % Decrease factor for size of P; MUST BE LESS THAN 1.0 

[n,m] =size (B); 
pe=(n~2-n)/2+n; 
pg=n*ill; 
p=pe+pg; 

% 'n' is number of states, 'm 1 is number of inputs 
% Defines number of ellipse parameters 
% Defines number of state feedback gain parameters 
% Defines the total number of parameters. 

PET=1; 
flag=1; 

% 'Percent Error Tolerance' for terminating searches 
% Defines as controllable ellipsoid 

plotting=PARTIAL; % Turn plotting 'on 1 /'off' 
plot_pts=150; % Number of points to use in plotting 

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions') 
max_passes=20; 

% Maximum number of search iterations per cycle (nom 70*p) 
% Weighting coefficient for constraint vector (nom 50) 

'min_iters=50*p; 
max_iters=70*p; 
weight=5e1; 
pd_weight=1e3; 
options(1)=1; 
options(6)=1; 
options(14)=max_iters; 
options(16)=1e-10; 
options(17)=1e-8; 

% Additional (multiplicative) weight for pos. def. const. 
% Turns off display & suppresses warnings 

% Set the maximum number of iterations per pass 

% INITIALIZE SEARCH DATA VECTORS 
Fstart=[]; % Vector of cost function values before each pass 
Gstart=[]; % Matrix of constraint function values before each pass 
Fstop=[]; % Vector of cost function values after each pass 
Gstop=[]; % Matrix of constraint function values after each pass 
search_log=[]; %_Matrix of parameter values after each pass 

% CHECK VALIDITY OF INPUT DEFINITIONS 
N=nargin; 
if N<4 

error('Not enough input arguments.') 
elseif N==4 

QO= [] ; PO= [] ; KOv= [] ; KOe= [] ; 
elseif N==5 

PO= [] ; KOv= [] ; KOe= [] ; 
elseif N==6 

KOv= [] ; KOe= [] ; 
elseif N==7 

KOe=[]; 
end 

% CHECK SIZE OF A,B 
if size(A,1)-=size(A,2) 

error('A is non-square.') 
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elseif size(A,1)-=n 
error('A and B must have same number of rows.') 

end 

% CHECK CONSTRAINT SPACE SIZE 
if rank(GAMMA)<n 

· error('State constraints do not form closed set.') 
end 

% CHECK UMAX 
if min(UMAX)<=O 

error('Control constraints must be positive.') 
end 

% CHECK QO 
if isempty(QO) % Check for proper initialization 

% Display initialization message 
disp(' ') 
disp('Initializing QO matrix:') 
disp(' ') 
QO=zeros(size(A)) 

elseif max(max(abs(QO-QO')))>O % Check for symmetry 
error ( 'QO is not symmetric. ') 

elseif min(eig(QO))<O % Check for positive definiteness 
error ( 'QO is not positive definite. ' ) 

end 

% USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS 
poles=[1:n]; % Define (arbitrary) positive pole locations 
kO=pla~e(A,B,poles); % Compute state-feedback gain 
R=eye(m); % Arbitrary pos. def. weighting matrix for LQR 
[temp,p20]=lqr(A-B*k0,B,QO,R); % Compute stabilizing controller and ellipse 
dk=inv(R)*B'*p20; % Define stabilizing controller 

% CHECK KOv 
if isempty(KOv) % 

% Display initialization message 
disp(' ') 
disp('Initializing KOv matrix:') 

Initialize with LQR if KOv not given 

disp(' ') 
KOv=kO+dk/2 
Kv=dk/4 

% Define marginally stabilizing controller 

else 

% Define gain such that (KOv+Kv) is stabilizing 
% (in positive time) 

if (size(KOv,1)-=m)l(size(KOv,2)-=n) % Check size of KOv 
error('KOv must be same size as B transpose.') 

end 
if max(real(eig(A-B*KOv)))>O % Check stability of A-B*KOv 

error('KOv does not stabilize A.') 
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end 
end 

- % CHECK KOe 
if isempty(KOe) % Initialize with LQR if KOv not given 

% Display initialization message 
disp(' ') 
disp('Initializing KOe matrix:') 
disp(' ') 
KOe=kO+dk/2 
Ke=-dk/4 

% Define marginally stabilizing controller 
% Define gain such that (KOe+Ke) is stabilizing 
% (in negative time) 

else 
if (size(KOe,1)-=m) l(size(KOe,2)-=n) % Check size of KOe 

error('KOe must be same size as B transpose.') 
end 
if max(real(eig((-A)-(-B)•KOe)))>O % Check stability of A-B•KOe 

error('KOe does not stabilize A.') 
end 

end 

% CHECK PO 
if isempty(PO) % Check for proper initialization 

% Display initialization message 
disp(' ') 
disp('Initializing PO matrix:') 
disp(' ') 
con=[(KOv+Kv)/UMAX;(KOe+Ke)/UMAX;GAMMAl; 
p20=p20•max(diag((con•inv(p20)•con'))); 

PO=real(sqrtm(p20)) 
P20=PO'•PO 

% Define matrix of all bounds 
% Normalize ellipsoid to touch one 
% of the bounds. 
% Compute PO from p20 

elseif max(max(abs(PO-PO')))>O % Check for symmetry 
error('PO is not symmetric.') 

elseif min(eig(PO))<O % Check for positive definiteness 
error('PO is not positive definite.') 

end 

% ASSIGN INITIAL CONDITIONS TO ELEMENTS OF SEARCH SPACE VECTOR 
X=pk2x(PO,Kv,Ke,n,m); % Parametrize search with PO, the square root of the 

% ellipsoid matrix, to minimize search errors with 
% positive definiteness of ellipse. 

if plotting==ON 
% Plot initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
ellipse(P20,[],plot_pts);grid on;axis square; 
title('INITIAL CONDITION') 
drawnow; 
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Y. Plot trajectories of initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
control_p(X,A,B,KOv,KOe,plot_pts); 
title('TRAJECTORIES OF INITIAL CONDITION') 
drawnow; 

end 

save control.mat X 

pvol=det(inv(P20)); 

save control_best.mat X pvol 

Y. ======== -================================================================== 

Y. OPTIMIZE SOLUTION 

options(14)=max_iters; Y. Set the.maximum number of iterations to max_iters 
pass=1; Y. Reset the counter 
control_const=ON; Y. Turn the control constraint 'on' 

change=100; 
options(10)=max_iters; 
while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(0.8•options(14)))) 

· Y. Loop until change in ellipsoid size< 2Y. 

disp(' ') 
disp(sprintf(' 

change)) 
disp(' ') 

========~= OPTIMIZING: CHANGE= Y.6.2f Y.Y. 

Y. Increase search iterations if necessary 
if round(pass/5)•5==pass 

options(14)=min([min_iters,round(options(14)/1.1)]); 
end 

==========' 

Y. Log start-of-pass search constraint vector and cost function 
[fsta.rt,g]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO,control_const, ... 

weight,pd_weight); 
Gstart=[Gstart g]; 
Fstart=[Fstart fstart]; 

Y. Scale ellipse dow by factor of beta to start the next pass off the 
Y. constraints 
X(1:pe,1)=X(1:pe,1)/sqrt(beta); 

Y. Perform search. 
options(9)=0FF; 
[X,options] =constr( 'control_fg' ,X,options, [], [], 'control_dfg', ... 

A,B,KOv,KOe,GAMMA,UMAX,QO,control_const,weight,pd_weight); 

Y. Log end-of-pass search constraint vector and cost function 
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[fstop,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO, ... 
control_const,weight,pd_weight); 

Gstop=[Gstop g]; 
Fstop=[Fstop fstop]; 

Y. Compute change in cost function 
change=100*(exp(fstart)-exp(fstop))/exp(fstart); 

Y. Log parameter space,control value, and nllll).ber of iterations 
search_log=[search~log X]; 

Y. Parameter Assignments 
[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P*P; 

Y. Plot ellipsoid in state space 
if plotting==ON 

figure(fig_handle);clf;drawnow; 
fig_handle=fig_handle+1; 
ellipse(P2,[],plot_pts);grid on;axis square; 
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change)); 
drawnow 

end 

save control.mat XU 

if det(inv(P2))>pvol 
pvol=det(inv(P2)); 
save control_best.mat X P2 Ke pvol 

end 

pass=pass+1; 

end 

Y. ================-~======================================================= 

% DISPLAY TERMINATION CRITERIA 

disp(' ') 
disp(sprintf('Search terminated on change in cost function of Y.0.4g %%.', ... 

change)) 
disp(' ') 

Y. ========================================================================= 

Y. CLOSING TASKS 

Y. Plot trajectories 
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if plotting>=PARTIAL 
figure(fig_handle);clf;drawnow; 
control_p(X,A,B,KOv,KOe,plot:_pts); 

end 

Y. Compute composite gain. 
Kir,;Kv+KOv; 
Ke=Ke+KOe; 

% Define output ellipsoid matrix 
P=P2; 

Y. Compute maximum gain on ellipse, U 
[f,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO, ... 

control_const,weight,pd_weight); 

Y. Clean up hard drive 
delete control.mat 
delete control_best.mat 

Y. Terminate counter and display elapsed time 
toe 

Y. ------------------------- END OF FILE: CONTROL.M ------------------------
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F .3.2 Cost Function and Constraints 

function [f , g, Uc, constraints] =control_;:f g (X ,A, B, KOv, KOe, GAMMA, UMAX, Q, ... 
. control_ const 'weight~ pd_ weight) ; . . 
Y. CONTROL_FG is the cost function and constraint routine for use with CONTROL. 

Y. parametrizes in terms of sqrt(P) and Kv, Ke 
J. modifies definition of (at end) and pos. def. inequalities 

% SYSTEM .SIZE DEF.INITION 
[n,m]=size(B); 
[p]=max(size(X)); 
[c]=size(GAMMA,1); 

.flag=1; 

% PARAMETER ASSIGNMENTS 
[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P•P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(det(P2)); 

% CONSTRAINTS (Must be of form<= 0) 
g= [] ; Y. clear array 
constraints=[]; Y. constraints assignments (below) don't work with older Matlab 

Y. Invariance constraint 
Acl=A-B•(Kv+KOv); 
temp=P2•Acl+Acl'•P2+Q; Y. Write as negative definite form 
[v,d]=eig(temp); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; Y. Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Invariance'); 
end 

Acl=A-B•(Ke+KOe); 
temp=P2•(-Acl)+(-Acl)'•P2+Q; Y. Write as negative definite form 
[v,d]=eig(temp); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; Y. Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Invariance'); 
end 

Y. Positive definiteness constraints. 
[v,d]=eig(-P2•pd_weight); Y. Write as negative definite form 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 

160 



. g=[g;D]; 
for i=1:n 

Y. Write as 'less than' constraint 

· constraints=char(constraints,'Positive Definiteness'); 
end 

Y. State constraints 
for i=1:c; 

g=[g; GAMMA(i,:)•inv(P2)•GAMMA(i,:)'-1]; 
constraints=char(constraints,['State Constraint 'num2str(i)]); 

end; 

Y. Control constraints 
if control_const==1 

Uv=sqrt((Kv+KOv)•inv(P2)•(Kv+KOv)'); 
g=[g; (Uv•Uv)/(UMAX•UMAX)-1]; Y. Normalize to 1 
constraints=char(constraints,'Control'); 
Ue=sqrt ((Ke+KOe) •inv(P2) * (Ke+KOe) ') ; 
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; Y. Normalize to 1 
constraints=char(constraints,'Control'); 

end 

Uc=max(Uv,Ue); 

Y, -~--------------------- END OF FILE: CONTROL_FG.M ----------------------
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F .3.3 Derivatives of Cost Function and Constraints 

function [df_dX,dg_dX]=control_dfg(X,A,B,KOv,KOe,GAMMA,UMAX,Q, ... 
control_const,weight,pd_weight); 

% CONTROL_DFG is the derivative cost function and constraint routine 
% for use with CONTROL. 

%. 1) parametrizes in terms of sqrt(P) and Ke 
% 2) optional weights on constraints 

% SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
p=max(size(X)); 
c=size(GAMMA,1); 
pg=n*m; % number of state feedback gain parameters 
pe=p-pg; % number of ellipsoid parameters 
flag=1; 

% PARAMETER ASSIGNMENTS 
[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P*P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(det(P2)); 

Pi=inv(P); 

df_dP=[J; 
xindex=O; 
for i=1:n 

.end 

for j=i:n 
if i==j 

df_dP=[df_dP;2*Pi(i,j)]; 
else 

df_dP=[df_dP;4*Pi(i,j)]; 
end 

end 

df_dKv=zeros(size(Kv))'; 
df_dKe=zeros(size(Ke))'; 
df_dX=[df_dP;df_dKv;df_dKe]; 

% ======================================================================== 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; % clear constraint array 
dg_dX=[J; % clear constraint derivative array 

% Invariance constraint (recoverable/positive time) 
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Acl=A-B*(Kv+KOv); 
IC=P2*Acl+Acl'*P2+Q; 
[v,d]=eig(IC); 
[Di, sort_index] =esort (diag(d) ).; 
Vi=v(:,sort_index); 
g=[g;Di]; % Write as 'less than' constraint 

dDi_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL); 
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)']; 

end 
end 
dDi_dKv=[]; 
for i=1:m 

for j=1:n 
EL=zeros(size(Kv)); 
EL(i,j)=1; 
dAcl_dKv_ij=-B*EL; 
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2; 
dDi"'"dKv=[dDi_dKv; diag(Vi'*(dIC_dKv_ij)*Vi)']; 

end 
end 
dDi_dKe=zeros(pg,n); % 'n' eigenvalues 

dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe]; 
dg_dX=[dg_dX dDi_dX]; 

% Invariance constraint (reachability/negative time) 
Acl=A-B*(Ke+KOe); 
IC=P2*(-Acl)+(-Acl)'*P2+Q; 
[v,d]=eig(IC); 
[Di,sort_index]=esort(diag(d)); 
Vi=v(:,sort_index); 
g=[g;Di]; % Write as 'less than' constraint 

dDi_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dIC_dP_ij=(EL'*P+P*EL)*(-Acl)+(-Acl)'*(EL'*P+P*EL); 
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)']; 

end 
end 
dDi_dKv=zeros(pg,n); 
dDi_dKe= [] ; 
for i=1:m 

for j=1:n 
EL=zeros(size(Ke)); 
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EL(i,j)=1; 
dAcl_dKe_ij=-B*EL; 
dIC_dKe_ij=P2*(-dAcl_dKe_ij)+(-dAcl_dKe_ij)'*P2; 
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)']; 

end 
end 
dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe]; 
dg_dX=[dg_dX dDi_dX]; 

% Positive definiteness of P constraints. 
PDC=-P2*pd_weight; 
[v,d]=eig(PDC); 
[Dpd,sort_index]=esort(diag(d)); 
Vpd=v(:,sort_index); 
g=[g;Dpd]; % Write as 'less than' constraint 

dDpd_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j ,i)=1; 
dPDC_dP_ij=-1*(EL'*P+P*EL)*pd_weight; 
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)']; 

end 
end 
dDpd_dKv=zeros(pg,n); % 'n' eigenvalues 
dDpd_dKe=zeros(pg,n); 

dDpd_dX=[dDpd_dP;dDpd_dKv;dDpd_dKe]; 
dg_dX=[dg_dX dDpd_dX]; 

% State constraints 
for k=1:c 

· SC=GAMMA(k,: )*inv(P2)*GAMMA(k,:) '-1; 
g=[g;SC]; 

dSC..:dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j,i)=1; 

. dSC_dP_ij=GAMMA(k,:)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*GAMMA(k,:)'; 
dSC_dP=[dSC_dP; dSC_dP_ij]; 

end 
end 
dSC_dKv=zeros.(pg, 1); 
dSC_dKe=zeros(pg,1); 
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKe]; 
dg_dX=[dg_dX dSC_dX]; 

end 
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% Control constraints 
if control_const==l 

% Recoverable control 
CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1; 
g=[g;CC]; 

dCC_dP=[]; 
for i=l:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ... 

(Kv+KOv)'); 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
end 
dCC_dKv= [] ; 
for i=l:m 

for j=l:n 
EL=zeros(size(Kv)); 
EL(i,j)=l; 
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)'); 
dCC_dKv=[dCC_dKv; dCC_dKv_ij]; 

end 
end 
dCC_dKe=zeros(pg,1); 
dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe]; 
dg_dX=[dg_dX dCC_dX]; 

% Reachable control 
CC=(1/UMAX-2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1; 
g=[g;CC]; 

dCC_dP=[]; 
for i=l:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dCC_dP_ij=(1/UMAX-2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ... 

(Ke+KOe)'); 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
end 
dCC_dKv=zeros(pg,1); 
dCC_dKe= [] ; 
for i=l :m 

for j=l:n 
EL=zeros(size(Ke)); 
EL(i,j)=l; 
dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)'); 
dCC_dKe=[dCC_dKe; dCC_dKe_ij]; 

end 
end 
dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe]; 
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dg_dX=[dg_dX dCC_dX]; 
end 

Y. ----------------------- END OF FILE: CONTROL_DFG.M ----------------------
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F .3.4 Plotting Routine 

function [U,P,Kv,Ke]=control_p(X,A,B,KOv,KOe,plot_pts); 
% CONTROL_P is the trajectory plotting routine for use with CONTROL 

% Plotting options 
N=S; % plot trajectory from every Nth data point on ellipsoid 
flag=1; 

if nargin<4 
error('Not enough input arguments.') 

end 

% Message to screen 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp ('Plotting trajectories') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

% Parameter Assignments (extract P,K's from X) 
[n,m]=size(B); 
p=max(size(X));. 

[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P*P; 

Kv=Kv+KOv; 
Ke=Ke+KOe; 

% Define composite gains 

if n==2 % 2-D ELLIPSOID 
% Compute ellipsoid boundary 
[x1,x2]=ellipse(P2,[],plot_pts); 

% Compute corresponding control effort 
ue=Kv*[x1;x2]; 

% Compute maximum control effort on boundary 
U=max(ue); 

% Plot boundary vs. control 
plot(x1,x2,'k');grid on;axis square;hold on 

% Compute reaching and recovering state-space descriptions 
sysv=ss(A-B*Kv,B,eye(n),zeros(n,m)); 
syse=ss(-A+B*Ke,B,eye(n),zeros(n,m)); 

% Plot trajectories for every Nth point on the ellipsoid boundary 
for i=1:ceil(sqrt(N)):max(size(x1)); 

[y,t,x]=initial(sysv,[x1(i),x2(i)],[O: .01:10]); 
plot(x(:,1),x(:,2),'r') 
[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]); 
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plot (x(:, 1) ,x(: ,2), 'b') 
end 

xlabel( 'x1') ,ylabel ( 'x2') 
elseif n==3 % 3-D ELLIPSOID 

% Compute ellipsoid boundary 
[x1,x2,x3]=ellipse(P2,[],plot_pts); 

% Compute corresponding control effort 
for i=1:size(x1,1) 

for j=1:size(x1,2) 
uv(i,j)=Kv*[x1(i,j);x2(i,j);x3(i,j)]; 
ue(i,j)~Ke*[x1(i,j);x2(i,j);x3(i,j)]; 

end 
end 

% Compute maximum control effort on boundary 
U=max(max( [abs (uv) ;abs (ue)])); 

% Plot boundary vs. control 
subplot(121) 
surf(x1,x2,x3,uv/U);grid on;axis square;hold on 
subplot(122) 
surf(x1,x2,x3,ue/U);grid on;axis square;hold on 

% Compute reaching and recovering state-space descriptions 
sysv=ss(A-B*Kv,B,eye(n),zeros(n,m)); 
syse=ss(-A+B*Ke,B,eye(n),zeros(n,m)); 

% Plot trajectories for every Nth point on the ellipsoid boundary 
subplot(121) 
hold on 
for i=1:N-2:size(x1,1); 

for j=1:N-2:size(x1,2) 
[y,t,x]=initial(sysv,[x1(i,j),x2(i,j),x3(i,j)],[0:.01:10]); 
plot3(x(:, 1) ,x(: ,2) ,x(: ,3), 'r') 

end 
end 
drawnow 
grid on 
colormap('copper') 
lighting phong 
light('Position', [1 -1 5]) 
h=findobj('Type','surface'); 
set(h,'FaceLighting','phong', ... 

'FaceColor','interp', .. . 
'EdgeColor',[.4 .4 .4], .. . 
'BackFaceLighting','reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 
title('Recovering Trajectories') 

168 



subplot(122) 
hold on 
for i=1:r2:size(x1,1); 

for j=1:N~2:size(x1,2) 
[y,t,x]=initial(syse, [xl(i,j) ;x2(i,j) ,x3(i,j)], [O: .01: 10]); 
plot3(x(: ,1) ,x(: ,2) ,x(: ,3), 'b') 

end 
end 
drawnow 
grid on 
colormap('copper') 
lighting phong 
light ('Position' , [1 -1 5]) 

· h=:findobj ('Type', 'surface'); 
set(h,'FaceLighting','phong', ... 

· 'FaceColor','interp', .. . 
'EdgeColor', [.4 .4 .. 4], .. . 
'BackFaceLighting', 'reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 
title( 'Reaching Trajectories') 

end 

Y, =====================END OF FILE: CONTROL_P.M ----------------------
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F .4 Miscellaneous Files 

F .4.1 Plotting Point Generator for Ellipsoidal Set 

function [xx,yy,zz] = ellipse(P,XO,n,linetype) 
Y. ELLIPSE Generates plottil!.g points for 2-D/3-D ellipsoid. 
Y. [X,Y,Z] = ELLIPSE(P,XO,n) generates the unit ellipsoid 

% (x-XO)'*P*(x-X0)=1 
Y. 
Y. For P matrix (3x3), ELLIPSE generates three (n+1)x(n+1) 

. Y. matr.ices so that SURF(X, Y ,Z) produces the 3-D ellipsoid, 
. Y. For P matrix (2x2)., ELLIPSE generates two (n+1)x(1) 

Y. vectors so that PLOT(X,Y) produces the 2-D ellipsoid. 

Y. The arguments XO and n are optional. Default values are 
Y. the origi~ for XO and 40 points.for n. 
Y. 
Y. ELLIPSE(P,XO,n) without any return variables graphs the 
% ellipse using SURFACE/PLOT. 

Y. Original code: SPHERE.M 
Y. Clay M. Thompson 4-24-91, CBM 8-21-92. 
Y. Copyright (c) 1984-98 by The MathWorks, Inc. 
Y. $Revision: 5.3 $ $Date: 1997/11/21 23:46:48 $ 
Y. 
% Modified code: ELLIPSE.M 
% Brian D. O'Dell 11-19-98 

if nargin == 0, error('Must define ellipsoid matrix, P.'); end 

% CHECK VALIDITY OF P 
if size(P,1)-=size(P,2) 

error('P must be square.') 
end 
if min(eig(P))<=O 

error('P must be positive definite.') 
end 

% COMPUTE NUMJ:!ER OF STATES 
states=size(P, 1); · 
if (states-=2)&(states-=3) 

error('P must be a 2x2 or 3x3 matrix.') 
end 

% CHECK FOR OPTIONAL ARGUMENTS 
if nargin==1 

XO=[]; 
n=40; 

elseif nargin==2 
n=40; 

end 

% SET XO TO ORIGIN IF NOT OTHERWISE DEFINED 
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if isempty(XO) 
XO=zeros(states,1); 

end 

if states==2 % 2-D.ELLIPSE 
% -pi<= theta<= pi is a row vector 

theta= (-n:2:n)/n*pi; 

sintheta = sin(theta); sintheta(1) = O; sintheta(n+1) = O; 

xO = cos(theta); 
yo= sintheta; 

for i=1: (n+1) 
temp=[xO(i);yO(i)]; 
alpha=sqrt(temp'*P*temp); 
x(i)=xO(i)/alpha+X0(1); 
y(i)=yO(i)/alpha+X0(2); 

end 

if nargout == 0 
plot(x,y) 
xlabel('x1'),ylabel('x2') 

else 
xx= x; yy = y; 

end 

else% 3-D ELLIPSE 

% Define points for a unit circle 

% Loop through the data points 
% Create a vector for the data point 
% Compute the scaling factor for unit ellipse 
% Scale the data points 

% If plotting, display full ellipse; for trajectories, generate quadrant 
if nargout==O 

% -pi<= theta<= pi is a row vector. 
% -pi/2 <=phi<= pi/2 is a column vector. 

theta= (-n:2:n)/n*pi; 
phi= (-n:2:n)'/n*pi/2; 
cosphi = cos(phi); cosphi(1) = O; cosphi(n+1) = O; 
sintheta = sin(theta); sintheta(1) = O; sintheta(n+1) = O; 

else 
% -pi/2 <=theta<= pi/2 is a row vector. 
% -pi/2 <=phi<= 0 is a column vector. 

theta= (-n:2:n)/n*pi/2; 
phi= (-2*n:2:0)'/(2*n)*pi/2; 
cosphi = cos(phi); 
sintheta = sin(theta); 

end 

xO = cosphi*cos(theta); 
yO cosphi*sintheta; 

% Define points for a unit sphere 

zO = sin(phi)*ones(1,n+1); 

for i=1:max(size(theta)) 
for j=1:max(size(phi)) 

% Loop through the data points 
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end 

end 
end 

temp=[xO(i,j) ;yO(i,j) ;zO(i,j)]; 
alpha=sqrt(temp'*P*temp); 
x(i ,j )=xO(i ,j) /alpha+X0(1); 
y(i,j)=yO(i,j)/alpha+X0(2); 
z(i,j)=zO(i,j)/alpha+X0(3); 

% Create a.vector for the data 
% Scaling factor for unit ellipse 
% Scale data points 

if nargout == 0 % Plot if no output 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Plotting ellipse') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

surf(x,y,z) 
grid on 
colormap('copper') 
lighting phong 
light('Position',[1 -1 5]) 
h=findobj('Type','surface'); 
set(h,'FaceLighting','phong', ... 

'FaceColor','interp', .. . 
'EdgeColor',[.4 .4 .4], .. . 
'BackFaceLighting' ,'reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 

else 
xx= x; yy = y; zz = z; 

end 

% ------------------------ END OF FILE: ELLIPSE.M -----------------------
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F .4.2 Search Parameter /Matrix Parameter Mapping Routines 

Ellipsoid Matrix and Control Gains to Search Vector 

· function [X]=pk2x(Pi,K1,K2,n,m) 
% PK2X assigns elements of the ellipse matrix's inverse, Pi, and the 
% state-feedback matrix, K, to elements of the search vector, X. 

if nargin==4 
m=n; 
n=K2; 

X=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
xindex=xindex+1; 
X(xindex,1)=Pi(i,j); 

end 
end 
for i=1:m 

end 

for j=1 :n 
xindex=xindex+1; 
X(xindex,1)=K1(i,j); 

end 

elseif nargin==5 
X=[]; 
xindex=O; 

end 

for i=1:n 
for j=i:n 

xindex=xindex+1; 
X(xindex,1)=Pi(i,j); 

end 
end 
for i=1:m 

end 

for j=1:n 
xindex=xindex+1; 
X(xindex,1)=K1(i,j); 

end 

for i=1 :m 

end 

for j=1:n 
xindex=xindex+1; 
X(xindex,1)=K2(i,j); 

end 

% -------------------------- END OF FILE: PK2X.M -------------------------

Search Vector to Ellipsoid Matrix and Control Gains 

function [Pi,K1,K2]=x2pk(X,n,m,flag) 
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Y. X2PK assigns elements of the search vector, X, to elements of the ellipse 
Y. matrix's inverse, Pi, and to the state-feedback gain, K. 

if nargin==3 
flag=O; 

end 

Pi=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
xindex=xindex+1; 
Pi(i,j)=X(xindex,1); 
Pi(j,i)=X(xindex,1); 

end 
end 
Kl=[]; 
for i=l:m 

forj=1:n 
xindex=xindex+1; 
K1(i,j)=X(xindex,1); 

end 
end 
if flag==1 

K2=[]; 
for i=1:m 

for j=1:n 
xindex=xindex+1; 
K2(i,j)=X(xindex,1); 

end 
end 

else 
K2=[]; 

end 

Y. -------------------------- END OF FILE: X2PK.M ---------------~--------
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Appendix G 

Matlab . Code for Semi-Ellipsoidal 
Sets 

G.1 Function Files for Computing Recoverable 
Semi-Ellipsoidal Set 

G.1.1 Optimization Routine 

function [P,Kv,U,X,Fstop,Gstop]=recover(A,B,GAMMA,UMAX,QO,PO,KOv); 
% 
% RECOVER finds the largest recoverable set for a linear system with 
% constrained states and inputs, where the subset is constructed from 
% the intersection of the state constraints and the computed ellipsoid. 
% 
% Parameter definitions: 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

[A,B]: 
GAMMA: 
UMAX: 
QO: 
PO: 
KOv: 

P: 
Kv: 
U: 
X: 

% Usage: 
% 

state-space description of linear system 
state constraints of the form GAMMA•x<=1 
maximum allowable control (assumed symmetric) 
specifies decay rate of the Lyapunov function 
initial guess for the ellipsoid matrix (x'Px<=1) 
initial guess for state feedback (must stabilize [A,B]) 

the optimal ellipsoid 
the corresponding state feedback gain matrix 
the maximum control effort (via state feedback) in subset 
the final parameter search vector (elements of P, Kv) 

% [P,Kv,U,X]=recover(A,B,GAMMA,UMAX,QO,PO,KOv) finds the largest 
% recoverable ellipsoid, P·, and corresponding state...;.feedback 
% matrix, Kv, for the system [A,B] and the constraints, GAMMA, 
% UMAX. Definitions of QO, PO, and KOv are optional. If not 
% provided, QO is assumed to be zero and PO is initialized using 
% an LQR algorithm. If KOv is not specified, or if the given 
% KOv do.es not stabilize [A,B], it is chosen (arbitrarily) using 
Y. the LQR technique. 
% 
% Notice: 
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% 
% This algorithm is based on the dissertation "Ellipsoidal and 
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained 
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999. 
% 

% Start counter for run-time 
tic 

%DEFINE SIMULATION CONSTANTS 
fig:..handle=1; 
ON=1; 
PARTIAL=0.5; 
OFF=O; 

% Set the figure handle 
% Switch ON 
% Switch HALF-ON 
% Switch OFF 

beta=0.95; % Decrease factor for size of P; MUST BE LESS THAN 1.0 
tol=1e-5; % Error tolerance for terminating search 
gradient_tol=1e-2; Y. Minimum gradient for maximal control search 
PET=1; · Y. 'Percent Error Tolerance' for terminating searches 

Y, DEFINE GENERAL PARAMETERS 
plotting=PARTIAL; 
plot_pts=150; 
grad_check=OFF; 
search_output=ON; 

Y. Turn plotting 'on/off'; PARTIAL plots only final result 
Y. Number of points to use in plotting 
Y. Checks analytical gradients against numerical estimates 
Y. Displays intermediate search results 

Y, DEFINE MATRIX DIMENTIONING CONSTANTS 
[n,m]=size(B); 
c=size(GAMMA,1); 
pe=(n-2-n)/2+n; 
pg=ll*m; 
p=pe+pg; 

Y. 'n' is number of states, 'm' is number of inputs 
Y. Defines the number of state constraints 
Y. Defines number of ellipse parameters 
Y. Defines number of state feedback gain parameters 
Y. Defines the total number of parameters. 

Y, DEFI~E SEARCH PARAMETERS (for search OPTIONS, type 'help foptions') 
max_passes=20; Y. Maximum number of search cycles 
min_iters=40*p; Y. Minimum number of search iterations per cycle 
max_iters=40*p; Y. Maximum number of search iterations per cycle 
weight=1e0; Y. Weighting coefficient for constraint vector 
pd_weight=1e0; Y. Additional (multiplicative) weight for pos. def. const. 
inv_weight=1e0; Y. Additional (multiplicative) weight for invariance const. 
options(1)=0N; Y. Displays intermediate search results 
options(14)=max_iters; Y. Set the maximum number of iterations per pass 

Y, INITIALIZE SEARCH DATA VECTORS 
Fstart=[]; Y. Vector of cost function values before each pass 
Gstart=[]; Y. Matrix of constraint function.values before each pass 
Fstop=[]; Y. Vector of cost function values after each pass 
Gstop=[J; Y. Matrix of constraint function values after each pass 
search_log=[]; Y. Matrix of parameter values after each pass 

Y, CHECK VALIDITY OF INPUT DEFINITIONS 
N=nargin; 
if N<4 · 

176 



error('Not enough input arguments.') 
elseif N==4 

QO= [] ; PO= [] ; KOv= [] ; 
elseif N==5 

. PO=[] ;KOv=[]; 
elseif N==6 

KOv=[]; 
end 

% CHECK SIZE OF A,B 
if size(A,1)-=size(A,2) 

error('A is non-square.') 
elseif size(A,1)-=n 

error('A and B must have same number of rows.') 
end 

% CHECK CONSTRAINT SPACE SIZE 
if size(GAMMA,2)-=n 

error('GAMMA defined with different number of states than A.') 
end 

% CHECK UMAX 
if min(UMAX)<=O 

error('Control constraints must be positive.') 
end 

% CHECK QO 
if isempty{QO) % Check for proper initialization 

% Display initialization message 
disp(' ') 
disp ('Initializing QO matrix: ' ) 
disp(' ') 
QO=zeros(size(A)) 

elseif max(max(abs{QO-QO')))>O % Check for symmetry 
error{'QO is not symmetric.') 

elseif min(eig{QO))<O % Check for positive definiteness 
error{'QO is not positive definite;') . 

end 

% USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS 
poles=[1:n]; % Define (arbitrary) positive pole locations 
kO=place(A,B,poles); % Compute state-feedback gain 
R=eye(m); % Arbitrary pos. def. weighting matrix for LQR 
[temp,p20]=lqr(A-B•kO,B,QO,R); % Compute stabilizing controller and ellipse 
dk=inv(R)•B'•p20; % Define stabilizing controller 

% CHECK KOv 
if isempty(KOv) % Initialize with LQR if KOv not given 
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% Display initialization message 
disp(' ') 
disp('Initializing KOv matrix:') 
disp(' ') 
KOv=kO+dk/2 
Kv=dk/4 

% Define marginally stabilizing controller 
% Define gain such that (KOv+Kv) is stabilizing 
% (in positive time) 

else 
if (size(KOv,1)-=m) l(size(KOv,2)-=n) % Check size of KOv 

error('KOv must be same size as B transpose.') 
end 
if max(real(eig(A-B*KOv)))>O % Check stability of A-B*KOv 

error('KOv does not stabilize A.') 
end 

end 

% CHECK PO 
if isempty(PO) % Check for proper initialization 

% Display initialization message 
disp(' ') 
disp('Initializing PO matrix:') 
disp(' ') 
PO=real(sqrtm(p20)) % Compute PO from p20 
P20=PO'*PO 

elseif max(max(abs(PO-PO')))>O % Check for symmetry 
error('PO is not symmetric.') 

elseif min(eig(PO))<O % Check for positive definiteness 
error('PO is not positive definite.') 

end 

% ASSIGN PO,KOv TO ELEMENTS OF SEARCH SPACE VECTOR 
X=pk2x(PO,Kv,n,m); % Parametrize search with PO, the square root of the 

% ellipsoid matrix, to minimize search errors with 
% positive definiteness of ellipse. (P=PO*PO) 

if plotting==ON 
% Plot .initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
ellipse(P20,[],plot_pts);grid on;axis square; 
title('INITIAL CONDI1ION') 
drawnow; 
fig_handle=fig_handle+1; 

% Plot trajectories of initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
recover_p(X,A,B,KOv); 

end 

title('TRAJECTORIES OF INITIAL CONDITION') 
drawnow; 
fig_handle=fig_handle+1; 

pvol=det(inv(P20)); 
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save recover_best.mat X 

% ============================================================================ 

% OPTIMIZE SOLUTION 

% Initialize maximum observed control to zero U=O; 
UMAX_hat=UMAX; 
control_iters=O; 

% Initialize pseudo-maximum control to true maximum 
% Initialize counter for control iteration passes 

while (U<beta*UMAX)l(U>(UMAX+tol)) % Loop while observed control outside tol. 

disp(' ') 
disp(sprintf(' ---------- SEARCHING: UMAX_hat 

UMAX_hat)) 
disp(' ') 

%6.2f ' ... 

options(14)=max_iters; % Set the maximum number of iterations to max_iters 
pass=1; % Reset the counter 
control_const=ON; % Turn the control constraint 'on' 

change=100; % Initialize change in ellipsoid size to 100% 
options(10)=max_iters; % Initialize number of passes to maximum allowable 

while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(beta*options(14)))) 
% Loop until change in ellipsoid size< 2% 

disp(' ') 
disp(sprintf(' ·---------- OPTIMIZING: CHANGE= Y.6.2f %% ========== 

change)) 
disp(' ') 

% Log start-of-pass search constraint vector and cost function 
[fstart,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX_hat,QO, ... 

control_const,weight,pd_weight,inv_weight); 
Gstart=[Gstart g]; 
Fstart=[Fstart fstart]; 
Pstart=x2pk(X,n,m); 
P2start=Pstart'*Pstart; 

' ... 

% Scale ellipse down by factor of beta to start the next pass off the 
% constraints 
X(1:pe,1)=X(1:pe,1)/sqrt(beta); 

% Perform search. 
options(9)=0FF; 
[X,options]=constr('recover_fg',X,options,[],[],'recover_dfg', ... 

A,B,KOv,GAMMA,UMAX_hat,QO, ... 
control_const,weight,pd_weight,inv_weight); 

% Log end-of-pass search constraint vector and cost function 
[fstop,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX_hat,QO, ... 
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control_const,weight,pd_weight,inv_weight); 
Gstop= [Gstop g] ; 

···. Fstop= [Fstop fstop] ; 

% Parameter Assignments 
Pstop=x2pk(X,n,m); 
P2stop=Pstop'*Pstop; 

% Compute change in cost function 
change=100*(trace(P2start)-trace(P2stop))/trace(P2start); 

% Log parameter space 
search_log~[search_log X]; 

% Parameter Assignments 
[P,Kv]=x2pk(X,n,m); 
P2=P'*P; 

% Plot ellipsoid in state space 
if plotting==ON 

figure(fig_handle);hold off;clf;drawnow; 
ellipse(P2,[],plot_pts);grid on;axis square;hold on 
title(sprintf( 'OPTIMIZING: CHANGE = %1.4g' ,change)); 
drawnow 
fig_handle=fig_handle+1; 

end 

save recover.mat XU 

% Check for improvement 
if det(inv(P2))>pvol 

pvol=det(inv(P2)); 
save recover_best.mat X P2 Kv pvol 

end 

pass=pass+1; 

end 

% DISPLAY TERMINATION CRITERIA 

disp(' ') 
disp(sprintf('Search terminated on change in cost function of %0.4g %%.', ... 

change)) 
disp(' ') 

% SEARCH FOR MAXIMUM OBSERVED CONTROL ON RESTRICTED STATE-SPACE 
disp(' ') 
disp(sprintf(' ====== SEARCHING FOR MAXIMUM OBSERVED CONTROL======')) 
disp(' ') 
if control_iters==O 

% Find point which maximizes control on restricted state-space 
umax_options(1)=-1; % Don't display intermediate results 
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· xO=rand(n,1); Y. Generate random initial condition for search 
xO=constr( 'recover_u_:fg' ,xO, umax_options, [], [], 'recover_u_dfg' ,KOv, ... 

,GAMMA,X,n,m); 

Y. Compute maximum control effort 
[fumax,gumax,U]=recover_u_fg(xO,KOv,GAMMA,X,n,m); 

Y. Display maximal control on restricted region 
u 

Y. Store previous search results 
U_old=U; 
UMAX_hat_old=UMAX_hat; 

Y. Compute a new estimate for the UMAX_hat that will achieve U=UMAX. 
UMAX_hat=UMAX_hat*(beta-(sign(U-UMAX))); 

if (U>=beta*UMAX)&(U<=(UMAX+tol)) 
Y. 
disp(' ') 
disp(cat(2,'Search terminated: Maximum observed 

'within tolerance of UMAX.')) 
disp(' ') 

end 
else 

control', ... 

Y. Use previous search result for initial condition 
xO=constr('recover_u_fg',xO,umax_options,[],[],'recover_u_dfg', ... 

KOv,GAMMA,X,n,m); 

Y. Compute maximum control effort 
[fumax,gumax,U]=recover_u_fg(xO,KOv,GAMMA,X,n,m); 

Y. Display maximal control on restricted region 
u 

Y. Estimate new value of UMAX_hat using secant search 
gradient=(U_old-U)/(UMAX_hat_old-UMAX_hat); 
UMAX_hat_tmp=UMAX_hat-(U-UMAX)/gradient; 

Y. Store previous search results 
U_old=U; 
UMAX_hat_old=UMAX_hat; 

UMAX_hat=UMAX_hat_tmp; 

Y. .Check to see if improvement feasible 
if (U>=beta*UMAX)&(U<=(UMAX+tol)) 

Y. 
disp(' ') 
disp ( [' Search terminated: Maximum observed control ' , ... 

'within tolerance of UMAX.']) 
disp(' ') 

elseif gradient<gradient_tol 
disp(' ') 
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disp(['Search terminated: No increase expected in maximum', •.. 
'observed control.']) 

disp.(' ') 

% Redefine U to artificially terminate loop 
U=UMAX; 

end 

end 

% Advance counter 
control_iters=control_iters+1; 

end 

% ========================================================================= 

% CLOSING TASKS 

% Plot final result 
if plotting>=PARTIAL 

disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Computing plot points.') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

figure(fig_handle);clf;drawnow; 
if n==2 

recover_p(X,A,B,KOv,GAMMA,plot_pts); 
elseif n==3 

subplot (121) 
semiellipse(P2,GAMMA,[],plot_pts),hold on 
subplot(122) 
recover_p(X,A,B,KOv,GAMMA,plot_pts); 

end 
fig_handle=fig_handle+1; 

end 

% Compute composite gain. 
Kv=Kv+KOv; 

% Define output ellipsoid matrix 
P=P2; 

% Compute maximum gain on ellipse, U 
[f,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX_hat,QO, ... 

control_const,weight,pd_weight,inv_weight); 
Gstop=[Gstop g]; 
Fstop=[Fstop f]; 
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% Clean up hard drive 
delete recover.mat 
delete :recoirer_best.mat 

% Terminate collil.ter and display elapsed time 
toe 

% ------------------------- END OF FILE: RECOVER.M ---------------~-------
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G.1.2 Cost Function and Constraints 

function [f,g,Uv,constraints]=recover,..fg(X,A,B,KOv,GAMMA,UMAX,Q, ... 
control_const,w:eight,pd_weight,inv_weight); 

% RECOVER_FG is the cost function and constraint routine for use with RECOVER. 

Y. parametrizes in·terms of sqrt(P) and Kv 

Y, SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
[p]=max(size(X)); 
[c]=size(GAMMA,1); 

Y. PARAMETER ASSIGNMENTS 
[P,Kv]=x2pk(X,n,m); 
P2=P'.*P; 

Y, OBJECTIVE FUNCTION (Minimization) 
f=log(trace(P2)); 

Y, CONSTRAINTS (Must be of form<= 0) 
g= [] ; Y. clear array 
constraints=[]; Y. constraints assignments (below) don't work with older Matlab 

Y. Invariance constraint 
Acl=A-B•(Kv+KOv); 
IC=P2•Acl+Acl'•P2+Q; Y. Write as negative definite form 
[v,d]=eig(IC); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D•inv_weight]; Y. Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Invariance'); 
end 

Y. Positive definiteness constraints. 
[v,d]=eig(-P2•pd_weight); Y. Write as negative definite form 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g= [g; D] ; Y. Write as 'less than' constraint 
for i=1:n 

constraints=char(constraints,'Positive Definiteness'); 
end 

Y. State constraints (See dissertation for details) 
for i=1:c; 

Gamma=GAMMA(i,:); 
w=null(Gamma•(A-B•(Kv+KOv))); 

184 



if size(w,2)==n Yo Gamma*(A-B*(Kv+KOv)) is zero; entire state-space valid 
g=[g;O]; 

Gamma=GAMMA(i,:),A,B,Kv,KOv,Gamma*(A-B*(Kv+KOv)) 
w=null(Gamma*(A-B*(Kv+KOv))) 
pause 

else 
g=[g; (Gamma*w)*inv(w'*P2*w)*(Gamma*w)'-1]; 

end 

constraints=char(constraints,['State Constraint ' num2str(i)]); 
end; 

% Control constraints 
if control_const==1 

Uv=sqrt((Kv+KOv)*inv(P2)*(Kv+KOv)'); 
g=[g; (Uv*Uv)/(UMAX*UMAX)-1]; % Normalize to 1 
constraints=char(constraints,'Control'); 

end 

% ----------------------- END OF FILE: REACH_FG.M -----------------------
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G.L3 Derivatives of Cost Function and Constraints 

function [df_dX,dg_dX]=recover_dfg(X,A,B,KOv,GAMMA,UMAX,Q, ... 
control_const,weight,pd_weight,inv_weight); 

Y. RECOVER_DFG is the derivative cost function and constraint routine 
Y. for use with RECOVER. 

Y. parametrizes in terms of sqrt(P) and Kv 

Y. SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
p=max(size(X)); 
c=size(GAMMA,1); 
pg=n*m; 
pe=p-pg; 

Y. number of state feedback gain parameters 
Y. number of ellipsoid parameters 

Y. PARAMETER ASSIGNMENTS 
[P,Kv]=x2pk(X,n,m); 
P2=P'*P; 

Y. OBJECTIVE FUNCTION (Minimization) 
f=log(trace(P2)); 

df_dP=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
if i==j 

df_dP=[df_dP;2*P(i,j)/trace(P2)]; 
else 

df_dP=[df_dP;4*P(i,j)/trace(P2)]; 
end 

end 
end 
df_dKv=zeros(size(Kv))'; 
df_dKe=zeros(size(Ke))'; 
df_dX=[df_dP;df._dKv;df_dKe]; 

Y. ========================================================================= 

(Must be of form<= 0) Y. CONSTRAINTS 
g=[]; 
dg_d:X=[]; 

Y. clear constraint array 
Y. clear constraint derivative array 

Y. Invariance constraint 
Acl=A-B*(Kv+KOv); 
IC=P2*Acl+Acl'*P2+Q; 
[v,d]=eig(IC); 
[Di,sort_index]=esort(diag(d)); 
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Vi=v(:,sort_index); 
g=[g;Di]; Y. Write as 'less than' constraint 

dDi..,dP=[]; 
for i=l:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=l;EL(j ,i}=l; 
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL); 
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)']; 

end 
end 
dDi_dKv= [] ; 
for i=l:m 

for j=l:n 
EL=zeros(size(Kv)); 
EL(i,j)=l; 
dAcLdKv_ij=-B*EL; 
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2; 
dDi_dKv=[dDi_dKv; diag(Vi'*(dIC_dKv_ij)*Vi)']; 

end 
end 

dDi_dX= [dDi,_dP; dDi_dKv] *inv _weight; 
dg_dX=[dg_dX dDi_dX]; 

Y. Positive definiteness of P constraints. 
PDC=-P2*pd_weight; 
[v,d]=eig(PDC); 
[Dpd,sort_index]=esort(diag(d)); 
Vpd=v(:,sort_index); 
g=[g;Dpd]; Y. Write as 'less than' constraint 

dDpd_dP= [] ; 
for i=l:n 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j,i)=1; 
dPDC_dP_ij=-l*(EL'*P+P*EL)*pd_weight; 
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)']; 

end 
end 
dDpd_dKv=zeros(pg,n); Y. 'n' eigenvalues 

dDpd_dX=[dDpd_dP;dDpd_dKv]; 
dg_dX=[dg_dX dDpd_dX]; 

Y. State constraints 
for k=l:c; 

Gamma=GAMMA(k,:); 
w=null(Gamma*(A-B*(Kv+KOv))); 
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end 

if size(w,2)==n Y. Gamma*(A-B*(Kv+KOv)) is zero; entire state-space valid 
SC=O; 

g=[g;SC]; 

dSC_dP=zeros(pe,1); 
dSC_dKv=zeros(pg,1); 
dSC_dX=[dSC_dP;dSC_dKv]; 
dg_dX=[dg_dX dSC_dX]; 

else 
SC=(Gamma*w)*inv(w'*P2*w)*(Gamma*w)'-1; 

end 

g=[g;SC]; 

dSC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 

dinv_dP_ij=-inv(w'*P2*w)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w); 
dSC_dP_ij=(Gamma*w)*dinv_dP_ij*(Gamma*w)'; 

dSC_dP=[dSC_dP; dSC_dP_ij]; 
end 

end 
dSC_dKv=[]; 
for i=1:m 

for j=1:n 

end 

Y. Use numerical approximation 
EL=zeros(size(Kv)); 
EL(i,j)=1; 
deltaKv_ij=EL*1e-5; 
deltaw=null(Gamma*(A-B*(Kv+KOv+deltaKv_ij)))-w; 
gradw=deltaw/1e-5; 
dinv_dKv_ij=-inv(w'*P2*w)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w); 
dSC_dKv_ij=(Gamma*gradw)*inv(w'*P2*w)*(Gamma*w)'+ ... 

(Gamma*W)*dinv_dKv_ij*(Gamma*w)'+ ... 
(Gamma*w)*inv(w'*P2*w)*(Gamma*gradw)'; 

dSC_dKv=[dSC_dKv; dSC_dKv_ij]; 

end 
dSC_dX=[dSC_dP;dSC_dKv]; 
dg_dX=[dg_dX dSC_dX]; 

Y. Control constraints 
if control_const==1 

CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1; 
g=[g;CC]; 

dCC_dP=[]; 
for i=1:n 
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end 

for j=i:n 
EL=zeros(size(P2)); 
EL(i, j )=1 ;EL(j, i)=1; 
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ... 

(Kv+KOv) '); . 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
end 
dCC_dKv=[]; 
for i=1 :m 

end 

for j=1:n 
EL=zeros(size(Kv)); 
EL(i,j)=1; 
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)'); 
dCC_dKv=[dCC_dKv; dCC_dKv_ij]; 

end 

dCC_dX=[dCC~dP; dCC_dKv]; 
dg_dX=[dg_dX dCC_dX]; 

% ----------------------- END OF FILE: REACH_DFG.M -----------------------
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G.1.4 Cost Function and Constraints for Finding u 
function [f,g,U]=recover_u_fg(xO,KOv,GAMMA,X,n,m); 
% RECOVER_U_FG is the cost function and constraint routine for use .with 
% overlapping recoverable ellipsoids to find maximal control on restricted 
% state-space. 

% SYSTEM SIZE DEFINITION 
[c]=size(GAMMA,1); 

% PARAMETER ASSIGNMENTS 
[P,Kv]=x2pk(X,n,m); 
P2=P•P; 

% OBJECTIVE FUNCTION (Minimization) 
f=-xO'•(Kv+KOv)'•(Kv+KOv)•xO; 

U=abs(-(Kv+KOv)•xO); 

% CONSTRAINTS .(Must be of form <= 0) 
g=[]; % clear array 
constraints=[];% constraints assigrunerits (below) don't work with older Matlab 

% Ellipsoid constraint. 
EC=xO'•P2*x0-1; % Write as negative definite form 
g=[g;EC]; 
constraints=char(constraints,'Ellipsoid Constraint'); 

% State constraints 
for i=1:c 

for j=1:2 
SC=((-1-j)•GAMMA(i,:))•x0-1; % Consider both plus/minus GAMMA 
g=[g;SC]; 
constraints=char(constraints,['State Constraint 'num2str(i)]); 

end 
end; 

% --------------------- END OF FILE: RECOVER_U_FG.M ---------------------
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G.1.5 · Derivatives of Cost Function and Constraints for Finding ii 

function [df_dxO,dg_dxO]=recover_u_dfg(xO,KOv,GAMMA,X,n,m); 
'Y. RECOVER_U_DFG is the derivative cost function and constraint routine for 
'Y. use with overlapping recoverable ellipsoids to find maximal control 
'Y. on restricted state-space. 

'Y. SYSTEM SIZE DEFINITION 
c=size(GAMMA,1); 

'Y. PARAMETER ASSIGNMENTS 
[P,Kv]=x2pk(X,n,m); 
P2=P*P; 

'Y. OBJECTIVE FUNCTION (Minimization) 
f=-xO'*(Kv+KOv)'*(Kv+KOv)*xO; 

df_dx0=-2*(Kv+KOv)'*(Kv+KOv)*xO; 

'Y. =============== ========================================================= 

'Y. CONSTRAINTS (Must be of form<= 0) 
dg_dxO=[]; 'Y. clear constraint derivative array 

'Y. Ellipsoid constraint 
EC=x0'*P2*x0-1; 'Y. Write as negative definite form 
dEC_dx0=2*P2*xO; 
dg_dxO=[dg_dxO dEC_dxO]; 

'Y. State constraints 
for i=1:c 

for j=1:2 
dSC_dx0=(-1-j)•GAMMA(i,:)'; 'Y. Consider both plus/minus GAMMA 

.. dg_dxO=[dg_dxO dSC_dxO]; 
end 

end 

'Y. --------------------- END OF FILE: CONTROL_U_DFG.M ---------------------
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G.1.6 Plotting Routine· 

function [U,P,Kv]=I"ecover_p(X,A,B,KOv,GAMMA,plot_pts); 
% RECOVER_P is the trajectory plotting routine for use with RECOVER 

% Plotting options 
N=max((floor(plot_pts/20)~2),5); % plot trajectory from every Nth data 

'l. point on the semi-ellipse with a 
'l. maximum of 20 pts 

if nargin<4 
error('Not enough input arguments.') 

end 

'l. Message to screen 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Plotting recovering trajectories') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

'l. Parameter Assignments (extract P,K's from X) 
[n,m]=size(B); 
[P,Kv]=x2pk(X,n,m); 
P2=P'*P; 

Kv=Kv+KOv; % Construct composite gain 

if n==2 'l. 2-D ELLIPSOID 
% Compute ellipsoid boundary 
[x1,x2]=semiellipse(P2,GAMMA,[] ,plot_pts); 

% Compute corresponding control effort 
ue=Kv*[x1;x2]; 

'l. Compute maximum control effort on boundary 
U=max(ue); 

'l. Plot boundary vs. control 
plot(x1,x2,'k');grid on;axis square;hold on 

% Compute reaching and recovering state-space descriptions 
syse=ss(A-B*Kv,B,eye(n),zeros(n,m)); 

'l. Plot trajectories for every Nth point on the ellipsoid boundary 
for i=1:ceil(sqrt(N)):max(size(x1)); 

[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]); 
plot(x(:,1),x(:,2),'r') 

end 

xlabel('x1'),ylabel('x2'),zlabel('u') 
elseif n==3 % 3-D ELLIPSOID 

'l. Compute ellipsoid boundary 
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[x1,x2,x3]=semiellipse(P2,GAMMA,0,plot_pts); 

% Compute ·corresponding control effort 
for i=l:size(xl,1) 

for j=l:size(xl,2) 
ue(i,j)=Kv•[xl(i,j) ;x2(i,j) ;x3(i,j)]; 

end 
end 

% Compute maximum control effort on boundary 
U=max(max(abs(ue))); 

% Plot boundary vs. control 
surf(x1,x2,x3,ue/U);grid on;axis square;hold on 

% Compute reaching and recovering state-space descriptions 
syse=ss(A-B•Kv,B,eye(n),zeros(n,m)); 

% Plot trajectories for every Nth point on the ellipsoid boundary 
hold on 
for i=l:N:size(xl,1); 

for j=l:N:size(xl,2) 
[y,t,x]=initial(syse, [xl(i,j) ,x2(i,j) ,x3(i,j)], (0: .01: 10]); 
plot3(x(:,1),x(:,2),x(:,3),'k') 

end 
end 
drawnow 
grid on 
colormap ( ' copper' ) 
lighting phong 
light('Position',[1 -1 5]) 
h=findobj('Type','surface'); 
set(h,'FaceLighting','phong', ... 

'FaceColor','interp', .. . 
'EdgeColor',[.4 .4 .4), .. . 
'BackFaceLighting','reverselit', ... 
'AmbientStrength',1, .•. 
'DiffuseStrength',1); 

end 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 

% ------------------~---- END OF FILE: RECOVER_P.M ----------------------
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· G.2 Function Files for Computing Reachable 
' ' ' 

Semi-Ellipsoidal Set 

. G.2.1 Optimization Routine 

function [P,Ke,U,X,Fstop,Gstop]=reach(A,B,GAMMA,UMAX,QO,PO,KOe); 
% 
% REACH finds the largest reachable set for a linear system with 
% constrained states and inputs, where the subset is constructed from 
% the intersection of the state constraints and the computed ellipsoid. 
% 
% Parameter definitions: 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

[A,B]: 
GAMMA: 
UMAX: 
QO: 
PO: 
KOe: 

P: 
Ke: 
U: 
X: 

% Usage: 

state-space description of linear system 
state constraints of the form GAMMA(i,:)*x<=1 
maximum allowable control (assumed symmetric) 
specifies decay rate of the Lyapunov function 
initial guess for the ellipsoid matrix (x'Px<=1) 
initial guess for state feedback (must stabilize [A,B]) 

the optimal ellipsoid 
the corresponding state feedback gain matrix 
the maximum control effort on the boundary of P 
the .final parameter search vector (elements of P, Ke) 

% [P,Ke,U,X]=reach(A,B,GAMMA,UMAX,QO,PO,KOe) finds the largest 
% reachable ellipsoid, P, and corresponding state-feedback 
% matrix, Ke, for the system [A,B] and the constraints, GAMMA, 
% UMAX. Definitions of QO, PO, and KOe are optional. If not 
% provided, QO is assumed to be zero and PO is initialized using 
% an LQR algorithm. If KOe is not specified, or if the given 
% KOe does not stabilize [A,B], it is chosen (arbitrarily) using 
% the LQR technique. 

% Notice: 
% 
% This algorithm is based on the dissertation "Ellipsoidal and 
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained 
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999. 
% 

% Start counter for run-time 
tic 

% DEFINE SIMtlLATION CONSTANTS 
fig_handle=1; 
ON=1; 
PARTIAL=0.5; 
OFF=O; 
beta=0.97; 
tol=1e-5; 

% Set the figure handle 
% Switch ON 
% Switch HALF-ON 
% Switch OFF 
% Decrease factor for size of P; MUST BE LESS THAN 1.0 
% Error tolerance for terminating search 
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gradient_tol=ie-2; 
PET=2.5; 

% Minimum gradient for maximal control search 
% 'Percent Error Tolerance' for terminating searches 

% DEFINE GENERAL PARAMETERS 
plotting=PARTIAL; 
plot_pts=150; 
grad_check=OFF; 
search_output=ON; 

% Turn plotting 'on/off'; PARTIAL plots only final result 
% Number of points to use in plotting 
% Checks analytical gradients against numerical estimates 
% Displays intermediate search results 

% DEFINE MATRIX DIMENTIONING CONSTANTS 
[n,m]=size(B); % 'n' is number of states, 'm' is number of inputs 
c=size(GAMMA,1); % Defines the number of state constraints 
pe=(n-2-n)/2+n; % Defines number of ellipse parameters 
pg=n*m; % Defines number of state feedback gain parameters 
p=pe+pg; % Defines the total number of parameters. 

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions') 
max_passes=30; % Maximum number of search cycles 
min_iters=30*p; % Minimum number of ~earch iterations per cycle 
max_iters=60*p; % Maximum number of search iterations per cycle 
weight=1e0; Y. Weighting coefficient for constraint vector 
pd_weight=1e0; % Additional (multiplicative) weight for pos. def. const. 
inv_weight=1e0; % Additional (multiplicative) weight for invariance const. 
options(1)=0N; % Displays intermediate search results 
options(14)=max_iters; % Set the maximum number of iterations per pass 

% INITIALIZE SEARCH DATA VECTORS 
Fstart=[]; % Vector of cost function values before each pass 
Gstart=[]; % Matrix of constraint function values before each pass 
Fstop=[]; % Vector of cost function values after each pass 
Gstop=[]; % Matrix of constraint function values after each pass 
search_log=[]; % Matrix of parameter values after each pass 

% CHECK VALIDITY OF INPUT DEFINITIONS 
N=nargin; 
if N<4 

error('Not enough input arguments.') 
elseif N==4 . 

QO= [] ; PO=[] ; KOe= [] ; 
elseif N==5 

PO= [] ; KOe= [] ; 
elseif N==6 

KOe=[]; 
end 

% CHECK SIZE OF A,B 
if size(A,1)-=size(A,2) 

error('A is non-square.') 
elseif size(A,1)-=n 

error('A and B must have same number of rows.') 
end 
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Y. CHECK CONSTRAINT SPACE SIZE 
if size(GAMMA,2)-=n 

error('GAMMA defined with different number of states than A.') 
end 

Y. CHECK UMAX 
if min(UMAX)<=O 

error('Control constraints must be positive.') 
end 

Y. CHECK QO 
if isempty(QO) Y. Check for proper initialization 

Y. Display initialization message 
disp(' ') 
disp(' Initializing QO matrix:') 
disp(' ') 
QO=zeros(size(A)) 

elseif max(max(abs(QO-QO')))>O Y. Check for symmetry 
error('QO is not symmetric.') 

elseif min(eig(QO))<O Y. Check for positive definiteness 
error('QO is not positive definite.') 

end 

Y. USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS 
poles=[1:n]; Y. Define (arbitrary) positive pole locations 
kO=place(A,B,poles); Y. Compute state-feedback gain 
R=eye(m); Y. Arbitrary pos. def. weighting matrix for LQR 
[temp,p20]=lqr(A-B*k0,B,QO,R); Y. Compute stabilizing controller and ellipse 
dk=inv(R)*B'*p20; Y. Define stabilizing controller 

Y. CHECK Koe 
if isempty(KOe) Y. 

Y. Display initialization message 
disp(' ') 
disp('Initializing KOe matrix:') 

Initialize with LQR if KOe not given 

disp(' ') 
KOe=kO+dk/2 
Ke=-dk/4 

Y. Define marginally stabilizing controller 

else 

Y. Define gain such that (KOe+Ke) is stabilizing 
Y. (in negative time) 

if (size(KOe,1)-=m)l(size(KOe,2)-=n) Y. Check size of KOe 
error('KOe must be same size as B transpose.') 

end 
if max(real(eig(A-B*KOe)))>O Y. Check stability of A-B*KOe 

error('KOe does not stabilize A.') 
end 

end 

Y. CHECK PO 
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if isempty(PO) % Check for proper initialization 
% Display initialization message 
disp(' ') 
disp('Initializing PO matrix:') 
disp(' ') 
PO=real(sqrtm(p20)) % Compute PO from p20 
P20=PO'*PO 

elseif max(max(abs(PO-PO')))>O % Check for symmetry 
error('PO is not symmetric.') 

elseif min(eig(PO))<O % Check for positive definiteness 
error('PO is not positive definite.') 

end 

% ASSIGN PO,KOe TO ELEMENTS OF SEARCH SPACE VECTOR 
X=pk2x(PO,Ke,n,m); % Parametrize search with PO, the square root of the 

% ellipsoid matrix, to minimize search errors with 
% positive definiteness of ellipse. 

if plotting==ON 
% Plot initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
ellipse(P20,[] ,plot_pts);grid on;axis square; 
title('INITIAL CONDITION') 
drawnow; 

% Plot trajectories of initial condition ellipsoid 
figure(fig_handle+1);clf;drawnow; 
reach_p(X,A,B,KOe); 

end 

title('TRAJECTORIES OF INITIAL CONDITION') 
drawnow; 

pvol=d~t(inv(P20)); 

save reach_best.mat X 

% ============================================================================ 

% OPTIMIZE SOLUTION 

U=O; 
UMAX_hat=UMAX; 
control_iters=O; 

% Initialize maximum observed control to zero 
% Initialize pseudo-maximum control to true maximum 
% Initialize counter for control iteration passes 

while (U<beta*UMAX)l(U>(UMAX+tol)) % Loop while observed control outside tol. 

disp(' ') 
disp(sprintf(' ---------- SEARCHING: UMAX_hat = 

UMAX_hat)) 
disp(' ') 
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options(14)=max_iters; 
pass=1; 
control_const=ON; 

Y. Set the maximum number of iterations to max_iters 
Y. Reset the counter 
Y. Turn the control constraint 'on' 

change=100; Y. Initialize change in_ellipsoid size to 100% 
options(10)=max_iters; Y. Initialize number of passes to maximum allowable 

while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(beta•options{14)))) 
Y. Loop until change in ellipsoid size< 2% 

disp(' ') 
disp(sprintf(' 

change)) 
disp(' ') 

========== OPTIMIZING: CHANGE= Y.6.2f Y.Y. ==========' 

Y. Log start-of-pass search constraint vector and cost function 
[fstart,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX_hat,QO, ... 

control_const,weight,pd_weight,inv_weight); 
Gstart=[Gstart g]; 
Fstart=[Fstart fstart]; 
Pstart=x2pk(X,n,m); 
P2start=Pstart'•Pstart; 

' ... 

Y. Scale ellipse down by factor of beta to start the next pass off the 
Y. constraints 
X(1:pe,1)=X(1:pe,1)/sqrt(beta); 

Y. Perform search. 
options(9)=0FF; 
[X,options]=constr( 'reach_fg' ,X,options, [], 0, 'reach_dfg', ... 

A,B,KOe,GAMMA,UMAX_hat,QO, ... 
control_const,weight,pd_weight,inv_weight); 

Y. Log end-of-pass search constraint vector and cost function 
[fstop,g,U,constraints]=reach~fg(X,A,B,KOe,GAMMA,UMAX_hat,QO, ... 

control_const,weight,pd_weight,inv_weight); 
Gstop=[Gstop g]; 
Fstop=[Fstop fstop]; 

Y. Parameter Assignments 
Pstop=x2pk(X,n,m); 
P2stop=Pstop'*Pstop; 

Y. Compute change in cost function 
change=100•(trace(P2start)-trace(P2stop))/trace(P2start); 

Y. Log parameter space 
search_log=[search_log X]; 

Y. Parameter Assignments 
[P,Ke]=x2pk(X,n,m); 
P2=P'•P; 

Y. Plot ellipsoid in state space 
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if plotting==ON 
figure(fig_handle+2);hold off;clf;drawnow; 
ellipse(P2,[] ,plot_pts);grid on;axis square;hold on 
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change)); 
drawnow 

end 

save reach.mat XU 

Y. Check for improvement 
if det(inv(P2))>pvol 

pvol=det(inv(P2)); 
save reach_best.mat X P2 Ke pvol 

end 

pass=pass+1; 

end 

Y, DISPLAY TERMINATION CRITERIA 

disp(' ') 
disp(sprintf('Search terminated on change in cost function of Y.0.4g %%.', ... 

change)) 
disp(' ') 

Y, SEARCH FOR MAXIMUM OBSERVED CONTROL ON RESTRICTED STATE-SPACE 
disp(' ') 
disp(sprintf(' ====== SEARCHING FOR MAXIMUM OBSERVED CONTROL======')) 
disp(' ') 
if control_iters==O 

Y. Find point which maximizes control on restricted state-space 
umax_options(l)=-1; Y. Don't display intermediate results 

xO=rand(n,1); Y. Generate random initial condition for search 
xO=constr('reach_u_fg',xO,umax_options,[],[],'reach_u_dfg',KOe, ... 

GAMMA,X,n,m); 

% Compute maximum control effort 
[fumax,gumax,U]=reach_u_fg(xO,KOe,GAMMA,X,n,m); 

Y. Display maximal control on restricted region 
u 

Y. Store previous search results 
U_old=U; 
UMAX_hat_old=UMAX_hat; 

% Compute a new estimate for the UMAX_hat that will achieve U=UMAX. 
UMAX_hat=UMAX_hat*(beta-(sign(U-UMAX))); 

if (U>=beta*UMAX)&(U<=(UMAX+tol)) 
% 
disp(' ') 
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disp(cat(2,'Search terminated: Maximum observed 
'within tolerance of UMAX.')) 

disp( I I) 

end 

control', ... 

else 
Y. Use previous search result for initial condition 
xO=constr('reach_u_fg',xO,umax_options,[],[],'reach_u_dfg', ... 

KOe,GAMMA,X,n,m); 

Y. Compute maximum control effort 
[fumax,gumax,U]=reach_u_fg(xO,KOe,GAMMA,X,n,m); 

Y. Display maximal control on restricted region 
u 

Y. Estimate new value of UMAX_hat using secant search 
gradient=(U_old-U)/(UMAX_hat_old-UMAX_hat); 
UMAX_hat_tmp=UMAX_hat-(U-UMAX)/gradient; 

Y. Store previous search results 
U_old=U; 
UMAX_hat_old=UMAX_hat; 

UMAX_hat=UMAX_hat_tmp; 

Y. Check to see if improvement feasible 
if (U>=beta*UMAX)&(U<=(UMAX+tol)) 

Y. 
disp( I 1 ) 

disp ( [ I Search terminated: Maximum observed control ' ' ... 
'within tolerance of UMAX.']) 

disp( J I) 

elseif gradient<gradient_tol 
disp( I I) 

disp ( [' Se.arch terminated: No increase expected in maximum ' , ... 
'observed control.']) 

disp(' ') 

Y. Redefine U to artificially terminate loop 
U=UMAX; 

end 

end 

Y. Advance counter 
control_iters=control_iters+1; 

end 

Y. ========================================================================= 

Y. CLOSING TASKS 

200 



Y. Plot final result 
if plotting>=PARTIAL 

disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
.disp('Computing plot points.') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

figure(fig_handle);clf;drawnow; 
if n==2 

reach_p(X,A,B,KOe,GAMMA,plot_pts); 
elseif n==3 

subplot(121) 
semiellipse(P2,GAMMA,[],plot_pts),hold on 
subplot(122) 
reach_p(X,A,B,KOe,GAMMA,plot_pts); 

end 
end 

Y. Compute composite gain. 
Ke=Ke+KOe; 

Y. Def.ine output · ellipsoid matrix 
P=P2; 

Y. Compute maximum gain on ellipse, U 
[f,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX_hat,QO, ... 

control_const,weight,pd_weight,inv_weight); 
Gstop=[Gstop g];g,constraints 
Fstop=[Fstop f]; 

Y. Clean up hard drive 
delete reach.mat 
del~te reach_best.mat 

Y. Terminate counter and display elapsed time 
toe 

Y. ----~----------~------- END OF FILE: REACH.M.------------------------
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G.2.2 Cost Function and Constraints 

function [f,g,Ue,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,Q, ... 
control_const,weight,pd_weight,inv_weight); 

% REACH_FG is the cost function and constraint routine for use with REACH. 

% parametrizes in terins of sqrt(P) and Ke 

% SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
(p]=max(size(X)); 
[c]=size(GAMMA,1); 

% PARAMETER ASSIGNMENTS 
[P,Ke]=x2pk(X,n,m); 
P2=P 1 *P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(trace(P2)); 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; % clear array 
constraints=[];% constraints assignments (below) don't work with older Matlab 

% Invariance constraint 
Acl=A-B*(Ke+KOe); 
IC=P2*(-Acl)+(-Acl)'*P2+Q;. % Write as negative definite form 
[v,d]=eig(IC); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D*inv_weight]; % Write as 'less than' constraint 
for i=l:n 

constraints=char(constraints, 1 Invariance 1 ); 

end 

% Positive definiteness constraints. 
[v,d]=eig(-P2*pd_weight); % Write as negative definite form 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; % Write as 'less than' constraint 
for i=l:n 

constraints=char(constraints, 1 Positive Definiteness'); 
end 

% State constraints (See dissertation for details) 
for i=l:c; 

Gamma=GAMMA(i,:); 
v=null(Gamma*(-(A-B*(Ke+KOe)))); 

constraints=char(constraints,[ 1 State Constraint I num2str(i)]); 
end; 
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% Control constraints 
if control_const==1 

Ue=sqrt((Ke+KOe)*inv(P2)*(Ke+KOe)'); 
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; % Normalize to 1 
constraints=char(constraints,'Control'); 

end 

% ----------------------- END OF FILE: REACH_FG.M -----------------------
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G.2.3 Derivatives of Cost Function and Constraints 

function [df_dX,dg_dX]=reach_dfg(X,A,B,KOe,GAMMA,UMAX,Q, ... 
control_const,weight,pd_weight,inv_weight); 

% REACH_DFG is the derivative cost function and constraint routine 
% for use with REACH. 

% parametrizes in terms of sqrt(P) and Ke 

% SYSTEM SIZE DEFINITION 
· [n,m]=size(B); 
p=max(size(X)); 
c=size(GAMMA,1); 
pg=n*m; 
pe=p-pg; 

% number of state feedback gain parameters 
% number of ellipsoid parameters 

% PARAMETER ASSIGNMENTS 
[P,Ke]=x2pk(X,n,m); 
P2=P'*P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(trace(P2)); 

df_dP=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
if i==j 

df_dP=[df_dP;2*P(i,j)/trace(P2)]; 
else 

df_dP=[df_dP;4*P(i,j)/trace(P2)]; 
end 

end· 
end 
df_dKe=zeros(size(Ke))'; 
df_dX=[df_dP;df_dKe]; 

% ========================================================================= 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; % clear constraint array 
dg_dX=[]; % clear constraint derivative array 

% Invariance constraint 
Acl=A-B*(Ke+KOe); 
IC=P2*(-Acl)+(-Acl)'*P2+Q; 
[v ,d]=eig(IC); 
[Di,sort_index]=esort(diag(d)); 
Vi=v(:,sort_index); 
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g=[g;Di]; Y. Write as 'less than' constraint 

dDi_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dIC_dP_ij=(EL'*P+P*EL)*(-Acl)+(-Acl)'*(EL'*P+P*EL); 
dDi_dP= [dDi_dP; diag(Vi' * (dIC_dP _ij) *Vi) '] ; 

end 
·end 
dDi_dKe= [] ; 
for i=1:m 

for j=1:n 
EL=zeros(size(Ke)); 
EL(i,j)=1; 
dAcl_dKe_ij=-B*EL; 
dIC_dKe_ij=P2*(-dAcl_dKe_ij)+(-dAcl_dKe_ij)'*P2; 
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)']; 

end 
end 

dDi_dX=[dDi_dP; dDi_dKe]*inv_weight; 
dg_dX=[dg~dX dDi_dX]; 

Y. Positive definiteness of P constraints. 
PDC=-P2*pd_weight; -
[v,d]=eig(PDC); 
[Dpd,sort_index]=esort(diag(d)); 
Vpd=v(:,sort_index); 
g=[g;Dpd]; Y. Write as 'less than' constraint 

dDpd_dP= [] ; 
for i=1:n 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j,i)=1; 
dPDC_dP_ij=-1*(EL'*P+P*EL)*pd_weight; 
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)']; 

end 
end 
dDpd_dKe=zeros(pg,n); Y. 'n' eigenvalues 

dDpd_dX=[dDpd_dP;dDpd_dKe]; 
dg_dX=[dg_dX dDpd_dX]; 

Y. State constraints 
for k=1:c; 

Gamma=GAMMA(k,:); 
w=null(Gamma*(-(A-B*(Ke+KOe)))); 
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g=[g;SC]; 

dSC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 

dinv_dP_ij=-inv(w'*P2*w)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w); 
dSC_dP_ij=(Gamma*w)*dinv_dP_ij*(Gamma*w)'; 

dSC_dP=[dSC_dP; dSC_dP_ij]; 
end 

end 
dSC_dKe= [] ; 
for i=1:m 

for j=1 :n 
% Use numerical approximation 
EL=zeros(size(Ke)); 
EL(i,j)=1; 
deltaKe_ij=EL*1e-5; 
deltaw=null(Gamma*(-(A-B*(Ke+KOe+deltaKe_ij))))-w; 
gradw=deltaw/1e-5; 
dinv_dKe_ij=-inv(w'*P2*W)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w); 
dSC_dKe_ij=(Gamma*gradw)*inv(w'*P2*w)*(Gamma*w)'+ ... 

(Gamma*w)*dinv_dKe_ij*(Gamma*w)'+ ... 
(Gamma*w)*inv(w'*P2*w)*(Gamma*gradw)'; 

dSC_dKe=[dSC_dKe; dSC_dKe_ij]; 

end 

end 
end 
dSC_dX=[dSC_dP;dSC_dKe]; 
dg_dX=[dg_dX dSC_dX]; 

% Control constraints 
if control_const==1 

CC=(1/UMAX-2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1; 
g=[g;CC]; 

dCC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dCC_dP_ij=(1/UMAX-2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ... 

(Ke+KOe)'); 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
end 
dCC_dKe= [] ; 
for i=1:m 

for j=1:n 
EL=zeros(size(Ke)); 
EL(i,j)=1; 
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end 
end 

dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)'); 
dCC_dKe=[dCC_dKe; dCC_dKe_ij]; 

dCC_dX=[dCC_dP; dCC_dKe]; 
dg_dX=[dg_dX dCC_dX]; 

end 

r. ----------------------- END OF FILE: REACH_DFG.M ------~----------------
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G.2.4 Cost Function and Constraints for Finding u 
function [f,g,U]=reach_u_fg(xO,KOe,GAMMA,X;n~m); 
%. REACH_U_FG is the cost function and. constraint routine for use with 
% overlapping reachable ellipsoids to find maximal control on restricted 
% state-space. 

Y. SYSTEM SIZE DEFINITION 
[c]=size(GAMMA,1); 

Y. PARAMETER ASSIGNMENTS 
[P,Ke]=x2pk(X,n,m); 
P2=P*P; 

Y. OBJECTIVE FUNCTION (Minimization) 
f=-xO'*(Ke+KOe)'*(Ke+KOe)*xO; 

U=abs(-(Ke+KOe)*xO); 

Y. CONSTRAINTS (Must be of form<= 0) 
g= [] ; Y. clear array 
constraints=[]; .Y. constraints assignments (below) don't work with older Matlab 

Y. Ellipsoid constraint 
EC=x0'*P2*x0-1; Y. Write as negative definite form 
g=[g;EC]; 
constraints=char(constraints,'Ellipsoid Constraint'); 

Y. State constraints 
for i=1:c 

for j=1:2 
SC=((-1-j)*GAMMA(i,:))*x0-1; Y. Consider both plus/minus GAMMA 
g=[g;SC]; 
constraints=char(constraints,['State Constraint' num2str(i)]); 

end 
end; 

Y. --------------------- END OF FILE. REACH_U_FG.M ---------------------

208 



G.2.5 Derivatives of Cost Function and Constraints for Finding ii. 

function [df_dxO,dg_dxO]=reach_u_dfg(xO,KOe,GAMMA,X,n,m); 
Y. REACH_U_DFG is the derivative cost function and constraint routine for 
Y. use with overlapping reachable ellipsoids to find maximal control 
Y. on restricted state-space. 

Y. SYSTEM SIZE DEFINITION 
c=size(GAMMA,1); 

Y. PARAMETER ASSIGNMENTS 
[P,Ke]=x2pk(X,n,m); 
P2=P*P; 

Y. OBJECTIVE FUNCTION (Minimization) 
f=-xO'*(Ke+KOe)'*(Ke+KOe)*xO; 

df_dx0=-2*(Ke+KOe)'*(Ke+KOe)*xO; 

Y. ============================ ============== ============================ 

Y. CONSTRAINTS (Must be of form<= 0) 
dg_dxO=[]; Y. clear constraint derivative array 

Y. Ellipsoid constraint 
EC=x0'*P2*x0-1; Y. Write as negative definite form 
dEC_dx0=2*P2*xO; 
dg_dxO=[dg_dxO dEC_dxO]; 

Y. State constraints 
for i=1:c 

for j=1:2 
dSC_dx0=(-1~j)*GAMMA(i,:)'; Y. Consider both plus/minus GAMMA 
dg_dxO=[dg_dxO dSC_dxO]; 

end 
end 

Y. --------------------- END OF FILE: REACH_U_DFG.M ---------------------
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G.2.6 Plotting Routine 

function [U,l',Ke]=reach_p(X,A,B,KOe,GAMMA,plot_pts); 
% REACH_P is the trajectory plotting routine for use with REACH 

% Plotting options 
N=max(floor((plot_pts/20)-2),5); % plot trajectory from every Nth data 

% point on the semi-ellipse with a 
% maximum of 20 pts 

if nargin<4 
error('Not enough input arguments.') 

end 

% Message to screen 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp ('Plotting reaching trajectories') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

% Parameter Assignments (extract P,K's from X) 
[n,m]=size(B); 
[P,Ke]=x2pk(X,n,m); 
P2=P'*P; 

Ke=Ke+KOe; % Construct composite gain 

if n==2 % 2-D ELLIPSOID 
% Compute ellipsoid boundary 
[x1,x2]=semiellipse(P2,GAMMA,[],plot_pts); 

% Compute corresponding control effort 
ue=Ke* [x 1 ; x2] ; 

% Compute maximum control effort on boundary 
U=max(ue); 

% Plot boundary vs. control 
plot(x1,x2,'k');grid on;axis square;hold on 

% Compute reaching state-space description (neg.time) 
syse=ss(-(A-B*Ke),-B,eye(n),zeros(n,m)); 

% Plot trajectories for every Nth point on the ellipsoid boundary 
for i=1:ceil(sqrt(N)):max(size(x1)); 

[y,t,x]=initial(syse, [x1(i),x2(i)],[0:.01:10]); 
plot (x ( : , 1) , x ( : , 2) , 'r' ) 

end 

colormap ('gray' ) 

xlabel ( 'x1') ,ylabel ( 'x2'), zlabel ( 'u') 
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elseif n==3 Y, 3-D ELLIPSOID 
Y. Compute ellipsoid boundary 
[x1,x2,x3]=semiellipse(P2,GAMMA, [] ,plot.:..pts); 

Y. Compute corresponding control effort 
for i~1:size(x1,1) 

for j=1:size(x1,2) 
ue(i,j)=Ke*[x1(i,j);x2(i,j);x3(i,j)]; 

end 
end 

Y. Compute maximum control effort on boundary 
. u~ax(max(abs(ue))); 

Y. P~ot boundary vs. control 
surf(x1,x2,x3,ue/U);grid on;axis square;hold on 

Y. Compute reaching and recovering state-space descriptions 
syse=ss(-(A~B*Ke),-B,eye(n),zeros(n,m)); 

Y. Plot trajectories for every Nth point on the ellipsoid boundary 
hold on 
for i=1:N:size(x1,1); 

for j=1:N:size(x1,2) 
[y,t,x]=initial(syse, [x1(i,j) ,x2(i,j) ,x3(i,j)], [O: .01:10]); 
plot3(x(:, 1) ,x(: ,2) ,x(: ,3), 'r') 

end 
end 
drawnow 
grid on 
colormap('copper') 
lighting phong 
light('Position',[1 -1 5]). 
h=fi_ndobj ('Type', 'surface'); 
set(h, 'FaceLighting', 'phong', ... 

'FaceColor','interp', .•. 
'EdgeColor', [.4 .4 .4], ... 
'BackFaceLighting', 'reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 

end 

Y, -~-------------------- END OF FILE: REACH_P.M ----------------------
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G.3 Function Files for Computing Controllable 
Semi-Ellipsoidal Set 

G.3.1 Optimization Routine 

function [P,Kv,Ke,U,X]=control(A,B,GAMMA,UMAX,QO,PO,KOv,KOe); 
% 
% CONTROL finds the largest controllable subset for a linear system with 

·% constrained states and inputs, where the subset is constructed from 
% th~ intersection of the state constraints and the computed ellipsoid. 

% Parameter definitions: 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

[A,B]: 
GAMMA: 
UMAX: 
QO: 
PO: 
KOv: 
KOe: · 

P: 

X: 

% Usage: 

state-space description of linear system 
state constraints of the form GAMMA(i,:)*x<=1 
maximum allowable control (assWlied symmetric) 
specifies decay rate of the Lyapunov function 
initial guess for the ellipsoid matrix (x'Px<=1) 
initial guess for recovering state feedback matrix 
initial guess for reaching state feedback matrix 

the optimal ellipsoid 
the corresponding recovering state feedback matrix 
the corresponding reaching state feedback matrix 
the maximum control effort '(via state feedback) on subset 
the final parameter search Yector (elements of P, K) 

% [P,Kv,Ke,U,X]=control(A,B,GAMMA,UMAX,QO,PO,KOv,KOe) finds the 
% largest ellipsoid, P, which is both reachable and recoverable, 
% and corre·sponding state-feedback matrices, Ke,Kv, for the 
% system [A,B] and the constraints, GAMMA, UMAX. Definitions of 
% QO, PO, and KO's are optional. If not provided, QO is assumed 
% to be zero and PO is initialized using an LQR algorithm. If 
% KOe is not specified, or if the given KOe does not stabilize 
% [-A,-B], it is chosen (arbitrarily) using an LQR technique. 
% Similarly, if KOv is not specified, or if the given KOv does' 
% not stabilize [A,B], it is chosen (arbitrarily) using an LQR 
% technique. 

% Notice: 
% 
% This algorithm is based on the dissertation "Ellipsoidal and 
% Semi-Ellipsoidal Controlled Invariant Subsets for Constrained 
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999. 
% 

% Start counter for run-time 
tic 

% DEFINE SIMULATION CONSTANTS 
fig_handle=1; 
ON=1; 

% Set the figure handle 
% Switch ON 
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PARTIAL=0.5; 
OFF=O; 

% Switch HALF-ON 
% Switch OFF 

beta=0.95; % Decrease factor for size of P; MUST BE LESS THAN 1.0 
tol=le-5; % Error tolerance for terminating search 
gradient_tol=le-5; % Minimum gradient for maximal control search 
PET=1; % 'Percent Error Tolerance' for terminating searches 
flag=1; % Defines as controllable ellipsoid 

% DEFINE GENERAL PARAMETERS 
plotting=PARTIAL; 
plot_pts=150; 
grad_check=OFF; 
search_output=ON; 

% Turn plotting 'on/off'; PARTIAL plots only final result 
% Number of points to use in plotting 
% Checks analytical gradients against numerical estimates 
% Displays intermediate search results 

% DEFINE MATRIX DIMENTIONING CONSTANTS 
[n,m]=size(B); % 'n' is number of states, 'm' is number of inputs 
c=size(GAMMA,1); % Defines the number of state constraints 
pe=(n~2-n)/2+n; % Defines number of ellipse parameters 
pg=2*n*m; % Defines number of state feedback gain parameters 
p=pe+pg; % Defines the total number of parameters. 

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions') 
max_passes=20; % Maximum number of search cycles 
min_iters=30*p; % Minimum number of search iterations per cycle 
max_iters=60*p; % Maximum number of search iterations per cycle 
weight=1e0; % Weighting coefficient for constraint vector 
pd_weight=1e0; % Additional (multiplicative) weight for pos. def. const. 
inv_weight=1e0; % Additional (multiplicative) weight for invariance const. 
options(l)=ON; % Displays intermediate search results 
options(14)=max_iters; % Set the maximum number of iterations per pass 

% INITIALIZE SEARCH DATA VECTORS 
Fstart=[]; % Vector of cost function values before each pass 
Gstart=[J; % Matrix of constraint function values before each pass 
Fstop=[]; % Vector of cost function values after each pass 
Gstop=[]; % Matrix of constraint function values after each pass 
search_log=[]; % Matrix of parameter values after each pass 

% CHECK VALIDITY OF INPUT DEFINITIONS 
N=nargin; 
if N<4 

error('Not enough input arguments.') 
elseif N==4 

QO= [] ; PO=[] ; KOe= [] ; KOv= [] ; 
elseif N==5 

PO=[] ; KOe= [l; KOv= [] ; 
·elseif N==6 

KOe= [] ; KOv= [}; 
elseif N==7 

KOv=[]; 
end 
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Y, CHECK SIZE OF A,B 
if size(A,1)-=size(A~2) 

error('A is non-square.') 
elseif size(A,1)-=n 

error('A and B must have same number of rows.') 
end 

Y, CHECK CONSTRAINT SPACE SIZE 
if size(GAMMA,2)-=n 

error('GAMMA defined with different number of states than A.') 
end 

Y, CHECK UMAX 
if min(UMAX)<=O 

error('Control constraints must be positive.') 
end 

Y. CHECK QO 
if isempty(QO) Y. Check for proper initialization 

Y. Display initialization message 
disp(' ') 
disp('Initializing QO matrix:') 
disp(' ') 
QO=zeros(size(A)) 

elseif max(max(abs(QO-QO')))>O Y. Check for symmetry 
error('QO is not symmetric.') 

elseif min(eig(QO))<O Y. Check for positive definiteness 
error('QO is not positive definite.') 

end 

Y, USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS 
poles=[1:n]; Y. Define (arbitrary) positive pole locations 
kO=place(A,B,poles); Y. Compute state-feedback gain 
R=eye(m); Y. Arbitrary pos. def. weighting matrix for LQR 
[temp,p20]=lqr(A-B*k0,B,QO,R); Y. Compute stabilizing controller and ellipse 
dk=inv(R)*B'*p20; Y. Define stabilizing controller 

Y, CHECK KOv 
if isempty(KOv) % 

Y. Display initialization message 
disp(' ') 
disp('Initializing KOv matrix:') 

Initialize with LQR if KOv not given 

disp(' ') 
KOv=kO+dk/2 % Define marginally stabilizing controller 

.Kv=dk/4 

else 

Y. Define gain such that (KOv+Kv) is stabilizing 
% (in positive time) 

if (size(KOv,1)-=m) l(size(KOv,2)-=n) % Check size of KOv 
error('KOv must be same size as B transpose.') 
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end 
if max(real(eig(A-B*KOv)))>O % Check stability of A-B*KOv 

error('KOv does not stabilize A.') 
end 

end 

% CHECK KOe 
if isempty(KOe) % Initialize with LQR if KOv not given 

% Display initialization message 
disp(' ') 
disp('Initializing KOe matrix:') 
disp(' ') 
KOe=kO+dk/2 
Ke=-dk/4 

% Define marginally stabilizing controller 
% Define gain such that (KOe+Ke) is stabilizing 
% (in negative time) 

else 
if (size(KOe,1)-=m)l(size(KOe,2)-=n) % Check size of KOe 

error('KOe must be same size as B transpose.') 
end 
if max(real(eig((-A)-(-B)*KOe)))>O % Check stability of A-B*KOe 

error('KOe does not stabilize A.') 
end 

end 

% CHECK PO 
if isempty(PO) % Check for proper initialization 

% Display initialization message 
disp(' ') 
disp('Initializing PO matrix:') 
disp(' ') 
PO=real(sqrtm(p20)) % Compute PO from p20 
P20=PO'*PO 

elseif max(max(abs(PO-PO')))>O % Check for symmetry 
error('PO is not symmetric.') 

elseif min(eig(PO))<O % Check for positive definiteness 
error('PO is not positive definite.') 

end 

% ASSIGN INITIAL CONDITIONS TO ELEMENTS OF SEARCH SPACE VECTOR 
X=pk2x(PO,Kv,Ke,n,m); % Parametrize search with PO, the square root of the 

% ellipsoid matrix, to minimize search errors with 
% positive definiteness of ellipse. 

if plotting==ON 
% Plot initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
ellipse(P20,[],plot_pts);grid on;axis square; 
title('INITIAL CONDITION') 
drawnow; 
fig_handle=fig_handle+1; 
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Y. Plot trajecto+ies of initial condition ellipsoid 
figure(fig_handle);clf;drawnow; 
control_p(X,A,B,KOv,KOe); 
title('TRAJECTORIES OF INITIAL CONDITION') 
drawnow; 
fig_handle=fig_handle+l; 

end 

pvol=det(inv(P20)); 

save control_best.mat X pvol 

Y. ============================================================================ 

Y. OPTIMIZE SOLUTION 

Y. Initialize maximum observed control to zero U=O; 
UMAX_hat=UMAX; 
control_iters=O; 

Y. Initialize pseudo-maximum control to true maximum 
Y. Initialize counter for control iteration passes 

while (U<beta•UMAX)l(U>(UMAX+tol)) Y. Loop while observed control outside tol. 

disp(' ') 
disp(sprintf(' 

UMAX_hat)) 
disp(' ') 

---------- SEARCHING: UMAX_hat = Y.6.2f ==========' 

options(14)=max_iters; Y. Set the maximum number of iterations 
pass=l; Y. Reset the counter 
control_ const=ON ;. Y. Turn the control constraint 'on' 

' ... 

change=lOO; Y. Initialize change in ellipsoid size to lOOY. 
options(lO)=max_iters; Y. Initialize number of passes to maximum allowable 

while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(0.8•options(14)))) 
Y. Loop until change in ellipsoid size< 2Y. 

disp(' ') 
disp(sprintf(' ========== OPTIMIZING: CHANGE= Y.6.2f Y.Y. ========== ', ... 

change)) 
disp(' ') 

Y. Log start-of-pass search constraint vector and cost function 
[fstart,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO, ... 

control_const,weight,pd_weight,inv_weight); 
Gstart=[Gstart g]; 
Fstart=[Fstart fstart]; 
Pstart=x2pk(X,n,m); 
P2start=Pstart'•Pstart; 

Y. Scale ellipse down by factor of beta to start the next pass off the 
Y. constraints 
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X(1:pe,1)=X(1:pe,1)/sqrt(beta); % Since search parameters define P, not P2 

% Perform search. 
options(9)=0FF; 
[X,options]=constr('control_fg',X,options,[],[],'control_dfg', ... 

A,B,KOv,KOe,GAMMA,UMAX,QO, ... 
control_const,weight,pd_weight,inv_weight); 

% Log end-of-pass search constraint vector and cost function 
[fstop,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX, ... 

QO,control_const,weight,pd_weight,inv_weight); 
Gstop=[Gstop g]; 
Fstop=[Fstop fstop]; 

% Parameter Assignments 
Pstop=x2pk(X,n,m); 
P2stop=Pstop'*Pstop; 

% Compute change in cost function 
change=100*(trace(P2start)-trace(P2stop))/trace(P2start); 

% Log parameter space,control value, and number of iterations 
search_log=[search_log X]; 

% Parameter Assignments 
[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P*P; 

% Plot ellipsoid in state space 
if plotting==ON 

figure(fig_handle);clf;drawnow; 
ellipse(P2,[],plot_pts);grid on;axis square; 
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change)); 
drawnow 

end 

save control.mat XU 

% Check for improvement· 
if det(inv(P2))>pvol 

pvol=det(inv(P2)); 
save control_best.mat X P2 Kv pvol 

end 

pass=pass+1; 

end 

% DISPLAY TERMINATION CRITERIA 

disp(' ') 
disp(sprintf('Search terminated on change in cost function of %0.4g %%.', ... 

change)) 
disp(' ') 
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% SEARCH FOR MAXIMUM OBSERVED CONTROL ON RESTRICTED STATE-SPACE 
disp(' ') 
disp(sprintf(' ====== SEARCHING FOR MAXIMUM OBSERVED CONTROL======')) 
disp(' ') 
if control_iters==O 

% Find point which maximizes control on restricted state-space 
umax_options(1)=-1; % Don't display intermediate results 

xO=rand(n,1); % Generate random initial condition for search 
xO=constr('control_u_fg' ,xO,umax_options,[J,[],'control_u_dfg',KOv,KOe, ... 

GAMMA,X,n,m); 

% Compute maximum control effort 
[fumax,gumax,U]=control_u_fg(xO,KOv,KOe,GAMMA,X,n,m); 

% Display maximal control on restricted region 
u 

% Store previous search results 
U_old=U; 
UMAX_hat_old=UMAX_hat; 

% Compute a new estimate for the UMAX_hat that will achieve U=UMAX. 
UMAX_hat=UMAX_hat*(beta-(sign(U-UMAX))); 

if (U>=beta*UMAX)&(U<=(UMAX+tol)) 
% 
disp(' ') 
disp(cat(2,'Search terminated: Maximum observed 

'within tolerance of UMAX.')) 
disp(' ') 

end 
else 

control', ... 

% Use previous search result for initial condition 
xO=constr('control_u_fg',xO,umax_options,[],[],'control_u_dfg', ... 

KOv,KOe,GAMMA,X,n,m); 

% Compute maximum control effort 
[fumax,gumax,U]=control_u_fg(xO,KOv,KOe,GAMMA,X,n,m); 

% Display maximal control on restricted region 
u 

% Estimate new value of UMAX_hat using secant search 
gradient=((U_old-UMAX)-(U-UMAX))/(UMAX_hat_old-UMAX_hat); 
UMAX_hat_tmp=UMAX_hat-(U-UMAX)/gradient; 

% Store previous search results 
U_old=U; 
UMAX_hat_old=UMAX_hat; 

UMAX_hat=UMAX_hat_tmp; 

% Check to see if improvement feasible 
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if (U>=beta*UMAX)&(U<=(UMAX+tol)) 
% 
disp(' ') 
disp(cat(2,'Search terminated: Maximum observed control ', ... 

'within tolerance of UMAX.')) 
disp(' ') 

elseif abs(gradient)<gradient_tol 
disp(' ') 
disp(cat(2,'Search terminated: No increase expected in maximum', ... 

'observed control.')) 
disp(' ') 

% Redefine U to-artificially terminate loop 
U=UMAX; 

end 

end 

% Advance counter 
control_iters=control_iters+1; 

end 

% ===========================================================-=====--=-=-=-

% CLOSING TASKS 

% Plot trajectories 
% Plot final result 
if plotting>=PARTIAL 

disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Computing plot points.') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

figure(fig_handle);clf;drawnow; 
semiellipse(P2,GAMMA,[],plot_pts),hold on 
fig_handle=fig_handle+1; 

figure(fig_handle);clf;drawnow; 
control_p(X,A,B,KOv,KOe,GAMMA,plot_pts); 

end 

% Compute composite gain. 
Kv=Kv+KOv; 
Ke=Ke+KOe; 

% Define output ellipsoid matrix 
P=P2; 
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Y. Compute maximum gain on ellipse, U 
[f , g, U, constraints] =control_f g (X, A, B, KOv, KOe, GAMMA, UMAX, ••• 

QO,control_const,weight,pd_weight,inv_weight); 
_Gstop=[Gstop g]; 

· Fstop= [Fstop f] ; 

Y. Clean up hard drive 
delete control.mat 
delete control_best.mat 

Y. Terminate counter and display elapsed time 
toe 

Y, --------------~--------_;- END OF FILE: CONTROL.M ----------~-------------
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G.3.2 Cost Function and Constraints 

function [f,g,Uc,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX, ... 
Q,control_const,weight,pd_weight,inv_weight); 

Y. CONTROL_FG is the cost function and constraint routine for use with CONTROL. 

Y. parametrizes in terms of sqrt(P) and Kv 
Y. modifies definition of (at end) and pos. def. inequalities 

Y. SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
[p]=max(size(X)); 
(c]=size(GAMMA,1); 

flag=l; Y. Defines as controlable subspace 

Y. PARAMETER ASSIGNMENTS 
[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P•P; 

Y. OBJECTIVE FUNCTION (Minimization) 
f=log(trace(P2)); 

Y. CONSTRAINTS (Must be of form<= 0) 
g= [] ; Y. clear array 
constraints=[]; Y. constraints assignments (below) don't work with older Matlab 

Y. Invariance constraint 
Aci=A-B•(Kv+KOv); 
IC=P2•Acl+Acl'•P2+Q; Y. Write as negative definite form 
[v,d]=eig(IC); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D•inv_weight]; Y. Write as 'less than' constraint· 
for i=l:n 

constraints=char(constraints,'Invariance'); 
end 

Acl=A-B•(Ke+KOe); 
IC=P2•(-Acl)+(-Acl)'*P2+Q; Y. Write as negative definite form 
[v,d]=eig(IC); 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D•inv_weight]; Y. Write as 'less than' constraint 
for i=l:n 

constraints=char(constraints,'Invariance'); 
end 

Y. Positive definiteness constraints. 
[v,d]=eig(-P2•pd_weight); Y. Write as negative definite form 
[D,sort_index]=esort(diag(d)); 
V=v(:,sort_index); 
g=[g;D]; Y. Write as 'less than' constraint 
for i=l:n 
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constraints=char(constraints, .'Positive Definiteness'); 
end 

1. State constraints 
for i=l:c; 

Gamma=GAMMA(i,:); 

% Check to see if constraint is control dependent 
if max(max(Gamma*B))==O % Not dependent 

g=[g;·Gamma*inv(P2)*Gamma 1 -1]; % Note: not sign/time depend. 
constraints=char(constraints,['State Constraint I num2str(i)]); 

else· 
w=null(Gamma*(A-B*(Kv+KOv))); 
g=[g; (Gamma*w)*inv(w'*P2*W)*(Gamma*w) 1 -1]; 
constraints=char(constraints,[ 1 Recovering State Constraint 1 num2str(i)]); 
w=null(Gamma*(-(A-B*(Ke+KOe)))); 
g=[g; (Gamma*w)*inv(w'*P2•w)*(Gamma*w)'-1]; 
constraints=char(constraints,['Reaching State Constraint 'num2str(i)]); 

end 
end; 

% Control constraints 
if control_const==l 

Uv=sqrt((Kv+KOv)*inv(P2)*(Kv+KOv)'); 
g=[g; (Uv*Uv)/(UMAX*UMAX)-1]; Y. Normalize to 1 
constraints=char(constraints,'Control'); 
Ue=sqrt((Ke+KOe)*inv(P2)*(Ke+KOe)'); 
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; % Normalize to 1 
constraints=char(constraints,'Control'); 

end 

Uc=max(Uv,Ue); 

% ======================= END OF FILE: CONTROL_FG.M --------~-------------
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G.3.3 Derivatives of Cost Function and Constraints 

function [df_dX,dg_dX]=control_dfg(X,A,B,KOv,KOe,GAMMA,UMAX, ... 
Q,control_const,weight,pd_weight,inv_weight); 

% CONTROL_DFG is the derivative cost function and constraint routine 
% for use with CONTROL. 

% parametrizes in terms of sqrt(P) and Kv 
% modifies definition of (at end) and pos. def. inequalities 

% Empirical weights on constraints (experimented w/weighting pos.def. 1e3) 

% SYSTEM SIZE DEFINITION 
[n,m]=size(B); 
p=max(size(X)); 
c=size(GAMMA,1); 
pg=n*m; % number of state feedback gain parameters (per gain matrix) 
pe=p-2*pg; % number of ellipsoid parameters 

flag=1; % Defines as controllable subspace 

% PARAMETER ASSIGNMENTS 
[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P*P; 

% OBJECTIVE FUNCTION (Minimization) 
f=log(trace(P2)); 

df_dP=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
if i==j 

df_dP=[df_dP;2*P(i,j)/trace(P2)]; 
else 

df_dP=[df_dP;4*P(i,j)/trace(P2)]; 
end 

end 
end 
df_dKv=zeros(size(Kv))'; 
df_dKe=zeros(size(Ke))'; 
df_dX=[df_dP;df_dKv;df_dKe]; 

% =================== =================== ========= ======================= 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; % clear constraint array 
dg_dX=[]; % clear constraint derivative array 

% Invariance constraint (recoverable/positive time) 
Acl=A-B*(Kv+KOv); 
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IC=P2*Acl+Acl'*P2+Q; 
[v,d]=eig(IC); 
[Di,sort_index]=esort(diag(d)); 
Vi=v(:,sort_index); 
g=[g;Di]; % Write as 'less than' constraint 

dDi_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL); 
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)']; 

end 
end 
dDi_dKv=[]; 
for i=1:m 

for j=1:n 
EL=zeros(size(Kv)); 
EL(i,j)=1; 
dAcl_dKv_ij=-B*EL; 
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2; 
dDi_dKv=[dDi_dKv; diag(Vi'*(dIC_dKv~ij)*Vi)']; 

end 
end 
dDi_dKe=zeros(pg,n); % 'n' eigenvalues 

dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe]*inv_weight; 
dg_dX=[dg_dX dDi_dX]; 

% Invariance constraint (reachability/negative time) 
Acl=-(A-B*(Ke+KOe)); 
IC=P2*Acl+Acl'*P2+Q; 
[v,d]=eig(IC); 
[Di,sort_index]=esort(diag(d)); 
Vi=v(:,sort_index); 
g=[g;Di]; % Write as 'less than' constraint 

dDi_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL); 
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)']; 

end 
end 
dDi_dKv=zeros(pg,n); 
dDi_dKe= [] ; 
for i=1:m 

for j=1:n 
EL=zeros(size(Ke)); 
EL(i,j)=1; 
dAcl_dKe_ij=-(-B)*EL; 
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dIC_dKe_ij=P2*(dAcl_dKe_ij)+(dAcl_dKe_ij)'*P2; 
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)']; 

end 
end· 
dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe]*inv_weight; 
dg_dX=[dg_dX dDi_dX]; 

% Positive definiteness of P constraints. 
PDC=-P2*pd_weight; 
[v ,d]=eig(PDC); 
[Dpd,sort_index]=esort(diag(d)); 
Vpd=v(:,sort_index); 
g=[g;Dpd]; % Write as 'less than' constraint 

dDpd_dP=[J; 
for i=1:n 

for j=i:n 
EL=zeros(size(P)); 
EL(i,j)=1;EL(j,i)=1; 
dPDC_dP_ij=-h(EL'*P+P*EL)*pd_weight; 
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)']; 

end 
end 
dDpd_dKv=zeros(pg,n); % 'n' eigenvalues 
dDpd_dKe=zeros(pg,n); 

dDpd_dX=[dDpd_dP;dDpd_dKv;dDpd_dKe~; 
dg_dX=[dg_dX dDpd_dX]; 

% State constraints 
for k=1:c; 

Gami:Qa=GAMMA(k,:); 

% Check to see if constraint is control dependent 
if max(max(Gamma*B))==O % Not dependent 

SC=Gamma*inv(P2)*Gamma'-1; 
g=[g; SC];% Note: not sign/time depend. 

dSC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dSC_dP_ij=Gamma*(-inv(P2)*(P*EL+EL*P)*inv(P2))*Gamma'; 

dSC_dP=[dSC_dP; dSC_dP_ij]; 
end 

end 
dSC_dKv=zeros(pg,1); 
dSC_dKe=zeros(pg,1); 
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKe]; 
d.g_dX=[dg_dX dSC_dX]; 
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else 
w=null(Gamma*(A-B*(Kv+KOv))); 
SC=(Gamma*w)*inv(w'*P2*W)*(Gamma*w)'-1; 
g=[g; SC]; 
dSC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL (i, j) =1; EL (j, i) =1; 

dinv_dP_ij=-inv(w'*P2*w)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w); 
dSC_dP_ij=(Gamma*w)*dinv_dP_ij*(Gamma*w)'; 

dSC_dP=[dSC_dP; dSC_dP_ij]; 
end 

end 
dSC_dKv= [] ; 
for i=1 :m 

for j=1:n 
% Use numerical approximation 
EL=zeros(size(Kv)); 
EL(i,j)=1; 
deltaKv_ij=EL*1e-5; 
deltaw=null(Gamma*(-(A-B*(Kv+KOv+deltaKv_ij))))-w; 
gradw=deltaw/1e-5; 
dinv_dKv_ij=-inv(w'*P2*W)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w); 
dSC_dKv_ij=(Gamma*gradw)*inv(w'*P2*W)*(Gamma*w)'+ ... 

(Gamma*w)*dinv_dKv_ij*(Gamma*w)'+ ... 
(Gamma*W)*inv(w'*P2*W)*(Gamma*gradw)'; 

dSC_dKv=[dSC_dKv; dSC_dKv_ij]; 
end 

end 
dSC_dKe=zeros(pg,1); 
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKel; 
dg_dX=[dg_dX dSC_dX]; 

w=null(Gamma*(-(A-B*(Ke+KOe)))); 
SC=(Gamma*w)*inv(w'*P2*w)*(Gamma*w)'-1; 
g=[g; SC]; 
dSC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 

dinv_dP_ij=-inv(w'*P2*W)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w); 
dSC_dP_ij=(Gamma*W)*dinv_dP_ij*(Gamma*w)'; 

dSC_dP=[dSC_dP; dSC_dP_ij]; 
end 

end 
dSC_dKv=zeros(pg,1); 
dSC_dKe=[]; 
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. end 
end; 

for i=1:m 
for j=1:n 

end 

Y. Use numerical approximation 
EL=zeros(size(Ke)); 
EL(i,j)=1; 
deltaKe_ij=EL*1e-5; 
deltaw=null(Gamma*(-(A-B*(Ke+KOe+deltaKe_ij))))-w; 
gradw=deltaw/1e-5; 
dinv_dKe_ij=-inv(w'*P2*W)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w); 
dSC~dKe_ij=(Gamma*gradw)*inv(w'*P2*W)*(Gamma*w)'+ ... 

(Gamma*W)*dinv_dKe_ij*(Gamma*w)'+ ... 
(Gamma*W)*inv(w'*P2*w)*(Gamma*gradw)'; 

dSC_dKe=[dSC_dKe; dSC_dKe_ij]; 

end 
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKe]; 
dg_dX=[dg_dX dSC_dX]; 

Y. Control constraints 
if control_const==1 

Y. Recoverable control 
CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1; 
g=[g;CC]; 

dCC_dP=[]; 
for i=1:n 

for j=i:n 
EL=zeros(size(P2)); 
EL(i,j)=1;EL(j,i)=1; 
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*··· 

(Kv+KOv)'); 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
end 
dCC_dKv= [] ; 
for i=1:m 

for j=1:n 
EL=zeros(size(Kv)); 
EL(i,j)=1; 
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)'); 
dCC_dKv=[dCC_dKv; dCC_dKv_ij]; 

end 
end 
dCC_dKe=zeros(pg,1); 
dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe]; 
dg_dX=[dg_dX dCC_dX]; 

Y. Reachable control 
CC=(1/UMAX-2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1; 
g=[g;CC]; 

dCC_dP=[]; 
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end 

for i=1:n 
for j=i:n 

end 

EL=zeros(size(P2)); 
EL(i ,j )=1 ;EL(j, i)=1; 
dCC_dP_ij=(1/UMAX-2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ... 

(Ke+KOe)'); 
dCC_dP=[dCC_dP; dCC_dP_ij]; 

end 
dCC_dKv=zeros(pg,1); 
dCC_dKe=[]; 
for i=1 :m 

end 

for j=1:n 

end 

EL=zeros(size(Ke)); 
EL(i,j)=1; 
dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)'); 
dCC_dKe=[dCC_dKe; dCC_dKe_ij]; 

dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe]; 
dg_dX=[dg_dX dCC_dX]; 

% ----------------------- END OF FILE: CONTROL_DFG.M -----------------------
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G.3.4 . Cost Function and Constraints for Finding u 
function [f,g,U]=control_u_fg(xO,KOv,KOe,GAMMA,X,n,m); 
% CONTROL_U_FG is the cost function and constraint routine for use with 
% overlapping controllable ellipsoids to find maximal control on restricted 
% state-space. 

% SYSTEM SIZE DEFINITION 
[c]=size(GAMMA,1); 

flag=1; % Defines as controlable subspace 

% PARAMETER ASSIGNMENTS 
[P,Kv ,Ke] =x2pk(X,n,m,flag); 
P2=P*P; 

% OBJECTIVE FUNCTION (Minimization) 
f=-[xO'*(Kv+KOv)'*(Kv+KOv)*xO;xO'*(Ke+KOe)'*(Ke+KOe)*xO]; 
[f,f_index]=min(f); 

smallest_index=zeros(2,1); 
smallest_index(f_index(1))=1; 

U=abs(-smallest_index'*[Kv+KOv;Ke+KOe]*xO); 

% CONSTRAINTS (Must be of form<= 0) 
g=[]; % clear array 
constraints=[];% constraints assignments (below) don't work with older Matlab 

% Ellipsoid constraint 
EC=x0'*P2*x0-1; % Write as negative definite form 
g=[g;EC]; 
constraints=char(constraints,'Ellipsoid Constraint'); 

% State constraints 
for i=1:c 

for j=1:2 
SC=((-1-j)*GAMMA(i, :))*x0-1; % Consider both plus/minus GAMMA 
g=[g;SC]; 
constraints=char(constraints,['State Constraint 'num2str(i)]); 

end 
end; 

% --------------------- END OF FILE: CONTROL_U_FG.M ---------------------
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G.3.5 Derivatives of Cost Function and Constraints for Finding ii 

function [df_dxO,dg_dxO]=control_u:...dfg(xO,KOv,KOe,GAMMA,X,n,m); 
Y. CONTROL_U_DFG is the derivative cost function and constraint routine for 
Y. use with overlapping controllable ellipsoids to find maximal control 
Y. on restricted state-space. 

Y. SYSTEM SIZE DEFINITION 
c=size(GAMMA,1); 
flag=1; 

Y. PARAMETER ASSIGNMENTS 
[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P•P; 

Y. OBJECTIVE FUNCTION (Minimization) 
f=-[xO'•(Kv+KOv)'•(Kv+KOv)•xO;xO'*(Ke+KOe)'*(Ke+KOe)•xO]; 
[f;f_index]=min(f); 

smallest_index=zeros(2,1); 
smallest_index(f_index(1))=1; 

df_dx0=~[2•(Kv+KOv)'•(Kv+KOv)•xO 2•(Ke+KOe)'•(Ke+KOe)•xO]•smallest_index; 

Y. ====. =================================================================== 

Y. CONSTRAINTS (Must be of form<= 0) 
dg_dxO=[]; Y. clear constraint derivative array 

%·Ellipsoid constraint 
EC=xO'•P2•x0-1; Y. Write as negative definite form 
dEC_dx0=2•P2•xO; 
dg_dxO=[dg_dxO dEC_dxO]; 

Y. State constraints 
for i=1:c 

for j=1:2 
dSC_dx0=(-1~j)•GAMMA(i,:)'; Y. Consider both plus/minus GAMMA 
dg_dxO=[dg_dxO dSC_dxO]; 

end 
end 

Y. --------------------- END OF FILE: CONTROL_U_DFG.M ---------------------
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G.3.6 Plotting Routine 

function [U,P,Kv,Ke]=control_p(X,A,B,KOv,KOe,GAMMA,plot_pts); 
Y. CONTROL_P is the trajectory plotting routine for use with CONTROL 

flag=l; 

Y. Plotting options 
N=max(floor((plot_pts/20)-2),5); Y. plot trajectory from every Nth data 

Y. point on the semi-ellipse with a 
Y. maximum of 20 pts 

if nargin<4 
error('Not enough input arguments.') 

end 

Y. Message to screen 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Plotting trajectories') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

Y. Parameter Assignments (extract P,K's from X) 
[n,m]=size(B); 
p=max(size(X)); 

[P,Kv,Ke]=x2pk(X,n,m,flag); 
P2=P•P; 

Kv=Kv+KOv; Y. Define composite gains 
Ke=Ke+KOe; 

if n==2 Y, 2-D ELLIPSOID 
Y. Compute ellipsoid boundary 
[x1,x2]=semiellipse(P2,GAMMA, [] ,plot_pts); 

Y. Compute corresponding control effort. 
ue=Kv•[xl;x2]; 

Y. Compute maximum control effort on boundary 
U=max(ue); 

Y. Pl.ot boundary for z:ecoverable trajectories 
subplot(121) 

. plot (xl, x2, 'k' ) ; grid on; axis square; hold on 

Y. Compute reaching and recovering state-space descriptions 
sysv=ss(A-B•Kv,B,eye(n),zeros(n,m)); 

Y. Plot trajectories for every Nth point on the ellipsoid boundary 
for i=l: ceil(sqrt(N)) :max(size(xl)); 
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[y,t,x]=initial(sysv,[x1(i),x2(i)],[0: .01:10]); 
plot(x(:,1),x(:,2),'r') 

end 

xlabel ( 'x1') , ylabel ( 'x2') 
title('Recovering Trajectories') 

Y. Plot boundary for reachable trajectories 
subplot(122) 
plot (x1, x2, 'k' ) ; grid on; axis square; hold on 

Y. Compute reaching and recovering state-space descriptions 
. syse=ss(-A+B•Ke,B,eye(n),zeros(n,m)); 

Y. Plot trajectories for every Nth point on the ellipsoid boundary 
for i=1:ceil(sqrt(N)):max(size(x1)); 

[y, t ,x] =initial(syse, [x1 (i) ,x2(i)], [O: .01: 10]); 
plot(x(: ,1) ,x(: ,2), 'b') 

end 

xlabel('x1'),ylabel('x2') 
title('Reaching Trajectories') 

elseif n==3 Y. 3-.D ELLIPSOID 
Y. Compute ellipsoid boundary 
[x1,x2,x3]=semiellipse(P2,GAMMA,[],plot~pts); 

Y. Compute corresponding control effort 
for i=1:size(x1,1) 

for j=1:size(x1,2) 
uv(i,j)=Kv•[x1(i,j);x2(i,j);x3(i,j)]; 
ue(i,j)=Ke•[x1(i,j);x2(i,j);x3(i,j)]; 

end 
end 

Y. Compute maximum control effort on boundary 
U=max(max([abs(uv);abs(ue)])); 

Y.·Plot boundary vs. control 
subplot ( 121) 
surf(x1,x2,x3,uv/U);grid on;axis square;hold on 
subplot(122) 
surf(x1,x2,x3,ue/U);grid on;axis square;hold on 

Y. Compute reaching and recovering state-space descriptions 
sysv=ss(A-B•Kv,B,eye(n),zeros(n,m)); 
syse=ss(-A+B•Ke,B,eye(n),zeros(n,m)); 

Y. Plot trajectories for every Nth point on the ellipsoid boundary 
subplot(121) 
hold on 
for i=1:N:size(x1,1); 

for j=1:N:size(x1,2) 
[y,t,x]=initial(sysv,[x1(i,j),x2(i,j),x3(i,j)],[0:.01:10]); 
plot3(x(:,1),x(:,2),x(:,3),'r') 
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end 
end 
drawnow 
grid on 
colormap('copper') 
lighting phong 

% light('Position',[5 -5 2]) 
light('Position',[0 0 5]) 
h=findobj('Type','surface'); 
set (h, 'FaceLighting' , 'phong' , ... 

'FaceColor','interp', .. . 
'EdgeColor',[.4 .4 .4], .. . 
'BackFaceLighting','reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 
title('Recovering Trajectories') 

subplot(122) 
hold on 
for i=1:N:size(x1i1); 

for j=l:N:size(x1,2) 

end 

[y, t ,x] =initial(syse, [x1(i ,j) ,x2(i, j) ,x3(i ,j )] , [O: . 01: 10]); 
plot3(x(:,1),x(:,2),x(:,3),'b') 

end 

drawnow 
grid on 
colormap('copper') 
lighting phong 

% light('Position',[5 -5 2]) 
light('Position',[0 0 5]) 
h=findobj('Type','surface'); 
set(h,'FaceLighting','phong', ... 

end 

'FaceColor','interp', .. . 
'EdgeColor',[.4 .4 .4], .. . 
'BackFaceLighting','reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 
title('Reaching Trajectories') 

% ----------------------- END OF FILE: CONTROL_P.M -----------------------
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G .4 Miscellaneous Files 

G.4.1 Plotting Point Generator for Semi-Ellipsoidal Set 

function [xx,yy,zz] = semiellipse(P,GAMMA,XO,n) 
Y. SEMIELLIPSE Generates the semi-ellipsoidal set. 
Y. [X,Y,Z] = SEMIELLIPSE(P,GAMMA,XO,n) generates the unit 
Y. ellipsoid 

Y. (x-XO)'*P*(x-X0)=1 
Y. 
Y. then scales these values so that they fit within the 
Y. linear constraint 
Y. 
Y. GAMMA*x<=1 
Y. 
Y. For P matrix (3x3), SEMIELLIPSE generates three (n+1)x(n+1) 
Y. ma tr.ices so that SURF (X, Y, Z) produces the 3-D set, 
Y. For P matrix (2x2), SEMIELLIPSE generates two (n+1)x(1) 
Y. vectors so that PLOT(X,Y) produces the 2-D set. 
Y. 
Y.. The arguments XO and n are optional. Default values are 
Y. the origin for XO and 40 points for n. 
Y. 
Y,. SEMIELLIPSE(P,XO,n) without any return variables graphs the 
Y. ellipse using SURFACE/PLOT. 

Y. Original code: SPHERE.M 
Y. Clay M. Thompson 4-24-91, CBM 8-21-92. 
Y. Copyright (c) 1984-98 by The MathWorks, Inc. 
Y. $Revision: 5.3 $ $Date: 1997/11/21 23:46:48 $ 
Y. 
Y. Modified code: SEMIELLIPSE.M 
Y. Brian D. O'Dell 4-19-98 

if nargin == 0, error('Must define ellipsoid matrix, P.'); end 

Y, CHECK VALIDITY OF P 
if size(P,1)-=size(P,2) 

· error ( 'P must be square. ') 
end 
if min(eig(P))<=O 

error('P must be positive definite.') 
end 

Y. COMPUTE NUMBER OF STATES 
states=size(P,1); 
if (states-=2)&(states-=3) 

.error('P must be a 2x2 or 3x3 matrix.') 
end 

Y, CHECK SIZE OF GAMMA 
if size(P,1)-=size(GAMMA,2) 

error('P and GAMMA must have same number of columns (states).') 
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end 

. % CHECK FOR OPTIONAL ARGUMENTS 
if nargin==2 

n=40; 
end 

if states==2 % 2-D ELLIPSE 
% -pi<= theta<= pi.is a row vector 

theta= (-n:2:n)/n*pi; 

sintheta = sin(theta); sintheta(l) = O; sintheta(n+l) = O; 

xO = cos(theta); 
yo= sintheta; 

% Define points for a unit circle 

for i=l:(n+l) % Loop through the data points 
temp=[xO(i);yO(i)]; % Create a vector for the data point 
alpha=sqrt(temp'*P*temp); % Compute the scaling factor for unit ellipse 
x(i)=xO(i)/alpha; % Scale the data points 
y(i)=yO(i)/alpha; 
overlap_scale=max([l;abs(GAMMA*[x(i);y(i)])]); 
x(i)=x(i)/overlap_scale; 
y(i)=y(i)/overlap_scale; 

end 

if nargout == 0 
plot(x,y) 
xlabel('x1'),ylabel('x2') 

else 
xx= x; yy = y; 

end 

else% 3-D ELLIPSE 
% If plotting, display full ellipse; for trajectories, generate quadrant 
if nargout==O 

% -pi<= theta<= pi is a row vector. 
% -pi/2 <=phi<= pi/2 is a column vector. 

theta= (-n:2:n)/n*pi; 
phi= (-n:2:n)'/n*pi/2; 
cosphi = cos(phi); cosphi(l) = O; cosphi(n+l) = O; 
sintheta = sin(theta); sintheta(l) = O; sintheta(n+l) = O; 

else 
% -pi/2 <=theta<= pi/2 .is a row vector. 
% -pi/2 <=phi<= 0 is a column vector. 

theta= (-n:2:n)/n*pi/2; 
phi= (-2*n:2:0)'/(2*n)*pi/2; 
cosphi = cos(phi); 
sintheta = sin(theta); 

end 
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end 

xO = cosphi*cos(theta); 
yO = cosphi*sintheta; 

% Define points for a unit sphere 

zO = sin(phi)*ones(1,n+1); 

for i=1:max(size(theta)) % Loop through the data points 
for j=1:max(size(phi)) 

temp=[xO(i,j);yO(i,j);zO(i,j)]; % Create a vector for the data 
alpha=sqrt(temp'*P*temp); 
x(i,j)=xO(i,j)/alpha; 
y(i,j)=yO(i,j)/alpha; 

% Scaling factor for unit ellipse 
% Scale data points 

z(i,j)=zO(i,j)/alpha; 
overlap_scale=max([1;abs(GAMMA*[X(i,j);y(i,j);z(i,j)])]); 
x(i,j)=x(i,j)/overlap_scale; 
y(i,j)=y(i,j)/overlap_scale; 
z(i,j)=z(i,j)/overlap_scale; 

end 
end 

if nargout == 0 % Plot if no output 
disp(' ') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp('Plotting semi-ellipsoidal set') 
disp('+++++++++++++++++++++++++++++++++++++++++++++++++++++++++') 
disp(' ') 

surf(x,y,z) 
grid on 
colormap('copper') 
lighting phong 
light('Position',[5 -5 2]) 

. h=findobj ('Type', 'surface'); 
set (h, 'FaceLighting', 'phong', ... 

'FaceColor','interp', .. . 
'EdgeColor',[.4 .4 .4], .. . 
'BackFaceLighting','reverselit', ... 
'AmbientStrength',1, ... 
'DiffuseStrength',1); 

shading interp 
xlabel('x1'),ylabel('x2'),zlabel('x3') 

else 
xx= x; yy = y; zz = z; 

end 

% ---------------------- END OF FILE: SEMIELLIPSE.M ---------------------
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G.4.2 Search Parameter /Matrix Parameter Mapping Routines 

Ellipsoid Matrix and Control Gains to Search Vector 

function [X]=pk2x(P,K1,K2,n,m) 
% PK2X assigns elements of the ellipse matrix, P, and the 
% state-feedback matrix, K, to elements of the search vector, X. 
% If 5 arguments are provided, it assumes two state-feedback 
% matrices are provided. 

if nargin==4 
m=n; 
n=K2; 

X=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
xindex=xindex+1; 
X(xindex,1)=P(i,j); 

end 
end 
for i=1 :m 

for j=1:n 
xindex=xindex+1; 
X(xindex,1)=K1(i,j); 

end 
end 

elseif nargin==5 
X=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
xindex=xindex+1; 
X(xindex,1)=P(i,j); 

end 
end 
for i=1:m 

end 

for j=1:n 
xindex=xindex+1; 
X(xindex,1)=K1(i,j); 

end 

for i=1:m 

end 
end 

for j=1 :n 
xindex=xindex+1; 
X(xindex,1)=K2(i,j); 

end 

% ------------------------- END OF FILE· PK2X.M ======================== 
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Search Vector to Ellipsoid Matrix and Control Gains 

function [P,K1,K2]=x2pk(X,n,m,flag) 
% X2PK assigns elements of the search vector, X, to elements of the ellipse 
% matrix, P, and to the state-feedback gain(s), K1 (and K2, if flag=l). 

if nargin==3 
flag=O; 

end 

P=[]; 
xindex=O; 
for i=1:n 

for j=i:n 
xindex=xindex+l; 
P(i,j)=X(xindex,1); 
P(j,i)=X(xindex,1); 

end 
end 
K1=[]; 
for i=1:m 

for j=1:n 
xindex=xindex+1; 
K1(i,j)=X(xindex,1); 

end 
end 
if flag==1 

K2=[]; 
for i=1:m 

for j=1:n 
xindex=xindex+1; 
K2(i,j)=X(xindex,1); 

·end 
end 

else 
K2=[]; 

end 

% -----------~----------~-- END OF FILE: X2PK.M_------------------------
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