
ELLIPSOIDAL AND SEMI-ELLIPSOIDAL CONTROLLED

INVARIANT SETS FOR CONSTRAINED

LINEAR SYSTEMS

By

BRIAN DWAYNE O'DELL

Bachelor of Science
Oklahoma State University

Stillwater., Oklahoma
1993

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
July, 1999

lhe1J·,5
\~140

COPYRIGHT

By

BRIAN DWAYNE O'DELL

July, 1999

ELLIPSOIDAL AND SEMI-ELLIPSOIDAL CONTROLLED

INVARIANT SETS FOR CONSTRAINED

LINEAR SYSTEMS

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would first like to express my sincere appreciation to my advisor, Dr. Eduardo A. Misawa,

for his wisdom, direction, and support during the course of this entire process. I also wish to

acknowledge the other members of my advisory committee, Dr. Lawrence L. Hoberock, Dr. Gary

E. Young, Dr. Martin T. Hagan, and Dr. James R. Whiteley, for agreeing to oversee my work and

for providing a balanced perspective of engineering theory and practice.

In addition, this five years of work would certainly not have been possible without financial

support in several areas. I would first like to thank the National Science Foundation, for this material

is based upon work supported under a National Science Foundation Graduate Fellowship. Thanks

also to Mr. and Mrs. J. Roy Dorrough for providing an Oklahoma State University Distinguished

Graduate Fellowship. Finally, I would like to thank the Oklahoma Center for the Advancement of

Science and Technology (OCAST) and Seagate Technology, Inc. of Oklahoma City, Oklahoma, for

their sponsorship of the project which inspired this research.

Finally, sincerest thanks must be given to those who have provided advice, support, and encour

agement on matters largely outside the realm of academia: to the people of Bible Baptist Church,

Stillwater, Oklahoma, but foremost to my family, who have supported me in so many ways. Of all

the lessons learned, the most important have been taught by these people, who by their instruction

and example prepare me to walk circumspectly, as a man of wisdom and not merely of knowledge.

"Let us hear the conclusion of the whole matter: Fear God, and keep his commandments:

for this is the whole duty of man." - Ecclesiastes 12:13

iii

TABLE OF CONTENTS

1 Introduction

1.1 Comments on Invariance .

1.2 Outline of Thesis

2 Literature Review

2.1 Motivation & Contributions

3 Ellipsoidal Sets

3.1 Recoverable Ellipsoidal Set

3.1.1 Objective Function .

3.1.2 Constraints

3.1.3 Implementation Issues

3.2 Reachable Ellipsoidal Set

3.3 Controllable Ellipsoidal Set

3.4 Summary

4 Ellipsoidal Set Examples

4.1 Second Order Systems

4.1.1 Stable

4.1.2 Stable Focus

4.1.3 Marginal

4.1.4 Unstable.

4.1.5 Unstable Focus

4.1.6 Saddle

4.2 Third Order Systems .

4.2.1 Stable ..

4.2.2 Unstable.

4.2.3 Marginal

iv

1

5

6

8

10

12

12

15

16

17

18

18

19

20

20

21

22

25

27

27

30

32

32

33

35

4.2.4 Mixed

4.3 Comparison Against Published Result

5 Semi-Ellipsoidal Sets

5.1 Recoverable Semi-Ellipsoidal Set

5.1.1 Theory

5.1.2 Design.

5.1.3 Main Result . .

5.1.4 Implementation Issues

5.2 Reachable Semi-Ellipsoidal Set

5.3 Controllable Semi-Ellipsoidal Set

5.4 Summary

6 Semi-Ellipsoidal Set Examples

6.1 Second Order Systems

6.1.1 Stable

6.1.2 Stable Focus

6.1.3 Marginal

6.1.4 Unstable.

6.1.5 Unstable Focus

6.1.6 Saddle

6.2 Third Order Systems .

6.2.1 Stable ..

6.2.2 Unstable.

6.2.3 Marginal

6.2.4 Mixed ..

6.3 Comparison Against Published Result

7 Concluding Remarks

7 .1 Future Research

Bibliography

A Existence of Controllable Ellipsoid

B Derivation of Ellipsoid Volume Cost Function

V

38

43

45

46

47

50

54

57

59

60

61

63

63

63

66

66

70

70

73

76

76

79

81

84

87

89

90

94

99

102

C Derivation of State Constraint Inequalities 106

C .1 Level Sets 106

C.1.1 Ellipsoidal Set Boundary as a Level Set 106

C.1.2 Linear Constraint Boundary as a Level Set 107

C.2 Derivation of Inequality 108

C.3 Derivation of Control Constraint Inequalities 111

D Gradients of Cost Functions and Constraints · 112

D.l Preliminaries 112

D.2 Identities . . 113

D.3 Analytic Derivatives 114

E Overlapping Ellipsoid Constraint Derivation for Variable Structure Control 120

E.1 Derivation of Linear Transformation 122

E.2 Analytic Gradient of Constraint . 123

F Matlab Code for Ellipsoidal Sets 126

F.l Function Files for Computing Recoverable Ellipsoidal Set 126

F.1.1 Optimization Routine 126

F.1.2 Cost Function and Constraints 133

F.1.3 Derivatives of Cost Function and Constraints 135

F.1.4 Plotting Routine 138

F .2 Function Files for Computing Reachable Ellipsoidal Set 140

F.2.1 Optimization Routine 140

F.2.2 Cost Function and Constraints 146

F.2.3 Derivatives of Cost Function and Constraints 148

F.2.4 Plotting Routine 151

F .3 Function Files for Computing Controllable Ellipsoidal Set 153

F.3.1 Optimization Routine 153

F .3.2 Cost Function and Constraints 160

F.3.3 Derivatives of Cost Function and Constraints 162

F .3.4 Plotting Routine 167

F .4 Miscellaneous Files . . . 170

F .4.1 Plotting Point Generator for Ellipsoidal Set 170

vi

F.4.2 Search Parameter/Matrix Parameter Mapping Routines

G Matlab Code for Semi-Ellipsoidal Sets

G.1 Function Files for Computing Recoverable

Semi-Ellipsoidal Set

G.1.1 Optimization Routine

G.1.2 Cost Function and Constraints

G.1.3 Derivatives of Cost Function and Constraints

G.1.4 Cost Function and Constraints for Finding u
G.1.5 Derivatives of Cost Function and Constraints for Finding ii.

G.1.6 Plotting Routine

G.2 Function Files for Computing Reachable

Semi-Ellipsoidal Set

G.2.1 Optimization Routine

G.2.2 Cost Function and Constraints

G.2.3 Derivatives of Cost Function and Constraints

G.2.4 Cost Function and Constraints for Finding ii.

G.2.5 Derivatives of Cost Function and Constraints for Finding ii.

G.2.6 Plotting Routine

G .3 Function Files for Computing Controllable

Semi-Ellipsoidal Set

G.3.1 Optimization Routine

G .3.2 Cost Function and Constraints

G.;3.3 Derivatives of Cost Function and Constraints

G.3.4 Cost Function and Constraints for Finding ii.

G.3.5 Derivatives of Cost Function and Constraints for Finding u
G.3.6 Plotting Routine

G .4 Miscellaneous Files . . .

G.4.1 Plotting Point Generator for Semi-Ellipsoidal Set .

G.4.2 Search Parameter/Matrix Parameter Mapping Routines

vii

173

175

175

175

184

186

190

191

192

194

194

202

204

208

209

210

212

212

221

223

229

230

231

234

234

237

LIST OF TABLES

6.1 Comparison of Number of Required Parameters and Enclosed Area. 87

viii

LIST OF FIGURES

1.1 Illustration of Point Which is Reachable but Not Recoverable ...

1.2 Illustration of Recoverable, Reachable, and Controllable Points. .

3.1 Maximal Recoverable Set.

3.2 Approximate Maximal Recoverable Set.

3.3 Ellipsoidal Level Sets of V.

4.1 Recoverable Ellipsoid for Second Order Stable System ..

4.2 Reachable Ellipsoid for Second Order Stable System. . .

4.3 Controllable Ellipsoid for Second Order Stable System ..

4.4 Recoverable Ellipsoid for Second Order Stable Focus System.

4.5 Reachable Ellipsoid for Second Order Stable Focus System. .

4.6 Controllable Ellipsoid for Second Order Stable Focus System.

4. 7 Recoverable Ellipsoid for Second Order Marginal System.

4.8 Reachable Ellipsoid for Second Order Marginal System. .

4.9 Controllable Ellipsoid for Second Order Marginal System.

4.10 Recoverable Ellipsoid for Second Order Unstable System.

4.11 Reachable Ellipsoid for Second Order Unstable System. .

4.12 Controllable Ellipsoid for Second Order Unstable System.

4.13 Recoverable Ellipsoid for Second Order Unstable Focus System ..

4.14 Reachable Ellipsoid for Second Order Unstable Focus System ...

4.15 Controllable Ellipsoid for Second Order Unstable Focus System.

4.16 Recoverable Ellipsoid for Second Order Saddle System ..

4.17 Reachable Ellipsoid for Second Order Saddle System. . .

4.18 Controllable Ellipsoid for Second Order Saddle System.

4.19 Recoverable Ellipsoid for Third Order Stable System ..

4.20 Reachable Ellipsoid for Third Order Stable System. . .

ix

4

4

13

14

15

22

22

23

23

24

24

25

26

26

27

28

28

29

29

30

31

31

31

33

34

4.21 Controllable Ellipsoid for Third Order Stable System. . 34

4.22 Recoverable Ellipsoid for Third Order Unstable System. 36

4.23 Reachable Ellipsoid for Third Order Unstable System. . 37

4.24 Controllable. Ellipsoid for Third Order Unstable System. 37

4.25 Recoverable Ellipsoid for Third Order Marginal System. 38

4.26 Reachable Ellipsoid for Third Order Marginal System. . 39

4.27 Controllable Ellipsoid for Third Order Marginal System. . 39

4.28 Recoverable Ellipsoid for Third Order Mixed System. . . 41

4.29 Reachable Ellipsoid for Third Order Mixed System. . . . 42

4.30 Controllable Ellipsoid for Third· Order Mixed System. . 42

4.31 Comparison of Ellipsoidal and Polyhedral Methods for Double Integrator System. . 44

5.1 Invariant Subset of an Invariant Ellipsoid. 45

5.2 Illustration of Trajectories Emanating from State Constraint. 46

5.3 lllustratio:n, of Ellipsoid Violating a State Constraint. . 4 7

5.4 Derivative Function Subsets. 48

5.5 Acceptable and Unacceptable Regions of a Constraint Boundary. 49

5.6 Variable Structure Control Failing Invariance of Bv.. . . 50

5.7 Comparison of Requirements for Theorems 5.1 and 5.2. 51

5.8 Illustration of Invariant Ellipse and Intersecting Hyperplane. 53

5.9 Illustration for Proof of Corollary 5.3. 54

5.10 Illustration of Reduced Dimension Ellipsoid and State Constraint Boundary in R2 • 55

5.11 Illustration of Reduced Dimension Ellipsoid and State Constraint Boundary in R1• 55

5.12 Progression of Search Using Ellipsoid Volume as Objective Function. 58

5.13 Maximal Control Occurring Outside of Bv.. 59

5.14 Maximal Control Occurring Inside of Bv. . . 60

5.15 Duality of Constraint Derivative Regions when riB = 0. . . 61

6.1 Recoverable Semi-Ellipsoidal Set for Second Order Stable System. 64

6.2 Reachable Semi-Ellipsoidal Set for Second Order Stable System. . 65

6.3 · Controllable Semi-Ellipsoidal Set for Second Order Stable System. 65

6.4 Recoverable Semi-Ellipsoidal Set for Second Order Stable Focus System. 66

6.5 Reachable Semi-Ellipsoidal Set for Second Order Stable Focus System. . 67

6.6 Controllable Semi-Ellipsoidal Set for Second Order Stable Focus System. . 67

X

6.7 Recoverable Semi-Ellipsoidal Set for Second Order Marginal System.

6.8 Reachable Semi-Ellipsoidal Set for Second Order Marginal System ..

6.9 Controllable Semi-Ellipsoidal Set for Second Order Marginal System ..

6.10 Controllable Semi-Ellipsoidal Set for Second Order Marginal System using Increased

68

69

69

Control Effort. 69

6.11 Recoverable Semi-Ellipsoidal Set for Second Order Unstable System. 70

6.12 Reachable Semi-Ellipsoidal Set for Second Order Unstable System. . 71

6.13 Controllable Semi-Ellipsoidal Set for Second Order Unstable System. 71

6.14 Recoverable Semi-Ellipsoidal Set for Second Order Unstable Focus System. 72

6.15 Reachable Semi-Ellipsoidal Set for Second Order Unstable Focus System. . 72

6.16 Controllable Semi-Ellipsoidal Set for Second Order Unstable Focus System. 73

6.17 Recoverable Semi-Ellipsoidal Set for Second Order Saddle System. 74

6.18 Reachable Semi-Ellipsoidal Set for Second Order Saddle System. . 74

6.19 Controllable Semi-Ellipsoidal Set for Second Order Saddle System. 75

6.20 Recoverable Semi-Ellipsoidal Set for Third Order Stable System. 77

6.21 Reachable Semi-Ellipsoidal Set for Third Order Stable System. . 77

6.22 Controllable Semi-Ellipsoidal Set for Third Order Stable System. 78

6.23 Controllable Semi-Ellipsoidal Set 'Irajectories for Third Order Stable System. 78

6.24 Recoverable Semi-Ellipsoidal Set for Third Order Unstable System. . 79

6.25 Reachable Semi-Ellipsoidal Set for Third Order Unstable System. . . 80

6.26 Controllable Semi-Ellipsoidal Set for Third Order Unstable System. 80

6.27 Controllable Semi-Ellipsoidal Set 'Irajectories for Third Order Unstable System. 81

6.28 Recoverable Semi-Ellipsoidal Set for Third Order Marginal System. . 82

6.29 Reachable Semi-Ellipsoidal Set for Third Order Marginal System. . . 82

6.30 Controllable Semi-Ellipsoidal Set for Third Order Marginal System. 83

6.31 Controllable Semi-Ellipsoidal Set 'Irajectories for Third Order Marginal System. 83

6.32 Recoverable Semi-Ellipsoidal Set for Third Order Mixed System. 85

6.33 Reachable Semi-Ellipsoidal Set for Third Order Mixed System. . 85

6.34 Controllable Semi-Ellipsoidal Set for Third Order Mixed System. 86

6.35 Controllable Semi-Ellipsoidal Set 'lrajectories for Third Order Mixed System. 86

6.36 Comparison of Semi-Ellipsoidal, Ellipsoidal, and Polyhedral Methods for Double In-

tegrator System. 88

xi

C.l Illustration of Boundary Intersection

E.l Illustration of Biased Constraint Derivative Boundary.

xii

109

121

Chapter 1

Introduction·

An inherent evil of model-based control is the inevitable discrepancy between the actual system and

the system model for which the controller was designed. Failure to consider these discrepancies, or

modeling errors, can lead to undesirable - and potentially unstable - results. Often, such errors are

unavoidable due to insufficient information about the system. In many instances, however, they are

intentional, resulting from simplifying assumptions in the model.

One such simplification is the approximation of a system with constraints on the states (saturation

nonlinearities on the state variables) as a purely linear system. Suppose the controllable, single-input,

· linear, time-invariant (LTI) system, (1.1), (1.2), has limits on the magnitude of the state variables

and on the available input.

x = Ax + Bu, x E Rn

y ~ Cx+Du

(1.1)

(1.2)

Specifically, the following linear inequality constraints exist, where each inequality is assumed to

contain the origin.

Gi = {xlrix~l},i=l, ... ,k

U = { ul lul ~ u}

(1.3)

(1.4)

Definition 1.1 The maximal state .. space, G, is given by the intersection of the inequality con

straints, (1.5).

(1.5)

Obviously, such a system is indeed linear so long as the states remain in the unsaturated mode,

so one approach is to keep the state in this linear range. However, this method generally results in

1

overly conservative restrictions on the operating space, limiting both the range of operation and the

achievable performance characteristics. The problems of performance and stability are compounded

by the limit on the available control effort.

The problem of remaining inside a set of prescribed bounds on the states is non-causal, requiring

prediction to determine if the available control effort is sufficient to keep the state within these

bounds. Essentially, it is a two point boundary value problem since the initial condition, x(t0), and

the final state, x(t1) (e.g., the origin for the regulator problem), are known. If no realizable control

signal exists to take the ~ystem from x (to) to x (ti) without violating the state constraints, then

the point x(t0) is not admissible.

Definition 1.2 A trajectory, x (t), or control signal, u (t), is said to be admissible on t E [t1 , t2]

if x (t) E G, u (t) EU (t E [t1, t2]), respectively.

In general, the issue is whether or not two points, Xa,Xb E G, can be accessed from one another

along some admissible trajectory using some admissible control signal. The origin being of particular

interest in most control system designs, the following definitions are stated with the note that x2

is taken as the origin for the remainder of the thesis. These definitions adapt those established by

LeMay [32], who studied the constrained input problem, by including restrictions on the states, as

well.

Definition 1.3 An element x1 E Rn is a recoverable state in (to, ti) with respect to x2 if there

exists an admissible control which will drive the system from state x1 at time t0 to x2 at time t f

along an admissible trajectory. The maximum region of recoverability with respect to x2, S11 ,

is the set of all recoverable states in (to, t f) with respect to t f.

Definition 1.4 An element x1 E Rn is a reachable state in (to, ti) with respect to x2 if there

exists an admissible control which will drive the. system from x2 at time to to state x1 at time t f

along an admissible trajectory. The maximum region of reachability with respect to x2, Se, is

the set of all reachable states in (to,t1) with respect to ti.

Definition 1.5 Two elements x 1 ,x2 E Rn., are a dual pair of states, or dual states, in (to,t1)

if there exists an admissible control which will drive the system from x1 at t0 to x2 at t f along an

admissible trajectory, and if there exists an admissible control which will drive the system from x2 at

to to X1 at t f along an admissible trajectory. The maximum region of controllability in (to, t f),

Sc, is that set of states in Rn for which:

1. Any pair of states in that set is a dual pair in (to, ti).

2

2. There does not exist a state in Rn not in the set which is the dual in (to, t1) of each state in

the set.

Remark 1.1 The problem of control of systems with constrained states and input first received

widespread attention in the 1960's and early 1970's but apparently faded due to the complexity of the

problem and the proposed solutions. Interest was revived by the availability of computers in the late

1980's and onwards. However, the terms used in the earlier publications often differ from those used

in the more recent ones. In addition, technologies originating in other fields have been applied to the

problem, introducing additional words and phrases to the mix. The result is a lack of consistency in

the terminology. The terms recoverable, reachable, and controllable are used here because of

their introduction in one of the earliest complete works in the field of constrained input set theory

and because they help to describe what is physically occurring. In {16}, controllable, reachable,

and maneuverable are used to describe the same sequence of sets. Other terms may be encountered

in the literature, most notably viable as an alternative for recoverable (e.g. [4},{13}) and attainable

as an alternative for reachable (e.g. {1},[2]).

To better illustrate the issues involved, one may imagine a simple, second order mass-spring

damper system traveling at some positive velocity (which for this case is assumed to be its maximum

admissible velocity) and consider what control effort is necessary to maintain the system inside a

position limit. The point designated Xe in Figure 1.1, the phase plane of the system's control

canonical form (with state bounds denoted by the dotted lines), illustrates the point in time when

the system state has reached the maximum position bound as a result of traveling at the maximum

velocity.

To maintain the system state inside the prescribed limit, a negative impulse signal (control effort)

must be sent to the system to drive the velocity to zero (point Xe) instantaneously. Obviously, such

a signal violates any finite constraint on the input. Consequently, one must determine the point,

x*, at which maximum negative control effort must be applied to ensure that the system state will

remain inside the constraint.

From this illustration, it is seen that the point Xe is not recoverable in the sense that no admissible

control signal exists which will maintain the system trajectory inside the state bounds. However,

the point is reachable since the state can be accessed from at least one other point in G via some

trajectory remaining in G.

These ideas of recoverability and reachability can be expanded by considering other points in the

state-space. Figure 1.2 shows, in addition to Xe, two additional points, xv, Xe, and representative

3

~ - - - - ~~--~~--<1..-~~--+------
x* X e I

I 8G1

\ .. I

\1
\1

------r

Figure 1.1: Illustration of Point Which is Reachable but Not Recoverable.

8G3

~ - - - -

I

-t
I

I

-~
Xv

I

Figure 1.2: Illustration of Recoverable, Reachable, and Controllable Points.

4

trajectories through the points (The precise path is, of course, control dependent, but for this

discussion it is only· important to . note that trajectories must tend to the right if the velocity is

positive and to the left if the velocity is negative.) In contrast to Xe, the point xv is recoverable

but not reachable, while Xe is both reachable .and recoverable, a property which is referred to as

controllable.

1.1 Comments on Invariance

As discussed in Chapter 2, several options exist for solving the problem of control with constrained

states and input. The method used in this thesis is that of identifying a priori a subset, S, of the

state-space so that, for every state in that subset, there exists an admissible control law such that the

state is reachable/recoverable/controllable, depending on the desired set. This involves the notion

of invariance, and it is important to clarify the terminology with a few definitions.

Definition 1.6 {8} The set SC Rn is said positively invariant for a system of the form

d
dtx(t) = f (x(t))

if for all x (0) ES the solution x (t) ES fort> O. If x (0) ES implies x (t) ES for all t ER then

we say that S is invariant.

Definition 1.7 {8} The set SC Rn is said controlled invariant for the system

d .
dtx(t) = f (x(t))

y (t) = g (x (t))

if there exists a continuous feedback control law

u (t) = cp (y (t))

which assures the existence and uniqueness of the solution on R;+ and it is such that S is positively

invariant for the closed loop system.

Remark 1.2 As noted in {8}, the formal definition of invariant, referring to time future and past,

rarely finds use in engineering applications. In this thesis, when a set is said to be invariant, positive

or controlled invariance is implied.

The objective of this research is to identify a reasonable approximation to a maximal set, without

regard for any fixed control law. The proposed approach specifies a structure for the set (ellipsoidal

5

or semi-ellipsoidal) as well as for the control law (state-feedback), then searches over the param

eter space (matrix elements) of both the set and the control law to find maximal sets subject to

the constraints of invariance, bounded states and input, etc. However, performance requirements

(settling time, etc.) are not incorporated into the problem formulation; the state-feedback structure

is assumed solely to prove that there exists an admissible control making the set invariant. In fact,

response characteristics under the computed state-feedback law may be far from ideal even though

admissibility of the trajectories is ensured, so the computed control law is simply discarded.

Adhering to the definitions of Bianchini, the algorithms presented in this thesis are technically

solving a positive invariance problem. However, the only information of interest is the set itself,

which can be said to be controlled invariant since there is known to exist at least one control law

{the discarded state feedback rule) making the set positively invariant in the closed-loop, all of which

adds unnecessary confusion to the discussion. For the sake of clarity, then, the phrase "controlled

invariant" is used throughout, with the admission that this may not be in keeping with the strict

definition in all instances.

Remark 1.3 If, for a given system, a state feedback control law has been computed which gives

desirable performance characteristics, the Matlab code in the appendices could be easily adapted to

solve the maximal (positively} invariant set problem for a fixed control law by allowing the algorithm

to search over the set of ellipsoid/semi-ellipsoid parameters only.

1.2 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 surveys the currently available

literature related to control of constrained systems, motivates the problem addressed in this work,

and highlights the contributions. Chapters 3 and 4 present the theory and exam.pies of ellipsoidal

set approximations, which provides the foundation for the semi-ellipsoidal sets. Chapter 5 presents

the main contribution of the thesis, the semi-ellipsoidal approximating set, and Chapter 6 provides

exam.pies illustrating the application of this theory to second- and third-order systems. Chapter 7

makes some concluding remarks and comments on possible avenues for future research.

Several appendices are included to provide details of certain portions of the work. Appendix A

addresses the existence of a solution to the pair of Ricatti equations for the controllable ellipsoid,

while Appendices B and C derive the ellipsoid volume objective function and state constraint inequal

ities, respectively. Appendix D provides the analytic derivatives of the cost functions and constraints

required for the Matlab algorithms of Appendices F and G. Finally, Appendix E presents a modified

6

semi-ellipsoidal state constraint inequality based on a variable structure rather than state feedback

control.

7

Chapter 2

Literature Review

Research into the control of systems with state and input constraints can generally be classified into

one of two broad categories: predictive schemes and set membership methods. Among those ap

proaches falling into the first category are time-optimal and model predictive methods. Time-optimal

control for constrained systems is a classic problem and has been investigated extensively (see,

e.g., [30]). Using a model predictive scheme, Bemporad [5] proposes an alternative reference gover

nor for discrete time systems. At each time step, an admissible control sequence is generated which

minimizes a cost function measuring the sum squared error between the predicted system trajectory

and the desired reference trajectory for N future time steps. Furthermore, the constraint is imposed

that the system's state will remain inside the state bounds for at least the N time steps of the

cost function. Instead of imposing a terminal state constraint, the author relaxes the constraint to

membership in an ellipsoidal set. The primary drawback of this and other model predictive methods

is the computational burden for predicting states at future time steps.

The set membership methods seek to identify a priori a subset of the state-space contained in the

constraint set which is invariant under an admissible control. One of the earliest papers investigating

the reachable, recoverable, and controllable regions of the state-space is the doctoral dissertation

by LeMay [32], in which the maximal subsets for linear systems with input constraints (i.e., no

state constraints) are computed using time-optimal trajectories. A large body of work by LeMay's

doctoral committee chairman, Dr. Elmer G. Gilbert, attempts to extend the results to autonomous

discrete time systems with both input and state constraints using polyhedral approximations to the

maximal recoverable set. (Typically, only the recoverable set is treated in the literature, primarily

because this is the set defining the safe range of operation.) Most notable is a paper co-authored

by K. T. Tan [20], which identifies the recoverable set (or "output admissible set," as referred to

8

by the authors) for systems with state-feedback control. The set is characterized by taking the

system forward in time and identifying those initial conditions which do not violate the constraints.

Among the applications of this technology is a reference governor, which modifies the reference

signal to the controller so that the system remains in the un-saturated region ([17], [18], [19]), and

a multimode control, which switches the control law when necessary to ensure safety at the expense

of performance ([31]).

• Gutman and Cwikel [21], [22]investigated the use of polyhedra for discrete time non-autonomous

systems. This work was extended in [29] and most recently in [35], in: which an approach is proposed

for discrete time systems based on level sets of time-optimal control. That is, the authors generate

backward in time the set of all points (within the admissible range of the state variables) which can

reach the origin in N steps, resulting in polyhedra characterizing each Nth level set.

Bitsoris and Gravalou [7] adopt a linear programming approach to solving the constrained state

and input problem for discrete time systems given an a priori specified, bounded convex polyhedral

set, X0 , of initial conditions. Solution of the control problem lies in finding ari admissible control for

each vertex of X 0 , then computing a control law for any other point as a linear combination of the

vertices' control laws. However, this method does not (and cannot) guarantee that an admissible

solution exists for each vertex.

Most relevant to the present note are the studies utilizing a Lyapunov or invariant ellipsoid ap

proach. Suarez, et al., applies this method to linear systems with control constraints [44]. Among

the first to employ the ellipsoid approach for systems with state constraints was Gutman and Ha

gander [23]. Similar works by Shewchun and Feron [42], [43] and Wredenhagen and Belanger [47]

investigate the use of nested ellipsoids to regulate systems with bounds on the control and control

rate. The state is moved from one ellipsoid to the next inner one using subsequently higher control

gains, resulting in improved performance without saturating. Both papers rely on LQR theory to

develop the control law, with the ellipsoid being the solution to the Riccati equation. The primary

difference in the two papers is that, in the latter, the authors develop a recursive algorithm to

compute the parameters for the nested ellipsoids, while, in the former, the authors rely on a linear

matrix inequality (LMI) approach.

Hou and Michel [24} investigate the asymptotic and global stability ofstable, linear, autonomous

systems operating on the unit hypercube or some less restrictive partial state constraint set using

ellipsoidal Lyapunov functions. However, the autonomous form is not assumed to be the closed loop

structure resulting from state feedback, and, consequently, no conditions are placed on control effort.

To the author's knowledge, the work of LeMay [32] has not been formally extended to the case

9

of constrained input and control. However, the results of his· study, as well as those of Mayne and

Schroeder [35], suggest that the boundaries of the maximal regions are characterized by a combina

tion of time-optimal {or maximal input) trajectories and the state constraints, Gi, themselves. Such

a region would be difficult to characterize quantitatively for a generic system. Thus, approximations

such as the polyhedra suggested by Gilbert, et al., or Mayne and Schroeder are more realistic for

practical applications. Furthermore, Blanchini and Miani [9] have shown that the maximal set can

be arbitrarily closely approximated by polyhedra. However, these approaches themselves become

markedly more complex for systems higher than second or third order, due to the number of vertices

needed to adequately describe maximal sets in higher dimensions. (As an indicator, see Table 1 of

Mayne and Schroeder [35], which shows the total number of vertices for an N = 8 level set design

increasing from 78 for a second order system to 566 for a fifth order system, and note that each vertex

requires n data points to describe, for a total of 156 and 1698 parameters, respectively.) Although

some work has been done to minimize the number of vertices without degrading performance ([37]),

data storage space remains an issue for many applications.

2.1 Motivation & Contributions

Blanchini makes the following statement in the conclusion of his survey paper on set invariance in

control [8]:

The techniques based on ellipsoidal sets are conservative. This fact is well estab

lished in robustness analysis as well as in the determination of domains of attraction

under constraints. Polyhedral sets provide non-conservative solutions but they lead to

computationally intensive algorithms. This is one of the most serious troubles although

the fast improving computer performances alleviate the problem.

We believe that there are still several open problems that are worth an investigation.

For instance, we have seen that the only family of sets of practical use having a bounded

complexity are the ellipsoids. For the reasons explained above it would be important to

develop algorithms to find other classes of invariant sets to achieve a reasonable tradeoff

between conservatism and complexity.

While computer performance has improved tremendously in recent years; numerous situations

exist in which system resources (processing time, available storage space, etc.) are limited. For

10

such systems, the comments by Blanchini are even more applicable, and they motivate a need for

approximations to the maximal sets with better conservativeness and complexity properties than

those methods currently available.

For the primary contribution, it is proposed that the maximal sets be approximated by subsets

of ellipsoids defined by the intersection of the ellipsoid itself and the state constraint sets. These

semi-ellipsoidal sets are shown to be invariant via an admissible state-feedback control law. This

approach addresses the concerns of Blanchini by offering an approximation to the maximal sets

which is less conservative than the·ellipsoidal approach but simpler than the polyhedral approach.

· As a foundational step to the main result, the maximal sets are first approximated by invariant

ellipsoids completely contained within the state constraint set. The more general parent problem,

that of finding the largest invariant ellipsoid contained in a polyhedral set, has been formulated by

Boyd, et al. [10, Sec. 5.2]. Consequently, the ellipsoidal approach is· effectively an extension of this

concept to the specific problem of control in the presence of state and input constraints.

In light of the published results, the research presented.in this thesis offers the following contri

butions:

1. The ellipsoidal method provides approximations to the maximal recoverable, reachable, and

controllable sets for continuous time systems with constraints on both the input and linear

combinations of the states. The approximation is characterized by only n(n + 1) /2 parameters

specifying an (n x n) symmetric ellipsoid matrix.

2. The semi-ellipsoidal method provides approximations to the maximal recoverable, reachable,

and controllable sets for continuous time systems with constraints on both the input and

linear combinations of the states which are less conservative than the ellipsoidal approach

but less complex than the polyhedral approach. The approximation is characterized by only

n((2k + n) +1)/2 parameters specifying an (n x n) symmetric ellipsoid matrix and k state

constraint matrices of dimension (n x 1).

3. The ellipsoidal and semi-ellipsoidal approximations transfer the problem of control with con

strained states and input from one of point-in-time. prediction to one of point-in-time set

membership, greatly reducing the on-line computational burden.

4. In general, the ellipsoidal and semi-ellipsoidal methods are applicable for the constrained-input

problem {i.e., no state constraints), as well. In certain cases, such as the recoverable set for

a strictly stable system or the reachable set for a strictly unstable system, the algorithm will

not converge, since the maximal set is the entire state-space.

11

Chapter 3

Ellipsoidal Sets

The objective of this chapter is to twofold: (i) to extend, at least in a conservative sense, the concepts

of recoverable, reachable, and controllable sets due to LeMay [32] to systems with state constraints

and (ii) to provide a foundation for the semi-ellipsoidal sets to follow in Chapter 5. Consideration

is first given to approximating the recoverable set, which can essentially be thought of as solving

a constrained regulator problem. The reachable and controllable sets are then adapted from these

results.

3.1 Recoverable Ellipsoidal Set

Suppose the maximal recoverable set for a particular system is as shown in Figure 3.1.

Lemma 3.1 The maximal recoverable set, Sv, is invariant under some control law, Uv (x).

Proof. Note that the maximal recoverable set is, by definition, complete (i.e., there are no points

outside Sv which can reach the origin along some admissible trajectory using an admissible control

signal, Uv (x).) Suppose an admissible trajectory of some point in Sv passes outside 8Sv using an

admissible control. This implies that Sv is not complete, contradicting the definition. •

Lemma 3.2 A sub-maximal recoverable set Sv C Sv ~ G satisfies the state and input constraints if

Sv is invariant under some control law Uv (x), where Uv EU for x E Sv.

Proof. Since Sv is invariant, then x (xo, t) E Sv, t E [O, oo), which implies that x (xo, t) E G,

t E (0, oo). This, in turn, implies that Uv (x, t) EU, t E [O, oo). •

12

I

I

8Gs I
I

- ""I' - - - - - -~------....
1 8G4

Figure 3.1: Maximal Recoverable Set.

The condition on Sv in Lemma 3.2 is sufficient but not necessary, since it may be possible, using

another admissible control law, Uv (x), to generate another recovery trajectory which exits Sv for

t E [t1, t2] but remains inside G, as illustrated in Figure 3.2.

Suppose that the boundary of the sub-maximal set, 8Sv, can be expressed as the level set of

a Lyapunov function, V (x). A necessary and sufficient condition for invariance of Sv is that (3.2)

hold for some control law, u11 (x), where V denotes the time derivative of V.

.ij..

dVdz < Q
dz dt -

(3.1)

(3.2)

In general, V (x) and u (x) can be any of a number of functions (provided, of course, that the

candidate V qualifies as a Lyapunov function). However, simplifying assumptions must be made to

bring the generic problem into a tractable form. Specifically, the following structur~s are chosen,

where Pv > 0 implies that Pv is a positive definite matrix (Note: V satisfies the usual requirements

for a Lyapunov function, in particular that it is positive definite):

13

(3.3)

{3.4)

Xo

Figure 3.2: Approximate Maximal Recoverable Set.

Ellipsoids are quadratic functions of the states defined by positive definite matrices. Conse

quently, each level set of (3.3) defines an ellipse, as shown in Figure 3.3. In particular, attention

may be focused (without loss of generality) on the level set V (x) = 1, leading to Problem 3.1.

Problem 3.1 Find the largest ellipsoid, "tv = { xjxT Pvx :::; 1} and corresponding control law,

Uv = -Kvx, such that {a) "tv ~ G, (b) luv (x)I:::; u for x E &v, and (c) "tv is a controlled invariant

set for the system (1.1} and control law -Kvx.

Remark 3.1 It is important to emphasize the fact that the computed state feedback gain, Kv, is

used only as a tool to establish invariance of the maximal recoverable ellipsoid, and is not necessarily

intended to serve as the implemented controller for the system. (The same holds for the discussion

on the reachable and controllable sets to follow.)

Remark 3.2 Suppose asymmetric constraints exist on a state (or input}. Since the ellipsoid is

symmetric and assumed centered on the origin, then its size is determined by the more restrictive

condition, such that the asymmetric constraint effectively becomes a symmetric constraint. Conse

quently, state and input constraints are assumed symmetric for the duration of the thesis.

Invariance of the ellipsoid is ensured by forcing the time derivative of V, (3.5), to be negative

semi-definite.

14

x2 -1 -1
x1

Figure 3.3: Ellipsoidal Level Sets of V.

= XT Pv (Ax+ Buv) +(Ax+ Buvf Pvx

= xTPv (A- BKv)x +xT (A-BKvf Pv

= XT [Pv (A- BKv) + (A - BKvl Pv] X (3.5)

The requirement that this time derivative be negative semi-definite imposes the equivalent condition

that the matrix in brackets be negative semi-definite, as shown in (3.6).

(3.6)

Note the similarity of (3.6) with the Control Algebraic Riccati Equation (CARE), shown in (3.7),

along with the state feedback gain in (3.8).

PA+ATP-PBR-1BTP+Q = 0 (3.7)

(3.8)

Restricting the form of the state feedback matrix to (3.8) (as is done in (42], (48]) will result in a

solution which, although optimal for the LQR problem, may not necessarily be "optimal" for the

problem of finding the largest invariant set. Consequently, no such restrictions are placed on the

form of the state feedback matrix.

Problem 3.1 can be formulated as a linear matrix inequality problem, or, more generally, as a

constrained optimization problem. The following sections summarize the problem development.

3.1.1 Objective Function

For an ellipsoid (centered at the origin) defined by a given Pv matrix, it is known that the lengths

of the principal axes of the ellipsoid are given by the eigenvalues of pv-1 • Furthermore, the volume

15

of an ellipsoid is proportional to the product of these eigenvalues. Since the determinant of a matrix

is equal to the product of its eigenvalues, (3.9) may be used as an objective function to find the

largest ellipsoid, where t_he logarithm function is included to improve the search (See Appendix B

for derivation.)

maxlogdet (P;1) (3.9)

3.1.2 Constraints

In this section,· constraints on ellipsoid invariance, on the states, and on the control input are

expressed as functions of the optimization parameters, Pv and Kv.

Invariance Constraint

To ensure that the ellipsoid is controlled invariant, the following matrix inequality is imposed. In

comparison with (3.7), the parameter Q is set to zero. A positive-definite symmetric Q matrix forces

a minimum decay rate on V, yielding a certain level of robustness. For the present work, however,

the robustness issue is not considered, hence the choice of Q.

. . T
Pv (A.:... BKv) + (A - BKv) PT} :'.S 0 (3.10)

Several options exist to test for negative semi-definiteness of matrices ([27]), most notably for

this application that the eigenvalues must be negative semi-definite. Consequently, the constraint

imposed is that the eigenvalues of the matrix L, where Lis equal to the left hand side of (3.10), be

less than or equal to zero (Note that they are guaranteed to be real since Pv is symmetric).

State Constraints

Constraints expressible as linear combinations of the states (as in {1.3)) can be written in the form

of an inequality in the ellipsoid matrix, Pv, and constraint matrix, ri, as derived in Appendix C.

r .p-lrT < , . - 1 k
i T} i - .. , i - ' ... ' (3.11)

Control Constraint

Since the control law is of the state feedback form, constraints on the input magnitude can be

expressed as a modified version of (3.11).

(3.12)

16

Positive Definiteness Constraint

It has been noted that ellipsoids are described by positive definite, symmetric Pv matrices. Conse

quently, the following constraint is also imposed.

Pv >0 {3.13)

3.1.3 Implementation Issues

To demonstrate the concepts presented in this chapter, optimization routines were written for use

with the Matlab software package {in particular, the function constr .m). The comments which

follow describe several implementati9n problems encountered, as well as the solutions that were

developed.

Remark 3.3 This constrained optimization problem fits nicely into the framework of the linear

matrix inequality (LMI} problem {In fact, the text on LMI's by Stephen Boyd, et al., discusses

application of the technology to finding an invariant ellipsoid for the constrained input problem {10]. }

In particular, freeware packages such as SDPSOL {49} and MAXDET {50} (specially developed for

the maximum determinant problem, {3.9}},. appear to be well suited and might be considered for

future implementations of these algorithms. .

Initial Conditions

Often, Matlab's search routine fails to find the optimal ellipsoid from a random initial guess of Pv

and Kv. More consistent results are obtained by using the approach of Corollary A.2 (page 101)

to initialize the search parameters. The resulting ellipsoid is scaled down (such that the ellipsoid

boundary only comes to some fraction (say 90%) of the admissible control effort or state constraint

bounds) and used as the initial condition for the combined state and input constrained problem.

Unstable Systems

To. improve the stability of the search for systems with positive eigenvalues, a nominal stabilizing

state feedback control gain, Ki, is imposed. The search routine remains the same, with the exception

of the following changes to {3.10) and (3.12).

Pv [A- B (Kv + K~)] + [A- B (Kv + K~)f Pv ~ 0

(Kv + Ki) P,;-1 (Kv + Ki{ ~ u2

17

(3.14)

(3.15)

3.2 Reachable Ellipsoidal Set

Drawing from the previous results, the observation is made that a given ellipsoid is reachable if

condition (3.16) holds for some control law Ue (x).

dV/dr::; 0, r = -t (3.16)

In other words, if, in negative time, a set of points can reach a neighborhood of the origin under a

given control law, then those same points can be reached from the neighborhood of the origin using

the same control law in positive time. The problem is thus formally stated next.

Problem 3.2 Find the largest ellipsoid, Ee = { xjxT Pex ::; 1} and corresponding control law,

Ue = -Kex, such that {a) Ee f;: G, {b) lue (x)I::; u for x E Ee, and {c) Ee is a controlled invari

ant set for the system {1.1) and control law -Kex in negative time.

Reevaluating the derivative of V with respect tor yields (3.17), the counterpart to (3.6).

(3.17)

This relation serves as the invariance constraint (see (3.10)) for the reachable ellipsoid problem.

All other inequalities remain the same, except that the nominal controller, K~, must stabilize the

system in negative time (i.e., it must stabilize the pair [-A,-B]).

3.3 Controllable Ellipsoidal Set

A set is both recoverable and reachable if, for some control law(s), each point can both reach some

neighborhood of the origin and be reached from some neighborhood of the origin along an admissible

trajectory using an admissible control.

Problem 3.3 Find the largest ellipsoid, Ee = { xlxT Pex :S 1} and corresponding pair of control

laws, Uv = -Kvx, Ue = -Kex such that (a) Ee f;: G, {b) iuv (x}I, lue (x)I::; u for x E Ee, and {c)

Ee is a controlled invariant set for the system {1.1) and control law -Kvx in positive time and for

the system {1.1) and control law -Kex in negative time.

This problem is solved by imposing (3.10) and (3.17} on Kv, Ke, respectively. Existence of a solution

to this pair of inequalities is treated in Appendix A.

18

3.4 Summary

The optimization problems for finding ellipsoidal approximations to the maximal recoverable, reach

able, and controllable sets are summarized in Problems 3.4, 3.5, and 3.6, respecthrely. The elements

of the ellipsoid and state feedback matrices are search parameters for the optimization routine, where

the ellipsoid matrix is symmetric by construction.

Problem 3.4 (Recoverable Ellipsoidal Set)

Maximize

log det (P;-1)

subject to

Pv (A-BKv)+ (A-BKvf Pv $ 0

-Pv-1 < 0

riP;1 rr $ 1, i = 1, ... , k

K p-1KT <u2
V V V -

Problem 3.5 (Reachable Ellipsoidal Set)

Maximize

subject to

-Pe (A - BKe) - (A - BKef Pe $ 0

-Pe <0

ripe-1rr $ 1, i = 1, ... ,k

KePe-1 K; $ u2

Problem 3.6 {Controllable Ellipsoidal Set)

Maximize

subject to

!'c (A - BKv) + (A - BKvl Pc $ 0

-Pc (A - BKe) - (A - BKe)T Pc $ 0

-Pc <0

ripc-1rr $1, i = l, ... ,k

KvPc-1 K'[$ u2

KePc-1 K'{ $ 'fi,2

19

Chapter 4

Ellipsoidal Set Examples

This chapter presents example test cases which illustrate the maximal ellipsoids for different types

of systems. As the results are reviewed, the following general comments should be kept in mind:

• Ellipsoid shape tends to be biased toward system modes that are easier to operate along (a

stable mode is easier to recover along than an unstable one, while an unstable mode is easier

to reach along than a stable one). This means that recoverable ellipsoids will be larger than

reachable ellipsoids for strictly stable systems, and vice versa for strictly unstable systems.

• The more difficult the ellipsoid is to achieve, the more tightly the trajectories will follow the

bound (e.g., the trajectories of an unstable ellipsoid will decay very little in the recovering

mode if the system is near its operating limit).

4.1 Second Order Systems

Contained in this section are the computed maximal controlled invariant ellipsoids for six differ-

. ent second-order, linear systems in control canonical form: stable, stable focus, marginally stable,

unstable, unstable focus, and saddle. Neither the theoretical development nor the Matlab code re

quires canonical form. However, this structure does allow for an easier interpretation of the imposed

constraints, namely, a ±1 limit on both the "position" and "velocity" and a ±1 limit on the control

effort.

Trajectories (coming from the ellipsoid boundary when recovering, going to the ellipsoid boundary

when reaching) are plotted for all three cases. Note that for the controllable ellipsoid plots, one (or

both). of the sets of trajectories cycles about the ellipsoid (compare with individual recoverable and

reachable plots). It is difficult to show control effort on the plots without losing clarity, so for

20

simplicity it is merely stated that maxe IKxl ::; 1 in all cases (Note: The objective is to obtain

the largest ellipsoid, which may or may not mean that maximal control is used, although, generally

speaking, the maximum observed control is near 1.)

4.1.1 Stable

The eigenvalues of the following A matrix are -1, -3.

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.1, 4.2, and 4.3, respectively. Ellipsoid matrices are given in Equations (4.1), (4.2), and (4.3).

Pv = [1.00l9 0.0432 l (Kv = [-1.0000 -2.5000])
0.0432 1.0019

Pe = [!6.912 O.OOOO] (Ke = [-1.0000 -5.5000])
0.0000 22.950

P, - [:::: :~: l (:: : f =:::::: =::: l)

(4.1)

(4.2)

(4.3)

Since the system is stable, it is expected that all of the points in the state-space can recover to

the origin, although it is not clear that this can be done along trajectories which do not violate the

state constraints. The purpose of the input, then, is to try to maximize the ellipsoidal set of states

whose recovering trajectories do not violate the constraints. The trajectories originating from the

ellipse boundary illustrate this.

In contrast, the stability of the system naturally limits the set of states which can be reached

from the origin, since the control input must fight the natural dynamics of the system to move the

state away from this critical point. Comparing Figures 4.1 and 4.2, it is seen that, indeed, the

diameter of the reachable ellipse is roughly 0.25 that of the recoverable ellipse. Also, it is seen that

trajectories oscillate near the boundary of the ellipse, indicating that maximal effort is needed to

reach these points.

Finally, since the points in the controllable ellipsoid must be both reachable and recoverable, it

is expected to be approximately equal to the intersection of these two sets. In this case, since the

reachable set is contained entirely inside the recoverable set (all reachable points are recoverable,

21

but not all recoverable points are reachable}, the controllable set is nearly the same as the reachable

set, though it may differ somewhat in shape to remain invariant for recovery.

Figure 4.1: Recoverable Ellipsoid for Second Order Stable System.

.
O.I ···.-··t······-r·····-~·······~·······1· ····i·······t·······~····-·r·····
o., .. · ···; · · · .. · / · · .. · t · · · · · · ;· · · 1 •... · · ·(· · · · ·--~ • .. · · • +·· · · .. ~-- · · ..

: : : : j : ; j

0A ······'.·······'.······t······t······1·······1·······1·······'.······t·····

·~•••ITISIT!
-a, ······f ······r·····l·····"i"······i·· .. ···i·······l······-f-····+····
-0.I t. ·······1·······1·······~---···:··1.·······1.· .. ····t. ······t·····-~·-····

i : 1

"'° .. ······t······-t······1·······r······i······-r······t·····-t······i······

~ - - - = • ~ ~ u u , x1

Figure 4.2: Reachable Ellipsoid for Second Order Stable System.

4.1.2 Stable Focus

The eigenvalues of the following A matrix are= -1 ± l.414i.

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.4, 4.5, and 4.6, respectively. Ellipsoid matrices are given in Equations (4.4), (4.5), and (4.6).

P., = [l.0078 0.0888 l (K., = [-1.0000 -0.5000])
0.0888 1.0078

22

{4.4)

.,~~~~~~~~~~~

~ - - - - • ~ u ~ ~ ,
"

Figure 4.3: Controllable Ellipsoid for Second Order Stable System.

[9 .. 3.120 0.000. 0 l ([]) Ke= -1.0000 -3.5000
0.0000 4.3404

[
9.1717 0.0000 l (Kv = r-0.9172 1.9680])

0.0000 4.4043 Ke= -0.9175 -2.0000]

(4.5)

(4.6)

The comments for the stable (negative real eigenvalue) system hold for the stable focus system

as well. The eigenvalue locations for this system are generally closer to the imaginary axis, implying

that a larger set of states can be reached from the origin, as seen in the figures.

Figure 4.4: Recoverable Ellipsoid for Second Order Stable Focus System.

23

Figure 4.5: Reachable Ellipsoid for Second Order Stable Focus System.

Figure 4.6: Controllable Ellipsoid for Second Order Stable Focus System.

24

4.1.3 Marginal

The eigenvalues of the following A matrix are 0, 0.

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.7, 4.8, and 4.9, respectively. Ellipsoid matrices are given in Equations (4.7), (4.8), and (4.9).

Pv = [l.OOOO O.OOOO] (Kv = .[2.0000 1.5000])
0.0000 1.0000

Pe = [l.OOOO O.OOOO] (Ke = [2.0000 -1.5000])
0.0000 1.0000

Po - [~::: ::::: l (:: : f :::: ::::: l)

(4.7)

(4.8)

(4.9)

Since the system's eigenvalues are on the imaginary axis, there is no bias towards the recoverable

or reachable sets. Consequently, both sets are approximately the same size (the unit circle), the

only difference being the direction of the spirals (one set of trajectories going to the origin, the other

away from it). The slight change in the ellipsoid needed to create the controllable set dramatically

alters the trajectories needed to make set invariant in both positive and negative time.

Figure 4.7: Recoverable Ellipsoid for Second Order Marginal System.

25

Figure 4.8: Reachable Ellipsoid for Second Order Marginal System.

Figure 4.9: Controllable Ellipsoid for Second Order Marginal System.

26

4.1.4 Unstable

The eigenvalues of the following A matrix are 1, 3.

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.10, 4.11, and 4.12, respectively. Ellipsoid matrices are given in Equations (4.10), (4.11), and

(4.12).

Pv = [16"910 O.OOOO] (Kv = [-1.0000 5.5000])
0.0000 22.953

Pe = [. l.OOl.9 -0.0432 l (Ke= [-1.0000 2.5000])
-0.0432 1.0019 .

Pc [16.912 0.0000 l (Kv = [-2.2631 4.0000])

0.0000 22.950 Ke = [-2.2628 -2.7382]

(4.10)

(4.11)

(4.12)

The reverse is true of the unstable system results compared with the stable system results. Here,

the recoverable set is smaller than the reachable set.

Figure 4.10: Recoverable Ellipsoid for Second Order Unstable System.

4.1.5 Unstable Focus

The eigenvalues of the following A matrix are 1 ± l.414i.

27

Figure 4.11: Reachable Ellipsoid for Second Order Unstable System.

, ..

, ..

~~:: :: ::: :11::::
-0.4 ..•..••..... , .•.•... ; .••..•. ;•...•.••..•..• -.•••••

-o.a

-,~~~-~~-~~~-~~~

~ ~ = - - 0 ~ ~ M M

"

Figure 4.12: Controllable Ellipsoid for Second Order Unstable System.

28

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.13, 4.14, and 4.15, respectively. Ellipsoid matrices are given in Equations (4.13), (4.14), and

(4.15).

Pv = [9·2020 O.OOOO] (Kv = [-1.0000 3.5000])
0.0000 4.3895

Pe = [l.0078 -0.0888 l (Ke = [-1.0000 0.5000])
-0.0888 1.0078

P, = [::::: :,:~: l (:: : f =:::::: ::::: l)

(4.13)

(4.14)

(4.15)

Again, the results can be contrasted to the stable focus system, where the recoverable set was

larger than the reachable, opposite, of what is seen here.

Figure 4.13: Recoverable Ellipsoid for Second Order Unstable Focus System.

- - - - 0 ~ U M M 1 ,,

Figure 4.14: Reachable Ellipsoid for Second Order Unstable Focus System.

29

- ~ - - 0 ~ ~ U U 1

"

Figure 4.15: Controllable Ellipsoid for Second Order Unstable Focus System.

4.1.6 Saddle

The eigenvalues of the following A matrix are 1, -3.

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.16, 4.17, and 4.18, respectively. Ellipsoid matrices are given in Equations (4.16), (4.17), and

(4.18).

Pv = [9.0000 3.0000] (Kv = [5.0000 - 0.5000])
3.0000 2.0000

Pe = [9·2744 - 8. 7601] (Ke = [5.0000 -3.5000])
-8.7601 9.2744

P, - [t~:: :2o::: l (:: : f: ::: =::::: l)

(4.16)

(4.17)

(4.18)

The results for this system are the most unique seen thus far. The eigenvectors of the system (and

their associated eigenvalues) are v1 = [0.707 0.707] T (..\1 = 1) and v2 = [-0.316 0.949] T

(..\1 = -3). The recoverable set is strongly skewed along the stable eigenvector, while the reachable

set is strongly skewed along the unstable eigenvector. The controllable set is significantly smaller

than either of these, since the region of intersection is limited (Also, the trajectories seen in the

controllable set's plot are for recovery, while those for reaching cycle close to the bound. This may

be a consequence of the stable pole being "stronger" than the unstable pole due to the relative

magnitudes. Consequently, less effort is required to recover from a state than to reach it.)

30

- - - - I ~ U M ~ "

Figure 4.16: Recoverable Ellipsoid for Second Order Saddle System.

Figure 4.17: Reachable Ellipsoid for Second Order Saddle System.

-1 '--'---''----'----"---'--'----'---"--'

~ - - - - 0 ~ U M ~ "

Figure 4.18: Controllable Ellipsoid for Second Order Saddle System.

31

4.2 Third Order Systems

Computational difficulty obviously increases with higher order systems, due to the increased number

of parameters and constraints. However, the results for the third order systems in this section suggest

that, in principle, the procedure is applicable to systems of any order, the only limitation being the

increased computational load with higher dimensions and the stability of the optimization routine.

It is somewhat difficult to illustrate (in a limited number of figures) the nature of a third order

ellipsoid and its associated trajectories. The figures in this section are of a quadrant of the three

dimensional ellipsoid which allows for trajectories internal to the ellipsoid to be viewed. Additionally,

the recovering and reaching trajectories are plotted in separate sub-figures (Note that the same

quadrant is plotted for each, although some scaling differences may exist between the pairs.)

4.2.1 Stable

The eigenvalues of the following A matrix are -1, -1, -1.

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.19, 4.20, and 4.21, respectively. Ellipsoid matrices are given in Equations (4.19), (4.20), and

(4.21).

I 1.0000 0.0000 0.0000 I
Pv = 0.0000 1.0000 0.0012 (Kv = [0.0000 8.0000 2.0000]) (4.19)

0.0000 0.0012 1.0000

Pe= I ~:~~;:8 ~:~~::8
~:~~::

8 1 (Ke= [-6.0000 20.000 2.0000]) (4.20)

-12.008 24.015 12.002

Pc= I ~:~~:3 ~:~~::
3

~:~~::
6 1 (Kv = f 1.2661 -4.6526 -1.4317]]) (4.21)

Ke = -3.0004 3.8809 2.0003
-13.546 27.092 13.151

As with the second order system, the trajectories for the recoverable set draw towards the origin,

while those of the reachable set appear to oscillate about the ellipsoid boundary (In this case, they

32

tend to outline the rest of the ellipsoid which was cut away for this figure .) The more restrictive of

these two sets (recoverable/reachable) determines the size of the controllable ellipsoid. In this case,

the controllable ellipsoid is approximately the size of the reachable ellipsoid, the limiting behavior

further illustrated by the fact that the reaching trajectories oscillate about the ellipsoid boundary,

while the recovering trajectories readily converge toward the interior. (Also, note that the reachable

and controllable figures have been rotated 180° about the x3 axis relative to the recoverable ellipsoid

to provide a better view of the trajectories.)

M
x .

0.5

0

-0.5

_, ,

x2
_, -0.5

x1

Figure 4.19: Recoverable Ellipsoid for Third Order Stable System.

4.2.2 Unstable

The eigenvalues of the following A matrix are 1, 3, 5.

33

0.5

0

..,
><

-0.5

_,
-0.2

x2
x1

Figure 4.20: Reachable Ellipsoid for Third Order Stable System.

Recovering Trajectories

x2 x1

-0.5

_,
-0.5

Reaching Trajectories

0.5 1
x2

x1

Figure 4.21: Controllable Ellipsoid for Third Order Stable System.

34

_,

The ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in Fig

ures 4.22, 4.23, and 4.24, respectively. Ellipsoid matrices are given in Equations (4.22), (4.23), and

(4.24).

I 676.08 0.0000 103.281

Pv = 0.0000 847.32 0.0000 (Kv = [18.000 -12.000 12.000])

103.28 0.0000 145.22

Pe = I ~~~::;5 ~~~:::
5

~~~:;;O I (Ke = [ 12.000 -12.000 6.0000 ] ) 

0.8911 -1.4220 1.3169 

Pc= I :~:~:: :~:~:: ~~Ol~:: I ( Kv = f 15.000 -16.250 9.0000 l ) 
Ke = 11.006 -16.250 3.4437 

101. 77 0.0000 141.57 

(4.22) 

(4.23) 

(4.24) 

The results for the unstable system are opposite the results for the stable system. Here, the re

covering trajectories appear to oscillate about the ellipsoid boundary, while the reaching trajectories 

clearly emanate from the origin. 

Contrasting the stable system's controllable ellipsoid, the unstable system's ellipsoid is restricted 

by the recovering trajectories, which tend to oscillate about the boundary. The reaching trajectories, 

however, readily expand from the interior. 

4.2.3 Marginal 

The eigenvalues of the following A matrix are 0, 0, 0. 

The ellipsoidal approximations of the recoverable and reachable sets are given in Figures 4.25, 4.26, 

and 4.27, respectively. Ellipsoid matrices are given in Equations (4.25), (4.26), and (4.27). 

I 1.5000 0. 7500 0. 7500 I 
Pv = 0.7500 1.5000 0.7500 ( Kv = [ 3.0000 11.000 3.0000 ] ) 

o. 7500 o. 7500 1.5000 

(4.25) 

Pe = I ~~~:::o ~~~:::o ~~~;::o I ( Ke = [ -3.0000 11.000 -3.0000 ] ) 

0.7500 -0.7500 1.5000 

(4.26) 

35 



0.1 

0.05 

.., 
)( 

0 

-0.05 

-0.1 
0.04 

0.06 

x2 -0.04 -0.04 
x1 

Figure 4.22: Recoverable Ellipsoid for Third Order Unstable System. 

36 



(') 
)( 

0.1 

0.05 

0 

-0.05 

-0.1 
0.05 

"' 

0.8 

0.6 

0.4 

0.2 

0 

X -0.2 

-0.4 

-0.6 

-0.8 

_, , 

x2 -0.5 -0.5 
x1 

Figure 4.23: Reachable Ellipsoid for Third Order Unstable System. 

Recovering Trajectories 

x2 -0.05 -0.05 
x1 

0.05 

(') 
)( 

0.05 

0 

-0.05 

-0.1 
0.05 

x2 

Reaching Trajectories 

-0.05 -0.05 
x1 

Figure 4.24: Controllable Ellipsoid for Third Order Unstable System. 

37 

0.05 



Pc = I :::::: :::::: :::::: I ( Kv = f 0.0036 1.2599 0.0057 ] ] ) (4.27) 

Ke = -0.0009 1.2599 -0.0014 
1.5875 0.0000 2.5200 

In both the recovering and reaching sets, the trajectories tend to a plane where they oscillate 

about the origin (in the reaching case, tend from a plane) , although the shape of the ellipsoid and 

the position of this plane differ . . The controllable ellipsoid is restricted by neither the recovering nor 

reaching conditions, with both sets of trajectories oscillating about the bound. 

0.5 

M 0 
>< 

-0.5 

_, , 

x2 
_, _, 

x1 

Figure 4.25: Recoverable Ellipsoid for Third Order Marginal System. 

4.2.4 Mixed 

The eigenvalues of the following A matrix are -1.28, 0.14 ± l.53i. 

1 0 

0 1 

-2 -1 

38 

,B= 



0.5 

.., 0 
X 

-0.5 

- i 
i 

t? 

0.8 

0.6 

0.4 

0.2 

0 

>< -0.2 

-0.4 

-0.6 

-0.8 

-i 
i 

x2 -i -i 
xi 

Figure 4.26: Reachable Ellipsoid for Third Order Marginal System. 

Recovering Trajectories Reaching Trajectories 

0.5 

(') 0 
X 

-0.5 

- i , 

x2 -i -i 
xi x2 

_, -i 
xi 

Figure 4.27: Controllable Ellipsoid for Third Order Marginal System. 

39 



The ellipsoidal approximations of the recoverable and reachable sets are given in Figures 4.28, 4.29, 

and 4.30, respectively. Ellipsoid matrices are given in Equations (4.28), (4.29), and (4.30). 

I 1.8577 1.2586 0.72551 

Pv = 1.2586 1.9398 0.7993 ( Kv = [ 0.0000 9.0000 2.0000 ] ) 

o. 7255 0. 7993 1.3705 

Pe = I ~~~:::2 ~~~:::
2 

~~~:::71 ( Ke = [ -6.0000 9.0000 -4.0000 ] ) 

4.6095 -0.9067 3.2044

Pc= I ~~~::: ~::::: :::::: I (Kv = 1-1.0255 0.1458 0.3117]])

Ke= -3.0000 0.1458 -1.0000
5.0437 0.0000 3.3505

(4.28)

(4.29)

(4.30)

Since the system contains both stable and unstable eigenvalues, neither the recoverable nor

reachable trajectories restrict the ellipsoid in its entirety. Rather, it appears that they tend to

restrict particular ·modes. Along an unstable mode, for example, it is "easier" to move away from

the origin than towards it. Thus, in the direction of the unstable mode, it is expected that the range

of recoverable trajectories should be more restrictive than the range of reachable trajectories, and

vice versa for stable modes.

40

0.5

(') 0
)(

-0.5

_, ,

x2
_, _,

x1

Figure 4.28: Recoverable Ellipsoid for Third Order Mixed System.

41

0.5

M 0
X

-0.5

- i ,

0.5

(') 0
><

-0.5

-i
i

x2 -i -i
xi

Figure 4.29: Reachable Ellipsoid for Third Order Mixed System.

Recovering Trajectories Reaching Trajectories

0.5

M 0 ><

-0.5

-i
i

x2
_, -i

xi x2
_, -i

xi

Figure 4.30: Controllable Ellipsoid for Third Order Mixed System.

42

4.3 Comparison Against Published Result

As mentioned in Chapter 2, the maximal set, S, can be approximated to any degree of accuracy

using the polyhedral approach. Though it is also known that the ellipsoidal approach is inherently

conservative, it is informative to provide an example illustrating this fact.

In [22], Gutman and Cwikel find a polyhedral approximation to the maximal (recoverable) set

for the double integrator system, (4.31), where state constraints are x1 E [-25,25], x2 E [-5,5], and

the control constraint is u E [-1, l]. (For the purpose of discussions to follow, the states are treated

as having units of {m) and (m/s), respectively).

{4.31)

Since the polyhedral approach requires a discrete time model, (4.31) was sampled with a period of

Ts = l{s), to give the discrete time model, {4.32).

. [1 1 l [0.5 l x= x+ u
0 1 1

(4.32)

Using the algorithm presented in their paper, the authors find a maximal {recoverable) polygon

with vertices given in (4.33).

Xma:r: ~ { ± (12.5, 5) , ± {15, 4.5) , ± {19, 3.5) , ± (22, 2.5) , ± (24, 1.5) , ± (25, 0.5) , ± (25, -5)} (4.33)

Applying the approach of the preceding chapter, the recoverable ellipsoidal set is defined by (4.34).

[
0.0016 0.0000 l ([]) Pv = Kv = 2.0000 1.5000
0.0000 0.0400

(4.34)

Figure 4.31 shows the vertices of the polygon (connected by a dotted line) and the ellipsoidal set.

As expected, the ellipsoidal method does not capture as much of the state-space as the polyhedral

method, particularly in the upper-left and lower-right quadrants, highlighting the conservativeness

of the approach.

43

r---: -----
I

4 .. ···l··
I.

I

=-==----.a::-c..::- - ..; -*,

2 ······1··· ··············· .. .

c;:i O ..

-2 . :
-4

I T

I
. i

. . I
=-=---e---=-=-- - - : - - - - - : - - *

Figure 4.31: Comparison of Ellipsoidal and Polyhedral Methods for Double Integrator System.

44

Chapter 5

Semi-Ellipsoidal Sets

In this chapter, it is shown that, under certain conditions, the subset of an invariant ellipsoid

satisfying the state constraints is also invariant (as illustrated in Figure 5.1 for state constraints of

±1). This subset potentially provides a better approximation of the maximal operating set without

resorting to polyhedra. As with Chapter 3, the recoverable case is addressed first, the results of

which naturally lead to the reachable and controllable cases.

R emark 5.1 Figures are used heavily in this chapter to illustrate the ideas presented in the theorems.

As in previous chapters, constraints are assumed symmetric throughout, although generally only one

side is shown for clarity of the figure.

Figure 5.1: Invariant Subset of an Invariant Ellipsoid.

45

5.1 · Recoverable Semi-Ellipsoidal Set

Consider a linear state constraint, (5.1),

(5.1)

and note that, to avoid violation of the constraint, states on the constraint boundary must satisfy

the following condition.

(5.2)

This is stated formally in Lemma 5.1

Lemma 5.1 Given a linear state constraint, rix $ 1, and a point, xo, on the boundary of the

constraint (T\x0 = 1}, the system trajectory satisfies the state constraint for xo if and only if, for

some control law, uo, rix (xo, uo):::; o.

The proof is intuitive, and stems from the fact that, if r iX (x0 , u0) > 0, the function r iX increases

and the constraint is violated,

Figure 5.2, which shows a constraint bound, 8Gi, as well as state trajectories emanating from

that bound, illustrates the general concept. Since (5.2) is linear in x, there exists a point (more

generally, a dimension (n - 1) hyperplane) on 8Gi for which rix = 0.

x2 aai

Figure 5.2: illustration of Trajectories Emanating from State Constraint.

Suppose an ellipsoid £ exists which is controlled invariant under the state feedback control law

u = -Kvx. Further, assume that£ is such that some of the states in the set violate a particular

46

state constraint, as shown in Figure 5.3. If, for the intersection of & and 8Gi {which may be the

null set), relation {5.2) holds {which it does:not, in this case), then the set defined by & n Gi is also

controlled invariant under u.

The objective, then, is to construct & such that the subset Sv, defined as the intersection of the

ellipsoid and all state constraints, is controlled invariant under u. The procedure is to first develop

the theory showing that an ellipsoid satisfying (5.2) for all regions of intersection with the constraints

does indeed yield a controlled invariant set, Sv, and then to apply the theory by defining rules for

construction of such an ellipsoid, leading to' the main result in Theorem 5.3.

Figure 5.3: Illustration of Ellipsoid Violating a State Constraint.

5.1.1 Theory

For completeness, define the following subsets (see Figure 5.4) related to the derivative of the con

straint boundary function {where u has been defined as the state feedback law, -Kvx, for the

controlled invariant ellipsoid):

8Gi = {xlri(A- BKv) x = O}

Gt = {xlri (A - BKv) X > O}

G-; = {xlri(A- BKv) x < O}

(5.3)

(5.4)

(5.5)

These subsets define the acceptable regions of overlap {if any) of the ellipsoid and state con

straints, as presented in Theorem 5.L

47

Figure 5.4: Derivative Function Subsets.

Theorem 5 .1 Given an ellipsoid, £, which is controlled invariant for system (1.1) under the control

law u = -'-Kvx, and set of state constraints, Gi (i = 1, ... , k}, whose intersection is G, define the

subset of £ satisfying the state constraints as Sv = £ n G. The set Sv is controlled invariant under

u if and only if Sv n 8Gi n at = 0 r/ i.

Loosely interpreted, Theorem 5.1 says that the set Sv cannot be invariant if, for any region of

its boundary (particularly, those formed by the state constraints), the trajectories point "out." In

Figure 5.5, the region which is "unacceptable," 8Gi n Gt, is given by the ray b-;,,, while the region

which is "acceptable," 8Gi n (8Gi U a-;), is given by the ray b""c (inclusive of point b).

Proof. (=>) Suppose that for some constraint, Gi, Sv n 8Gi n Gt =f. 0. This implies that a portion

of the boundary of Sv, 8Sv, is formed by a region of the state constraint boundary, 8Gi, for which

ft (rix) > 0, which further implies that the trajectories in this region violate the bound (i.e., do not

remain within Sv), contradicting the assumption of invariance of Sv.

({=) The trivial case here is Sv n 8Gi = 0 \;/ i (i.e., the ellipsoid is entirely within the constraints),

such that Sv = £. Since £ is invariant by construction, it follows that Sv is invariant as well.

Assuming, then, that Sv n 8Gi =f. 0 r/ i, invariance must be shown for a set, Sv, whose boundaries

are defined by piecewise continuous regions of 8£ and 8G/s. Geometrically, this means that the

time derivatives of x on the boundary must always be pointing "in." Since the ellipsoid is controlled

invariant under u = -Kvx, those portions of 8Sv belonging to 8£ satisfy the condition ft (xT Px) ::;

48

Figure 5.5: Acceptable and Unacceptable Regions of a Constraint Boundary.

0, implying that trajectories do not exit Sv in regions defined by the boundary of the ellipsoid. Also,

since Sv n 8Gi n Gt = 0 V i, any portion of Sv composed of a region of a state constraint bound,

8G; must satisfy ft (r;x) $ 0, implying that trajectories do not exit Sv in these regions, either.

The last point of concern is those areas where the surface 88v is non-smooth (i.e., where regions

of 8Sv are formed by the intersection of 8£ and 8G;, or 8G; and 8Gk, etc.) Since the same

control law, u = -Kvx, is used everywhere, it follows that, for any combination of boundaries

that might intersect, ft (!1), ... , ft (fk) $ 0, where Ii is any of the ellipsoidal or linear constraint

functionals, XT Px, rix. Consequently, Sv is invariant at these intersection areas, as well, completing

the proof. •
Remark 5.2 Although variable structure control could be used, in which separate regions of Sv are

made invariant using a different control law, it is generally more difficult to prove invariance of

Sv. For example, Figure 5.6 illustrates a section of Bv where 8Sv is formed by two state constraint

boundaries, 8G1 and 8G2, with separate control laws defined for each. Although the trajectories

of points lying on only one of the constraints satisfy the invariance requirement, the trajectory of

the point lying at the intersection of the two does not (under either control law). This condition is

avoided in Theorem 5.1 by using a single control law which simultaneously satisfies all constraints

forming Bv.

49

I

I

I

I

Figure 5.6: Variable Structure Control Failing Invariance of Sv.

5.1.2 Design

Theorem 5.1 establishes the foundation by providing the necessary and sufficient condition for in

variance of Sv. Theorem 5.2 provides a sufficient condition for invariance of Sv. Although more

conservative, this leads to more feasible algorithms for the optimization routines.

Theorem 5.2 Given an ellipsoid,&, which is controlled invariant for system (1.1) under the control

law u =. -Kvx, and set of state constraints, Gi (i = 1, ... , k), whose intersection is G, define the

subset of £ satisfying the state constraints as Sv = & n G. The set Sv is controlled invariant under

u if enaainat = 0 vi.

The proof of this theorem is similar to that for Theorem 5.1, where the region of overlap was

restricted to the points belonging to Sv, not & . Figure 5. 7 illustrates the difference in the two

theorems, in that ft (r1x) ~ 0 must hold for points only on the line segment ab for Theorem 5.1,

but must hold for the segment ac for Theorem 5.2. In the optimization routines to follow, this allows

for a simple check on the ellipsoid matrix, Pv, · rather than on the more complex set Sv.

A relationship between & and G is now sought to assist in the design of ellipsoids satisfying Theo

rem 5.2. As illustrated in Figure 5.5, the region of acceptable overlap of an ellipsoid and constraint is

defined by 8G, (5.3). To determine the required relationship, then, three categories of constraints are

identified by considering the properties of the matrix ri (A - BKv)- These categories are presented

formally in Corollary 5.1, which addresses the case where trajectories lie in the hyperplane 8Gi,

50

Xt

Figure 5.7: Comparison of Requirements for Theorems 5.1 and 5.2.

Corollary 5.2, which addresses the case where the trajectories are the same for the entire hyperplane

8Gi, and Corollary 5.3, the most general case, in which trajectories _are admissible for only certain

regions of 8G i.

Corollary 5 .1 If r i (A - BK v) = 0, then £ n G i is controlled invariant for any ellipsoid £ which

is controlled invariant under u = -Kvx.

Proof. Here, aai is Rn. Consequently, at = 0, implying that £ n 8Gi n at = 0 for any £, so that

£ n Gi is controlled invariant if£ is controlled invariant. •
Corollary 5.2 Ifri (A - BKv) = airi {ai a non-zero constant), then£ n Gi is controlled invariant

for any ellipsoid£ which is controlled invariant under u = -Kvx.

Proof. In this degenerate case, aai is parallel to 8Gi, so that rif,,x has the same value (more

importantly, the same sign) for all points on 8Gi.

Since ri (A - BKv) = airi, this implies that ri is a left eigenvector and O:i is an eigenvalue

of A - BKv [27, pg. 663]. If ai > 0, the closed loop system A - BKv has at least one unstable

mode, and (A- BKvf P + P (A- BKv) > 0 for any P > 0, violating the invariance assumption

on the ellipsoid. It therefore follows that ai s 0. Thus, for points on the state constraint boundary,

ft (rix) = air ix= ai s O (since rix = 1 on 8Gi), so that the constraint is met for any controlled

invariant ellipsoid. •
51

Corollary 5.3 If ri (A - BKv) -:f. /3ri {where /3 is any real-valued constant) and£ is any ellipsoid

which is controlled invariant under u = -Kvx, then£ n Gi is controlled invariant under u = -Kvx

if and only if int { £} n 8Gi n 8Gi = 0, where int{£} denotes the interior of£.

The condition ri (A - BKv) -:f. {3ri serves to eliminate frQm consideration those cases treated in

Corollaries 5.1 and 5.2. Proof of this corollary requires a preliminary result presented in Lemma 5.2,

which highlights a useful property ofinvariant ellipsoids in relation to an intersecting hyperplane.

In this lemma, hyperplanes are considered in the general sense, but this is specialized in the proof

of Corollary 5.3 to state constraints defined by hyperplanes.

Lemma 5.2 Suppose an ellipsoid, £, where £ = { x!xT Px ~ 1}, is controlled invariant under some

control law, u = -Kx, and that the set is intersected by the hyperplane defined by rx = 1. Then it

cannot be true that ft [rx (x0 , u)] > 0 for all points satisfying rx0 = 1 and x0 E £.

Proof. To prove this lemma, it must be shown that (5.6) holds for at least one point x0 satisfying

rxo = 1 and Xo E £.

r(A-BK)x0 ~ O (5.6)

Since the hyperplane intersects the ellipsoid, any number of points (or, a minimum of one point

if the hyperplane just touches the boundary of the set) satisfy the conditions rx0 = 1 and xo E £.

However, only existence need be proven, so consideration is limited to that point x0 where the

hyperplane defined by r is tangent to a level set of the ellipsoid function, as in Figure 5.8 (i.e., xo

satisfies rx0 = 1 and x'{; Px0 = a, where O <a~ 1).

For the hyperplane to be tangent to a level set, the gradients of the hyperplane and ellipsoid

functions must be parallel, as shown in the following relations.

y' (xTPx) oc y' (rx)

.lJ.

2Pxo = 13rT

Furthermore, since x0 must satisfy rx0 = 1, it is found that /3 = 2/ (r p-1 rT), so that /3 is a positive

constant (due to the fact that Pis a positive definite matrix and rp-1rT is a quadratic form).

Since the ellipsoid is controlled invariant under u, the invariance inequality ft (xT Px) ~ 0 must

52

rx = 1

Figure 5.8: Illustration of Invariant Ellipse and Intersecting Hyperplane.

hold at x = x0 under the control law u, resulting in the following derivation.

xf P(A- BK)xo +xf (A-BKf Pxo:::; 0

.IJ.

(~ p-l rT) T P (A - BK) (~ p-l rT) + (~ p-l rT) T (A - BKf P (~ p-l rT) :::; 0

.IJ.

(P-1rr{ P(A-BK) (~p-lrT) + (~p-lrT)T (A- BKf P (P-1rT):::; 0

.IJ.

r(A- BK) (~p-lrT) + (~p-lrT) T (A- BKf rT:::; 0

.IJ.

2r (A - BK) (~ p-l rT) :::; 0

.IJ.

f(A-BK)xo:::; 0

Thus, it is shown that %t [rx(x0,u)]:::; O for the point x0 = (rp-1rr)-1 p-1rr, completing the

proof. •
The proof of Corollary 5.3 can now be presented.

53

Proof. (=>) Assume£ n Gi is controlled invariant but that int{£} n 8Gi n 8Gi =Ti- 0. It follows

from the definition of 8Gi that, for any neighborhood of a point xo E T, there exist points in

int { £} n 8Gi which belong to the set ct, implying that the trajectories violate the constraint and

that the set En Gi is not controlled invariant, contradicting the original assumption.

({=) As shown in Figure 5.9, three possibilities exist to describe the intersection of the ellipsoid

with the constraint boundary: (i) En 8Gi = 0 (they do not intersect), (ii) En 8Gi n 6-; = T 1 ::/- 0

(the ellipsoid intersects the constraint in the region where derivatives of the constraint are negative),

and (iii) En 8Gi n ct = T 2 -:j:. 0 (the ellipsoid intersects the constraint in the region where deriva

tives of the constraint are positive). By Theorem 5.2, cases (i) and (ii) both result in En Gi being

invariant. By Lemma 5.2, case (iii) cannot happen since E is invariant. •

(ii)

Figure 5.9: Illustration for Proof of Corollary 5.3.

5.1.3 Main Result

It has been established in the preceding section that state constraints giving the matrix conditions

discussed in Corollaries 5.1 and 5.2 effectively impose no restriction on£. Therefore, the final step

is to develop a relationship between ri and Pv such that Corollary 5.3 holds.

As Figure 5.10 illustrates for a second order system, the intersection of 8Gi with the ellipsoid

and linear constraint bound defines a line segment and point, respectively, in R2 (more generally,

dimension (n -1) ellipsoid and hyperplane). Defining a new coordinate z1 E R1 , where z1 lies along

54

8Gf.,,."'

Figure 5.10: Illustration of Reduced Dimension Ellipsoid and State Constraint Boundary in R2 •

the line 8(h gives the "reduced dimension" ellipsoid, £f, and state constraint bound, 8Gf, as

shown in Figure 5.11.

0

Figure 5.11: Illustration of Reduced Dimension Ellipsoid and State Constraint Boundary in R1.

It is apparent from this example that the condition of Corollary 5.3 holds {i.e., no point in

8Gi n 8Gi is contained in int { £}) if the reduced dimension ellipsoid does not violate the reduced

dimension state constraint. Thus, if Pf and rf are matrices defining the ellipsoid and constraint

in the new coordinates, it follows that the result in (3.11) (cf. Appendix C) can be used to give the

constraint (5.7) which satisfies Corollary 5.3 (For the remainder of this section, the subscript "v"

is omitted from the reduced-dimension ellipsoid matrix to avoid confusion with the stat~constraint

index.)

rf {Pf)-1 (rf) T ~ 1 (5.7)

To define the matrices Pf and rf, the new coordinate system must first be identified. Since

the boundary of the state constraint derivative, 8Gi is defined by the relation ri (A - BKv) x = 0,

it follows that the null space of this matrix defines the vectors lying in the hyperplane, 8Gi (Note:

55

The minimum norm solution to this equation is O. Also, an infinite number of vector sets could be

chosen for Wi, but for computational purposes the orthonormal set is preferred, hence the condition

WtWi = I.).

(5.8)

Consequently, any vector, xR, lying in this hyperplane is given by a linear combination of these

vectors.

The ellipsoid and state constraint can now be redefined in the new coordinate system:

&f = {zjzT (Wl PvWi) z:::; 1}

Gf {zl (riwi) z:::; 1}

(5.9)

(5.10)

(5.11)

The ellipsoid and state constraint matrices for the reduced dimension coordinate system are taken

as (5.12), (5.13).

(5.12)

(5.13)

Remark 5.3 For the case where ri (A - BKv) = airi (ai a non-zero constant}, it is apparent that

Wi = rf {where rirf = OJ. Thus, rf = riWi = 0, so that rf (Pf)-1 (rf)T = 0:::; 1 for any

Pv defining a controlled invariant ellipsoid, which agrees with Corollary 5.2. The reduced-dimension

inequality constraint, (5. 7), can therefore be applied for the more general case ri (A - BKv) =I 0.

The results of this section are summarized in the following theorem, the proof of which flows

naturally from Theorem 5.2, Corollaries 5.1, 5.2, 5.3, and the preceding inequality derivation.

Theorem 5.3 Given an ellipsoid, £, controlled invariant for system {1.1} under u = -Kvx, and

state constraints Gi, whose intersection is G, the set Sv = £ n G is controlled invariant under u if,

for ri (A - BKv) =IO (i = 1, ... , k), the following inequality holds:

rf (Pl)-1 (rf) r :::; 1 (5.14)

where

rR-r,Wv i - 1, i (5.15)

Pf= (Wtf PvWt (5.16)

Wt= null {ri (A - BKv)} (5.17)

56

5.1.4 Implementation Issues

The implementation issues discussed in Chapter 3 hold for the search for optimal semi-ellipsoidal

sets, as well, as do the inequality constraints for invariance and positive definiteness of the ellipsoid

matrix. However, the nature of S,;'s construction requires modification of the objective function and

control constraint.

Objective Function

Although the case may occur where Sv = £ (the ellipsoid is entirely within the state constraints),

the volume of Sv is generally not equal to the volume of £, where "volume" is used in the sense

given in (5.18).

Vsv = I I···! dx1dx2 · · · dxn

Bv

(5.18)

However, it should also be apparent that analytically computing the exact volume of Sv, which is

defined by changing boundaries, would be extremely difficult, particularly for a general n-dimensional

system.

Although a finite element approximation to the area could be computed, it was decided that a

measure of the ellipsoid itself would be used as an indicator of the volume of Sv. The objective

function used for the ellipsoid search, (3.9), was tested, but the optimization routine generally

failed to converge to a solution. Figure 5.12, which illustrates a hypothetical search progression

a -t b -t c, shows the potential difficulty in using the volume as the objective function. As the

ellipse is lengthened along one axis, it is "pinched" along the other by the time-optimal trajectories

(which define the bounds of invariance under limited control). A typical search sequence with

Matlab's constr .m would begin with initial conditions similar to ellipse a, then continue through

c until it "collapsed" along the minor axis, followed by a restart with an ellipse similar to, but

generally smaller than, a.

After evaluating several functions, (5.19) was selected as the objective function for the semi

ellipsoidal set optimization.

minlogtr(P) (5.19)

It is known that the trace of a matrix yields the sum of the eigenvalues. This objective function,

then, seeks to minimize the sum of the inverse of the axes' lengths (since the eigenvalues of p-1 give

the lengths of the axes), (5.20).

1 1 1
tr (P) = ..\i(P-1) + ..\2 (P-1) + ... + ..\n (P-1) (5.20)

57

X2

.... ······

·····

Figure 5.12: Progression of Search Using Ellipsoid Volume as Objective Function.

Since the value of this function grows quickly if any of the eigenvalues of p-1 approaches zero,

the search is generally stable and cases such as that shown in Figure 5.12 are avoided. Although

admittedly imprecise, searches using (5.19) do provide results comparable to what is available in the

literature (as is shown in Chapter 6) and, most importantly, serve to establish proof-of-concept for

the theory.

Control Constraints

To this point, no mention has been made of the input constraint with respect to the semi-ellipsoidal

set. If the constraint, (3.12), is imposed, the control may not reach its maximum value inside S11

even if though it is reached on 8£, as shown.in Figure 5.13.

Computing the maximum control on S11 is a difficult problem best done using a search technique.

However, this approach is computationally inefficient if performed at each iteration of the optimiza

tion of (5.19). To solve this problem, several search passes are made using a pseudo-maximum

control, u, in place of u in (3.12). For the first pass, u is set to the value of u and an optimal

ellipsoid computed. A separate constrai~ed optimization algorithm then finds the largest value of

IKxl, ii.1, within Sv. If ii.1 is within some tolerance of u the search is terminated. However, if ii.1 is

not within this tolerance, u is increased and a new ellipsoid and corresponding ii.2 computed. Again,

if ii.2 is within some tolerance of u, the search is terminated, with the second ellipsoid as a solution

(see Figure 5.14). If not, the pairs (u1,ii.1) and (u2,ii.2) are used to select a new u via a false-position

58

linear search formula [12, pg. 138], and the process repeated.

X2 ---- I 8G1
_......- - I

_.. _.. IK xi = u 1 --

IKxl =u _......-_..

---..-
--

Figure 5.13: Maximal Control Occurring Outside of Sv.

Positive Definiteness of Ellipsoid Matrix

Even though a positive definiteness constraint is imposed on the ellipsoid matrix, P, it may occur

during the search that one of the eigenvalues will be slightly negative (although within the tolerance

of the search routine). To prevent this from happening, Pis parametrized in terms of an auxiliary

symmetric matrix, P, where the two matrices are related by (5.21).

(5.21)

By imposing the positive definiteness constraint on P, positive (semi-) definiteness of Pis ensured

via the quadratic form of (5.21).

5.2 Reachable Semi-Ellipsoidal Set

As in Chapter 3, computation of the reachable set merely requires a sign change on any time

derivatives involved (note that this means 8Gi changes, as well). For regions of 8Sv formed by the

state constraints, d~ (rix) must be negative for points on the boundary of the set to be reachable

from points within the set. However, note that since (5.22) holds, no significant change need be

made to Theorem 5.3. This is reflected in its reformulation for the reachable case in Theorem 5.4,

59

X2 -- I --
1 IKxl =u -- __ _,...

--- °1.Kxj =u I 8G1
I

I

I

. I

8G2

--

Figure 5.14: Maximal Control Occurring Inside of Sv.

where the control gain is now Ke.

null {-ri (A - BKe)} = null {ri (A - BKc)} (5.22)

Theorem 5 .4 Given an ellipsoid, £, controlled invariant in negative time for system (1.1) under

u = -Kex, and state constraints Gi, whose intersection is G, the set Be = t:na is controlled

invariant in negative time under u if, for ri (A - BKe) '/: 0 (i = 1, ... , k), the following inequality

holds:

r~ p!l (r~{ < 1
i 'l, t -

(5.23)

where

rR-r.we i - 'l, i (5.24)

piR = (W{f PeW{ (5.25)

W{ = null {ri (A - BKe)} (5.26)

5.3 Controllable Semi-Ellipsoidal Set

Similarly to Chapter 3, the controllable semi-ellipsoidal set is computed by imposing the constraints

of Theorems 5.3 and 5.4 on£ and Kv, Ke. Reduced-dimension state constraints must be imposed

for both reaching and recovering conditions, although in certain instances a simplification can be

made, as noted in Remark 5.4.

60

Remark 5.4 IfriB = 0, then the inequality constraintforGi is not a function of the control gains,

and the derivative boundary, 8Gi, is the same for both positive and negative time. As illustrated

in Figure 5.15, this implies that there is no region of8Gi which£ may overlap, since all points on

£ n 8Gi would be either recoverable but not reachable or reachable but not recoverable. Consequently,

for the case riA =f. 0, rB = 0, the state constraint inequality simplifies to {5.27}, which was used in

Chapter 3 and implies that £ must lie entirely within the state constraint.

at (+t)

a-; (-t)
aai

Figure 5.15: Duality of Constraint Derivative Regions when riB = 0.

5.4 Summary

The optimization problems finding the ellipsoid matrix for the semi-ellipsoidal set approximations

to the maximal recoverable, reachable, and controllable sets are summarized in Problems 5.1, 5.2,

and 5.3, respectively, where Wt is defined as in (5.17), and W{ is defined as in (5.26).

Problem 5.1 (Recoverable Semi-Ellipsoidal Set)

Minimize

log tr (P,,,)

subject to

P,,,(A-BK,,,)+(A-BK,,,f Pv ~O

61

-Pv <0

(riWi") [(Wtf PvWtr1 (riWtf $ 1, ri(A-BKv) # 0

where

Problem 5.2 (Reachable Semi-Ellipsoidal Set)

Minimize

log tr (Pe)

subject to

-Pe (A - BKe) - (A - BKef Pe ::; 0

-Pe <0

(riwn [(W{f PeW{r1 (riwnT $ 1, ri(A- BKe) # 0

where·

Problem 5.3 (Controllable Semi-Ellipsoidal Set)

Minimize

subject to

log tr (Pc)

Pc (A - BKv) + (A - BKvf Pc $ 0

-Pc (A - BKe) - (A - BKe)T Pc $ 0

-Pe <0

(riWi") [(Wtf PcWtr1 (riWtf::; 1, ri(A-BKv) # 0

(riwn [(wnT PcW{r1 (riW{f::; 1, ri (A-BKe) # 0

K p-1 KT < ,a2 u >_ u
. tJ C tJ - '

where

K p-l KT < u2 U >_ U e c e - ,

maxe(u)nG IKvxl $ u

maxe(u)nG IKexl ::; u

62

Chapter 6

Semi-Ellipsoidal Set Examples

This chapter presents the example test cases considered in Chapter 4 for ellipsoidal approximations.

The same general comments apply to these-results of semi-ellipsoidal sets. Additionally, it is noted

that, if the ellipsoidal solution to a particular case does not touch the state constraints, the solution

for the semi-ellipsoidal set will be the same (This 'is the condition where insufficient control effort

· exists to operate far beyond the origin.)

6.1 Second Order Systems

Contained in this section are the computed maximal semi-ellipsoidal sets for six different second

order, linear systems in control canonical form: stable, stable focus, marginally stable, unstable,

unstable focus, and saddle (one stable, one unstable pole).

As in the previous example chapter, trajectories (coming from the ellipsoid when recovering,

going to the ellipsoid when reaching) are plotted for all three cases. For simplicity, it is merely

stated that maxena IKxl :5 1 in all cases.

6.1.1 Stable

The eigenvalues of the following A matrix are -1, -3.

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given

in Figures 6.1, 6.2, and 6.3, respectively. Ellipsoid matrices are given in Equations (6.1), (6.2),

63

and (6.3).

[1.ornro 0.1468 l
(Kv = [0.6953 0.2019]) Pv = (6.1)

0.1468 0.0409

[18.128 0.0000 l
(Ke = [-2.1581 -4.0000]) Pe = (6.2)

0.0000 21.532

[17.5W 0.0000 l (K. = f -2.2118 -l.TIIB9 l) Pc = (6.3)
0.0000 22.206 · Ke= -2.2117 -4.0000

Since the system is stable, it is expected that all of the points in the state-space can recover

to the origin (even without actuator effort), although not necessarily along admissible trajectories.

The recoverable semi-ellipsoidal set· generated for this system (Figure 6.1) is considerably larger

than the ellipsoidal set, Figure 4.1. The trajectories originating from the ellipse boundary illustrate

invariance.

In contrast, the stability of the system naturally limits the set of state which can be reached

from the origin. Since insufficient control effort exists to even reach the state constraint boundaries,

the "semi-ellipsoidal set" of Figure 6.2 is in fact equivalent to the ellipsoidal set of Figure 4.2.

Finally, since the points in the controllable ellipsoid must be both reachable and recoverable,

it is expected to be approximately equal to the intersection of these two sets, which in this case

is dictated by the reachable set. Thus, the controllable semi-ellipsoidal set, Figure 6.3, does not

increas~ in size compared to the ellipsoidal set, even though the recoverable set is expanded with

the semi-ellipsoidal approach. ·

Figure 6.1: Recoverable Semi-Ellipsoidal Set for Second Order Stable System.

64

0.1 · • • .. .

0.11 '"'')·······t ,: ·
0.4 .. , ... 1··· .. ··~·······:·· ····:····· .; ;•.. t····· .. ; i"

: : : : : ; :

~ ·: ·(-··t· ... t .. ··a· .. ·;·· . .
-aa .. ::r::::1::::::J::::::.J::·····i-····:::.:::::r: : :
-OA ; ; ; ; ; ; : : ;
-o.l · ~ ; j ; •.•..• ~ ••. ' ... ~- •..•.

-oJI .. " ~ .. " ... ; ; ; ...

~'---'-~"---'-~ __.~...._~..._ ~..___,
~ - - - - 0 ~ ~ U U

"

Figure 6.2: Reachable Semi~Ellipsoidal Set for Second Order Stable System.

0~ ······r·- ~/ ; ; ; : ~

~ ······~·······~······t······~·······,·:·····'.·······~·······:········'.······
OA :·"""':"""· f"'"'":""'"':""""'j"'"","""·

.
~ .. , ... } .. , 1····· .. 1·······f······i·· .. ···;·······;·· .. ···?····"1"·"·
-o.l , ~··· "+······~ ; ; ······1·······:····· .. ~···· ..

-o.l ·····:'""""":'""""""1""

~ ~ - - - 0 ~ ~ U U 1

"

Figure 6.3: Controllable Semi-Ellipsoidal Set for Second Order Stable System.

65

6.1.2 Stable Focus

The eigenvalues of the following A matrix are= -1 ± 1.414i.

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given

in Figures 6.4, 6.5, and 6.6, respectively. Ellipsoid matrices are given in Equations (6.4), {6.5),

and {6.6).

[1.0000 o.om]
(Kv = [-0.8161 0.1698]) Pv = (6.4)

0.0799 0.1716

[8.6982 · 0.0000]
(Ke = [-1.1644 -2.0000]) (6.5) Pe =

0.0000 4. 7387

Pc =
[8.7051 0.0000] (K, = f -1.1605 0.6164 l)

0.0000 _4.7318 Ke= -1.1603 -2.0000]
{6.6)

The comments for the stable system hold for this stable focus system as well. As with the ellip-

soidal approximation, the eigenvalue locations for this sy-stem are generally closer to the imaginary

axis, implying that a larger set of states can be reached from the origin, as seen in the figures.

Figure 6.4: Recoverable Semi.:.Ellipsoidal Set for Second Order Stable Focus System.

6.1.3 Marginal

The eigenvalues of the following A matrix are 0, 0. ·

66

.. ······?······t·······; ; :······+··· . >······i······1·····
D.I .. , ... ; ; , j"·,, .. , ~ ... ,,, · j·, • •• .. ! .. , ., , .; , .. , ... : , ~-

:: _· :·;::::::;: ::.-!:m:·:; __ :: .:.::.:.: ·: .::;:.:··::;: ::·:;: :::
\1 o .. ;· .. ·r -~ :· : ... :· r-·····~ .. .

-0.2 .. ···~· ~- : .. . -~ .. 1 .•.• ; ..••••.• ~- .. -~ ••••
. . : . . :

-OA ~ ~ r "': , ""~'""' : , ~ i

-0.t : : : : ·.·······. ······f .. ·····:" -······

-0.1 ; : i ; ; ; L ~------~---··· ·

-!1 -G.1 -0.1 -OA -0.2 0 0.2 U O.I G.I

"

Figure 6.5: Reachable' Semi-Ellipsoidal Set for Second Order Stable Focus System.

0.1 ; ~---··-~·-· ,: " .; i ~ :;

.
0.1 -~ ...•.. -~ ~-- -~· ·;· .. '. "'! --~-- .. ···:·.' ~- .. ' ..

. ~ '.T\i\\Fi!••••
:: .: .. :L:::: .. : .. ::.::.:W:r:::r::·::.: .. :.
-u ' ~ I;, l .. '' ... t .. '.'. I ! ; ... '.· l· ... ' -~·
..0.1 : : : : :, : : .. : .. : :

' "
0.2 0A 0.1 0.1

Figure 6.6: Controllable Semi-Ellipsoidal Set for Second Order Stable Focus System.

67

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given

in Figures 6.7, 6.8, and 6.9, respectively. Ellipsoid matrices are given in Equations (6.7), (6.8),

and (6.9).

[
1.0000 0.3379 l ([]) Kv = 0.7026 0.7374
0.3379 0.6079

[
1.0000 -0.3379 l ([]) Ke= 0.7026 -0.7374

-0.3379 0.6079

[
1.0000

0.0000

0.0000 l
1.0000

(
Kv = f 1.0000 0.0001])

Ke = 1.0000 -0.0001]

(6.7)

(6.8)

(6.9)

Since the system's eigenvalues are on the imaginary axis, there is no bias towards the recoverable

or reachable sets. Consequently, both sets are approximately the same size though shifted in orien

tation. Although both recoverable and reachable sets share a common boundary along the maximal

velocity limit (x2 = ±1, x1 E [-0.4, 0.4]), the controllable ellipse barely touches this bound. Had

a larger control been permitted, the controllable ellipsoid would have extended past this bound, as

seen in Figure 6.10 (cf. (6.10)) for u = 10, where recovering and reaching trajectories are shown in

separate plots.

P, ~ [::: ::::: l (:: : f :::: ~:111
1
3
1] l) (6.10)

For this system, no amount of control effort would be sufficient to allow overlap of the controllable

ellipsoid and the position constraint, via the arguments of Remark 5.4.

Figure 6.7: Recoverable Semi-Ellipsoidal Set for Second Order Marginal System.

68

Figure 6.8: Reachable Semi-Ellipsoidal Set for Second Order Marginal System.

Figure 6.9: Controllable Semi-Ellipsoidal Set for Second Order Marginal System.

Recovering Trajectories

0.5

~ 0

-0.5 ·

-1'-'"~ ~~,..._~..,__~ ~~...L...I

-1 -0.5 0
x1

0.5

Reaching Trajectories

0.5 ...

~ 0

-0.5

-1'-'"~.J-~~'--~-'-~-"~~~
-1 -0.5 0

x1
0.5

Figure 6.10: Controllable Semi-Ellipsoidal Set for Second Order Marginal System using Increased

Control Effort.

69

6.1.4 Unstable

The eigenvalues of the following A matrix are 1, 3.

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in

Figures 6.11, 6.12, and 6.13, respectively. Ellipsoid matrices are given in Equations (6.11), (6.12),

and (6.13).

[
18"118 O.OOOO] . (Kv = [-2.1589 4.0000])
0.0000 21.542

[1.0000 -0.1423 l (Ke = [0.7975 -0.3018])
-0.1423 0.0392

[
1.0000

0.0000 :.:: l (:: : f =:::::: :::::: l)

(6.11)

(6.12)

(6.13)

The reverse is true of the unstable system results compared with the stable system results. Here,

the recoverable set is smaller than the reachable set, which dictates the size of the controllable set.

; 1 1 1 : i ; ; •
O.I• t t·· ... · t···· ··1· ·;· , ··t·· .. ··t f
u ······t······t······t······f······t·······t·······1······-;-·······1······

.~ l]lffill1
: : : : : ! :· : :

-OA ••·•·'f······t······t······1·······1·······1····· .. f·······r··••··t·····
-0.1 ······;·······;·······;:······t······:·······t·······t·······;·······:······
-o.a t······t······~·······1· .. ·····t······i·······;, i' 1'

-!, -0.1 -0.8 -OA -0.2 0 0.2 0.4 0,1 0.1 t
X1

Figure 6.11: Recoverable Semi-Ellipsoidal Set for Second Order Unstable System.

6.1.5 Unstable Focus·

The eigenvalues of the following A matrix are 1 ± 1.414i.

70

- - ~ = 0 ~ ~ M M

"

Figure 6.12: Reachable Semi'-Ellipsoidal Set for Second Order Unstable System.

: ::·:::;;::::::(::::::r:::::;:::::::::::::::'.:::::::::::::::(::::::j:::::
0.4 ... ; : ~ ~ ~ ~··· : •··••·· :'""'"'

: : : : : : : : .
~ ~ ·····-[·······:·······(········t···t····t···

-oa ::::::t::::::t::::::j::::::rtJJJJ)l::::::t:::::::t::::::t:::::
-GA 1 : ; ; 1 : t : t
:: ; [······r····<·······:·······i·······; , ;······

-!, .-0.1 -o.e -o.• -0.2 0 0.2 0.4 U 0.1

·"

Figure 6.13: Controllable Semi-Ellipsoidal Set for Second Order Unstable System.

71

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in

Figures 6.14, 6.15, and 6.16, respectively. Ellipsoid matrices are given in Equations (6.14), (6.15),

and (6.16).

[
8.6977 0.0000 l ([]) Kv = -1.1647 2.0000
0.0000 4.7392

(6.14)

Pe = [
1.0000 -0.0799 l ([]) · . Ke = -0.8161 -0.1698

-0.0799 0.1716
(6.15)

[
1.0000 0.0000 l (Kv = f 0.7143 5.1752])

0.0000 0.2692 Ke= 0.7148 -1.2137]
(6.16)

Again, the results can be contrasted to the stable focus system, where the recoverable set was

larger than the reachable, opposite ofwhat is seen here.

l 1 1
O,I ······t······t······t······:·······;·······!·······:·······:·······1······
G.I ······r--····t······(·····i·······(······t·······f·····)······i·"""'

u --·--'["-····-f······i"·m····~ --- .. /----- ;---.. ·-f----- .. f----··i-·····
. 02 ····· i·····-;-···--j--· ··-r···)····t· ··(· --t-·····j---···

·: Fil_•••Jl._!TEI
= : :

-u ·····r·····t······r·····r·····:t····l·····-~-- ·· ;······· -······
~ ······j······t······f······r······i·······;·······t······t······t·····

O.Z OA 0.1 0.1 1

Figure 6.14: Recoverable Semi-Ellipsoidal Set for Second Order Unstable Focus System.

Figure 6.15: Reachable Semi-Ellipsoidal Set for Second Order Unstable Focus System.

72

: : : :

0.1 ~ :·······(·····t· ·.·.:,·.·.·.· .. ··.-.'._'..·.·.·.·.·.·.·.ti·-·.·.·.·.·.·.:_~.·.·.·.·.·.·_;_·.·.·.·.·.·.
o.e ; ·! .. ·····~·-·····~ .. - ~ ,

.·DA··+···+··+···,_] .. ; ... : ... +·+·<-•····
o.z ""·{·····{·····(· ·:···· .; ··)"""'(""('"'

1:1 0 ~---···+ .. -... +. ' ~- • .. : • ' ·f . ·+·····+·"··-~·-····
: : : • : : 1 :

:: ::::::i::::::r:::::r : ·.:: : .·:. :: ... ::r::::r:::r::::
-o.e ; ; t········1······· 1·······1·······t······t. ······1······

: : : : : :
..0.1 ; ~·-····~·-·····~······ ; ; ,:-. ··-~·-····

: : .

""!1 ..a.a ..0.8 .OA ..0.2 D 0.2 0.4 G.I 0.1 1
XI

Figure 6.16: Controllable Semi-Ellipsoidal Set for Second Order Unstable Focus System.

6.1.6 Saddle

The eigenvalues of the following A matrix are 1, -3.

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given in

Figures 6.17, 6.18, and 6.19, respectively. Ellipsoid matrices are given in Equations (6.17), (6.18),

and (6.19).

Pv = ·[9.0000 3.0000 l (K" = [3.0000 1.0000])
3.0000 1.0000

Pe = [9.0000 - 9.0000] (Ke = [3.0000 -3.0000])
-9.0000 9,0000

P. = [~::: ::::: l (:: : f ::::: ~:::71 l)

(6.17)

(6.18)

(6.19)

The eigenvectors of the system (and their associated eigenvalues) are v1 = [0.707 0.707] T

(>.1 = 1) and v2 = [-0.316 0.949] T (>.1 = -3). The recoverable set is strongly skewed along

the stable eigenvector, while the reachable set is strongly skewed along the unstable eigenvector.

The ellipsoids found for the recoverable and reachable sets have axes lengths of (0.1, 1.5 x 105) and

(8.8 x 103 , 0.06), respectively, with the principle axis lying along the stable (unstable) mode for the

recoverable (reachable) case. This relatively large principle axis length may indicate that, under

certain conditions, the optimal ellipsoid is unrestricted in one dimension (i.e., axis length is oo).

73

The controllable set using the semi-ellipsoidal method is the same as using the ellipsoidal method,

since the region of intersection is limited (As before, the trajectories seen in the controllable set's

plot are recovering, while the reaching trajectories cycle close to the bound.)

Figure 6.17: Recoverable Semi-Ellipsoidal Set for Second Order Saddle System.

Figure 6.18: Reachable Semi-Ellipsoidal Set for Second Order Saddle System.

74

0A ; -~ ..•.. ·t·· ~ i (....... ; : ~--·· ..

0.1 ······~· ······:·······t· (....... ; ; ; : ~

..0.4 ······:·······; .. ···-:·· i : i ; i i
-0.1 . • , 1 ~ ; ; ; ~ ~

-a.a ~ ·~) -~· ; ".; ~ ·

-!1~-:-0.':,1---, .. =".-.. ,"A,---o.2--0--:'02,--:'0.~, -:o':,•---,u'c"-~

"

Figure 6.19: Controllable Semi-Ellipsoidal Set for Second Order Saddle System.

75

6.2 Third Order Systems

The figures in this section include both a complete view of the semi-ellipsoidal set and a quadrant

of the three dimensional ellipsoid which allows the trajectories to be viewed. Additionally, the

recovering and reaching trajectories of the semi-ellipsoidal set are plotted in separate sub-figures

(Note that the same· quadrant is plotted for each, although some scaling differences may exist

between the pairs,)

6.2.1 Stable

The eigenvalues of the following A matrix are -1, -1, -1.

The semi-ellipsoidal approximations of the recoverable and reachable sets are given in Figures 6.20

and 6.21, while Figures 6.22 and 6.23 show the controllable set and representative trajectories.

Ellipsoid matrices are given in Equations (6.20), (6.21), and (6.22).

0.1302 0.1266
-o.roM I

Pv= [0.1266 0.2281 0.1981 (Kv = [0.3312 _;0.0556 -0.6952]) (6.20)

-0.0304 0.1981 1.0071

[9.7015 -19.403
-6.1~5 l

Pe= -19.403. 54.236 12.297 (Ke = [-3.0000 4.9567 2.0000]) (6.21)

-6.1485 12.297 9.5471

[9 7012 . -19.402 -6.1741 I (K, = f 2.7011 -6.4480 -1.6284 l)
Pc= -19.402 54.239 12.348] (6.22)

Ke= -3.0000 4.9546 2.0000
-6.1741 12.348 9.5409

As seen in Figure 6.20, the boundary of the recoverable semi-ellipsoidal set is formed by the state

constraints on the front and back surfaces and by a combination of the ellipsoid and state constraint

on the top and bottom surfaces. As with the second order stable system, insufficient control effort

exists for the reachable set to touch the constraint boundaries, so both the reachable and controllable

sets are similar to those found using the ellipsoidal method (note that the orientation of the figures

differs compared to Figures 4.20 and 4.21).

76

0.5 0.5

(') 0 (') 0
X X

-0.5 -0.5

_, _, , ,

x2
_, _,

x1 x2
_, -0.5

x1

Figure 6.20: Recoverable Semi-Ellipsoidal Set for Third Order Stable System.

0.5 0.4

0.2

(') 0 (') 0
X X

-0.2

-0.5 -0.4
0.5 0.5

x2
-0.5 _,

x1 x2
-0.5 _,

x1

Figure 6.21: Reachable Semi-Ellipsoidal Set for Third Order Stable System.

77

0.5

"' 0 X

-0.5
0.3

x2
-0.3 _,

x1

Figure 6.22: Controllable Semi-Ellipsoidal Set for Third Order Stable System.

Recovering Trajectories Reaching Trajectories

0.4 0.4

0.2 0.2

"' 0 X "' 0 X

-0.2 -0.2

-0.4 -0.4
0.4 0.5

x2 -0.2 -0.5
x1 x2

-0.5 _,
x1

Figure 6.23: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Stable System.

78

6.2.2 Unstable

The eigenvalues of the following A matrix are 1, 3, 5.

A= ~ :1,B=1:1
15 -23 9 1

0

0

The semi-ellipsoidal approximations of the recoverable, reachable, and controllable sets are given

in Figures 6.24 and 6.25, while Figures 6.26 and 6.27 show the controllable set and representative

trajectories. Ellipsoid matrices are given in Equations (6.23) , (6.24) , and (6.25).

I 578.17 0.000.0 139.831

Pv = 0.0000 777.99 0.0000 (Kv = [15.000 -18.865 9.0000])

139.83 0.0000 221.98

Pe = I ~~~:::3 ~~~:::
3 ~~~::;l I (Ke = [1.0550 - 1.6332 -0.2911])

0.0891 -0.2661 0.4165

I 535.37 0.0000 118.88

Pc = 0.0000 839.85 0.0000

118.88 0.0000 212.88

(
Kv = [15.000 -18.496 9.0001])

Ke = 4.9481 -18.496 -9.0004]

(6.23)

(6.24)

(6.25)

Following the established pattern, the results for the unstable system are opposite the results for

the stable system. Here, the recovery trajectories appear to oscillate about the ellipsoid boundary,

while the reaching trajectories clearly emanate from the origin.

0. 1

0.05

M 0)(

-0.05

- 0.1
0.05

x2 -0.05 -0.05
x1

0.05

0. 1

0.05

~ 0

- 0.05

- 0.1
0.05

0.05

x2 -0.05 -0.05
x1

Figure 6.24: Recoverable Semi-Ellipsoidal Set for Third Order Unstable System.

79

0.5 0.5

M 0 M 0
>< ><

-0.5 -0.5

_, _, ,

x2
_,

x1 x2 -0.5 -0.5
x1

Figure 6.25: Reachable Semi-Ellipsoidal Set for Third Order Unstable System.

0.08

0.06

0.04

0.02

(')
><

0

-0.02

- 0.04

-0.06

-0.08
0.04

0.05

x2 -0.04 -0.05
x1

Figure 6.26: Controllable Semi-Ellipsoidal Set for Third Order Unstable System.

80

Recovering Trajectories Reaching Trajectories

0.1 0.02

0.05 0

-0.02
M
><

-0.04
M 0 ><

-0.05 -0.06

-0.1 -0.08
0.05 0.05

0.05 0.05

x2
-0.05 -0.05

x1 x2 -0.05 -0.05
x1

Figure 6.27: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Unstable System.

6.2.3 Marginal

The eigenvalues of the following A matrix are 0, 0, 0.

The semi-ellipsoidal approximations of the recoverable and reachable sets are given in Figures 6.28

and 6.29, while Figures 6.30 and 6.31 show the controllable set and representative trajectories.

Ellipsoid matrices are given in Equations (6.26), (6.27), and (6.28).

I 1.1478 0.5516 0.38591

0.5516 1.5179 0.7385 (K v = [0.6527 0.8875 0.9545])

0.3859 0. 7385 1.0078

I ~~~:::9 ~~~:::
9

~~~:::31 (Ke= [ -0.6535 0.8875 .-0.9544 ] ) 

0.3860 -0. 7383 1.0083 

1.5477 O.OOOO l.0947 I ( K v = f 0.0007 1.4138 0.0014 ] ) 
0.0000 1.9988 0.0000 ] 

Ke = -0.0020 1.4138 -0.0040 
1.0947 0.0000 2.1881 

(6.26) 

(6.27) 

(6.28) 

Here, both the recoverable and reachable set boundaries are partially formed by the state con

straints. In both cases, the trajectories tend to a plane where they oscillate about the origin. The 

controllable ellipsoid does not touch the state constraints with the given control limit. 

81 



0.5 0.5 

"' "' 0 
X X 

-0.5 

_, _, ... , , 

x2 
_, _, 

x1 x2 
_, _, 

x1 

Figure 6.28: Recoverable Semi-Ellipsoidal Set for Third Order Marginal System. 

0.5 0.5 

"' 0 "' 0 X X 

-0.5 -0.5 

_, , 

x2 
_, _, 

x1 x2 
_, _, 

x1 

Figure 6.29: Reachable Semi-Ellipsoidal Set for Third Order Marginal System. 

82 



0.5 

.., 0 
X 

-0.5 

_, , 

x2 
_, _, 

x1 

Figure 6.30: Controllable Semi-Ellipsoidal Set for Third Order Marginal System. 

Recovering Trajectories Reaching Trajectories 

0.5 0.5 

.., 0 .., 0 
X X 

-0.5 -0.5 

_, _, , , 

x2 
_, _, 

x1 x2 
_, _, 

x1 

Figure 6.31: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Marginal System. 

83 



6.2.4 Mixed 

The eigenvalues of the following A matrix are -1.28, 0.14 ± l.53i. 

A=[:~ :1,B=1:1 
-3 -2 -1 1 

The semi-ellipsoidal approximations of the recoverable and reachable sets are given in Figures 6.32 

and 6.33, while Figures 6.34 and 6;35 show the controllable set and representative trajectories. 

Ellipsoid matrices are given in Equations (6.29), (6.30), and (6.31). 

I 1.3459 1.0517 0.13721 

Pv = 1.0517 1.9292 0.5561 ( Kv = [ -0.6704 -0.0417 0.6315 ] ) 

0.1372 0.5561 0.7538 

Pe= I ~~~;::8 ~\:::
8 

~~~:;:61 (Ke= [ -3.0003 0.3836 -1.2839]) 

3. 7675 -0.5576 2.5709

Pc = I ~~~::: :::::: :::::: 1 ·(Kv = r-1.6877 0.3934 -0.1479 l)
Ke = -3.0000 0.3934 -1.0000

4.3167 0.0000 2.8035

(6.29)

(6.30)

(6.31)

Although the system contains both stable and unstable eigenvalues, only the recoverable set

touches the state constraints. In this case, the "strength" of the stable mode relative to the unstable

pair apparently restricted the size of the reachable state-space.

84

0.5 0.5

"' "' 0
X X

-0.5

_, _, , ,

x2
_, _,

x1 x2
_, _,

x1

Figure 6.32: Recoverable Semi-Ellipsoidal Set for Third Order Mixed System.

0.5 0.5

"' 0 "' 0
X X

-0.5 -0.5

_, _, , ,

x2
_, _,

x1 x2
_, -0.5

x1

Figure 6.33: Reachable Semi-Ellipsoidal Set for Third Order Mixed System.

85

0.5

<')
><

0

-0.5

_, ,
0.6

x2
_, -0.6

x1

Figure 6.34: Controllable Semi-Ellipsoidal Set for Third Order Mixed System.

Recovering Trajectories Reaching Trajectories

0.5 0.5

<') 0 "' 0 >< ><

-0.5 -0.5

_, _, , ,

x2
_, -0.5

x1 x2
_, _,

x1

Figure 6.35: Controllable Semi-Ellipsoidal Set Trajectories for Third Order Mixed System.

86

6.3 .. Comparison Against Published Result .

The recoverable semi-ellipsoidal algorithm was applied to the double integrator example of Sec

tion 4.3. The search was somewhat slow to converge, probably due to the fact that the state con

straint limits differed fairly significantly. This implied that, more than in the preceding examples,

much of the ellipsoid was contained outside of the state constraint·bounds and contributed nothing

to the volume of the semi-ellipsoidal set, although the present cost function does not accurately

account for this. Nevertheless, the solution, (6.32), was eventually found.

[
0.0016 0.0027 l (. [.])

Pv = Kv = 0.0281 0.1475
0.0027 0.0243 ·

(6.32)

Figure 6.36 compares the semi-ellipsoidal set (solid line) with the ellipsoidal set (dashed line)

and polyhedral set (dotted line). In general, the semi-ellipsoidal set captures a larger area than the

ellipsoidal set. Furthermore, the semi-ellipsoidal set requires only 7 parameters to define (3 for the

symmetric ellipsoid matrix and 2 for each of the state constraint matrices), while the polyhedral

set requires 14 (cf. (4.33)). This information is summarized in Table 6.1 along with information on

the enclosed area of the state-space relative to the polyhedral approach, which may be computed

analytically for this relatively simple case.

Method Parameters Area (m2/s) Change(%)

Polyhedral 14 458.8 -
Ellipsoidal 3 392.7 -14.4

Semi-Ellipsoidal 7 435.3 -5.1

Table 6.1: Comparison of Number of Required Parameters and Enclosed Area.

For this double integrator system, the maximal set, Sv, is formed by the state constraints and a

second order curve (the time-optimal curve, (fx (u, t) dt, f fx (u, t) dt) => (ut + Co, iut2 + eot + c1)).

Thus, a modest number of vertices closely approximates the pure integrator system's maximal set

for the polyhedral approach. More generally, though, the maximal set surfaces are described by

much more complex functions. Consequently, the number of parameters needed to gain the accuracy

advantage of the polyhedral form increases significantly with both system order and complexity, while

the parameters for the ellipsoidal and semi-ellipsoidal remains modest ((n2 + n) /2 and (3n2 + n) /2,

respectively, assuming a constraint on each state).

87

Remark 6.1 The existence of asymmetric constraints on a state or input is one instance in which

the polyhedral method has a distinct advantage, since the ellipsoidal and semi-ellipsoidal methods,

as formulated here, cannot capture the additional freedom available in the one direction, while the

polyhedral method can (cf. Remark 3.2 on page 14).

Interestingly, the ellipsoidal set includes a portion of the state-space not belonging to the semi

ellipsoidal set. This shortcoming of the semi-ellipsoidal method might be minimized by the use of a

different objective function (one which computes the actual enclosed volume, rather than using the

trace of the ellipsoid matrix as an approximation) or by investigating the possibility of piecewise

quadratic ([25], [51]) or non-quadratic ([52]) Lyapunov functions (both of which could potentially

better approximate a higher-order surface than a single quadratic function). However, both of these

modifications introduce considerably more complexity to the problem.

------,-!-:-,-_--,, __ __.._--_,.. ___ ____,; .. ·• ..
, . .

4 ·:· ·;,,:;: : ·:· ~

: ,,,"' : : :
. ;, . : : :

2 /~J :L i.. '. ~\
,' : : : : : '

I : ' : : i
: : : : t

~ 0
. . . ' -~

-2 ~ \ ... : : •:• ; : /.. ·~: ://
~ ,
;-~., . ,,,":
: ·.' . : . . ., : -4 00 • 00 00 O•oooO OHO••·~ 0""' •• 0 • oOooo O •oo • • 0 • •o•o ON 00000, •OOo O O O• 0 OOooO,, ,,,._ 0 oOO O OOM 000 OOo O O• • 00 0

: ·. ~ : : . .,,. '

: •: _ : -!--
: -- : ~~--~--_ ___ _,_ ___ __._ ___ """'--'-----'

-30 -20 -10 0
x1

10 20 30

Figure 6.36: Comparison of Semi-Ellipsoidal, Ellipsoidal, and Polyhedral Methods for Double Inte

grator Systexp..

88

Chapter 7

Concluding Remarks

This thesis investigates alternative approximations to the maximal operating sets for linear systems

· with constrained states and input. The need for such approximations is highlighted in the following

comments by Blanchini [8]:

The techniques based on ellipsoidal sets are conservative. This fact is well estab

lished in robustness analysis as well as in the determination of domains of attraction

under constraints. Polyhedral sets provide non-conservative solutions but they lead to

computationally intensive algorithms. This is one of the most serious troubles although

the fast improving computer performances alleviate the problem.

We believe that there are still several open problems that are worth an investigation.

For instance, we have seen that the only family of sets of practical use having a bounded

complexity are the ellipsoids. For the reasons explained above it would be important to

develop algorithms to find other classes of invariant sets to achieve a reasonable.tradeoff

between conservatism and complexity.

As the primary contribution, it is shown that the intersection, S, of an invariant ellipsoid,£, and

state constraints, G, is itself invariant under certain conditions. Specifically, the following theorem

is proved for the recoverable case, and a similar theorem provided for the reachable case.

Theorem 5.3 Given an ellipsoid, E, controlled invariant for system {1.1} under u = -K,,x, and

state constraints Gi, whose intersection is G, the set S,, =En G is controlled invariant under u if,

for ri (A - BK,,) =/= 0 (i = 1, ... , k}, the following inequality holds:

rf (Pl)-1 (rf) r :5.1

89

where

rf =riwt
Pl= (WnT PvW{

Wt = null {ri (A - BKv)}

The proposed semi-ellipsoidal approach satisfies the original objective of providing an approxima

tion which is less conservative than the ellipsoidal method but simpler than the polyhedral method,

as illustrated by the example of Section 6.3. Furthermore, the algorithms are implemented in the

form of Matlab script routines available in the appendices. These routines are evaluated on second

and third-order systems in Chapte:rs 4 and 6, which serve as proof-of-concept of the approach. The

only limitation for systems with higher dimension is the efficiency and stability of the optimization

routine, since the theoretical development contains no inherent restriction on system order. Al

though application of the technology is not demonstrated in this thesis, the theory is now mature

enough to allow that phase of work to begin.

7.1 Future Research

A number of avenues are available for future research, in both the theory and application of this

new technology. The following list highlights some of the more prominent ones.

Theory:

• Discrete Time Systems. To date, the research has focused solely on continuous time sys

tems. However, practical appHcation of the theory would almost certainly be implemented

using digital controllers. Consequently, the theory must be adapted to discrete time sys

tems. In principle, this could be accomplished by replacing the Lyapunov constraint,

(3.1), with (7.1).

V (k + 1) ::5 V (k) (7.1)

This relationship, in turn, implies a discrete time (on-sample) invariance constraint, (7.2),

replacing the continuous time invariance constraint, (3.10).

(7.2)

A primary concern here is that this relation does not guarantee state-constraint compli

ance of the inter-sample points of a continuous time plant.

90

• Robustness Issues. In this thesis; no consideration is given to the robustness of the set's

invariance to external disturbances, modeling errors, etc. For example, with many of the

· · optimal ellipsoids found, maximal control was needed to maintain system trajectories just

inside the boµnd, so that no control effort remains in reserve to counteract the effects of a

disturbance. Consequently, application of the technology to actual control problems will

require modification to compensate for this shortcoming, perhaps by specifying minimum

decay rates on the Lyapunov function, (3.1).

Since the objective of the research presented in this thesis is not to design the control

law, but to approximate the operating bounds, it is not within the context to specify a

decay rate for the entire admissible state-space. A more appropriate specification is a

minimum decay rate on the boundary of the ellipse, say -r,. By construction, xT Pvx =

· 1 for points, x, on the):>oundary of the maximal ellipse: Consequently, the following

derivation, leading to the modified invariance constraint, (7.3), ensures a decay rate of

-:-TJ on the boundary of the ellipsoid.

dV/dt $ -r,

.lJ.

xT [Pv (A-BKv) + (A-BKvf Pv] x $ -rJ (xTPvx)

.lJ.

Pv (A - BKv) + (A - BKv)': Pv $ -r,Pv

Pv[(A.,... ¥I) -BKv] + [(A- ¥J) -BKvt Pv $ 0 (7.3)

For the semi~ellipsoidal sets, though, (7.3) does not provide robustness for those por

tions of the boundary formed by the state constraints. Imposing the relation, 1,, (fix)$

-r, (as opposed to 1,, (rix) ::; O) introduces a bias (non-trivial solution) to the expression

of Wi in (5.8). This requires a re-derivation of the reduced-dimension state constraint,

similar to that of Appendix E.

• Asymmetric State and Input Constraints. H the bounds on a particular state or on

the input are asymmetric, the quadratic nature of the state and input constraints on

the ellipsoid, (3.11), (3.12), imply that smaller in magnitude of these two bounds will

be restricting quantity (i.e., the proposed method can handle constraints of the form

j_ $ f ::; 7 - so long as these bounds contain the origin - but it cannot take advantage of

the. asymmetric bounds.)

91

• Multi-Input Systems. As derived, the ellipsoidal and semi-ellipsoidal methods are appli

cable only to single,.input systems. The results need to be adapted to multi-input systems

to have a broader range of application .

. • Characterization of Absolute Maximal Sets. To the author's knowledge, no work exists

which adapts the theory in LeMay's thesis [32] (true maximal sets for constrained input

systems) to systems with constrained states and input. Intuitively, it seems that the direct

application of this theory to control applications would be limited due to the complexity.

However, a characterization of the true maximal sets could serve as a benchmark by which

to quantify the quality of approximating sets.

• Alternative Lyapunov Functions. Several papers have recently been published investi

gating unique Lyapunov functions for special applications, including piecewise quadratic

functions [51], [25], and non-quadratic functions [52]. If such functions could be sub

stituted for the quadratic ellipsoidal function, the boundaries of the true maximal set

could be more closely approximated (since more degrees of freedom would be available to

approximate the maximal set's surfaces). Such functions may also be necessary to fully

take advantage of asymmetric constraints.

• Output Feedback. The ellipsoidal and semi-ellipsoidal methods presented in this thesis

assume that full state feedback is available for making control decisions. For most ap

plications, however, only a limited number of states (outputs) are available. Thus, an

observer will most likely be required to provide estimates of the states, which will, in

turn, require a more conservative ellipsoidal or semi-ellipsoidal set to account for the

uncertainties of the estimates.

Application:

• Reference Governor. The concept of modifying a signal to avoid saturation of the control

or control rate has been investigated extensively in a variety of forms (see, e.g., [19]

for the "reference governor," [41] for the "measurement governor"). McNamee [36] has

presented a reference governor which ensures that the system state remains within a

specified polyhedral set. This method could be adapted to use the semi-ellipsoidal set as

a first application.

• Reference Trajectory Generation. Many existing control schemes, such as sliding mode

control, utilize reference trajectories to move from set-point to set-point. If the semi

ellipsoid could be used to generate trajectories which naturally met state and input

92

constraints, then the theory could have immediate application to a number of different

problems using these existing control techniques.

• Modified Backstepping Control. In [38], a modified backstepping approach is investigated

in which constraints are placed on each of the states in the backstepping controller. It was

discovered that.this approach still suffered from the non-causal nature of the problem and

could only avoid saturation of the control and control rate, but not of other states. The

bounding semi-ellipsoidal set might be used to dynamically manipulate the saturation

levels of the states to eliminate this flaw.

• Modified Variable Structure Control. The principle of the variable structure controller

commonly known as sliding mode is to define an (n - 1) dimension hyperplane and then

design the controller so that this surface is bi-directionally attractive (i.e., states to the

"left" of the plane are drawn to the "right," and states to the "right" of the plane are

drawn to the "left"). Using a similar approach, it may be possible to design a variable

structure controller in which the semHillipsoid's boundary is uni-directionally attractive.

In this scheme, points exterior to the ellipse are drawn to it, while points. interior are

not, but are, rather, governed by a different control law (state-feedback, sliding mode,

etc.) Hence, the semi-ellipsoidal set merely acts to restrain trajectories resulting from

pre-existing control law from violating state constraints.

93

Bibliography

[1] M. E. Acchab, F. M. Callier, and V. Wertz. Admissible controls and attainable states for a class

of nonlinear systems with general constraints. International Journal of Robust and Nonlinear

Control, 4:267-288, 1994.

[2] M. E. Achhab and V. Wertz. A further result on attainable states for a class of nonlinear

systems with constraints. In Proceedings of the 33rd IEEE Conference on Decision and Control,

volume 4, pages 3819-3820; Lake Buena Vista, FL, December 14-16, 1994.

[3] Michael Athans and Peter L. Faub. Optimal Control: An Introduction to the Theory and Its

Applications. McGraw-Hill, New York, 1966.

[4] Jean-Pierre Aubin. A survey of viability theory. SIAM Journal of Control and Optimization,

28(4):749-788, 1990.

[5] Alberto Bemporad. A predictive controller with artificial Lyapunov function for linear systems

with input/state constraints. Automatica, 34(10):1255-1260, 1998.

[6] William H. Beyer, editor. CRC Handbook of Mathematical Sciences. CRC Press, Inc., Boca

Raton, FL, 6th edition, 1987.

[7] George Bitsoris and Eliana Gravalou. A design technique for the control of discrete-time systems

subject to state and control constraints. In Proceedings of the 35th IEEE Conference on Decision

and Control, pages 1503-1504, Kobe, Japan, December 1996.

[8] F. Blanchini. Set invariance in control - a survey. Scheduled for publication in Automatica,

35(11), 1999.

. . [9] Franco Blanchini and Stefano Miani. Constrained stabilization of continuous-time linear sys

tems. Systems & Control Letters, 28(2):95-102, 1996.

94

[10] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishri.an. Linear Ma

trix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, 1994.

[11] William L. Brogan. Modern Control Theory. Prentice Hall, Englewood Cliffs, NJ, 3rd edition,

1991.

[12] Steven C. Chapra and Raymond P. Canale. Numerical Methods for Engineers. McGraw-Hill,

St. Louis, 2nd·edition, 1988.

[13] G. Colombo and V. Krivan. Robustness of viability controllers under small perturbations.

Jou.rnal of Optimization Theory .and Applications, 83(1):207-215, 1994.

[14] R. Lane Dailey. Eigenvector derivatives with repeated eigenvalues. AIAA Journal, 27(4):486-

491, 1989.

[15] R. L. Fox and M. P. Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA Journal,

6(12):2426-2429, 1968.

[16] J.E. Gayek and T. L. Vincent. On the intersection of controllable and reachable sets. Journal

· of Optimization Theory and Applications, 50(2):267-278, 1986.

[17] E. G. Gilbert and Ilya Kolmanovsky. Discrete'-time reference governors for systems with state

and control constraints and disturbance inputs. In Proceedings of the 34th IEEE Conference on

Decision and Control, volume 2, pages 1189-1194, New Orleans, December 13-15 1995.

[18] Elmer 9. Gilbert, Ilya Kolmanovsky, and Kok Tin Tan. Nonlinear control of discrete-time

linear systems with state and control constraints: A reference governor with global convergence

properties.· In Proceedings of the 33rd IEEE Conference on Decision and Control, volume 1,

pages 14:i-149, Lake Buena Vista, FL, December 14-16 1994.

[19] Elmer G. Gilbert, Ilya Kolmanovsky, and Kok Tin Tan. Discrete-time reference governors and

the nonlinear control of systems with state and control constraints. International Journal of

Robust and Nonlinear Control, 5(5):487-504, 1995.

[20] Elmer G. Gilbert and Kok Tin Tan. Linear systems with state. and control constraints: The

theory and application of output admissible sets. IEEE Transactions on Automatic Control,

AC-36(9):1008-1020, 1991.

95

[21] Per-Olaf Gutman and Michael Cwikel. Admissible sets and feedback control for discrete-time

linear dynamical systems with bounded controls and states. IEEE Transactions on Automatic

Control, AC-31(4):373-376, 1986.

[22] Per'-Olaf Gutman· and Michael Cwikel. An algorithm to find maximal state constraint sets for

discrete-time linear dynamical systems. with bounded controls and states. IEEE Transactions

on Automatic Control, AC-32(3):251-254, 1987.

[23] Per-Olaf Gutman and Per Hagander. A new design of constrained controllers for linear systems.

IEEE Transactions on Automatic Control, AC-30(1):22-33, 1985.

[24] Ling Hou and Anthony N. Michel. Asymptotic stability of systems with saturation constraints.

IEEE Transactions on Automatic Control, AC-43(8):1148-1154, 1998.

[25] Mikael Johansson and Anders Rantzer. Computation of piecewise quadratic Lyapunov functions ·

for hybrid systems. IEEE Transactions on Automatic Control, AC-43(4):555-559, 1998.

[26] .Jer-Nan Juarig and Kyong B. Lim. On the eigenvalue and eigenvector derivatives of a general

matrix. Technical Memorandum NASA-TM-98127, NASA Langley Research Center, Hampton,

VA, March 1987.

[27] Thomas Kailath. Linear Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

[28] Naoya Kawasaki and Etsujiro Shimemura. Determining quadratic weighting matrices to locate

poles in a specified region. Automatica, 19(5):557-560, 1983.

[29] S. $. Keerthi and E. G. Gilbert. Computation of minimum-time feedback control laws for

discrete-time systems with state-control constraints. IEEE Transactions on Automatic Control,

AC-32(5):432-435, 1987.

[30] Donald E. Kirk. Optimal Control Theory: An Introduction. Prentice Hall, Englewood Cliffs,

NJ, 1970.

[31] Ilya Kolmanovsky and Elmer G. Gilbert. Multimode regulators for systems with state & control

colistraints and disturbance inputs. In A. Stephen Morse, editor, Control Using Logic-Based

Switching, Lecture Notes in Control and Information Sciences {222), pages 104-117. Springer

Verlag, New York, 1997.

96

[32] Joseph Louis LeMay. Recoverable, Reachable, Controllable, and Maintainable Regions for Con

trol Systems with Linear Plants and Bounded Controller Outputs. Ph.D. Dissertation, The

Un,iversity of Michigan, Ann Arbor, MI, 1963.

[33] K. B. Lim, .J. L. Junkins, and B. P. Wang. Re-examination of eigenvector derivatives. Journal

of Guidance, Control, and Dynamics, 10(6):581-587, 1987.

[34] Jerrold E. Marsden and Anthony J. Tromba. Vector Calculus. W. H. Freeman and Company,

New York, 3rd edition, 1988.

[35] D. Q. Mayne and W.R. Schroeder. Robust time-optimal control of constrained linear systems.

Automatica, 33(12):2103-2118, 1997.

[36] Joe McNamee and Meir Pachter. The construction of the set of stable states for constrained

systems with open-loop unstable plants. In Proceedings of the American Control Conference,

volume 6, pages 3364-3368, Philadelphia, 1998.

[37] Joe McNamee and Meir Pachter. Efficient nonlinear reference governor algorithms for con

strained tracking control systems. In Proceedings of the American Control Conference, pages

3549-3553, San Diego, June 1999.

[38] Eduardo A. Misawa, Gary E. Young, and Otis Funches. Nonlinear control of disc drives.

Technical Report AR6-053, Oklahoma Center for the Advancement of Science arid Technology

(OCAST), Oklahoma City, OK, December 31, 1998.

[3\}] R. H. Plaut and K. Huseyin. Derivatives of eigenvalues and eigenvectors in non-self-adjoint

systems. AIAA Journal, 11(2):250-251, 1973.

[40] Lynn C. Rogers. Derivatives of eigenvalues and eigenvectors. AIAA Journal, 8(5):943-944,

1970.

[41] Jeff S. Shamma. Anti-windup via constrained regulation with observers. In Proceedings of the

American Control Conference, pages 2481-2485, San Diego, June 1999.

[42] J. Marc Shewchun and Eric Feron. High performance control with position and rate limited

actuators. Submitted to the International Journal of Robust and Nonlinear Control.

[43] J. Marc Shewchun and Eric Feron. High performance bounded control. In Proceedings of the

American Control Conference, volume 5, pages 3250-3245, Albuquerque, NM, June 4-6 1997.

97

[44] Rodolfo Suarez, Julio Solis-Daun, and Jesus Alvarez. Stabilization of linear controllable sys

tems by means of bounded continuous nonlinear feedback control. Systems & Control Letters,

23(6):403-410, 1994.

[45] J. C. Willems. Least squares stationary optimal control and the algebraic Riccati equation.

IEEE Transactions on Automatic Control, AC-16(6):621-634, 1971.

[46] W. H. Wittrick. Rates of change of eigenvalues, with reference to buckling and vibration

problems. Journal of the Royal Aeronautical Society, 66(621):590-591, 1962.

[47] G. F. Wredenhagen. A new method of controller design for systems with input constraints

using interpolation functions. In Proceedings of the 33rd Conference on Decision and Control,

volume 2, pages 1024-1029, Lake Buena Vista, FL, December 14-16 1994.

[48] G. F. Wredenhagen and P. R. Belanger. Piecewise-linear LQ control for systems with input

constraints. Automatica, 30,(3):403-416, 1994.

[49] Shao-Po Wu and Stephen Boyd. SDPSOL, a parser/solver for semidefinite programming and

determinant maximization problems with matrix structure. User's guide, Stanford University,

Stanford, CA, May 31, 1996.

[50] Shao-Po Wu, Lieven Vandenberghe, and Stephen Boyd. MAXDET, software for determinant

maximization problems. User's guide, Stanford University, Stanford, CA, May 24, 1996.

[51] Lin Xie, Serge Shishkin; and Minyue Fu. Piecewise Lyapunov functions for robust stability of

linear time-varying systems. Systems & Control Letters, 31(3):165-171, 1997.

[52] A. L. Zelentsovsky. Nonquadratic Lyapunov functions for robust stability analysis of linear

uncertain systems. IEEE Transactions on Automatic Control, AC-39(1):135-138, 1994.

[53] David Zwillinger, editor. CRC Standard Mathematical Tables and Formulae. CRC Press, Inc.,

Boca Raton, FL, 30th edition, 1996.

98

Appendix A

Existence of Controllable Ellipsoid

In this section, the issue of existence of a controllable ellipsoid is treated by solving the following

problem (where A, B a.re real matrices and the pair [A, B] is assumed controllable throughout):

. .

Problem A.I Find a triplet (P, Kv,Ke), P > 0 such that the following holds:

P(A-BKv)+(A-BKv)T P < 0

-P (A - BKe) - (A - BKel P < 0

· Noting the similarity of these relations to the algebraic ruccati equation, the possibility of utilizing

previously established results in linear optimal control theory is investigated.

The first requirement for the solution to Problem A.l is that P must be positive definite. In

general, _though, the solution to the algebraic ruccati equation is not unique, so that nothing can

be said about the sign definiteness of all solutions. However, Willems notes that, for the algebraic

ruccati equation, (A.l), there exists1 a unique real symmetric solution matrix, P+ (the maximum

· solution), having as one of its properties that P+ ~ P (i.e., P+ - P ~ 0) for any other solution

· matrix, P [45].

Remark A.I The ei!Jenvalues of P+ are real via the property that P+ is a real, symmetric matrix {3].

Furthermore, Kawasaki and Shimemura [28] provides the following useful lemma related to this

maximum solution.

Lemma A.I {28} Let ,\1, ,\2, ... , X'i be the left half plane eigenvalues (Re(,\;) ~ OJ of A and

{1, {2, ... , e; be the corresponding eigenvectors. The maximum solution P + of the equation

PA+ATP-PBR-1BTP =0 (A.1)

1 Existence of a solution, for this simplified form of the algebraic Riccati equation, is guaranteed so long as R ;:;: 0 [45].

99

(where R > 0) satisfies

null (P+) = span (€1, €2,. · ·, €;) (A.2)

where span (€1, €2, ... , f;) denotes the linear subspace spanned by vectors €1, €2, ... , f;.

Lemma A.I is now used to give the positive definiteness requirement in Corollary A.I.

Corollary A.I If the eigenvalues of A are contained in the open right half of the complex plane

(Re(.~i) > OJ, then the maximum solution, P+, to the algebraic Riccati equation

(A.3)

is a positive definite matrix.

Proof. Since the matrix Po = 0 is a solution to (A.3), then P+ ~ Po = 0 {i.e., P+ is positive semi

definite) by definition of the maximum solution. This implies that the eigenvalues of P+ (which

are real via Remark A.I) are at least greater than or equal to zero, so it must be shown that the

eigenvalues of P + are strictly non--zero to prove strict positive definiteness.

Define A - as the set of all left half plane eigenvalues of A and 3- as the set of corresponding

eigenvectors. Since the eigenvalues of A are contained in the open right half of the complex plane,

A- and 3- are empty sets. From Lemma A.I, this implies

null(P+) = span{0}

which further implies that P + is full rank and that its eigenvalues are strictly non-zero, completing

the proof. •
For a general system, no assumptions can be made about the location of the eigenvalues of A.

However, since the system is assumed controllable, a state feedback matrix, Ko, may be defined

such that the eigenvalues of A - BKo are contained in the open right half plane. By defining

Ao = A - BK0 , the maximum solution, P+, to the modified Riccati equation, (A.4), is positive

definite via Corollary A.I.

(A.4)

To apply this result to the first inequality of Problem A.I, the recoverable state feedback matrix

is assumed to be of the form Kv =Ko+ avR-1 BT P+, where the scalar av is a real constant, and

the necessary restriction on av is investigated such that the recoverable inequality, (A.5), holds.

P+ (A - BKv) + (A - BKvf P+ :5 0 (A.5)

100

Since R > 0, -P+BR-1 BT P+ is negative semi-definite. Hence, (A.5) holds for av ~ !·
Similarly, the form Ke= Ko+ aeR-1 BTP+ is assumed for the reachable state feedback matrix

and the necessary restriction on ae considered.

-P+ (A - BKe) - (A - BKef P+ ~ 0

Here, (A.6) holds for ae ~ l·
The results of this section are summarized in Corollary A.2.

Corollary A.2 A family of solutions, (P,Kv,Ke), P > 0, to the set of matrix inequalities

P(A-BKv) + (A-BKvf P < 0

-P (A - BKe) - (A - BKef P < 0

(A.6)

is given by (P+,Ko + avR-1BTP+,Ko +aeR-1BTP+), where P+ is the maximum solution to the

algebraic Riccati equation

P (A- BKo) + (A- BK0)T P- PBR-1 BTP = 0

and the parameters R, Ko, av, ae satisfy

R>O

Re [eig(A - BKo)] > 0

101

Appendix B

Derivation of Ellipsoid Volume

Cost Function

The objective of the optimization routine for the ellipsoidal method is to maximize the volume of

the ellipsoid subject to the state and control constraints. The ellipsoid is expressed in (B.2) in terms

of the ellipsoid function, (B.l), where Pis an n x n real, positive definite, symmetric matrix.

() (x) = xTPx

£1 = {xlO (x) ~ 1}

(B.1)

(B.2)

Strictly speaking, it is not necessary that P be symmetric, only that it be positive definite.

A:n.y real, square matrix can be written as the sum of a symmetric matrix and a skew-symmetric
. .

matrix, (B.3), where PH = PJ; and Pss = -P[s.

(B.3)

However, the skew-symmetric component contributes nothing to the ellipsoid function.

Consequently, no degrees of freedom are lost by restricting to the symmetric form, but this does

allow for simplifications to be made in computing the volume, (B.4). . .

Ve1 = / /· · ·/dx1dx2 · · ·dxn

£1

102

(B.4)

Specifically, a linear change of variables will be introduced to convert the integral of an ellipsoid to

an integral of a spheroid, for which explicit solutions are available.

It is known that, for any real, positive definite symmetric matrix, P, there exists a unitary

transformation, U, mapping P to its diagonal form.

where

UTPU=A

detU = 1

uTu = 1

(B.5)

and the Ai are the eigenvalues of P, all of which are positive, real numbers due to the properties of

positive definite matrices and symmetric matrices, respectively.

Furthermore, it is possible to define a transformation, M, mapping P to the identity matrix.

(B.6)

where

M = U (A1/2)-1

A1l2 = diag { A, ~' ... , A}

Invoking the property. of determinants for two square matrices, Pi, P2, that IP1P2I = IPil IP2I [11,

pg. 128], relation (B.8) is noted, where the last step is possible since a positive definite, square

matrix is invertible.

IMTPMI = III

,IJ..

IMI = 1/M

,IJ.

IMI = Jw-1 1

Define a sfate transformation as in (B.9)',

103

(B.7)

(B.8)

(B.9)

such that the ellipsoid can be. written as in (B.10).

fJ(z):· (Mzf P(Mz) (B.10)

(B.11)

This change of variables transforms the ellipsoidal set, £1, into the special case of a spherical set,

S1.

S1 = {zlfJ (z) ~ 1} (B.12)

Consequently, the integral equation for the ellipsoid volume may be rewritten.

Vei = ff· ··fdx1dx2 · ··dxn (B.13)

£1

~ ~ ~
8z1 8z1 8z1

f f:··f
~ ~ ~
8z2 8z2 8z2 dz1dz2 · · ·dzn = (B.14)

S1
~ ~ ~
8z .. 8z,. az ..

= ff·· ·f lMTI dz1dz2 · ··dzn (B.15)

S1

= J1P-1I ff·· ·f dz1dz2 · · ·dzn (B.16)

S1

= J1P-1I Vs1 (B.17)

The explicit equation for the volume of a spheroid of dimension n, (B.18), has been previously

established [53, pg. 315] (Note: To keep with standard notation, the symbol r is used uniquely in

this section to represent the gamma function; elsewhere in the text it is used in reference to a linear

state constraint. Also, the symbol r refers to the radius of the sphere, which, for this case, (B.10),

(B.12), has a value of 1.)

(B.18)

where

n = 2,4,6, ...
(B.19)

n = 1,3,5, ...

It is therefore apparent (as expected) that the volume of a unit spheroid is a constant for any

fixed number of states, n, implying that the ellipsoid volume is proportional to the function, (B.20).

j = y'jP-11 (B.20)

104

However, it is noted that J maps the parameters of P to only positive values of R1 . In particular,

resolution of of /8P (when searching for optimal parameters) becomes increasingly difficult for

J :5 1. This suggests that the accuracy of a search would be affected by any pre-scaling of the states

(for example, to set the state bounds as the unit hypercube). To minimize this effect, the following

equivalent objective functions are used, where the 1/2 from the square root, which simply scales

these functions, is omitted for simplicity.

maxlog jP-1 j

min { - log ,p-1 1}

105

(B.21)

(B.22)

Appendix C

Derivation. of. State Constraint

· Inequalities

This section details how bounds on the states are converted to explicit bounds on the ellipsoidal

approximating set's size and shape. Specifically, if the ellipsoidal set is denoted as E and the linear

state constraint by G, then the following problem is to be solved.

Problem C.1 Determine the restrictions on the size and shape of E such that every point x E E

satisfies the constraint G.

C.1 Level Sets

In essence, the constraint development· centers on finding a tangent point on the boundary of the

ellipsoidal set which is parallel to the affine boundary constraint, then determining the necessary

restriction(s) so that this tangent lies interior to the constraint line. Formal development of the

constraint involves the concept of level sets of functions.

C.1.1 Ellipsoidal Set Boundary as a Level Set

Define the ellipsoid function, ellipsoidal set, and boundary of the ellipsoidal set as in (C.1), (C.2),

and (C.3), respectively.

9 (x) = xTPx (C.1)

E13 = {xl9 (x) $,B} (C.2)

8E13 = {xl9 (x) = ,B} (C.3)

106

With respect to the problem of finding the maximal ellipsoidal set, the parameter f3 is a scaling

factor adjusting the size of the ellipsoid. Without loss of generality, then, the value f3 = 1 is chosen

to define the maximal ellipsoid.

C.1.2 Linear Constraint Boundary as a Level Set

A linear state constraint can be defined as in (C.4),

(C.4)

where singl&-sided constraints can be described by appropriately defining one of the o parameters

to ±oo, and where the following properties hold (Note that the strict inequalities on Q, 6 guarantee

inclusion of the origin.}

Equation (C.4) can be split as in (C.5)

where

IWil = 1

Qi < 0

"Ji > 0

. fi,lX < 1

fi,2X < 1

ri,1 = Wi/6i

ri,2 = -Wi/§.;,

(C.5)

(C.6)

In general, then, a linear inequality constraint (containing the origin) can be written as in (C.7).

rx :5 1 (C.7)

Consequently, define the linear constraint function, constraint set, and boundary of the constraint

set as in (C.8), (C.9), and (C.10), respectively.

7(x) = rx

Go, = {xl'Y (x) :5 a}

fJG°' = {xl7(x)=a}

In light of (C,7), attention is focused on the unit level subset and its boundary (a= 1).

(C.8)

(C.9)

(C.10)

Lemma C.1 highlights a property of these regions which is necessary for the development of the

constraints.

107

Lemma C.1

Proof. (::;,-) Assume that Ga1 ~ Ga2 but that a1 > a2. Then, there exists some xo E Ga1 for which

1' (xo) = ao, a2 < ao ::; a1. However, this implies that xo ¢ G2, violating the original assumption.

Thus, G1 ~ G2 ::;,- a1 ::; a2 is shown by contradiction.

(<=) By definition, 1' (xo) ::; a1 'v xo E Ga1 • Since a1 ::; a2, this implies that 1' (xo) ::; a2 'v xo E

Gai, hence Ga1 ~ Ga2 , completing the proof. •

C.2 Derivation of Inequality

For preciseness, the following lemma is stated to formalize the state constraint as a set relation. The

proof is intuitive and, consequently, omitted here.

Lemma C.2 The set of points· defining an ellipsoid, E1, satisfy a state constraint, G1, if and only

if E1 c G1.

The objective of this line of investigation, then, is to develop a constraint on P ensuring that

Lemma C.2 holds. In light of Lemma C.1, the following definition is stated relating the boundary

constraints to the ellipsoid, E1.

Definition C.1 Let A= {aJE1 C Ga}. The minimal bounding value, g, is defined as g = min A.

It is now possible to propose the following theorem.

Theorem C.1

Proof. (::;,-) Assume that E1 C G1. By definition of g, Gg_ ~ G1. Lemma C.1 then gives g $ 1.

(<=) Assume that g $ 1. From Lemma C.1, this implies Gg_ ~ G1 • By definition of g, E1 C Gg_,

which gives E1 C G1, completing the proof. •

The practical application of Theorem C.l is to find some constraint on P such that g (P) $ 1,

ensuring that the corresponding ellipsoid, E1 (P) is within G1 . The steps in converting an inequality

constraint on the states to a constraint on the ellipsoid are, first, to determine the minimal bounding

value, g (P) $ 1, and, second, to develop a constraint on P such that g < 1.

108

Figure C.l: illustration of Boundary Intersection.

Lemma C.3 formally states the idea that the minimal bounding value, g, is equal to the value of

a for which the boundary of the linear constraint, 8Go,, is tangent to the boundary of the ellipse,

8£1,

Lemma C.3 For some a* > 0, a* = g_ if and only if 8G°'. n 8£1 is a single point.

This lemma implies that, for the minimal bounding value, 8Gg;_ is tangent to 8£1. Proof of this

lemma is somewhat intuitive, and utilizes concepts illustrated in Figure C.l.

Proof. (=>) It is known that the intersection of a hyperplane and the boundary of an ellipsoid defined

by a positive definite matrix, P, is (i) the null set, (ii) a ~ingle point, or (iii) a "ring." These cases

are considered independently,

Suppose a* = g_ (8Gg;_ = 8Go,•), but that 8Gg;_n 8£1 is the null set. This implies (a) that

e1 c Gg;_ and (b) that there exists some positive quantity, "1..a, such that 8£1 C Gs_-Ao, C Gg;_,

Consequently, g_ is not the minimum bounding value, contradicting the assumption.

Similarly, assume that a* = g_ , but that 8G°' n 8£1 is more than one point. For a second

order system, the intersection is two points, { Xa, Xb}, but for higher dimensions, the intersection is a

"ring" formed by an infinite number of points, any two of which can be chosen as { Xa, Xb }. Defining

a closed set, X, as X = {Axa + (1- A) xblO :5 A :5 1}, convexity of the ellipsoidai set implies that

X c e1, and convexity of 8G 9;. implies that X c 8G 9;.· Furthermore, it can be shown that the open

set X, where X = {Axa + (1- A) xblO <A< 1}, is strictly interior to 8£1, thus implying that there

109

are points in a neighborhood of elements of X which are interior to &1 but exterior to GQ. (i.e.,

GQ.n&1 'I, &1, see Figure C.l), violating the definition of g. Consequently, 8GQ.n8&1 must be a

single point.

(<=) Assume that 8G a• n 8&1 is a single point but that a* $ O. This implies that 8G a• passes

through the origin (in the case of equality) or that Ga• does not contain the origin, hence a* must

.· be positive. If 8Ga• n 8£1 is a single point and a* > 0, the proof follows similarly as above to show

that a* = g. (Note: there are two solutions, ±g yielding a single intersection point (on opposite

sides of the ellipse), necessitating the positive restriction.) •
It is widely known that the gradient of a function gives normals to the function's isoclines [34,

pp. 149-150]. Consequently, the gradient of the function() (x) gives the inward pointing normals to

the 8&13's, as defined in (C.11).

'v() (x) = 2Px (C.11)

Similarly, the gradient of the function 'Y (x) gives the inward pointing normal to the 8Ga's.

(C.12)

The linear constraint bound is parallel to the tangent hyperplane of the ellipse at x* if the

gradients are parallel, (C.13),

Px* ocrT (C.13)

or, equivalently, if the gradient of one is normal to the null space of the gradient of the other, as in

(C.14).

(r.L) T Px* = o, r.L = riull {r}

The linear constraint bound is the tangent hyperplane of the ellipse at x* if (C.15) holds.

The solution to the first relation in (C.15) proceeds as follows:

(r.L)T Px* = 0

.fJ.

(r.L{ z = o

.fJ.

z* = rT /a* (null {r.L} = r)

110

(C.14)

(C.15)

rT fa.*= Px*

(C.16)

Substituting (C.16) into the second relation yields to intersection solution, (C.17), where, via

Lemma C.3, g is substituted for a.*.

(rP-1 /g) P (P-1rT /g) = 1

.1,1.

Theorem C.l requires g::; 1, yielding the state constraint inequality, (C.18).

C.3 Derivation of Control Constraint Inequalities

(C.17)

(C.18)

Since linear state feedback is used, the control law is of the form u = -K x. Consequently, the input

amplitude constraint may be written as a pair of linear state constraints as in (C.19).

{ ut = {xi [-K/ (~u)] x::; 1}

U:1 = {xi [-K/ (-u)] x:::; 1}

· Substituting ±K/u for r in (C.18) yields the control constraint inequality, (C.20).

(K/u) p-1 (Kfuf::; 1

111

(C.19)

(C.20)

Appendix D

Gradients of Cost Functions and

Constraints

Matlab's constr .m optimization routine uses gradients to calculate the s_earch direction. If analytical

gradients are not provided, the routine automatically implements a finite difference approximation.

However, the search is generally more stable and convergence faster if the analytical gradients

are supplied. In this chapter, expressions for the gradients of the cost functions and constraint

inequalities are derived.

D .1 Preliminaries

As implemented in the code of Appendices F and G, the parameter space is defined as a vector

composed of the component elements of the pseudo-ellipse {cf. {5.21)) and state feedback matrices.

The vector is formed by stacking the lower diagonal columns of the ellipse matrix on top of the

feedback gain elements, as in (D.l).

A [Pll 'P21 l [P= A A 'K= ku
P21 P22

k12] => X = [Pu P21 P22 ku k12] T {D.l)

Gradients of any of the scalar functions are expressed as column vectors the size of X, each element

of which can be computed as a derivative with respect to a scalar value, Xi.

112

D.2 · Iderttities

Several matrix identities az.id special forms are used to derive the gradients. The following are all

taken from [6, pp. 50, 59-60, 66-68]. In these identities, bold face letters denote matrices (upper

case) and vectors (lower case), while normal type denotes a scalar. Subscripted letters refer to an

individual matrix/vector element.

Special Forms The matrix (EL)J denotes a matrix the same dimensions as Y whose elements are

all zeros except for the (ij)th element, which is one.

Traces of Matrices

Derivatives of Matrices

tr(Y) == LYii

tr (XYZ) = tr (YZX) = tr (ZXY)

tr (X + oY) = tr (X) + otr (Y)

tr [(EL)J Y] = tr [Y (EL)~] = Yii

(D.2)

(D.3}

(D.4)

(D.5)

aY /aYii = (EL)J (D.6)

T yT () ay /aYii = (EL};i D.7

aXY /ax= (aX/ax) Y + X (aY /ax) (D.8)

awY /ax= W (aY /ax) (if W not a function of x) (D.9}

aWYWT /ax= W {aY /ax) WT (D.10)

aYTWY /8x = (aYT /ax) WY+ yTw (aY /8x) (D.11)

atr(Y) /aY = I (D.12)

atr (YT AY) /aY::,; AY + ATY · (D.13}

aloge IYlfaY = (YT)-1 (D.14}

ay-i /8x = -Y-1 (8Y /ax) y-1 (D.15}

8v/8x = tr [(av;az) (azT ;ax)] (D.16}

Also required are analytic derivatives of the eigenvalues of matrices with respect to the search

parameters. A large body of work has been published investigating the derivatives of eigenvalues

and eigenvectors with respect to matrix parameters, particularly as it is related to flexible structures

113

(see, e:g., [15], [26], [39], [40]). Wittrick [46] shows that, if ei is a normalized (e[ei = 1) eigenvector of

a self-adjoint matrix Y, and Ai is its corresponding eigenvalue, then the derivative of the eigenvalue

with respect to the (ij)th element ofY is given in (D.17).

8.\i = e[(8Y) ei
8yij 8yij .

(D.17)

Analytical expressions for the gradients of the positive definiteness and invariance constraints

only require the derivatives of the eigenvalues. However, the reduced dimension state constraint

matrix, rf, in (5.7) is a function of the state feedback matrix (a search parameter) via Wi, the null

space of ri (A - BKv) (or Ke), The null space corresponds to the eigenvectors ofri (A- BKv) with

eigenvalues of 0. Thus, the analytic derivative of the state constraint requires the derivative of these

eigenvectors, which is complicated by the fact that ri (A - BKv) is non-self-adjoint (asymmetric)

and the eigenvectors in question belong to repeated eigenvalues of multiplicity (n - 1).

Eigenvector derivatives have been investigated in [33] for non-self-adjoint systems with distinct

eigenvalues and in [14] for self-adjoint systems with repeated eigenvalues, but the case where both

conditions occur is apparently still an open research issue. Furthermore, the algorithms presented

in [14], [33] involve multiple steps, adding to the computational burden for an optimization search.

Given the unresolved theoretical issue of eigenvector derivatives of non-self-adjoint systems with re

peated eigenvalues as well as the. desire to minimize the search time, a finite difference approximation

to the eigenvector derivatives is used.

D.3 Analytic Derivatives

The derivatives of the objective functions and constraints are presented here for the case of the

recoverable ellipsoidal/semi-ellipsoidal set, though the subscript "v" has been dropped to avoid

confusion with the indexing subscripts, For the reachable case, all that is required is a sign change

(and change of feedback matrix) on the invariance constraint. Before presenting the equations, a

few remarks are necessary regarding the notation used.

• The ellipsoid matrix, P, is defined in terms of an auxiliary symmetric matrix, P via the

relation P = PP, (5.21). Because of the forced-symmetric structure of P (i,;i = Pi;), the

partial derivatives of P with respect to the elements of P are different for on- and off-diagonal

elements, as shown in (D.18).

8P { (EL)f;,

8fii; = (EL);; + (EL)t,

i=j
(by (D.6),(D.7)) (D.18)

114

This relation then implies that the derivatives of P are also dependent on the parameter

location, (D.19).

8P
8fti; =

· a (Pfa)
8fti;

;.. ·(aP) (aP) ~ = P 8fti; + 8pi; P (by (D.B))

= { f:, (EL)f; + (EL)f; P,
f:, [(EL)f; + (EL)t] + [(EL)f; + (EL)t] f:,,

• In all cases, Acl = A- B (K + K0).

i=j
(D.19)

i =I= j

• The subscript "i" has been dropped on the state constraint matrix, r to avoid confusion with

the parameter indexing subscripts.

• Matlab requires constraints to. be written in the form g (x) $ 0, which means that the con

straints derived in the preceding chapters must be expressed as f (x)-1 $ 0, but this constant

does not alter the expression of the gradient of the constraint function.

Ellipsoidal Set Cost Function

a (loge IPD
8fti;

= tr { [8 (lo;PIPI)] (;~) } (by (D.16))

= tr (p-1 :~) (by (D.14))

tr [(f:,f:,)-1 (P (EL)f; + (EL);; f:,)] , i = j

tr [(PP)-1 (P [(EL);,+ (EL)t] =
+ [(EL)f; + (EL)t] f:,)] , i =I= j

I tr [(P-1P-1).P(EL);] +. tr [(P-1P-1) (EL);,~],

= · tr [(f:,.,.1 f:,-1) f:, (EL)t] + tr [(P-1 f:,-1) f:, (EL)~]

. +tr [(P-1 f:,-1) (EL)t, P] + tr [(P-1 f:,-1) (EL)t P] ,

= (by (D.3)) {
2 tr [P-1 (EL)f;], i = j
2 tr [P-1 (EL)f;] + 2 tr [P-1 (EL)t] , i =I= j

{ 2(P-1).. .
= ,, . (by (D.5))

2 (P-1) .. +,2 (P-1) . . i =I= i
· i3 · 3i

i=j

= J (since P = f:,T) {
2 (P-1) i• i = i
4{P-1) ij i Cf' j

115

i=j

(by (D.4))

i =I= j

(D.20)

Semi-Ellipsoidal Set Cost Function

8 [loge tr (P)]
8pij

= [1] [8tr(P)]
tr(P) 8pi;

= [tr~)] ·tr [at;f) :~] (by (D.16))

= [tr;P)] ·tr[%~] (by (D.12))

[1] [A p p A] tr(P) · tr P (EL)i; + (EL)i; P ,

(D.21)

i=j

= { [tr(P)] · tr { .P [(EL)f, + (EL)~] + [(EL)f, + (EL)~] .P}, i # j

= I
= {

= {

[tr(P)] { tr [P (EL)f,] + tr [(EL)f, P]}, i = j

[trfi3Y] { tr [P (EL)f,] + tr [(EL)~ P]
+tr [f>(EL)f,] +tr [(EL)~.P]},

[tr(P)] {2 tr [P (EL)f,]} , i = j
[tr(P)] { 2 tr [P (EL)f,] + 2 tr [(EL)~ P]}, i ¥, j

[tr(P)] (2Pij) ,

[tr(P)] (2Pij + 2fi;i) ,

i=j
(by (D.5))

i#j

_ { (2fii;) I [tr(~~)],

(4f>i;)/ [tr(PP)],
a (loge IPD = 0

8kij

i=j
(since .P = f>T)

i#j

(by (D.4))

(by (D.3))

(D.22)

(D.23)

Invariance Constraint Let A = { ..\1, ..\2, ... , ..\n} and 2 = { 6, {2, ... , {n} be the set of eigenvalues

and eigenvectors of PAc1 + A~P.

: = <f [a (P A~/~P) l <, (by (D.10),(D.17))

= T (8P T 8P)
{k Bpi; Ac1 + Ac1 a'Pi; {k (by (D.9))

T { [A p p A] {k P (EL)i; + (EL)i; P Ac1

T [A f> p A]} +Ac1 P (EL)i; + (EL)i; P {k, i=j

=
T ({ A [. f> j,] {k P (EL)i; + (EL);i

+ [(EL)f; + (EL)~] .P} Ac1
(D.24)

T { A [j, j,] +Acl P (EL)i; + (EL);i

+ [(EL)f; + (EL)~] .P}) {k, · i#j

116

;~i: . = ·.{[[a (PA~k: A~P)] ek (by (D.10),(D.17))

~ f.'f [pa (Aa~:K) + 8 (A;,::Kf pl e,. (by (D.9))

= ef { (f>f>) [-B (EL)!] + [-B (EL)!r (f>f>)} ek (by (D.8),(D.6)) (D.25)

Positive Definiteness Constraint Let A = { .>.1, .>.2, ... , >.n} and 3 = { e1, e2, ... , en} be the set

· of eigenvalues and eigenvectors of -P (recall that Matlab requires constraints of the form f(x) $ 0).

(D.26)

= 0 (D.27)

Ellipsoidal State Constraint

=

r [-p-l (%~) p-1] rT (by (D.10),(D.15))

-r(f>f>)-1 [f>(EL)f;

+ (EL)f; f>] (f>f>)-l rT, i = j

-r (f>f>)-1
{ P [(EL);;+ (EL)t]

+[(EL);;+ (EL)~] P} (f>f>)-1 rT, i # j

(D.28)

(D.29)

Semi-Ellipsoidal (Reduced-Dimension) State Constraint Let W = null {r (A- BK)},

rR = rw, pR = WTPW, where r(A- BK)# 0.

a{rR [(PR)-1] (rR{}
= rR [- (PR)-1 (!:i;) (PR)-1] (rR{ (by (D.10),(D.15))

= -rR (PR)-1 wT (8:) W (PR)-1 (rR) T (by (D.10))
OPi;

=

-rw(wTf>f>w)-1wT [f>(EL)f;

+ (EL)f;f>] (wTf>f>w)-l wTrT, i =(b.30)

-rw (wTf>f>w)-l wT {f> [(EL);;+ (EL)t]

+ [(Et)f; + (EL)t] f>} (wT f> f>w)-1 wTrT, i # i

117

Before deriving the partial derivative with respect to the state feedback gain parameters, recall

that the derivative of Wis computed numerically, as in (D.31), where e is a small constant. (Care

must be taken to ensure that the ordering of the eigenvalues and eigenvectors is consistent when

computing the new set of null vectors.)

aw w (K +€(EL)!) - w (K)
akij ~ e ·

(D.31)

To simplify the derivation to follow; the derivatives of rR and pR with respect to ki; are first

presented in (D.32), (D.33), respectively.

arR
kij

apR
kij

aw
= r aki; (by (D.9))

= (aw)T PW+ wTp (aw) (by (D.11))
akij akij

(D.32)

(D.33)

The derivative of the reduced-dimension state constraint function with respect to ki; is given

in (D.34).

Control Constraint

a [(KP- 1KT) /u2]

apij
= (K/u) [-p-l (:~) p-l] (K/u? (by (D.10),(D.15))

118

a [(KP-1KT) /u:2]
8kij

=

- (K/u) (PP)-1 [P (EL)f;

+ (EL);; P] (PP)-1 (Kfuf, i=j

- (K/u) (PP)-1
{ P [(EL);;+ (EL)t]

+[(EL);;+ (EL)t] P} (PP)-1 (Kfuf, i =I j

= (~r [(!~) p-lKT + KP- 1 c:;)] (by (D.11))

= (~r [(EL)t (PP)-1 KT

+K (PP)-l (EL}tT] (by (D.6),(D.7))

119

(D.35)

(D.36)

Appendix E

Overlapping Ellipsoid Constraint

Derivation for Variable Structure

Control

In Chapter 5, a sufficient condition for controlled invariance of a semi-ellipsoidal set is derived using

state feedback control. Another option is to use a separate control law for each surface. In this

appendix, the control is assumed to be constant (i.e., either u or y) on each state constraint surface

forming a portion of the semi-ellipsoidal set boundary (this implies a bias in the equation defining

8Gi, as _in Figure E.l). In a sense; this defines the limiting case by identifying the "maximum"

region on each 8Gi for which -9i (rix) :5 O. However, invariance of the semi-ellipsoidal set is still an

unresolved issue with this form of control. The inequality derivation is similar to that of Chapter 5,

but involves a modified definition of the derivative of the state constraint function.

The development of 8Gi proceeds as follows.

where

rix::; o

riAx + riBu* :5 0

120

(E.l)

X2 8Gi

aai
.,.. .,.. .,.. .,..

.,.. .,.. .,..
.,..

.,.. .,..

0 X1

.,.. .,.. .,..

Figure E.l: Illustration of Biased Constraint Derivative Boundary.

wp = - (fiAl [(riA) {fiAlr1 (fiBu*)

(riA)J_ = null {fiA}

u* = { -Y, TiB > 0 (y < O)

u, riB < o (u > o)

(Note that Wiand wp are constant in P. Also, note that it is assumed riAx =I 0. The trivial case,

riAx = 0, riB =I 0, implies that all points on 8G satisfy (E.1) for u = u*, so that no constraint on

the region of overlap is needed. The case riAx = 0, riB = 0 implies that ri is an uncontrollable

mode of the system, contradicting controllability assumptions.)

In reduced dimensions, the set of points satisfying both£ and 8G is given in (E.2).

(E.2)

To use the previous results, this relation must be transformed to one of the form

(E.3)

using some linear state transformation, (E.4).

(E.4)

121

E.1 Derivation of Linear Transformation

For simplicity, define the following constant matrices,

such that

M2 = Wl PWi (M2 positive definite, symmetric)

M1 = (Wi0) T PWi

Mo = (WP) T PWP

Substituting z for v in (E.2) yields (E.6).

ZT c'[M2C1z + (CJ' M2C1 + M101) z

(E.5)

+zT (CJ' M2C1 + M101{ + (CJ' M2Co + M1 Co + CJ' M[+ Mo) ~ 1 (E.6)

To obtain the desired form, (E.3), 0 0 and 0 1 must be chosen such that the coefficient of z (and

z7) is zero.

Cf M2C1 + M101 = O

CfM2+M1 =0

This choice for 0 0 reduces (E.6) to (E.8).

(E.7)

(E.8)

Any number of basis sets, which define the structure of 0 1 , could be chosen for this transformation.

For simplicity, choose the scaled identity matrix, (E.9).

(E.9)

These choices for 0 1 and 00 yield the desired form, (E.3), where Pl is defined as in (E.10).

(E.10)

and where Ii is a scalar quantity defined as follows:

(E.11)

122

Redefining 8Gi in terms of z gives representation shown in (E.12) ..

The set of points satisfying both (E.12) and (5.1) is found by substituting into the state constraint:

.IJ.

[riwi/fi (P)112] z $ 1- ri [1 - wi (Wl PWi)-1 WlP] wp

This relation can be manipulated into the desired form,

8Gf = {zlrfz $ 1}

via the following definition:

(E.13)

where gi is a scalar quantity defined as

(E.14)

Finally, using the previous result, (3.11), the inequality constraint for overlap of the ellipsoid and

state constraint, (E.15), is obtained.

rf (Pl)-1 (rf) T $ 1

.IJ.

(riWi/ [f(P) 112 g(P)]) [(WlPWi)/f(P)r1 (riWi/ [f(P) 112 g(P)])T $1

.IJ.

[criwi) (WlPWi)-1 (riwif] / [gi (P)] 2 $ 1

.IJ.

[criwi) (WlPWi)-1 (riwif] / [1- riwp + riwi (WlPWi)-1 wtPwpJ2 $ 1 (E.15)

E.2 Analytic Gradient of Constraint

As a preliminary step to computing the gradient of the modified constraint, (E.15), the derivative

of the function gi (P) is first presented. To avoid confusion with the parameter indexing subscripts,

123

the subscript i is dropped from the state constraint and related matrices (r, W, W0).

8 [g (P)]
8'fiiJ

8 [(wTPw)-1]
= rw wTpw0

8'fiiJ

+rw (WTPW)-1 wT 8: w 0 (by (D.8),(D.9))
OPiJ

= -rw (WT PW)-1 8 (W~PW) (wT PW)-1 wT pwo
8PiJ

+rw (WTPW)-i. wT ::, w 0 (by (D.15))

= -rw (WTPW)-1 wT 8: w (WTPW)-1 wTpw0
8pij

+rw (WT PW)-1 wT ::, w 0 (by (D.10))

= rw (WT PW)-1 wT 8: [1 - w (WT PW)-1 wT P] w 0

8PiJ

rw (WTPw)-:1 WT [i> (EL);;+ (EL)f; i>]
· [1 -W (WTPW)-1 WTP] W0 i = j

= rw(wTPw)-1 wT{f>[(EL)f;+(EL)~] (by(D.19)) (E.16)

+[(EL);;+ (EL)~] P}
·[1-W(WTPW)-1WTP]w0 i=/:j

The derivative of the modified state constraint is now presented, where substitution of (E.14), (D.19),

and (E.16) should be made into (E.17) where appropriate.

a!ij {[(rW) (WT PW)-1 (rW) T] / [g (P)]2}

8 [(rW) (WT PW)-1 (rW) T]
= [g (P)]-2 8'fiiJ

. o{[g(P)J-2 }

+ [(rW) (WTPW)-1 (rwf] OPij (by (D.8))

8 [(WT PW)-1]

= [u (P)J-2 (rW) ~ (rwf
OPiJ

-2[g(P)]-3 [(rW) (WTPw)-1 (rwf] B[gf P)] {by (D.10))
OPiJ

= - [g (P)]-2 {rW) [(wT PW)-1 8 (W~ PW) (WT PW)-1] (rwf
OPiJ

-2 [g (P)r3 [(rW) (WT PWf 1 (rwf] a [g f P)] {by {D.15))
8PiJ

= - [g (P)]-2 (rW) [(wT PW)-1 wT 8: W (WT PW)-1] (rwf
8pij

-2[g{P)r3 [(rW) (WTPW)-1 {rwf] o[gf P)] {by {D.10)) (E.17)
8PiJ

124

a:ij { [(rW) (WT PWf 1 (rwf] / [g (P)J2} = 0 {E.18)

125

Appendix F

Matlab Code for Ellipsoidal Sets

F.1 Function Files for Computing Recoverable Ellipsoidal
Set

F.1.1 Optimization Routine

function [P,Kv,U,X]=recover(A,B,GAMMA,UMAX,QO,PO,KOv);
%
% RECOVER finds the largest.recoverable ellipsoid for a linear system with
% constrained states and inputs.
%
% Parameter definitions;
%
%
7.
%
%
%
%
%
%
%
%
%
%

[A,B]:
GAMMA:
UMAX:
QO:
PO:
KOv:

P:
Kv:
U:
X:

% Usage:

state-space description of linear system
state constraints of the form GAMMA•x<=1
maximum allowable control (assumed symmetric)
specifies decay rate of the Lyapunov function
initial guess for the ellipsoid matrix (x'Px<=1)
initial guess for state feedback (must stabilize [A,B])

the optimal ellipsoid
the corresponding state feedback gain matrix
the maximum control effort on the boundary of P
the final parameter search vector (elements of P, Kv)

% [P,Kv,U,X]=recover(A,B,GAMMA,UMAX,QO,PO,KOv) finds the largest
% recoverable ellipsoid, P ,. and corresponding state-feedback
% matrix, Kv, for the system [A,B] and the constraints, GAMMA,
% UMAX. Definitions of QO, PO, and KOv are optional. If not
% provided, QO is assumed to be zero and PO is initialized using
% an LQR-based approach. If KOv is not specified, or if the given
% KOv does not stabilize [A,B], it is chosen (arbitrarily) using
% the LQR technique .

. %
% Notice:
%
% This algorithm is based on the dissertation "Ellipsoidal and
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained

126

% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999.
%

% Start counter for run-time
tic

% DEFINE SIMULATION CONSTANTS
fig..:.handle=1;
ON=1;
OFF=O;
PARTIAL=0.5;
beta=0.95;

[n,m]=size(B);
pe=(n~2-n)/2+n;
pg=n*m;
p=pe+pg;

PET=1;

% Set the figure handle

% Decrease factor for size of P; MUST BE LESS THAN 1.0

% 'n' is number of states, 'm' is number of inputs
% Defines number of ellipse parameters
% Defines number of state feedback gain parameters
% Defines the total number of parameters.

% 'Percent Error Tolerance' for terminating searches

plotting=PARTIAL; % Turn plotting 'on/off'
plot_pts=150; % Number of points to use in plotting

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions')
max_passes=20;
min_iters=30*p;
max_iters=70*p;
weight=5e1;
pd_weight=1e3;
options(1)=1;

% Maximum number of search iterations per cycle (nom 70*p)
% Weighting coefficient for constraint vector (nom 50)
% Additional (multiplicative) weight for pos. def. const.
% Turns off display & suppresses warnings

. options (6)=1;
option~(14)=max_iters;
options(16)=1e-10;
options(17)=1e-8;

% Set the maximum number of iterations per pass

% INITIALIZE SEARCH DATA VECTORS
Fstart=[];
Gstart=[];
Fstop=[];
Gstop=[];
search_log=[];

% Vector of cost function values before each pass
% Matrix of constraint function values before each pass
% Vector of cost function values after each pass
% Matrix of constraint function values after each pass
% Matrix of parameter values after each pass

% CHECK VALIDITY OF INPUT DEFINITIONS
N=nargin;
if N<4

error('Not enough input arguments.')
elseif N==4

QO= [] ; PO=[] ; KOv= [] ;
elseif N==5

PO=[] ; KOv= [] ;

127

elseif N==6
KOv=[];

end

1. CHECK SIZE OF A,B
if size (A; 1)-=size (A, 2)

error('A is non-square.')
elseif size(A,1)-=n

error('A and B must have same number of rows.')
end

1. CHECK CONSTRAINT SPACE SIZE
if rank(GAMMA)<n·

error('State constraints do not form closed set.')
end

1. CHECK UMAX
if min(UMAX)<=O

error('Control constraints must be positive.')
end

Y. CHECK QO
if isempty(QO) Y. Check for proper initialization

Y. Display initialization message
disp(' ')
disp('Initializing QO matrix:')
disp(' ')
QO=zeros(size(A))

elseif max(max(abs(QO-QO')))>O Y. Check for symmetry
error('QO is not symmetric.')

elseif min(eig(QO))<O Y. Check for positive definiteness
error('QO is not positive definite.')

end

1. USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS
poles=[1:n]; Y. Define (arbitrary) positive pole locations
kO=place(A,B,poles); Y. Compute state-feedback gain
R=eye(m); Y. Arbitrary pos. def. weighting matrix for LQR
[temp,p20]=lqr(A-B*k0,B,QO,R); Y. Compute stabilizing controller and ellipse
dk=inv(R)*B'*p20; Y. Define stabilizing controller

Y. CHECK KOv
if isempty(KOv) Y. Initialize with LQR if KOv not given

Y. Display initialization message
disp(' ')
disp('Initializing KOv matrix:')
disp(' ')
KOv=kO+dk/2 Y. Define marginally stabilizing controller

128

Kv=dk/4 1, Define gain such that (KOv+Kv) is stabilizing
1, (in positive time)

else
if (size(KOv,1)-=m)l(size(KOv,2)-=n) 1, Check size of KOv

error('KOv must be same size as B transpose.')
end
if max(real(~ig(A-B*KOv)))>O 1, Check stability of A-B*KOv

error ('KOv does not stabilize A. ')
end

end

1, CHECK PO
if isempty(PO) 1, Check for proper initialization

1, Display initialization message
disp(' ')
disp('Initializing PO matrix:')
disp(' ')
con=[(KOv+Kv)/UMAX;GAMMA];
p20=p20*max(diag((con*inv(p20)*con')));

1, Define matrix of all bounds

.. PO=~eal (sqrtm (p20))
P20=PO'*PO

1, Normalize ellipsoid to touch one
1, of the bounds .
Y,·Compute PO from p20

elseif max(max(abs(PO-PO')))>O 1, Check for symmetry
error('PO is not symmetric.')

elseif min(eig(PO))<O 1, Check for positive definiteness
error('PO is not positive definite.')

end

1, ASSIGN PO,KOv TO ELEMENTS OF SEARCH SPACE VECTOR
X=pk2x(PO,Kv,n,m); 1, Parametrize search with PO, the square root of the

1, ellipsoid matrix, to minimize search errors with
1, positive definiteness of ellipse. (P=PO*PO)

if plotting==ON
1, Plot initial condition ellipsoid
figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
ellipse(P20, [] ,plot_pts) ;gr.id on;axis square;
title('INITIAL CONDITION')
drawnow;

1, Plot trajectories of initial condition ellipsoid
figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
recover_p(X,A,B,KOv,plot_pts);
title('TRAJECTORIES OF INITIAL CONDITION')
drawnow;

end

save recover.mat X

pvol=det(inv(P20));

129

save recover_best.mat X pvol

% ==

% OPTIMIZE SOLUTION

options(14)=max_iters;
pass=!;
control_const=ON;

% Set the maximum nwnber of iterations to max_iters
:~ Reset the counter

change=100;
options(10)=max_iters;

% Turn the control constraint 'on'

while (pass<=max_passes)&((abs(change)>PET) l(options(10)>(0.8*options(14))))
% Loop until change in ellipsoid size< 2'l.

disp(' ')
disp(sprintf ('

change))
disp(' ')

========== OPTIMIZING: CHANGE~ %6.2f %%

% Increase search iterations if necessary
if round(pass/5)*5==pass

options(14)=min([min_iters,round(options(14)/1.1)]);
end

% Log start-of-pass search constraint vector and cost function
[fstart,g]=recover_fg(X,A,B,KOv,GAMMA,UMAX,QO,control_const, ...

weight,pd_weight);
Gstart=[Gstart g];
Fstart=[Fstart fstart];

'l. Scale ellipse dow by factor of beta to start the next pass off the
% constraints
X(1:pe,1)=X(1:pe,1)/sqrt(beta);

% Perform search.
options(9)=0FF;
[X,options]=con.str('recover_fg' ,X,options,{], [], 'recover_dfg', ...

A,B,KOv,GAMMA,UMAX,QO,control_const,weight,pd_weight);

% Log end-of-pass search constraint vector and cost function
[fstcp,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX,QO, ...

ccntrol_const,weight,pd_weight);
Gstop=[Gstop g];
Fstop=[Fstop fstop];

% Compute change in cost function
change=100*(exp(fstart)-exp(fstop))/exp(fstart);

% Log parameter space,control value, and number of iterations
search_log= [search_log X] ;

% Parameter Assignments

130

' ...

P=x2pk(X,n,m);
P2=P'*P;

Y. Plot ellipsoid in state space
if plotting==ON

fi-gure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
ellipse(P2,[],plot_pts);grid on;axis square;
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change));
drawnow

end

save recover.mat XU

if det(inv(P2))>pvol
pvol=det(inv(P2));
save recover_best.mat X P2 Kv pvol

end

pass=pass+1;

end

Y. ===

% DISPLAY TERMINATION CRITERIA

disp(' ')
disp(sprintf('Search terminated on change in cost function of Y.0.4g %%.', ...

change))
disp(' ')

Y. ===

Y. CLOSING TASKS

Y. Plot trajectories
if plotting>=PARTIAL

figure(fig_handle);clf;drawnow;
recover_p(X,A,B,KOv,plot_pts);
title('RECOVERABLE ELLIPSOID')

end

Y. Compute composite gain.
Kv=Kv+KOv;

Y. Define output ellipsoid matrix
P=P2;

Y. Compute maximum gain on ellipse, U

131

[f,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX,QO, ...
control_const,weight,pd_weight);

·%Cleanup hard drive
delete recover.mat
delete recover_best.mat

% Terminate counter and display elapsed time
toe

%·------------------------- END OF FILE: RECOVER.M ------------------------

132

F .1.2 Cost Function and Constraints

function [f,g,Uv,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX,Q, ...
control_const,weight,pd_weight);

% RECOVER_FG is the cost functfon and constraint routine for use with RECOVER.

% parametrizes in terms of sqrt(P) and Kv
% modifies definition of (at end) and pos. def. inequalities

% SYSTEM SIZE DEFINITION
[n,m]=size(B);
[p]=max(size(X));
[c]=size(GAMMA,1);

% PARAMETER ASSIGNMENTS
[P,Kv]=x2pk(X,n,m);
P2=P'•P;

% OBJECTIVE FUNCTION (Minimization)
f=log(det(P2));

% CONSTRAINTS (Must be of form<= 0)
g=[]; % clear array
constraints=[];% constraints assignments (below) don't work with older Matlab

% Invariance constraint
Acl=A-B•(Kv+KOv);
temp=P2•Acl+Acl'•P2+Q; % Write as negative definite form
[v,d]=eig(temp);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; % Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Invariance');
end

% Positive definiteness constraints.
[v,d]=eig(-P2•pd_weight); % Write as negative definite form
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; % Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Positive Definiteness');
end

% State constraints
for i=1:c;

g=[g; GAMMA(i,:)•inv(P2)•GAMMA(i,:)'-1];
constraints=char(constraints,['State Constraint 'num2str(i)]);

end;

133

% Control .constraints
if controi_const==l

Uv=sqrt((Kv+KOv)•inv{P2)•(Kv+KOv) ');
g=[g; (Uv•Uv)/(UMAX•UMAX)-1]; % Normalize to 1
constraints=char(constraints,'Control');

end

% -------:-----------"'.'"--- END OF FILE.: RECOVER_FG. M ----------------------

134

F.1.3 Derivatives of Cost Function and Constraints

function [df_dX,dg_dX]=recover_dfg(X,A,B,KOv,GAMMA,UMAX,Q, •..
control_const,weight,pd_weight);

% RECOVER_DFG is the derivative cost function and constraint routine
% for use with RECOVER.

% parametrizes in terms of sqrt(P) and Kv
% modifies definition of (at end) and pos. def. inequalities

% Empirical weights on constraints (experimented w/weighting pos.def. 1e3)

% SYSTEM SIZE DEFINITJON
[n,m] =size(B);
p=max(size(X));

.c=size(GAMMA,1);
pg=n•m;
pe=p-pg;

% number of state feedback gain parameters
% number of ellipsoid parameters

% PARAMETER ASSIGNMENTS
[P,Kv]=x2pk(X,n,m);
P2=P'•P;

% OBJECTIVE FUNCTION (Minimization)
f=log(det(P2));

Pi=inv(P);

df_dP=[];
xindex=O;
for i=1:n

for j=i:n

end

if i==j
df_dP=[df_dP;2•Pi(i,j)];

else
df_dP=[df_dP;4•Pi(i,j)];

end

end
df_dKv=zeros(size(Kv))';
df_dX=[df_dP;df_dKv];

% ===

% CONSTRAINTS (Must be of form<= 0)
g= [] ; % clear constraint array
dg_dX=[]; % clear constraint derivative array

% Invariance constraint
Acl=A-B•(Kv+KOv);

135

IC=P2*Acl+Acl'*P2+Q;
[v,d]=eig(IC);
[Di,sort_index]=esort(diag(d));
Vi=v(:,sort_index);
g=[g;Di]; Y. Write as 'less than' constraint

dDi_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL);
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)'];

end
end
dDi_dKv=[];
for i=1 :m

for j=1 :n
EL=zeros(size(Kv));
EL(i,j)=1;
dAcl_dKv_ij=-B*EL;
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2;
dDi_dKv=[dDi_dKv; diag(Vi'*(dIC_dKv_ij)*Vi)'];

end
end

dDi_dX=[dDi_dP; dDi_dKv];
dg_dX=[dg_dX dDi_dX];

Y. Positive definiteness of P2 constraint.
PDC=-P2*pd_weight;
[v,d]=eig(PDC);
[Dpd,sort_index]=esort(diag(d));
Vpd=v(:,sort_index);
g=[g;Dpd]; Y. Write as 'less than' constraint

dDpd_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dPDC_dP~ij=-1*(EL'*P+P*EL)*pd_weight;
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)'];

end
end
dDpd_dKv=zeros(pg,n); Y. 'n' eigenvalues

dDpd_dX=[dDpd_dP;dDpd_dKv];
dg_dX=[dg_dX dDpd_dX];

Y. State constraints
for k=1:c;

136

SC=GAMMA(k,:)*inv(P2)*GAMMA(k,:)'-1;
g=[g;SC];

dSC_dP=[];
for i=1:n

end

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j,i)=1;
dSC_dP_ij=GAMMA(k,:)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*GAMMA(k,:)';
dSC_dP=[dSC_dP; dSC_dP_ij];

end

dSC_dKv=zeros(pg,1);
dSC_dX=[dSC_dP;dSC_dKv];
dg_dX=[dg_dX dSC_dX];

end;

Y. Control constraints
if control_const==1

CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1;
g=[g;CC];

end

dCC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j,i)=1;
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2)) ...

end

*(Kv+KOv)');
dCC_dP=[dCC_dP; dCC_dP_ij];

end
dCC_dKv=[];
for i=1:m

end

for j=1:n

end

EL=zeros(size(Kv));
EL(i,j)=1;
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)');
dCC_dKv=[dCC_dKv; dCC_dKv_ij];

dCC_dX=[dCC_dP; dCC_dKv];
dg_dX=[dg_dX dCC_dX];

Y, ~---------------------- END OF FILE: RECOVER_DFG.M ----------------------

137

. F.1.4 Plotting Routine

fun.ction [U,P,Kv]=recover_p(X,A,B,KOv,plot_pts);
Y. RECOVER_P is the trajectory plotting routine for use with RECOVER

Y. Plotting options
N=5; Y. plot trajectory from every Nth data point on ellipsoid

if nargin<4
error('Not enough input arguments.')

end

% Message to screen
disp(' ')
disp('+++')
disp('Plotting recovering trajectories')
disp.('+++')
disp(' ')

Y. Parameter Assignments (extract P,K's from X)
[n,m]=size(B);
[P,Kv]=x2pk(X,n,m);
P2=P'•P;

.Kv=Kv+KOv; Y. Construct composite gain

if n==2 % 2-D ELLIPSOID
Y. Compute ellipsoid boundary
[x1,x2]=ellipse(P2,[],plot_pts);

Y. Compute corresponding control effort
ue=Kv•[x1;x2];

Y. Compute maximum control effort on boundary
U=ma.x(ue); -

Y. Plot boundary vs. control
plot(x1,x2,'k');grid on;axis square;hold on

% Compute reaching and recovering state-space descriptions
syse=ss(A-B•Kv,B,eye(n),zeros(n,m));

% Plot trajectories for every Nth point on the ellipsoid boundary
for i=1:N:max(size(x1));

[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]);
plot(x(:,1),x(:,2),'r')

end

xlabel('x1'),ylabel('x2'),zlabel('u')
elseif n==3 Y, 3-D ELLIPSOID

% Compute ellipsoid boundary
[x1,x2,x3]=ellipse(P2,[],plot_pts);

138

Y. Compute corresponding control effort
for i=1:size(x1,1) ·

for j~1:size(x1,2)
ue(i,j)=Kv•[x1(i,j);x2(i,j);x3(i,j)];

end
end

Y. Compute maximum control effort on boundary
U=max(max(abs(ue)));

Y. Plot boundary vs. control
surf(x1,x2,x3,ue/U);grid on;axis square;hold on

Y. Compute reaching and recovering state~space descriptions
syse=ss(A-B•Kv,B,eye(n),zeros(n,m));

Y. Plot trajectories for every Nth point on the ellipsoid boundary
hold on
for i=1:N~2:size(x1,1);

for j=1:r2:size(x1,2)
[y,t,x]=initial(syse, [x1(i,j) ,x2(i,j) ,x3(i,j)J, [O: .01: 10]);
plot3(x(:,1),x(:,2),x(:,3},'r')

end
end
drawnow
grid on
colormap('copper')
lighting phong
light('Position',[1 -1 5])
h=findobj('Type','surface');
set(h,'FaceLighting','phong', ...

'FaceColor','interp', ...
'EdgeColor',[.4 .4 .4], .•.
'BackFaceLighting','reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1 ') ,ylabel ('x2') ,zlabel('x3')

end

Y, ----------------------- END OF FILE: RECOVER_P.M ----------------------

139

F .2 Function Files for Computing Reachable Ellipsoidal Set

F .2.1 Optimization Routine

function [P, Ke, U, X] =reach (A, B, GAMMA, UMAX, Q.O, PO, KOe) ;
%
% REACH finds the largest reachable ellipsoid for a linear system with
% constrained states and input.
%
% Parameter definitions:
%
%
%
%
%
%
%
%
%
%
%
%
%

[A,B]:
GAMMA:
UMAX:
QO:
PO:
KOe:

P:
Ke:
U:
X:

% Usage:
%

state-space description of linear system
state constraints of the form GAMMA*x<=1
maximum allowable control (assumed symmetric)
specifies decay rate of the Lyapunov function
initial guess for the ellipsoid matrix (x'Px<=1)
initial guess for state feedback (must stabilize [-A,-B])

the optimal ellipsoid
the corresponding state feedback gain matrix
the maximum control effort on the boundary of P
the final parameter search vector (elements of P, Ke)

% [P,Ke,U,X]=reach(A,B,GAMMA,UMAX,QO,PO,KOe) finds the largest
. % reachable ellipsoid, P, and corresponding. state-feedback
% matrix, Ke, for the system [A,B] and the constraints, GAMMA,
% UMAX. Definitions of QO, PO, and KOe are optional. If not
% provided, QO is assumed to be zero and PO is initialized using
% an LQR-based approach. If KOe is not specified, or if the given
% KOe does not stabilize [A,B], it is chosen (arbitrarily) using
% the LQR technique.
%
% Notice:·
%
% This algorithm is based on the dissertation "Ellipsoidal and
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999.
%

% Start counter for run-time
tic

% DEFINE SIMULATION CONSTANTS
fig_handle=1;
ON=1;
OFF=O;
PARTIAL=0.5;
beta=0.95;

[n,m]=size(B);
pe=(nA2-n)/2+n;
pg=n*m;

% Set the figure handle

% Decrease factor for size of P; MUST BE LESS THAN 1.0

% 'n' is number of states, 'm' is number of inputs
% Defines number of ellipse parameters
% Defines number of state feedback gain parameters

140

p=pe+pg; Y. Defines the total number of parameters.

PET=l; Y. 'Percent Error Tolerance' for terminating searches

plotting=PARTIAL; Y. Turn plotting 'on'/'off'
plot_pts=150; Y. Number of points to use in plotting

Y. DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions')
max_passes=20;

Y. Maximum number of search iterations per cycle (nom 70•p)
Y. Weighting coefficient for constraint vector (nom 50)

min_iters=30•p;
max_iters=70•p;
weight=5e1;
pd_weight=1e3;
options(1)=1;
options(6)=1;
options(14)=max_iters;
options(16)=1e-10;.
options(17)=1e-8;

Y. Additionai (multiplicative) weight for pos. def. const.
Y. Turns off display & suppresses warnings

Y. Set the maximum number of iterations per pass

Y. INITIALIZE SEARCH DATA VECTORS
Fst~=[]; Y. Vector of cost function values before each pass
Gstart=[]; Y. Matrix of constraint function values before each pass
Fstop=[]; Y. Vector of cost function values after each pass
Gstop= [] ; Y. Matrix of constraint function values after each pass
search_log=[]; Y. Matrix of parameter values after each pass

Y. CHECK VALIDITY OF INPUT DEFINITIONS
N=nargin;
if N<4

error('Not enough input arguments.')
elseif .. N==4 .

QO= [] ; PO= [] ; KOe= [] ;
elseif N==5

PO= [] ; KOe= [] ;
elseif N==6

KOe=[];
end

Y. CHECK SIZE.OF A,B
if size(A,1)-=size(A,2)

error('A is non-square.')
elseif size(A,1)-=n

error('A and B must have same number of rows.')
end

Y. CHECK CONSTRAIN'],' SPACE SIZE
if rank(GAMMA)<n

error('State constraints do not form closed set.')
end

141

% CHECK UMAX
if min(UMAX)<=O

error('Control constraints must be positive.')
end

% CHECK QO
if isempty(QO) % Check for proper initialization

% Display initialization message
disp(' ')
disp('Initializing QO matrix:')
disp(' ') ·
QO=zeros(size(A))

elseif max(max(abs(QO-QO')))>O % Check for symmetry
error('QO is not symmetric.')

elseif min(eig(QO))<O % Check for positive definiteness
error('QO is not positive definite.')

end

% USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS
poles=[1:n]; % Define (arbitrary) positive pole locations
kO=place(A,B,poles); % Compute state-feedback gain
R=eye(m); % Arbitrary pos. def. weighting matrix for LQR
[temp,p20]=lqr(A-B*k0,B,QO,R); % Compute stabilizing controller and ellipse
dk=inv(R)*B'*p20; % Define stabilizing controller

% CHECK KOe
if isempty(KOe) %

% Display initialization message
disp(' ')
disp('Initializing KOe matrix:')

Initialize with LQR if KOe not given

disp(' ')
KOe=kO+dk/2
Ke=-dk/4

% Define marginally stabilizing controller
% Define gain such that (KOe+Ke) is stabilizing

% (in positive time)
else

if (size(KOe,1)-=m)l(size(KOe,2)-=n) % Check size of KOe
error('KOe must be same size as B transpose.')

end
if max(real(eig(A-B*KOe)))>O % Check stability of A-B*KOe

error('KOe does not stabilize A.')
end

end

% CHECK PO
if isempty(PO) % Check for proper initialization

% Display initialization message
disp(' ')
disp('Initializing PO matrix:')
disp(' ')

142

con=[(KOe+Ke)/UMAX;GAMMA];
p20=p20*max(diag((con*inv(p20)*con')));

PO=real(sqrtm(p20))
P20=PO'*PO

% Define matrix of all bounds
% Normalize ellipsoid to touch one
% of the bounds.
% Compute PO from p20

elseif max(max(abs(PO-PO')))>O % Check for symmetry
error('PO is not symmetric.')

elseif min(eig(PO))<O % Check for positive definiteness
error('PO is not positive definite.')

end

% ASSIGN PO,KOe TO ELEMENTS OF SEARCH SPACE VECTOR
X=pk2x(PO,Ke,n,m); % Parametrize search with PO, the square root of the

% ellipsoid matrix, to minimize search errors with
% positive definiteness of ellipse. (P=PO*PO)

if plotting==ON
% Plot initial condition ellipsoid
figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
ellipse(P20,[] ,plot~pts);grid on;axis square;
title ('INITIAL CONDITION')
drawnow;

% Plot trajectories of initial condition ellipsoid
figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
reach~p(X,A,B,KOe,plot_pts);
title('TRAJECTORIES OF INITIAL CONDITION')
drawnow;

end

save reach.mat X

pvol=det(inv(P20));

save reach_best.mat X pvol

% ==

% OPTIMIZE SOLUTION

options(14)=max_iters; % Set the maximum number of iterations to max_iters
pass=1; % Reset the counter
control_const=ON; % Turn the control constraint 'on'

change=100;
options(10)=max_iters;
while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(0.8*options(14))))

% Loop until change in ellipsoid size< 2%

disp(' ')

143

disp(sprintf('
change))

disp(' ')

OPTIMIZING: CHANGE= %6.2f %%

% Increase search iterations if necessary
if round(pass/5)*5==pass

options(14)=min([min_iters,round(options(14)/1.1)]);
end

% Log start-of-pass search constraint vector and cost function
[fstart,g]=reach_fg(X,A,B,KOe,GAMMA,UMAX,QO,control_const, ...

weight,pd_weight);
Gstart=[Gstart g];
Fstart=[Fstart fstart];

% Scale ellipse dow by factor of beta to start the next pass off the
% constraints
X(1:pe,1)=X(1:pe,1)/sqrt(beta);

% Perform search.
options(9)=0FF;
[X,options]=constr('reach_fg',X,options,[],[J,'reach_dfg', ...

A,B,KOe,GAMMA,UMAX,QO,control_const,weight,pd_weight);

% Log end-of-pass search constraint vector and cost function
[fstop,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,QO, ...

control_const,weight,pd_weight);
Gstop=[Gstop g];
Fstop=[Fstop fstop];

% Compute change in cost function
change=100*(exp(fstart)-exp(fstop))/exp(fstart);

% Log parameter space,control value, and number of iterations
search_log=[search_log X];

% Parameter Assignments
P=x2pk(X,n,m);
P2=P'*P;

% Plot ellipsoid in state space
if plotting==ON

figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
ellipse(P2,[],plot_pts);grid on;axis square;
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change));
drawnow

end

save reach.mat XU

if det(inv(P2))>pvol
pvol=det(inv(P2));
save reach_best.mat X P2 Ke pvol

144

' ...

end

pass=pass+1;

end

% ================================· ·==========-=============================

% DISPLAY TERMINATION CRITERIA

disp(' ')
disp(sprintf('Search terminated on change in cost function of %0.4g %%.', ...

change))
disp(' ')

% ===

% CLOSING TASKS

% Plot trajectories
if plotting>=PARTIAL ·

figure(fig_handle);clf;drawnow;
reach_p(X,A,B,KOe,plot_pts);
title('REACHABLE ELLIPSOID')

end

% Compute composite gain.
Ke=Ke+KOe;

% Define output ellipsoid matrix
P=P2;

% Compute maximum gain on ellipse, U
[f,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,QO, ...

control_const,weight,pd_weight);

% Clean up hard drive
delete reach.mat
delete reach_best.mat

% Terminate counter and display elapsed·time
toe

% ========================= END OF FILE: REACH.M ------------------------

145

F .2.2 Cost Function and Constraints

function [f,g,Ue,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,Q, ...
control_const,weight,pd_weight);

Y. REACH_FG is the cost function and constraint routine for use with REACH.

Y. parametrizes in terms of sqrt(P) and Ke
Y. modifies definition of (at end) and pos. def. inequalities

% SYSTEM SIZE DEFINITION
[n,m]=size(B);
[p]=max(size(X));
[c]=size(GAMMA,1);

% PARAMETER ASSIGNMENTS
[P,Ke]=x2pk(X,n,m);
P2=P'*P;

% OBJECTIVE FUNCTION (Minimization)
f=log(det(P2));

% CONSTRAINTS (Must be of form<= 0)
g=[]; Y. clear array
constraints=[]; Y. constraints assignments (below) don't work with older Matlab

Y. Invariance constraint
Acl=A-B*(Ke+KOe);
temp=P2*(-Acl)+(-Acl)'*P2+Q; Y. Write as negative definite form
[v,d]=eig(temp);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; Y. Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Invariance');
end

Y. Positive definiteness constraints.
[v,d]=eig(-P2*pd_weight); Y. Write as negative definite form
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; Y. Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Positive Definiteness');
end

Y. State constraints
for i=1:c;

g=[g; GAMMA(i,:)*inv(P2)*GAMMA(i,:)'-1];
constraints=char(constraints,['State Constraint' num2str(i)]);

end;

146

Y. Control constraints
if control_const==1

Ue=sqrt ((Ke+KOe) *inv(P2) * (Ke+KOe) ') .;
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; Y. Normalize to 1
constraints=char(constraints,'Control');

end

Y. ----------------------- END OF FILE: REACH_FG.M ----------------------

147

F .2.3 Derivatives of Cost Function and Constraints

function [df_dX,dg_dX]=reach_dfg(X,A,B,KOe,GAMMA,UMAX,Q, ...
control_const,weight,pd_weight);

% REACH_DFG is the derivative cost function and constraint routine
% for use with REACH.

% 1) parametrizes in terms of sqrt(P) and Ke
% 2) optional weights on constraints

% SYSTEM SIZE DEFINITION
[n,m]=size(B);
p=max(size(X));
c=size(GAMMA,1);
pg=n*m;
pe=p-pg;

% number of state feedback gain parameters
% number of ellipsoid parameters

% PARAMETER ASSIGNMENTS
[P,Ke]=x2pk(X,n,m);
P2=P'*P;

% OBJECTIVE FUNCTION (Minimization)
f=log(det(P2));

Pi=inv(P);

df_dP= [];
xindex=O;
for i=1:n

for j=i:n

end

if i==j
df_dP=[df_dP;2*Pi(i,j)];

else
df_dP=[df_dP;4*Pi(i,j)];

end

end
df_dKe=zeros(size(Ke))';
df_dX=[df_dP;df_dKe];

% ===

% CONSTRAINTS (Must be of form<= 0)
g=[]; % clear constraint array
dg_dX=[]; % clear constraint derivative array

% Invariance constraint
Acl=A-B*(Ke+KOe);
IC=P2*(-Acl)+(-Acl)'*P2+Q;

148

[v ,ci]=eig(IC);
[Di,sort_index]=esort(diag(d));
Vi=v(: ,sort_index);
·g=[g;Di]; % Write as 'less than' constraint

dDi_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dIC_dP_ij=(EL'*P+P*EL)*(-Acl)+(-Acl)'*(EL'*P+P*EL);
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)'];

end
end
dDi_dKe=[];
for i=1:m

for j=1:n ··
EL=zeros(size(Ke));
EL(i,j)=1;
dAcl_dKe_ij=-B*EL;
dIC_dKe_ij=P2*(-dAcl_dKe_ij)+(-dAcl_dKe_ij)'*P2;
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)'];

end
end

dDi_dX=[dDi_dP; dDi_dKe];
dg_dX=[dg_dX dDi_dX];

% Positive definiteness of P2 constraint.
PDC=-P2*pd_weight;
[v,d]=eig(PDC);
[Dpd,sort_index]=esort(diag(d));
Vpd=v{:,sort_index);
g=[g;Dpd]; % Write as 'less than' constraint

dDpd_dP=O;
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i ,j)=1 ;EL(j ,i)=1;
dPDC_dP_ij=-1*(EL'*P+P*EL)*pd_weight;
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)'];

end
end
dDpd_dKe=zeros(pg,n); % 'n' eigenvalues

dDpd_dX=[dDpd_dP;dDpd_dKe];
dg_dX=[dg_dX dDpd_dX];

% State constraints
for k=1:c;

SC=GAMMA(k,:)*inv(P2)*GAMMA(k,:)'-1;

149

g=[g;SCJ;

dSC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P));
EL (i, j)=1; EL(j, i):,;,1;
dSC_dP_ij=GAMMA(k,:)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*GAMMA(k,:)';
dSC_dP=[dSC_dP; dSC_dP_ij];

end
end
dSC_dKe=zeros(pg,1);
dSC_dX=[dSC_dP;dSC_dKe];
dg_dX=[dg_dX dSC_dX];

end;

Y. Control·constraints
if control_const==1

CC=(1/UMAX~2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1;
g=[g;CC];

dCC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j ,i)=1;
dCC_dP_ij=(1/UMAX~2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2)) ...

*(Ke+KOe)');
dCC_dP=[dCC_dP; dCC_dP_ij];

end
end
dCC_dKe=(];
for i=1:m

for j=1:n
EL=zeros(size(Ke));
EL(i,j)=1; .
dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)');

. dCC_dKe=[dCC_dKe; dCC_dKe_ij];
end

end
dCC_dX=[dCC_dP; dCC_dKe];
dg_dX= [dg_dX dCC_dXJ;

end

Y, ----------------------- END OF FILE: REACH_DFG.M -----------------~---

150

F .2.4 Plotting Routine

function [U,P,Kv]=reach_p(X,A,B,KOv,plot_pts);
% REACH~P is the trajectory plotting routine for use with REACH

% Plotting options
N=5; % plot trajectory from every Nth data point on ellipsoid

if nargin<4
error('Not enough input arguments.')

end

% Message to screen
disp(' ')
disp('+++')
disp('Plotting reaching trajectories')
disp('+++')
disp(' ') ·

% Parameter Assignments (extract P,K's from X)
[n,m]=size(B);
[P,Kv]=x2pk(X,n,m);
P2=P'•P;

Kv=Kv+KOv; % Construct composite gain

if n==2 % 2-D ELLIPSOID
. % Compute ellipsoid boundary

[x1,x2]=ellipse(P2, 0 ,plot_pts);

% Compute corresponding control effort
ue=Kv•[x1;x2];

% Compute maximum control effort on boundary
U=max(ue);

% Plot boundary vs. control
plot(x1,x2,'k');grid on;axis square;hold on

% Compute reaching and reaching state-space descriptions
syse=ss(-(A-B•Kv),B,eye(n),zeros(n,m));

% Plot trajectories for every Nth point on the ellipsoid boundary
for i=1:N:max(size(x1));

[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]);
plot(x(: ,1) ,x(: ,2), 'b')

end

xlabel('x1'),ylabel('x2'),zlabel('u')
elseif n==3 % 3-D ELLIPSOID

% Compute ellipsoid boundary
[x1,x2,x3]=ellipse(P2,[],plot_pts);

151

% Compute corresponding control effort
for i=1:size(x1,1)

for j=1:size(x1,2)
ue(i,j)=Kv•[x1(i,j);x2(i,j);x3(i,j)];

end
· end

% Compute maximum control effort on boundary
U=max(max(abs(ue)));

% Plot boundary vs. control
surf(x1,x2,x3,ue/U);grid on;axis square;hold on

% Compute reaching and reaching ·state-space descriptions
syse=ss(-(A-B•Kv),B,eye(n),zeros(n,m));

% Plot trajectories for every Nth point on the ellipsoid boundary
hold on
for i=1:N-2:size(x1,1);

for j=1:N-2:size(x1,2)
[y,t,x]=initial(syse,[:x:1(i,j) ,x2(i,j) ,x3(i,j)], [0: .01:10]);
plot3(x(:,1),x(:,2),x(:,3),'b')

end
end
drawnow
grid on
colormap ('copper')
lighting phong
light('Position',[1 -1 5])
h=findobj ('Type', 'surface');
set(h,'FaceLighting','phong', ...

'Fa.ceColor' , 'interp' ; .. .
'EdgeColor', [.4 .4 .4], .. .
'BackFaceLighting','reverselit', •..
'AmbientStrength',1, ...
'DiffuseStrength' , 1) ;

shad,ing interp
xlabel('x1') ,ylabel('x2') ,zlabel('x3')

end

% ------~-~------~----- END OF FILE: REACH_P.M ----------------------

152

F .3 Function Files for Computing Controllable Ellipsoidal
Set

F.3.1 Optimization Routine

function [P,Kv,Ke,U,X]=control(A,B,GAMMA,UMAX,QO,PO,KOv,KOe);
Y.
Y. CONTROL finds the largest controllable ellipsoid for a linear system with
Y. constrained states and input.
Y.
Y. Parameter definitions:
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.

[A,B] :
GAMMA:
UMAX:
QO:
P9:
KOv:
KOe:

P:
Kv:
Ke:
U:
X:

Y. Usage:

state-space description of linear system
state constraints of the form GAMMA*x<=1
maximum allowable control (assumed symmetric)
specifies decay rate of the Lyapunov function·
initial guess for the ellipsoid matrix (x'Px<=1)
initial guess for recovering state feedback matrix
initial ·guess for reaching state feedback matrix

the optimal ellipsoid
the corresponding recovering state feedback matrix
the corresponding reaching state feedback matrix
the maximum control effort on the boundary of P
the final parameter .search vector (elements of P, K)

Y, [P ,Kv ,Ke·, U ,X] =control(A,B,GAMMA,UMAX,QO,PO ,KOv ,KOe) finds the
Y. largest ellipsoid, P, which is both reachable and recoverable,
Y. · and corresponding state-feedback matrices, Ke, Kv, for the
Y. system [A,B] and the constraints, GAMMA, UMAX. Definitions of
Y. QO, PO, and KO's are optional. If not provided, QO is assumed
Y. to be zero and PO is initialized using an LQR-based approach.
Y. If KOe is not specified, or if the given KOe does not stabilize
Y. [-A,-B], it is chosen (arbitrarily) using the LQR technique.
Y. Similarly, if KOv is not specified, or if the given KOv does
Y. not stabilize [A,B], it is chosen (arbitrarily) using the LQR
Y. technique.
Y.
Y. Notice:
Y.
Y. This algorithm is based on the dissertation "Ellipsoidal and
Y. Semi-Ellipsoidal Controlled Invariant Sets for Constrained
Y. Linear Systems" by Brian O'Dell, Oklahoma State University, 1999.
Y.

Y. Start counter for run-time
tic

.Y. DEFINE SIMULATION CONSTANTS
fig_handle=1;
ON=1;
OFF=O;

Y. Set the figure handle

153

PARTIAL=0.5;
beta=0.95; % Decrease factor for size of P; MUST BE LESS THAN 1.0

[n,m] =size (B);
pe=(n~2-n)/2+n;
pg=n*ill;
p=pe+pg;

% 'n' is number of states, 'm 1 is number of inputs
% Defines number of ellipse parameters
% Defines number of state feedback gain parameters
% Defines the total number of parameters.

PET=1;
flag=1;

% 'Percent Error Tolerance' for terminating searches
% Defines as controllable ellipsoid

plotting=PARTIAL; % Turn plotting 'on 1 /'off'
plot_pts=150; % Number of points to use in plotting

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions')
max_passes=20;

% Maximum number of search iterations per cycle (nom 70*p)
% Weighting coefficient for constraint vector (nom 50)

'min_iters=50*p;
max_iters=70*p;
weight=5e1;
pd_weight=1e3;
options(1)=1;
options(6)=1;
options(14)=max_iters;
options(16)=1e-10;
options(17)=1e-8;

% Additional (multiplicative) weight for pos. def. const.
% Turns off display & suppresses warnings

% Set the maximum number of iterations per pass

% INITIALIZE SEARCH DATA VECTORS
Fstart=[]; % Vector of cost function values before each pass
Gstart=[]; % Matrix of constraint function values before each pass
Fstop=[]; % Vector of cost function values after each pass
Gstop=[]; % Matrix of constraint function values after each pass
search_log=[]; %_Matrix of parameter values after each pass

% CHECK VALIDITY OF INPUT DEFINITIONS
N=nargin;
if N<4

error('Not enough input arguments.')
elseif N==4

QO= [] ; PO= [] ; KOv= [] ; KOe= [] ;
elseif N==5

PO= [] ; KOv= [] ; KOe= [] ;
elseif N==6

KOv= [] ; KOe= [] ;
elseif N==7

KOe=[];
end

% CHECK SIZE OF A,B
if size(A,1)-=size(A,2)

error('A is non-square.')

154

elseif size(A,1)-=n
error('A and B must have same number of rows.')

end

% CHECK CONSTRAINT SPACE SIZE
if rank(GAMMA)<n

· error('State constraints do not form closed set.')
end

% CHECK UMAX
if min(UMAX)<=O

error('Control constraints must be positive.')
end

% CHECK QO
if isempty(QO) % Check for proper initialization

% Display initialization message
disp(' ')
disp('Initializing QO matrix:')
disp(' ')
QO=zeros(size(A))

elseif max(max(abs(QO-QO')))>O % Check for symmetry
error ('QO is not symmetric. ')

elseif min(eig(QO))<O % Check for positive definiteness
error ('QO is not positive definite. ')

end

% USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS
poles=[1:n]; % Define (arbitrary) positive pole locations
kO=pla~e(A,B,poles); % Compute state-feedback gain
R=eye(m); % Arbitrary pos. def. weighting matrix for LQR
[temp,p20]=lqr(A-B*k0,B,QO,R); % Compute stabilizing controller and ellipse
dk=inv(R)*B'*p20; % Define stabilizing controller

% CHECK KOv
if isempty(KOv) %

% Display initialization message
disp(' ')
disp('Initializing KOv matrix:')

Initialize with LQR if KOv not given

disp(' ')
KOv=kO+dk/2
Kv=dk/4

% Define marginally stabilizing controller

else

% Define gain such that (KOv+Kv) is stabilizing
% (in positive time)

if (size(KOv,1)-=m)l(size(KOv,2)-=n) % Check size of KOv
error('KOv must be same size as B transpose.')

end
if max(real(eig(A-B*KOv)))>O % Check stability of A-B*KOv

error('KOv does not stabilize A.')

155

end
end

- % CHECK KOe
if isempty(KOe) % Initialize with LQR if KOv not given

% Display initialization message
disp(' ')
disp('Initializing KOe matrix:')
disp(' ')
KOe=kO+dk/2
Ke=-dk/4

% Define marginally stabilizing controller
% Define gain such that (KOe+Ke) is stabilizing
% (in negative time)

else
if (size(KOe,1)-=m) l(size(KOe,2)-=n) % Check size of KOe

error('KOe must be same size as B transpose.')
end
if max(real(eig((-A)-(-B)•KOe)))>O % Check stability of A-B•KOe

error('KOe does not stabilize A.')
end

end

% CHECK PO
if isempty(PO) % Check for proper initialization

% Display initialization message
disp(' ')
disp('Initializing PO matrix:')
disp(' ')
con=[(KOv+Kv)/UMAX;(KOe+Ke)/UMAX;GAMMAl;
p20=p20•max(diag((con•inv(p20)•con')));

PO=real(sqrtm(p20))
P20=PO'•PO

% Define matrix of all bounds
% Normalize ellipsoid to touch one
% of the bounds.
% Compute PO from p20

elseif max(max(abs(PO-PO')))>O % Check for symmetry
error('PO is not symmetric.')

elseif min(eig(PO))<O % Check for positive definiteness
error('PO is not positive definite.')

end

% ASSIGN INITIAL CONDITIONS TO ELEMENTS OF SEARCH SPACE VECTOR
X=pk2x(PO,Kv,Ke,n,m); % Parametrize search with PO, the square root of the

% ellipsoid matrix, to minimize search errors with
% positive definiteness of ellipse.

if plotting==ON
% Plot initial condition ellipsoid
figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
ellipse(P20,[],plot_pts);grid on;axis square;
title('INITIAL CONDITION')
drawnow;

156

Y. Plot trajectories of initial condition ellipsoid
figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
control_p(X,A,B,KOv,KOe,plot_pts);
title('TRAJECTORIES OF INITIAL CONDITION')
drawnow;

end

save control.mat X

pvol=det(inv(P20));

save control_best.mat X pvol

Y. ======== -==

Y. OPTIMIZE SOLUTION

options(14)=max_iters; Y. Set the.maximum number of iterations to max_iters
pass=1; Y. Reset the counter
control_const=ON; Y. Turn the control constraint 'on'

change=100;
options(10)=max_iters;
while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(0.8•options(14))))

· Y. Loop until change in ellipsoid size< 2Y.

disp(' ')
disp(sprintf('

change))
disp(' ')

========~= OPTIMIZING: CHANGE= Y.6.2f Y.Y.

Y. Increase search iterations if necessary
if round(pass/5)•5==pass

options(14)=min([min_iters,round(options(14)/1.1)]);
end

=========='

Y. Log start-of-pass search constraint vector and cost function
[fsta.rt,g]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO,control_const, ...

weight,pd_weight);
Gstart=[Gstart g];
Fstart=[Fstart fstart];

Y. Scale ellipse dow by factor of beta to start the next pass off the
Y. constraints
X(1:pe,1)=X(1:pe,1)/sqrt(beta);

Y. Perform search.
options(9)=0FF;
[X,options] =constr('control_fg' ,X,options, [], [], 'control_dfg', ...

A,B,KOv,KOe,GAMMA,UMAX,QO,control_const,weight,pd_weight);

Y. Log end-of-pass search constraint vector and cost function

157

, ...

[fstop,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO, ...
control_const,weight,pd_weight);

Gstop=[Gstop g];
Fstop=[Fstop fstop];

Y. Compute change in cost function
change=100*(exp(fstart)-exp(fstop))/exp(fstart);

Y. Log parameter space,control value, and nllll).ber of iterations
search_log=[search~log X];

Y. Parameter Assignments
[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P*P;

Y. Plot ellipsoid in state space
if plotting==ON

figure(fig_handle);clf;drawnow;
fig_handle=fig_handle+1;
ellipse(P2,[],plot_pts);grid on;axis square;
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change));
drawnow

end

save control.mat XU

if det(inv(P2))>pvol
pvol=det(inv(P2));
save control_best.mat X P2 Ke pvol

end

pass=pass+1;

end

Y. ================-~===

% DISPLAY TERMINATION CRITERIA

disp(' ')
disp(sprintf('Search terminated on change in cost function of Y.0.4g %%.', ...

change))
disp(' ')

Y. ===

Y. CLOSING TASKS

Y. Plot trajectories

158

if plotting>=PARTIAL
figure(fig_handle);clf;drawnow;
control_p(X,A,B,KOv,KOe,plot:_pts);

end

Y. Compute composite gain.
Kir,;Kv+KOv;
Ke=Ke+KOe;

% Define output ellipsoid matrix
P=P2;

Y. Compute maximum gain on ellipse, U
[f,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO, ...

control_const,weight,pd_weight);

Y. Clean up hard drive
delete control.mat
delete control_best.mat

Y. Terminate counter and display elapsed time
toe

Y. ------------------------- END OF FILE: CONTROL.M ------------------------

159

F .3.2 Cost Function and Constraints

function [f , g, Uc, constraints] =control_;:f g (X ,A, B, KOv, KOe, GAMMA, UMAX, Q, ...
. control_ const 'weight~ pd_ weight) ; . .
Y. CONTROL_FG is the cost function and constraint routine for use with CONTROL.

Y. parametrizes in terms of sqrt(P) and Kv, Ke
J. modifies definition of (at end) and pos. def. inequalities

% SYSTEM .SIZE DEF.INITION
[n,m]=size(B);
[p]=max(size(X));
[c]=size(GAMMA,1);

.flag=1;

% PARAMETER ASSIGNMENTS
[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P•P;

% OBJECTIVE FUNCTION (Minimization)
f=log(det(P2));

% CONSTRAINTS (Must be of form<= 0)
g= [] ; Y. clear array
constraints=[]; Y. constraints assignments (below) don't work with older Matlab

Y. Invariance constraint
Acl=A-B•(Kv+KOv);
temp=P2•Acl+Acl'•P2+Q; Y. Write as negative definite form
[v,d]=eig(temp);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; Y. Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Invariance');
end

Acl=A-B•(Ke+KOe);
temp=P2•(-Acl)+(-Acl)'•P2+Q; Y. Write as negative definite form
[v,d]=eig(temp);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; Y. Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Invariance');
end

Y. Positive definiteness constraints.
[v,d]=eig(-P2•pd_weight); Y. Write as negative definite form
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);

160

. g=[g;D];
for i=1:n

Y. Write as 'less than' constraint

· constraints=char(constraints,'Positive Definiteness');
end

Y. State constraints
for i=1:c;

g=[g; GAMMA(i,:)•inv(P2)•GAMMA(i,:)'-1];
constraints=char(constraints,['State Constraint 'num2str(i)]);

end;

Y. Control constraints
if control_const==1

Uv=sqrt((Kv+KOv)•inv(P2)•(Kv+KOv)');
g=[g; (Uv•Uv)/(UMAX•UMAX)-1]; Y. Normalize to 1
constraints=char(constraints,'Control');
Ue=sqrt ((Ke+KOe) •inv(P2) * (Ke+KOe) ') ;
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; Y. Normalize to 1
constraints=char(constraints,'Control');

end

Uc=max(Uv,Ue);

Y, -~--------------------- END OF FILE: CONTROL_FG.M ----------------------

161

F .3.3 Derivatives of Cost Function and Constraints

function [df_dX,dg_dX]=control_dfg(X,A,B,KOv,KOe,GAMMA,UMAX,Q, ...
control_const,weight,pd_weight);

% CONTROL_DFG is the derivative cost function and constraint routine
% for use with CONTROL.

%. 1) parametrizes in terms of sqrt(P) and Ke
% 2) optional weights on constraints

% SYSTEM SIZE DEFINITION
[n,m]=size(B);
p=max(size(X));
c=size(GAMMA,1);
pg=n*m; % number of state feedback gain parameters
pe=p-pg; % number of ellipsoid parameters
flag=1;

% PARAMETER ASSIGNMENTS
[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P*P;

% OBJECTIVE FUNCTION (Minimization)
f=log(det(P2));

Pi=inv(P);

df_dP=[J;
xindex=O;
for i=1:n

.end

for j=i:n
if i==j

df_dP=[df_dP;2*Pi(i,j)];
else

df_dP=[df_dP;4*Pi(i,j)];
end

end

df_dKv=zeros(size(Kv))';
df_dKe=zeros(size(Ke))';
df_dX=[df_dP;df_dKv;df_dKe];

% ==

% CONSTRAINTS (Must be of form<= 0)
g=[]; % clear constraint array
dg_dX=[J; % clear constraint derivative array

% Invariance constraint (recoverable/positive time)

162

Acl=A-B*(Kv+KOv);
IC=P2*Acl+Acl'*P2+Q;
[v,d]=eig(IC);
[Di, sort_index] =esort (diag(d)).;
Vi=v(:,sort_index);
g=[g;Di]; % Write as 'less than' constraint

dDi_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL);
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)'];

end
end
dDi_dKv=[];
for i=1:m

for j=1:n
EL=zeros(size(Kv));
EL(i,j)=1;
dAcl_dKv_ij=-B*EL;
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2;
dDi"'"dKv=[dDi_dKv; diag(Vi'*(dIC_dKv_ij)*Vi)'];

end
end
dDi_dKe=zeros(pg,n); % 'n' eigenvalues

dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe];
dg_dX=[dg_dX dDi_dX];

% Invariance constraint (reachability/negative time)
Acl=A-B*(Ke+KOe);
IC=P2*(-Acl)+(-Acl)'*P2+Q;
[v,d]=eig(IC);
[Di,sort_index]=esort(diag(d));
Vi=v(:,sort_index);
g=[g;Di]; % Write as 'less than' constraint

dDi_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dIC_dP_ij=(EL'*P+P*EL)*(-Acl)+(-Acl)'*(EL'*P+P*EL);
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)'];

end
end
dDi_dKv=zeros(pg,n);
dDi_dKe= [] ;
for i=1:m

for j=1:n
EL=zeros(size(Ke));

163

EL(i,j)=1;
dAcl_dKe_ij=-B*EL;
dIC_dKe_ij=P2*(-dAcl_dKe_ij)+(-dAcl_dKe_ij)'*P2;
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)'];

end
end
dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe];
dg_dX=[dg_dX dDi_dX];

% Positive definiteness of P constraints.
PDC=-P2*pd_weight;
[v,d]=eig(PDC);
[Dpd,sort_index]=esort(diag(d));
Vpd=v(:,sort_index);
g=[g;Dpd]; % Write as 'less than' constraint

dDpd_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j ,i)=1;
dPDC_dP_ij=-1*(EL'*P+P*EL)*pd_weight;
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)'];

end
end
dDpd_dKv=zeros(pg,n); % 'n' eigenvalues
dDpd_dKe=zeros(pg,n);

dDpd_dX=[dDpd_dP;dDpd_dKv;dDpd_dKe];
dg_dX=[dg_dX dDpd_dX];

% State constraints
for k=1:c

· SC=GAMMA(k,:)*inv(P2)*GAMMA(k,:) '-1;
g=[g;SC];

dSC..:dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j,i)=1;

. dSC_dP_ij=GAMMA(k,:)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*GAMMA(k,:)';
dSC_dP=[dSC_dP; dSC_dP_ij];

end
end
dSC_dKv=zeros.(pg, 1);
dSC_dKe=zeros(pg,1);
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKe];
dg_dX=[dg_dX dSC_dX];

end

164

% Control constraints
if control_const==l

% Recoverable control
CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1;
g=[g;CC];

dCC_dP=[];
for i=l:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ...

(Kv+KOv)');
dCC_dP=[dCC_dP; dCC_dP_ij];

end
end
dCC_dKv= [] ;
for i=l:m

for j=l:n
EL=zeros(size(Kv));
EL(i,j)=l;
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)');
dCC_dKv=[dCC_dKv; dCC_dKv_ij];

end
end
dCC_dKe=zeros(pg,1);
dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe];
dg_dX=[dg_dX dCC_dX];

% Reachable control
CC=(1/UMAX-2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1;
g=[g;CC];

dCC_dP=[];
for i=l:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dCC_dP_ij=(1/UMAX-2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ...

(Ke+KOe)');
dCC_dP=[dCC_dP; dCC_dP_ij];

end
end
dCC_dKv=zeros(pg,1);
dCC_dKe= [] ;
for i=l :m

for j=l:n
EL=zeros(size(Ke));
EL(i,j)=l;
dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)');
dCC_dKe=[dCC_dKe; dCC_dKe_ij];

end
end
dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe];

165

dg_dX=[dg_dX dCC_dX];
end

Y. ----------------------- END OF FILE: CONTROL_DFG.M ----------------------

166

F .3.4 Plotting Routine

function [U,P,Kv,Ke]=control_p(X,A,B,KOv,KOe,plot_pts);
% CONTROL_P is the trajectory plotting routine for use with CONTROL

% Plotting options
N=S; % plot trajectory from every Nth data point on ellipsoid
flag=1;

if nargin<4
error('Not enough input arguments.')

end

% Message to screen
disp(' ')
disp('+++')
disp ('Plotting trajectories')
disp('+++')
disp(' ')

% Parameter Assignments (extract P,K's from X)
[n,m]=size(B);
p=max(size(X));.

[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P*P;

Kv=Kv+KOv;
Ke=Ke+KOe;

% Define composite gains

if n==2 % 2-D ELLIPSOID
% Compute ellipsoid boundary
[x1,x2]=ellipse(P2,[],plot_pts);

% Compute corresponding control effort
ue=Kv*[x1;x2];

% Compute maximum control effort on boundary
U=max(ue);

% Plot boundary vs. control
plot(x1,x2,'k');grid on;axis square;hold on

% Compute reaching and recovering state-space descriptions
sysv=ss(A-B*Kv,B,eye(n),zeros(n,m));
syse=ss(-A+B*Ke,B,eye(n),zeros(n,m));

% Plot trajectories for every Nth point on the ellipsoid boundary
for i=1:ceil(sqrt(N)):max(size(x1));

[y,t,x]=initial(sysv,[x1(i),x2(i)],[O: .01:10]);
plot(x(:,1),x(:,2),'r')
[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]);

167

plot (x(:, 1) ,x(: ,2), 'b')
end

xlabel('x1') ,ylabel ('x2')
elseif n==3 % 3-D ELLIPSOID

% Compute ellipsoid boundary
[x1,x2,x3]=ellipse(P2,[],plot_pts);

% Compute corresponding control effort
for i=1:size(x1,1)

for j=1:size(x1,2)
uv(i,j)=Kv*[x1(i,j);x2(i,j);x3(i,j)];
ue(i,j)~Ke*[x1(i,j);x2(i,j);x3(i,j)];

end
end

% Compute maximum control effort on boundary
U=max(max([abs (uv) ;abs (ue)]));

% Plot boundary vs. control
subplot(121)
surf(x1,x2,x3,uv/U);grid on;axis square;hold on
subplot(122)
surf(x1,x2,x3,ue/U);grid on;axis square;hold on

% Compute reaching and recovering state-space descriptions
sysv=ss(A-B*Kv,B,eye(n),zeros(n,m));
syse=ss(-A+B*Ke,B,eye(n),zeros(n,m));

% Plot trajectories for every Nth point on the ellipsoid boundary
subplot(121)
hold on
for i=1:N-2:size(x1,1);

for j=1:N-2:size(x1,2)
[y,t,x]=initial(sysv,[x1(i,j),x2(i,j),x3(i,j)],[0:.01:10]);
plot3(x(:, 1) ,x(: ,2) ,x(: ,3), 'r')

end
end
drawnow
grid on
colormap('copper')
lighting phong
light('Position', [1 -1 5])
h=findobj('Type','surface');
set(h,'FaceLighting','phong', ...

'FaceColor','interp', .. .
'EdgeColor',[.4 .4 .4], .. .
'BackFaceLighting','reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')
title('Recovering Trajectories')

168

subplot(122)
hold on
for i=1:r2:size(x1,1);

for j=1:N~2:size(x1,2)
[y,t,x]=initial(syse, [xl(i,j) ;x2(i,j) ,x3(i,j)], [O: .01: 10]);
plot3(x(: ,1) ,x(: ,2) ,x(: ,3), 'b')

end
end
drawnow
grid on
colormap('copper')
lighting phong
light ('Position' , [1 -1 5])

· h=:findobj ('Type', 'surface');
set(h,'FaceLighting','phong', ...

· 'FaceColor','interp', .. .
'EdgeColor', [.4 .4 .. 4], .. .
'BackFaceLighting', 'reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')
title('Reaching Trajectories')

end

Y, =====================END OF FILE: CONTROL_P.M ----------------------

169

F .4 Miscellaneous Files

F .4.1 Plotting Point Generator for Ellipsoidal Set

function [xx,yy,zz] = ellipse(P,XO,n,linetype)
Y. ELLIPSE Generates plottil!.g points for 2-D/3-D ellipsoid.
Y. [X,Y,Z] = ELLIPSE(P,XO,n) generates the unit ellipsoid

% (x-XO)'*P*(x-X0)=1
Y.
Y. For P matrix (3x3), ELLIPSE generates three (n+1)x(n+1)

. Y. matr.ices so that SURF(X, Y ,Z) produces the 3-D ellipsoid,
. Y. For P matrix (2x2)., ELLIPSE generates two (n+1)x(1)

Y. vectors so that PLOT(X,Y) produces the 2-D ellipsoid.

Y. The arguments XO and n are optional. Default values are
Y. the origi~ for XO and 40 points.for n.
Y.
Y. ELLIPSE(P,XO,n) without any return variables graphs the
% ellipse using SURFACE/PLOT.

Y. Original code: SPHERE.M
Y. Clay M. Thompson 4-24-91, CBM 8-21-92.
Y. Copyright (c) 1984-98 by The MathWorks, Inc.
Y. $Revision: 5.3 $ $Date: 1997/11/21 23:46:48 $
Y.
% Modified code: ELLIPSE.M
% Brian D. O'Dell 11-19-98

if nargin == 0, error('Must define ellipsoid matrix, P.'); end

% CHECK VALIDITY OF P
if size(P,1)-=size(P,2)

error('P must be square.')
end
if min(eig(P))<=O

error('P must be positive definite.')
end

% COMPUTE NUMJ:!ER OF STATES
states=size(P, 1); ·
if (states-=2)&(states-=3)

error('P must be a 2x2 or 3x3 matrix.')
end

% CHECK FOR OPTIONAL ARGUMENTS
if nargin==1

XO=[];
n=40;

elseif nargin==2
n=40;

end

% SET XO TO ORIGIN IF NOT OTHERWISE DEFINED

170

if isempty(XO)
XO=zeros(states,1);

end

if states==2 % 2-D.ELLIPSE
% -pi<= theta<= pi is a row vector

theta= (-n:2:n)/n*pi;

sintheta = sin(theta); sintheta(1) = O; sintheta(n+1) = O;

xO = cos(theta);
yo= sintheta;

for i=1: (n+1)
temp=[xO(i);yO(i)];
alpha=sqrt(temp'*P*temp);
x(i)=xO(i)/alpha+X0(1);
y(i)=yO(i)/alpha+X0(2);

end

if nargout == 0
plot(x,y)
xlabel('x1'),ylabel('x2')

else
xx= x; yy = y;

end

else% 3-D ELLIPSE

% Define points for a unit circle

% Loop through the data points
% Create a vector for the data point
% Compute the scaling factor for unit ellipse
% Scale the data points

% If plotting, display full ellipse; for trajectories, generate quadrant
if nargout==O

% -pi<= theta<= pi is a row vector.
% -pi/2 <=phi<= pi/2 is a column vector.

theta= (-n:2:n)/n*pi;
phi= (-n:2:n)'/n*pi/2;
cosphi = cos(phi); cosphi(1) = O; cosphi(n+1) = O;
sintheta = sin(theta); sintheta(1) = O; sintheta(n+1) = O;

else
% -pi/2 <=theta<= pi/2 is a row vector.
% -pi/2 <=phi<= 0 is a column vector.

theta= (-n:2:n)/n*pi/2;
phi= (-2*n:2:0)'/(2*n)*pi/2;
cosphi = cos(phi);
sintheta = sin(theta);

end

xO = cosphi*cos(theta);
yO cosphi*sintheta;

% Define points for a unit sphere

zO = sin(phi)*ones(1,n+1);

for i=1:max(size(theta))
for j=1:max(size(phi))

% Loop through the data points

171

end

end
end

temp=[xO(i,j) ;yO(i,j) ;zO(i,j)];
alpha=sqrt(temp'*P*temp);
x(i ,j)=xO(i ,j) /alpha+X0(1);
y(i,j)=yO(i,j)/alpha+X0(2);
z(i,j)=zO(i,j)/alpha+X0(3);

% Create a.vector for the data
% Scaling factor for unit ellipse
% Scale data points

if nargout == 0 % Plot if no output
disp(' ')
disp('+++')
disp('Plotting ellipse')
disp('+++')
disp(' ')

surf(x,y,z)
grid on
colormap('copper')
lighting phong
light('Position',[1 -1 5])
h=findobj('Type','surface');
set(h,'FaceLighting','phong', ...

'FaceColor','interp', .. .
'EdgeColor',[.4 .4 .4], .. .
'BackFaceLighting' ,'reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')

else
xx= x; yy = y; zz = z;

end

% ------------------------ END OF FILE: ELLIPSE.M -----------------------

172

F .4.2 Search Parameter /Matrix Parameter Mapping Routines

Ellipsoid Matrix and Control Gains to Search Vector

· function [X]=pk2x(Pi,K1,K2,n,m)
% PK2X assigns elements of the ellipse matrix's inverse, Pi, and the
% state-feedback matrix, K, to elements of the search vector, X.

if nargin==4
m=n;
n=K2;

X=[];
xindex=O;
for i=1:n

for j=i:n
xindex=xindex+1;
X(xindex,1)=Pi(i,j);

end
end
for i=1:m

end

for j=1 :n
xindex=xindex+1;
X(xindex,1)=K1(i,j);

end

elseif nargin==5
X=[];
xindex=O;

end

for i=1:n
for j=i:n

xindex=xindex+1;
X(xindex,1)=Pi(i,j);

end
end
for i=1:m

end

for j=1:n
xindex=xindex+1;
X(xindex,1)=K1(i,j);

end

for i=1 :m

end

for j=1:n
xindex=xindex+1;
X(xindex,1)=K2(i,j);

end

% -------------------------- END OF FILE: PK2X.M -------------------------

Search Vector to Ellipsoid Matrix and Control Gains

function [Pi,K1,K2]=x2pk(X,n,m,flag)

173

Y. X2PK assigns elements of the search vector, X, to elements of the ellipse
Y. matrix's inverse, Pi, and to the state-feedback gain, K.

if nargin==3
flag=O;

end

Pi=[];
xindex=O;
for i=1:n

for j=i:n
xindex=xindex+1;
Pi(i,j)=X(xindex,1);
Pi(j,i)=X(xindex,1);

end
end
Kl=[];
for i=l:m

forj=1:n
xindex=xindex+1;
K1(i,j)=X(xindex,1);

end
end
if flag==1

K2=[];
for i=1:m

for j=1:n
xindex=xindex+1;
K2(i,j)=X(xindex,1);

end
end

else
K2=[];

end

Y. -------------------------- END OF FILE: X2PK.M ---------------~--------

174

Appendix G

Matlab . Code for Semi-Ellipsoidal
Sets

G.1 Function Files for Computing Recoverable
Semi-Ellipsoidal Set

G.1.1 Optimization Routine

function [P,Kv,U,X,Fstop,Gstop]=recover(A,B,GAMMA,UMAX,QO,PO,KOv);
%
% RECOVER finds the largest recoverable set for a linear system with
% constrained states and inputs, where the subset is constructed from
% the intersection of the state constraints and the computed ellipsoid.
%
% Parameter definitions:
%
%
%
%
%
%
%
%
%
%
%
%
%

[A,B]:
GAMMA:
UMAX:
QO:
PO:
KOv:

P:
Kv:
U:
X:

% Usage:
%

state-space description of linear system
state constraints of the form GAMMA•x<=1
maximum allowable control (assumed symmetric)
specifies decay rate of the Lyapunov function
initial guess for the ellipsoid matrix (x'Px<=1)
initial guess for state feedback (must stabilize [A,B])

the optimal ellipsoid
the corresponding state feedback gain matrix
the maximum control effort (via state feedback) in subset
the final parameter search vector (elements of P, Kv)

% [P,Kv,U,X]=recover(A,B,GAMMA,UMAX,QO,PO,KOv) finds the largest
% recoverable ellipsoid, P·, and corresponding state...;.feedback
% matrix, Kv, for the system [A,B] and the constraints, GAMMA,
% UMAX. Definitions of QO, PO, and KOv are optional. If not
% provided, QO is assumed to be zero and PO is initialized using
% an LQR algorithm. If KOv is not specified, or if the given
% KOv do.es not stabilize [A,B], it is chosen (arbitrarily) using
Y. the LQR technique.
%
% Notice:

175

%
% This algorithm is based on the dissertation "Ellipsoidal and
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999.
%

% Start counter for run-time
tic

%DEFINE SIMULATION CONSTANTS
fig:..handle=1;
ON=1;
PARTIAL=0.5;
OFF=O;

% Set the figure handle
% Switch ON
% Switch HALF-ON
% Switch OFF

beta=0.95; % Decrease factor for size of P; MUST BE LESS THAN 1.0
tol=1e-5; % Error tolerance for terminating search
gradient_tol=1e-2; Y. Minimum gradient for maximal control search
PET=1; · Y. 'Percent Error Tolerance' for terminating searches

Y, DEFINE GENERAL PARAMETERS
plotting=PARTIAL;
plot_pts=150;
grad_check=OFF;
search_output=ON;

Y. Turn plotting 'on/off'; PARTIAL plots only final result
Y. Number of points to use in plotting
Y. Checks analytical gradients against numerical estimates
Y. Displays intermediate search results

Y, DEFINE MATRIX DIMENTIONING CONSTANTS
[n,m]=size(B);
c=size(GAMMA,1);
pe=(n-2-n)/2+n;
pg=ll*m;
p=pe+pg;

Y. 'n' is number of states, 'm' is number of inputs
Y. Defines the number of state constraints
Y. Defines number of ellipse parameters
Y. Defines number of state feedback gain parameters
Y. Defines the total number of parameters.

Y, DEFI~E SEARCH PARAMETERS (for search OPTIONS, type 'help foptions')
max_passes=20; Y. Maximum number of search cycles
min_iters=40*p; Y. Minimum number of search iterations per cycle
max_iters=40*p; Y. Maximum number of search iterations per cycle
weight=1e0; Y. Weighting coefficient for constraint vector
pd_weight=1e0; Y. Additional (multiplicative) weight for pos. def. const.
inv_weight=1e0; Y. Additional (multiplicative) weight for invariance const.
options(1)=0N; Y. Displays intermediate search results
options(14)=max_iters; Y. Set the maximum number of iterations per pass

Y, INITIALIZE SEARCH DATA VECTORS
Fstart=[]; Y. Vector of cost function values before each pass
Gstart=[]; Y. Matrix of constraint function.values before each pass
Fstop=[]; Y. Vector of cost function values after each pass
Gstop=[J; Y. Matrix of constraint function values after each pass
search_log=[]; Y. Matrix of parameter values after each pass

Y, CHECK VALIDITY OF INPUT DEFINITIONS
N=nargin;
if N<4 ·

176

error('Not enough input arguments.')
elseif N==4

QO= [] ; PO= [] ; KOv= [] ;
elseif N==5

. PO=[] ;KOv=[];
elseif N==6

KOv=[];
end

% CHECK SIZE OF A,B
if size(A,1)-=size(A,2)

error('A is non-square.')
elseif size(A,1)-=n

error('A and B must have same number of rows.')
end

% CHECK CONSTRAINT SPACE SIZE
if size(GAMMA,2)-=n

error('GAMMA defined with different number of states than A.')
end

% CHECK UMAX
if min(UMAX)<=O

error('Control constraints must be positive.')
end

% CHECK QO
if isempty{QO) % Check for proper initialization

% Display initialization message
disp(' ')
disp ('Initializing QO matrix: ')
disp(' ')
QO=zeros(size(A))

elseif max(max(abs{QO-QO')))>O % Check for symmetry
error{'QO is not symmetric.')

elseif min(eig{QO))<O % Check for positive definiteness
error{'QO is not positive definite;') .

end

% USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS
poles=[1:n]; % Define (arbitrary) positive pole locations
kO=place(A,B,poles); % Compute state-feedback gain
R=eye(m); % Arbitrary pos. def. weighting matrix for LQR
[temp,p20]=lqr(A-B•kO,B,QO,R); % Compute stabilizing controller and ellipse
dk=inv(R)•B'•p20; % Define stabilizing controller

% CHECK KOv
if isempty(KOv) % Initialize with LQR if KOv not given

177

% Display initialization message
disp(' ')
disp('Initializing KOv matrix:')
disp(' ')
KOv=kO+dk/2
Kv=dk/4

% Define marginally stabilizing controller
% Define gain such that (KOv+Kv) is stabilizing
% (in positive time)

else
if (size(KOv,1)-=m) l(size(KOv,2)-=n) % Check size of KOv

error('KOv must be same size as B transpose.')
end
if max(real(eig(A-B*KOv)))>O % Check stability of A-B*KOv

error('KOv does not stabilize A.')
end

end

% CHECK PO
if isempty(PO) % Check for proper initialization

% Display initialization message
disp(' ')
disp('Initializing PO matrix:')
disp(' ')
PO=real(sqrtm(p20)) % Compute PO from p20
P20=PO'*PO

elseif max(max(abs(PO-PO')))>O % Check for symmetry
error('PO is not symmetric.')

elseif min(eig(PO))<O % Check for positive definiteness
error('PO is not positive definite.')

end

% ASSIGN PO,KOv TO ELEMENTS OF SEARCH SPACE VECTOR
X=pk2x(PO,Kv,n,m); % Parametrize search with PO, the square root of the

% ellipsoid matrix, to minimize search errors with
% positive definiteness of ellipse. (P=PO*PO)

if plotting==ON
% Plot .initial condition ellipsoid
figure(fig_handle);clf;drawnow;
ellipse(P20,[],plot_pts);grid on;axis square;
title('INITIAL CONDI1ION')
drawnow;
fig_handle=fig_handle+1;

% Plot trajectories of initial condition ellipsoid
figure(fig_handle);clf;drawnow;
recover_p(X,A,B,KOv);

end

title('TRAJECTORIES OF INITIAL CONDITION')
drawnow;
fig_handle=fig_handle+1;

pvol=det(inv(P20));

178

save recover_best.mat X

% ==

% OPTIMIZE SOLUTION

% Initialize maximum observed control to zero U=O;
UMAX_hat=UMAX;
control_iters=O;

% Initialize pseudo-maximum control to true maximum
% Initialize counter for control iteration passes

while (U<beta*UMAX)l(U>(UMAX+tol)) % Loop while observed control outside tol.

disp(' ')
disp(sprintf(' ---------- SEARCHING: UMAX_hat

UMAX_hat))
disp(' ')

%6.2f ' ...

options(14)=max_iters; % Set the maximum number of iterations to max_iters
pass=1; % Reset the counter
control_const=ON; % Turn the control constraint 'on'

change=100; % Initialize change in ellipsoid size to 100%
options(10)=max_iters; % Initialize number of passes to maximum allowable

while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(beta*options(14))))
% Loop until change in ellipsoid size< 2%

disp(' ')
disp(sprintf(' ·---------- OPTIMIZING: CHANGE= Y.6.2f %% ==========

change))
disp(' ')

% Log start-of-pass search constraint vector and cost function
[fstart,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX_hat,QO, ...

control_const,weight,pd_weight,inv_weight);
Gstart=[Gstart g];
Fstart=[Fstart fstart];
Pstart=x2pk(X,n,m);
P2start=Pstart'*Pstart;

' ...

% Scale ellipse down by factor of beta to start the next pass off the
% constraints
X(1:pe,1)=X(1:pe,1)/sqrt(beta);

% Perform search.
options(9)=0FF;
[X,options]=constr('recover_fg',X,options,[],[],'recover_dfg', ...

A,B,KOv,GAMMA,UMAX_hat,QO, ...
control_const,weight,pd_weight,inv_weight);

% Log end-of-pass search constraint vector and cost function
[fstop,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX_hat,QO, ...

179

control_const,weight,pd_weight,inv_weight);
Gstop= [Gstop g] ;

···. Fstop= [Fstop fstop] ;

% Parameter Assignments
Pstop=x2pk(X,n,m);
P2stop=Pstop'*Pstop;

% Compute change in cost function
change=100*(trace(P2start)-trace(P2stop))/trace(P2start);

% Log parameter space
search_log~[search_log X];

% Parameter Assignments
[P,Kv]=x2pk(X,n,m);
P2=P'*P;

% Plot ellipsoid in state space
if plotting==ON

figure(fig_handle);hold off;clf;drawnow;
ellipse(P2,[],plot_pts);grid on;axis square;hold on
title(sprintf('OPTIMIZING: CHANGE = %1.4g' ,change));
drawnow
fig_handle=fig_handle+1;

end

save recover.mat XU

% Check for improvement
if det(inv(P2))>pvol

pvol=det(inv(P2));
save recover_best.mat X P2 Kv pvol

end

pass=pass+1;

end

% DISPLAY TERMINATION CRITERIA

disp(' ')
disp(sprintf('Search terminated on change in cost function of %0.4g %%.', ...

change))
disp(' ')

% SEARCH FOR MAXIMUM OBSERVED CONTROL ON RESTRICTED STATE-SPACE
disp(' ')
disp(sprintf(' ====== SEARCHING FOR MAXIMUM OBSERVED CONTROL======'))
disp(' ')
if control_iters==O

% Find point which maximizes control on restricted state-space
umax_options(1)=-1; % Don't display intermediate results

180

· xO=rand(n,1); Y. Generate random initial condition for search
xO=constr('recover_u_:fg' ,xO, umax_options, [], [], 'recover_u_dfg' ,KOv, ...

,GAMMA,X,n,m);

Y. Compute maximum control effort
[fumax,gumax,U]=recover_u_fg(xO,KOv,GAMMA,X,n,m);

Y. Display maximal control on restricted region
u

Y. Store previous search results
U_old=U;
UMAX_hat_old=UMAX_hat;

Y. Compute a new estimate for the UMAX_hat that will achieve U=UMAX.
UMAX_hat=UMAX_hat*(beta-(sign(U-UMAX)));

if (U>=beta*UMAX)&(U<=(UMAX+tol))
Y.
disp(' ')
disp(cat(2,'Search terminated: Maximum observed

'within tolerance of UMAX.'))
disp(' ')

end
else

control', ...

Y. Use previous search result for initial condition
xO=constr('recover_u_fg',xO,umax_options,[],[],'recover_u_dfg', ...

KOv,GAMMA,X,n,m);

Y. Compute maximum control effort
[fumax,gumax,U]=recover_u_fg(xO,KOv,GAMMA,X,n,m);

Y. Display maximal control on restricted region
u

Y. Estimate new value of UMAX_hat using secant search
gradient=(U_old-U)/(UMAX_hat_old-UMAX_hat);
UMAX_hat_tmp=UMAX_hat-(U-UMAX)/gradient;

Y. Store previous search results
U_old=U;
UMAX_hat_old=UMAX_hat;

UMAX_hat=UMAX_hat_tmp;

Y. .Check to see if improvement feasible
if (U>=beta*UMAX)&(U<=(UMAX+tol))

Y.
disp(' ')
disp ([' Search terminated: Maximum observed control ' , ...

'within tolerance of UMAX.'])
disp(' ')

elseif gradient<gradient_tol
disp(' ')

181

disp(['Search terminated: No increase expected in maximum', •..
'observed control.'])

disp.(' ')

% Redefine U to artificially terminate loop
U=UMAX;

end

end

% Advance counter
control_iters=control_iters+1;

end

% ===

% CLOSING TASKS

% Plot final result
if plotting>=PARTIAL

disp(' ')
disp('+++')
disp('Computing plot points.')
disp('+++')
disp(' ')

figure(fig_handle);clf;drawnow;
if n==2

recover_p(X,A,B,KOv,GAMMA,plot_pts);
elseif n==3

subplot (121)
semiellipse(P2,GAMMA,[],plot_pts),hold on
subplot(122)
recover_p(X,A,B,KOv,GAMMA,plot_pts);

end
fig_handle=fig_handle+1;

end

% Compute composite gain.
Kv=Kv+KOv;

% Define output ellipsoid matrix
P=P2;

% Compute maximum gain on ellipse, U
[f,g,U,constraints]=recover_fg(X,A,B,KOv,GAMMA,UMAX_hat,QO, ...

control_const,weight,pd_weight,inv_weight);
Gstop=[Gstop g];
Fstop=[Fstop f];

182

% Clean up hard drive
delete recover.mat
delete :recoirer_best.mat

% Terminate collil.ter and display elapsed time
toe

% ------------------------- END OF FILE: RECOVER.M ---------------~-------

183

G.1.2 Cost Function and Constraints

function [f,g,Uv,constraints]=recover,..fg(X,A,B,KOv,GAMMA,UMAX,Q, ...
control_const,w:eight,pd_weight,inv_weight);

% RECOVER_FG is the cost function and constraint routine for use with RECOVER.

Y. parametrizes in·terms of sqrt(P) and Kv

Y, SYSTEM SIZE DEFINITION
[n,m]=size(B);
[p]=max(size(X));
[c]=size(GAMMA,1);

Y. PARAMETER ASSIGNMENTS
[P,Kv]=x2pk(X,n,m);
P2=P'.*P;

Y, OBJECTIVE FUNCTION (Minimization)
f=log(trace(P2));

Y, CONSTRAINTS (Must be of form<= 0)
g= [] ; Y. clear array
constraints=[]; Y. constraints assignments (below) don't work with older Matlab

Y. Invariance constraint
Acl=A-B•(Kv+KOv);
IC=P2•Acl+Acl'•P2+Q; Y. Write as negative definite form
[v,d]=eig(IC);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D•inv_weight]; Y. Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Invariance');
end

Y. Positive definiteness constraints.
[v,d]=eig(-P2•pd_weight); Y. Write as negative definite form
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g= [g; D] ; Y. Write as 'less than' constraint
for i=1:n

constraints=char(constraints,'Positive Definiteness');
end

Y. State constraints (See dissertation for details)
for i=1:c;

Gamma=GAMMA(i,:);
w=null(Gamma•(A-B•(Kv+KOv)));

184

if size(w,2)==n Yo Gamma*(A-B*(Kv+KOv)) is zero; entire state-space valid
g=[g;O];

Gamma=GAMMA(i,:),A,B,Kv,KOv,Gamma*(A-B*(Kv+KOv))
w=null(Gamma*(A-B*(Kv+KOv)))
pause

else
g=[g; (Gamma*w)*inv(w'*P2*w)*(Gamma*w)'-1];

end

constraints=char(constraints,['State Constraint ' num2str(i)]);
end;

% Control constraints
if control_const==1

Uv=sqrt((Kv+KOv)*inv(P2)*(Kv+KOv)');
g=[g; (Uv*Uv)/(UMAX*UMAX)-1]; % Normalize to 1
constraints=char(constraints,'Control');

end

% ----------------------- END OF FILE: REACH_FG.M -----------------------

185

G.L3 Derivatives of Cost Function and Constraints

function [df_dX,dg_dX]=recover_dfg(X,A,B,KOv,GAMMA,UMAX,Q, ...
control_const,weight,pd_weight,inv_weight);

Y. RECOVER_DFG is the derivative cost function and constraint routine
Y. for use with RECOVER.

Y. parametrizes in terms of sqrt(P) and Kv

Y. SYSTEM SIZE DEFINITION
[n,m]=size(B);
p=max(size(X));
c=size(GAMMA,1);
pg=n*m;
pe=p-pg;

Y. number of state feedback gain parameters
Y. number of ellipsoid parameters

Y. PARAMETER ASSIGNMENTS
[P,Kv]=x2pk(X,n,m);
P2=P'*P;

Y. OBJECTIVE FUNCTION (Minimization)
f=log(trace(P2));

df_dP=[];
xindex=O;
for i=1:n

for j=i:n
if i==j

df_dP=[df_dP;2*P(i,j)/trace(P2)];
else

df_dP=[df_dP;4*P(i,j)/trace(P2)];
end

end
end
df_dKv=zeros(size(Kv))';
df_dKe=zeros(size(Ke))';
df_dX=[df_dP;df._dKv;df_dKe];

Y. ===

(Must be of form<= 0) Y. CONSTRAINTS
g=[];
dg_d:X=[];

Y. clear constraint array
Y. clear constraint derivative array

Y. Invariance constraint
Acl=A-B*(Kv+KOv);
IC=P2*Acl+Acl'*P2+Q;
[v,d]=eig(IC);
[Di,sort_index]=esort(diag(d));

186

Vi=v(:,sort_index);
g=[g;Di]; Y. Write as 'less than' constraint

dDi..,dP=[];
for i=l:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=l;EL(j ,i}=l;
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL);
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)'];

end
end
dDi_dKv= [] ;
for i=l:m

for j=l:n
EL=zeros(size(Kv));
EL(i,j)=l;
dAcLdKv_ij=-B*EL;
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2;
dDi_dKv=[dDi_dKv; diag(Vi'*(dIC_dKv_ij)*Vi)'];

end
end

dDi_dX= [dDi,_dP; dDi_dKv] *inv _weight;
dg_dX=[dg_dX dDi_dX];

Y. Positive definiteness of P constraints.
PDC=-P2*pd_weight;
[v,d]=eig(PDC);
[Dpd,sort_index]=esort(diag(d));
Vpd=v(:,sort_index);
g=[g;Dpd]; Y. Write as 'less than' constraint

dDpd_dP= [] ;
for i=l:n

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j,i)=1;
dPDC_dP_ij=-l*(EL'*P+P*EL)*pd_weight;
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)'];

end
end
dDpd_dKv=zeros(pg,n); Y. 'n' eigenvalues

dDpd_dX=[dDpd_dP;dDpd_dKv];
dg_dX=[dg_dX dDpd_dX];

Y. State constraints
for k=l:c;

Gamma=GAMMA(k,:);
w=null(Gamma*(A-B*(Kv+KOv)));

187

end

if size(w,2)==n Y. Gamma*(A-B*(Kv+KOv)) is zero; entire state-space valid
SC=O;

g=[g;SC];

dSC_dP=zeros(pe,1);
dSC_dKv=zeros(pg,1);
dSC_dX=[dSC_dP;dSC_dKv];
dg_dX=[dg_dX dSC_dX];

else
SC=(Gamma*w)*inv(w'*P2*w)*(Gamma*w)'-1;

end

g=[g;SC];

dSC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;

dinv_dP_ij=-inv(w'*P2*w)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w);
dSC_dP_ij=(Gamma*w)*dinv_dP_ij*(Gamma*w)';

dSC_dP=[dSC_dP; dSC_dP_ij];
end

end
dSC_dKv=[];
for i=1:m

for j=1:n

end

Y. Use numerical approximation
EL=zeros(size(Kv));
EL(i,j)=1;
deltaKv_ij=EL*1e-5;
deltaw=null(Gamma*(A-B*(Kv+KOv+deltaKv_ij)))-w;
gradw=deltaw/1e-5;
dinv_dKv_ij=-inv(w'*P2*w)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w);
dSC_dKv_ij=(Gamma*gradw)*inv(w'*P2*w)*(Gamma*w)'+ ...

(Gamma*W)*dinv_dKv_ij*(Gamma*w)'+ ...
(Gamma*w)*inv(w'*P2*w)*(Gamma*gradw)';

dSC_dKv=[dSC_dKv; dSC_dKv_ij];

end
dSC_dX=[dSC_dP;dSC_dKv];
dg_dX=[dg_dX dSC_dX];

Y. Control constraints
if control_const==1

CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1;
g=[g;CC];

dCC_dP=[];
for i=1:n

188

end

for j=i:n
EL=zeros(size(P2));
EL(i, j)=1 ;EL(j, i)=1;
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ...

(Kv+KOv) '); .
dCC_dP=[dCC_dP; dCC_dP_ij];

end
end
dCC_dKv=[];
for i=1 :m

end

for j=1:n
EL=zeros(size(Kv));
EL(i,j)=1;
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)');
dCC_dKv=[dCC_dKv; dCC_dKv_ij];

end

dCC_dX=[dCC~dP; dCC_dKv];
dg_dX=[dg_dX dCC_dX];

% ----------------------- END OF FILE: REACH_DFG.M -----------------------

189

G.1.4 Cost Function and Constraints for Finding u
function [f,g,U]=recover_u_fg(xO,KOv,GAMMA,X,n,m);
% RECOVER_U_FG is the cost function and constraint routine for use .with
% overlapping recoverable ellipsoids to find maximal control on restricted
% state-space.

% SYSTEM SIZE DEFINITION
[c]=size(GAMMA,1);

% PARAMETER ASSIGNMENTS
[P,Kv]=x2pk(X,n,m);
P2=P•P;

% OBJECTIVE FUNCTION (Minimization)
f=-xO'•(Kv+KOv)'•(Kv+KOv)•xO;

U=abs(-(Kv+KOv)•xO);

% CONSTRAINTS .(Must be of form <= 0)
g=[]; % clear array
constraints=[];% constraints assigrunerits (below) don't work with older Matlab

% Ellipsoid constraint.
EC=xO'•P2*x0-1; % Write as negative definite form
g=[g;EC];
constraints=char(constraints,'Ellipsoid Constraint');

% State constraints
for i=1:c

for j=1:2
SC=((-1-j)•GAMMA(i,:))•x0-1; % Consider both plus/minus GAMMA
g=[g;SC];
constraints=char(constraints,['State Constraint 'num2str(i)]);

end
end;

% --------------------- END OF FILE: RECOVER_U_FG.M ---------------------

190

G.1.5 · Derivatives of Cost Function and Constraints for Finding ii

function [df_dxO,dg_dxO]=recover_u_dfg(xO,KOv,GAMMA,X,n,m);
'Y. RECOVER_U_DFG is the derivative cost function and constraint routine for
'Y. use with overlapping recoverable ellipsoids to find maximal control
'Y. on restricted state-space.

'Y. SYSTEM SIZE DEFINITION
c=size(GAMMA,1);

'Y. PARAMETER ASSIGNMENTS
[P,Kv]=x2pk(X,n,m);
P2=P*P;

'Y. OBJECTIVE FUNCTION (Minimization)
f=-xO'*(Kv+KOv)'*(Kv+KOv)*xO;

df_dx0=-2*(Kv+KOv)'*(Kv+KOv)*xO;

'Y. =============== ===

'Y. CONSTRAINTS (Must be of form<= 0)
dg_dxO=[]; 'Y. clear constraint derivative array

'Y. Ellipsoid constraint
EC=x0'*P2*x0-1; 'Y. Write as negative definite form
dEC_dx0=2*P2*xO;
dg_dxO=[dg_dxO dEC_dxO];

'Y. State constraints
for i=1:c

for j=1:2
dSC_dx0=(-1-j)•GAMMA(i,:)'; 'Y. Consider both plus/minus GAMMA

.. dg_dxO=[dg_dxO dSC_dxO];
end

end

'Y. --------------------- END OF FILE: CONTROL_U_DFG.M ---------------------

191

G.1.6 Plotting Routine·

function [U,P,Kv]=I"ecover_p(X,A,B,KOv,GAMMA,plot_pts);
% RECOVER_P is the trajectory plotting routine for use with RECOVER

% Plotting options
N=max((floor(plot_pts/20)~2),5); % plot trajectory from every Nth data

'l. point on the semi-ellipse with a
'l. maximum of 20 pts

if nargin<4
error('Not enough input arguments.')

end

'l. Message to screen
disp(' ')
disp('+++')
disp('Plotting recovering trajectories')
disp('+++')
disp(' ')

'l. Parameter Assignments (extract P,K's from X)
[n,m]=size(B);
[P,Kv]=x2pk(X,n,m);
P2=P'*P;

Kv=Kv+KOv; % Construct composite gain

if n==2 'l. 2-D ELLIPSOID
% Compute ellipsoid boundary
[x1,x2]=semiellipse(P2,GAMMA,[] ,plot_pts);

% Compute corresponding control effort
ue=Kv*[x1;x2];

'l. Compute maximum control effort on boundary
U=max(ue);

'l. Plot boundary vs. control
plot(x1,x2,'k');grid on;axis square;hold on

% Compute reaching and recovering state-space descriptions
syse=ss(A-B*Kv,B,eye(n),zeros(n,m));

'l. Plot trajectories for every Nth point on the ellipsoid boundary
for i=1:ceil(sqrt(N)):max(size(x1));

[y,t,x]=initial(syse,[x1(i),x2(i)],[0:.01:10]);
plot(x(:,1),x(:,2),'r')

end

xlabel('x1'),ylabel('x2'),zlabel('u')
elseif n==3 % 3-D ELLIPSOID

'l. Compute ellipsoid boundary

192

[x1,x2,x3]=semiellipse(P2,GAMMA,0,plot_pts);

% Compute ·corresponding control effort
for i=l:size(xl,1)

for j=l:size(xl,2)
ue(i,j)=Kv•[xl(i,j) ;x2(i,j) ;x3(i,j)];

end
end

% Compute maximum control effort on boundary
U=max(max(abs(ue)));

% Plot boundary vs. control
surf(x1,x2,x3,ue/U);grid on;axis square;hold on

% Compute reaching and recovering state-space descriptions
syse=ss(A-B•Kv,B,eye(n),zeros(n,m));

% Plot trajectories for every Nth point on the ellipsoid boundary
hold on
for i=l:N:size(xl,1);

for j=l:N:size(xl,2)
[y,t,x]=initial(syse, [xl(i,j) ,x2(i,j) ,x3(i,j)], (0: .01: 10]);
plot3(x(:,1),x(:,2),x(:,3),'k')

end
end
drawnow
grid on
colormap (' copper')
lighting phong
light('Position',[1 -1 5])
h=findobj('Type','surface');
set(h,'FaceLighting','phong', ...

'FaceColor','interp', .. .
'EdgeColor',[.4 .4 .4), .. .
'BackFaceLighting','reverselit', ...
'AmbientStrength',1, .•.
'DiffuseStrength',1);

end

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')

% ------------------~---- END OF FILE: RECOVER_P.M ----------------------

193

· G.2 Function Files for Computing Reachable
' ' '

Semi-Ellipsoidal Set

. G.2.1 Optimization Routine

function [P,Ke,U,X,Fstop,Gstop]=reach(A,B,GAMMA,UMAX,QO,PO,KOe);
%
% REACH finds the largest reachable set for a linear system with
% constrained states and inputs, where the subset is constructed from
% the intersection of the state constraints and the computed ellipsoid.
%
% Parameter definitions:
%
%
%
%
%
%
%
%
%
%
%
%
%

[A,B]:
GAMMA:
UMAX:
QO:
PO:
KOe:

P:
Ke:
U:
X:

% Usage:

state-space description of linear system
state constraints of the form GAMMA(i,:)*x<=1
maximum allowable control (assumed symmetric)
specifies decay rate of the Lyapunov function
initial guess for the ellipsoid matrix (x'Px<=1)
initial guess for state feedback (must stabilize [A,B])

the optimal ellipsoid
the corresponding state feedback gain matrix
the maximum control effort on the boundary of P
the .final parameter search vector (elements of P, Ke)

% [P,Ke,U,X]=reach(A,B,GAMMA,UMAX,QO,PO,KOe) finds the largest
% reachable ellipsoid, P, and corresponding state-feedback
% matrix, Ke, for the system [A,B] and the constraints, GAMMA,
% UMAX. Definitions of QO, PO, and KOe are optional. If not
% provided, QO is assumed to be zero and PO is initialized using
% an LQR algorithm. If KOe is not specified, or if the given
% KOe does not stabilize [A,B], it is chosen (arbitrarily) using
% the LQR technique.

% Notice:
%
% This algorithm is based on the dissertation "Ellipsoidal and
% Semi-Ellipsoidal Controlled Invariant Sets for Constrained
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999.
%

% Start counter for run-time
tic

% DEFINE SIMtlLATION CONSTANTS
fig_handle=1;
ON=1;
PARTIAL=0.5;
OFF=O;
beta=0.97;
tol=1e-5;

% Set the figure handle
% Switch ON
% Switch HALF-ON
% Switch OFF
% Decrease factor for size of P; MUST BE LESS THAN 1.0
% Error tolerance for terminating search

194

gradient_tol=ie-2;
PET=2.5;

% Minimum gradient for maximal control search
% 'Percent Error Tolerance' for terminating searches

% DEFINE GENERAL PARAMETERS
plotting=PARTIAL;
plot_pts=150;
grad_check=OFF;
search_output=ON;

% Turn plotting 'on/off'; PARTIAL plots only final result
% Number of points to use in plotting
% Checks analytical gradients against numerical estimates
% Displays intermediate search results

% DEFINE MATRIX DIMENTIONING CONSTANTS
[n,m]=size(B); % 'n' is number of states, 'm' is number of inputs
c=size(GAMMA,1); % Defines the number of state constraints
pe=(n-2-n)/2+n; % Defines number of ellipse parameters
pg=n*m; % Defines number of state feedback gain parameters
p=pe+pg; % Defines the total number of parameters.

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions')
max_passes=30; % Maximum number of search cycles
min_iters=30*p; % Minimum number of ~earch iterations per cycle
max_iters=60*p; % Maximum number of search iterations per cycle
weight=1e0; Y. Weighting coefficient for constraint vector
pd_weight=1e0; % Additional (multiplicative) weight for pos. def. const.
inv_weight=1e0; % Additional (multiplicative) weight for invariance const.
options(1)=0N; % Displays intermediate search results
options(14)=max_iters; % Set the maximum number of iterations per pass

% INITIALIZE SEARCH DATA VECTORS
Fstart=[]; % Vector of cost function values before each pass
Gstart=[]; % Matrix of constraint function values before each pass
Fstop=[]; % Vector of cost function values after each pass
Gstop=[]; % Matrix of constraint function values after each pass
search_log=[]; % Matrix of parameter values after each pass

% CHECK VALIDITY OF INPUT DEFINITIONS
N=nargin;
if N<4

error('Not enough input arguments.')
elseif N==4 .

QO= [] ; PO=[] ; KOe= [] ;
elseif N==5

PO= [] ; KOe= [] ;
elseif N==6

KOe=[];
end

% CHECK SIZE OF A,B
if size(A,1)-=size(A,2)

error('A is non-square.')
elseif size(A,1)-=n

error('A and B must have same number of rows.')
end

195

Y. CHECK CONSTRAINT SPACE SIZE
if size(GAMMA,2)-=n

error('GAMMA defined with different number of states than A.')
end

Y. CHECK UMAX
if min(UMAX)<=O

error('Control constraints must be positive.')
end

Y. CHECK QO
if isempty(QO) Y. Check for proper initialization

Y. Display initialization message
disp(' ')
disp(' Initializing QO matrix:')
disp(' ')
QO=zeros(size(A))

elseif max(max(abs(QO-QO')))>O Y. Check for symmetry
error('QO is not symmetric.')

elseif min(eig(QO))<O Y. Check for positive definiteness
error('QO is not positive definite.')

end

Y. USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS
poles=[1:n]; Y. Define (arbitrary) positive pole locations
kO=place(A,B,poles); Y. Compute state-feedback gain
R=eye(m); Y. Arbitrary pos. def. weighting matrix for LQR
[temp,p20]=lqr(A-B*k0,B,QO,R); Y. Compute stabilizing controller and ellipse
dk=inv(R)*B'*p20; Y. Define stabilizing controller

Y. CHECK Koe
if isempty(KOe) Y.

Y. Display initialization message
disp(' ')
disp('Initializing KOe matrix:')

Initialize with LQR if KOe not given

disp(' ')
KOe=kO+dk/2
Ke=-dk/4

Y. Define marginally stabilizing controller

else

Y. Define gain such that (KOe+Ke) is stabilizing
Y. (in negative time)

if (size(KOe,1)-=m)l(size(KOe,2)-=n) Y. Check size of KOe
error('KOe must be same size as B transpose.')

end
if max(real(eig(A-B*KOe)))>O Y. Check stability of A-B*KOe

error('KOe does not stabilize A.')
end

end

Y. CHECK PO

196

if isempty(PO) % Check for proper initialization
% Display initialization message
disp(' ')
disp('Initializing PO matrix:')
disp(' ')
PO=real(sqrtm(p20)) % Compute PO from p20
P20=PO'*PO

elseif max(max(abs(PO-PO')))>O % Check for symmetry
error('PO is not symmetric.')

elseif min(eig(PO))<O % Check for positive definiteness
error('PO is not positive definite.')

end

% ASSIGN PO,KOe TO ELEMENTS OF SEARCH SPACE VECTOR
X=pk2x(PO,Ke,n,m); % Parametrize search with PO, the square root of the

% ellipsoid matrix, to minimize search errors with
% positive definiteness of ellipse.

if plotting==ON
% Plot initial condition ellipsoid
figure(fig_handle);clf;drawnow;
ellipse(P20,[] ,plot_pts);grid on;axis square;
title('INITIAL CONDITION')
drawnow;

% Plot trajectories of initial condition ellipsoid
figure(fig_handle+1);clf;drawnow;
reach_p(X,A,B,KOe);

end

title('TRAJECTORIES OF INITIAL CONDITION')
drawnow;

pvol=d~t(inv(P20));

save reach_best.mat X

% ==

% OPTIMIZE SOLUTION

U=O;
UMAX_hat=UMAX;
control_iters=O;

% Initialize maximum observed control to zero
% Initialize pseudo-maximum control to true maximum
% Initialize counter for control iteration passes

while (U<beta*UMAX)l(U>(UMAX+tol)) % Loop while observed control outside tol.

disp(' ')
disp(sprintf(' ---------- SEARCHING: UMAX_hat =

UMAX_hat))
disp(' ')

197

%6.2f ==========, , ...

options(14)=max_iters;
pass=1;
control_const=ON;

Y. Set the maximum number of iterations to max_iters
Y. Reset the counter
Y. Turn the control constraint 'on'

change=100; Y. Initialize change in_ellipsoid size to 100%
options(10)=max_iters; Y. Initialize number of passes to maximum allowable

while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(beta•options{14))))
Y. Loop until change in ellipsoid size< 2%

disp(' ')
disp(sprintf('

change))
disp(' ')

========== OPTIMIZING: CHANGE= Y.6.2f Y.Y. =========='

Y. Log start-of-pass search constraint vector and cost function
[fstart,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX_hat,QO, ...

control_const,weight,pd_weight,inv_weight);
Gstart=[Gstart g];
Fstart=[Fstart fstart];
Pstart=x2pk(X,n,m);
P2start=Pstart'•Pstart;

' ...

Y. Scale ellipse down by factor of beta to start the next pass off the
Y. constraints
X(1:pe,1)=X(1:pe,1)/sqrt(beta);

Y. Perform search.
options(9)=0FF;
[X,options]=constr('reach_fg' ,X,options, [], 0, 'reach_dfg', ...

A,B,KOe,GAMMA,UMAX_hat,QO, ...
control_const,weight,pd_weight,inv_weight);

Y. Log end-of-pass search constraint vector and cost function
[fstop,g,U,constraints]=reach~fg(X,A,B,KOe,GAMMA,UMAX_hat,QO, ...

control_const,weight,pd_weight,inv_weight);
Gstop=[Gstop g];
Fstop=[Fstop fstop];

Y. Parameter Assignments
Pstop=x2pk(X,n,m);
P2stop=Pstop'*Pstop;

Y. Compute change in cost function
change=100•(trace(P2start)-trace(P2stop))/trace(P2start);

Y. Log parameter space
search_log=[search_log X];

Y. Parameter Assignments
[P,Ke]=x2pk(X,n,m);
P2=P'•P;

Y. Plot ellipsoid in state space

198

if plotting==ON
figure(fig_handle+2);hold off;clf;drawnow;
ellipse(P2,[] ,plot_pts);grid on;axis square;hold on
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change));
drawnow

end

save reach.mat XU

Y. Check for improvement
if det(inv(P2))>pvol

pvol=det(inv(P2));
save reach_best.mat X P2 Ke pvol

end

pass=pass+1;

end

Y, DISPLAY TERMINATION CRITERIA

disp(' ')
disp(sprintf('Search terminated on change in cost function of Y.0.4g %%.', ...

change))
disp(' ')

Y, SEARCH FOR MAXIMUM OBSERVED CONTROL ON RESTRICTED STATE-SPACE
disp(' ')
disp(sprintf(' ====== SEARCHING FOR MAXIMUM OBSERVED CONTROL======'))
disp(' ')
if control_iters==O

Y. Find point which maximizes control on restricted state-space
umax_options(l)=-1; Y. Don't display intermediate results

xO=rand(n,1); Y. Generate random initial condition for search
xO=constr('reach_u_fg',xO,umax_options,[],[],'reach_u_dfg',KOe, ...

GAMMA,X,n,m);

% Compute maximum control effort
[fumax,gumax,U]=reach_u_fg(xO,KOe,GAMMA,X,n,m);

Y. Display maximal control on restricted region
u

Y. Store previous search results
U_old=U;
UMAX_hat_old=UMAX_hat;

% Compute a new estimate for the UMAX_hat that will achieve U=UMAX.
UMAX_hat=UMAX_hat*(beta-(sign(U-UMAX)));

if (U>=beta*UMAX)&(U<=(UMAX+tol))
%
disp(' ')

199

disp(cat(2,'Search terminated: Maximum observed
'within tolerance of UMAX.'))

disp(I I)

end

control', ...

else
Y. Use previous search result for initial condition
xO=constr('reach_u_fg',xO,umax_options,[],[],'reach_u_dfg', ...

KOe,GAMMA,X,n,m);

Y. Compute maximum control effort
[fumax,gumax,U]=reach_u_fg(xO,KOe,GAMMA,X,n,m);

Y. Display maximal control on restricted region
u

Y. Estimate new value of UMAX_hat using secant search
gradient=(U_old-U)/(UMAX_hat_old-UMAX_hat);
UMAX_hat_tmp=UMAX_hat-(U-UMAX)/gradient;

Y. Store previous search results
U_old=U;
UMAX_hat_old=UMAX_hat;

UMAX_hat=UMAX_hat_tmp;

Y. Check to see if improvement feasible
if (U>=beta*UMAX)&(U<=(UMAX+tol))

Y.
disp(I 1)

disp ([I Search terminated: Maximum observed control ' ' ...
'within tolerance of UMAX.'])

disp(J I)

elseif gradient<gradient_tol
disp(I I)

disp ([' Se.arch terminated: No increase expected in maximum ' , ...
'observed control.'])

disp(' ')

Y. Redefine U to artificially terminate loop
U=UMAX;

end

end

Y. Advance counter
control_iters=control_iters+1;

end

Y. ===

Y. CLOSING TASKS

200

Y. Plot final result
if plotting>=PARTIAL

disp(' ')
disp('+++')
.disp('Computing plot points.')
disp('+++')
disp(' ')

figure(fig_handle);clf;drawnow;
if n==2

reach_p(X,A,B,KOe,GAMMA,plot_pts);
elseif n==3

subplot(121)
semiellipse(P2,GAMMA,[],plot_pts),hold on
subplot(122)
reach_p(X,A,B,KOe,GAMMA,plot_pts);

end
end

Y. Compute composite gain.
Ke=Ke+KOe;

Y. Def.ine output · ellipsoid matrix
P=P2;

Y. Compute maximum gain on ellipse, U
[f,g,U,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX_hat,QO, ...

control_const,weight,pd_weight,inv_weight);
Gstop=[Gstop g];g,constraints
Fstop=[Fstop f];

Y. Clean up hard drive
delete reach.mat
del~te reach_best.mat

Y. Terminate counter and display elapsed time
toe

Y. ----~----------~------- END OF FILE: REACH.M.------------------------

201

G.2.2 Cost Function and Constraints

function [f,g,Ue,constraints]=reach_fg(X,A,B,KOe,GAMMA,UMAX,Q, ...
control_const,weight,pd_weight,inv_weight);

% REACH_FG is the cost function and constraint routine for use with REACH.

% parametrizes in terins of sqrt(P) and Ke

% SYSTEM SIZE DEFINITION
[n,m]=size(B);
(p]=max(size(X));
[c]=size(GAMMA,1);

% PARAMETER ASSIGNMENTS
[P,Ke]=x2pk(X,n,m);
P2=P 1 *P;

% OBJECTIVE FUNCTION (Minimization)
f=log(trace(P2));

% CONSTRAINTS (Must be of form<= 0)
g=[]; % clear array
constraints=[];% constraints assignments (below) don't work with older Matlab

% Invariance constraint
Acl=A-B*(Ke+KOe);
IC=P2*(-Acl)+(-Acl)'*P2+Q;. % Write as negative definite form
[v,d]=eig(IC);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D*inv_weight]; % Write as 'less than' constraint
for i=l:n

constraints=char(constraints, 1 Invariance 1);

end

% Positive definiteness constraints.
[v,d]=eig(-P2*pd_weight); % Write as negative definite form
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; % Write as 'less than' constraint
for i=l:n

constraints=char(constraints, 1 Positive Definiteness');
end

% State constraints (See dissertation for details)
for i=l:c;

Gamma=GAMMA(i,:);
v=null(Gamma*(-(A-B*(Ke+KOe))));

constraints=char(constraints,[1 State Constraint I num2str(i)]);
end;

202

% Control constraints
if control_const==1

Ue=sqrt((Ke+KOe)*inv(P2)*(Ke+KOe)');
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; % Normalize to 1
constraints=char(constraints,'Control');

end

% ----------------------- END OF FILE: REACH_FG.M -----------------------

203

G.2.3 Derivatives of Cost Function and Constraints

function [df_dX,dg_dX]=reach_dfg(X,A,B,KOe,GAMMA,UMAX,Q, ...
control_const,weight,pd_weight,inv_weight);

% REACH_DFG is the derivative cost function and constraint routine
% for use with REACH.

% parametrizes in terms of sqrt(P) and Ke

% SYSTEM SIZE DEFINITION
· [n,m]=size(B);
p=max(size(X));
c=size(GAMMA,1);
pg=n*m;
pe=p-pg;

% number of state feedback gain parameters
% number of ellipsoid parameters

% PARAMETER ASSIGNMENTS
[P,Ke]=x2pk(X,n,m);
P2=P'*P;

% OBJECTIVE FUNCTION (Minimization)
f=log(trace(P2));

df_dP=[];
xindex=O;
for i=1:n

for j=i:n
if i==j

df_dP=[df_dP;2*P(i,j)/trace(P2)];
else

df_dP=[df_dP;4*P(i,j)/trace(P2)];
end

end·
end
df_dKe=zeros(size(Ke))';
df_dX=[df_dP;df_dKe];

% ===

% CONSTRAINTS (Must be of form<= 0)
g=[]; % clear constraint array
dg_dX=[]; % clear constraint derivative array

% Invariance constraint
Acl=A-B*(Ke+KOe);
IC=P2*(-Acl)+(-Acl)'*P2+Q;
[v ,d]=eig(IC);
[Di,sort_index]=esort(diag(d));
Vi=v(:,sort_index);

204

g=[g;Di]; Y. Write as 'less than' constraint

dDi_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dIC_dP_ij=(EL'*P+P*EL)*(-Acl)+(-Acl)'*(EL'*P+P*EL);
dDi_dP= [dDi_dP; diag(Vi' * (dIC_dP _ij) *Vi) '] ;

end
·end
dDi_dKe= [] ;
for i=1:m

for j=1:n
EL=zeros(size(Ke));
EL(i,j)=1;
dAcl_dKe_ij=-B*EL;
dIC_dKe_ij=P2*(-dAcl_dKe_ij)+(-dAcl_dKe_ij)'*P2;
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)'];

end
end

dDi_dX=[dDi_dP; dDi_dKe]*inv_weight;
dg_dX=[dg~dX dDi_dX];

Y. Positive definiteness of P constraints.
PDC=-P2*pd_weight; -
[v,d]=eig(PDC);
[Dpd,sort_index]=esort(diag(d));
Vpd=v(:,sort_index);
g=[g;Dpd]; Y. Write as 'less than' constraint

dDpd_dP= [] ;
for i=1:n

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j,i)=1;
dPDC_dP_ij=-1*(EL'*P+P*EL)*pd_weight;
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)'];

end
end
dDpd_dKe=zeros(pg,n); Y. 'n' eigenvalues

dDpd_dX=[dDpd_dP;dDpd_dKe];
dg_dX=[dg_dX dDpd_dX];

Y. State constraints
for k=1:c;

Gamma=GAMMA(k,:);
w=null(Gamma*(-(A-B*(Ke+KOe))));

205

g=[g;SC];

dSC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;

dinv_dP_ij=-inv(w'*P2*w)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w);
dSC_dP_ij=(Gamma*w)*dinv_dP_ij*(Gamma*w)';

dSC_dP=[dSC_dP; dSC_dP_ij];
end

end
dSC_dKe= [] ;
for i=1:m

for j=1 :n
% Use numerical approximation
EL=zeros(size(Ke));
EL(i,j)=1;
deltaKe_ij=EL*1e-5;
deltaw=null(Gamma*(-(A-B*(Ke+KOe+deltaKe_ij))))-w;
gradw=deltaw/1e-5;
dinv_dKe_ij=-inv(w'*P2*W)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w);
dSC_dKe_ij=(Gamma*gradw)*inv(w'*P2*w)*(Gamma*w)'+ ...

(Gamma*w)*dinv_dKe_ij*(Gamma*w)'+ ...
(Gamma*w)*inv(w'*P2*w)*(Gamma*gradw)';

dSC_dKe=[dSC_dKe; dSC_dKe_ij];

end

end
end
dSC_dX=[dSC_dP;dSC_dKe];
dg_dX=[dg_dX dSC_dX];

% Control constraints
if control_const==1

CC=(1/UMAX-2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1;
g=[g;CC];

dCC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dCC_dP_ij=(1/UMAX-2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ...

(Ke+KOe)');
dCC_dP=[dCC_dP; dCC_dP_ij];

end
end
dCC_dKe= [] ;
for i=1:m

for j=1:n
EL=zeros(size(Ke));
EL(i,j)=1;

206

end
end

dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)');
dCC_dKe=[dCC_dKe; dCC_dKe_ij];

dCC_dX=[dCC_dP; dCC_dKe];
dg_dX=[dg_dX dCC_dX];

end

r. ----------------------- END OF FILE: REACH_DFG.M ------~----------------

207

G.2.4 Cost Function and Constraints for Finding u
function [f,g,U]=reach_u_fg(xO,KOe,GAMMA,X;n~m);
%. REACH_U_FG is the cost function and. constraint routine for use with
% overlapping reachable ellipsoids to find maximal control on restricted
% state-space.

Y. SYSTEM SIZE DEFINITION
[c]=size(GAMMA,1);

Y. PARAMETER ASSIGNMENTS
[P,Ke]=x2pk(X,n,m);
P2=P*P;

Y. OBJECTIVE FUNCTION (Minimization)
f=-xO'*(Ke+KOe)'*(Ke+KOe)*xO;

U=abs(-(Ke+KOe)*xO);

Y. CONSTRAINTS (Must be of form<= 0)
g= [] ; Y. clear array
constraints=[]; .Y. constraints assignments (below) don't work with older Matlab

Y. Ellipsoid constraint
EC=x0'*P2*x0-1; Y. Write as negative definite form
g=[g;EC];
constraints=char(constraints,'Ellipsoid Constraint');

Y. State constraints
for i=1:c

for j=1:2
SC=((-1-j)*GAMMA(i,:))*x0-1; Y. Consider both plus/minus GAMMA
g=[g;SC];
constraints=char(constraints,['State Constraint' num2str(i)]);

end
end;

Y. --------------------- END OF FILE. REACH_U_FG.M ---------------------

208

G.2.5 Derivatives of Cost Function and Constraints for Finding ii.

function [df_dxO,dg_dxO]=reach_u_dfg(xO,KOe,GAMMA,X,n,m);
Y. REACH_U_DFG is the derivative cost function and constraint routine for
Y. use with overlapping reachable ellipsoids to find maximal control
Y. on restricted state-space.

Y. SYSTEM SIZE DEFINITION
c=size(GAMMA,1);

Y. PARAMETER ASSIGNMENTS
[P,Ke]=x2pk(X,n,m);
P2=P*P;

Y. OBJECTIVE FUNCTION (Minimization)
f=-xO'*(Ke+KOe)'*(Ke+KOe)*xO;

df_dx0=-2*(Ke+KOe)'*(Ke+KOe)*xO;

Y. ============================ ============== ============================

Y. CONSTRAINTS (Must be of form<= 0)
dg_dxO=[]; Y. clear constraint derivative array

Y. Ellipsoid constraint
EC=x0'*P2*x0-1; Y. Write as negative definite form
dEC_dx0=2*P2*xO;
dg_dxO=[dg_dxO dEC_dxO];

Y. State constraints
for i=1:c

for j=1:2
dSC_dx0=(-1~j)*GAMMA(i,:)'; Y. Consider both plus/minus GAMMA
dg_dxO=[dg_dxO dSC_dxO];

end
end

Y. --------------------- END OF FILE: REACH_U_DFG.M ---------------------

209

G.2.6 Plotting Routine

function [U,l',Ke]=reach_p(X,A,B,KOe,GAMMA,plot_pts);
% REACH_P is the trajectory plotting routine for use with REACH

% Plotting options
N=max(floor((plot_pts/20)-2),5); % plot trajectory from every Nth data

% point on the semi-ellipse with a
% maximum of 20 pts

if nargin<4
error('Not enough input arguments.')

end

% Message to screen
disp(' ')
disp('+++')
disp ('Plotting reaching trajectories')
disp('+++')
disp(' ')

% Parameter Assignments (extract P,K's from X)
[n,m]=size(B);
[P,Ke]=x2pk(X,n,m);
P2=P'*P;

Ke=Ke+KOe; % Construct composite gain

if n==2 % 2-D ELLIPSOID
% Compute ellipsoid boundary
[x1,x2]=semiellipse(P2,GAMMA,[],plot_pts);

% Compute corresponding control effort
ue=Ke* [x 1 ; x2] ;

% Compute maximum control effort on boundary
U=max(ue);

% Plot boundary vs. control
plot(x1,x2,'k');grid on;axis square;hold on

% Compute reaching state-space description (neg.time)
syse=ss(-(A-B*Ke),-B,eye(n),zeros(n,m));

% Plot trajectories for every Nth point on the ellipsoid boundary
for i=1:ceil(sqrt(N)):max(size(x1));

[y,t,x]=initial(syse, [x1(i),x2(i)],[0:.01:10]);
plot (x (: , 1) , x (: , 2) , 'r')

end

colormap ('gray')

xlabel ('x1') ,ylabel ('x2'), zlabel ('u')

210

elseif n==3 Y, 3-D ELLIPSOID
Y. Compute ellipsoid boundary
[x1,x2,x3]=semiellipse(P2,GAMMA, [] ,plot.:..pts);

Y. Compute corresponding control effort
for i~1:size(x1,1)

for j=1:size(x1,2)
ue(i,j)=Ke*[x1(i,j);x2(i,j);x3(i,j)];

end
end

Y. Compute maximum control effort on boundary
. u~ax(max(abs(ue)));

Y. P~ot boundary vs. control
surf(x1,x2,x3,ue/U);grid on;axis square;hold on

Y. Compute reaching and recovering state-space descriptions
syse=ss(-(A~B*Ke),-B,eye(n),zeros(n,m));

Y. Plot trajectories for every Nth point on the ellipsoid boundary
hold on
for i=1:N:size(x1,1);

for j=1:N:size(x1,2)
[y,t,x]=initial(syse, [x1(i,j) ,x2(i,j) ,x3(i,j)], [O: .01:10]);
plot3(x(:, 1) ,x(: ,2) ,x(: ,3), 'r')

end
end
drawnow
grid on
colormap('copper')
lighting phong
light('Position',[1 -1 5]).
h=fi_ndobj ('Type', 'surface');
set(h, 'FaceLighting', 'phong', ...

'FaceColor','interp', .•.
'EdgeColor', [.4 .4 .4], ...
'BackFaceLighting', 'reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')

end

Y, -~-------------------- END OF FILE: REACH_P.M ----------------------

211

G.3 Function Files for Computing Controllable
Semi-Ellipsoidal Set

G.3.1 Optimization Routine

function [P,Kv,Ke,U,X]=control(A,B,GAMMA,UMAX,QO,PO,KOv,KOe);
%
% CONTROL finds the largest controllable subset for a linear system with

·% constrained states and inputs, where the subset is constructed from
% th~ intersection of the state constraints and the computed ellipsoid.

% Parameter definitions:
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

[A,B]:
GAMMA:
UMAX:
QO:
PO:
KOv:
KOe: ·

P:

X:

% Usage:

state-space description of linear system
state constraints of the form GAMMA(i,:)*x<=1
maximum allowable control (assWlied symmetric)
specifies decay rate of the Lyapunov function
initial guess for the ellipsoid matrix (x'Px<=1)
initial guess for recovering state feedback matrix
initial guess for reaching state feedback matrix

the optimal ellipsoid
the corresponding recovering state feedback matrix
the corresponding reaching state feedback matrix
the maximum control effort '(via state feedback) on subset
the final parameter search Yector (elements of P, K)

% [P,Kv,Ke,U,X]=control(A,B,GAMMA,UMAX,QO,PO,KOv,KOe) finds the
% largest ellipsoid, P, which is both reachable and recoverable,
% and corre·sponding state-feedback matrices, Ke,Kv, for the
% system [A,B] and the constraints, GAMMA, UMAX. Definitions of
% QO, PO, and KO's are optional. If not provided, QO is assumed
% to be zero and PO is initialized using an LQR algorithm. If
% KOe is not specified, or if the given KOe does not stabilize
% [-A,-B], it is chosen (arbitrarily) using an LQR technique.
% Similarly, if KOv is not specified, or if the given KOv does'
% not stabilize [A,B], it is chosen (arbitrarily) using an LQR
% technique.

% Notice:
%
% This algorithm is based on the dissertation "Ellipsoidal and
% Semi-Ellipsoidal Controlled Invariant Subsets for Constrained
% Linear Systems" by Brian O'Dell, Oklahoma State University, 1999.
%

% Start counter for run-time
tic

% DEFINE SIMULATION CONSTANTS
fig_handle=1;
ON=1;

% Set the figure handle
% Switch ON

212

PARTIAL=0.5;
OFF=O;

% Switch HALF-ON
% Switch OFF

beta=0.95; % Decrease factor for size of P; MUST BE LESS THAN 1.0
tol=le-5; % Error tolerance for terminating search
gradient_tol=le-5; % Minimum gradient for maximal control search
PET=1; % 'Percent Error Tolerance' for terminating searches
flag=1; % Defines as controllable ellipsoid

% DEFINE GENERAL PARAMETERS
plotting=PARTIAL;
plot_pts=150;
grad_check=OFF;
search_output=ON;

% Turn plotting 'on/off'; PARTIAL plots only final result
% Number of points to use in plotting
% Checks analytical gradients against numerical estimates
% Displays intermediate search results

% DEFINE MATRIX DIMENTIONING CONSTANTS
[n,m]=size(B); % 'n' is number of states, 'm' is number of inputs
c=size(GAMMA,1); % Defines the number of state constraints
pe=(n~2-n)/2+n; % Defines number of ellipse parameters
pg=2*n*m; % Defines number of state feedback gain parameters
p=pe+pg; % Defines the total number of parameters.

% DEFINE SEARCH PARAMETERS (for search OPTIONS, type 'help foptions')
max_passes=20; % Maximum number of search cycles
min_iters=30*p; % Minimum number of search iterations per cycle
max_iters=60*p; % Maximum number of search iterations per cycle
weight=1e0; % Weighting coefficient for constraint vector
pd_weight=1e0; % Additional (multiplicative) weight for pos. def. const.
inv_weight=1e0; % Additional (multiplicative) weight for invariance const.
options(l)=ON; % Displays intermediate search results
options(14)=max_iters; % Set the maximum number of iterations per pass

% INITIALIZE SEARCH DATA VECTORS
Fstart=[]; % Vector of cost function values before each pass
Gstart=[J; % Matrix of constraint function values before each pass
Fstop=[]; % Vector of cost function values after each pass
Gstop=[]; % Matrix of constraint function values after each pass
search_log=[]; % Matrix of parameter values after each pass

% CHECK VALIDITY OF INPUT DEFINITIONS
N=nargin;
if N<4

error('Not enough input arguments.')
elseif N==4

QO= [] ; PO=[] ; KOe= [] ; KOv= [] ;
elseif N==5

PO=[] ; KOe= [l; KOv= [] ;
·elseif N==6

KOe= [] ; KOv= [};
elseif N==7

KOv=[];
end

213

Y, CHECK SIZE OF A,B
if size(A,1)-=size(A~2)

error('A is non-square.')
elseif size(A,1)-=n

error('A and B must have same number of rows.')
end

Y, CHECK CONSTRAINT SPACE SIZE
if size(GAMMA,2)-=n

error('GAMMA defined with different number of states than A.')
end

Y, CHECK UMAX
if min(UMAX)<=O

error('Control constraints must be positive.')
end

Y. CHECK QO
if isempty(QO) Y. Check for proper initialization

Y. Display initialization message
disp(' ')
disp('Initializing QO matrix:')
disp(' ')
QO=zeros(size(A))

elseif max(max(abs(QO-QO')))>O Y. Check for symmetry
error('QO is not symmetric.')

elseif min(eig(QO))<O Y. Check for positive definiteness
error('QO is not positive definite.')

end

Y, USE LQR SOLUTION FOR ANY NECESSARY INITIALIZATIONS
poles=[1:n]; Y. Define (arbitrary) positive pole locations
kO=place(A,B,poles); Y. Compute state-feedback gain
R=eye(m); Y. Arbitrary pos. def. weighting matrix for LQR
[temp,p20]=lqr(A-B*k0,B,QO,R); Y. Compute stabilizing controller and ellipse
dk=inv(R)*B'*p20; Y. Define stabilizing controller

Y, CHECK KOv
if isempty(KOv) %

Y. Display initialization message
disp(' ')
disp('Initializing KOv matrix:')

Initialize with LQR if KOv not given

disp(' ')
KOv=kO+dk/2 % Define marginally stabilizing controller

.Kv=dk/4

else

Y. Define gain such that (KOv+Kv) is stabilizing
% (in positive time)

if (size(KOv,1)-=m) l(size(KOv,2)-=n) % Check size of KOv
error('KOv must be same size as B transpose.')

214

end
if max(real(eig(A-B*KOv)))>O % Check stability of A-B*KOv

error('KOv does not stabilize A.')
end

end

% CHECK KOe
if isempty(KOe) % Initialize with LQR if KOv not given

% Display initialization message
disp(' ')
disp('Initializing KOe matrix:')
disp(' ')
KOe=kO+dk/2
Ke=-dk/4

% Define marginally stabilizing controller
% Define gain such that (KOe+Ke) is stabilizing
% (in negative time)

else
if (size(KOe,1)-=m)l(size(KOe,2)-=n) % Check size of KOe

error('KOe must be same size as B transpose.')
end
if max(real(eig((-A)-(-B)*KOe)))>O % Check stability of A-B*KOe

error('KOe does not stabilize A.')
end

end

% CHECK PO
if isempty(PO) % Check for proper initialization

% Display initialization message
disp(' ')
disp('Initializing PO matrix:')
disp(' ')
PO=real(sqrtm(p20)) % Compute PO from p20
P20=PO'*PO

elseif max(max(abs(PO-PO')))>O % Check for symmetry
error('PO is not symmetric.')

elseif min(eig(PO))<O % Check for positive definiteness
error('PO is not positive definite.')

end

% ASSIGN INITIAL CONDITIONS TO ELEMENTS OF SEARCH SPACE VECTOR
X=pk2x(PO,Kv,Ke,n,m); % Parametrize search with PO, the square root of the

% ellipsoid matrix, to minimize search errors with
% positive definiteness of ellipse.

if plotting==ON
% Plot initial condition ellipsoid
figure(fig_handle);clf;drawnow;
ellipse(P20,[],plot_pts);grid on;axis square;
title('INITIAL CONDITION')
drawnow;
fig_handle=fig_handle+1;

215

Y. Plot trajecto+ies of initial condition ellipsoid
figure(fig_handle);clf;drawnow;
control_p(X,A,B,KOv,KOe);
title('TRAJECTORIES OF INITIAL CONDITION')
drawnow;
fig_handle=fig_handle+l;

end

pvol=det(inv(P20));

save control_best.mat X pvol

Y. ==

Y. OPTIMIZE SOLUTION

Y. Initialize maximum observed control to zero U=O;
UMAX_hat=UMAX;
control_iters=O;

Y. Initialize pseudo-maximum control to true maximum
Y. Initialize counter for control iteration passes

while (U<beta•UMAX)l(U>(UMAX+tol)) Y. Loop while observed control outside tol.

disp(' ')
disp(sprintf('

UMAX_hat))
disp(' ')

---------- SEARCHING: UMAX_hat = Y.6.2f =========='

options(14)=max_iters; Y. Set the maximum number of iterations
pass=l; Y. Reset the counter
control_ const=ON ;. Y. Turn the control constraint 'on'

' ...

change=lOO; Y. Initialize change in ellipsoid size to lOOY.
options(lO)=max_iters; Y. Initialize number of passes to maximum allowable

while (pass<=max_passes)&((abs(change)>PET)l(options(10)>(0.8•options(14))))
Y. Loop until change in ellipsoid size< 2Y.

disp(' ')
disp(sprintf(' ========== OPTIMIZING: CHANGE= Y.6.2f Y.Y. ========== ', ...

change))
disp(' ')

Y. Log start-of-pass search constraint vector and cost function
[fstart,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX,QO, ...

control_const,weight,pd_weight,inv_weight);
Gstart=[Gstart g];
Fstart=[Fstart fstart];
Pstart=x2pk(X,n,m);
P2start=Pstart'•Pstart;

Y. Scale ellipse down by factor of beta to start the next pass off the
Y. constraints

216

X(1:pe,1)=X(1:pe,1)/sqrt(beta); % Since search parameters define P, not P2

% Perform search.
options(9)=0FF;
[X,options]=constr('control_fg',X,options,[],[],'control_dfg', ...

A,B,KOv,KOe,GAMMA,UMAX,QO, ...
control_const,weight,pd_weight,inv_weight);

% Log end-of-pass search constraint vector and cost function
[fstop,g,U,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX, ...

QO,control_const,weight,pd_weight,inv_weight);
Gstop=[Gstop g];
Fstop=[Fstop fstop];

% Parameter Assignments
Pstop=x2pk(X,n,m);
P2stop=Pstop'*Pstop;

% Compute change in cost function
change=100*(trace(P2start)-trace(P2stop))/trace(P2start);

% Log parameter space,control value, and number of iterations
search_log=[search_log X];

% Parameter Assignments
[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P*P;

% Plot ellipsoid in state space
if plotting==ON

figure(fig_handle);clf;drawnow;
ellipse(P2,[],plot_pts);grid on;axis square;
title(sprintf('OPTIMIZING: CHANGE= %1.4g',change));
drawnow

end

save control.mat XU

% Check for improvement·
if det(inv(P2))>pvol

pvol=det(inv(P2));
save control_best.mat X P2 Kv pvol

end

pass=pass+1;

end

% DISPLAY TERMINATION CRITERIA

disp(' ')
disp(sprintf('Search terminated on change in cost function of %0.4g %%.', ...

change))
disp(' ')

217

% SEARCH FOR MAXIMUM OBSERVED CONTROL ON RESTRICTED STATE-SPACE
disp(' ')
disp(sprintf(' ====== SEARCHING FOR MAXIMUM OBSERVED CONTROL======'))
disp(' ')
if control_iters==O

% Find point which maximizes control on restricted state-space
umax_options(1)=-1; % Don't display intermediate results

xO=rand(n,1); % Generate random initial condition for search
xO=constr('control_u_fg' ,xO,umax_options,[J,[],'control_u_dfg',KOv,KOe, ...

GAMMA,X,n,m);

% Compute maximum control effort
[fumax,gumax,U]=control_u_fg(xO,KOv,KOe,GAMMA,X,n,m);

% Display maximal control on restricted region
u

% Store previous search results
U_old=U;
UMAX_hat_old=UMAX_hat;

% Compute a new estimate for the UMAX_hat that will achieve U=UMAX.
UMAX_hat=UMAX_hat*(beta-(sign(U-UMAX)));

if (U>=beta*UMAX)&(U<=(UMAX+tol))
%
disp(' ')
disp(cat(2,'Search terminated: Maximum observed

'within tolerance of UMAX.'))
disp(' ')

end
else

control', ...

% Use previous search result for initial condition
xO=constr('control_u_fg',xO,umax_options,[],[],'control_u_dfg', ...

KOv,KOe,GAMMA,X,n,m);

% Compute maximum control effort
[fumax,gumax,U]=control_u_fg(xO,KOv,KOe,GAMMA,X,n,m);

% Display maximal control on restricted region
u

% Estimate new value of UMAX_hat using secant search
gradient=((U_old-UMAX)-(U-UMAX))/(UMAX_hat_old-UMAX_hat);
UMAX_hat_tmp=UMAX_hat-(U-UMAX)/gradient;

% Store previous search results
U_old=U;
UMAX_hat_old=UMAX_hat;

UMAX_hat=UMAX_hat_tmp;

% Check to see if improvement feasible

218

if (U>=beta*UMAX)&(U<=(UMAX+tol))
%
disp(' ')
disp(cat(2,'Search terminated: Maximum observed control ', ...

'within tolerance of UMAX.'))
disp(' ')

elseif abs(gradient)<gradient_tol
disp(' ')
disp(cat(2,'Search terminated: No increase expected in maximum', ...

'observed control.'))
disp(' ')

% Redefine U to-artificially terminate loop
U=UMAX;

end

end

% Advance counter
control_iters=control_iters+1;

end

% ===-=====--=-=-=-

% CLOSING TASKS

% Plot trajectories
% Plot final result
if plotting>=PARTIAL

disp(' ')
disp('+++')
disp('Computing plot points.')
disp('+++')
disp(' ')

figure(fig_handle);clf;drawnow;
semiellipse(P2,GAMMA,[],plot_pts),hold on
fig_handle=fig_handle+1;

figure(fig_handle);clf;drawnow;
control_p(X,A,B,KOv,KOe,GAMMA,plot_pts);

end

% Compute composite gain.
Kv=Kv+KOv;
Ke=Ke+KOe;

% Define output ellipsoid matrix
P=P2;

219

Y. Compute maximum gain on ellipse, U
[f , g, U, constraints] =control_f g (X, A, B, KOv, KOe, GAMMA, UMAX, •••

QO,control_const,weight,pd_weight,inv_weight);
_Gstop=[Gstop g];

· Fstop= [Fstop f] ;

Y. Clean up hard drive
delete control.mat
delete control_best.mat

Y. Terminate counter and display elapsed time
toe

Y, --------------~--------_;- END OF FILE: CONTROL.M ----------~-------------

220

G.3.2 Cost Function and Constraints

function [f,g,Uc,constraints]=control_fg(X,A,B,KOv,KOe,GAMMA,UMAX, ...
Q,control_const,weight,pd_weight,inv_weight);

Y. CONTROL_FG is the cost function and constraint routine for use with CONTROL.

Y. parametrizes in terms of sqrt(P) and Kv
Y. modifies definition of (at end) and pos. def. inequalities

Y. SYSTEM SIZE DEFINITION
[n,m]=size(B);
[p]=max(size(X));
(c]=size(GAMMA,1);

flag=l; Y. Defines as controlable subspace

Y. PARAMETER ASSIGNMENTS
[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P•P;

Y. OBJECTIVE FUNCTION (Minimization)
f=log(trace(P2));

Y. CONSTRAINTS (Must be of form<= 0)
g= [] ; Y. clear array
constraints=[]; Y. constraints assignments (below) don't work with older Matlab

Y. Invariance constraint
Aci=A-B•(Kv+KOv);
IC=P2•Acl+Acl'•P2+Q; Y. Write as negative definite form
[v,d]=eig(IC);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D•inv_weight]; Y. Write as 'less than' constraint·
for i=l:n

constraints=char(constraints,'Invariance');
end

Acl=A-B•(Ke+KOe);
IC=P2•(-Acl)+(-Acl)'*P2+Q; Y. Write as negative definite form
[v,d]=eig(IC);
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D•inv_weight]; Y. Write as 'less than' constraint
for i=l:n

constraints=char(constraints,'Invariance');
end

Y. Positive definiteness constraints.
[v,d]=eig(-P2•pd_weight); Y. Write as negative definite form
[D,sort_index]=esort(diag(d));
V=v(:,sort_index);
g=[g;D]; Y. Write as 'less than' constraint
for i=l:n

221

constraints=char(constraints, .'Positive Definiteness');
end

1. State constraints
for i=l:c;

Gamma=GAMMA(i,:);

% Check to see if constraint is control dependent
if max(max(Gamma*B))==O % Not dependent

g=[g;·Gamma*inv(P2)*Gamma 1 -1]; % Note: not sign/time depend.
constraints=char(constraints,['State Constraint I num2str(i)]);

else·
w=null(Gamma*(A-B*(Kv+KOv)));
g=[g; (Gamma*w)*inv(w'*P2*W)*(Gamma*w) 1 -1];
constraints=char(constraints,[1 Recovering State Constraint 1 num2str(i)]);
w=null(Gamma*(-(A-B*(Ke+KOe))));
g=[g; (Gamma*w)*inv(w'*P2•w)*(Gamma*w)'-1];
constraints=char(constraints,['Reaching State Constraint 'num2str(i)]);

end
end;

% Control constraints
if control_const==l

Uv=sqrt((Kv+KOv)*inv(P2)*(Kv+KOv)');
g=[g; (Uv*Uv)/(UMAX*UMAX)-1]; Y. Normalize to 1
constraints=char(constraints,'Control');
Ue=sqrt((Ke+KOe)*inv(P2)*(Ke+KOe)');
g=[g; (Ue*Ue)/(UMAX*UMAX)-1]; % Normalize to 1
constraints=char(constraints,'Control');

end

Uc=max(Uv,Ue);

% ======================= END OF FILE: CONTROL_FG.M --------~-------------

222

G.3.3 Derivatives of Cost Function and Constraints

function [df_dX,dg_dX]=control_dfg(X,A,B,KOv,KOe,GAMMA,UMAX, ...
Q,control_const,weight,pd_weight,inv_weight);

% CONTROL_DFG is the derivative cost function and constraint routine
% for use with CONTROL.

% parametrizes in terms of sqrt(P) and Kv
% modifies definition of (at end) and pos. def. inequalities

% Empirical weights on constraints (experimented w/weighting pos.def. 1e3)

% SYSTEM SIZE DEFINITION
[n,m]=size(B);
p=max(size(X));
c=size(GAMMA,1);
pg=n*m; % number of state feedback gain parameters (per gain matrix)
pe=p-2*pg; % number of ellipsoid parameters

flag=1; % Defines as controllable subspace

% PARAMETER ASSIGNMENTS
[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P*P;

% OBJECTIVE FUNCTION (Minimization)
f=log(trace(P2));

df_dP=[];
xindex=O;
for i=1:n

for j=i:n
if i==j

df_dP=[df_dP;2*P(i,j)/trace(P2)];
else

df_dP=[df_dP;4*P(i,j)/trace(P2)];
end

end
end
df_dKv=zeros(size(Kv))';
df_dKe=zeros(size(Ke))';
df_dX=[df_dP;df_dKv;df_dKe];

% =================== =================== ========= =======================

% CONSTRAINTS (Must be of form<= 0)
g=[]; % clear constraint array
dg_dX=[]; % clear constraint derivative array

% Invariance constraint (recoverable/positive time)
Acl=A-B*(Kv+KOv);

223

IC=P2*Acl+Acl'*P2+Q;
[v,d]=eig(IC);
[Di,sort_index]=esort(diag(d));
Vi=v(:,sort_index);
g=[g;Di]; % Write as 'less than' constraint

dDi_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL);
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)'];

end
end
dDi_dKv=[];
for i=1:m

for j=1:n
EL=zeros(size(Kv));
EL(i,j)=1;
dAcl_dKv_ij=-B*EL;
dIC_dKv_ij=P2*(dAcl_dKv_ij)+(dAcl_dKv_ij)'*P2;
dDi_dKv=[dDi_dKv; diag(Vi'*(dIC_dKv~ij)*Vi)'];

end
end
dDi_dKe=zeros(pg,n); % 'n' eigenvalues

dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe]*inv_weight;
dg_dX=[dg_dX dDi_dX];

% Invariance constraint (reachability/negative time)
Acl=-(A-B*(Ke+KOe));
IC=P2*Acl+Acl'*P2+Q;
[v,d]=eig(IC);
[Di,sort_index]=esort(diag(d));
Vi=v(:,sort_index);
g=[g;Di]; % Write as 'less than' constraint

dDi_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dIC_dP_ij=(EL'*P+P*EL)*Acl+Acl'*(EL'*P+P*EL);
dDi_dP=[dDi_dP; diag(Vi'*(dIC_dP_ij)*Vi)'];

end
end
dDi_dKv=zeros(pg,n);
dDi_dKe= [] ;
for i=1:m

for j=1:n
EL=zeros(size(Ke));
EL(i,j)=1;
dAcl_dKe_ij=-(-B)*EL;

224

dIC_dKe_ij=P2*(dAcl_dKe_ij)+(dAcl_dKe_ij)'*P2;
dDi_dKe=[dDi_dKe; diag(Vi'*(dIC_dKe_ij)*Vi)'];

end
end·
dDi_dX=[dDi_dP; dDi_dKv; dDi_dKe]*inv_weight;
dg_dX=[dg_dX dDi_dX];

% Positive definiteness of P constraints.
PDC=-P2*pd_weight;
[v ,d]=eig(PDC);
[Dpd,sort_index]=esort(diag(d));
Vpd=v(:,sort_index);
g=[g;Dpd]; % Write as 'less than' constraint

dDpd_dP=[J;
for i=1:n

for j=i:n
EL=zeros(size(P));
EL(i,j)=1;EL(j,i)=1;
dPDC_dP_ij=-h(EL'*P+P*EL)*pd_weight;
dDpd_dP=[dDpd_dP; diag(Vpd'*(dPDC_dP_ij)*Vpd)'];

end
end
dDpd_dKv=zeros(pg,n); % 'n' eigenvalues
dDpd_dKe=zeros(pg,n);

dDpd_dX=[dDpd_dP;dDpd_dKv;dDpd_dKe~;
dg_dX=[dg_dX dDpd_dX];

% State constraints
for k=1:c;

Gami:Qa=GAMMA(k,:);

% Check to see if constraint is control dependent
if max(max(Gamma*B))==O % Not dependent

SC=Gamma*inv(P2)*Gamma'-1;
g=[g; SC];% Note: not sign/time depend.

dSC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dSC_dP_ij=Gamma*(-inv(P2)*(P*EL+EL*P)*inv(P2))*Gamma';

dSC_dP=[dSC_dP; dSC_dP_ij];
end

end
dSC_dKv=zeros(pg,1);
dSC_dKe=zeros(pg,1);
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKe];
d.g_dX=[dg_dX dSC_dX];

225

else
w=null(Gamma*(A-B*(Kv+KOv)));
SC=(Gamma*w)*inv(w'*P2*W)*(Gamma*w)'-1;
g=[g; SC];
dSC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL (i, j) =1; EL (j, i) =1;

dinv_dP_ij=-inv(w'*P2*w)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w);
dSC_dP_ij=(Gamma*w)*dinv_dP_ij*(Gamma*w)';

dSC_dP=[dSC_dP; dSC_dP_ij];
end

end
dSC_dKv= [] ;
for i=1 :m

for j=1:n
% Use numerical approximation
EL=zeros(size(Kv));
EL(i,j)=1;
deltaKv_ij=EL*1e-5;
deltaw=null(Gamma*(-(A-B*(Kv+KOv+deltaKv_ij))))-w;
gradw=deltaw/1e-5;
dinv_dKv_ij=-inv(w'*P2*W)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w);
dSC_dKv_ij=(Gamma*gradw)*inv(w'*P2*W)*(Gamma*w)'+ ...

(Gamma*w)*dinv_dKv_ij*(Gamma*w)'+ ...
(Gamma*W)*inv(w'*P2*W)*(Gamma*gradw)';

dSC_dKv=[dSC_dKv; dSC_dKv_ij];
end

end
dSC_dKe=zeros(pg,1);
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKel;
dg_dX=[dg_dX dSC_dX];

w=null(Gamma*(-(A-B*(Ke+KOe))));
SC=(Gamma*w)*inv(w'*P2*w)*(Gamma*w)'-1;
g=[g; SC];
dSC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;

dinv_dP_ij=-inv(w'*P2*W)*(W'*(P*EL+EL*P)*w)*inv(w'*P2*w);
dSC_dP_ij=(Gamma*W)*dinv_dP_ij*(Gamma*w)';

dSC_dP=[dSC_dP; dSC_dP_ij];
end

end
dSC_dKv=zeros(pg,1);
dSC_dKe=[];

226

. end
end;

for i=1:m
for j=1:n

end

Y. Use numerical approximation
EL=zeros(size(Ke));
EL(i,j)=1;
deltaKe_ij=EL*1e-5;
deltaw=null(Gamma*(-(A-B*(Ke+KOe+deltaKe_ij))))-w;
gradw=deltaw/1e-5;
dinv_dKe_ij=-inv(w'*P2*W)*(gradw'*P2*w+w'*P2*gradw)*inv(w'*P2*w);
dSC~dKe_ij=(Gamma*gradw)*inv(w'*P2*W)*(Gamma*w)'+ ...

(Gamma*W)*dinv_dKe_ij*(Gamma*w)'+ ...
(Gamma*W)*inv(w'*P2*w)*(Gamma*gradw)';

dSC_dKe=[dSC_dKe; dSC_dKe_ij];

end
dSC_dX=[dSC_dP;dSC_dKv;dSC_dKe];
dg_dX=[dg_dX dSC_dX];

Y. Control constraints
if control_const==1

Y. Recoverable control
CC=(1/UMAX-2)*((Kv+KOv)*inv(P2)*(Kv+KOv)')-1;
g=[g;CC];

dCC_dP=[];
for i=1:n

for j=i:n
EL=zeros(size(P2));
EL(i,j)=1;EL(j,i)=1;
dCC_dP_ij=(1/UMAX-2)*((Kv+KOv)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))*···

(Kv+KOv)');
dCC_dP=[dCC_dP; dCC_dP_ij];

end
end
dCC_dKv= [] ;
for i=1:m

for j=1:n
EL=zeros(size(Kv));
EL(i,j)=1;
dCC_dKv_ij=(1/UMAX-2)*((EL)*inv(P2)*(Kv+KOv)'+(Kv+KOv)*inv(P2)*(EL)');
dCC_dKv=[dCC_dKv; dCC_dKv_ij];

end
end
dCC_dKe=zeros(pg,1);
dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe];
dg_dX=[dg_dX dCC_dX];

Y. Reachable control
CC=(1/UMAX-2)*((Ke+KOe)*inv(P2)*(Ke+KOe)')-1;
g=[g;CC];

dCC_dP=[];

227

end

for i=1:n
for j=i:n

end

EL=zeros(size(P2));
EL(i ,j)=1 ;EL(j, i)=1;
dCC_dP_ij=(1/UMAX-2)*((Ke+KOe)*(-inv(P2)*(EL'*P+P*EL)*inv(P2))* ...

(Ke+KOe)');
dCC_dP=[dCC_dP; dCC_dP_ij];

end
dCC_dKv=zeros(pg,1);
dCC_dKe=[];
for i=1 :m

end

for j=1:n

end

EL=zeros(size(Ke));
EL(i,j)=1;
dCC_dKe_ij=(1/UMAX-2)*((EL)*inv(P2)*(Ke+KOe)'+(Ke+KOe)*inv(P2)*(EL)');
dCC_dKe=[dCC_dKe; dCC_dKe_ij];

dCC_dX=[dCC_dP; dCC_dKv; dCC_dKe];
dg_dX=[dg_dX dCC_dX];

% ----------------------- END OF FILE: CONTROL_DFG.M -----------------------

228

G.3.4 . Cost Function and Constraints for Finding u
function [f,g,U]=control_u_fg(xO,KOv,KOe,GAMMA,X,n,m);
% CONTROL_U_FG is the cost function and constraint routine for use with
% overlapping controllable ellipsoids to find maximal control on restricted
% state-space.

% SYSTEM SIZE DEFINITION
[c]=size(GAMMA,1);

flag=1; % Defines as controlable subspace

% PARAMETER ASSIGNMENTS
[P,Kv ,Ke] =x2pk(X,n,m,flag);
P2=P*P;

% OBJECTIVE FUNCTION (Minimization)
f=-[xO'*(Kv+KOv)'*(Kv+KOv)*xO;xO'*(Ke+KOe)'*(Ke+KOe)*xO];
[f,f_index]=min(f);

smallest_index=zeros(2,1);
smallest_index(f_index(1))=1;

U=abs(-smallest_index'*[Kv+KOv;Ke+KOe]*xO);

% CONSTRAINTS (Must be of form<= 0)
g=[]; % clear array
constraints=[];% constraints assignments (below) don't work with older Matlab

% Ellipsoid constraint
EC=x0'*P2*x0-1; % Write as negative definite form
g=[g;EC];
constraints=char(constraints,'Ellipsoid Constraint');

% State constraints
for i=1:c

for j=1:2
SC=((-1-j)*GAMMA(i, :))*x0-1; % Consider both plus/minus GAMMA
g=[g;SC];
constraints=char(constraints,['State Constraint 'num2str(i)]);

end
end;

% --------------------- END OF FILE: CONTROL_U_FG.M ---------------------

229

G.3.5 Derivatives of Cost Function and Constraints for Finding ii

function [df_dxO,dg_dxO]=control_u:...dfg(xO,KOv,KOe,GAMMA,X,n,m);
Y. CONTROL_U_DFG is the derivative cost function and constraint routine for
Y. use with overlapping controllable ellipsoids to find maximal control
Y. on restricted state-space.

Y. SYSTEM SIZE DEFINITION
c=size(GAMMA,1);
flag=1;

Y. PARAMETER ASSIGNMENTS
[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P•P;

Y. OBJECTIVE FUNCTION (Minimization)
f=-[xO'•(Kv+KOv)'•(Kv+KOv)•xO;xO'*(Ke+KOe)'*(Ke+KOe)•xO];
[f;f_index]=min(f);

smallest_index=zeros(2,1);
smallest_index(f_index(1))=1;

df_dx0=~[2•(Kv+KOv)'•(Kv+KOv)•xO 2•(Ke+KOe)'•(Ke+KOe)•xO]•smallest_index;

Y. ====. ===

Y. CONSTRAINTS (Must be of form<= 0)
dg_dxO=[]; Y. clear constraint derivative array

%·Ellipsoid constraint
EC=xO'•P2•x0-1; Y. Write as negative definite form
dEC_dx0=2•P2•xO;
dg_dxO=[dg_dxO dEC_dxO];

Y. State constraints
for i=1:c

for j=1:2
dSC_dx0=(-1~j)•GAMMA(i,:)'; Y. Consider both plus/minus GAMMA
dg_dxO=[dg_dxO dSC_dxO];

end
end

Y. --------------------- END OF FILE: CONTROL_U_DFG.M ---------------------

230

G.3.6 Plotting Routine

function [U,P,Kv,Ke]=control_p(X,A,B,KOv,KOe,GAMMA,plot_pts);
Y. CONTROL_P is the trajectory plotting routine for use with CONTROL

flag=l;

Y. Plotting options
N=max(floor((plot_pts/20)-2),5); Y. plot trajectory from every Nth data

Y. point on the semi-ellipse with a
Y. maximum of 20 pts

if nargin<4
error('Not enough input arguments.')

end

Y. Message to screen
disp(' ')
disp('+++')
disp('Plotting trajectories')
disp('+++')
disp(' ')

Y. Parameter Assignments (extract P,K's from X)
[n,m]=size(B);
p=max(size(X));

[P,Kv,Ke]=x2pk(X,n,m,flag);
P2=P•P;

Kv=Kv+KOv; Y. Define composite gains
Ke=Ke+KOe;

if n==2 Y, 2-D ELLIPSOID
Y. Compute ellipsoid boundary
[x1,x2]=semiellipse(P2,GAMMA, [] ,plot_pts);

Y. Compute corresponding control effort.
ue=Kv•[xl;x2];

Y. Compute maximum control effort on boundary
U=max(ue);

Y. Pl.ot boundary for z:ecoverable trajectories
subplot(121)

. plot (xl, x2, 'k') ; grid on; axis square; hold on

Y. Compute reaching and recovering state-space descriptions
sysv=ss(A-B•Kv,B,eye(n),zeros(n,m));

Y. Plot trajectories for every Nth point on the ellipsoid boundary
for i=l: ceil(sqrt(N)) :max(size(xl));

231

[y,t,x]=initial(sysv,[x1(i),x2(i)],[0: .01:10]);
plot(x(:,1),x(:,2),'r')

end

xlabel ('x1') , ylabel ('x2')
title('Recovering Trajectories')

Y. Plot boundary for reachable trajectories
subplot(122)
plot (x1, x2, 'k') ; grid on; axis square; hold on

Y. Compute reaching and recovering state-space descriptions
. syse=ss(-A+B•Ke,B,eye(n),zeros(n,m));

Y. Plot trajectories for every Nth point on the ellipsoid boundary
for i=1:ceil(sqrt(N)):max(size(x1));

[y, t ,x] =initial(syse, [x1 (i) ,x2(i)], [O: .01: 10]);
plot(x(: ,1) ,x(: ,2), 'b')

end

xlabel('x1'),ylabel('x2')
title('Reaching Trajectories')

elseif n==3 Y. 3-.D ELLIPSOID
Y. Compute ellipsoid boundary
[x1,x2,x3]=semiellipse(P2,GAMMA,[],plot~pts);

Y. Compute corresponding control effort
for i=1:size(x1,1)

for j=1:size(x1,2)
uv(i,j)=Kv•[x1(i,j);x2(i,j);x3(i,j)];
ue(i,j)=Ke•[x1(i,j);x2(i,j);x3(i,j)];

end
end

Y. Compute maximum control effort on boundary
U=max(max([abs(uv);abs(ue)]));

Y.·Plot boundary vs. control
subplot (121)
surf(x1,x2,x3,uv/U);grid on;axis square;hold on
subplot(122)
surf(x1,x2,x3,ue/U);grid on;axis square;hold on

Y. Compute reaching and recovering state-space descriptions
sysv=ss(A-B•Kv,B,eye(n),zeros(n,m));
syse=ss(-A+B•Ke,B,eye(n),zeros(n,m));

Y. Plot trajectories for every Nth point on the ellipsoid boundary
subplot(121)
hold on
for i=1:N:size(x1,1);

for j=1:N:size(x1,2)
[y,t,x]=initial(sysv,[x1(i,j),x2(i,j),x3(i,j)],[0:.01:10]);
plot3(x(:,1),x(:,2),x(:,3),'r')

232

end
end
drawnow
grid on
colormap('copper')
lighting phong

% light('Position',[5 -5 2])
light('Position',[0 0 5])
h=findobj('Type','surface');
set (h, 'FaceLighting' , 'phong' , ...

'FaceColor','interp', .. .
'EdgeColor',[.4 .4 .4], .. .
'BackFaceLighting','reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')
title('Recovering Trajectories')

subplot(122)
hold on
for i=1:N:size(x1i1);

for j=l:N:size(x1,2)

end

[y, t ,x] =initial(syse, [x1(i ,j) ,x2(i, j) ,x3(i ,j)] , [O: . 01: 10]);
plot3(x(:,1),x(:,2),x(:,3),'b')

end

drawnow
grid on
colormap('copper')
lighting phong

% light('Position',[5 -5 2])
light('Position',[0 0 5])
h=findobj('Type','surface');
set(h,'FaceLighting','phong', ...

end

'FaceColor','interp', .. .
'EdgeColor',[.4 .4 .4], .. .
'BackFaceLighting','reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')
title('Reaching Trajectories')

% ----------------------- END OF FILE: CONTROL_P.M -----------------------

233

G .4 Miscellaneous Files

G.4.1 Plotting Point Generator for Semi-Ellipsoidal Set

function [xx,yy,zz] = semiellipse(P,GAMMA,XO,n)
Y. SEMIELLIPSE Generates the semi-ellipsoidal set.
Y. [X,Y,Z] = SEMIELLIPSE(P,GAMMA,XO,n) generates the unit
Y. ellipsoid

Y. (x-XO)'*P*(x-X0)=1
Y.
Y. then scales these values so that they fit within the
Y. linear constraint
Y.
Y. GAMMA*x<=1
Y.
Y. For P matrix (3x3), SEMIELLIPSE generates three (n+1)x(n+1)
Y. ma tr.ices so that SURF (X, Y, Z) produces the 3-D set,
Y. For P matrix (2x2), SEMIELLIPSE generates two (n+1)x(1)
Y. vectors so that PLOT(X,Y) produces the 2-D set.
Y.
Y.. The arguments XO and n are optional. Default values are
Y. the origin for XO and 40 points for n.
Y.
Y,. SEMIELLIPSE(P,XO,n) without any return variables graphs the
Y. ellipse using SURFACE/PLOT.

Y. Original code: SPHERE.M
Y. Clay M. Thompson 4-24-91, CBM 8-21-92.
Y. Copyright (c) 1984-98 by The MathWorks, Inc.
Y. $Revision: 5.3 $ $Date: 1997/11/21 23:46:48 $
Y.
Y. Modified code: SEMIELLIPSE.M
Y. Brian D. O'Dell 4-19-98

if nargin == 0, error('Must define ellipsoid matrix, P.'); end

Y, CHECK VALIDITY OF P
if size(P,1)-=size(P,2)

· error ('P must be square. ')
end
if min(eig(P))<=O

error('P must be positive definite.')
end

Y. COMPUTE NUMBER OF STATES
states=size(P,1);
if (states-=2)&(states-=3)

.error('P must be a 2x2 or 3x3 matrix.')
end

Y, CHECK SIZE OF GAMMA
if size(P,1)-=size(GAMMA,2)

error('P and GAMMA must have same number of columns (states).')

234

end

. % CHECK FOR OPTIONAL ARGUMENTS
if nargin==2

n=40;
end

if states==2 % 2-D ELLIPSE
% -pi<= theta<= pi.is a row vector

theta= (-n:2:n)/n*pi;

sintheta = sin(theta); sintheta(l) = O; sintheta(n+l) = O;

xO = cos(theta);
yo= sintheta;

% Define points for a unit circle

for i=l:(n+l) % Loop through the data points
temp=[xO(i);yO(i)]; % Create a vector for the data point
alpha=sqrt(temp'*P*temp); % Compute the scaling factor for unit ellipse
x(i)=xO(i)/alpha; % Scale the data points
y(i)=yO(i)/alpha;
overlap_scale=max([l;abs(GAMMA*[x(i);y(i)])]);
x(i)=x(i)/overlap_scale;
y(i)=y(i)/overlap_scale;

end

if nargout == 0
plot(x,y)
xlabel('x1'),ylabel('x2')

else
xx= x; yy = y;

end

else% 3-D ELLIPSE
% If plotting, display full ellipse; for trajectories, generate quadrant
if nargout==O

% -pi<= theta<= pi is a row vector.
% -pi/2 <=phi<= pi/2 is a column vector.

theta= (-n:2:n)/n*pi;
phi= (-n:2:n)'/n*pi/2;
cosphi = cos(phi); cosphi(l) = O; cosphi(n+l) = O;
sintheta = sin(theta); sintheta(l) = O; sintheta(n+l) = O;

else
% -pi/2 <=theta<= pi/2 .is a row vector.
% -pi/2 <=phi<= 0 is a column vector.

theta= (-n:2:n)/n*pi/2;
phi= (-2*n:2:0)'/(2*n)*pi/2;
cosphi = cos(phi);
sintheta = sin(theta);

end

235

end

xO = cosphi*cos(theta);
yO = cosphi*sintheta;

% Define points for a unit sphere

zO = sin(phi)*ones(1,n+1);

for i=1:max(size(theta)) % Loop through the data points
for j=1:max(size(phi))

temp=[xO(i,j);yO(i,j);zO(i,j)]; % Create a vector for the data
alpha=sqrt(temp'*P*temp);
x(i,j)=xO(i,j)/alpha;
y(i,j)=yO(i,j)/alpha;

% Scaling factor for unit ellipse
% Scale data points

z(i,j)=zO(i,j)/alpha;
overlap_scale=max([1;abs(GAMMA*[X(i,j);y(i,j);z(i,j)])]);
x(i,j)=x(i,j)/overlap_scale;
y(i,j)=y(i,j)/overlap_scale;
z(i,j)=z(i,j)/overlap_scale;

end
end

if nargout == 0 % Plot if no output
disp(' ')
disp('+++')
disp('Plotting semi-ellipsoidal set')
disp('+++')
disp(' ')

surf(x,y,z)
grid on
colormap('copper')
lighting phong
light('Position',[5 -5 2])

. h=findobj ('Type', 'surface');
set (h, 'FaceLighting', 'phong', ...

'FaceColor','interp', .. .
'EdgeColor',[.4 .4 .4], .. .
'BackFaceLighting','reverselit', ...
'AmbientStrength',1, ...
'DiffuseStrength',1);

shading interp
xlabel('x1'),ylabel('x2'),zlabel('x3')

else
xx= x; yy = y; zz = z;

end

% ---------------------- END OF FILE: SEMIELLIPSE.M ---------------------

236

G.4.2 Search Parameter /Matrix Parameter Mapping Routines

Ellipsoid Matrix and Control Gains to Search Vector

function [X]=pk2x(P,K1,K2,n,m)
% PK2X assigns elements of the ellipse matrix, P, and the
% state-feedback matrix, K, to elements of the search vector, X.
% If 5 arguments are provided, it assumes two state-feedback
% matrices are provided.

if nargin==4
m=n;
n=K2;

X=[];
xindex=O;
for i=1:n

for j=i:n
xindex=xindex+1;
X(xindex,1)=P(i,j);

end
end
for i=1 :m

for j=1:n
xindex=xindex+1;
X(xindex,1)=K1(i,j);

end
end

elseif nargin==5
X=[];
xindex=O;
for i=1:n

for j=i:n
xindex=xindex+1;
X(xindex,1)=P(i,j);

end
end
for i=1:m

end

for j=1:n
xindex=xindex+1;
X(xindex,1)=K1(i,j);

end

for i=1:m

end
end

for j=1 :n
xindex=xindex+1;
X(xindex,1)=K2(i,j);

end

% ------------------------- END OF FILE· PK2X.M ========================

237

Search Vector to Ellipsoid Matrix and Control Gains

function [P,K1,K2]=x2pk(X,n,m,flag)
% X2PK assigns elements of the search vector, X, to elements of the ellipse
% matrix, P, and to the state-feedback gain(s), K1 (and K2, if flag=l).

if nargin==3
flag=O;

end

P=[];
xindex=O;
for i=1:n

for j=i:n
xindex=xindex+l;
P(i,j)=X(xindex,1);
P(j,i)=X(xindex,1);

end
end
K1=[];
for i=1:m

for j=1:n
xindex=xindex+1;
K1(i,j)=X(xindex,1);

end
end
if flag==1

K2=[];
for i=1:m

for j=1:n
xindex=xindex+1;
K2(i,j)=X(xindex,1);

·end
end

else
K2=[];

end

% -----------~----------~-- END OF FILE: X2PK.M_------------------------

238

VITA

Brian Dwayne O'Dell

Candidate for the Degree of

Doctor of Philosophy

Thesis: ELLIPSOIDAL AND SEMI-ELLIPSOIDAL CONTROLLED INVARIANT SETS FOR
CONSTRAINED LINEAR SYSTEMS

Major Field: Mechanical Engineering

Biographical:

Personal: Born in Fort Smith, Arkansas, on August 30, 1971, the son of Danny and Melanie
O'Dell.

Education: Graduated from Roland High School, Roland, Oklahoma, in May 1989; received
Bachelor of Science degree in Mechanical Engineering and a Minor in Mathematics
from Oklahoma State University, Stillwater, Oklahoma, in May 1993; received Master
of Science degree in Mechanical Engineering from Oklahoma State University, Stillwater,
Oklahoma, in December 1994. Completed the requirements for the Doctor of Philosophy
degree with a major in Mechanical Engineering at Oklahoma State University in July,
1999.

Experience: Raised on a farm near Vian, Oklahoma; employed as an engineering intern,
· AES Shady Point, Inc., Panama, Oklahoma, summer 1991; employed as a teaching as

sistant for undergraduate measurements and instrumentation course, Oklahoma State
University, Department of Mechanical & Aerospace Engineering, Fall 1994-Fall 1995 ·
semesters; employed as a teaching assistant for graduate instrumentation course, Okla
homa State University, Department of Mechanical & Aerospace Engineering, Summer
1995 and Summer 1996 semesters; employed as lecturer for undergraduate numerical
methods course, Oklahoma State University, Department of Mechanical & Aerospace
Engineering, Spring 1996 semester; employed as a research assistant, Oklahoma State
University, Department of Mechanical & Aerospace Engineering, Advanced Controls
Laboratory, September 1996-present; employed as a system administrator, Oklahoma
State University, Department of Mechanical & Aerospace Engineering, Advanced Con
trols Laboratory and Bioinformatics Laboratory, April 1999-present.

Professional Memberships: American Society of Mechanical Engineers.

