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CHAPTER! 

INTRODUCTION 

All the phenomena observed in nature can be attributed to the effects of just four 

fundamental forces. These are the familiar forces of gravity and electromagnetism, and 

the not-so-familiar weak and strong forces. The fact that the phenomena occuring in the 

everyday world can be attributed to just two (gravity and electromagnetism) is true 

because only these forces have significant effects at observable ranges. The effects of the 

weak and the strong forces are confined to within, at most, 10-15 m of their sources. 

Among these four interactions, the electromagnetic interaction, which is described 

by quantum electrodynamics (QED), is the most understood theory and the comparison 

between theory and experiment of the anomalous magneti~ moment (anomaly) of the 

electron is one of the most important tests of QED. The "modern" era of quantum 

electrodynamics dates from the late 1940's, when the anomalous magnetic moment of 

the electron [1] and the Lamb shift [2] were first discovered experimentally. The 

theoretical calculation of the anomalous magnetic moment of electron was first given by 

Schwinger [3] and since then, both experiment and theory of this field have seen a rapid 

development. The interplay between theory and experiment has stimulated the evolution 

of quantum electrodynamics to its present precise form. 

The remarkable success of QED lies on its most characteristic feature, 

renormalizability. Because of this, neither the mass nor the electric charge of a particle 

is calculable from the theory itself The most simple quantity which can be computed is 

the anomalous magnetic moment of a particle. From Dirac theory we know that any 

Dirac particle has an intrinsic magnetic moment given by 
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with the Lande g factor 

_ ge_ ge_ 
µ = ---s = ---a 

2mc 4mc 

g=2. 

However when the quantum corrections are taken into account, there will be a small 

deviation from this prediction. In quantum field theory, an electron ( or other charged 

particles) is not just an electron--it can emit a photon, or it can emit a photon that 

subsequently annihilates into an electron-positron pair, and so on (see Fig. 1). · The 

emited photon carries off some of the mass of the electron while leaving its charge 

unaltered. This can then affect the magnetic moment generated by the electron during 

interactions. The excess, a, is called the anomalous magnetic moment of the particle. 

g-2 
a=--. 

2 

Then we can write 

- ·ge (1 )-µ= --- +as. 
2mc 

In order to calculate a, one needs to study the magnetic property of the particle 

by examining its interaction with a static electromagnetic field A (x). In QED, a 
µ 

process can be represented by a set of Feynman diagrams. The vertex of Feynman 

diagram represents the interaction. Generally the amplitude of interaction is given by 

where J: (x) is the transition current of the particle between the initial and the final 

states. 

In the lowest order, as shown in Fig. 2, the amplitude 

2 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Figure 1. Quantum modifications to a charged particle 
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Figure 2. Lowest-order Feynman diagram describing scattering 
of an electron by an external magnetic field 
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where 

A (-) = 1 fd3xA (x)e-iq·x 
µ q (2n")3 µ 

The current can be decomposed into two parts (Golden decomposition): 

The first term corresponds to electric charge interaction and the second term represents 

the interaction due to the magnetic moment. That is, an electron interacts with an 

external electromagnetic field via both its charge and its magnetic moment. 

For higher order, as shown in Fig. 3, we must consider the interactions with the 

virtual photon field surrounding the particle. The vertex G , in this case, will be very 

complicated. The way to handle it is to make the following replacement: 

then the current becomes 

5 

(7) 

(9) 

(10) 

Using the Golden decomposition again, we obtain 

It is clear that the first term is the charge term if we set F; ( 0) = 1 and the second term is 

the magnetic moment term which corresponds to the intrinsic magnetic moment 

µ = - ge (I+F2 (O))s. 
2mc 

(12) 



q 

X 

Figure 3. Schematic diagram representing an infinite set of F eynrnan 
diagrams contributing to a particle anomaly 
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Therefore the anomalous magnetic moment is 

In QED, the parameter characterizing each order of perturbation is the fine 

structure constant a = e 2 / 41r. The latest value determined from the quantized Hall 

effect [ 4] is 

a-1 = 137.0359979(32). 
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(13) 

(14) 

The smallness of a is the reason why a perturbative approach has been very successful 

for QED. As a result, we can express the anomaly in terms of a power series in ( a/ 1r ). 

Generally the anomalous magnetic moment of a lepton ( e, µ, or r ), which is a 

dimensionless quantity, can be grouped into two parts: mass-independent and mass

dependent parts. The latter can be further divided into two parts, one involving two 

leptons and the other involving all three leptons. That is, for a lepton with mass m1, we 

can express its anomalous magnetic moment as [5,6] 

where m2 and m3 are the masses of the other two leptons. A1 is the mass-independent 

part which is the same for all three leptons. A2 (m1 / m2 ) and A2 ( m1 / m3 ) are the mass

dependent part involving two kinds of leptons and A3 ( m1 / m2 , m1 / m3 ) is the mass

dependent part involving all three leptons. 

In Eq. ( 15), all of the terms can be expanded as a series in ( a/ 1r): 

_ c2) a c4) a c6) a _ [ J [ ]2 [ ]3 Ak -Ak 1r +Ak 1r +Ak 1r + ... (k- l,2,3). 

In this way, the anomalous magnetic moment of a lepton can be written as 

a= A,'''[:]+{ A,'''+ At'[::]+ Aj''[ :: ]}[ :J +{A,'''+ Ai'' [ :: ] 

(15) 

(16) 



We note that, in the second order, we cannot have mass-dependent terms and, in the 

fourth order, we cannot have the term which involves all three leptons. 

In our calculations through this paper, we will use the lepton mass values , 

mµ = 105.658387(34) Mev, me= 0.51099906(15) Mev, and mr = 1776.9(5) Mev. 

We will also use the more accurate value [7] mµ/me = 206. 768262(30) (0.15 ppm). 

8 
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CHAPTER II 

. ANOMALOUS MAGNETIC MOMENT OF THE ELECTRON 

The anomalous magnetic moment of the electron is the simplest one among the 

three charged leptons. It involves only pure QED procesS'es and hadronic and weak 

interactions have no significant contributions to it due to the smallness of its mass. The 

latest experimantal values for the electron and positron anomalies are 

a~ = 1159652188.4( 4.3) X 10-12 , 
e (18) 

a';1 = 1159652187.9(4.3) X 10-12 
e 

obtained by the University of Washington group [8]. 

Theoretically the anomalous magnetic moment of the electron has been calculated 

analytically or numerically up to the eighth-order. As we stated in the introduction that 

the magnetic moment anomaly can be written as a power series in a/ 1r 

(19) 

where the coefficients C1 , C2 , ••• are finite calculable quantities. 

The lowest-order contribution C1 can be calculated from the Feynman diagram of 

Fig. 4. The scattering amplitude corresponding to this diagram is given by the Feynman

Dyson rules: 

-ie 3 fd 4k 1 _( ') .l. 1 .,µ 1 ( )Ae(-) 
(2 )4 -k2 U p r , l f . 1L r AU p µ q , 

1r JJ + -m p+lf,-m 
(20) 

where JJ = r V p v· This integration gives 

C1 = _!_ or aC2) = _!!__ 
2 e 27i' 

C (21) 

9 



Figure 4. Lowest-order (second-order) vertex diagram contributing 
to the electron anomaly 
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which is known as the Schwinger term and was first obtained by Schwinger in 1948. 

The major contribution to the fourth order term C2 comes from the seven mass-

independent diagrams as shown in Fig. 5. This contribution was first calculated by 

Karplus and Kroll in 1949 [9] and revised later by Sommerfield and Petermann [l 0, 11]. 

The result is rather more complicated than the second order expression. Compared to 

the rational 1/2, the transcendentals r?, r? log2 and ((3) now appear. These represent 

special values of the dilog Lii(x) and the trilog Lilx). More precisely 

197 ;r2 1 3 
C =-+---r? ln(2)+-((3). 

2 144 12 2 4 
(22) 

There are also contributions coming from the mass-dependent diagrams due to the 

heavy leptonsµ and, as shown in Fig. 6. However, these contributions tum out to be 

very small at the level of approximation needed and can be left out. 

Considering the increase in difficulty between the second and the fourth order it is 

not surprising that the evaluation of the sixth order contribution is even more difficult. 

First of all the number of mass-independent graphs is now 72 as shown in Fig. 7 and the 

complexity of the graphs is such that an analytic evaluation in closed form is extremely 

difficult for almost all diagrams. The sixth order contribution was first computed 

numerically by three different groups [12, 13, 14, 15] in 1973-1974. But the estimated 

error of these numerical integrations exceeded the estimated experimental error of the 

best measurements. To permit a better test of quantum electrodynamics, it was 

necessary to improve the numerical accuracy of the calculations. This was achived 

primarily over a 10 year period 1972-82, by computing many of the graphs analytically. 

Some analytic work is still continuing. 

Various analytic methods have been developed and successfully applied to the sixth 

order contribution, such as hyperspherical integrations [ 16, 17, 18], Schwinger mass 



Figure 5. Mass-independent fourth-order vertex diagrams contributing 
to the electron anomaly 
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13 

e e 

Figure 6. Mass-dependent fourth-order vertex diagrams contributing 
to the electron anomaly · 
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Figure 7. Mass-independent sixth-order diagrams contributing to a lepton anomaly 
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operator [19,20] and dispersion relations [21,22,23,24,25,26,27]. The best value of the 

sixth order contribution now available is [28] 

C3 = 1.17611(42). (23) 

The eighth order coefficient C4 has also been evaluated by Kinoshita and Lindquist 

[29,30,31,32]. It involves 891 Feynman diagrams and is much more difficult to 

calculate. The typical diagrams are shown in Fig. 8. The latest value is 

C4 = -1.434(138). (24) 

The tenth order or higher have not been evaluated thus far except for some cases 

involving multiple insertion of simple vacuum-polarization-loops [33]. An estimate of 

terms of very large order has been attempted based on the steepest descent method [34]. 

However, further study is needed to see whether this gives a good asymptotic estimate 

or not. 

To compare with the experimental data, it is also necessary to include the vacuum

polarization contributions of muon, tau and hadron loops as well as the contribution 

from the electroweak effect. The results are given by [35] 

a:uon = 2.804 X 10-12 , . 

a:U = 0.010 X 10-12 , 

a;m'n = 1.6(2) X 10-12 , 

a;w = 0.05 X 10-12 • 

Collecting all the terms from Eqs. (20), (21), (22), (23), and (24), we obtain the 

theoretical value 

a:eory = 1159652140(5.3)(4.1)(27.l) X 10-12 , 

where the first and second uncertainties come from the numerical uncertainties in the 

sixth order and the eighth order, respectively, while the third one reflects the 

uncertainty in a . 

(25) 

(26) 



e 

e 

Figure 8. Examples of mass-independent eighth-order diagrams contributing 
to the electron anomaly 
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CHAPTER III 

ANOMALOUS MAGNETIC MOMENT OF THE MUON 

Introduction 

Like in the electron case, the comparison between theory and experiment of the 

muon anomalous magnetic moment also provides an important test of QED. The most 

accurate measurements now available come from the CERN g-2 experiment [36] in 

which it was found that 

ae~t = 1165936(12) x 10-9 (10 ppm), 
µ 

ae~t = 1165910(11) X 10-9 (10 ppm), 
µ 

and the combined result is 

a;:1'1 = 1165923(8.5) x 10-9 (7 ppm). 

(27) 

(28) 

(29) 

A new g-2 experiment is planned at Brookhaven National Laboratory (BNL), and an 

improvement in the accuracy by a factor of about 20 is expected. In order to properly 

compare experiment and theory one must correspondingly improve the accuracy of the 

theoretical prediction. 

In an heroic feat, Kinoshita, Nizic, Okamoto, and Marciano have calculated the 

muon anomaly [5,6] ,aµ, up to the eighth order (the tenth order was also estimated). 

All of the multidimensional integrals which arise in these calculations were computed 

numerically. Because of the complexity and the importance of these calculations, they 

should be independently checked by another group. 

18 



In this chapter,_ we check Kinoshita' s results for aµ in the fourth and sixth order, 

analytically, by making use of the expansions of a;4> and a;6> for large mass ratios 

mµ/me >> 1, m,)me >> 1, and mr/mµ >> 1. We find some small difference with 

Kinoshita' s intermediate results in some cases; however, our final result for aµ is 

consistent with his. 

19 

In order to get the complete result for aµ , one must also include the· contributions 

from hadronic and weak effects. However, unlike the QED contributions which can be 

calculated very accurately, the hadronic contribution is not known very precisely. 

One of the goals of the new g-2 experiment at BNL is to measure the weak 

contribution with some precision. This can be done only if the QED and hadronic 

contributions are known accurately. Then one would have a very good test of the 

standard model and possible extensions, such as supersymmetry, composite model, etc. 

What we propose to do here is to improve and check the QED contributions in fourth 

and sixth orders. 

Since we already know ae very accurately, the best way to calculate aµ is to 

calculate the difference (aµ -ae), from which we can easily find 

By applying Eq. (17) to the electron and muon, we have 

a, -a, -{A;''[~ ]+Ai''[~ ]-Ai''[ :J Ai"[::]}[ :r 
+{A;~[~ ]+A)~[~ ]+A;~[~,~ l-A;~[ ::]-Al~[::] 
-A;~[:;,::]}[:]' 

- ( )(4) ( )(6) - aµ - ae + aµ - ae + .... 

(30) 

(31) 
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The Fourth-Order Contribution to (aµ -aJ 

From Eq. (31) we see that the lowest-order contribution to (aµ - a e) is the fourth 

order contribution 

There are a total of nine diagrams contributing to a;4>. Among these, there are 

seven mass-independent diagrams as shown in Fig. 9 and two mass-dependent diagrams 

as shown in Figs. lO(a) and lO(b). We have similar diagrams for a;4>. For the mass

dependent diagrams, we just exchange µ and e, as shown in Figs. 10( c) and 10( d). So 

there are only four diagrams (Fig. 10) contributing to (aµ - ae )<4>: two from a;4>, and 

two from a;4>. 

Generally for a one-loop insertion diagram as shown in Fig. 11, the contribution 

can be expressed as the following double integration [3 7] 

2 2 ( 1 2 

A~~ - ~ 3 [
M] 1 1 x (l-x)y l--y) 

2 m - [ [dy x2(1-y2 )+4A-2(1-x) ' 

;., = .!!!_ 
M' 

which has the following exact expression 

At>[M] = - 25 -lnlt + lt2 ( 4 + 3lnlt) +)., (1-5lt2 )[!::_ + lnltln 1 +)., 
m 36 2 4 1-lt 

(33) 

+1(-2-)-1(~)-21(lt)+2/(-lt)] (34) 
1-lt lt-1 

+A'[: -21n,1,Jn(i-,1,)+2ln 2 ,1,- j(A')], 

where f (x) denotes the Spence function [38] 



µ 

µ µ 

µ 

Figure 9. Mass-independent sixth-order vertex diagrams 
contributing to the muon anomaly 
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"C 

·················O········-

(a) (b) 

(c) (d) 

Figure 10. Mass-dependent fourth-order vertex diagrams contributing to the 
muon anomaly ((a),(b)) and the electron anomaly ((c),(d)) 
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Figure 11. General case of mass-dependent fourth-order vertex diagram 



24 

I" Injl-yj 
J(x)=- dy . 

0 y 
(35) 

Eq. (34) can be expressed more conveniently in terms of power series of mass ratio 

l = m/ M. We have three results corresponding to three cases of l. 

• For l = k < 1 we have 

c 4) [ M] 25 tr 1 · 2 5 -2 3 [ tr 44 14 2 ] 4 ~ - =--+-k--lnk+(3+4lnk)k --n k + -+---lnk+2ln k k 
m 36 4 3 4 3 9 3 

+~k6 lnk- 109 k 6 + f [ 2(n + 3) Ink- 8n3 + 44n2 + 48n + 9 ]k2n+4 • 

15 225 n=2 n(2n + I)(2n + 3) n2 (2n + 1) 2 (2n + 3) 2 

(36) 

• For l = 1/k > 1 we get 

Ac4>[M]=~+ k 4 lnk +-9-k4-~k6 + 4k6 lnk-f[ 8n3 +28n2 -45 ]k2n+2 
2 m 45 70 19600 99225 315 n=3 [(n + 3)(2n + 3)(2n + 5)]2 

+2k2 lnk f [ nk2n ] . 
n=3 (n + 3)(2n + 3)(2n +5) 

(37) 

• For l = 1 we obtain 

Ac4)[M] = 119 _!t._. 
2 m 36 3 

(38) 

The major contribution comes from the diagram in Fig. IO(a) which corresponds to 

l < 1 case. From Eq. (36) it easy to find that 

Aj'' [ ~ J = 1.09425828(5) . (39) 

The contribution from Figs. IO(b), IO(c), and IO(d) can be obtained from Eq. (37). 

For Fig. IO(b) we obtain 

Aj''[ ~ J = 7.807(5) X 10-s . (40) 

Our result for Fig. 10( c) is 



~•l[ ::] = 5.1978(5) X W-7 , 

and the contribution due to Fig. 10( d) is negligible: 

~''[ :: ]= 2 x!0-9 

25 

(41) 

(42) 

The accuracy in Eqs. (3 9), ( 40), ( 41 ), and ( 42) is limited only by the experimental 

accuracy of the measured masses of the charged leptons. When these values are 

determined more precisely, one can include more terms in the expansions in Eqs. (36) 

and (37), as needed. Finally we obtain the total fourth order contribution 

( «µ -aJ'l = J.09433583(7>[: r = 5904478.4(3) X 10-12 . (43) 

This differs somewhat with Kinoshita's result 

( «µ -a,)(') = J. 0943370[: r = 5904485 X 10-12 . 

The difference 

L\ = ours-Kinoshita's= -10(1) x 10-12 

is due to the fact that we have included more terms in the expansions in Eqs. (36) and 

(37). 

The Six:th-Order Contribution to (aµ -ae) 

(44) 

(45) 

In total, 122 diagrams contribute to a;6), including 72 mass-independent and 50 

mass-dependent diagrams. Again we consider just the mass-dependent diagrams because 

it is only these diagrams that contribute to aµ - a e. 



From the previous section we know that the sixth order contribution can be 

expressed as 

26 

(46) 

In the following, we will present the analytical and numerical result for each term 

in Eq. ( 46) and the corresponding diagrams. A?> (mµ /me) contains 6 light-by-light 

scattering diagrams with electron loops (as shown in Fig. 12)' and 18 vacuum

polarization diagrams with second and fourth order electron-loop insertions into a fourth 

order and a sixth order muon vertex, respectively, as shown in Fig. 13. 

The light-by-light scattering contribution to A?) (mµ /me) is known numerically 

[39]: 

A;''[~ ,rr] = 20.9471(20). 

There is also a new result [40]: 

A;" [ ~ , rr J = 20. 9469(18). 

It can be seen that there is beautiful agreement between these two results. 

(47) 

(48) 

The result in Eg. (48) was obtained using VEGAS on our IBM 3090-200S. It 

required approximately 1500 hours of CPU time and 5xl010 function calls. (The integrand 

used is that of Al dins et al. [ 41] . } This result invalidates an earlier result of Samuel and 

Chlouber [ 42]. 
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e 

µ > > 

Figure 12. Sixth-order light-by-light scattering diagram contributing 
to a<6) - a<6) · 

µ e 



µ 

µ 
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µ µ 

(a) 

µ µ 

(b) (c) (d) 

Figure 13. Vacuum-polarization diagrams contri~uting to a~6) - a;6). (a) second
order-electron-loop-insertion into a fourth-order muon vertex. 
(b) Proper fourth-order-electron-loop-insertion into a second
order-muon vertex. (c) Double-bubble second-order-electron
loop-insertion into a second-order muon vertex. ( d) Mixed-bubble 
second-order-loop-insertion into a second-order muon vertex. 



29 

The vacuum-polarization contributions are calculated separately for each subgroup 

corresponding to Fig.13(a), 13(b), 13(c), and 13(d). The contribution from Fig. 13(a) is 

given by [43] 

here _!_ Im n~2) ( t) is the second-order spectral function 
Jr 

with 

X =~!- 4m; t , 

and B(t -4m;) is the step function 

t,Xw) ={~ forw ~ 0 

forw <0. 

t 
For b =-2 ~4 we have 

mµ 

(4) 31 17 [ 1 1 7 2 1 J [ 17 49 2 7 3 J L (t)=--+-b+ ---b+-b +-.- ·lnb+ -b--b +-b 
µ 16 24 4 12 16 b-4 12 24 16 

lny [ 5 1 1 2 J 5 2 2 [ 1 17 2 
X + .---b--b ((2)+-b ln b+ --b+-b 

.Jb(b-4) 4 8 3 96 2 24 

_.!_b 3 ]· lnb·lny +[2..+~b-}_b2 +-2-]·ln2 
48 .Jb(b-4) 24 16 32 b-4 y 

[ 17 2 7 3 ] Dp(b) [ b 19 2 b3 4 ] 
+ - 2b+6b -12b . .Jb(b-4) + -l+ 6 + 12b -2- b-4 

X Dm(b) +[_!_- 7 b+_!_b2]·T(b) 
.Jb(b-4) 2 6 2 

(49) 

(50) 

(51) 

(52) 

(53) 



with 

and 

Jb-~ 
y = Jb + .Jb - 4 ' 

D p ( b) = Li 2 (y) + In y · In ( 1 - y) - _!_ In 2 y - (( 2), 
4 

Dm (b) = Li2 (-y) + _!_ ln 2 y +_!_((2), 
4 2 

T(b) = -6Li3 (y)- 3Li3 (-y) + ln 2 y· ln(l- y) 

+ ~[In 2 y+6((2)]·In(l+y)+2[Li2 (-y)+2Li 2 (y)]·lny, 

where the functions Li 2 (y) and Li 3 (y) are the dilogarithm and trilogarithm defined 

through 

y dt 
Li2 (y) = -f-In(l- t), 

0 t 

After a very tedious calculation we get 

The contribution from Fig. I3(b) is given by [44] 

30 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 
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where 

1 c4) { [5 3 2 ( 1 1 2) 64x2 ] [11 11 2 -Imn* (t) = x ---x + --+-x -ln + -+-x 
7l" e 8 8 2 6 (1- x2 )3 16 24 

_.!_x4 +(.!.+.!.x2 _.!_x4)·ln (l+x)3 ]·ln l+x 
48 2 3 6 8x2 1- X 

(61) 

-[.!. + .!.x2 _ _!_x4 ]. [4<1>(-.!.=..:_) + 2<1>(.!.=..:_) + .!. n ]} 
2 3 6 l+x l+x 2 

xB(t-4m:) 

<l>(z)= fduln(l+u)' 
I U 

(62) 

and 

(63) 

is the second-order contribution from the exchange of a photon with squared mass t. The 

explicit form of K;2) (t) is the following [45]: 

• for O:::; t:::; 4m~, with u = t/4m~ 

K;2)(t)=[.!.-4u-4u(l-2u)ln(4u)-2(1-8u+8u2)~ u arccosFu], (64) 
2 1-u 

. 1-~1-4m~/t 
• for t ~ 4m~, with v = --'-:=== 

1+ J1-4m~/t 
1 

1 ln(l+v)-v+-v2 1 
KC2)(t)=-v2(2-v2)+(1+v)2(1+v2) 2 + +vv2lnv. (65) 

µ 2 v2 1-v 

The result turns out to be 

c6)[mµ b J 1 [mµ] 1 5 [ 13 _3 16 _2 A2 -,13( ) = -ln - +-((3)--+ --n --n ln2 
me 4 me 2 12 18 9 



The contribution due to Fig. 13(c) is given by [46] 

A?)[mµ ,13(c)] = j dtt Im~4) (t)K;2) (t), 
me 4m: • 

where K~2) (t) is given by Eq. (63) and 

Im~4) (t) = -2Re~2) (t) 

with 

1 _I2) ( [ 8 1 2 1 1 2 1 - X ] -Ren; t)= ---x +(---x )xln--, 
1r 9 3 2 6 l+x 

and the definition of xis given by Eq. (51). 

The final result is 

32 

(66) 

(67) 

(68) 

(69) 

(70) 
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For Fig. 13(d), the contribution is given by [43] 

(71) 

where 

c4) 35 8 [4 1 b 5 b2] I b [ 4 19 b 4 b2 5 b3 ] M (t)=-+-b+ --- -- · n + --+- +- --
µ 36 9 3 9 18 3 9 9 18 

lny [ 1 1 2 2) x + 1+-b--b -- ((2) 
.Jb(b-4) 3 6 b 

(72) 

+[.!.+.!.b-_!_b2 __ 1 ]·ln2 y+[16 _ 4b _ 4b2 +!t.._]x Dm(b) 
2 6 12 3b 3 3 3 3 .Jb(b-4)' 

and the definitions of band Dm (b) are the same as those in Eq. (53). 

The complicated calculation gives 

A?)[mµ ,13(d)]=[.!..!2_- 4 ,?-)1n[mµJ-~+ ,?- +[4,?- -~][me ]2 

me 27 9 · me 162 27 9 27 mµ 

+a[[ :J] (73) 

=0.100519(1)+0[[ :J], 
where 

11 4 2 -2 2 1 4 8 c =-1r --1( In 2--ln 2--a 
4 648 27 27 9 4 ' 

(74) 

(75) 

and 

((3) = f-;- = 1.202056903. 
n=1n 

(76) 
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Our errors are estimated by multiplying the next uncalculated term by ten. Our results in 

Eqs. (59), (66), (70) and (73) agree with the previously known results to O(me/mµ) 

given in Refs. [46,47,48,49], respectively. 

The presence of the (me/mµ) 2 ln 2 (mµ/mJ terms in Eqs. (66) and (70) are 

somewhat surprising. 

The total vacuum-polarization contribution in sixth order is 

Aj'' [ ~, vp J = I. 92045(5). 

After multiplying by ( a/ n)3, we obtain our result 

( a~6) - a~6) )( vp) = 24068. 5( 6) x 10-12 • 

(77) 

(78) 

These results in Eqs. (59), (66), (70), and (73) should be compared with Kinoshita's new 

results given in Table I [50]. His total sixth-order vacuum polarization result to be 

compared with Eq. (78) is 

(a~6) -a~6) )( vp,K) = 24069(6) x 10-12 • (79) 

The agreement is excellent! 

Adding Eqs. (47) and (77), we get the sixth order result 

Aj''[ ~ J = 22.8674(18). (80) 

Next, we consider the contribution from A?) (mµ /mr:). The corresponding 

diagrams can be obtained by replacing the electron in those graphs for A?) (mµ /me) by 

the • . However, the results cannot be simply obtained in this way, due to the difference 

in the masses of the electron and the tau. 

As in the case of At) (mµ /mJ , we again divide Ai6) (mµ /mr:) into two parts: 

light-by-light scattering and vacuum-polarization subgraphs. They are represented by 



Total 

TABLE I 

COMPARISON OF A?) (mµ/me, vp) WITH KINOSHITA'S 

RESULTS. SEE APPENDIX A-2 

Ours 

0 

295 5 

35 

10-12 



A?) (mµ /mr, rr) and A?) (mµ /mr, vp), respectively. We can estimate 

A?) (mµ/mr, rr) by using Aldins et al [51]. Our result is (Fig. 12 withe~ i') 

A?)[mµ 'rr] = 1.836 X 10-3• 
mr , 

As for A~6) ( mµ /m 1: , vp), we have analytical expressions for all the diagrams. 

These formulas were derived by Barbieri and Remiddi [ 43] in calculating the muon 

contribution to the electron anomaly and can be applied to our cases. The results 

corresponding to Fig. 14 and 15 are given by, respectively, 

A?> [mµ ,Fig. l 4] = _ 2 [mµ ]
2 
[- 2689 + !t_ + 23 ln mr] 

me 3 m1: 5400 15 90 mµ 

= -2.063 X 10-3 , 

A?)[mµ ,Fig. Is]= ~[mµ ]
2 = 0.296 x 10-3 • 

mr 486 mr 

Combining all the contributions inEqs.(81), (82), and (83), we obtain the total 

value for A?) (mµ/m1:): 

A;"[~ J = 6.9 X JO-s. 

We see that a large cancellation makes the total contribution from the r nearly 

negligible. 

Now we come to the term Aj6) (mµ /me , mµ /mr). There are two diagrams 

corresponding to this contribution, as shown in Fig. 16. Generally for a two-bubble 

diagram shown in Fig. 17, we have the expression 
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(81) 

(82) 

(83) 

(84) 

(85) 
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Figure 14. Second-order r-loop-insertion into a fourth-order muon vertex. 
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-00-
't' 't' 

(a) (b) 

Figure 15. Fourth-order -r-loop-insertion into a second-order muon vertex. 



Figure 16. Sixth-order mixed bubble vertex diagram contributing 
to the muon anomaly 
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m m1 m2 

Figure 17. General case of mass-dependent sixth-order vertex diagram 
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where 

(86) 

and 

(87) 

In principle, one can find an analytical expression for Ai,6)(m/m1 ,m/m2 ). But a numerical 

result is sufficient. We have 

(88) 

This result agrees with Kinoshita' s result to three significant figures. 

Other contributions to a~6) - a~6) come from the anomalous magnetic moment of 

the electron. That is, A?)(me/mµ), Ai6)(mJm1J and A?)(me/mµ ,me/m1J. The 

corresponding diagrams can be obtained by exchanging the electron and the muon in 

Fig.12, 13, 15, and 16 and by replacing the muon by the electron in Fig. 14. One can use 

the method used in calculating A?) (mµ/mJ, A?) (mµ/m 1J and Ai6) (mµ/me ,mµ/mr) 

to compute these contributions. However these terms are very small and can be 

neglected. 

Now we are in a position to get the total contribution in sixth order. Adding up 

Eqs. (80), (84), and (88) we have 

(a, - a,)''' = 22. 8677(18{: J'. (89) 
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The QED Contribution up to Tenth-Order 

In the previous two sections, we calculated the fourth order and sixth order 

contributions to (aµ -ae). The contribution in eighth order that dominated is the 

contribution of the class of diagrams obtained by inserting an electron bubble in a leg of 

Fig. 12. Our 1977 result [52] is 

a;8)(rr) = 117.4(5). 

This agrees with Kinoshita's recent result [5,6] 

a;8) (rr) = 116.8(1). 

By using Kinoshita' s total contributions for the eighth and tenth order, 

cs)_ a [ ]

4 

(aµ -aJ - 127.00( 41) 7i , 

(a. -a.)°0' = 570(140)[ :J, 
we can obtain the total QED contribution which is given by 

( a. - a,)""' = I. 09433583(7)[: r + 22. 8680(18>[: r + 127.00( 41)[: J 
+570(140)[: J 
= 6194812(27) X 10-12 . 

(90) 

(91) 

(92) 

(93) 

(94) 

Adding the anomalous magnetic moment ae, given by Eq. (26), to Eq. (94), and 

subtracting 

a~nic +a:eak = 1.6 X 10-12' 

we can find the pure QED contribution to the muon anomaly which is 

a;ED = 1165846950(28)(27) X 10-12 . 

(95) 

(96) 
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where the first error comes from the uncertainty in a. and the second one comes from the 

sixth, eighth and tenth order contributions. 

This should be compared to Kinoshita's value 

a<;ED (K) = 1165846961( 44)(27) x 10-12 , 

the first error is an estimate of the theoretical uncertainty and the second reflects the 

uncertainty in a. Thus the difference is 

a;ED -a;Eo (K) = (-7-1-2 + 1~ 3) x 10-12 

= -12 X 10-12 . 

(97) 

(98) 

This difference reflects the uncertainty coming from the uncalculated terms in our 

analytical calculations and the uncertainty in the numerical integrations in Kinoshita's 

results where the -7 comes from fourth-order, the -1 comes from sixth-order, the -2 

comes from a~c , the 1 comes from the r contribution and the -3 from the light-by-

light ·contribution. 

Non-QED Contributions and the Muon Anomaly 

Unlike the anomalous magnetic moment of the electron, which is dominated by 

the QED effect due to the smallness of its mass, the anomaly of the muon has substantial 

contributions from hadronic and weak interactions. Unfortunately, those contributions 

have not yet been computed very accurately. So far the best estimates are [52,53,54] 

a~0 = 7011(76) X 10-11 , 

a~ = 195(10) X 10-11 , 

where the hadronic contribution includes fourth and sixth order and the weak 

contribution includes only the one-loop contribution [55]. 

(99) 

(100) 



Although we use the result of Ref [54] for a~c, it should be noted that the 

error in Eq. (99) may be overly optimistic. More accurate experiments to measure 

a(e+ e- ~ hadrons) are urgently needed to reduce the error in Eq. (99). 
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Collecting all the contributions from QED, hadronic, and weak effects, we finally 

find the anomaly of the muon 

a:eory = 116591902(77) X 10-11 , 

which is in very good agreement with the experimental value 

a;:"1 = 1165923(8.5) x 10-9 (7 ppm). 

Equations (101) and (102) should be compared to Kinoshita's value 

a~ = 116591919(176) X 10-11 • 

(101) 

(102) 

(103) 

Our result given in Eq. ( 101) implies the following value for the gyromagnetic ratio g µ: 

gµ = 2.00233183804(154). (104) 

Kinoshita's result in Eq. (103) implies 

gµ = 2.00233183838(352). (105) 

These results in Eqs.(104) and (105) should be compared with the present experimental 

value 

gµ = 2.002331846(17). 

Recently Laporta and Remiddi have obtained a more accurate result for the 

contribution from the light-by-light diagram in the sixth order [56]. Their result is 

Ifwe use this new value, we can get the following results: 

(aµ -ae )QED = 6194828(27) X 10-12 , 

(106) 

(107) 

(108) 



and 

a;]ED = 1165846966(28)(27) X 10-IZ, 

a:eory = 116591904(77) X 10-II, 

gµ = 2.00233183808(154). 

In the Appendix A, we will give a detailed comparison between our results and 

Kinoshita' s results. · 
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(109) 

(110) 

(111) 



CHAPTERIV 

ANOMALOUS MAGNETIC MOMENT OF THE TAU 

The f' lepton was discovered in 1975 [57]. All evidence indicates that it is a SM 

lepton [58]. A very important property of the f', which has yet to be calculated, is its 

magnetic moment, 

(112) 

given by its anomaly 

g -2 
Q =-T-

T . 2 
(113) 

Although g µ has not yet been measured, it may be possible in the future, in spite of the 

obvious difficulty involved in such an experiment. This could be done by making use of 

the radiation amplitude zero [59] which occurs at the high-energy end of the lepton 

distribution in radiative f' decays. This zero amplitude will be noticeable only if g T ~ 2 . 

Of course, very good energy resolution would be necessary. A measurement of the 

anomalous magnetic moment of the f' lepton using this method has been suggested by 

Perl [60]. This could be done at a proposed Tau-Charm Factory, where approximately 

108 -r pairs would be produced, vie the reaction e+ e- ~ T+ T- at a c.m. energy of 3.67 

Gev. or at the recently approved B Factory at SLAC. An alternative method would be to 

make use of channeling [61] in a bent crystal, which has been suggested for measuring 

baryon magnetic moments, where the baryon has a short lifetime, T ~ 10-13 s. [The 

lifetime of the f' is 't = 0.303(8)x 10-12s .] The strong electric field is seen by the fast

moving particle as a large megatesla magnetic field and the spin will precess significantly 
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before it decays. This can be measured from the angular distribution of its decay lepton. 

From the precession angle one can obtain g. Such an experiment, to test the method, 

has been done at Fermilab (E761). The decay :r+' ---+ py was being used to measure the 

magnetic moment of the L+, µI.+ . The crystal used was Si. Preliminary results indicate 

that the method works and an accurate value for µI.+ was obtained [62]. This is a fixed-

target experiment. For the r one could use the decay B+ ---+ r+ v, which would produce 

polarized r leptons. The spin would then precess in a bent crystal and could be 

measured from the angular distribution of the µ( e) in the leptonic decay of the 

r, r--..+ µ(e) vv. Such an experiment might be possible at the Tevatron at Fermilab or at 

the Large Hadron Collider (LHC), if fixed-target experiments will be possible there. We 

hope that this option will be seriously considered. However, independent of the 

experimental situation we believe a prediction for the magnetic moment of the r lepton 

is important from a purely theoretical point of view. 

In calculating the anomalous magnetic moment of r, we follow the procedure used 

in the case of the muon by first calculating the mass-dependent contribution to a,, - a e• 

and then in the end using the known value for ae: 

In our case the r receives contributions from the electron and the muon: 

where the third term, which depends on all three leptons, occurs only in sixth and 

higher orders. The mass-dependent contributions for ae are negligible. 

(114) 

(115) 

In fourth order the contributions from Figs. 18(a) and 18(b) are given by Eq. (39) 

with k = m)m,,, and k = mµ/m"' respectively. The results are 



(a) (b) 

Figure 18. Mass-dependent fourth-order vertex diagram contributing 
to the tau anomaly 
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A?' [ :: J = 2. 0243(1)[: r = I. 09221( 5) X 10-, , 

and 

Al4'[ :J = 0 36164(7{ :r = 0.19512(4) x W'. 

Thus the total contribution in fourth order is given by 

(ar -aJC4) = 1.28733(6) x 10-5 . 

In the sixth order the dominant contribution comes from the light-by-light 

scattering diagrams illustrated in Fig. 19. The contribution of Pig. 19(a) is given by 

A;''[ ::,rr J = [ 2t 1n :: +B J[:J, 

49 

(116) 

(117) 

(118) 

(119) 

where B can be obtained from two independent calculations [40,39], which agree to the 

accuracy needed here: 

B = -14.13 . (120) 

Thus we obtain 

A)''[ ::,rr J = 39 6[:J = 4.96x W-7
. (121) 

Similarly, the contribution of Pig. 19(b) is 

A;~[:; ,Yr]= 447[: r = 5.60 X 10-'. (122) 

Thus we obtain the total contribution 

(ar -aJC6) (yy) = 5.52 X 10-7 • (123) 



't 

> 

e µ 

(a) (b) 

Figure 19. Sixth-order light-by-light scattering diagrams contributing 
to the tau anomaly 
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The sixth-order vacuum polarization (vp) contribution can be obtained by replacing 

(mµ/me) by (m,Jme) in the Eqs. (31)-(59) and is given by 

.4;"[ ::,vp] =7.2670[:J' = 9.llx JO~. (124) 

Similarly we obtain 

(125) 

and 

(126) 

Thus the total vp contribution is 

(127) 

and the total sixth order contribution is given by 

(128) 

We will use 

(129) 

This gives us, for the QED contribution, 

a~ED - a~ED = 1.354(1) x 10-5 (130) 

and using the result for ae given by Eq. (26) we obtain 

a~ED = 117.319(1) x 10-5• (131) 
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Because of the large mass scale mr the hadronic contribution ar (hadronic) and the 

weak-interaction contribution ar(weak) are significant. As we shall see the accuracy of 

our result will be limited by the error estimate for a, (hadronic) . 

The best way to calculate a, (hadronic) is to make use of the experimental cross 

section a H ( e + e- -), hadrons) from threshold to high energies. We follow the methods 

of Refs. [54] and [53] and use the equation [63] 

(132) 

where k ( s) is known explicitly and can be found in Ref [ 63]. 

The dominant contribution comes from the p resonance. We use a Breit-Wigner 

formalism to obtain this contribution: 

(133) 

Adding the contributions from the w, rp, and If/ and the continuum we obtain our result 

a;ac (hadronic) = 3.6(3)(1) x 10-6 • (134) 

The first error comes from taking the absolute upper and lower bounds of the 

contribution to a;ac corresponding to each continuum contribution to a;ac in Ref [63], 

Table III, while the second error comes from the error in the experimental cross section 

a H. Adding our estimate for the higher-order hadronic contribution 

a,(HH) = -1.2(2) x 10-1 , (135) 

we obtain our final result 

a,(hadronic) = 3.5(3)(1) x 10-6 • (136) 

As a check, the hadronic contribution is estimated by inserting quarks in place of 

the electron in the diagram ofFig. 18(a). We use a,(hadronic) to determine the masses 
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of the quarks. The result is rather insensitive to me and m8 • We then insert these quark 

masses in Fig. 18(a) obtaining our result for ar (hadronic). We obtain 

ar (hadronic) = 2. 6 x 10--6. 

This result, which is not accurate due to unknown systematic errors, is about 25% 

below our result in Eq. (136). We will use the result in Eq. (136) which should be a 

reliable value for ar (hadronic) because the quoted error was estimated by using 

absolute upper and lower bounds. 

(137) 

The weak-interaction contribution is easily obtained by scaling the corresponding 

contribution for the muon 

a,(weak) = ( :; )' aµ(weak) = 5.560(2) x 10-1 . 

Finally, adding the results of Eqs. (131 ), (136), and (138) we obtain our result 

or 
gr= 2.0023556(6). 

It can be seen that the error in ar (hadronic) is comparable to the sixth order 

contribution and the weak contribution and dominates the error in ar. We note that 

(138) 

(139) 

(140) 

ar (hadronic) is about 50 times larger than aµ (hadronic). A measurement accurate 

enough to see ar (hadronic) would be very interesting. Of course, first a measurement 

to verify that gr ~ 2 is necessary. If one would measure a r directly as in the case of the 

muon and the electron, then a measurement with an accuracy of only 3 parts per 103 

would allow one to see the hadronic contribution. The present bound for ar is given by 

[64,65] 

ja~I < 0.11. 



The experimental accuracy will improve in the future reaching ±4 x I o-s at the CERN 

Large Hadron Collider (LHC) if heavy-ion collisions are possible. 
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CHAPTERV 

PADE APPROXIMANT METHOD 

General Definition 

Pade approximant (PA) is a mathematical method which can be used to accelerate · 

convergence of an infinite series. 

Let / ( x) be an analytic function defined by its Taylor series 

CX) 

f (x) = Lrnxn. 
n=O 

The Pade approximant to the function/ (x) is defined as [68,69,70,71,72,73,74] 

where Pn ( x) and Qm ( x) are polynomials of degree n and m, respectively: 

here we have taken b0 = 1, without loss of generality. 

Once the coefficients ai (i = O .. n) and bi (j = 1..m) are determined from 

Eq.(143), then the Pade approximant to the series will be given by 

It is easy to find that the coefficients ai and bi are given by 

i 

ai = Lr,bi-l 
l=l~-mll 
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(i=0,1, ... n), 

(142) 

(143) 

(144) 

(145) 

(146) 

(147) 
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m 

Lri_kbk =0 (j=n+l,n+2, ... ,n+m), (148) 
k=O 

where we define 

lli-mll = li-ml+i-m = {? (~ ~ ~m) 
2 1 - m (if 1 > m) . 

(149) 

In applying Eqs. (147) and (148), it should be noted that b0 = 1 and rk = 0 for all k < 0. 

Pade approximants can also be used to approximate a specific term in a series. For 

the Pade approximant t<n,m) (x), the next term which can be approximated is rn+m+i and 

is given by 
m 

rn+m+l ~ -<h1rn+m +h2rn+m-l + ... +bmrn+l) = - Lbkrn+m+l-k. 
k=l 

(150) 

This is very useful since for most series encountered in physics we only know the first 

few terms. By using Pade approximants we can predict the next term in terms of the 

previous few terms. It is interesting to note that the next term predicted is independent of 

both x and the coefficients ai and is dependent only on the previous tertns and the 

coefficients bi . 

Let 

To illustrate the use ofPade approximant method, we give a very simple example: 

x2 x3 x4 
/(x) = ln(l+x)::;: O+x--+---+ ... 

2 3 4 
(151) 

and suppose we know this series only up to the term - x4 / 4. Now we try to use the 

Pade approximant method to approximate this series and also to predict the next term. 

Since the last term we know corresponds to n+m = 4, we can use (n,m) = (1,3), 

(3, 1), or (2,2). For example, taking n = m = 2 we have 

(152) 



The coefficients can be found by using Eqs. (147) and (148) with 70 = 0, 71 = 1, 

72 = -1/2, 73 = 1/3, and 74 = -1/4: 

which gives 

a0 = 0 

a1 = 1 

1 
a2 =h1 --

2 

1 bl 
---+b =0 
3 2 2 

_.!.+~- h2 = 0 
4 3 2 

x2 
x+-

J<2.2) (x) = Pi (x) = 2 

Q2(x) l+x+£ 
6 

Taking x = 1 will leads to 

1<2•2 ) (1) = ~ ~ 0.6923 . 
13 

The next term predicted by the Pade approximant is r~ which is given by 

1 1 1 
r, ~-(br +b r. )=---x-~0.1944. 

5 14 23 4 3 6 
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(153) 

(154) 

(155) 

(156) 

The other Pade approximants, /<1•3) (1) and/<3,1) (1), can similarly be found. We 

list all our results and the comparisons with the exact result and the partial sum in 

Table II. From the table we see that the diagonal Pade approximant 1<2•2) (1) gives the 

more accurate approximation. This is generally true for most series. 

We have written a computer program [see Appendix B] which uses the Eqs. (147), 

(148) and (150) to approximate any arbitrary series and also predict the coefficient of the 

next term rn+m+i. Some illustrative results are presented in Table ill. It can .be seen that 



the Pade approximant method predicts the next coefficient very accurately, with the 

accuracy of the prediction increasing as n and m increase. 
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It is interesting to note that for a geometric series or the sum of several geometric 

series with various sign patterns the Pade approximant method gives the exact result 

after a few terms. For a series with a complicated sign pattern, the Pade approximant can 

also gives a very good estimate. 

PA Applications to the Anomaly Series 

We now tum to the application ofPade approximants to perturbation series of the 

anomalous magnetic moments of the electron, the muon, and the tau we discussed in the 

previous chapters. As we will see, the Pade approximant method works best for higher

order terms. But this is just where good estimates are badly needed, since higher-order 

contributions involve hundreds of Feynman diagrams and the computations are extremely 

complicated. 

We begin with the difference between the muon and the electron anomalous 

magnetic moments ( only QED contribution). 

aµ -ae = 1.094x2 + 22.87x3 + 127x4 + 570x5 , (157) 

where x = a/ 1i . The results are given in Table IV. It can be seen that there is good 

agreement with the known results. Moreover the next term is predicted to be about 2500 

and this agrees very well with the estimate from the Kinoshita Method 

a;12) = I0k 3a;6) (rr) = 2500(900) ' (158) 

where we take 2 ~ k ~ 2.5 (see Kinoshita, Nizic and Okamoto [6] for a discussion of 

this method). For the next-next term, we estimate, using the same range fork, 

a;14) = l5k4a;6) (yy) = 12500(7500) . (159) 



The average values are 2460 for the next term and 10565 for the next-next term. 

Next we consider the anomalous magnetic moment of the electron. 
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ae = 0.5x - 0.3285x2 + l. l 765x3 - l.43x4 • (160) 

The results are given in Table V. From the table we see that the Pade approximant 

[0,2] = -1.40 is in an excellent agreement with the exact value for the third term 

r3 = -1.43. The average values are 2.6 for the next term and -4.6 for the next-next 

term. It is interesting to note that the sign pattern ( oscillating series ) is kept by the Pade 

method. 

We now consider the anomalous magnetic moment of the muon given by 

aµ= 0.5x+0.1655x2 +24.05x3 + 125.6x4 +573(140}x5 • (161) 

The results are shown in Table VI. The Pade prediction for the coefficient of x 5 is 656 

and is very close to the known result 573. The predictions for the next and next-next 

terms agree very well with the estimates using the Kinoshita Method. 

Lastly we consider the difference between the anomalous magnetic moments of the 

tau and the electron given by 

ar -ae = 2. 39x2 + 52. 9x3 + 325x4 + l 779x5 

+8125x6 +33400x 7 • 

(162) 

where the last four terms (eighth-, tenth-, twelfth-, and fourteenth-order terms) are 

estimated by using Kinoshita' s method as mentioned above. The predictions from Pade 

approximant method are listed in Table VII , together with the comparison with the 

results from Kinoshita' s method. We see that two results are again in good agreement. 
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TABLE II 

PADE APPROXIMANTS TO THE SERIES ln(l + x) WITH x = 1 

Whole Series Next Term 

Value %error Value %error 
1 1 1 

Partial Sum 1--+---= 0.5833 15.8 -------- --------2 3 4 

Exact Result ln(2) = 0.6931 -------- 0.2 --------

/(1,3) (1) 0.6857 1.07 0.1736 13.2 

f (3,1) (1) 0.6905 0.38 0.1875 6.3 

f (2,2) (1) 0.6923 0.12 0.1944 2.8 
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TABLEIII 

P ADE APPROXIMANT TO SOME KNOWN SERIES 

SERIES [N,M]= f (n,m) ESNT EXACT 
k 

L ~ = ex with X = 1 [2, 1] 0.0556 0.0417 
k=O k! 

L_1 
k=I k2 

[3,2] 0.0202 0.0204 

[10,8] 0. 002499999996 0.0025 

[15,13] 0.0011111111111111 0.0011111111111111 

(-ll L- [2,1] -0.0012 -0.0016 
k=I k4 

[6,4] 4.821 X 10-5 4.823 X 10-5 

[10,8] 6.24999987 X 10-6 6.25 X 10-6 

(-1t+1 4L [3,2] 0.306 0.308 
k=I 2k- l 

[6,4] -0.173911 -0.173913 

[10,81 -0.10256410253 -0.10256410256 

L 21 
k=I 4k -1 

[15,13] 2. 7785495970 X 10-4 2. 7785495971 X 10-4 

L_1 
k=I k4 

[10,9] 5.14189044 X 10-6 5.14189047 X 10-6 

1 
~2kk4 

[10,9] 2.45184443 X 10-12 2.45184444 X 10-12 

L i 
k=I k(k + l)(k + 2) 

[10,9] 9.410878970 X 10-5 9.410878976 X 10-5 

ESNT : Estimated Next Term. 



[N, M] 

[1, 1] 

[1, 2] 

[2, 1] 

[1, 3] 

[2, 2] 

[3, 1] 

[1, 3] 

[2, 2] 

[3, 1] 

NT : next term 
NNT : next next term. 

TABLE IV 

PADE APPROXIMANT TO aµ -ae 

ESTIMATE 

705 

2362 

2558 

9435 (r.= 2362) 

9435 (r.= 2362) 

9788 (r.= 2362) 

11771 (r.= 2558) 

11480 (r.= 2558) 

11480 (r.= 2558) , 
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KNOWN RESULT 

570 

2500(900) NT 

2500(900) NT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 



fN,M] 

[l, l] 

ro, 21 

[l, 2] 

[2, l] 

[2, 2] 

f3, l] 

[l, 3] 

[2, 2] 

[3, l] 

NT : next term 
NNT : next next term. 

TABLEV 

P ADE APPROXIMANT TO ae 

ESTIMATE 

:.4_21 

-1.40 

3.22 

1.74 

-2.12 (r4=1.74) 

-2.12 (r4=1.74) 

-4.93 (r4=3.22) 

-4.93 (r4=3.22) 

-7.25 (r4=3.22) 
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KNOWN RESULT 

-1.43 

-1.43 

NT 

NT 

NNT 

NNT 

NNT 

NNT 

NNT 



[N, M] 

[2, 1] 

[2, 2] 

[3, 1] 

r2, 3] 

[3, 2] 

[4, 1] 

[2, 3] 

[3, 2] 

[4, 1] 

NT : next term 
NNT : next next term. 

TABLE VI 

PADE APPROXIMANT TO aµ 

ESTIMATE 

656 

2548 

2614 

11270 (r. =2548) 

11270 (r. =2548) 

11330 (r. =2548) 

11972 (r, =2614) 

11925 (r. =2614) 

11925 (r, =2614) 
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KNOWN RESULT 

573 

2500(900) NT 

2500(900) NT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 

12500(7500) NNT 
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TABLE VII 

P ADE APPROXIMANT TO ai- - ae 

ORDER PADE METHOD KINOSHITA METHOD 

fN,Ml 

10 [I, 1] 1997 1779 

[I, 2] 9536 

12 r2, 11 9738 8125 

AVE 9637 

[1, 3] 32992 

14 r2, 21 23695 33400 

[3, 1] 37108 

AVE 31265 

A VE : average value. 
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APPENDIX A 

COMPARISON BETWEEN OUR RESULTS AND KINOSHITA'S 
RESULTS IN THE FOURTH AND SIXTH ORDER 

QED CONTRIBUTIONS_ 

So far the QED contribution to the anomaly of the muon, aµ, has been calculated 

and estimated up to the tenth order. In this endeavor, Kinoshita has made a great 

contribution. However, we find that our results and Kionshita' s results in fourth and 

sixth order are slightly different, for some contributions. In this appendix, we will 

present this comparison in some detail. 

A-1 Comparison in the Fourth Order Contribution 

For the fourth order contribution, differences occur in the calculations of 

A4)(mµ/me) and AJ_4)(mµ/m1J terms .. For the AJ_4)(mµ/me) term, Kinoshita just kept 

terms up to the second order in (mµ/me) and got the result 

Aj4'[ ~] = 1.0942596. (Al) 

In fact, the contributions from the third order and even the fourth order terms should be 

taken into account. For the AJ_4)(mµ/m,J term, Kinoshita's result is 

Aj4l[ ~] = 7.794(32) X JO-s. 

To the accuracy required, we agree on the quantity AJ_4)(me/mµ) which is to be 

subtracted. Kinoshita's value is 

70 

(A2) 
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(A3) 

Our values are given in Eqs. (39), (40), and (41). These should be compared with 

Kinoshita's results in Eqs. (Al), (A2), and (A3), respectively. Thus the total difference 

in the fourth order contribution is given by i\ 1 = -7 x 10-12 . 

A-2 Comparison in the Sixth Order Contribution 

We find that our results, corresponding to each subgroup of ~ 6)(mµ/me), are 

somewhat different from t~ose of Kinoshita. For the vacuum-polarization part, the 

diagrams in Fig .13, the results are listed in Table I. 

(A4) 

In the table, ,'.\' is the difference between our results, without the me/mµ and 

smaller terms, and Kinoshita' s results. It is clear that these terms improve the agreement 

with Kinoshita's results and are definitely necessary at this level of precision. 

As seen, the total difference is given by 

As stated above, this difference reflects the uncertainty coming from the uncalculated 

terms in our analytical calaulations and the uncertainty in the numerical integrations in 

Kinoshita's results. 

(A5) 

The other difference in the sixth order comes from Kinoshita's neglect of the 

contributions from r. The contributions due to Fig. 12 withe~, and Figs. 14 and 

15 are given in Table VIII. We see that the total result turns out to be relatively small 

due to the cancellation which occurs. 

Collecting all the differences from the fourth- and the sixth-order contributions, as 

well as the one from a:adronic , we get the total QED differ-ence given by 

L\aQED = -12 X 10-12 
' 

(A6) 
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which is just the one given by Eq. (98). These are Kinoshita's new results, obtained after 

an error was discovered [ 66] in his earlier results. His new results were published in ref 

[67]. 



Figure 

12(with e ~ T) 
14 
15 
Total 

TABLE VIII 

Contribution (10-3) 

1.836 
-2.063 
0.2959 
0.0689 

23.0 
-25.9 
3.7 
0.86 

A(ahc)3 (10-12 ) 
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APPENDIXB 

Pade approximant FORTRAN program 
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******************************************************************* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

This program is used to calculate any arbitrary series and also estimate 
a specific term of the series by using the Pade approximant method. 

The series takes the following form: 
f(x)=r(O)+r(l )x+r(2)x**2+ ... +r(n+m)x**(n+m)+O(x**(n+m+ 1 )) 

The Pade approximant to this series is given by 
p(n,m)=P(n)/Q(m) . 

where 
P(n)=a(O)+a(l )x+a(2)x**2+ ... +a(n)x**n 
Q(m)=l+b(l)x+b(2)x**2+ ... +b(m)x**m 

and the next term to be predicted is the coefficient r(n+m+ 1). 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

******************************************************************* 
IMPLICIT REAL *8 (A-H,0-Z) 
DIMENSION R(O: 100) 
X= I.ODO 

c Assign values to r(i) (i=l,nn) 
NN=4 
R(O)=O.ODO 
R(l) = I.ODO 
R(2) = -0.SDO 
R(3) =1 .OD0/3.0DO 
R(4) = -0.25DO 

DO 10 N =1, NN-1 
M=NN-N 

! nn=n+m 

CALL PADE(N,M,X,R, TERM,PA) 
WRITE(* ,20)N,M, TERM,R(NN+ 1 ),PA 

20 FORMAT(1X,'(',I2, 1X,I2,')=',D30.22/1X, 'EXACT =',D30.22, 
1 /lX,'PADE = ',D30.22) 

10 CONTINUE 
STOP 
END 

******************************************************************* 
* Subroutine ofPade approximant * 
* Input parameters: * 
* N, M ----- As in P(N,M). * 
* X --------- The variable x. * 
* R --------- The coefficients of the series. * 
* Output arguments: * 
* TERM ---- The estimation to the next term. * 
* PA ------- The approximation to the whole series. * 
******************************************************************* 
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SUBROUTINE P ADE(N,M,X,R, TERM,PA) 
IMPLICIT REAL *8 (A-H,0-Z) 
DIMENSION A(0:50),B(SO),AUG(S0,51),R(O:100) 
COMMONB 

c Assign values to the augumented matrix aug(i,j) used to solve for bG). 
D030I= l,M 
DO 30 K = l,M-I 
AUG(K,K +I) = -R(N-I) 

30 CONTINUE 
DO 40 I= O,M-1 
DO 40K=I+1, M 
AUG(K,K-I) = -R(N+I) 

40 CONTINUE 
DOSOK=l,M 
AUG(K,M+ 1) = R(N+K) 

50 CONTINUE 

CALL GAUSS(AUG,M) 

c Solve for a(k) (k=l,n) 
IF(N. GE .M) THEN 
A(O) =R(O) 
D060K= l,M 
A(K) =R(K) 
D060I= 1, K 

60 A(K) = A(K)+B(I)*R(K-I) 
DO 70K=M+l, N 
A(K) =R(K) 
D070I= 1, M 

70 A(K) = A(K)+B(I)*R(K-I) 
ELSE 
A(O) =R(O) 
D080K= l,N 
A(K) =R(K) 
DO 80 I= l,K 

80 A(K) = A(K)+B(I)*R(K-I) 
ENDIF 

c Find the result p(n,m) 
AA=O.ODO 
DO 90 J= O,N 

90 AA= AA+A(J)*X**J 
BB= I.ODO 
DO lOOJ= 1, M 
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100 BB = BB+B(J)*X**J 
PA=AA/BB 

c Estimate the next term 
TERM=O.ODO 
DO 1101= 1,M 

110 TERM= TERM-B(I)*R(N+M+ 1-1) 
RETURN 
END 

! this is p(n,m) 

! this is r(n+m+ 1) 

******************************************************************* 
* 
* 
* 
* 
* 

Subroutine to solve N linear equations by using Gaussian Elimination 
method. 

N ----- The number of equations 
AUG ----- The augmented matrix 
XX ----- The solutions 

* 
* 
* 
* 
* 

******************************************************************* 
SUBROUTINE GAUSS(AUG,N) 
IMPLICIT REAL *8 (A-H,0-Z) 
DIMENSION AUG(S0,51),XX(SO) 
COMMONXX 
L=l 
DO Wffil.E(L .LT. N) 
CALL PIVOT(AUG,N,L) 
REV= 1.0DO/AUG(L,L) 
AUG(L,L) =I.ODO 
DO 120K=L+l, N+l 
AUG(L,K) = AUG(L,K)*REV 

120 CONTINUE 
D0130J=L+l,N 
XMULT =-AUG(J,L) 
AUG(J,L) = O.ODO 
DO 140K=L+l, N+l 
AUG(J,K) = AUG(J,K)+ XMULT* AUG(L,K) 

140 CONTINUE · 
130 CONTINUE 

L=L+l 
ENDDO 
XX(N) = AUG(N,N+ 1 )/ AUG(N,N) 
DO 150K=N-1, 1, 1 
XX(K) = AUG(K,N+ 1) 
DO 160L=K+l,N 
XX(K) = XX(K)-AUG(K,L)*XX(L) 

160 CONTINUE 
150 CONTINUE 

RETURN 
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END 
******************************************************************* 
* 
* 
* 
* 
* 

Subroutine to perform pivoting with respect to the Lth row and the Lth 
columnof the augmented matrix AUG. 
Input arguments: 
· N ----- The number of equation. 

L ----- The pivot row and column. 

* 
* 
* 
* 
* 

******************************************************************* 
SUBROUTINE PIVOT(AUG,N,L) 
IMPLICIT REAL *8 (A-H,0-Z) 
DIMENSION AUG(S0,51) 

c Find maximum pivot 
XMAX = DABS(AUG(L,L)) 
MAXROW=L 
DO 170J=L+l, N 
IF(DABS(AUG(J,L)) .GT. XMAX) THEN 
XMAX = DABS(AUG(J,L)) 
MAXROW=J 
ENDIF 

170 CONTINUE 

c swap rows 
DO 180K=L, N+l 
TEMP = AUG(L, K) 
AUG(L, K) = AUG(MAXROW, K) 
AUG(MAXROW,K)=TEMP 

180 CONTINUE 
RETURN 
END 
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