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Abstract

Fe problem of how to double the volume of a cube, also known as the Delian problem, has intrigued
mathematicians for millennia. Fe great variety of solutions discovered over the centuries have used diverse
tools, mathematical and otherwise. Recently, in 1936, Margherita Piazollo Beloch discovered a simple and
elegant solution to this question. It uses a single piece of paper and a handful of folds. Fe solution has
renewed interest in geometrical constructability problems, in particular those that incorporate origami. And
ultimately, it's given rise to the Geld of origami mathematics.
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1. Introduction

Cranes, swans, boxes: Created with a few simple creases, these origami objects
have long been thought of as nothing more than playthings. But with the introduc-
tion of a systematic universal language, origami has blossomed as an art capable
of creating virtually any three-dimensional object. Bugs of any kind, fiddlers hold-
ing fiddles, and complex polyhedra are just a few of the things that can now be
produced with a single piece of paper, a clutch of creases, and a lot of math.

In return, mathematicians have been able to use the elevated art form to pro-
vide new solutions to some old problems and to create entirely novel directions for
mathematics. One old problem with a new origamic solution is the construction
of the cube root of two. The problem is famous for being impossible to solve with
straightedge and compass alone and has puzzled and intrigued mathematicians for
millennia. Now the exploration of paper-folding has uncovered a little known so-
lution from an otherwise little known mathematician. This solution has increased
interest in origami constructability problems. Origami and math are now more
intertwined than ever.

2. Origins of the Delian Problem

There are several theories about the origins of the question of how to construct
the cube root of two. The most popular tale was born of plague and prophecy.
Disease had wiped out thousands of Athenians in 430 B.C. Helpless to slow the
mounting death toll, the Athenians sent a representative to the oracle at Delos.
The message they received was this: The plague would end when the Athenians
doubled the volume of their altar.

This altar was a cube. To increase its size, as ordered, the Athenians doubled
the length of its sides. The error angered the gods, and, as the legend goes, the
devastation wreaked by the plague increased. Confused, the Athenians turned to
the wisest man they could find: Plato. He pointed out their error and explained
that the oracle’s instructions had nothing to do with any need for a larger altar.
The task was meant to reproach the Greeks for their neglect of mathematics and
their contempt of geometry.

At least one Greek took the reproach to heart. With no algebraic tools at his
disposal, Hippocrates of Chios made significant progress by relating the problem to
plane geometry. He showed that the problem could be reduced to the construction
of two mean proportionals, x, and y, between a given line a and another line b = 2a.

In the notation of modern math, it can be expressed as follows: We aim to find
x and y, such that

a

x
=

x

y
=

y

b
.

From the first equation we have x
2 = ay. From the second equation we have

y
2 = bx. Square the first equation on both sides and we have x

4 = a
2
y
2. Then

replace y
2 with bx. We have x

4 = a
2
bx, which implies x

3 = a
2
b. So, we have

x = 3
p
a2b. If we let b = 2a = 2, x is the cubic root we are seeking.

Plato, though, had stipulated that the solution should rely only on a straight-
edge and compass. With this restriction, there was no way for Hippocrates, or
anyone else, to find the mean proportionals. Egyptian contemporaries, similarly
algebraically deprived, declared the problem unsolvable.

1

Neznanova and Yuan: From Ancient Greece to Beloch's Crease

DOI: http://dx.doi.org/10.7710/2168-0620.1042
2

International Journal of Undergraduate Research and Creative Activities, Vol. 7, Iss. 1 [2023], Art. 8

https://digitalcommons.cwu.edu/ijurca/vol7/iss1/8
DOI: 10.7710/2168-0620.1042



But without the restriction, many solutions were found. Most used the mean
proportionals that Hippocrates of Chios developed. Plato’s friend, Menaechmus,
for instance, found two di↵erent theoretical methods to double the cube. As a
by-product of his work, he discovered the conic sections.

His solutions, in the language of modern mathematics, are as follows:
a

x
=

y

b
) xy = ab,

x

y
=

y

b
) y

2 = bx,

a

x
=

x

y
) x

2 = ay.

The first solution was to find the intersection of the hyperbola and the parabola that
are the first two equations above. The second solution was to find the intersection
of the parabolas from the second and third equations.

Another friend of Plato’s, Archytas, solved the question by using the intersection
of three dimensional surfaces. Philon and Heron found methods of solving the
problem by using the intersection of a circle and a rectangular hyperbola. But
these solutions, as well as similar ones from others, used more than the straight-
edge and compass that Plato preferred for geometry.

Other great minds continued to search for a solution that would satisfy his
directive. Many curves were created, such as the conchoid curve found by Greek
mathematician Nicomedes. He used the curve to both double the cube and to solve
the trisecting of an angle. Diocles invented the cissoid curve to double the cube.
[3,4,7].

However inventive, these Greeks were unable to solve the Delian problem ac-
cording to Plato’s constraints. Though they may have sensed that a solution was
impossible, they did not have the mathematical tools to prove it. These wouldn’t
come about until 1837. That is when French mathematician Pierre Wantzel proved
that the Delian problem could not be solved with a straightedge and compass [5].

Wantzel showed the following general theorem: If r is a number that can be
constructed by straightedge and compass only, it must be the root of an irreducible
polynomial of degree 2n for some non-negative integer n. With this theorem, we
can easily deduce that 3

p
2 cannot be constructed by a compass and straightedge

since 3
p
2 is a root of x3 � 2 = 0, which is irreducible, but not to degree 2n [16, 17].

The proof was integral to the development of constructible numbers and played an
important role in the birth of abstract algebra [18].

3. The history of Origami and Math

Unlike the Delian problem and other classical geometric construction problems,
paper-folding received little academical interest until recently. For most of its his-
tory, origami has been a tool for amusing children, not for solving math problems.

Origami hasn’t faired much better in the world of art, and its origins remain
unclear. Some historians have put its birthplace in China, sometime in the second
century when paper first appeared. Paper made its way to Japan in the sixth
century, but the paper of that time was likely too brittle for any real folding. The
earliest known folding comes from Japan’s Shinto priests. They folded strips of
paper into a kind of lightening bolt, called a shide, to designate holy areas. In the
Heian era (c.1000), men used folded paper purses. As an art form, though, origami
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didn’t appear in earnest until after 1600, when paper became cheaper and more
widespread [16].

Exactly when paper-folding was first used as a teaching tool will forever be a
mystery, but due to the geometric nature of the pastime, it was inevitable that it
would be introduced to the classroom. A German educator, Friedrich Frobel (1782-
1852), who established the kindergarten system, was a paper-folding enthusiast. He
incorporated paper-folding into the kindergarten curriculum and thought it was one
of the most important skills that a child could learn [16].

Inspired by the educational value of paper-folding, educator Row T. Sundara
wrote a now well-known book about paper-folding and geometry, Geometric Ex-
ercises in Paper Folding, published in 1893 [17]. It kindled an interest in math-
ematicians and educators for paper-folding. In particular, the famous geometer
Felix Klein read Sundara’s book. He mentioned it in his own book, Famous Prob-
lems of Elementary Geometry [10]. Having discovered origami through Klein’s
citation of Sundara, several authors went on to examine techniques for solving qua-
dratic equations using paper-folding. However, Sundara’s book mistakenly said
that paper-folding techniques could not find the construction of cubic roots of in-
tegers [17].

4. Beloch’s solution

In 1930, an Italian algebraic geometer, Margherita Piazollo Beloch, proved Sun-
dara wrong. Born in 1879, Beloch was the daughter of a famous historian. She
earned her Ph.D. at the University of Rome and went on to teach in Pavia and
Palermo. From 1927 to 1955, she served as Chair of Geometry at the University of
Ferrara, where she finished her career. Though she explored other areas of geome-
try, she is chiefly know for her paper of 1936, “Sul metodo del ripiegamento della
carta per la risoluzione dei problemi geometrici”, or “On the method of paper fold-
ing for the resolution of geometric problems.” This paper was drawn from lectures
for a course she taught in the early thirties. In it, she describes her solution to the
Delian problem using nothing but a square piece of paper and a few folds. The
paper also shows how her origami solution is a tactile version of a solution o↵ered
by Eduard Lill in 1867 [2]. Beloch died in Rome in 1976, and her paper-folding
solution to the Delian problem remained undiscovered for many years [14].

Her method is as follows: Given two points, A and B, we can construct two
orthogonal lines, r and s, such that A is on the line s, and B is on the line r. Let
point O be the intersection point of the lines r and s. To construct a Beloch Square
CDEF as shown in figure 1, first we’ll construct a line r

0 that is parallel to line r,
whose distance from line r is the same as the distance between point A and line r.
To construct line r

0, we can make a fold along line r. Then we make a small pinch
mark where point A touches the paper. Now we make a fold that passes through
the pinch mark, perpendicular to line s. The fold is line r0. Similarly, we can create
line s

0, which is parallel to line s. It can be shown that its distance from line s is
the same as the distance between point B and line s. Now we will perform a Beloch
fold, which is defined by the following: Place point A on line r0 and point B on line
s
0 simultaneously. We call images of A and B A

0 and B
0, respectively [2, 8].

Let D denote the intersection point of line r and AA0 in figure 1. Let E denote
the intersection point of line s and BB0 in figure 1. Then we fold DE onto DA,
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!

Figure 1. Beloch’s Square

make a pinch mark at the image of the point E on the line that passes through
DA. We call the pinch mark C. Similarly, we can find the point F . The square
CDEF is the square we are looking for. We can choose A and B such that OA = 1
and OB = 2⇥OA = 2. Then we can show that OD is 3

p
2.

Using the fact that the triangles ODA, OED, and OBE are similar triangles we
have

OD

OA
=

OE

OD
=

OB

OE
,

OD

OA
=

OE

OD
) OD

2 = OA⇥OE,

OE

OD
=

OB

OE
) OE

2 = OD ⇥OB,

OD
4 = OA

2 ⇥OE
2 = OA

2 ⇥OD ⇥OB ) OD
3 = 2 ) OD = 3

p
2.

However clever, Beloch’s work went largely unnoticed. Fifty years after Be-
loch’s solution, several independent discoveries cropped up nearly simultaneously.
In 1986, for instance, Peter Messer discovered a similar method of cube doubling
with origami [15].

We produce Peter Messer’s method of finding the cube root of 2 here, as it is
interesting in its own right. First, we fold a square piece of paper into thirds (see
figure 2). One way to do this is to make a middle-point mark, M , on one edge of
the paper, AD, by folding the line AB on the line DC, and making a pinch mark on
the side of AD. Then we make a fold that connects point B and point M . We make
another fold that passes through point A and point C. Denote the intersection of
AC and BM as O. Then make a fold, denoted as PQ, passing through O and
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perpendicular to AB. Folding BC on the line PQ, the resulting fold is denoted as
RS. Then PQ and RS divide the square into three equal strips.

!

Figure 2. Divide a square paper into three equal parts

Using Beloch’s fold, we make a fold to place point C onto line AB (the left side
of the square) and point S onto the line PQ, simultaneously (see figure 3). Let CB

be one unit. Let AC be x and BT be y. The side of the square is s = 1+ x. From
the construction, BP equals two thirds of a side of a square. That is,

BP =
2

3
s =

2(x+ 1)

3
) CP = BP � CB =

2(x+ 1)

3
� 1 =

2x� 1

3
.

From the way the paper is folded, we can see that CT is x + 1 � y. Apply the
Pythagorean theorem to the right triangle, CBT , and we have

CB
2 +BT

2 = CT
2 ) 1 + y

2 = (x+ 1� y)2.

Solving for y, we obtain

y =
x
2 + 2x

2x+ 2
.

Again, from the construction we can see that AP is a third of the side of the square.
Thus

AP =
1

3
s =

x+ 1

3
) CP = x� 1

3
s = x� 1 + x

3
=

2x� 1

3
.

Using the fact that triangle CBT is similar to triangle PSC, we have BT
CT = CP

CS .
That is,

y

x+ 1� y
=

2x�1
3

x+1
3

) y

x+ 1� y
=

2x� 1

x+ 1
.
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!

Figure 3. Peter Messer’s method for finding the cube root of 2

We then acquire a second expression for y, namely,

y =
2x2 + x� 1

3x
,

Equating the two expressions for y, x2+2x
2x+2 = 2x2+x�1

3x ., and solving for x, we obtain

x = 3
p
2.

5. Modern development

Origami blossomed in the 20th century because of the e↵orts of a single man,
Akira Yoshizawa. Born in 1911, Yoshizawa turned paper-folding into a fine art.
When a teenager, Yoshizawa quit his factory job to devote his life to origami.
Subsequently, he designed thousands of models and pioneered a system of notations
for origami folds. Using mainly lines and arrows, it requires no words to explain
each step. “A version of this system has since become the worldwide standard and
international visual language for paper-folding instruction,” writes Meher McArthur
in Folding Paper: The infinite possibilities of origami. He also created a sculptural
folding technique called wet–folding. By the 1950s, his creations were featured in
numerous publications [16].

Interest in origami grew both in and outside of Japan thanks to Yoshizawa’s
work. Eventually, physicists, mathematicians, and engineers brought more complex
folds to origami, uncovering its power.

One of the most important events to bring origami and mathematicians together
was a 1989 conference, “The First International Meeting of Origami Science and
Technology,” organized by Humiaki Huzita. Huzita served as a bridge to bring
origami from Japan and the West together. He said that it was Beloch’s work
that inspired him to study the geometry of paper folding. To honor her, he held
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the conference in the building where Beloch had announced the discovery of the
solution of the Delian problem with origami. The proceedings reproduced several
papers by Beloch and Huzita dedicated the conference to her [13].

The proceedings of the conference and the talks given there essentially created
the field of the mathematics of origami. (Since that first conference, there have been
five more.) Crucial to this new field were the basic axioms of origami introduced
there. The first six axioms were discovered by Jacques Justin and Huzita, who
reported them in the proceedings. Later, Koshiro Hatori and Robert Lang added
one more axiom. Together, the seven axioms completely describe all the possible
ways to make a single fold.

The seven axioms are [1, 9]:

(a) Given two points, p1 and p2, we can make a fold passing through both points.
(b) Given two points, p1 and p2, we can make a fold that places p1 onto p2.
(c) Given two lines, l1 and l2, we can make a fold that places l1 onto l2.
(d) Given a point, p1, and a line, l1, we can make a unique fold that is perpendicular

to l1 that passes through point p1.
(e) Given two points, p1 and p2, and a line, l1, there is a fold that places p1 onto

l1 and passes through p2.
(f) Given two points, p1 and p2, and two lines, l1 and l2, we can make a fold to

place p1 onto l1 and p2 onto l2 at the same time.
(g) Given one point, p, and two lines, l1 and l2, we can perform a fold to place p

onto l1. It is perpendicular to l2.

These axioms inspired many mathematicians to look at origami as a geometric
construction tool. As the ancient but revitalized area of research expanded, new
recruits brought more theory to the possibilities contained within paper folding.
Soon math was using origami to create complex polyhedra, shapes in rigid materials,
multiple folds in a single action, and curved folding. In recent years, the field has
exploded, creating new math problems, connecting graph theory, group theory,
abstract algebra, and, of course, geometry to paper folding. But today’s high level
math and stunning paper sculptures all spring from the simplicity found in a straight
crease. This complexity from simplicity is at the very heart of mathematics, and it
mirrors Plato’s preference for solutions that use nothing more than a straightedge
and compass. If Plato could see the origami solution of Beloch, and the subtle math
and art that have sprung from it, would he disapprove of a tool that strayed from
straightedge and compass or would he embrace its elegant simplicity?
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of F. Klein’s Vorträge über Ausgewählte Fragen der Elementargeometrie, Ausgearbeitet von
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1(2), 366-372.

8

International Journal of Undergraduate Research and Creative Activities, Vol. 7 [2015], Art. 3

DOI: http://dx.doi.org/10.7710/2168-0620.1042
9

Neznanova and Yuan: From Ancient Greece to Beloch's Crease: The Delian Problem and Or

Published by ScholarWorks@CWU, 2023


	From Ancient Greece to Beloch's Crease: The Delian Problem and Origami
	Recommended Citation

	International Journal of Undergraduate Research and Creative Activities
	February 2015

	From Ancient Greece to Beloch's Crease: The Delian Problem and Origami
	Anastassiya Neznanova
	Shenglan Yuan
	Recommended Citation

	From Ancient Greece to Beloch's Crease: The Delian Problem and Origami
	Peer Review
	Abstract
	Keywords
	Acknowledgements


	From Ancient Greece to Beloch's Crease: The Delian Problem and Origami

