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Abstract

Consider the function T (n) deLned on the positive integers as follows. If n is even, T (n) = n/2. If n is odd, T
(n) = 3n + 1. Ke Collatz Conjecture states that for any integer n, the sequence n, T (n), T (T (n)), . . . will
eventually reach 1. We consider several generalizations of this function, focusing on functions which replace
"3n + 1" with "3n + b" for odd b. We show that for all odd b < 400, and all integers n ≤ 106, iterating this
function always results in a Lnite cycle of values. Furthermore, we empirically observe several interesting
paNerns in the lengths of these cycles for several classes of values of b.
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1. INTRODUCTION – THE 3n+1
PROBLEM

The 3n + 1 problem concerns the
following experiment: Pick any posi-
tive integer n. If n is even, divide it
by 2. If n is odd, multiply it by 3 and
add 1. Iterate this process by applying
the same procedure to the result. Re-
peat this iteration process many times.
The question is: what will happen in
the long run?

The Collatz Conjecture states that
no matter which integer one starts
with, if one does this procedure
enough times, eventually the sequence
of numbers generated by it will in-
clude 1. That is, given an integer n,
if we define the function T (n) as

T (n)=

(
n

2 if n ⌘ 0 (mod 2)1

3n+1 if n ⌘ 1 (mod 2),

and we write T
(k)(n) to mean iter-

ating T (n) k times, then the Collatz
conjecture states that for every posi-
tive integer n, there is some k such
that T

(k)(n) = 1. Simply by choos-
ing different values of n and applying
T (n) several times, one can be con-
vinced that the conjecture seems to
be true. Despite several decades of
effort and several hundred published
papers on the subject (see Lagarias,
2003, 2011), the conjecture remains
unsolved2. Some of the best evidence
in favor of the conjecture is the strong
body of computational work. The

current record for empirical verifica-
tion of the Collatz conjecture is due
to Oliveira e Silva, who has verified
the conjecture for all n < 5.76⇥ 1018

(Oliveira e Silva, 2010).
Beyond the primary queston of

whether iterating T (n) eventually
leads to 1, however, are many other
questions about this function. How
many iterations of T (n) are needed
to reach 1 for various n? How large
might the intermediate values get?
Does T (n) behave qualitatively dif-
ferently on certain classes of input
(primes, odd numbers, etc.)?

Many of these questions, too,
remain unsolved or only partially
solved. This work is an attempt to
gain new insight into these questions
by generalizing T (n) to a wider class
of functions, and by studying their re-
spective behavior. Consider the con-
jecture again. It tells us that if a num-
ber is odd, we should multiply it by
3 and add 1. Why 3? Why 1? Why
should we check for divisibility by 2
and then divide? Might other num-
bers work? And, crucially for our
work, does varying these numbers af-
fect qualitatively the outcome of iter-
ating these new versions of T (n)?

2. GENERALIZED FUNCTIONS

The idea of generalizing the func-
tion T (n) dates back at least to Hasse
(1975), who suggested a generaliza-
tion largely similar to the one below,

1The notation n ⌘ 0 (mod 2) means that n divided by 2 will have a remainder of 0; more gener-
ally a ⌘ b (mod m) means that a divided by m will have remainder b.

2Gerhard Opfer has submitted a paper containing a proported proof, and the mathematics com-
munity is currently waiting to see whether the proof will stand under close scrutiny
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and then gave some probabilistic argu-
ments about the behavior of these gen-
eralized functions. In particular, Hasse
suggested that for a fixed m > d � 2,
one could define the map

Dd(x) :=
mx+ f (r)

d
if x⌘ r (mod d),

where f (r) ⌘ �mr (mod d). In our
generalization, we change only the
constant being added in the fraction’s
numerator, in order to allow ourselves
more freedom in varying the origi-
nal question. In particular, we define
T (n;m,a,b) as
T (n;m,a,b) =(

n

m
if n ⌘ 0 (mod m);

an+b if n 6⌘ 0 (mod m).

Some experimentation quickly re-
veals that some values of m,a, and
b give rise to uninteresting functions.
For example, T (n;2,3,2) triples any
odd number and adds 2 – giving an-
other odd number. This continues un-
til the iterates become arbitrarily large;
see Theorem 2.1. Other functions may
have some starting values for which
they go to infinity, but others for which
they converge. Still others might send
all numbers into one of many possible
“cycles”.

We note also that many other gen-
eralizations of this function are pos-
sible, but we believe the our version,
based on that of Hasse, is the most
general which “preserves the spirit”
of the original problem. This gen-
eralization of Hasse has been studied
by Allouche (1979), Heppner (1978),
Möller (1978), Metzger (1999), and
Lagarias (1990).

2.1. Cycles and divergent se-
quences. The original Collatz func-
tion seems (empirically) to continue
iterating an input until the values reach
the cycle 4 ! 2 ! 1 ! 4. One of the
first interesting things we found was
that some values of m,a, and b, define
functions which have more than one
cycle. Additionally, some of these cy-
cles are quite long. For example, con-
sider the effect of modifying the origi-
nal T (n) only slightly, by changing the
rule if n is odd to “multiply by 3 and
add 5”. We represent this function as
T (n;2,3,5). Under this function, the
integers 19 ! 62 ! 31 ! 98 ! 49 !
152 ! 76 ! 38 ! 19 form a cycle. In
fact, this function has six distinct cy-
cles which include at least one integer
less than 105.

Other functions take inputs which
do not converge at all. For exam-
ple, consider the function T (n;2,5,3),
with starting value n = 5. The pat-
tern of iterates begins 5 ! 28 !
14 ! 7 ! 38 ! 19 ! 98 ! 49 !
248 ! 124 ! 62 ! 31 ! 138 !
79 ! 398 ! 199 ! 998 ! 499 ! · · · .
The pattern in these integers seems
fairly random, as the values move up
and down. The general trend, how-
ever, is that the sequence is growing
larger – the 1000th iterate is 6.16 ⇥
1041. Such inputs are said to be diver-

gent.

2.2. Previous Work. The class of
functions T (n;2,m,b) was studied by
Crandall (1978), who proved several
interesting results. In particular, he
conjectured that aside from (m,b) =
(3,1), every function T (n;2,m,b)

2
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has at least one cycle that does
not reach 1; he proved this for all
b � 3, and for the pairs (m,b) 2
{(5,1),(181,1),(1093,1)}. Addition-
ally, function of the form T (n;2,3,b)
(the 3x + b functions) have been
studied by Belaga and Mingotte in
(Belaga & Mignotte, 1998) – see also
their unpublished reports in (Belaga
& Mignotte, 2000) and (Belaga &
Mignotte, 2006).

2.3. An interesting class of func-
tions. After some initial experimenta-
tion with various values of a,b, and m,
we noticed that while the behavior of
the functions varied widely, the func-
tions with a = 3 and m = 2 behaved in
a somewhat uniform manner. Specifi-
cally, if we fixed those values and let b

vary through odd values, we could find
no starting value n which did not end
up in some cycle (see Theorem 4.1).
However, when b was even, we saw
very different behavior. In fact, we
have the following:

Theorem 2.1. Let b be a positive even

integer and n a postiive odd integer.

Then

lim
k!•

T
(k)(n;2,3,b) = •.

Proof. Since n is odd, set n = 2m+1.
Then

T (n;2,3,b) = 3n+b

= 3(2m+1)+b

= 6m+b+1,

which is odd (since b is even). Futher-
more, since 6m + b + 1 > 2m +
1 = n, we will always have that
T (n;2,3,b)> n. ⇤

For this reason we shall restrict
our attention to functions T (n;2,3,b)
with odd b. Beyond this observation,
though, no clear pattern was present.
Some of these functions (like the stan-
dard function T (n)) seemed to send all
integers to the same cycle. Others had
many different cycles which appeared.
It was to a deeper understanding of the
structure and behavior of cycles that
we next turned our efforts.

3. CYCLE STATISTICS

3.1. Some definitions. Because in
the rest of this work, we shall be study-
ing functions of a particular type, it
may be useful to assign new notation
to these. Let T (n;2,3,b) be denoted
by

Cb(n) =

(
n

2 if n ⌘ 0 (mod 2);
3n+b if n 6⌘ 0 (mod 2).

We shall refer to these Cb(n) collec-
tively as Collatz Functions. The Col-
latz function C1(n), then, corresponds
to the original function described in
the introduction. Recall also that we
restrict our attention only to the case
where b is odd.

In order to describe properties of
these Collatz functions, we shall need
a few definitions.

Definition 3.1. The cycle number of

a Collatz function Cb is the number of

distinct cycles created by iterating Cb.

We note first the crucial fact that
for no function Cb is the cycle num-
ber known. One way to state the origi-
nal Collatz conjecture is to say that the

3
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cycle number of C1 is 1, but of course
this has not been proved.

In the following, when we refer to
the cycle number, we always mean
the number of distinct cycles we have
found empirically: for b < 100, this
is the number of cycles observed
by testing all inputs up to 106; for
100 < b < 400, we tested inputs to
up 105. The cycle number for some of
the Cb are given in the following table:

Cycle num-
b ber of Cb

1 1
3 1
5 6
7 2
9 1

11 3
13 10

Table 3.1: Data on cycle numbers
of Cb for small b

Note that like C1, C3 also seems to
have a cycle number of 1. The func-
tion C5, however, behaves very differ-
ently. It has cycle number 6. There
is once again a cycle containing 1,
namely 1 ! 8 ! 4 ! 2 ! 1. Using
3 as our starting value, however, gives
3! 14! 7! 26! 13! 40! 20!
10 ! 5 ! 20 – these last three num-
bers represent a cycle distinct from the
first. Others are much longer. One cy-
cle of C5 begins with 187, then passes
through 43 other integers before re-
turning to 187. These differences sug-
gest that it will be useful to have the
following:

Definition 3.2. The cycle length of

any cycle is the number of distinct in-

tegers contained within the cycle.

Given that some cycles are quite
long, we shall also need a way to rep-
resent them without writing out every
integer in the cycle. For this, we shall
use the following:

Definition 3.3. For a given Collatz

function Cb and a given cycle, the cy-
cle minimum is the least integer in the

cycle.

Since no integer can be in more than
one cycle of a given Cb, a cycle mini-
mum uniquely determines a cycle of a
given Cb. For this reason we shall of-
ten use the value of the cycle minimum
to describe the cycle itself.

Definition 3.4. For a given Collatz

function Cb and a given cycle, the cy-
cle gravity is the proportion of inte-

gers which end up in the cycle (if such

a proportion exists).

The motivation for this choice of
terminology is simple: loosely, the
greater the gravity, the more integers
are “pulled in” to the cycle. We should
note, however, that it is not clear that
this is well-defined. Let Pb,r(n) be
the number of integers not greater than
n which end up in a cycle with cy-
cle minimum r after iteration by Cb.
The cycle gravity is limn!• Pb,r(n)/n,
if the limit exists.
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4. COMPUTATIONS AND
OBSERVATIONS

4.1. General experiments. For ev-
ery value of b  99, we tested all in-
puts n  106. For each of these, we
first found all cycles which are entered
by any of the n. The first important
discovery is that every value of n does
indeed enter a cycle. In fact, we veri-
fied the following generalization of the
Collatz Conjecture.

Theorem 4.1. For all odd b  99 and

all n  106
, the iterates of Cb(n) even-

tually converge to some cycle.

For each cycle, we recorded several
pieces of data. We first recorded the
cycle minimum and the cycle length.
Metzger (1999) observed that it is of-
ten useful to measure a cycle not by
its total number of entries, but by the
number of odd entries, which corre-
spond to its number of multiplications.
We also computed this value, but we
found it not to be more useful than our
definition, and we do not report that
value here (but see the accompanying
tables online for complete data). Fi-
nally, we recorded each cycle’s grav-
ity, in this case estimated using the
proportion of integers n  106 which
enter that cycle. Part of this data (for
b  13) is given in Table 4.1.

We attempted to find some relation-
ship between a cycle’s length and its
gravity. No pattern is apparent, though
we encourage readers to look for one.
(All data for b < 400 are available in
the accompanying tables online.)

b Cycle min Length Gravity
1 1 3 1.00000
3 3 3 1.00000
5 1 4 0.14099

5 3 0.20000
19 8 0.49642
23 8 0.09297

187 44 0.03253
347 44 0.03709

7 5 6 0.85714
7 3 0.14285

9 9 3 1.00000
11 1 8 0.19752

11 3 0.09091
13 22 0.71157

13 1 5 0.47686
13 3 0.07692

131 39 0.25215
211 13 0.03340
227 13 0.01911
251 13 0.01971
259 13 0.03885
283 13 0.02541
287 13 0.04301
319 13 0.01459

Table 4.1: Data on cycles for small b

4.2. Cycles Cb where b is a multi-
ple of 5. Despite not seeing any clear
patterns between cycle gravity and
the other statistics, we found several
curious relationships between cycle
lengths and the values of b, which we
believe to be true for all b. Consider
Table 3, which gives information sim-
ilar to that in Table 2, but is restricted
only to those b which are (odd) multi-
ples of 5.

Particularly curious is the fact that
each of these values of b has exactly

5
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two cycles of length 44. In fact, this
pattern continued as far as we were
able to test. Based on the limits on our
experimentation, this gave us the fol-
lowing:

Theorem 4.2. For all integers b< 400
which are odd multiples of 5, Cb has at

least two cycles with cycle length 44
and two with cycle length 8.

(See Conjecture 5.3 below for more
details).

b Cycle min Length Gravity
5 1 4 0.14099

5 3 0.20000
19 8 0.49642
23 8 0.09297

187 44 0.03253
347 44 0.03709

15 3 4 0.2
3 4 0.141344

15 3 0.066667
57 8 0.495195
69 8 0.093219

561 44 0.032591
1041 44 0.037651

25 5 4 0.028286
25 3 0.04
95 8 0.099078

115 8 0.018673
17 12 0.376009
7 24 0.423991

935 44 0.006457
1735 44 0.007506

Table 4.2: Cycles for which b is divisible
by 5

4.3. Cycles Cb for b divisible by
other primes. Studies of values of b

divisible by some other primes gener-
ated other interesting results. We give

some of these in the following two the-
orems.

Theorem 4.3. For all integers b< 400
which are odd multiples of 13, Cb has

seven cycles with cycle length 13.

Theorem 4.4. For all integers b< 400
which are odd multiples of 29, Cb has

one cycle with cycle length 106.

These observations seem to point
experimentally to a more general
property; namely that if n > 1 is an
integer, and Cb has a cycle of length
k, then Cnb will also have a cycle of
length k. In fact, this is the case, as we
shall prove in the next section.

5. RESULTS

Before we state our results, it will
be useful to have the following defini-
tion:

Definition 5.1. A cycle {x1,x2, . . .xk}
of a function Cb is said to be primitive
if the greatest common divisor of all

the xi is 1.

Using this, it is easy to prove the fol-
lowing:

Theorem 5.2. Let m be the cycle min-

imum of a primitive cycle of length k

under the function Cb. Then for any

integer n> 1, nm will be the cycle min-

imum of a (imprimitive) cycle of length

k under the function Cnb.

Proof. The idea of the proof is that
the function Cnb preserves the prim-
itive cycle in Cb, and merely scales
it up. For Cnb(nm) = 3nm + nb =

6
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n(3m+ b) = nCb(m). Therefore after
futher interation, we see that

C
k

nb
(nm) = nC

k

b
(m) = m,

since m was the minimum of a cycle of
length k. ⇤

From this theorem, we can deduce
three corollaries which parallel the
three theorems above:
Corollary 5.3. If b is an odd multiple

of 5, Cb will have at least two cycles

with cycle length 44 and two cycles

with cycle length 8.

In fact, we observe more. Usually
these two cycles have cycle minima
greater than any other cycle given by
Cb. We found this to be true for all
b except those which are multiples of
29. we cannot prove, nor are we con-
vinced, that C5b will always have ex-
actly two cycles of length 44.
Corollary 5.4. If b is an odd multiple

of 13, Cb will have at least seven cycles

of length 13.

Corollary 5.5. If b is an odd multiple

of 29, Cb will have at least two cycles

of length 106.

Finally, we note that of all b < 400,
the only Cb with cycle number 1 are
b = 1,3,9,27,81,243. From this, we
conjecture the following:
Conjecture 5.6. The function Cb will

have precisely one cycle if and only if

b is a power of 3.

We note that it is easy to see that
such functions always have at least one
cycle; that the function C3n has a cycle
with cycle minimum 3n follows from
Theorem 5.2.

6. CONCLUSIONS

In one sense, the generalization of
the Collatz function to the functions
Cb leads to very similar behavior to
that seen in the original function –
namely, iterating any value leads to
a cycle (rather than diverging). This
suggests at least that the original func-
tion is not “special”, but rather that
its behavior follows from more general
principles. However, the fact that the
number of cycles differs as b changes
does give evidence that there are un-
derlying irregularities behind the more
systematic behavior. This, together
with the striking patterns in behavior
for values of b which are multiples of
5, 13, and 29, leads us to believe that
there is considerable benefit to study-
ing these generalized functions.

7. NOTE

We would like to acknowledge one
of our reviewers who pointed out that
many of our results are not as novel
as we thought, in particular, for direct-
ing our attention to prior work of La-
garias (1990) that our work extends.
We were unaware of this work at the
time of our own studies. To our knowl-
edge, our data on cycle gravity is still
new.
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