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Abstract: Traditionally, constrained optimization models include constraints in the form of
inequalities and equations. In this dissertation, we consider a unifying class of optimization
problems with variational inequality (VI) constraints that allows for capturing a wide range
of applications that may not be formulated by the existing standard constrained models. The
main motivation arises from the notion of efficiency of equilibria in multi-agent networks.
To this end, first we consider a class of optimization problems with Cartesian variational in-
equality (CVI) constraints, where the objective function is convex and the CVI is associated
with a monotone mapping and a convex Cartesian product set. Motivated by the absence
of performance guarantees for addressing this class of problems, we develop an averaged
randomized block iteratively regularized gradient scheme. The main contributions include:
(i) When the set of the CVI is bounded, we derive new non-asymptotic rate statements for
suboptimality and infeasibility error metrics. (ii) When the set of the CVI is unbounded,
we establish the global convergence in an almost sure and a mean sense. We numerically
validate the proposed method on a networked Nash Cournot competition. We also imple-
ment our scheme on classical image deblurring applications and numerically demonstrate
that the proposed scheme outperforms the standard sequential regularization method. In
the second part, we consider a class of constrained multi-agent optimization problems where
the goal is to cooperatively minimize the sum of agent-specific objectives. In this framework,
the objective function and the VI mappings are locally known. We develop an iteratively
regularized incremental gradient method where the agents communicate over a cycle graph.
We derive new non-asymptotic agent-wise convergence rates for suboptimality and infeasi-
bility metrics. We numerically validate the proposed scheme on a transportation network
problem. We also apply the proposed scheme to address a special case of this distributed
formulation, where the VI constraint characterizes a feasible set. We show the superiority
of the proposed scheme to existing incremental gradient methods. A potential future direc-
tion is to extend the results of this dissertation to employ gradient tracking techniques and
address multi-agent systems requiring weaker assumptions on the network topology with
asynchronous communications.
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CHAPTER I

INTRODUCTION

Mathematical models and algorithms for constrained optimization often work under the
premise that the functional constraints are in the form of inequalities, equations, or an easy-
to-project set. A generic representation of an optimization problem in a standard form is as
follows

minimize f(x)

subject to gi(x) ≤ 0, for all i = 1, . . . ,m,

hj(x) = 0, for all j = 1, . . . , p,

where f : Rn → R, gi : Rn → R for all i = 1, . . . ,m, and hj : Rn → R for all j = 1, . . . , p,
are functions and x ∈ Rn. In a breadth of emerging applications in control theory, system
constraints are too complex to be characterized as standard functional constraints. This
complexity may arise in several network application domains where the optimization model
is complicated by the presence of equilibrium constraints, complementarity constraints, or
an inner-level large-scale optimization problem. The main goal in this dissertation lies in
addressing this shortcoming by advancing the models and algorithms of constrained opti-
mization by introducing a new unifying mathematical framework that is more powerful than
the aforementioned standard optimization model in capturing a wide range of applications.
In the following, we introduce this proposed mathematical formulation.

1.1 Optimization Problems with Variational Inequality Constraints

The first objective of this dissertation lies in addressing a unifying constrained optimization
problem

minimize f(x)

subject to x ∈ SOL(X,F ),
(P1)

where f : Rn → R and set X ⊆ Rn is a Cartesian product, i.e., X ,
∏d

i=1 Xi, where Xi ⊆ Rni

for all i = 1, . . . , d and
∑d

i=1 ni = n. Mapping F : X → Rn is monotone and SOL(X,F )
denotes the solution set of a variational inequality VI(X,F ), defined next. A vector x ∈ X
is said to be a solution to VI(X,F ) if for any y ∈ X, we have F (x)T (y − x) ≥ 0.

The variational inequality problem, first introduced in late 1950s, is an immensely pow-
erful mathematical tool that can serve as a unifying framework for capturing a wide range
of applications arising in operations research, finance, and economics (cf. [27, 30, 72, 89]).
Importantly, this allows for addressing large-scale applications.
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1.1.1 Motivation

In this section, to motivate the formulation (P1), we present some examples below. Prob-
lem (P1) can capture a variety of the standard problems in optimization and VI regimes.
For example, when F (x) = 0n, (P1) is equivalent to the canonical optimization problem
minx∈X f(x). Also, when f(x) = 0, problem (P1) is equivalent to VI(X,F ). More detailed
examples that can be reformulated as problem (P1), are given in the following. We present
four classes of optimization problems that can be reformulated as problem (P1) as follows.

Example 1 (Efficiency estimation of equilibria) The main motivation for the
formulation (P1) arises from the notion of efficiency of equilibria in multi-agent networks
including transportation networks, communication networks, and power systems. In multi-
agent applications in non-cooperative regimes, the system behavior is governed by a collection
of decisions (i.e., equilibrium) made by a set of independent and self-interested agents. As a
result of this non-cooperative behavior (i.e., game) among the agents, the global performance
of the system may become worse than the case where the agents cooperatively seek an
optimal decision. A well-known example is the Prisoners’ Dilemma where the costs of the
players incurred by the Nash equilibrium are superior to their costs when they cooperate [68].
Indeed, it has been well-received in economics and computer science communities that Nash
equilibria of a game may not attain full efficiency. This perception has led to a surge
of research for understanding the quality of an equilibrium in non-cooperative games. In
particular, addressing this question becomes imperative for network design [5] in the areas
of routing [25] and load balancing [73]. In such networks, a protocol designer seeks the
best equilibrium with respect to a global performance measure, i.e., function f in (P1). To
this end, the notion of “price of stability” (POS) is defined as the ratio between the best
objective function value over the set of equilibria and that of an optimal outcome where
there is no competition. In regard to the choice of the objective function f in (P1), different
approaches have been considered in the literature. Among popular choices are the utilitarian
function and the egalitarian function. In the utilitarian approach, function f is defined as
the summation of the individual objective functions of the agents, while in the egalitarian
approach, the maximum of the individual cost functions is considered. In particular, in the
context of network resource allocation where monetary value is measured, the utilitarian
approach is also referred to as Marshallian aggregate surplus (e.g., see [44]). Below, we
describe the details of the best equilibrium problem in the context of Nash games where we
employ the utilitarian approach. Consider a canonical Nash game among d players where
the ith player is associated with a strategy x(i) ∈ Xi ⊆ Rni and a cost function gi

(
x(i);x(−i)),

where x(−i) denotes the collection of actions of other players. Non-cooperative Nash games
arise in a wide range of problems including communication networks [1, 2, 93], competitive
interactions in cognitive radio networks [57,78,88], and power markets [47,48,81]. The game
is defined formally as the following collection of problems for all i = 1, . . . , d.

minimizex(i) gi
(
x(i);x(−i)) Pi

(
x(−i))

subject to x(i) ∈ Xi.

A Nash equilibrium (NE) is a tuple of strategies x∗ ,
(
x∗(1);x∗(2); . . . ;x∗(d)

)
where no player

can obtain a lower cost by deviating from his own strategy, given that the strategies of the
other players remain unchanged. It is known that (cf. Proposition 1.4.2 [30]) when for all

2



i, Xi is a closed convex set and gi is a differentiable convex function with respect to x(i),
the resulting equilibrium conditions of the Nash game given by (Pi

(
x(−i))), are compactly

captured by a Cartesian VI(X,F ) where X ,
∏d

i=1Xi and F (x) , (F1(x); . . . ;Fd(x)) with

Fi(x) , ∇x(i)gi
(
x(i);x(−i)). The set SOL(X,F ) will then represent the set of Nash equilib-

ria to the game (Pi

(
x(−i))). The best NE problem employing the utilitarian approach is

formulated as follows.

minimize
d∑
i=1

gi
(
x(i);x(−i))

subject to x ∈ SOL

(
d∏
i=1

Xi, (∇x(1)g1; . . . ;∇x(d)gd)

)
.

(1.1.1)

In Chapter 2, we address the model (1.1.1) for a class of networked Nash-Cournot games.
Example 2 (High-dimensional constrained convex optimization) Another class

of problems that can be captured by model (P1) is the following convex optimization problem
with nonlinear inequalities and linear equations

minimize f(x)

subject to Ax = b

hj(x) ≤ 0 for all j = 1, . . . ,J

x ∈ X ,
∏d

i=1
Xi,

(1.1.2)

where f : Rn → R is a convex function, A ∈ Rm×n, b ∈ Rm, and hj : Rn → R is convex
for all j, set Xi is convex of all i ∈ {1, . . . , d}. The next lemma presents the details on how
problem (1.1.2) can be cast as (P1).

Lemma 1.1.1 Suppose problem (1.1.2) is feasible. Let hj(x) be a continuously differentiable
and convex function for all j. Let the set Xi ∈ Rni be nonempty, closed, and convex for all
i. Then, problem (1.1.2) is equivalent to the problem (P1) where the mapping F : Rn → Rn

be defined as follows

F (x) , AT (Ax− b) +
J∑
j=1

max{0, hj(x)}∇hj(x).

Proof. See Appendix A.1.

Example 3 (Ill-posed high-dimensional optimization problem) Linear inverse
problems arising in image deblurring can be cast as,

minimize ‖Ax− b‖2

s.t. x ∈ Rn,
(1.1.3)

where A ∈ Rm×n is a blurring operator, b ∈ Rm is the given blurred image in Figure 1(a),
and x ∈ Rn is a deblurred image in Figure 1(b). This is an ill-posed problem in the sense

3



that there may be multiple solutions or the optimal solution x may be very sensitive to
the perturbations in the input b. To address the ill-posedness, and to induce sparsity and
stability, problem (1.1.3) can be reformulated in a bilevel structure as following (e.g., see
[33]),

minimize ‖x‖2

s.t. x ∈ argmin
{
‖Ax− b‖2 : x ∈ Rn

}
.

(1.1.4)

Problem (1.1.4) can be formulated as follows

minimize f(x)

subject to x ∈ argmin {g(x) : x ∈ X} ,
(1.1.5)

where functions f and g are defined as f : Rn → R and g : Rn → R. In particular, here we
consider the case where the set X has a block structure, i.e., X =

∏d
i=1 Xi, where Xi ⊆ Rni

and
∑d

i=1 ni = n. Under the convexity of f , g, and set Xi, problem (1.1.5) can be captured

by (P1) such that F is a gradient map, given as F (x) , (∇x(1)g (x) ; . . . ;∇x(d)g (x)) with set
X =

∏d
i=1Xi.

(a) Blurred image (b) Original image

Figure 1: The known blurred image and the unknown original image.

Note that formulation (1.1.5) captures problem (1.1.4) for f(x) , 1
2
‖x‖2

2, g(x) ,
1
2
‖Ax− b‖2 and X , Rn. One of the popular ways to address problem (1.1.4) is by regu-

larizing it. Consider the regularized problem (1.1.6) as the following

min
x∈Rn

1

2
‖Ax− b‖2 +

η‖x‖2

2
, (1.1.6)

where η is the regularization parameter.
As the value of η is a priori unknown, to obtain a suitable choice for η, problem (1.1.6)

must be solved multiple times for different values of η until a satisfactory deblurring is
achieved. Here, η ∈ (0,+∞) governs the way by which solution of problem (1.1.4) is ap-
proximated through solving the model (1.1.6). This framework is called the sequential reg-
ularization scheme that is presented in Algorithm 1. Algorithm 1 is a two-loop framework

where at each iteration, given a fixed parameter ηt, argmin
x∈Rn

{
‖Ax−b‖2

2
+ ηt

‖x‖2
2

}
needs to be

solved. In the special case where f(x) := 1
2
‖x‖2, it can be shown when ηt → 0, under the

4



Algorithm 1 The SR scheme for solving problem (P1) when f := 1
2
‖ · ‖2

2

1: Input: Initial regularization parameter η0 > 0;
2: for t = 0, 1, . . . do

3: Compute x∗ηt := argmin
x∈Rn

{
‖Ax−b‖2

2
+ ηt

‖x‖2
2

}
;

4: Update ηt to ηt+1 such that ηt+1 < ηt;
5: end for

convexity of function ‖Ax−b‖2
2

+ ηt
‖x‖2

2
, and closedness and convexity of the set Rn, any limit

point of the Tikhonov trajectory, denoted by {x∗ηt}, where x∗ηt := argmin
x∈Rn

{
‖Ax−b‖2

2
+ ηt

‖x‖2
2

}
,

converges to the least `2–norm solution of the problem argmin
x∈Rn

{
‖Ax−b‖2

2

}
(cf. Chapter 12 in

[30]).

(a) η=0 (b) η=0.001 (c) η=0.01 (d) η=0.1 (e) η=1

Figure 2: Image deblurring using the regularization technique with different values of η, for
105 iterations.

Figure 2 shows the deblurred images obtained by the conventional sequential regular-
ization (i.e. Algorithm 1) at different values of η for 105 iterations. As evidenced, it is
computationally inefficient to find a suitable regularization parameter η. In Chapter 4, we
provide numerical experiment where we formulate problem (1.1.5) as problem (P1) and show
the effectiveness of the proposed scheme.

Example 4 (Optimization with a system of nonlinear equation constraints)
Consider the following optimization problem

minimize f(x)

subject to F (x) = 0,
(1.1.7)

where F : Rn → Rn is a monotone mapping. Defining X , Rn, SOL(X,F ) is equal to
the feasible solution set of the problem (1.2.4). This implies that problem (1.2.4) can be
captured by (P1).

1.2 Distributed Optimization Problems with Variational Inequality
Constraints

In the second part of the dissertation, we consider a decentralized structure of the optimiza-
tion problem (P2) where a collection of agents (e.g., processing units, sensors) communicate

5



their local information with their neighboring agents to cooperatively optimize a global objec-
tive. It is through this cooperation that learning from massive datasets can be made possible.
Moreover, the decentralized storage of the data over the network may allow for preserving
the privacy of the agents. Distributed optimization has found a wide range of applications in
wireless sensor networks, machine learning, and signal processing [64]. Despite the significant
advances in the design and analysis of the optimization methods over networks, the existing
models and algorithms are still less satisfactory in some regimes than those of centralized
optimization. For example, there is still much left to be understood about how to tackle
the presence of nonlinearity and uncertainty in the functional constraints, while requiring a
low number of communications and enforcing weak assumptions on the network topology.
The goal in this part of dissertation is to tackle some of the shortcomings in distributed
constrained optimization through considering a new unifying mathematical framework de-
scribed as follows. Consider a system with m agents where the ith agent is associated with
a component function fi : Rn → R and a mapping Fi : Rn → Rn. Our goal is to solve the
following distributed constrained optimization problem

minimize
∑m

i=1
fi(x) (P2)

subject to x ∈ SOL
(
X,
∑m

i=1
Fi

)
,

where X ⊆ Rn is a set and SOL (X,
∑m

i=1 Fi) denotes the solution set of the variational
inequality VI (X,

∑m
i=1 Fi) defined as follows: x ∈ X solves VI (X,

∑m
i=1 Fi) if we have (y −

x)T
∑m

i=1 Fi(x) ≥ 0 for all y ∈ X. Problem (P2) represents a distributed optimization
framework in a sense that the information about fi and Fi is locally known to the ith agent,
while the set X is globally known to all the agents.

1.2.1 Motivation

In this section, we provide motivating examples for problem (P2). By choosing Fi(x) := 0n
for all i, model (P2) captures the canonical formulation of distributed optimization

minimize
∑m

i=1
fi(x) (1.2.1)

subject to x ∈ X,

that has been extensively studied in the literature. Next, we show how the proposed model
(P2) is employed to capture more challenging distributed constrained optimization problems.

Example 5 (Distributed optimization problems with complementarity con-
straints) Nonlinear complementarity problems (NCP) have been employed to formulate
diverse applications in engineering and economics. The celebrated Wardrop’s principle of
equilibrium in traffic networks and also, the Walras’s law of competitive equilibrium in
economics are among important examples that can be represented using NCP (cf. [31]). For-
mally, NCP is defined as follows. Given a mapping F : Rn

+ → Rn, x ∈ Rn solves NCP(F ) if
0 ≤ x ⊥ F (x) ≥ 0, where ⊥ denotes the perpendicularity operator between two vectors. It is
known that NCP(F ) can be cast as VI(Rn

+, F ) (see Proposition 1.1.3 in [30]). In many appli-
cations where F is merely monotone, NCP(F ) may admit multiple equilibria. In such cases,
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one may consider finding the best equilibrium with respect to a global metric f : Rn → R.
For example in traffic networks, the total travel time of the network users can be considered
as the objective f . In fact, the problem of computing the best equilibrium of an NCP is
important to be addressed particularly in the design of transportation networks where there
is a need to estimate the efficiency of the equilibrium [44, 67]. In this regime, the goal is
to minimize f(x) where x solves NCP(F ). Motivated by applications in traffic equilibrium
problems, stochastic variants of NCP have been considered more recently [23,99]. Consider
a stochastic NCP, given by

x ≥ 0, E [F (x, ξ(ω))] ≥ 0, xTE [F (x, ξ(ω))] = 0,

where ξ : Ω → Rd is a random variable associated with the probability space (Ω,F ,P) and
F : Rn

+ × Ω → Rn is a stochastic single-valued mapping. Let Si denote a local index set of
independent and identically distributed samples from the random variable ξ. Employing a
sample average approximation scheme, one can consider a distributed NCP, given by

x ≥ 0,
∑m

i=1

∑
`∈Si F (x, ξ`) ≥ 0, xT

(∑m
i=1

∑
`∈Si F (x, ξ`)

)
= 0.

Let f : Rn
+ ×Ω→ Rn denote a stochastic objective function that measures the performance

of a given equilibrium at a realization of ξ. Then, the problem of distributed computation
of the best equilibrium of the preceding NCP is formulated as

minimize
∑m

i=1

∑
`∈Si f(x, ξ`) (1.2.2)

subject to x ∈ SOL
(
Rn

+,
∑m

i=1

∑
`∈Si F (•, ξ`)

)
.

Importantly, the proposed model (P2) captures problem (1.2.2) by defining X , Rn
+, fi(x) ,∑

`∈Si f(x, ξ`), and Fi(x) ,
∑

`∈Si F (x, ξ`). In Chapter 3, we present preliminary numerical
experiments where we solve problem (1.2.2) for a given transportation network.

Example 6 (Distributed optimization problems with local nonlinear inequal-
ity and linear equality constraints) Another class of problems that can be captured by
problem (P2) is given as

minimize
∑m

i=1 fi(x)

subject to gi,1(x) ≤ 0 , . . . , gi,ni(x) ≤ 0, for i ∈ {1, . . . ,m},
Aix = bi, for i ∈ {1, . . . ,m},
x ∈ X,

(1.2.3)

where agent i is associated with function fi : Rn → R, functions gi,j : Rn → R for j ∈ [ni],
and parameters Ai ∈ Rdi×n and bi ∈ Rdi . The notation [m] is used to abbreviate {1, . . . ,m}.
The set X is globally known to all the agents while fi(x), gi,j(x), Ai, and bi are locally known
to agent i. In the following, we show that problem (1.2.3) can be represented as model (P2).

Lemma 1.2.1 Consider problem (1.2.3). Let functions gi,j(x) be continuously differentiable
and convex for all i ∈ [m] and j ∈ [ni]. Assume that the feasible region of problem (1.2.3) is
nonempty and the set X is closed and convex. Then, problem (1.2.3) is equivalent to (P2)
where we define Fi : Rn → Rn as Fi(x) , ATi (Aix− bi) +

∑ni
j=1 max{0, gi,j(x)}∇gi,j(x).

7



Proof. See Appendix A.2.

Example 7 (Distributed optimization coupling nonlinear equality constraints)
Another class of problems that can be reformulated as (P2) is given as

minimize
∑m

i=1 fi(x)

subject to
∑m

i=1 Fi(x) = 0,
(1.2.4)

where agent i is associated with a local mapping Fi : Rn → Rn and a local objective
fi : Rn → R. This model finds relevance to the multi-user optimization problems in network
resource allocation applications where the objective and constraints are not separable by
each user [22, 56, 86]. Note that the feasible solution set of problem (1.2.4) is equal to
SOL(Rn,

∑m
i=1 Fi), implying that (1.2.4) is captured by (P2).

1.3 Summary of Contributions

The main contributions of this dissertation are summarized as follows. In addressing problem
(P1), we make the following main contributions:
(i) Development of a single-timescale method equipped with complexity for (P1): In ad-
dressing (P1), we develop an efficient first-order method called averaging randomized block
iteratively regularized gradient (aRB-IRG). The proposed method is single-timescale in the
sense that, unlike the SR approach, it does not require solving a VI at each iteration. Instead,
it only uses evaluations of the mapping F and the subgradient of the objective function f
at each iteration. In the first part of this chapter, we consider the case where the set X
is bounded. We let f be a subdifferentiable merely convex function and F be a monotone
mapping. In Theorem 2.4.1, we derive a suboptimality convergence rate in terms of the
expected value of the objective function. We also derive a convergence rate for the infea-
sibility that is characterized by the expected value of a dual gap function. We also derive
deterministic variants of the aforementioned convergence rates when we suppress the ran-
domized block-coordinate scheme. In the second part of this chapter, we consider the case
where the set X is unbounded and f is smooth and strongly convex. Utilizing the properties
of the Tikhonov trajectory, we establish the global convergence of the scheme in an almost
sure and a mean sense. To the best of our knowledge, this work appears to be the first
one that provides the two rate statements for problems of the form (P1). In particular, the
complexity analysis in this work contributes to the existing convergence theory in several
previous papers including [46, 49, 51, 57, 91, 95, 98]. Moreover, in the special case where the
VI constraint represents the optimal solution set of an optimization problem, (P1) captures a
class of bilevel optimization problems. This class of problems has been studied in a number
of recent papers in deterministic [10, 33, 75, 82], stochastic [4], and distributed regimes [94].
However, the complexity analysis in the aforementioned papers lacks a suboptimality rate,
or lacks an infeasibility rate, or requires much stronger assumptions such as strong convexity
and smoothness of f . In Chapter 4, to address ill-posed optimization problem in an image
deblurring application, we consider a bilevel optimization problem where we seek among the
optimal solutions of the inner level problem, a solution that minimizes a secondary metric.
Minimum norm gradient, sequential averaging, and iterative regularization are among the
known schemes developed for addressing this class of problems. However, to address the
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nondifferentiability of the objective function and high-dimensionality of the solution space,
we develop a single-loop scheme called randomized block iteratively regularized subgradient
(RB-IRG). Under a uniform selection of the block and a careful choice of the parameter
sequences, we establish the almost sure convergence and derive a non-asymptotic rate of
convergence with respect to the inner level objective function.
(ii) Advancing the convergence rate properties of the randomized block-coordinate schemes :
Block-coordinate schemes, and specifically their randomized variants, have been widely stud-
ied in addressing the standard optimization problems (e.g., see [28,66,71,80,97]). However,
in addressing VI problems, there are only a handful of recent papers, including [58,97], that
employ this technique and are equipped with rate guarantees. The aforementioned papers
address standard VI problems that can be viewed a special case of the model (P1) where
f(x) := 0. In this work, we extend the convergence and rate analysis of the randomized
block-coordinate schemes to the much broader regime of optimization problems with CVI
constraints.
(iii) Addressing high-dimensionality employing a randomized block-coordinate scheme. The
proposed Algorithms 2 and 5 employ a randomized block-coordinate protocol for updating
the iterates. Block-coordinate schemes, and specifically their randomized variants, have been
recently studied in addressing standard optimization problems (e.g., see [28, 66, 71, 80, 97]).
However, in addressing VI problems there are only a handful of recent papers, including
[58,97], that employ this feature and are equipped with rate guarantees. The aforementioned
papers address standard VI problems that can be viewed a special case of problem (P1)
where f(x) = 0. Chapter 2 of this work extends the convergence and rate analysis of the
randomized block-coordinate schemes to a address problems in a broader regime that is
optimization problems with CVI constraints.
In addressing problem (P2), we make the following main contributions:
(i) Complexity guarantees for addressing model (P2): We develop a distributed iterative
method equipped with agent-specific iteration complexity guarantees for solving distributed
optimization problems with VI constraints of the form (P2). To this end, employing a
regularization-based relaxation technique, we propose a projected averaging iteratively reg-
ularized incremental gradient method (pair-IG) presented by Algorithm 4. In Theorem
5.4.1, under merely convexity of the global objective function and merely monotonicity of
the global mapping, we derive new non-asymptotic suboptimality and infeasibility conver-
gence rates for each agent’s generated iterates. This implies a total iteration complexity
of O ((Cf + CF )4ε−4) for obtaining an ε-approximate solution where Cf and CF denote the
bounds on the global objective function’s subgradients and the global mapping over a com-
pact convex set X, respectively. Iterative regularization (IR) has been recently employed
as a constraint-relaxation technique in a class of bilevel optimization problems [4, 94] and
also in regimes where the duality theory may not be directly applied [52, 95]. Of these, in
Chapter 2 we employ the IR technique to derive a provably convergent method for solving
problem (P2) in a centralized framework, where the information of the objective function
is globally known by the agents. Unlike in Chapter 2, in Chapter 3 we assume that the
agents have access only to local information about both the objective function and the map-
ping. It is worth emphasizing that this lack of centralized access to information introduces
a major challenge in both the design and the complexity analysis of the new algorithmic
framework in addressing the distributed model (P2). Motivated by the need for distributed
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implementations, in a preliminary version of this work, in [51], we addressed a subclass of the
distributed model (P2) formulated as (1.1.2). Extending [51], here we show that the conver-
gence and rate analysis in [51] can be extended to the much broader class of problems of the
form (P2) without any degradation of the speed of the algorithm. In addressing hierarchical
optimization problems, there have been other iterative methods proposed in works such as
[10, 33, 75, 91]. We, however, note that all of these schemes can only address a subclass of
(P2) in centralized regimes and under more restrictive assumptions such as strong convexity
of the global objective function. We also note that compared to the existing methods that
address VI problems (e.g., see [40, 45,89,95]), our work provides an avenue for addressing a
significantly more general class of problems where VI is employed as a tool to characterize
the constraints in distributed optimization. In Chapter 5, for addressing the problem of finite
sum of nondifferentiable convex function where each component function corresponds to a
hard-to-project constraint set, we devise an algorithm called averaged iteratively regularized
incremental gradient (aIR-IG) that does not involve any hard-to-project computations. Un-
der mild assumptions, we derive non-asymptotic rates of convergence for both suboptimality
and infeasibility metrics.
(ii) Distributed averaging scheme: In pair-IG, we employ a distributed averaging scheme
where agents can choose their initial averaged iterate arbitrarily and independent from each
other. This relaxation in the proposed IG method appears to be novel, even for the classical
IG schemes in addressing (1.2.1).
(iii) Rate analysis in the solution space: Motivated by the recent developments of iterative
methods for MPECs [26], it is important to characterize the speed of the proposed scheme in
the solution space. To this end, under strong convexity of the global objective function, in
Theorem 3.5.1 we derive agent-specific rate statements that compare the generated sequence
of each agent with the so-called Tikhonov trajectory, that is defined as the trajectory of the
unique solutions to a family of regularized optimization problems.
(iv) Preliminary numerical results : To validate the theoretical results, we provide pre-
liminary numerical experiments for computing the best equilibrium in a multi-agent traffic
network problem in Chapter 3. We also compare the performance of the proposed IG scheme
with that of the existing IG methods in addressing constrained finite-sum problems in Chap-
ter 5.

1.4 Outline of Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we address problem
(P1). We provide the main assumptions, present the outline of algorithms, and perform
convergence and complexity analysis. In the case where the associated set of the CVI is
bounded and the objective function is nondifferentiable and convex, we derive new non-
asymptotic suboptimality and infeasibility convergence rate statements in a mean sense. We
also obtain deterministic variants of the convergence rates when we suppress the randomized
block-coordinate scheme. In the case where the CVI set is unbounded, utilizing the strong
convexity of objective function, we establish the global convergence of the proposed algo-
rithm in an almost sure and a mean sense. We numerically validate the proposed method on
a networked Cournot competition model. In Chapter 3, to address problem (P2), we devise
a distributed algorithm, provide convergence and agent-wise rate analysis. We numerically
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validate the proposed scheme on a transportation network problem. In Chapter 4, we discuss
a special case of formulation (P1), where we address ill-posed high-dimensional optimization
problems. We provide the outline of the proposed algorithm, discuss almost sure convergence
of the iterates generated, and provide the non-asymptotic rate statements. Chapter 5 in-
cludes a special case of problem formulation (P2), where we address large-scale constrained
convex optimization problem. Further, we provide the convergence and rate analysis for
the proposed scheme. We conclude this dissertation in Chapter 6 by summarizing the key
findings and discussing the potential future directions.

1.5 Notation

Throughout this dissertation, a vector x ∈ Rn is assumed to be a column vector and xT

denotes the transpose of x. We use x(i) ∈ Rni to denote the ith block-coordinate of vector x
where x =

(
x(1); . . . ;x(d)

)
and

∑d
i=1 ni = n. For a function f : Rn → R, vector ∇̃f(x) ∈ Rn

is called a subgradient of f at x if f(x) + ∇̃f(x)Tf(y−x) ≤ f(y) for all y ∈ dom(f). ∇̃if(x)
is the ith block of ∇̃f(x). The subdifferential set of f at x is the set of all subgradients
of f at x and is denoted by ∂f(x). The Euclidean norm of a vector x is denoted by ‖x‖,
i.e., ‖x‖ ,

√
xTx. For a mapping F : Rn → Rn, we denote the ith block-coordinate of F

by Fi : Rn → Rni , i.e., F (x) = (F1(x); . . . ;Fd(x)). A mapping F : Rn → Rn is said to be
monotone on a convex set X ⊆ Rn if for any x, y ∈ X, we have (F (x)− F (y))T (x− y) ≥ 0.
The mapping F is said to be µ–strongly monotone on a convex set X ⊆ Rn if µ > 0 and for
any x, y ∈ X, we have (F (x)− F (y))T (x− y) ≥ µ‖x− y‖2. Also, F is said to be Lipschitz
with parameter L > 0 on the set X if for any x, y ∈ X, we have ‖F (x)−F (y)‖ ≤ L‖x− y‖.
A continuously differentiable function f : Rn → R is called µ–strongly convex on a convex
set X if f(x) ≥ f(y) + ∇f(y)T (x − y) + µ

2
‖x − y‖2. Function f is µ–strongly convex if

and only if ∇f is µ–strongly monotone on X. A function f : Rn → R is said to be in the
class Ck,r

µ,L if f is µ-strongly convex in Rn, k times continuously differentiable, and its rth

derivative is Lipschitz continuous with constant L. We use In to denote the identity matrix
of size n×n. The probability of an event Z is denoted by Prob(Z) and the expectation of a
random variable z is denoted by E[z]. We use Rn

+ and Rn
++ to denote {x ∈ Rn | x ≥ 0} and

{x ∈ Rn | x > 0}, respectively. a.s. used for ‘almost surely’. Fk denotes the set of variables
{i0, . . . , ik−1}. For a random variable ik, Prob(ik = i) is pik . For any symmetric square
matrix B ∈ Rn×n, the spectral norm is denoted by ‖B‖ and is defined as the maximum
absolute value of eigenvalues of the matrix, i.e., we have ‖B‖ , max{|λmin(B)|, |λmax(B)|}.
Note that, for a positive semidefinite matrix B, we have ‖B‖ = λmax(B). The Euclidean
projection of vector z onto set X is denoted as PX(x), where PX(z) , argminx∈X‖x− z‖2.
Given a set S ⊆ Rn, we let int(S) denote the interior of S. Given an integer m, we let [m]
abbreviate the set {1, . . . ,m}.
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CHAPTER II

OPTIMIZATION PROBLEMS WITH VARIATIONAL INEQUALITY
CONSTRAINTS

In this chapter, we consider a class of optimization problems with Cartesian variational
inequality (CVI) constraints (P1) with centralized communication. This mathematical for-
mulation captures a wide range of applications including those complicated by the presence
of equilibrium constraints, complementarity constraints, or an inner-level large scale opti-
mization problem. In particular, important application arises from the notion of equilibrium
in multi-agent network, e.g., communication networks and power systems. In the literature,
the complexity of the existing solution methods for optimization problems with CVI con-
straints appears to be unknown. Motivated by this, here we propose an averaged randomized
block iteratively regularized gradient scheme aRB-IRG. Section 2.1 includes the problem for-
mulation and Section 2.2 summarizes literature for addressing problem (P1). The proposed
scheme is presented in Algorithm 2. The outline of algorithm and the required preliminaries
are provided in Section 2.3. The main contributions include: (i) In the case where the asso-
ciated set of the CVI is bounded and the objective function is nondifferentiable and convex,
we derive new non-asymptotic suboptimality and infeasibility convergence rate statements
in an ergodic sense. We also obtain deterministic variants of the convergence rates when we
suppress the randomized block-coordinate scheme. Importantly, this appears to be the first
work to provide these rate guarantees for this class of problems. (ii) In the case where the
CVI set is unbounded and the objective function is smooth and strongly convex, utilizing
the properties of the Tikhonov trajectory, we establish the global convergence of aRB-IRG
in an almost sure and a mean sense. Section 2.4 includes the convergence analysis and rate
results for the case of bounded set X in problem (P1). The analysis for an unbounded set
X is presented in Section 2.5. Section 2.6 gives the numerical implementation of Algorithm
2 on a Nash Cournot competition. Section 2.7 provides some concluding remarks.

2.1 Problem Formulation

Consider function f : Rn → R and set X ⊆ Rn as a Cartesian product, i.e., X ,
∏d

i=1Xi,

where Xi ⊆ Rni for all i = 1, . . . , d and
∑d

i=1 ni = n. We consider centralized unifying
constrained optimization problem

minimize f(x)

subject to x ∈ SOL(X,F ).
(P1)

The content of this chapter has been published in the SIAM Journal on Optimization [52].
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Mapping F : X → Rn is a monotone map and SOL(X,F ) denotes the solution set of a
variational inequality VI(X,F ), defined next. A vector x ∈ X is said to be a solution to
VI(X,F ) if for any y ∈ X, we have F (x)T (y − x) ≥ 0.

2.2 Existing Methods and Research Gap

We first begin by providing a brief overview of the solution methods for addressing a VI
problem. Starting from the seminal work of Lemke and Howson [59] and Scarf [76], who
developed the first solution methods for computing equilibria, in the past few decades, there
has been a surge of research on the development and analysis of the computational methods
for solving VIs. Perhaps this interest lies in the strong interplay between the VIs and
the formulation of optimization and equilibrium problems arising in many communication
and networking problems [77]. Korpelevich’s celebrated extragradient method [55] and its
extensions [19,20,39,41,45,97] were developed which require weaker assumptions than their
gradient counterparts. In the past decade, there has been a trending interest in addressing
VIs in the stochastic regimes. Among these, Jiang and Xu [43] developed the stochastic
approximation methods for solving VIs with strongly monotone and smooth mappings. This
work was later extended to the case with merely monotone mappings [46,57] and nonsmooth
mappings [96].

Despite much advances in the theory and algorithms for VIs, solving the problem (P1)
has remained challenging. To the best of our knowledge, the computational complexity of the
existing solution methods for addressing (P1) is unknown. In addressing the standard con-
strained optimization problems, Lagrangian duality and relaxation rules have often proven
to be very successful [14]. However, when it comes to solving (P1), the duality theory can-
not be practically employed. This is primarily because unlike in the standard constrained
optimization problems where the objective function provides a metric for distinguishing so-
lutions, there is no immediate analog in the VI problems. Inspired by the contributions of
Andrey Tikhonov in 1980s on addressing illposed optimization problems, the existing meth-
ods for solving (P1) share in common a sequential regularization (SR) scheme presented by
Algorithm 1. The SR scheme is a two-loop framework where at each iteration, given a fixed
parameter ηt, a regularized VI denoted by VI (X,F + ηtIn) is required to be solved. In the
special case where f(x) := 1

2
‖x‖2, it can be shown when ηt → 0, under the monotonicity of

the mapping F and closedness and convexity of the set X, any limit point of the Tikhonov
trajectory denoted by {x∗ηt}, where x∗ηt ∈ SOL (X,F + ηtIn), converges to the least `2–norm
vector in SOL(X,F ) (cf. Chapter 12 in [30]). The SR approach is associated with two main
drawbacks: (i) It is a computationally inefficient scheme, as it requires solving a series of
increasingly more difficult VI problems. (ii) The iteration complexity of the SR scheme in
addressing the problem (P1) is unknown. Accordingly, the main goal in this dissertation lies
in the development of an efficient scheme equipped with computational complexity analysis
for solving the problem (P1).

2.3 Outline of Algorithm

In this section, we state the main assumptions and present the proposed scheme for solving
the optimization Problem (P1).
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Assumption 2.3.1 Consider the Problem (P1) under the following conditions:
(a) The set Xi is nonempty, closed, and convex for all i = 1, . . . , d.
(b) The function f is convex and has bounded subgradients over the set X.
(c) The mapping F : Rn → Rn is continuous, monotone, and bounded over the set X.
(d) The optimal solution set of Problem (P1) in nonempty.

Assumption 2.3.1(b) implies that f is Lipschitz continuous over the set X. Under this
assumption, we address a broad class of problems of the form Problem (P1) where the
objective function is possibly nondifferentiable and nonstrongly convex. In the following, we
discuss the conditions under which Assumption 2.3.1(d) is satisfied.

Remark 2.3.1 (Existence of an optimal solution) Suppose Assumption 2.3.1(a), (b),
and (c) hold. The existence of an optimal solution to the Problem (P1) can be established
under different conditions. We provide two instances as follows: (i) Suppose there exists a
vector x̄ ∈ X such that the set X̄ , {x ∈ X : F (x)T (x − x̄) ≤ 0} is bounded. Then,
from Proposition 2.2.3 in [30], SOL(X,F ) is nonempty and compact. Consequently, the
Weierstrass’ Theorem implies the existence of an optimal solution to the Problem (P1).
(ii) Suppose the set X is compact. Then, from Corollary 2.2.5 in [30], the set SOL(X,F )
is nonempty and compact. Again, Assumption 2.3.1(d) is guaranteed by the Weierstrass’
Theorem.

Throughout, this chapter we let CF > 0 denote the bound on the Euclidean norm of the
mapping F , i.e., ‖F (x)‖ ≤ CF for all x ∈ X. Also, we let Cf > 0 denote the bound on
the norm of the subgradients of f , i.e., ‖∇̃f(x)‖ ≤ Cf for all ∇̃f(x) ∈ ∂f(x) and x ∈ X.
The outline of the proposed method is presented by Algorithm 2. At iteration k, a block-

Algorithm 2 Averaged Randomized Block Iteratively Regularized Gradient

1: Input: A random initial point x0 ∈ X, x̄0 := x0, initial stepsize γ0 > 0, initial regular-
ization parameter η0 > 0, a scalar 0 ≤ r < 1, and S0 := γr0.

2: for k = 0, 1, . . . do
3: Generate a realization of random variable ik according to Assumption 2.3.2.
4: Evaluate Fik(xk) and ∇̃ikf(xk) where ∇̃f(xk) ∈ ∂f(xk).
5: Update xk as follows:

x
(i)
k+1 :=

{
PXik

(
x

(ik)
k − γk

(
Fik (xk) + ηk∇̃ikf (xk)

))
if i = ik,

x
(i)
k if i 6= ik.

(2.3.1)

6: Obtain γk+1 and ηk+1 (cf. Theorem 2.4.1 and Theorem 2.5.1 for the update rules).
7: Update the averaged iterate x̄k as follows:

Sk+1 := Sk + γrk+1, x̄k+1 :=
Skx̄k + γrk+1xk+1

Sk+1

. (2.3.2)

8: end for

coordinate index ik is selected randomly as follows:
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Assumption 2.3.2 (Block-coordinate selection rule) At each iteration k ≥ 0, the ran-
dom variable ik is generated from an independent and identically distributed discrete probabil-
ity distribution such that Prob (ik = i) = pi where pi > 0 for i ∈ {1, . . . , d} and

∑d
i=1 pi = 1.

Then, the ithk block-coordinate of the iterate xk is updated using equation (2.3.1). Here, γk
denotes the stepsize at iteration k and ηk denotes the regularization parameter at iteration k.
We note that these sequences are updated iteratively. Here, we incorporate the information
of the mapping F and the subgradient mapping ∇̃f by employing an iterative regularization
scheme. At each iteration, a projection operation is performed onto a randomly selected set
Xik . We will show that the convergence and rate analysis of the proposed method mainly rely
on the choices of {γk} and {ηk}. Accordingly, one key research objective in this section is to
develop suitable update rules for the two sequences so that we can establish the convergence
and derive rate statements. To obtain the rate results, we employ an averaging step using
the equations given by equation (2.3.2), where the sequence {x̄k} is obtained as a weighted
average of {xk}. The averaging weights are characterized by the stepsize γk and a scalar
r ∈ R. Note that in γrk, the scalar r denotes the exponent. It will be shown that the rate
results can be provided when 0 ≤ r < 1 (cf. Theorem 2.4.1).

Remark 2.3.2 Importantly, unlike Algorithm 1, Algorithm 2 is a single-timescale scheme
that does not require solving any inner-level VI problem. In particular, the update rule given
by step equation (2.3.1) mainly requires evaluations of random blocks of the mappings F
and ∇̃f . For this reason, step equation (2.3.1) is computationally more efficient than step 3
in Algorithm 1.

2.3.1 Preliminaries

In the following, we provide some definitions and preliminary results that will be used to
analyze the convergence of Algorithm 2.

Definition 2.3.1 (Distance function) For any x, y ∈ Rn, function D(x, y) is defined as

D(x, y) ,
∑d

i=1 p
−1
i

∥∥x(i) − y(i)
∥∥2

, where pi is given by Assumption 2.3.2.

Remark 2.3.3 Under Assumption 2.3.2, we can relate the distance function D with the
`2–norm as follows: pminD(x, y) ≤ ‖x − y‖2 ≤ pmaxD(x, y) for all x, y ∈ Rn, where pmin ,
min1≤i≤d{pi} and pmax , max1≤i≤d{pi}.

One of the main challenges in the convergence analysis of computational methods for solving
VI problems lies in the lack of access to a standard metric to quantify the quality of the
solution iterates. This is in contrast with solving the standard optimization problems where
the objective function can serve as an immediate performance metric for the underlying
algorithm. Addressing this challenge in the literature of VI problems has led to the study
of so-called gap functions (cf. [30, 95]). Of these, in the analysis of this section, we use the
dual gap function defined as follows:

Definition 2.3.2 (The dual gap function [61]) Let a nonempty closed set X ⊆ Rn and
a mapping F : X → Rn be given. Then, for any x ∈ X, the dual gap function GAP : X →
R ∪ {+∞} is defined as GAP(x) , supy∈X F (y)T (x− y).
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Remark 2.3.4 When X 6= ∅, Definition 2.3.2 implies that the dual gap function is nonneg-
ative over X. It is also known that when F is continuous and monotone and the set X is
closed and convex, GAP(x∗) = 0 if and only if x∗ ∈ SOL(X,F ) (cf. [45]). Thus, we conclude
that under Assumption 2.3.1, the dual gap function is well-defined.

Definition 2.3.3 (Regularized mapping) Given a vector x ∈ X, a subgradient ∇̃f(x) ∈
∂f(x), and an integer k ≥ 0, the regularized mapping Gk : X → R is defined as Gk(x) ,
F (x) + ηk∇̃f(x). The ith block-coordinate of Gk is denoted by Gk,i.

Definition 2.3.4 (History of the method) Throughout, we let the history of the algo-
rithm to be denoted by Fk , {x0, i0, i1, . . . , ik−1} for k ≥ 1, with F0 , {x0}.

Next, we show that x̄k generated by Algorithm 2 is a well-defined weighted average.

Lemma 2.3.1 (Weighted averaging) Let {x̄k} be generated by Algorithm 2. Let us define

the weights λk,N , γrk∑N
j=0 γ

r
j

for k ∈ {0, . . . , N} and N ≥ 0. Then, for any N ≥ 0, we have

x̄N =
∑N

k=0 λk,Nxk. Also, when X is a convex set, we have x̄N ∈ X.

Proof. See Appendix A.3.

In the following, we define two terms that characterize the error between the true maps with
their randomized block variants.

Definition 2.3.5 (Randomized block error terms) Let Ui ∈ Rn×ni for i = 1, . . . , d be
the collection of matrices such that In = [U1, . . . ,Ud] ∈ Rn×n. Consider the following
definitions for k ≥ 0

∆k , F (xk)− p−1
ik

UikFik(xk), δk , ∇̃f(xk)− p−1
ik

Uik∇̃ikf(xk). (2.3.3)

Lemma 2.3.2 (Properties of ∆k and δk) Consider Definition 2.3.5. We have
(a) E[∆k | Fk] = E[δk | Fk] = 0.
(b) E[‖∆k‖2 | Fk] ≤

(
p−1
min − 1

)
C2
F and E[‖δk‖2 | Fk] ≤

(
p−1
min − 1

)
C2
f .

Proof. See Appendix A.4

We will use the next result in deriving the suboptimality and infeasibility rate results.

Lemma 2.3.3 (Bounds on the harmonic series) Let 0 ≤ α < 1 be a given scalar.

Then, for any integer N ≥ 2
1

1−α − 1, we have (N+1)1−α

2(1−α)
≤
∑N

k=0
1

(k+1)α
≤ (N+1)1−α

1−α .

Proof. See Appendix A.5

2.4 Convergence Rate Analysis with Bounded Set X

In the following result, we derive an inequality that will be later used to construct bounds on
the objective function value and the dual gap function at the averaged sequence generated
by Algorithm 2.
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Lemma 2.4.1 Consider the sequence {xk} in Algorithm 2. Suppose {γk} and {ηk} are
strictly positive sequences. Let Assumption 2.3.1 and Assumption 2.3.2 hold. Let the auxil-
iary sequence {uk} ⊂ X be defined as uk+1 , PX (uk − γk (∆k + ηkδk)), where u0 ∈ X is an
arbitrary vector. Then, for all y ∈ X and all k ≥ 0, we have

γrkF (y)T (xk − y) + γrkηk∇̃f(xk)
T (xk − y) ≤ γr−1

k

2

(
D (xk, y) + ‖uk − y‖2

)
− γr−1

k

2

(
D (xk+1, y) + ‖uk+1 − y‖2

)
+γrk(xk − uk)T (∆k + ηkδk)

+ γr+1
k

(
‖∆k‖2 + η2

k‖δk‖2
)

+ 0.5p−1
ik
γr+1
k ‖Gk,ik (xk)‖2 . (2.4.1)

Proof. Let k ≥ 1 be fixed. From Definition 2.3.1 and equation (2.3.1), for any y ∈ X, we
have

D (xk+1, y) = p−1
ik

∥∥∥x(ik)
k+1 − y

(ik)
∥∥∥2

+
d∑

i=1, i 6=ik

p−1
i

∥∥∥x(i)
k − y

(i)
∥∥∥2

. (2.4.2)

Next, we find a bound on the term
∥∥∥x(ik)

k+1 − y(ik)
∥∥∥2

. From the block structure of X, we have

y(ik) ∈ Xik . Invoking the nonexpansiveness property of the projection mapping, the update
rule equation (2.3.1), Definition 2.3.3, and the preceding relation, we obtain∥∥∥x(ik)

k+1 − y
(ik)
∥∥∥2

≤
∥∥∥x(ik)

k − γkGk,ik (xk)− y(ik)
∥∥∥2

.

Combining the preceding relation with equation (2.4.2), we obtain

D (xk+1, y) ≤
d∑

i=1, i 6=ik

p−1
i

∥∥∥x(i)
k − y

(i)
∥∥∥2

+ p−1
ik

∥∥∥x(ik)
k − y(ik)

∥∥∥2

− 2 p−1
ik
γk

(
x

(ik)
k − y(ik)

)T
Gk,ik (xk) + p−1

ik
γ2
k ‖Gk,ik (xk)‖2 .

Invoking Definition 2.3.1 again, we obtain

D (xk+1, y) ≤ D (xk, y)− 2 p−1
ik
γk

(
x

(ik)
k − y(ik)

)T
Gk,ik (xk) + p−1

ik
γ2
k ‖Gk,ik (xk)‖2 . (2.4.3)

From Definition 2.3.5 and Definition 2.3.3, we can write

p−1
ik

(
x

(ik)
k − y(ik)

)T
Gk,ik (xk) = p−1

ik
(xk − y)T (UikGk,ik (xk))

= p−1
ik

(xk − y)T
(
UikFik(xk) + ηkUik∇̃ikf (xk)

)
= (xk − y)T

(
F (xk)−∆k + ηk∇̃f(xk)− ηkδk

)
= (xk − y)T (Gk(xk)−∆k − ηkδk) .

Combining the preceding inequality and relation equation (2.4.3), we obtain

D (xk+1, y) ≤ D (xk, y)−2γk(xk − y)T (Gk(xk)−∆k − ηkδk) + p−1
ik
γ2
k ‖Gk,ik (xk)‖2 . (2.4.4)
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Consider the definition of the auxiliary sequence {uk} in Lemma 2.4.1. Invoking the nonex-
pansiveness property of the projection again, we can obtain

‖uk+1 − y‖2 ≤ ‖uk − γk (∆k + ηkδk)− y‖2

= ‖uk − y‖2−2γk(uk − y)T (∆k + ηkδk) + γ2
k‖∆k + ηkδk‖2.

Thus, we have

‖uk+1 − y‖2 ≤ ‖uk − y‖2−2γk(uk − y)T (∆k + ηkδk) + 2γ2
k‖∆k‖2 + 2γ2

kη
2
k‖δk‖2.

Adding the preceding inequality and the inequality equation (2.4.4) together, we obtain

2γk(xk − y)TGk(xk) ≤
(
D (xk, y) + ‖uk − y‖2

)
−
(
D (xk+1, y) + ‖uk+1 − y‖2

)
+2γk(xk − uk)T (∆k + ηkδk) + 2γ2

k

(
‖∆k‖2 + η2

k‖δk‖2
)

+ p−1
ik
γ2
k ‖Gk,ik (xk)‖2 . (2.4.5)

From the monotonicity property of the mapping F and Definition 2.3.3, we have

(xk − y)TGk(xk) ≥ (xk − y)TF (y) + ηk∇̃f(xk)
T (xk − y).

This provides a lower bound on the left-hand side of equation (2.4.5). The inequality equation
(2.4.1) is obtained by substituting this bound in equation (2.4.5) and multiplying both sides

by
γr−1
k

2
, where r − 1 denotes the exponent in γr−1

k .

In the following, we develop upper bounds for suboptimality and infeasibility of the
weighted average iterate generated by Algorithm 2. Both of these error bounds are charac-
terized in terms of the stepsize and the regularization parameter.

Proposition 2.4.1 (Error bounds for Algorithm 2) Let the sequence {x̄k} be generated
by Algorithm 2, where 0 ≤ r < 1. Suppose {γk} and {ηk} are strictly positive and nonin-
creasing sequences. Let Assumption 2.3.1 and Assumption 2.3.2 hold and assume that the
set X is bounded, i.e., ‖x‖ ≤M for all x ∈ X and some M > 0.
(a) Let x∗ be an optimal solution to Problem (P1). Then, for all N ≥ 1

E[f (x̄N)]− f(x∗) ≤
4M2γr−1

N

ηN
+
∑N

k=0 η
−1
k γr+1

k

(
C2
F + η2

kC
2
f

)
pmin

∑N
k=0 γ

r
k

. (2.4.6)

(b) Consider the dual gap function in Definition 2.3.2. Then, for all N ≥ 1

E[GAP (x̄N)] ≤
4M2γr−1

N +
∑N

k=0 γ
r
k

(
2pminηkCfM + γkC

2
F + γkη

2
kC

2
f

)
pmin

∑N
k=0 γ

r
k

. (2.4.7)

Proof. We define the following terms for all k ≥ 0, that appear in equation (2.4.1)

Θk,1 , γrk(xk − uk)T (∆k + ηkδk), Θk,2 , γr+1
k

(
‖∆k‖2 + η2

k‖δk‖2
)
,

Θk,3 , 0.5p−1
ik
γr+1
k ‖Gk,ik (xk)‖2 . (2.4.8)

Next, we estimate the expected values of these terms. Consider the notation of Fk given by
Definition 2.3.4. Note that xk is Fk–measurable. Also, from the definition of uk in Lemma
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2.4.1, uk is Fk–measurable. Note, however, that Θk,j is Fk+1–measurable for all j ∈ {1, 2, 3}.
Taking these into account and using the total probability law, for any k ≥ 0 and j ∈ {1, 2, 3},
we have E[Θk,j] = EFk [Eik [Θk,j | Fk]]. From this relation and Lemma 2.3.2, we have for any
k ≥ 0

E[Θk,1] = 0, E[Θk,2] =
(
p−1
min − 1

)
γr+1
k

(
C2
F + η2

kC
2
f

)
. (2.4.9)

Also, using Definition 2.3.3 and the triangle inequality, we can write

Eik [Θk,3 | Fk] =
d∑
i=1

pi
(
0.5p−1

i γr+1
k ‖Gk,i (xk)‖2)

≤ γr+1
k

d∑
i=1

(
‖Fi(xk)‖2 + η2

k‖∇̃if(xk)‖2
)

= γr+1
k ‖F (xk)‖2 + η2

k‖∇̃f(xk)‖2.

From the preceding inequality, we obtain

E[Θk,3] ≤ γr+1
k

(
C2
F + η2

kC
2
f

)
. (2.4.10)

We are now ready to show the inequalities equation (2.4.6) and equation (2.4.7) as follows:
(a) Consider equation (2.4.1). From the definition of subgradients of the convex function f ,
we have that f(xk) − f(y) ≤ ∇̃f(xk)

T (xk − y). Thus, from equation (2.4.8) we obtain for
any y ∈ X

γrkF (y)T (xk − y) + γrkηk (f(xk)− f(y)) ≤ γr−1
k

2

(
D (xk, y) + ‖uk − y‖2

)
− γr−1

k

2

(
D (xk+1, y) + ‖uk+1 − y‖2

)
+ Θk,1 + Θk,2 + Θk,3.

Let us substitute y := x∗, where x∗ denotes an optimal solution to Problem (P1). Note that
x∗ must be a feasible solution to Problem (P1), i.e., F (x∗)T (xk − x∗) ≥ 0. Thus, we obtain

γrkηk (f(xk)− f(x∗)) ≤ γr−1
k

2

(
D (xk, x

∗) + ‖uk − x∗‖2
)

− γr−1
k

2

(
D (xk+1, x

∗) + ‖uk+1 − x∗‖2
)

+ Θk,1 + Θk,2 + Θk,3. (2.4.11)

Dividing both sides by ηk and adding and subtracting
γr−1
k−1

2ηk−1

(
D (xk, x

∗) + ‖uk − x∗‖2) in the

right-hand side of equation (2.4.11), we obtain for k ≥ 1

γrk (f(xk)− f(x∗)) ≤
γr−1
k−1

2ηk−1

(
D (xk, x

∗) + ‖uk − x∗‖2)
− γr−1

k

2ηk

(
D (xk+1, x

∗) + ‖uk+1 − x∗‖2)
+

1

2

(
γr−1
k

ηk
−
γr−1
k−1

ηk−1

)(
D (xk, x

∗) + ‖uk − x∗‖2)+ η−1
k (Θk,1 + Θk,2 + Θk,3) . (2.4.12)
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Since r − 1 < 0 and that {γk} and {ηk} are nonincreasing, we have
γr−1
k

ηk
− γr−1

k−1

ηk−1
≥ 0. Also,

from the boundedness of the set X, since xk, x
∗, and uk belong to X, using Remark 2.3.3

and the triangle inequality, we have

D (xk, x
∗) + ‖uk − x∗‖2 ≤ p−1

min ‖xk − x∗‖
2 + ‖uk − x∗‖2 ≤ 4M2

(
p−1
min + 1

)
≤ 8M2

pmin
.

(2.4.13)

Summing over equation (2.4.12) from k = 1 to N and using equation (2.4.13), we obtain

N∑
k=1

γrk (f(xk)− f(x∗)) ≤ γr−1
0

2η0

(
D (x1, x

∗) + ‖u1 − x∗‖2)
+ 4M2p−1

min

(
γr−1
N

ηN
− γr−1

0

η0

)
+

N∑
k=1

η−1
k (Θk,1 + Θk,2 + Θk,3) ,

where we drop the nonpositive term. From relation equation (2.4.11) when k = 0, we have

γr0 (f(x0)− f(x∗)) ≤ γr−1
0

2η0

(
D (x0, x

∗) + ‖u0 − x∗‖2
)

− γr−1
0

2η0

(
D (x1, x

∗) + ‖u1 − x∗‖2
)

+ η−1
0 (Θ0,1 + Θ0,2 + Θ0,3) .

Adding the last two inequalities, multiplying and dividing the left-hand side by
∑N

k=0 γ
r
k,

and then, invoking Lemma 2.3.1 and convexity of f , we obtain(
N∑
k=0

γrk

)
(f (x̄N)− f(x∗)) ≤ γr−1

0

2η0

(
D (x0, x

∗) + ‖u0 − x∗‖2)
+ 4M2p−1

min

(
γr−1
N

ηN
− γr−1

0

η0

)
+

N∑
k=0

η−1
k (Θk,1 + Θk,2 + Θk,3) .

Taking the expectation on both sides and invoking equation (2.4.13), we obtain

E[f (x̄N)]− f(x∗) ≤
4M2p−1

minγ
r−1
N

ηN
+
∑N

k=0 η
−1
k E[Θk,1 + Θk,2 + Θk,3]∑N
k=0 γ

r
k

.

From the relations equation (2.4.9) and equation (2.4.10), we obtain

E[f (x̄N)]− f(x∗) ≤
4M2p−1

minγ
r−1
N

ηN
+
∑N

k=0 η
−1
k

(
p−1
minγ

r+1
k

(
C2
F + η2

kC
2
f

))∑N
k=0 γ

r
k

,

which implies the inequality equation (2.4.6).
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(b) From the Cauchy-Schwarz inequality, the definitions of Cf and M , and the triangle

inequality, we have ∇̃f(xk)
T (y − xk) ≤

∥∥∥∇̃f(xk)
∥∥∥ ‖xk − y‖ ≤ 2CfM. Adding the preceding

inequality with the relation equation (2.4.1), from equation (2.4.8) we obtain

γrkF (y)T (xk − y) ≤ γr−1
k

2

(
D (xk, y) + ‖uk − y‖2

)
− γr−1

k

2

(
D (xk+1, y) + ‖uk+1 − y‖2

)
+ 2γrkηkCfM + Θk,1 + Θk,2 + Θk,3. (2.4.14)

Adding and subtracting the term
γr−1
k−1

2

(
D (xk, y) + ‖uk − y‖2), we obtain

γrkF (y)T (xk − y) ≤
γr−1
k−1

2

(
D (xk, y) + ‖uk − y‖2)

− γr−1
k

2

(
D (xk+1, y) + ‖uk+1 − y‖2)+

1

2

(
γr−1
k − γr−1

k−1

) (
D (xk, y) + ‖uk − y‖2)

+ 2γrkηkCfM + Θk,1 + Θk,2 + Θk,3.

Substituting the bound given by equation (2.4.13) in the preceding relation, we obtain

γrkF (y)T (xk − y) ≤
γr−1
k−1

2

(
D (xk, y) + ‖uk − y‖2)

− γr−1
k

2

(
D (xk+1, y) + ‖uk+1 − y‖2)+ 4M2p−1

min

(
γr−1
k − γr−1

k−1

)
+ 2γrkηkCfM + Θk,1 + Θk,2 + Θk,3.

Summing both sides from k = 1 to N , we obtain

N∑
k=1

γrkF (y)T (xk − y) ≤ γr−1
0

2

(
D (x1, y) + ‖u1 − y‖2)+ 4M2p−1

min

(
γr−1
N − γr−1

0

)
+

N∑
k=1

(2γrkηkCfM + Θk,1 + Θk,2 + Θk,3) . (2.4.15)

Writing the inequality equation (2.4.14) for k = 0, we have

γr0F (y)T (x0 − y) ≤ γr−1
0

2

(
D (x0, y) + ‖u0 − y‖2

)
− γr−1

0

2

(
D (x1, y) + ‖u1 − y‖2

)
+ 2γr0η0CfM + Θ0,1 + Θ0,2 + Θ0,3. (2.4.16)

Adding equation (2.4.15) and equation (2.4.16) together, we obtain

N∑
k=0

γrkF (y)T (xk − y) ≤ γr−1
0

2

(
D (x0, y) + ‖u0 − y‖2)+ 4M2p−1

min

(
γr−1
N − γr−1

0

)
+

N∑
k=0

(2γrkηkCfM + Θk,1 + Θk,2 + Θk,3) . (2.4.17)
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Recalling x̄N =
∑N

k=0 λk,Nxk in Lemma 2.3.1, applying the bound given by equation (2.4.13),
and using the triangle inequality, we obtain(

N∑
k=0

γrk

)
F (y)T (x̄N − y) ≤4M2p−1

minγ
r−1
N +

N∑
k=0

(2γrkηkCfM + Θk,1 + Θk,2 + Θk,3) .

Taking the supremum with respect to y over the set X from the left-hand side, invoking
Definition 2.3.2, and then dividing both sides by

∑N
k=0 γ

r
k, we obtain

GAP (x̄N) ≤ 4M2p−1
minγ

r−1
N +

∑N
k=0 (2γrkηkCfM + Θk,1 + Θk,2 + Θk,3)∑N

k=0 γ
r
k

.

Taking the expectation on both sides, using the relations equation (2.4.9) and equation
(2.4.10), and rearranging the terms, we obtain the inequality equation (2.4.7).

We are now ready to present the convergence rate results of the proposed method.

Theorem 2.4.1 (Convergence rate statements for Algorithm 2) Consider Algorithm
2. Let Assumption 2.3.1 and Assumption 2.3.2 hold and assume that the set X is bounded
such that ‖x‖ ≤ M for all x ∈ X and some M > 0. Suppose for all k ≥ 0, γk := γ0√

k+1
and

ηk := η0
(k+1)b

, where γ0 > 0, η0 > 0, and 0 < b < 0.5. Then, for any 0 ≤ r < 1, the following
results hold:
(i) Let x∗ be an optimal solution to the Problem (P1). Then, for all N ≥ 2

2
1−r − 1

E[f (x̄N)]− f(x∗) ≤ 2− r
pminη0

(
4M2

γ0

+
γ0

(
C2
F + η2

0C
2
f

)
0.5− 0.5r + b

)
1

(N + 1)0.5−b . (2.4.18)

(ii) Consider the dual gap function in Definition 2.3.2. Then, for all N ≥ 2
2

1−r − 1

E[GAP (x̄N)] ≤ 2− r
pmin

(
4M2

γ0

+
γ0

(
C2
F + η2

0C
2
f

)
0.5− 0.5r

+
2pminCfMη0

1− 0.5r − b

)
1

(N + 1)b
. (2.4.19)

Proof. Let us define the following terms:

ΛN,1 , pmin

N∑
k=0

γrk, ΛN,2 ,
4M2γr−1

N

ηN
, ΛN,3 ,

(
C2
F + η2

0C
2
f

) N∑
k=0

η−1
k γr+1

k ,

ΛN,4 , 4M2γr−1
N , ΛN,5 ,

(
C2
F + η2

0C
2
f

) N∑
k=0

γr+1
k , ΛN,6 , 2pminCfM

N∑
k=0

ηkγ
r
k.

Note that from equation (2.4.6) and equation (2.4.7), we have

E[f (x̄N)]− f(x∗) ≤ ΛN,2 + ΛN,3

ΛN,1

, E[GAP (x̄N)] ≤ ΛN,4 + ΛN,5 + ΛN,6

ΛN,1

. (2.4.20)
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Next, we apply Lemma 2.3.3 to estimate the terms ΛN,i. Substituting γk and ηk by their
update rules, we obtain

ΛN,1 = pmin

N∑
k=0

γr0
(k + 1)0.5r

≥ pminγ
r
0(N + 1)1−0.5r

2(1− 0.5r)
,

ΛN,2 =
4M2(N + 1)0.5(1−r)+b

η0γ
1−r
0

, ΛN,4 =
4M2(N + 1)0.5(1−r)

γ1−r
0

,

ΛN,3 =
N∑
k=0

(
C2
F + η2

0C
2
f

)
γr+1

0

η0(k + 1)0.5(r+1)−b ≤
γr+1

0

(
C2
F + η2

0C
2
f

)
(N + 1)1−0.5(r+1)+b

η0(1− 0.5(r + 1) + b)
,

ΛN,5 =
(
C2
F + η2

0C
2
f

) N∑
k=0

γr+1
0

(k + 1)0.5(r+1)
≤
(
C2
F + η2

0C
2
f

)
γr+1

0 (N + 1)1−0.5(r+1)

1− 0.5(r + 1)
,

ΛN,6 = 2pminCfMη0γ
r
0

N∑
k=0

1

(k + 1)0.5r+b
≤ 2pminCfMη0γ

r
0(N + 1)1−0.5r−b

1− 0.5r − b
.

For these inequalities to hold, we need to ensure that the conditions of Lemma 2.3.3 are met.
Accordingly, we must have 0 ≤ 0.5r < 1, 0 ≤ 0.5(r + 1) − b < 1, 0 ≤ 0.5r + b < 1, and
0 ≤ 0.5(r + 1) < 1. These relations hold because 0 ≤ r < 1 and 0 < b < 0.5. Another set of
conditions when applying Lemma 2.3.3 includes
N ≥ max

{
21/(1−0.5r), 21/(1−0.5(r+1)+b), 21/(1−0.5r−b), 21/(1−0.5(r+1))

}
− 1. This relation is indeed

satisfied as a consequence of N ≥ 2
2

1−r −1, 0 < b < 0.5, and 0 ≤ r < 1. We conclude that all
the necessary conditions for applying Lemma 2.3.3 and obtaining the aforementioned bounds
for the terms ΛN,i are satisfied. To show that the inequalities equation (2.4.18) and equation
(2.4.19) hold, it suffices to substitute the preceding bounds on the terms ΛN,i into the two
inequalities given by equation (2.4.20). The details are as follows

E[f (x̄N)]− f(x∗) ≤ ΛN,2 + ΛN,3

ΛN,1

=
2− r

pminγr0(N + 1)1−0.5r

(
4M2(N + 1)0.5−0.5r+b

η0γ
1−r
0

+

(
γr+1

0

η0

) (
C2
F + η2

0C
2
f

)
(N + 1)0.5−0.5r+b

0.5− 0.5r + b

)
.

The inequality equation (2.4.18) is obtained by rearranging the terms in the preceding rela-
tion.

E[GAP (x̄N)] ≤ ΛN,4 + ΛN,5 + ΛN,6

ΛN,1

≤ 2− r
pminγr0(N + 1)1−0.5r

(
4M2(N + 1)0.5−0.5r

γ1−r
0

+

(
C2
F + η2

0C
2
f

)
γr+1

0 (N + 1)0.5−0.5r

0.5− 0.5r
+

2pminCfMη0γ
r
0(N + 1)1−0.5r−b

1− 0.5r − b

)
.

Then, equation (2.4.19) can be obtained by rearranging the terms in the preceding inequality.
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Remark 2.4.1 (Iteration complexity of Algorithm 2) As an immediate result from The-
orem 2.4.1, choosing γk := γ0√

k+1
and ηk := η0

4√k+1
, we obtain

E[f (x̄N)− f(x∗)] = E[GAP (x̄N)] = O
(

1
4
√
N

)
.

This implies that Algorithm 2 achieves an iteration complexity of O (ε−4) in solving Prob-
lem (P1), where ε > 0 denotes the expected tolerance in both of the suboptimality and
infeasibility metrics.

The rate statements derived in Theorem 2.4.1 are in a mean sense. In the following, we
consider a deterministic variant of Algorithm 2 where we suppress the randomized block-
coordinate scheme. The outline of this deterministic method is presented by Algorithm 3. In
Corollary 2.4.1, we show that non-asymptotic deterministic rate statements can be derived
for Algorithm 3.

Algorithm 3 Averaged Iteratively Regularized Gradient

1: Input: An arbitrary initial point x0 ∈ X, x̄0 := x0, initial stepsize γ0 > 0, initial
regularization parameter η0 > 0, a scalar 0 ≤ r < 1, and S0 := γr0.

2: for k = 0, 1, . . . do
3: Evaluate F (xk) and ∇̃f(xk) where ∇̃f(xk) ∈ ∂f(xk).
4: For all i ∈ {1, . . . , d}, do the following updates:

x
(i)
k+1 := PXi

(
x

(i)
k − γk

(
Fi (xk) + ηk∇̃if (xk)

))
. (2.4.21)

5: Obtain γk+1 and ηk+1 (cf. Corollary 2.4.1 for the update rules).
6: Update the averaged iterate x̄k as follows:

Sk+1 := Sk + γrk+1, x̄k+1 :=
Skx̄k + γrk+1xk+1

Sk+1

. (2.4.22)

7: end for

Corollary 2.4.1 (Convergence rate statements for Algorithm 3) Consider Algorithm
3. Let Assumption 2.3.1 hold and assume that the set X is bounded such that ‖x‖ ≤M for
all x ∈ X and some M > 0. Suppose for k ≥ 0, γk := γ0√

k+1
and ηk := η0

(k+1)b
, where γ0 > 0,

η0 > 0, and 0 < b < 0.5. Then, for any 0 ≤ r < 1, the following results hold:

(i) Let x∗ be an optimal solution to the Problem (P1). Then, for all N ≥ 2
2

1−r − 1

f (x̄N)− f(x∗) ≤ 2− r
η0

(
4M2

γ0

+
γ0

(
C2
F + η2

0C
2
f

)
0.5− 0.5r + b

)
1

(N + 1)0.5−b . (2.4.23)

(ii) Consider the dual gap function in Definition 2.3.2. Then, for all N ≥ 2
2

1−r − 1

GAP (x̄N) ≤ (2− r)

(
4M2

γ0

+
γ0

(
C2
F + η2

0C
2
f

)
0.5− 0.5r

+
2CfMη0

1− 0.5r − b

)
1

(N + 1)b
. (2.4.24)

Proof. See Appendix A.6.
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2.5 Convergence Rate Analysis with Unbounded Set X

The convergence and rate statements provided by Theorem 2.4.1 require the set X to be
bounded. We, however, note that in some applications, e.g., in the models presented in
Problem (1.2.2) and Problem (1.2.4), this assumption may not hold. Accordingly, in this
section, our aim is to analyze the convergence of Algorithm 2 when X is unbounded. To this
end, we consider the following main assumption.

Assumption 2.5.1 Consider Problem (P1) under the following conditions:
(a) The set Xi is nonempty, closed, and convex for all i = 1, . . . , d.
(b) The function f is continuously differentiable and µf–strongly convex over X.
(c) The mapping F : Rn → Rn is continuous and monotone over X.
(d) The solution set SOL(X,F ) is nonempty.

Remark 2.5.1 (Existence and uniqueness of the optimal solution) Under Assump-
tion 2.5.1, the constraint set of Problem (P1), i.e., SOL(X,F ), is nonempty, closed, and con-
vex. The convexity of this set is implied by Theorem 2.3.5 in [30] and its closedness property
is obtained by the continuity of the mapping F and closedness of the set X. Because in
the Problem (P1), the objective function f is strongly convex and that the constraint set is
nonempty, closed, and convex, we conclude from Proposition 1.1.2 in [14] that the Problem
(P1) has a unique optimal solution. Throughout this section, we let x∗ denote this unique
optimal solution.

2.5.1 Preliminaries

In this part, we provide preliminary results that will be used in the convergence analysis.
We begin by defining a generalized variant of the Tikhonov trajectory that is associated with
the problem of interest in this chapter.

Definition 2.5.1 (Tikhonov trajectory) Consider the Problem (P1) under Assumption
2.5.1. Let {ηk} be a sequence of strictly positive scalars for all k ≥ 0, and x∗ηk ∈ X denote the
unique solution to the regularized variational inequality problem given by VI (X,F + ηk∇f).
Then, the sequence

{
x∗ηk
}

is defined as the Tikhonov trajectory associated with the Problem
(P1).

Remark 2.5.2 The uniqueness of the solution of VI (X,F + ηk∇f) in Definition 2.5.1 is due
to the strong monotonicity of the mapping F +ηk∇f and closedness and convexity of the set
X (see Theorem 2.3.3 in [30]). Definition 2.5.1 generalizes the notion of Tikhonov trajectory
provided in [30] such that x∗ηk is a solution to the regularized problem VI (X,F + ηkIn). This
is indeed the special case where we choose f(x) := 1

2
‖x‖2 in Definition 2.5.1.

To analyze the convergence, we utilize the properties of the Tikhonov trajectory. The follow-
ing result ascertains the asymptotic convergence of this trajectory to the optimal solution of
the Problem (P1). It also provides an upper bound on the error between any two successive
vectors of the trajectory.
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Lemma 2.5.1 Consider Definition 2.5.1 and let Assumption 2.5.1 hold. Let {ηk} be a
sequence such that limk→∞ ηk = 0 and ηk > 0 for all k ≥ 0. Then we have
(a) The Tikhonov trajectory {x∗ηk} converges to a unique limit point, that is x∗.

(b) There exists C̄f > 0 such that
∥∥∥x∗ηk − x∗ηk−1

∥∥∥ ≤ C̄f
µf

∣∣∣1− ηk−1

ηk

∣∣∣ for all k ≥ 1.

Proof. See Appendix A.7.

The following lemmas will be employed to establish the asymptotic convergence result.

Lemma 2.5.2 (Theorem 6, page 75 in [54]) Let {ut} ⊂ Rn denote a sequence of vectors
where limt→∞ ut = û. Also, let {αk} denote a sequence of strictly positive scalars such that∑∞

k=0 αk =∞. Suppose vk ∈ Rn is defined by vk ,
∑k
t=0 αtut∑k
t=0 αt

for all k ≥ 0. Then, lim
k→∞

vk = û.

Lemma 2.5.3 (Lemma 10, page 49 in [69]) Let {vk} be a sequence of nonnegative ran-
dom variables, where E[v0] <∞, and let {αk} and {βk} be deterministic scalar sequences such
that E[vk+1|v0, . . . , vk] ≤ (1 − αk)vk + βk for all k ≥ 0, 0 ≤ αk ≤ 1, βk ≥ 0,

∑∞
k=0 αk = ∞,∑∞

k=0 βk <∞, and limk→∞
βk
αk

= 0. Then, vk → 0 almost surely and lim
k→∞

E[vk] = 0.

2.5.2 Convergence Analysis

As a key step toward performing the convergence analysis for Algorithm 2 when the set X
is unbounded, next we derive a recursive inequality for the distance between the generated
sequence {xk} by the algorithm and the Tikhonov trajectory {x∗ηk}. To this end, we first
make the following assumption.

Assumption 2.5.2 Consider the Problem (P1) under the following assumptions:
(a) There exist nonnegative scalars LF and BF such that for all x, y ∈ X

‖F (x)− F (y)‖2 ≤ L2
F‖x− y‖2 +BF .

(b) The gradient mapping ∇f is Lipschitz with parameter Lf > 0.

Remark 2.5.3 By allowing LF or BF to be zero, Assumption 2.5.2 provides a unifying
structure for considering both smooth and nonsmooth cases. In particular, when LF = 0,
part (a) refers to a bounded, but possibly non-Lipschitzian mapping F . Also, when BF = 0,
part (a) refers to a Lipschitzian, but possibly unbounded mapping F .

The following recursive relation will play a key role in establishing the convergence.

Lemma 2.5.4 (A recursive error bound for Algorithm 2) Consider the sequence {xk}
in Algorithm 2. Let Assumption 2.5.1, Assumption 2.3.2, and Assumption 2.5.2 hold.
Suppose {γk} and {ηk} are nonincreasing and strictly positive where limk→∞ ηk = 0 and
γk
ηk
≤ µfpmin

2pmax(L2
F+η20L

2
f)

for all k ≥ 0. Then, for all k ≥ 1, we have

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤pmax
pmin

(
1− pminµfγkηk

2

)
D
(
xk, x

∗
ηk−1

)
+
C̄2
f (µfγ0η0 + 2/pmin)

µ3
f pminγkηk

(
ηk−1

ηk
− 1

)2

+ 2γ2
kBF . (2.5.1)
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Proof. From Definition 2.3.1, we have

D
(
xk+1, x

∗
ηk

)
= p−1

ik

∥∥∥x(ik)
k+1 − x

∗(ik)
ηk

∥∥∥2

+
d∑

i=1, i 6=ik

p−1
i

∥∥∥x(i)
k − x

∗(i)
ηk

∥∥∥2

. (2.5.2)

Next, we find a bound on the term
∥∥∥x(ik)

k+1 − x∗
(ik)

ηk

∥∥∥2

. From the properties of the natu-

ral map (cf. Proposition 1.5.8 in [30]), Definition 2.3.3, and that x∗ηk ∈ X, we have

x∗ηk = PX
(
x∗ηk − γkGk

(
x∗ηk
))

. From Assumption 2.5.1(a) and that x∗ηk ∈ SOL (X,Gk) ⊆ X,

we have x∗
(ik)

ηk
∈ Xik . Invoking the nonexpansiveness property of the projection mapping,

equation (2.3.1), and the preceding relation, we obtain∥∥∥x(ik)
k+1 − x

∗(ik)
ηk

∥∥∥2

≤
∥∥∥x(ik)

k − γkGk,ik (xk)− x∗
(ik)

ηk
+ γkGk,ik

(
x∗ηk
)∥∥∥2

.

Combining the preceding relation with equation (2.5.2), we obtain

D
(
xk+1, x

∗
ηk

)
≤

d∑
i=1, i 6=ik

p−1
i

∥∥∥x(i)
k − x

∗(i)
ηk

∥∥∥2

+ p−1
ik

∥∥∥x(ik)
k − x∗(ik)ηk

∥∥∥2

− 2 p−1
ik
γk

(
x

(ik)
k − x∗(ik)ηk

)T (
Gk,ik (xk)−Gk,ik

(
x∗ηk
))

+ p−1
ik
γ2
k

∥∥Gk,ik (xk)−Gk,ik

(
x∗ηk
)∥∥2

.

Invoking Definition 2.3.1, from the preceding relation we obtain

D
(
xk+1, x

∗
ηk

)
≤ D

(
xk, x

∗
ηk

)
− 2 p−1

ik
γk

(
x

(ik)
k − x∗(ik)ηk

)T (
Gk,ik (xk)−Gk,ik

(
x∗ηk
))

+ p−1
ik
γ2
k

∥∥Gk,ik (xk)−Gk,ik

(
x∗ηk
)∥∥2

.

Taking the conditional expectation from the both sides of preceding relation and noting that
D
(
xk, x

∗
ηk

)
is Fk–measurable, we obtain the following inequality

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ D

(
xk, x

∗
ηk

)
+ γ2

kE
[
p−1
ik

∥∥Gk,ik (xk)−Gk,ik

(
x∗ηk
)∥∥2
]

− 2γkE

[
p−1
ik

(
x

(ik)
k − x∗(ik)ηk

)T (
Gk,ik (xk)−Gk,ik

(
x∗ηk
))]

. (2.5.3)

Next, we estimate the second and third expectations in the preceding relation

E

[
p−1
ik

(
x

(ik)
k − x∗(ik)ηk

)T (
Gk,ik (xk)−Gk,ik

(
x∗ηk
))]

=
d∑
i=1

pip
−1
i

(
x

(i)
k − x

∗(i)
ηk

)T (
Gk,i (xk)−Gk,i

(
x∗ηk
))

=
(
xk − x∗ηk

)T (
Gk(xk)−Gk

(
x∗ηk
))
. (2.5.4)
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We can also write

E
[
p−1
ik

∥∥Gk,ik (xk)−Gk,ik

(
x∗ηk
)∥∥2
]

=
d∑
i=1

pip
−1
i

∥∥Gk,i (xk)−Gk,i

(
x∗ηk
)∥∥2

=
∥∥Gk (xk)−Gk

(
x∗ηk
)∥∥2

. (2.5.5)

From Assumption 2.5.2, taking into account that Gk is (ηkµf )–strongly monotone, and com-
bining equation (2.5.3), equation (2.5.4), and equation (2.5.5) we obtain

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ D

(
xk, x

∗
ηk

)
− 2µfγkηk

∥∥xk − x∗ηk∥∥2

+ 2γ2
k

((
L2
F + η2

kL
2
f

) ∥∥xk − x∗ηk∥∥2
+BF

)
.

From Remark 2.3.3 and that {ηk} is a nonincreasing sequence, we obtain

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤
(
1− 2µfγkηkpmin + 2γ2

kpmax
(
L2
F + η0

2L2
f

))
D
(
xk, x

∗
ηk

)
+ 2γ2

kBF .

From the assumption γk ≤ µfηkpmin

2pmax(L2
F+η20L

2
f)

and the preceding inequality, we obtain

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ (1− µfγkηkpmin)D

(
xk, x

∗
ηk

)
+ 2γ2

kBF . (2.5.6)

The preceding relation is not yet fully recursive as the term x∗ηk on the right-hand side must

change to x∗ηk−1
. Next, we find an upper bound for D

(
xk, x

∗
ηk

)
in terms of D

(
xk, x

∗
ηk−1

)
.

Note that we have ‖u+v‖2 ≤ (1+θ)‖u‖2 +
(
1 + 1

θ

)
‖v‖2 for any vectors u, v ∈ Rn and θ > 0.

Utilizing this inequality, by setting u := xk − x∗ηk−1
, v := x∗ηk−1

− x∗ηk , and θ :=
pminµfγkηk

2
we

obtain ∥∥xk − x∗ηk∥∥2 ≤
(

1 +
pminµfγkηk

2

)∥∥∥xk − x∗ηk−1

∥∥∥2

+

(
1 +

2

pminµfγkηk

)∥∥∥x∗ηk−1
− x∗ηk

∥∥∥2

.

Together with Lemma 2.5.1(b) and Remark 2.3.3, we have

pminD
(
xk, x

∗
ηk

)
≤
(

1 +
pminµfγkηk

2

)
pmaxD

(
xk, x

∗
ηk−1

)
+

(
1 +

2

pminµfγkηk

)
C̄2
f

µ2
f

(
1− ηk−1

ηk

)2

.

Dividing both sides by pmin and substituting this in equation (2.5.6), we obtain

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ pmax

pmin
(1− γkηkµfpmin)

(
1 +

pminµfγkηk
2

)
D
(
xk, x

∗
ηk−1

)
+

C̄2
f

µ2
f pmin

(
1 +

2

pminµfγkηk

)(
1− ηk−1

ηk

)2

+ 2γ2
kBF .

equation (2.5.1) is obtained by noting that (1− γkηkµfpmin)
(
1 +

pminµfγkηk
2

)
≤ 1− pminµfγkηk

2
.
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In the following result, we provide a class of update rules for the stepsize and the regu-
larization sequences such that Algorithm 2 attains both an almost sure convergence and a
convergence in the mean sense.

Theorem 2.5.1 (Convergence of Algorithm 2 when X is unbounded) Consider
problem (P1). Let the sequence {x̄k} be generated by Algorithm 2. Let Assumption 2.5.1,
Assumption 2.3.2, and Assumption 2.5.2 hold. Suppose the random block-coordinate ik in
Assumption 2.3.2 is drawn from a uniform distribution for all k ≥ 0. Let the stepsize {γk}
and the regularization parameter {ηk} be given by γk := γ0(k + 1)−a and ηk := η0(k + 1)−b,
respectively, where γ0 > 0, η0 > 0, 0 < b < 0.5 < a, and a + b < 1. Then, the following
results hold for all 0 ≤ r < 1:
(i) The sequence {x̄k} converges almost surely to the unique optimal solution of Problem
(P1).
(ii) We have that limk→∞ E[‖x̄k − x∗‖] = 0.

Proof. The proof is done in two main steps. In the first step, we show that the non-averaged
sequence {xk} converges to x∗ in an almost sure sense and that limk→∞ E[‖xk − x∗‖] = 0. In
the second step, we show that these results hold for the weighted average sequence {x̄k} as
well.
Step 1: The proof of this step is done by applying Lemma 2.5.3 to the recursive inequality
equation (2.5.1) with pi := 1

d
for all i ∈ {1, . . . , d}. The details are as follows. First, we note

that from the update rules of γk and ηk and that a > b, we have limk→∞
γk
ηk

= 0. Thus, there

exists an integer k0 ≥ 1 such that for all k ≥ k0, we have γk
ηk
≤ µfpmin

2pmax(L2
F+η20L

2
f)

. This implies

that the conditions of Lemma 2.5.4 are satisfied and the inequality equation (2.5.1) holds
for all k ≥ k0. To apply Lemma 2.5.3, we define the following terms for all k ≥ 1:

vk , D
(
xk, x

∗
ηk−1

)
, αk ,

µfγkηk
2d

,

βk ,

(
dC̄2

f (µfη0γ0 + 2d)

µ3
fγkηk

)(
ηk−1

ηk
− 1

)2

+ 2γ2
kBF .

Since γkηk → 0, there exists an integer k1 ≥ k0 such that for any k ≥ k1 we have 0 ≤ αk ≤ 1.
From the assumption that a + b < 1, we have that

∑∞
k=k1

αk = ∞. Next, we show that∑∞
k=k1

βk <∞. From the update rules of γk and ηk and invoking the Taylor series expansion,
for k ≥ 2 we can write

ηk−1

ηk
− 1 =

(
1 +

1

k

)b
− 1 =

(
1 +

b

k
+
b(b− 1)

2!

1

k2
+
b(b− 1)(b− 2)

3!

1

k3
+ ...

)
− 1

=
b

k

(
1− (1− b)

2!k
+

(1− b)(2− b)
3!k2

− (1− b)(2− b)(3− b)
4!k3

+ ...

)
≤ b

k

∞∑
i=0

1

k2i
,

where the inequality is obtained using b < 1 and neglecting the negative terms. This implies

that ηk−1

ηk
− 1 ≤ b

k(1−k−2)
and thus

(
ηk−1

ηk
− 1
)2

≤
(

4b
3k

)2 ≤ 2b2

k2
for all k ≥ 2. Using the

preceding relation, invoking the definition of βk, and the update formulas of γk and ηk, we
have that βk = O

(
k−(2−a−b))+O (k−2a). From the assumptions on a and b, we obtain that
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∑∞
k=k1

βk < ∞. Also, from the assumption a > b, we get limk→∞ βk/αk = 0. Therefore, all

conditions of Lemma 2.5.3 are satisfied. As such, we have that D
(
xk, x

∗
ηk−1

)
→ 0 almost

surely and also limk→∞ E
[
D
(
xk, x

∗
ηk−1

)]
= 0. From Remark 2.3.3 and that ik is drawn

uniformly, we obtain

‖xk − x∗‖2 ≤ 2
∥∥∥xk − x∗ηk−1

∥∥∥2

+ 2
∥∥∥x∗ηk−1

− x∗
∥∥∥2

=
2

d
D
(
xk, x

∗
ηk−1

)
+ 2

∥∥∥x∗ηk−1
− x∗

∥∥∥2

, (2.5.7)

where the first inequality is obtained from the triangle inequality. Taking the limit from
both sides of the preceding relation when k → ∞ and invoking Lemma 2.5.1(a), we ob-

tain limk→∞ ‖xk − x∗‖2 ≤ 2
d

limk→∞D
(
xk, x

∗
ηk−1

)
. From the almost sure convergence of

D
(
xk, x

∗
ηk−1

)
to zero, we conclude that {xk} converges to x∗ almost surely. To show

the convergence in mean, let us take the expectation from both sides of equation (2.5.7).
Noting that the Tikhonov trajectory is deterministic, we obtain that E

[
‖xk − x∗‖2] ≤

2
d
E
[
D
(
xk, x

∗
ηk−1

)]
+ 2
∥∥∥x∗ηk−1

− x∗
∥∥∥2

. Now, taking the limit from both sides of the preceding

relation when k →∞, invoking Lemma 2.5.1(a), and recalling limk→∞ E
[
D
(
xk, x

∗
ηk−1

)]
= 0,

we conclude that limk→∞ E
[
‖xk − x∗‖2] = 0. Invoking Jensen’s inequality, we can conclude

that limk→∞ E[‖xk − x∗‖] = 0.
Step 2: Invoking Lemma 2.3.1 and using the triangle inequality, we have

‖x̄k − x∗‖ =

∥∥∥∥∥
k∑
t=0

λt,kxt − x∗
∥∥∥∥∥ =

∥∥∥∥∥
k∑
t=0

λt,k (xt − x∗)

∥∥∥∥∥ ≤
k∑
t=0

λt,k ‖xt − x∗‖ , (2.5.8)

where λt,k , γrt /
∑k

j=0 γ
r
j . In view of Lemma 2.5.2, let us define ut , ‖xt − x∗‖, vk ,∑k

t=0 λt,k ‖xt − x∗‖, and αt , γrt . Note that since ar ≤ 1, we have
∑∞

t=0 αt = γr0
∑∞

t=0(t +

1)−ar =∞. Also, from Step 1 we have that û , limt→∞ ut = 0 in an almost sure sense. Thus,
from Lemma 2.5.2, we conclude that {vk} converges to zero almost surely. Thus, equation
(2.5.8) implies that {x̄k} converges to x∗ almost surely. Next, we apply Lemma 2.5.2 again,
but in a slightly different fashion to show that limk→∞ E[‖x̄k − x∗‖] = 0. From equation
(2.5.8), we have

E[‖x̄k − x∗‖]≤
k∑
t=0

λt,kE[‖xt − x∗‖] . (2.5.9)

In view of Lemma 2.5.2, let us define ut , E[‖xt − x∗‖], vk ,
∑k

t=0 λt,kE[‖xt − x∗‖], and

αt , γrt . First, note that from Step 1, we have û , limt→∞ ut = 0. In view of Lemma 2.5.2,
limk→∞ vk = 0. Thus, from equation (2.5.9), we conclude that limk→∞ E[‖x̄k − x∗‖] = 0.
Hence, the proof is completed.
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2.6 Experimental Results

In this section, we revisit the problem of finding the best Nash equilibrium formulated as
in Problem (1.1.1). We consider a case where the Nash game is characterized as a Cournot
competition over a network. Cournot game is one of the most extensively studied economic
models for competition among multiple firms, including imperfectly competitive power mar-
kets as well as rate control over communication networks [30, 44, 46]. Consider a collection
of d firms who compete to sell a commodity over a network with J nodes. The decision
of each firm i ∈ {1, . . . , d} includes variables yij and sij, denoting the generation and sales
of the firm i at the node j, respectively. Considering the definitions yi , (yi1; . . . ; yiJ)
and si , (si1; . . . ; siJ), we can compactly denote the decision variable of the ith firm as
x(i) , (yi; si) ∈ R2J . The goal of the ith firm lies in minimizing the net cost function
gi
(
x(i), x(−i)) over the network defined as follows

gi
(
x(i);x(−i)) , J∑

j=1

cij(yij)−
J∑
j=1

sijpj (s̄j) ,

where cij : R → R denotes the production cost function of the firm i at the node j, s̄j ,∑d
i=1 sij denotes the aggregate sales from all the firms at the node j, and pj : R→ R denotes

the price function with respect to the aggregate sales s̄j at the node j. We assume that the
cost functions are linear and the price functions are given as pj (s̄j) , αj − βj (s̄j)

σ where
σ ≥ 1 and αj and βj are positive scalars. Throughout, we assume that the transportation
costs are negligible. We let the generation be capacitated as yij ≤ Bij, where Bij is a positive
scalar for i ∈ {1, . . . , d} and j ∈ {1, . . . , J}. Lastly, for any firm i, the total sales must match
with the total generation. Consequently, the strategy set of the firm i is given as follows

Xi ,

{
(yi; si) |

J∑
j=1

yij =
J∑
j=1

sij, yij, sij ≥ 0, yij ≤ Bij, for all j = 1, . . . , J

}
.

Following the Problem (1.1.1), we employ the Marshallian aggregate surplus function defined
as f(x) ,

∑d
i=1 gi

(
x(i);x(−i)). We note that the convexity of the function f is implied by

σ ≥ 1 and the monotonicity of mapping F is guaranteed when either σ = 1, or when
1 < σ ≤ 3 and d ≤ 3σ−1

σ−1
(cf. section 4 in [46]).

The set-up. In the experiment, we consider a Cournot game among 4 firms over 3 nodes.
We let the slopes of the linear cost functions take values between 10 and 50. We assume
that αj := 50 and βj := 0.05 for all j, Bij := 120 for all i and j, and σ := 1.01. To report
the performance of Algorithm 2 in terms of the suboptimality, we plot a sample average
approximation of E[f (x̄N)] using the sample size of 25. With regard to the infeasibility,
we compute a sample average approximation of E[GAP (x̄N)] using the same sample size.
Following Remark 2.4.1, we use γk := γ0√

k+1
and ηk := η0

4√k+1
. To select the block-coordinates

in Algorithm 2, we use a discrete uniform distribution.
Results and insights. Figure 3 shows the experimental results. Here, in the top three
figures, we compare the performance of Algorithm 2 with that of Algorithm 1 in terms
of infeasibility measured by the sample averaged gap function. Importantly, the proposed
algorithm performs significantly better than the SR scheme. This claim is supported by
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Figure 3: Algorithm 2 in terms of infeasibility and the objective function value

considering the different values of the parameter r and the initial conditions of the proposed
scheme in terms of the initial stepsize γ0 and the initial regularization parameter η0. The
three figures in the bottom row of Figure 3 demonstrate the performance of Algorithm 2 in
terms of reaching a stability in the objective values. This includes the Marshallian objective
function f as well as the individual objective functions gi. Note that all the objective
values in Figure 3 appear to reach to a desired level of stability after around 60 seconds.
This interesting observation could be linked to the impact of the averaging scheme equation
(2.3.2). Generally, it is expected that the trajectories of the objective function values in
Figure 3 be noisy due to the randomness in the block-coordinate selection rule. However,
the weighted averaging scheme employed in Algorithm 2 appears to induce much robustness
with respect to this uncertainty, resulting in an accelerated convergence.

2.7 Conclusions

Motivated by the applications arising from noncooperative multi-agent networks, we consider
a class of optimization problems with Cartesian variational inequality (CVI) constraints. The
computational complexity of the solution methods for addressing this class of problems ap-
pears to be unknown. We develop a single-timescale algorithm equipped with non-asymptotic
suboptimality and infeasibility convergence rates. Moreover, in the case where the set as-
sociated with the CVI is unbounded, we establish the global convergence of the sequence
generated by the proposed algorithm. We apply the method in computing the best Nash
equilibrium in a networked Cournot competition. Our experimental results show that the
proposed method outperforms the classical sequential regularized schemes.
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CHAPTER III

DISTRIBUTED OPTIMIZATION PROBLEMS WITH VARIATIONAL
INEQUALITY CONSTRAINTS

In this chapter, we consider a class of constrained multi-agent optimization problems
where the goal is to cooperatively minimize a sum of agent-specific nondifferentiable merely
convex functions. The constraint set is characterized as a variational inequality (VI) prob-
lem where each agent is associated with a local monotone mapping. Section 3.1 includes
the problem formulation and Section 3.2 summarizes the literature for addressing problem
(P2). In addressing the model of interest, our contributions are as follows: (i) We develop an
iteratively regularized incremental gradient method where at each iteration, agents commu-
nicate over a cycle graph to update their solution iterates using their local information about
the objective and the mapping. The proposed method is single-timescale in the sense that
it does not involve any excessive hard-to-project computation per iteration. (ii) We derive
non-asymptotic agent-wise convergence rates for the suboptimality of the global objective
function and infeasibility of the VI constraints measured by a suitably defined dual gap
function. (iii) To analyze the convergence rate in the solution space, assuming the objective
function is strongly convex and smooth, we derive non-asymptotic agent-wise rates on an
error metric that relates the generated iterates with the Tikhonov trajectory. The proposed
method in Section 3.3 appears to be the first fully iterative scheme equipped with iteration
complexity that can address distributed optimization problems with VI constraints. Section
3.4 includes the non-asymptotic agent-wise convergence rate analysis for the suboptimality of
the global objective function and infeasibility of the VI constraints. Section 3.5 provides the
non-asymptotic agent-wise rates of the generated iterates in comparison with the Tikhonov
trajectory. In Section 3.6, we provide preliminary numerical experiments for computing the
best equilibrium in a transportation network problem.

3.1 Problem Formulation

The goal in this chapter is to tackle some of the shortcomings in distributed constrained
optimization through considering a new unifying mathematical framework described as fol-
lows. Consider a system with m agents where the ith agent is associated with a component
function fi : Rn → R and a mapping Fi : Rn → Rn. Our goal is to solve the following

The content of this chapter is submitted to IEEE Transactions on Automatic Control [50].
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distributed constrained optimization problem

minimize
∑m

i=1
fi(x) (P2)

subject to x ∈ SOL
(
X,
∑m

i=1
Fi

)
,

where X ⊆ Rn is a set and SOL (X,
∑m

i=1 Fi) denotes the solution set of the variational
inequality VI (X,

∑m
i=1 Fi) defined as follows: x ∈ X solves VI (X,

∑m
i=1 Fi) if we have (y −

x)T
∑m

i=1 Fi(x) ≥ 0 for all y ∈ X. Problem (P2) represents a distributed optimization
framework in the sense that the information about fi and Fi is locally known to the ith

agent, while the set X is globally known to all the agents. We consider the case where the
local functions fi are nondifferentiable and merely convex, and mappings Fi are single-valued,
continuous, and merely monotone.

3.2 Existing Methods and Research Gap

In addressing the proposed formulation (P2), our focus in this chapter lies in the develop-
ment of an incremental gradient (IG) method. IG methods are among popular avenues for

Table 1: Comparison of incremental gradient schemes for solving finite-sum problems

Reference Method Problem class Problem formulation Convergence rate(s)

[62] Projected IG fi ∈ C0,0
0,L minx∈X

∑m
i=1 fi(x) O

(
1√
k

)
[17, 34] IAG fi ∈ C1,1

µ,L minx∈Rn
∑m
i=1 fi(x) O

(
ρk
)

[29] SAGA fi ∈ C1,1
0,L, C

1,1
µ,L minx∈X

∑m
i=1 fi(x) O

(
1
k

)
, O

(
ρk
)

[87] Proximal IAG fi ∈ C1,1
µ,L minx∈X

∑m
i=1 fi(x) O

(
ρk
)

[35] IG fi ∈ C2,1
µ,L minx∈Rn

∑m
i=1 fi(x) O

(
1
k

)
, O

(
1
k2

)
[42] Primal-Dual IG fi ∈ C0,0

0,L
minx∈X

∑m
i=1 fi(x)

Ax− b ∈ −K
O
(
1
k

)
This
work

pair-IG
fi ∈ C0,0

0,L,
Fi is mono-
tone

min
∑m
i=1 fi(x)

x ∈
SOL (X,

∑m
i=1 Fi)

suboptimality:
O
(
kb−0.5

)
infeasibility: O

(
k−b
)

where 0 < b < 0.5

addressing the classical distributed optimization model (1.2.1) and they have received an
increasing attention in recent years in addressing applications arising in sensor networks and
machine learning [34, 35, 62, 89]. In these schemes, utilizing the additive structure of the
problem, the algorithm cycles through the data blocks and updates the local estimates of
the optimal solution in a sequential manner [14]. While the first variants of IG schemes
find their roots in addressing neural networks as early as in the 1980s [15], the complexity
analysis of these schemes has been a trending research topic in the fields of control and
machine learning in the past two decades. In addressing the constrained problems with
easy-to-project constraint sets, the projected incremental gradient (P-IG) method and its
subgradient variant were developed [63]. Considering the smooth case, the P-IG scheme is
described as follows. Given an initial point x0,1 ∈ X where X ⊆ Rn denotes the constraint
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set, for each k ≥ 0, consider the update rules given by

xk,i+1 := PX (xk,i − γk∇fi (xk,i)) , for i ∈ [m],

xk+1,1 := xk,m+1,

where xk,i ∈ Rn denotes agent i’s local copy of the decision variables at iteration k, P de-
notes the Euclidean projection operator defined as PX(z) , argminx∈X‖x− z‖2, and γk > 0
denotes the stepsize parameter. To motivate our research, we provide an overview of the dif-
ferent variants of existing IG schemes and then, highlight some of the shortcomings of these
methods in the constrained regime, in particular, in addressing VI constraints in (P2). Re-
cently, under the assumption of strong convexity and twice continuous differentiability of the
objective function, and also, boundedness of the generated iterates, the standard IG method
was proved to converge with the rate O(1/k) in the unconstrained case [35]. This is an im-
provement to the previously known rate of O(1/

√
k) for the merely convex case. Accelerated

variants of IG schemes with provable convergence speeds were also developed, including the
incremental aggregated gradient method (IAG) [17, 34], SAG [74], and SAGA [29]. While
addressing the merely convex case, SAGA using averaging achieves a sublinear convergence
rate, assuming strong convexity and smoothness, this is improved for non-averaging variants
of SAGA and IAG to a linear rate. Table 1 presents a summary of the standard IG schemes
in addressing unconstrained and constrained finite-sum problems. As evidenced, most of
the past research efforts on the design and analysis of algorithms for distributed constrained
optimization problems have focused on addressing easy-to-project sets or sets with linear
functional inequalities. This has been done through employing duality theory, projection,
or penalty methods (see [6,21,65,79]). Also, a celebrated variant of the dual based schemes
is the alternating direction method of multipliers (ADMM) (e.g., see [60, 84]). Other re-
lated papers that have utilized duality theory in distributed constrained regimes include
[6, 13, 36]. Despite the extensive work in the area of constrained optimization, no provably
convergent iterative method exits in the literature that can be employed to solve distributed
optimization problems with VI constraints. In fact, we are unaware of any IG methods with
complexity guarantees that can be employed for addressing any of the individual subclass
problems, specifically Examples 5, 6, and 7 from Chapter 1.

3.3 Algorithm Outline

In this section we present the main assumptions on problem (P2), the outline of the proposed
algorithm, and a few preliminary results that will be applied later in the rate analysis.
Throughout this chapter, we let f(x) ,

∑m
i=1 fi(x) and F (x) ,

∑m
i=1 Fi(x) denote the

global objective and global mapping in problem (P2), respectively.

Assumption 3.3.1 (Properties of problem (P2)) Suppose the following conditions hold.
(a) Function fi : Rn → R is real-valued and merely convex (possibly nondifferentiable) on its
domain for all i ∈ [m].
(b) Mapping Fi : Rn → Rn is real-valued, continuous, and merely monotone on its domain
for all i ∈ [m].
(c) The set X ⊆ int (dom(f) ∩ dom(F )) is nonempty, convex, and compact.
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Remark 3.3.1 Under Assumption 3.3.1 we have the following immediate results. From
Theorem 2.3.5 and Corollary 2.2.5 in [30], the set SOL(X,F ) is nonempty, convex, and
compact. For all i, the nonemptiness of the subdifferential set ∂fi(x) for any x ∈ int(dom(fi))
is implied from Theorem 3.14 in [9]. Also, Theorem 3.16 in [9] implies that fi has bounded
subgradients over the compact set X. Further, mapping Fi is bounded over the set X.

In view of compactness of the set X and continuity of f , throughout this chapter we let posi-
tive scalars MX <∞ and Mf <∞ be defined as MX , supx∈X ‖x‖ and Mf , supx∈X |f(x)|,
respectively. We also let f ∗ ∈ R denote the optimal objective value of problem (P2). In view
of Remark 3.3.1, throughout we let scalars CF > 0 and Cf > 0 be defined such that for all

i ∈ [m] and for all x ∈ X we have ‖Fi(x)‖ ≤ CF
m

, and
∥∥∥∇̃fi (x)

∥∥∥ ≤ Cf
m

for all ∇̃fi (x) ∈ ∂fi(x).

In the following, we comment on the Lipschitz continuity of the local and global objective
functions.

Remark 3.3.2 Under Assumption 3.3.1 and from Theorem 3.61 in [9], function fi is Lip-

schitz continuous with the parameter
Cf
m

over the set X, i.e., for all i ∈ [m] we have

|fi(x)− fi(y)| ≤ Cf
m
‖x− y‖ for all x, y ∈ X. We also have ‖∇̃f(x)‖ ≤ Cf for all x ∈ X and

all ∇̃f(x) ∈ ∂f(x). This implies that |f(x)− f(y)| ≤ Cf‖x− y‖ for all x, y ∈ X.

We now present an overview of the proposed method given by Algorithm 4. We use vector
xk,i to denote the local copy of the global decision vector maintained by agent i at iteration
k. At each iteration, agents update their iterates in a cyclic manner. Each agent i ∈ [m]
uses only its local information including the subgradient of the function fi and mapping
Fi and evaluates the regularized mapping Fi + ηk∇̃fi at xk,i. Here, γk and ηk denote the
stepsize and the regularization parameter at iteration k, respectively. Importantly, through
employing an iterative regularization technique, we let both of these parameters be updated
iteratively at suitable prescribed rates (cf. Theorem 3.4.1). Each agent computes and returns
a weighted averaging iterative denoted by x̄k,i where the weights are characterized in terms
of the stepsize γk and an arbitrary scalar r ∈ [0, 1). Notably, this averaging technique is
carried out in a distributed fashion in the sense that agents do not require to start from the
same initialized averaging iterate. This is in contrast with the standard incremental gradient
schemes where the averaging scheme is limited to a centralized initialization. Next we show
that for any i ∈ [m], x̄N,i is indeed a well-defined weighted average of x̄0,i and the iterates
xk−1,i+1 for k ∈ [N ].

Lemma 3.3.1 Consider the sequence {x̄k,i} generated by agent i ∈ [m] in Algorithm 4. For

k ∈ {0, . . . , N}, let us define the weights λk,N , γrk∑N
j=0 γ

r
j

. Then for all i ∈ [m] we have

x̄N,i = λ0,N x̄0,i +
N∑
k=1

λk,Nxk−1,i+1.

Further, for a convex set X we have x̄N,i ∈ X.

Proof. We use induction on N ≥ 0 to show the equation. For N = 0, from λ0,0 = 1 we have
x̄0,i = λ0,0x̄0,i. Now, assume that the equation holds for some N ≥ 0. This implies

x̄N,i = λ0,N x̄0,i +
N∑
k=1

λk,Nxk−1,i+1 =
γr0x̄0,i +

∑N
k=1 γ

r
kxk−1,i+1∑N

j=0 γ
r
j

. (3.3.3)
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Algorithm 4 projected averaging iteratively regularized Incremental subGradient (pair-IG)

input: Agent 1 arbitrarily chooses an initial vector x0,1 ∈ X. Agent i arbitrarily chooses
x̄0,i ∈ X, for all i ∈ [m]. Let S0 := γr0 with an arbitrary 0 ≤ r < 1.
for k = 0, 1, . . . , N − 1 do

Update Sk+1 := Sk + γrk+1

for i = 1, . . . ,m do

xk,i+1 := PX
(
xk,i − γk

(
Fi (xk,i) + ηk∇̃fi (xk,i)

))
(3.3.1)

x̄k+1,i :=
(

Sk
Sk+1

)
x̄k,i +

(
γrk+1

Sk+1

)
xk,i+1 (3.3.2)

end for
Set xk+1,1 := xk,m+1

end for
return: x̄N,i for all i ∈ [m]

Using equation (3.3.3), we now show that the hypothesis statement holds for any N + 1.

From equation (3.3.2) we have x̄N+1,i =
(

SN
SN+1

)
x̄N,i+

(
γrN+1

SN+1

)
xN,i+1. Note that from equation

(3.3.2) in Algorithm 4 we have Sk =
∑k

t=0 γ
r
t for all k ≥ 0. From this and using equation

(3.3.3) we obtain

x̄N+1,i =

( ∑N
t=0 γ

r
t∑N+1

t=0 γrt

)
x̄N,i +

(
γrN+1∑N+1
t=0 γrt

)
xN,i+1 =

γr0x̄0,i +
∑N

k=1 γ
r
kxk−1,i+1 + γrN+1xN,i+1∑N+1
t=0 γrt

=
γr0x̄0,i +

∑N+1
k=1 γ

r
kxk−1,i+1∑N+1

t=0 γrt
.

From the definition of λk,N we conclude that the hypothesis holds for N + 1 and thus, the
result holds for all N ≥ 0. To show the second part, note that from the initialization
in Algorithm 4 and the projection in equation (3.3.1), we have x̄0,i, xk−1,i+1 ∈ X for all i
and k ≥ 1. From the first part, x̄N,i is a convex combination of x̄0,i, x0,i+1, . . . , xN−1,i+1.
Therefore, from the convexity of the set X we conclude that x̄N,i ∈ X.

For the ease of presentation throughout the analysis, we define a sequence {xk} as follows.

Definition 3.3.1 Consider Algorithm 4. Let the sequence {xk} be defined as xk , xk−1,m+1 =
xk,1, for all k ≥ 1, with x0 , x0,1.

In the following result, we characterize the distance between the local variable of any arbitrary
agent with that of the first and the last agent at any given iteration. This result will be
utilized in the analysis.

Lemma 3.3.2 Consider Algorithm 4. Let Assumption 3.3.1 hold. Then the following in-
equalities hold for all i ∈ [m] and k ≥ 0

(a) ‖xk − xk,i‖ ≤
(i−1)γk(CF+ηkCf)

m
. (b) ‖xk,i+1 − xk+1‖ ≤

(m−i)γk(CF+ηkCf)
m

.
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Proof. (a) Let k ≥ 0 be an arbitrary integer. We use induction on i to show this result.
From Definition 3.3.1, for i = 1 and k ≥ 0 we have ‖xk − xk,1‖ = 0, implying that the result
holds for i = 1. Now suppose the hypothesis statement holds for some i ∈ [m]. We have

‖xk − xk,i+1‖ =
∥∥∥PX (xk)− PX

(
xk,i − γk

(
Fi(xk,i) + ηk∇̃fi (xk,i)

))∥∥∥
≤ ‖xk − xk,i‖+ γk

∥∥∥Fi(xk,i) + ηk∇̃fi (xk,i)
∥∥∥

≤ ‖xk − xk,i‖+
γk (CF + ηkCf )

m
≤ iγk (CF + ηkCf )

m
,

where the first inequality is obtained from the nonexpansivity property of the projection.
Therefore the hypothesis statement holds for any i and the proof of part (a) is completed.
(b) To show this result, we use downward induction on i ∈ [m]. Note that the relation
trivially holds for the base case i = m. Suppose it holds for some i ∈ {2, . . . ,m}. We show
that it holds for i− 1 as well. From Definition 3.3.1 we have

‖xk,i − xk+1‖ = ‖xk,i − xk,i+1 + xk,i+1 − xk,m+1‖
≤ ‖xk,i − xk,i+1‖+ ‖xk,i+1 − xk,m+1‖.

From equation (3.3.1), the hypothesis statement, and the nonexpansivity property of the
projection, we obtain

‖xk,i − xk+1‖ ≤
∥∥∥PX(xk,i)− PX

(
xk,i − γk

(
Fi (xk,i) + ηk∇̃fi (xk,i)

))∥∥∥
+

(m− i)γk (CF + ηkCf )

m
≤ (m− i+ 1)γk (CF + ηkCf )

m
.

This completes the proof of part (b).

We note that the generated agent-wise iterates x̄k,i in Algorithm 4, as the scheme proceeds,
may not be solutions to VI(X,F ) and so, they may not necessarily be feasible to problem
(P2). To quantify the infeasibility of these iterates, we employ a dual gap function (cf.
Chapter 1 in [30]) defined in Definition 2.3.2.

We conclude this section by presenting the following result that will be utilized in the
rate analysis.

Lemma 3.3.3 Let β ∈ [0, 1) and Γ ≥ 1 be given scalars and K be an integer. Then for all

K ≥
(

2
1

1−β − 1
)

Γ, we have

(K + Γ)1−β

2(1− β)
≤

K∑
k=0

(k + Γ)−β ≤ (K + Γ)1−β

1− β
.

Proof. See Appendix A.8.
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3.4 Rate and Complexity Analysis

In this section we present the convergence and rate analysis of the proposed method under
Assumption 3.3.1. After obtaining a preliminary inequality in Lemma 3.4.1 in terms of the
sequence generated by the last agent, in Lemma 3.4.2 we derive inequalities that relate the
global objective and the dual gap function at the iterate of other agents with those of the
last agent. Utilizing these results, in Proposition 3.4.1 we obtain agent-specific bounds on
the objective function value and the dual gap function. Consequently, in Theorem 3.4.1 we
derive convergence rate statements under suitably chosen sequences for the stepsize and the
regularization parameter.

Lemma 3.4.1 Consider Algorithm 4. Let Assumption 3.3.1 hold. Let {γk} and {ηk} be
nonincreasing and strictly positive sequences. For any arbitrary y ∈ X, for all k ≥ 0 we
have

2γrk
(
ηk (f(xk)− f(y)) + F (y)T (xk − y)

)
≤γr−1

k ‖xk − y‖2 − γr−1
k ‖xk+1 − y‖2

+ γr+1
k (CF + ηkCf )

2 . (3.4.1)

Proof. Let y ∈ X be an arbitrary vector and k ≥ 0 be fixed. From the update rule (3.3.1),
for i ∈ [m] we have

‖xk,i+1 − y‖2 =
∥∥∥PX (xk,i − γk (Fi (xk,i) + ηk∇̃fi (xk,i)

))
− PX(y)

∥∥∥2

.

Employing the nonexpansivity of the projection we have

‖xk,i+1 − y‖2 ≤
∥∥∥xk,i − γk (Fi (xk,i) + ηk∇̃fi (xk,i)

)
− y
∥∥∥2

= ‖xk,i − y‖2 + γ2
k

∥∥∥Fi (xk,i) + ηk∇̃fi (xk,i)
∥∥∥2

− 2γk

(
Fi (xk,i) + ηk∇̃fi (xk,i)

)T
(xk,i − y) .

From the triangle inequality and recalling the bounds on ∇̃fi(x) and Fi(x), we obtain

‖xk,i+1 − y‖2 ≤ ‖xk,i − y‖2 + γ2
k

(
CF + ηkCf

m

)2

+ 2γk

(
Fi (xk,i) + ηk∇̃fi (xk,i)

)T
(y − xk,i) .

(3.4.2)

The last term in the preceding relation is bounded as follows

2γk

(
Fi (xk,i) + ηk∇̃fi (xk,i)

)T
(y − xk,i)

=2γkFi (xk,i)
T (y − xk,i) + 2γkηk∇̃fi (xk,i)T (y − xk,i)

≤2γkFi (y)T (y − xk,i) + 2γkηk (fi (y)− fi (xk,i)) ,
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where the last inequality is implied from the monotonicity of Fi and convexity of fi. Com-
bining with equation (3.4.2) we have

‖xk,i+1 − y‖2 ≤‖xk,i − y‖2 + γ2
k

(
CF + ηkCf

m

)2

+ 2γkFi (y)T (y − xk,i) + 2γkηk (fi (y)− fi (xk,i)) .

Adding and subtracting 2γkFi (y)T xk + 2γkηkfi (xk) we get

‖xk,i+1 − y‖2 ≤ ‖xk,i − y‖2 + γ2
k

(
CF + ηkCf

m

)2

+ 2γkFi (y)T (y − xk) + 2γkηk (fi (y)− fi (xk))

+ 2γk

(∣∣∣Fi (y)T (xk − xk,i)
∣∣∣+ ηk |fi (xk)− fi (xk,i)|

)
.

Using the Cauchy-Schwarz inequality and Remark 3.3.2 we obtain

‖xk,i+1 − y‖2 ≤‖xk,i − y‖2 + γ2
k

(
CF + ηkCf

m

)2

+ 2γkFi (y)T (y − xk) + 2γkηk (fi (y)− fi (xk))

+ 2γk

(
CF
m
‖xk − xk,i‖+

ηkCf
m
‖xk − xk,i‖

)
.

Summing over i ∈ [m] and considering Definition 3.3.1 we have

‖xk+1 − y‖2 ≤‖xk − y‖2 +
γ2
k (CF + ηkCf )

2

m

+ 2γkF (y)T (y − xk) + 2γkηk (f (y)− f (xk))

+
2γk (CF + ηkCf )

m

m∑
i=1

‖xk − xk,i‖ .

From Lemma 3.3.2 we obtain

‖xk+1 − y‖2 ≤‖xk − y‖2 +
γ2
k (CF + ηkCf )

2

m
+ 2γkF (y)T (y − xk) + 2γkηk (f(y)− f(xk))

+
2γk (CF + ηkCf )

m

m∑
i=1

(i− 1)γk (CF + ηkCf )

m

= ‖xk − y‖2 + γ2
k (CF + ηkCf )

2 + 2γkF (y)T (y − xk)
+ 2γkηk (f(y)− f(xk)) .

Multiplying the both sides by γr−1
k we can obtain the result.

In the next result we provide inequalities that relate the objective function and the dual gap
function at the generated averaged iterate of the last agent with that of any other agent,
respectively. This result will be utilized in Proposition 3.4.1.
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Lemma 3.4.2 Consider problem (P2) and the sequences {x̄N,i} generated in Algorithm 4
for i ∈ [m] for some N ≥ 1. Let Assumption 3.3.1 hold and let {γk} and {ηk} be strictly
positive and nonincreasing sequences. Then for any i ∈ [m] we have

f(x̄N,i)− f(x̄N,m) ≤ Cfλ0,N ‖x̄0,i − x̄0,m‖+
(m− i)Cf (CF + η0Cf )

m

N∑
k=0

λk,Nγk, (3.4.3a)

GAP (x̄N,i)−GAP(x̄N,m) ≤ CFλ0,N ‖x̄0,i − x̄0,m‖+
(m− i)CF (CF + η0Cf )

m

N∑
k=0

λk,Nγk,

(3.4.3b)

where λk,N , γrk∑N
j=0 γ

r
j

for k ∈ {0, . . . , N}.

Proof. Note that the results are trivial when m = 1. Throughout, we assume that m ≥ 2.
From the Lipschitz continuity of function f from Remark 3.3.2 and invoking Lemma 3.3.1,
we can write the following for all i ∈ [m].

f(x̄N,i)− f(x̄N,m) ≤Cfλ0,N ‖x̄0,i − x̄0,m‖

+ Cf

N∑
k=1

λk,N ‖xk−1,i+1 − xk−1,m+1‖ . (3.4.4)

Next, using Lemma 3.3.2(b) for any k ≥ 1 and i ∈ [m] we have

‖xk−1,i+1 − xk−1,m+1‖ ≤
(m− i)γk−1 (CF + ηk−1Cf )

m
. (3.4.5)

From (3.4.4), (3.4.5), and the nonincreasing sequence {ηk}, we have

f(x̄N,i)− f(x̄N,m) ≤ (m− i)Cf (CF + η0Cf )

m

N∑
k=1

λk,Nγk−1

+ Cfλ0,N ‖x̄0,i − x̄0,m‖ .
Since {γk} is nonincreasing and 0 ≤ r < 1, we obtain

N∑
k=1

λk,Nγk−1 ≤
1∑N
j=0 γ

r
j

N∑
k=1

γr+1
k−1 ≤

1∑N
j=0 γ

r
j

N−1∑
k=0

γr+1
k

≤ 1∑N
j=0 γ

r
j

N∑
k=0

γr+1
k =

N∑
k=0

λk,Nγk.

From the last two relations we obtain equation (3.4.3a). Next we show (3.4.3b). From
Definition 2.3.2 we have

GAP(x̄N,i) = sup
y∈X

F (y)T (x̄N,i − y)

= sup
y∈X

F (y)T (x̄N,i + x̄N,m − x̄N,m − y)

≤ sup
y∈X

F (y)T (x̄N,i − x̄N,m) + sup
y∈X

F (y)T (x̄N,m − y)

≤ CF ‖x̄N,i − x̄N,m‖+ GAP (x̄N,m) ,
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Rearranging the terms we obtain GAP(x̄N,i)−GAP (x̄N,m) ≤ CF ‖x̄N,i − x̄N,m‖. The rest of
the proof can be done in a similar fashion to the proof of (3.4.3a).

Next we construct agent-wise error bounds in terms of the objective function value and the
dual gap function at the averaged iterates generated in Algorithm 4.

Proposition 3.4.1 (Agent-wise error bounds) Consider problem (P2) and the averaged
sequence {x̄k,i} generated by agent i in Algorithm 4 for i ∈ [m]. Let Assumption 3.3.1 hold
and {γk} and {ηk} be nonincreasing and strictly positive sequences. Then we have for i ∈ [m],
N ≥ 1, and r ∈ [0, 1):

(a) f(x̄N,i)− f ∗ ≤

(
N∑
k=0

γrk

)−1(
2M2

Xγ
r−1
N

ηN
+

(CF + η0Cf )
2

2

N∑
k=0

γr+1
k

ηk
+ γr0f(x̄0,m)

−γr0f(x0,1) +
(m− i)Cf (CF + η0Cf )

m

N∑
k=0

γr+1
k + Cfγ

r
0 ‖x̄0,i − x̄0,m‖

)
.

(b) GAP(x̄N,i) ≤

(
N∑
k=0

γrk

)−1(
2M2

Xγ
r−1
N + 2Mf

N∑
k=0

γrkηk +
(CF + Cfη0)2

2

N∑
k=0

γr+1
k

+
(m− i)CF (CF + η0Cf )

m

N∑
k=0

γr+1
k + γr0CF‖x̄0,m − x0,1‖+ CFγ

r
0 ‖x̄0,i − x̄0,m‖

)
.

Proof. (a) Let x∗ ∈ X denote an arbitrary optimal solution to problem (P2). From feasibility
of x∗ we have F (x∗) (xk − x∗) ≥ 0. Substituting y by x∗ in relation (3.4.1) and using the
preceding relation we have

2γrkηk (f(xk)− f ∗) ≤ γr−1
k ‖xk − x∗‖2 − γr−1

k ‖xk+1 − x∗‖2 + γr+1
k (CF + ηkCf )

2.

Dividing both sides by 2ηk we have

γrk (f(xk)− f ∗) ≤
γr−1
k

2ηk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2)+

γr+1
k

2ηk
(CF + ηkCf )

2. (3.4.6)

Adding and subtracting the term
γr−1
k−1

2ηk−1
‖xk − x∗‖2 we have

γrk (f(xk)− f ∗) ≤
γr−1
k−1

2ηk−1

‖xk − x∗‖2 − γr−1
k

2ηk
‖xk+1 − x∗‖2

+

(
γr−1
k

2ηk
−

γr−1
k−1

2ηk−1

)
︸ ︷︷ ︸

term 1

‖xk − x∗‖2 +
γr+1
k

2ηk
(CF + ηkCf )

2. (3.4.7)

Recalling the definition of scalar MX we have

‖xk − x∗‖2 ≤ 2‖xk‖2 + 2‖x∗‖2 ≤ 4M2
X . (3.4.8)
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Taking into account r < 1, the nonincreasing property of the sequences {γk} and {ηk}, we
have: term 1 ≥ 0. Using (3.4.8) and taking summation from (3.4.7) over k ∈ [N ], we obtain

N∑
k=1

γrk (f(xk)− f ∗) ≤
γr−1

0

2η0

‖x1 − x∗‖2 − γr−1
N

2ηN
‖xN+1 − x∗‖2

+

(
γr−1
N

2ηN
− γr−1

0

2η0

)
4M2

X +
(CF + η0Cf )

2

2

N∑
k=1

γr+1
k

ηk
. (3.4.9)

Rewriting equation (3.4.6) for k = 0 and then, adding and subtracting f(x̄0,m), we have

γr0 (f(x̄0,m)− f ∗ + f(x0)− f(x̄0,m)) ≤γ
r−1
0 ‖x0 − x∗‖2

2η0

− γr−1
0 ‖x1 − x∗‖2

2η0

+ (CF + η0Cf )
2 γ

r+1
0

2η0

.

Adding the preceding equation with (3.4.9) we obtain

γr0 (f(x̄0,m)− f ∗) +
N∑
k=1

γrk (f(xk)− f ∗) ≤
γr−1

0 ‖x0 − x∗‖2

2η0

+ 2M2
X

(
γr−1
N

ηN
− γr−1

0

η0

)

− γr−1
N

2ηN
‖xN+1 − x∗‖2 +

(CF + η0Cf )
2

2

N∑
k=0

γr+1
k

ηk
+ γr0 (f(x̄0,m)− f(x0)).

From (3.4.8) and neglecting the nonpositive term we obtain

γr0 (f(x̄0,m)− f ∗) +
N∑
k=1

γrk (f(xk)− f ∗) ≤
2M2

Xγ
r−1
N

ηN
+

(CF + η0Cf )
2

2

N∑
k=0

γr+1
k

ηk

+ γr0 (f(x̄0,m)− f(x0)).

Next, dividing both sides by
∑N

k=0 γ
r
k we have

γr0f(x̄0,m) +
∑N

k=1 γ
r
kf(xk)∑N

k=0 γ
r
k

− f ∗ ≤

(
N∑
k=0

γrk

)−1(
2M2

Xγ
r−1
N

ηN

+
(CF + η0Cf )

2

2

N∑
k=0

γr+1
k

ηk
+ γr0 (f(x̄0,m)− f(x0))

)
.

Taking into account the convexity of f we have

f

(
γr0x̄0,m +

∑N
k=1 γ

r
kxk−1,m+1∑N

k=0 γ
r
k

)
≤ γr0f(x̄0,m) +

∑N
k=1 γ

r
kf(xk−1,m+1)∑N

k=0 γ
r
k

.
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Invoking Lemma 3.3.1, from the preceding two relations we obtain

f(x̄N,m)− f ∗ ≤

(
N∑
k=0

γrk

)−1(
2M2

Xγ
r−1
N

ηN

+
(CF + η0Cf )

2

2

N∑
k=0

γr+1
k

ηk
+ γr0f(x̄0,m)− γr0f(x0,1)

)
.

Adding equation (3.4.3a) with the preceding inequality we obtain the desired result.
(b) From equation (3.4.1), for an arbitrary y ∈ X we have

2γrkF (y)T (xk − y) ≤γr−1
k

(
‖xk − y‖2 − ‖xk+1 − y‖2)

+ 2γrkηk (f (y)− f(xk)) + γr+1
k (CF + ηkCf )

2.

From the triangle inequality and definition of Mf we have |f(y)−f(xk)| ≤ 2Mf . We obtain:

2γrkF (y)T (xk − y) ≤γr−1
k

(
‖xk − y‖2 − ‖xk+1 − y‖2)

+ 4γrkηkMf + γr+1
k (CF + ηkCf )

2 . (3.4.10)

Adding and subtracting γr−1
k−1‖xk − y‖2, we have:

2γrkF (y)T (xk − y) ≤γr−1
k−1 ‖xk − y‖

2 − γr−1
k ‖xk+1 − y‖2 +

4γrkηkMf +
(
γr−1
k − γr−1

k−1

)
‖xk − y‖2︸ ︷︷ ︸

term 2

+γr+1
k (CF + ηkCf )

2. (3.4.11)

Using the nonincreasing property of {γk} and recalling 0 ≤ r < 1, we have γr−1
k − γr−1

k−1 ≥ 0.
Thus, we can write: term 2 ≤

(
γr−1
k − γr−1

k−1

)
4M2

X . Taking summation over k ∈ [N ] in
equation (3.4.11) and dropping a nonpositive term we obtain

2
N∑
k=1

γrkF (y)T (xk − y) ≤γr−1
0 ‖x1 − y‖2 + 4Mf

N∑
k=1

γrkηk

+ 4M2
X

(
γr−1
N − γr−1

0

)
+ (CF + η0Cf )

2
N∑
k=1

γr+1
k . (3.4.12)

Writing equation (3.4.10) for k = 0 and adding and subtracting 2γr0F (y)T x̄0,m, we have

2γr0F (y)T (x̄0,m − y + x0 − x̄0,m) ≤4γr0η0Mf + γr−1
0

(
‖x0 − y‖2 − ‖x1 − y‖2)

+ γr+1
0 (CF + η0Cf )

2.

Adding the preceding relation with equation (3.4.12) we have

2γr0F (y)T (x̄0,m − y) + 2
N∑
k=1

γrkF (y)T (xk − y) ≤ 4M2
X

(
γr−1
N − γr−1

0

)
+ (CF + η0Cf )

2
N∑
k=0

γr+1
k

+ γr−1
0 ‖x0 − y‖2 + 4Mf

N∑
k=0

γrkηk + 2γr0F (y)T (x̄0,m − x0)︸ ︷︷ ︸
term 3

.
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Using the Cauchy-Schwarz inequality we have: term 3 ≤ 2γr0CF‖x0,m − x0,1‖. We also have

‖x0 − y‖2 ≤ 4M2
X . Dividing the both sides of the preceding inequality by 2

∑N
k=0 γ

r
k and

invoking Lemma 3.3.1, we have

F (y)T (x̄N,m − y) ≤

(
N∑
k=0

γrk

)−1(
2M2

Xγ
r−1
N + 2Mf

N∑
k=0

γrkηk

+
(CF + η0Cf )

2

2

N∑
k=0

γr+1
k + γr0CF‖x̄0,m − x0,1‖

)
.

Taking the supremum on both sides with respect to y over the set X and recalling Definition
2.3.2 we have

GAP (x̄N,m) ≤

(
N∑
k=0

γrk

)−1(
(CF + η0Cf )

2

2

N∑
k=0

γr+1
k

+2Mf

N∑
k=0

γrkηk + 2M2
Xγ

r−1
N + γr0CF‖x̄0,m − x0,1‖

)
.

Adding equation (3.4.3b) with the preceding inequality we obtain the desired inequality.

In the following we present the main result of this section. We provide non-asymptotic rate
statements for each agent i ∈ [m] in terms of suboptimality measured by the global objective
function, and infeasibility characterized by the dual gap function. We note that unlike the
analysis of the standard incremental gradient schemes in the literature, here we provide these
rate results for individual agents i ∈ [m].

Theorem 3.4.1 (Agent-wise rate statements for Algorithm 4) Consider problem
(P2). Let the averaged sequence {x̄k,i} be generated by agent i ∈ [m] using Algorithm 4. Let
Assumption 3.3.1 hold. Let the stepsize sequence {γk} and the regularization sequence {ηk}
be updated using γk := γ0√

k+1
and ηk := η0

(k+1)b
, respectively, where γ0, η0 > 0 and 0 < b < 0.5.

Then the following inequalities hold for all i ∈ [m], all N ≥ 2
2

1−r − 1, and all r ∈ [0, 1):

(a) f(x̄N,i)− f ∗ ≤
2− r

(N + 1)0.5−b

(
2M2

X

η0γ0

+
γ0 (CF + η0Cf )

2

η0(1− r + 2b)
+ f(x̄0,m)− f(x0,1)

+Cf ‖x̄0,i − x̄0,m‖+
2(m− i)γ0Cf (CF + η0Cf )

m(1− r)

)
. (3.4.13)

(b) GAP(x̄N,i) ≤
2− r

(N + 1)b

(
2M2

X

γ0

+
2Mfη0

1− 0.5r − b
+ CF‖x̄0,m − x0,1‖+ CF ‖x̄0,i − x̄0,m‖

+
(CF + η0Cf )

2 γ0

1− r
+

2(m− i)CF (CF + η0Cf ) γ0

m(1− r)

)
. (3.4.14)

Proof. (a) Consider the inequality in Proposition 3.4.1(a). Substituting γk and ηk by their
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update rules we obtain

f(x̄N,i)− f ∗ ≤

(
N∑
k=0

γr0
(k + 1)0.5r

)−1(
2M2

X(N + 1)0.5(1−r)+b

η0γ
1−r
0

+
(CF + η0Cf )

2

2

N∑
k=0

γ1+r
0

η0(k + 1)0.5(1+r)−b + γr0f(x̄0,m)− γr0f(x0,1)

+
(m− i)Cf (CF + η0Cf )

m

N∑
k=0

γr+1
0

(k + 1)0.5(1+r)
+ Cfγ

r
0 ‖x̄0,i − x̄0,m‖

)
.

In the next step, to apply Lemma 3.3.3 we need to ensure that the conditions in that result
are met. From 0 ≤ r < 1 and 0 < b < 0.5, we have 0 ≤ 0.5r < 1, 0 ≤ 0.5(1 + r) − b < 1,

0 ≤ 0.5r + b < 1, and 0 ≤ 0.5(1 + r) < 1. Further, from N ≥ 2
2

1−r − 1, 0 < b < 0.5, and
0 ≤ r < 1 we have that N ≥ max

{
21/(1−0.5r), 21/(1−0.5(1+r)+b), 21/(1−0.5(1+r))

}
− 1.

Therefore, all the necessary conditions of Lemma 3.3.3 are met.

f(x̄N,i)− f ∗ ≤
(
γr0(N + 1)1−0.5r

2(1− 0.5r)

)−1(
2M2

X(N + 1)0.5(1−r)+b

η0γ
1−r
0

+
γ1+r

0 (CF + η0Cf )
2 (N + 1)1−0.5(1+r)+b

2η0(1− 0.5(1 + r) + b)

+
(m− i)Cf (CF + η0Cf ) γ

r+1
0 (N + 1)1−0.5(1+r)

m(1− 0.5(1 + r))

+γr0f(x̄0,m)− γr0f(x0,1) + Cfγ
r
0 ‖x̄0,i − x̄0,m‖) .

From the preceding relation we obtain

f(x̄N,i)− f ∗ ≤ (2− r)

(
2M2

X

η0γ0(N + 1)0.5−b +
γ0 (CF + η0Cf )

2

2η0(1− 0.5(1 + r) + b)(N + 1)0.5−b

+
(m− i)Cf (CF + η0Cf ) γ0

m(1− 0.5(1 + r))(N + 1)0.5
+
f(x̄0,m)− f(x0,1) + Cf ‖x̄0,i − x̄0,m‖

(N + 1)1−0.5r

)
.

Factoring out 1/(N + 1)0.5−b we obtain

f(x̄N,i)− f ∗ ≤
2− r

(N + 1)0.5−b

(
2M2

X

η0γ0

+
γ0 (CF + η0Cf )

2

2η0(1− 0.5(1 + r) + b)

+
(m− i)Cf (CF + η0Cf ) γ0

m(1− 0.5(1 + r))(N + 1)b
+
f(x̄0,m)− f(x0,1) + Cf ‖x̄0,i − x̄0,m‖

(N + 1)0.5−0.5r+b

)
.

Note that from b > 0 and r < 1 we have 0.5− 0.5r + b > 0. Hence equation (3.4.13) holds.
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(b) Consider the inequality in Proposition 3.4.1(b). We have

GAP(x̄N,i) ≤

(
N∑
k=0

γrk

)−1(
2M2

Xγ
r−1
N + 2Mf

N∑
k=0

γrkηk

+γr0CF‖x̄0,m − x0,1‖+ γr0CF ‖x̄0,i − x̄0,m‖

+

(
(CF + η0Cf )

2

2
+

(m− i)CF (CF + η0Cf )

m

)
N∑
k=0

γr+1
k

)
.

Substituting {γk} and {ηk} by their update rules we obtain

GAP(x̄N,i) ≤

(
N∑
k=0

γr0
(k + 1)0.5r

)−1(
2M2

X(N + 1)0.5(1−r)

γ1−r
0

+
N∑
k=0

2Mfη0γ
r
0

(k + 1)0.5r+b
+ γr0CF (‖x̄0,m − x0,1‖+ ‖x̄0,i − x̄0,m‖)

+

(
(CF + η0Cf )

2

2
+

(m− i)CF (CF + η0Cf )

m

)
N∑
k=0

γr+1
0

(k + 1)0.5(1+r)

)
.

Utilizing the bounds in Lemma 3.3.3 we obtain

GAP(x̄N,i) ≤
(
γr0(N + 1)1−0.5r

2(1− 0.5r)

)−1(
2Mfη0γ

r
0(N + 1)1−0.5r−b

1− 0.5r − b

+
2M2

X(N + 1)0.5(1−r)

γ1−r
0

+ γr0CF (‖x̄0,m − x0,1‖+ ‖x̄0,i − x̄0,m‖)

+

(
(CF + η0Cf )

2

2
+

(m− i)CF (CF + η0Cf )

m

)
γr+1

0 (N + 1)1−0.5(1+r)

(1− 0.5(1 + r))

)
.

Rearranging the terms we obtain

GAP(x̄N,i) ≤ (2− r)
(

2M2
X

γ0(N + 1)0.5
+

2Mfη0

(1− 0.5r − b)(N + 1)b

+
CF‖x̄0,m − x0,1‖+ CF ‖x̄0,i − x̄0,m‖

(N + 1)1−0.5r

+

(
(CF + η0Cf )

2

2
+

(m− i)CF (CF + η0Cf )

m

)
γ0

(1− 0.5(1 + r))(N + 1)0.5

)
.

Note that from b < 0.5 and 0 ≤ r < 1 we have 1− 0.5r ≥ b. Hence equation (3.4.14) holds.

Remark 3.4.1 (Iteration complexity of Algorithm 4) Consider the rate results pre-

sented by relations (3.4.13) and (3.4.14). Let us choose r := 0 and suppose γk :=
(CF+Cf )−1

√
k+1

and ηk := 1
4√k+1

for k ≥ 0. Let ε > 0 be an arbitrary small scalar such that f (x̄Nε,i) −
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f ∗ + GAP (x̄Nε,i) < ε for all i ∈ [m]. Then, we obtain the iteration complexity of Nε =
O((CF + Cf )

4ε−4) for each agent. Interestingly, this iteration complexity matches the com-
plexity of the proposed method in our earlier work [52] for addressing formulation (P2) in
a centralized regime where the information of the objective function f is globally known.
Importantly, this indicates that there is no sacrifice in the iteration complexity in addressing
the distributed formulation (P2). Another important observation to make is that the itera-
tion complexity of the proposed distributed method is independent of the number of agents
m.

3.5 Rate Analysis in the Solution Space

In this section we study the convergence rate properties of the proposed method in the
solution space. To this end, we compare the sequences generated from Algorithm 4 with the
Tikhonov trajectory (formally introduced in Definition 3.5.1). Throughout this section, we
make the following additional assumption.

Assumption 3.5.1 Consider problem (P2). For all i ∈ [m] let the component function
fi : Rn → R be continuously differentiable and µfi−strongly convex over the set X.

Note that under this assumption, the equation (3.3.1) in Algorithm 4 can be written as

xk,i+1 := PX (xk,i − γk (Fi (xk,i) + ηk∇fi (xk,i))) . (3.5.1)

Next, we comment on the strong convexity parameter of the global objective function.

Remark 3.5.1 Under Assumption 3.5.1, we note that any function fi is strongly con-
vex with a parameter µmin , mini∈[m] µfi . This also implies that the global function

f(x) ,
∑m

i=1 fi(x) ismµmin− strongly convex. Another implication is that under Assumption
3.3.1(b), (c), and Assumption 3.5.1, problem (P2) has a unique optimal solution. Throughout
this section, we denote the unique optimal solution of (P2) by x∗.

3.5.1 Preliminaries

Here we provide some preliminary results that will be used later. We first introduce the
notion of Tikhonov trajectory.

Definition 3.5.1 (Tikhonov trajectory) Let {ηk} ⊆ Rn
++ be a given sequence. Consider

a class of regularized VI problems for k ≥ 0 given by

VI

(
X,

m∑
i=1

(Fi + ηk∇fi)

)
. (3.5.2)

Let x∗ηk denote the unique solution to (3.5.2). The sequence {x∗ηk} is called the Tikhonov
trajectory associated with problem (P2).

In the following, we establish the convergence of the Tikhonov trajectory to the unique
optimal solution of problem (P2). This result will be used later in Theorem 3.5.1.
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Lemma 3.5.1 (Properties of the Tikhonov trajectory) Consider problem (P2) and Def-
inition 3.5.1. Let Assumption 3.3.1(b), (c), and Assumption 3.5.1 hold. Then:
(a) Let {ηk} be a strictly positive sequence such that limk→∞ηk = 0. Then, limk→∞ x

∗
ηk

exists
and is equal to x∗.

(b) For any two nonnegative integers k1 and k2, we have
∥∥∥x∗ηk2 − x∗ηk1∥∥∥ ≤ Cf

mµmin

∣∣∣1− ηk2
ηk1

∣∣∣ .
Proof. The proof can be done in a similar fashion to the proof of Lemma 4.5 in [52].

Next we obtain a recursive bound on an error metric that is characterized by the sequence
{xk} in Definition 3.3.1 and the Tikhonov trajectory. This result will be utilized in Theorem
3.5.1.

Lemma 3.5.2 Let {xk} be given by Definition 3.3.1. Let Assumption 3.3.1(b), (c), and
Assumption 3.5.1 hold. Suppose {γk} and {ηk} are strictly positive and nonincreasing such
that γ0η0µmin ≤ 0.5. Then for any k ≥ 1 we have∥∥xk+1 − x∗ηk

∥∥2 ≤ (1− γkηkµmin)
∥∥∥xk − x∗ηk−1

∥∥∥2

+
1.5C2

f

m2γkηkµ3
min

(
1− ηk

ηk−1

)2

+ γ2
k (CF + ηkCf )

2 . (3.5.3)

Proof. From Algorithm 4, the nonexpansivity of the projection, and x∗ηk ∈ X, for any i ∈ [m]
and k ≥ 1 we have∥∥xk,i+1 − x∗ηk

∥∥2 ≤
∥∥xk,i − x∗ηk∥∥2

+ γ2
k ‖Fi(xk,i) + ηk∇fi (xk,i)‖2

− 2γk (Fi(xk,i) + ηk∇fi (xk,i))T
(
xk,i − x∗ηk

)
.

From the definition of CF and Cf we have

∥∥xk,i+1 − x∗ηk
∥∥2 ≤

∥∥xk,i − x∗ηk∥∥2
+ γ2

k

(
CF + ηkCf

m

)2

+

2γk (Fi(xk,i) + ηk∇fi (xk,i))T
(
x∗ηk − xk,i

)
.

From the strong monotonicity of ∇fi and the monotonicity of Fi we can write

2γk (Fi(xk,i) + ηk∇fi (xk,i))T
(
x∗ηk − xk,i

)
≤ 2γkFi

(
x∗ηk
)T (

x∗ηk − xk,i
)

+ 2γkηk

(
∇fi

(
x∗ηk
)T (

x∗ηk − xk,i
)
− µmin

∥∥x∗ηk − xk,i∥∥2
)
.

From the preceding two relations we obtain

∥∥xk,i+1 − x∗ηk
∥∥2 ≤ (1− 2γkηkµmin)

∥∥xk,i − x∗ηk∥∥2
+ γ2

k

(
CF + ηkCf

m

)2

+ 2γkFi
(
x∗ηk
)T (

x∗ηk − xk,i
)

+ 2γkηk∇fi
(
x∗ηk
)T (

x∗ηk − xk,i
)
.
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Adding and subtracting 2γkFi(x
∗
ηk

)Txk + 2γkηk∇fi(x∗ηk)
Txk in the previous relation we get

∥∥xk,i+1 − x∗ηk
∥∥2 ≤ (1− 2γkηkµmin)

∥∥xk,i − x∗ηk∥∥2
+ γ2

k

(
CF + ηkCf

m

)2

+ 2γkFi
(
x∗ηk
)T (

x∗ηk − xk
)

+ 2γk

(
ηk∇fi

(
x∗ηk
)T (

x∗ηk − xk
)

+
∣∣∣Fi (x∗ηk)T (xk − xk,i)

∣∣∣)+ 2γkηk

∣∣∣∇fi (x∗ηk)T (xk − xk,i)
∣∣∣ .

Employing the Cauchy-Schwarz inequality we obtain∥∥xk,i+1 − x∗ηk
∥∥2 ≤ (1− 2γkηkµmin)

∥∥xk,i − x∗ηk∥∥2

+ γ2
k

(
CF + ηkCf

m

)2

+ 2γkFi
(
x∗ηk
)T (

x∗ηk − xk
)

+ 2γkηk∇fi
(
x∗ηk
)T (

x∗ηk − xk
)

+
2γk (CF + ηkCf )

m
‖xk − xk,i‖ .

Next we take summations over i ∈ [m] from both sides. Recall f(x) ,
∑m

i=1 fi(x) and

F (x) ,
∑m

i=1 Fi(x). Using Definition 3.3.1 for xk,1 and recalling 1− 2γkηkµmin < 1 we have

m∑
i=1

∥∥xk,i+1 − x∗ηk
∥∥2 ≤ (1− 2γkηkµmin)

∥∥xk − x∗ηk∥∥2
+ 2γkηk∇f

(
x∗ηk
)T (

x∗ηk − xk
)

+
m∑
i=2

∥∥xk,i − x∗ηk∥∥2
+ γ2

k

(CF + ηkCf )
2

m
+ 2γkF

(
x∗ηk
)T (

x∗ηk − xk
)

+
2γk (CF + ηkCf )

m

m∑
i=1

‖xk − xk,i‖ . (3.5.4)

From Lemma 3.3.2, ‖xk − xk,i‖ ≤ (i − 1)γk (CF + ηkCf ) /m for all i ∈ [m]. Invoking this
relation and Definition 3.3.1 we obtain∥∥xk+1 − x∗ηk

∥∥2 ≤ (1− 2γkηkµmin)
∥∥xk − x∗ηk∥∥2

+ γ2
k (CF

+ηkCf )
2 + 2γk

(
F
(
x∗ηk
)

+ ηk∇f
(
x∗ηk
))T (

x∗ηk − xk
)︸ ︷︷ ︸

term 4

.

From Definition 3.5.1, x∗ηk is the solution to problem (3.5.2). Recalling xk ∈ X, we have
term 4 ≤ 0. We obtain∥∥xk+1 − x∗ηk

∥∥2 ≤ (1− 2γkηkµmin)
∥∥xk − x∗ηk∥∥2

+ γ2
k (CF + ηkCf )

2 . (3.5.5)

Next, consider the term ‖xk − x∗ηk‖
2 as follows.

∥∥xk − x∗ηk∥∥2
=
∥∥∥xk − x∗ηk−1

∥∥∥2

+
∥∥∥x∗ηk−1

− x∗ηk
∥∥∥2

+ 2
(
xk − x∗ηk−1

)T (
x∗ηk−1

− x∗ηk
)

︸ ︷︷ ︸
term 5

.
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Next, we bound term 5 by recalling 2aT b ≤ ‖a‖2/α+α‖b‖2 where a, b ∈ Rn and α > 0. For
α := 1/γkηkµmin, bounding term 5 in the preceding inequality we obtain

∥∥xk − x∗ηk∥∥2
= (1 + γkηkµmin)

∥∥∥xk − x∗ηk−1

∥∥∥2

+

(
1 +

1

γkηkµmin

)∥∥∥x∗ηk−1
− x∗ηk

∥∥∥2

.

From Lemma 3.5.1(b) we obtain∥∥xk − x∗ηk∥∥2 ≤ (1 + γkηkµmin)
∥∥∥xk − x∗ηk−1

∥∥∥2

+

(
1 +

1

γkηkµmin

)
C2
f

m2µ2
min

(
1− ηk

ηk−1

)2

. (3.5.6)

From equations (3.5.5) and (3.5.6) we have∥∥xk+1 − x∗ηk
∥∥2 ≤ (1− 2γkηkµmin) (1 + γkηkµmin)

∥∥∥xk − x∗ηk−1

∥∥∥2

+

(
1 +

1

γkηkµmin

)
C2
f

m2µ2
min

(
1− ηk

ηk−1

)2

+ γ2
k (CF + ηkCf )

2 .

Using 0 < γkηkµmin ≤ 0.5 we have the desired result.

3.5.2 Convergence analysis

In this section, our goal is to derive a non-asymptotic convergence rate statement that
relates the generated sequences by Algorithm 4 to the Tikhonov trajectory. We begin with
providing a class of sequences for the stepsize and the regularization parameter and prove
some properties for them that will be used in the analysis.

Definition 3.5.2 (Stepsize and regularization parameter) Let γk := γ
(k+Γ)a

and ηk :=
η

(k+Γ)b
for all k ≥ 0 where γ, η,Γ, a and b are strictly positive scalars. Let a > b, a + b < 1,

and 3a+ b < 2. Assume that Γ ≥ 1 and it is sufficiently large such that Γa+b ≥ 2γηµmin and
Γ1−a−b ≥ 4

γηµmin
.

Lemma 3.5.3 Consider Definition 3.5.2. The following results hold.
(i) {γk} and {ηk} are strictly positive and nonincreasing such that γ0η0µmin ≤ 0.5.
(ii) For all integers k1 and k2 such that k2 ≥ k1 ≥ 0 we have 1− ηk2

ηk1
≤ k2−k1

k2+Γ
.

(iii) For all k ≥ 1 we have 1
γ3kηk

(
1− ηk

ηk−1

)2

≤ 1
γ3ηΓ2−3a−b .

(iv) For all k ≥ 1 we have γk−1

ηk−1
≤ γk

ηk
(1 + 0.5γkηkµmin).

Proof. See Appendix A.9.

The main contribution in this section is presented by Theorem 3.5.1 where we derive
agent-specific rates relating the sequences generated by Algorithm 4 with the Tikhonov
trajectory.
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Theorem 3.5.1 (Comparison with the Tikhonov trajectory) Consider problem (P2).
Let Assumption 3.3.1(b), (c), and Assumption 3.5.1 hold. Consider {xk} and {x∗ηk} given
in Definitions 3.3.1 and 3.5.1, respectively. Let the stepsize sequence {γk} and the regular-
ization sequence {ηk} be given by Definition 3.5.2. Then for all k ≥ 0 and all i ∈ [m] we
have ∥∥xk+1,i − x∗ηk

∥∥2 ≤ 2(i− 1)2 (CF + η0Cf )
2 γ2

m2(k + Γ + 1)2a
+

2τB0γ

µminη(k + Γ)a−b
,

where τ , max
{
µminηγ

−1B−1
0 Γa−b

∥∥x1 − x∗η0
∥∥2
, 2
}

and B0 ,
1.5C2

f

m2µ3minγ
3ηΓ2−3a−b+(CF + η0Cf )

2.

Proof. Consider (3.5.3). From Lemma 3.5.3, for k ≥ 1 we have∥∥xk+1 − x∗ηk
∥∥2 ≤ (1− γkηkµmin)

∥∥∥xk − x∗ηk−1

∥∥∥2

+
1.5C2

fγ
2
k

m2µ3
minγ

3ηΓ2−3a−b + γ2
k (CF + η0Cf )

2 .

Let us define the terms vk,
∥∥∥xk − x∗ηk−1

∥∥∥2

, αk,γkηkµmin, and βk , B0γ
2
k for k ≥ 1. Therefore,

for all k ≥ 1 we have

vk+1 ≤ (1− αk)vk + βk. (3.5.7)

From Lemma 3.5.3(iii), for all k ≥ 1 we have

βk−1

αk−1

≤ B0γk
µminηk

(1 + 0.5γkηkµmin) =
βk
αk

(1 + 0.5αk). (3.5.8)

Next, we show that vk+1 ≤ τ βk
αk

for all k ≥ 0. We apply induction on k ≥ 0. Note that this

relation holds for k := 0 as an implication of the definition of τ . Suppose vk ≤ τ βk−1

αk−1
holds

for some k ≥ 1. From (3.5.7) we obtain vk+1 ≤ (1− αk) βk−1

αk−1
τ + βk. Using the upper bound

for the right-hand side given by (3.5.8) we have

vk+1 ≤τ(1− αk)(1 + 0.5αk)
βk
αk

+ βk

= τ(1− αk + 0.5αk − 0.5α2
k)
βk
αk

+ βk = τ
βk
αk

− τ(1− 0.5)βk − 0.5ταkβk + βk ≤ τ
βk
αk

+ (1− 0.5τ)βk.

From the definition of τ , τ ≥ 2 implying that 1 − 0.5τ ≤ 0. This completes the proof of
induction. Recall from Lemma 3.3.2 that we have ‖xk − xk,i‖ ≤ (i − 1)γk (CF + ηkCf ) /m
for any i ∈ [m]. For all k ≥ 0 and i ∈ [m] we have∥∥xk+1,i − x∗ηk

∥∥2 ≤ 2 ‖xk+1,i − xk+1‖2 + 2
∥∥xk+1 − x∗ηk

∥∥2

≤
2(i− 1)2 (CF + η0Cf )

2 γ2
k+1

m2
+

2τB0γk
µminηk

=
2(i− 1)2 (CF + η0Cf )

2 γ2

m2(k + Γ + 1)2a
+

2τB0γ

µminη(k + Γ)a−b
.

Hence the proof is completed.
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3.6 Numerical Results

In this section we present the implementation results of Algorithm 4 in addressing two of
the motivating examples discussed in Chapter 1. These include a traffic equilibrium problem
and a soft-margin support vector classification problem.
(i) Traffic Equilibrium Problem. For an illustrative example, we consider the trans-
portation network in [23]. We first describe the network and present the NCP formulation.
Then, we implement Algorithm 4 to solve model (1.2.2) and compute the best equilibrium.

Consider a transportation network with the set of nodes {n1, n2} and the set of directed
arcs {a1, a2, a3, a4, a5}. As shown in Figure 4, arcs a1, a2, and a3 are directed from node n1

to node n2, and arcs a4 and a5 are directed in the reverse way. Note that a1 and a4 construct
a two-way road. The same holds for a2 and a5. We let d , [d1, d2]T denote the expected
travel demand vector where d1 and d2 correspond to the demand from n1 to n2, and from n2

to n1, respectively. Let the vector h , [h1, . . . , h5]T denote the traffic flow on the arcs. The
travel cost on each arc is assumed to be a linear function in terms of h. More precisely, the
travel cost on arc i is equal to [Ch + q]i where we let the cost matrix C ∈ R5×5 and vector
q ∈ R5 be given by

C :=


0.92 0 0 5 0

0 5.92 0 0 5
0 0 10.92 0 0
2 0 0 10.92 0
0 1 0 0 15.92

 , q :=


1000
950
3000
1000
1300

 . (3.6.1)

We note that the matrix C is positive semidefinite. The diagonal values of C are rounded
by two decimal places for the ease of presentation. Intuitively speaking, the structure of
C implies that the cost of each arc in a two-way road depends on the flows on the both
directions. Let u , [u1, u2]T denote the (unknown) vector of minimum travel costs between
the origin-destination (OD) pairs, i.e., u1 denotes the minimum travel cost from n1 to n2, and
u2 denotes the minimum travel cost from n2 to n1. The Wardrop user equilibrium principle
represents the path choice behavior of the users based on the following rationale: (i) For any
OD pair among all possible arcs, users tend to choose the arc(s) with the minimum cost. (ii)
For any OD pair, the arc(s) that have the minimum cost will have positive flows and will
have equal costs. (iii) For any OD pair, arcs with higher costs than the minimum value will

𝑎5 𝑎2
𝑎3

n2

𝑎4 𝑎1

n1

Figure 4: A transportation network with 2 nodes and 5 arcs
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Figure 5: Performance of Algorithm 4 in terms of infeasibility and the objective function
value for finding the best equilibrium in the transportation network problem

have no flows. Mathematically the Wardrop’s principle can be characterized as

0 ≤ Ch+ q −BTu ⊥ h ≥ 0, 0 ≤ Bh− d ⊥ u ≥ 0, (3.6.2)

where B ∈ R2×5 denotes the (OD pair, arc)-incidence matrix given as B :=

[
1 1 1 0 0
0 0 0 1 1

]
.

Throughout, we assume that the demand vector d and the cost vector q are subject to
uncertainties. Let us define decision vector x ∈ R7, random variable ξ ∈ R10, and stochastic
mapping F (•, ξ) : R7 → R7 as

x ,

[
h
u

]
, ξ ,

[
d̃
q̃

]
, F (x, ξ) ,

[
C −BT

B 0

] [
h
u

]
+

[
q̃

−d̃

]
.

Then from Example 1.2.2 in Chapter 1, the Wardrop equation (3.6.2) can be characterized
as VI

(
R7

+,E[F (•, ξ)]
)
. Notably due to positive semidefinite property of C, the mapping

E[F (•, ξ)] is merely monotone. Consequently, the aforementioned VI may have multiple
equilibria. Among them, we seek to find the best equilibrium with respect to a welfare
function f defined as the expected total travel time over the network by all users, i.e.,
f(x) , E

[
(Ch+ q̃)T15

]
where 15∈ Rn denotes a vector with all unit elements.

Set-up. For this experiment, we assume that d̃1 ∼ N (210, 10), d̃2 ∼ N (120, 10). Also for
i = 1, . . . , 5 we let q̃i be normally distributed with the mean equal to qi and the standard
deviation of 300, where the vector q is given by (3.6.1). Following the formulation (1.2.2) we
generate 1000 samples for each parameter and distribute the data equally among 10 agents.
We let γk := γ0√

k+1
and ηk := η0

(k+1)0.25
and consider different values for the initial stepsize γ0

and the initial regularization parameter η0. The results are as shown in Figure 5. We use
standard averaging by assuming that r = 0. Notably for quantifying the infeasibility, we
consider the metric φ(x) , ‖max{0,−x}‖2 + ‖max{0,−F (x)}‖2 +

∣∣xTF (x)
∣∣, where F (x) ,∑m

i=1 Fi(x) and Fi(x) ,
∑

`∈Si F (x, ξ`). Note that φ(x) = 0 if and only if 0 ≤ x ⊥ F (x) ≥ 0.
We choose this metric over the dual gap function employed earlier in the analysis because in
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this particular example, the dual gap function becomes infinity at some of the evaluations
of the generated iterates. This is due to the unboundedness of the set X := Rn

+. Unlike the
dual gap function, φ(x) stays bounded and is more suitable to plot.
Insights. In Figure 5 we observe that in all four different settings the infeasibility metric
decreases as the algorithm proceeds. This indeed implies that the generated iterates by the
agents tend to satisfy the NCP constraints with an increasing accuracy. In terms of the
suboptimality metric we observe that the each agent’s objective value becomes more and
more stable over time. Intuitively this implies that the agents asymptotically reach to an
equilibrium. We should note that although the function f is minimized, it is minimized only
over the set of equilibria. The fact that the objective values in Figure 5 are not necessarily
decreasing is mainly because of the impact of feasibility violation of the iterates with respect
to the NCP constraints throughout the implementations. As evidenced, pair-IG performs
with much robustness to the choice of the initial values of γ0 and η0.

3.7 Conclusion

We introduce a new unifying formulation for distributed constrained optimization where the
constraint set is characterized as the solution set of a merely monotone variational inequality
problem. We develop an iteratively regularized incremental gradient method where at each
iteration agents communicate over a cycle graph to update their iterates using their local
information about the objective function and the mapping. We derive new iteration com-
plexity bounds in terms of the global objective function and a suitably defined infeasibility
metric. To analyze the convergence in the solution space, we also provide non-asymptotic
agent-wise convergence rate statements that relate the iterate of each agent with that of the
Tikhonov trajectory. We validate the theoretical results on an illustrative transportation
network problem.
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CHAPTER IV

ILL-POSED HIGH-DIMENSIONAL OPTIMIZATION PROBLEMS

Motivated by high-dimensional nonlinear optimization problems as well as ill-posed op-
timization problems arising in image processing, in this chapter we consider a bilevel op-
timization model where we seek among the optimal solutions of the inner level problem, a
solution that minimizes a secondary metric, discussed further in Section 4.1. Our goal is to
address the high-dimensionality of the bilevel problem, and the nondifferentiability of the
objective function. Minimal norm gradient, sequential averaging, and iterative regularization
are some of the recent schemes developed for addressing the bilevel problem. But none of
them address the high-dimensional structure and nondifferentiability. Section 4.2 includes
the summary of literature for addressing problem (1.1.5) and the research gap. We address
problem (1.1.5) by proposing a randomized block iterative regularized gradient scheme. The
outline of algorithm and the required preliminaries are provided in Section 4.3. We establish
the convergence of the sequence generated by Algorithm 5 to the unique solution of the
bilevel problem of interest. Furthermore, we derive a rate of convergence with respect to
the inner level objective function. Section 4.4 includes the convergence analysis and rate re-
sults. In Section 4.5, we demonstrate the performance of Algorithm 5 in solving the ill-posed
problems arising in image processing. Section 4.6 summarizes the chapter with conclusions.

4.1 Problem Formulation

We consider a special case of Problem (P1), large-scale bilevel optimization as follows

minimize f(x)

subject to x ∈ argmin {g(x) : x ∈ X} ,
(1.1.5)

where functions f and g are defined as f : Rn → R and g : Rn → R. In particular, here we
consider the case where the set X has a block structure, i.e., X =

∏d
i=1 Xi, where Xi ⊆ Rni

and
∑d

i=1 ni = n. The size of the solution space (n) can be of the order 108 − 1012. Under
the convexity of f , g, and set Xi, problem (1.1.5) can be easily captured by (P1) such that
F is a gradient map, given as F (x) , (∇x(1)g (x) ; . . . ;∇x(d)g (x)) with set X =

∏d
i=1Xi.

The content of this chapter has been published in the Proceedings of 2019 American Control Conference
[49].
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4.2 Existing Methods and Research Gap

Minimal norm gradient, sequential averaging, and iterative regularization are some of the
known schemes developed for addressing problem (1.1.5) are summarized in Table 2 and are
described as follows. Given η > 0, consider the following regularized problem

Table 2: Comparison of schemes for solving bilevel optimization problem

Ref. Problem formulation Assumption Rate

[82]
minimize g(x)

s.t. x ∈ argmin{f(x) : x ∈ X}
f and g both smooth and con-
vex

−

[10]
minimize g(x)

s.t. x ∈ argmin{f(x) : x ∈ X}
f convex, Lipschitz cont. g
strongly conv.

O
(

1√
k

)
[75]

minimize g(x)

x ∈ argmin{f1(x) + f2(x) : x ∈ Rn}
f1, f2 convex. g is strongly
convex. f1, g Lipschitz cont.

O
(
1
k

)
[96]

minimize ‖x‖
s. t. x ∈ SOL(X,F ), where F (x) , f(x, ξ)

F is monotone and continu-
ous.

O
(

1

k1/6−δ

)
[90] min

xi∈Xi,z∈Z

∑N
i=1 fi (xi) s.t. Dx+Hz = 0 fi is convex and possibly non-

smooth.
O
(
1
k

)
[8]

for G(N , E), min
∑
i∈N ξi(x) + fi(x)

s.t. x ∈ Rn, xi = xj for all (i, j) ∈ E
ξi, fi are convex, fi Lipschitz
continuous.

O (1/k)

[92]
min
x

g1(x) + g2(x)

s.t. Ax = b

g1 is convex and Lipschitz
continuous. g2 is convex.

O
(
1/k2

)
This
work

minimize g(x)

x ∈ argmin{f(x) : x ∈ X}; X =
∏d
i=1Xi

f is convex and g is strongly
convex.

O
(

1
k0.5−δ

)

minimize g(x) + ηf(x)

s.t. x ∈ X.
(Pη)

Particular case of the above problem (Pη) was discussed in (1.1.6). Tikhonov in [85] showed
that under some assumptions, the solution of regularized problem (Pη) converges to the
solution of the inner level problem of (1.1.5) as the regularization parameter η goes to zero.
Later, the threshold value of η, under which the solution of (Pη) is the same as the solution
of the inner level problem of (1.1.5), was studied under the area of exact regularization
[32, 38]. There have been numerous theoretical studies in the ’80s, ’90s [11, 12, 18, 38] and
more recently [16, 24] on finding the suitable η, but in practice there is not much guidance
on tuning this parameter. Finding a suitable η necessitates solving a sequence of problems
(Pη) for ηk, where ηk → 0. This two-loop scheme is significantly inefficient, especially in
high-dimensional spaces.

In the past decade, interest has been shifted to solving the bilevel problem (1.1.5) using
single-loop schemes. Solodov in [82] showed that for both functions g and f in (1.1.5) with
Lipschitz gradient, and f to be a composite function with the indicator function, solutions
to (1.1.5) can be found by an iterative regularized gradient descent with sequence ηk → 0
and

∑∞
k=1 ηk =∞. In (Pη), when g is `2 norm in variational inequality regimes, Yousefian et
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al. [96] showed that solution to (1.1.5) can be found by employing an iterative regularized
smoothing gradient scheme.

In 2014, the minimal norm gradient (MNG) scheme was proposed [10]. MNG is a two-loop
scheme where an optimization problem needs to be solved at each iteration k, making MNG
to be computationally expensive for the large-scale problems. Later, in [75] a sequential
averaging scheme (BiG-SAM) was developed with a rate of convergence O (1/k). Recently
in [33], a general iterative regularized algorithm based on a primal-dual diagonal descent
method was proposed to solve (1.1.5).

In all the aforementioned papers, the missing part is addressing the high-dimensional
structure, which is common in the high-resolution image processing applications such as
hyper-spectral imaging. Our goal is to bridge this gap by developing a single-loop randomized
block-coordinate iterative regularized subgradient scheme.

High-dimensional nonlinear constrained optimization is another motivating example to
our work. One of the popular primal-dual methods is Alternating Direction Method of
Multipliers (ADMM) [8,90,92]. One of the underlying assumptions for ADMM is the linearity
of the constraints.

4.3 Algorithm Outline

Here we propose Algorithm 5 and include the preliminaries for the convergence and rate
analysis.

Assumption 4.3.1 Consider the optimization problem (1.1.5). Let the following hold:

(a) Any block i of set X (Xi ⊆ Rni) is assumed to be nonempty, closed, and convex for all
i = 1, . . . , d.

(b) g : Rn → (−∞,∞] is a nondifferentiable, proper, and convex function.

(c) f : Rn → (−∞,∞] is a nondifferentiable, proper, and µ-strongly convex function
(µ > 0).

(d) X ⊆ int (dom(f) ∩ dom(g)).

Next, a randomized block-coordinate iterative regularized subgradient Algorithm 5 is
proposed for solving (1.1.5). In Algorithm 5, both the sequences of regularization parameter
ηk and stepsize parameter γk are in terms of iteration k. The update rules of γk and γk are
finalized later (in Theorem 4.4.2). To address the high-dimensionality, at each iteration we
update a random block of the iterate xk. Selection of block ik at iteration k is governed by
Assumption 4.3.2. Finally, averaging is employed which will be helpful in deriving the rate
statement.

Assumption 4.3.2 (Block-coordinate selection rule) At each iteration k ≥ 0, the ran-
dom variable ik is generated from an independent and identically distributed discrete probabil-
ity distribution such that Prob (ik = i) = pi where pi > 0 for i ∈ {1, . . . , d} and

∑d
i=1 pi = 1.
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Algorithm 5 Randomized block iterative regularized gradient (RB-IRG)

1: Initialize: Set k = 0, select a point x0 ∈ X, parameters γ0 > 0, and η0 >
0, S0 = γr

0
, and x̄0 = x0.

2: for k = 0, 1, . . . , N-1 do
3: ik is generated by Assumption 4.3.2.

4: Compute ∇̃ig(xk) ∈ ∂g
(
x

(i)
k

)
and ∇̃if(xk) ∈ ∂f

(
x

(i)
k

)
for x

(i)
k ∈ Xi.

5: Update x
(ik)
k+1:={
PXi

(
x

(i)
k − γk

(
∇̃ig (xk) + ηk∇̃if (xk)

))
if i = ik.

x
(i)
k if i 6= ik.

(RB-IRG)

6: Update xk as following,

Sk+1 = Sk + γrk+1, xk+1 =
Skxk + γrk+1xk+1

Sk+1

. (4.3.1)

7: end for

4.3.1 Preliminaries

In this subsection, we list all the required preliminaries for the convergence and rate anal-
ysis. Throughout, we use x∗f and x∗ηk to denote the unique minimizers of (1.1.5) and (Pη),
respectively.

Remark 4.3.1 From Assumptions 4.3.1 (b, c), the objective function of (Pη), is a strongly
convex. The feasible region of (Pη) is closed and convex (from Assumption 4.3.1(a)). There-
fore (Pη) has a unique minimizer. (cf. Ch. 2 of [30]). Similarly, we can claim that (1.1.5)
has a unique minimizer.

Remark 4.3.2 In problem (1.1.5), for any x1, x2 ∈ X, for a convex function g and µ-
strongly convex function f ,(
∇̃g(x1)− ∇̃g(x2)

)T
(x1 − x2) ≥ 0,(

∇̃f(x1)− ∇̃f(x2)
)T

(x1 − x2) ≥ µ‖x1 − x2‖2.

The following lemma is used in proving the convergence.

Lemma 4.3.1 (Lemma 10, pg. 49 of [69]) Let {vk} be a sequence of nonnegative random
variables, where E[v0] < ∞, and let {αk} and {βk} be deterministic scalar sequences such
that: E[vk+1|v0, ..., vk] ≤ (1− αk)vk + βk for all k ≥ 0, 0 ≤ αk ≤ 1, βk ≥ 0,

∑∞
k=0 αk =∞,∑∞

k=0 βk <∞, limk→∞
βk
αk

= 0. Then, vk → 0, a.s., and lim
k→∞

E[vk] = 0.

The next result will be used in our analysis.

Lemma 4.3.2 (Theorem 6, pg. 75 of [54]) Let {ut} (⊂ Rn) be a convergent sequence
such that it has a limit point û ∈ Rn and consider another sequence {αk} of positive numbers
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such that
∑∞

k=0 αk = ∞. Suppose vk is given by vk =
∑k−1
t=0 (αtut)∑k−1
t=0 αt

, for all k ≥ 1. Then

lim
k→∞

vk = û.

Remark 4.3.3 From Assumption 4.3.1 (b, c, d), for all x ∈ X, the set ∂f(x) is nonempty
and bounded (cf. Ch. 3 of [9]). Similarly ∂g(x) is nonempty and bounded for all x ∈ X.

Remark 4.3.4 From Remark 4.3.3, let us say that for any x(i) ∈ Xi, there exists a scalar

Cf,i such that
∥∥∥∇̃if(x)

∥∥∥ ≤ Cf,i. Let Cf ,
√∑d

i=1C
2
f,i. Now we have,

∥∥∥∇̃f(x)
∥∥∥ ≤ Cf for

all x ∈ X. Similarly,
∥∥∥∇̃g(x)

∥∥∥ ≤ Cg for all x ∈ X.

In the following lemma, we present the properties of {x∗ηk}, which denotes the of solution of
(Pη) for η ∈ {ηk}.

Lemma 4.3.3 Consider problem (1.1.5) and (Pη). Let Assumption 4.3.1 hold. Then, for
the sequence {x∗ηk}, and x∗f for any k ≥ 1, we have

(a)
∥∥∥x∗ηk − x∗ηk−1

∥∥∥ ≤ Cf
µ

∣∣∣ηk−1

ηk
− 1
∣∣∣.

(b) When {ηk} goes to zero, {x∗ηk} converges to x∗f .

Proof. Please see the proof of Lemma 2.5.1.

Our objective is to show ‖xk+1 − x∗f‖ → 0. Now from the triangle inequality, ‖xk+1 −
x∗ηk‖ → 0 and ‖x∗ηk − x

∗
f‖ → 0. We know ‖x∗ηk − x

∗
f‖ → 0 as ηk → 0. Our main objective

is to show ‖xk+1 − x∗ηk‖ → 0. Next we define an error function which will be used in the
convergence analysis.

Definition 4.3.1 Let Assumption 4.3.2 hold. Then for any x, y ∈ Rn, function D(x, y) =∑d
i=1 p

−1
i

∥∥x(i) − y(i)
∥∥2

.

The following corollary holds from Definition 4.3.1.

Corollary 4.3.1 Consider Definition 4.3.1, pmax and pmin as defined in the notation, and
let Assumption 4.3.2 hold. Then for any x, y ∈ Rn, pmaxD(x, y) ≤ ‖x− y‖2 ≤ pminD(x, y).

4.4 Convergence and Rate Analysis

Here we begin with deriving a recursive error bound, that will be used later to show the
almost sure convergence.

Lemma 4.4.1 (Recursive relation for D
(
xk+1, x

∗
ηk

)
) Consider problem (1.1.5) and (Pη).

Let Assumptions 4.3.1 and 4.3.2 hold. Let {xk} be the sequence generated from Algorithm
1. Let positive sequences {γk}, and {ηk} be non-increasing and γ0 η0 < 1/µpmin. Then the
following relation holds,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ (1− µγkηkpmin)D

(
xk, x

∗
ηk−1

)
+

2C2
f

p2
minµ

3γkηk

(
ηk−1

ηk
− 1

)2

+ 2γ2
k(C

2
g + η2

0C
2
f ).
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Proof. Consider D(xk+1, x
∗
ηk

). From the Definition 4.3.1,

D
(
xk+1, x

∗
ηk

)
=

d∑
i=1

p−1
i

∥∥∥x(i)
k+1 − x

∗(i)
ηk

∥∥∥2

=
d∑

i=1, i 6=ik

p−1
i

∥∥∥x(i)
k − x

∗(i)
ηk

∥∥∥2

+ p−1
ik

∥∥∥x(ik)
k+1 − x

∗(ik)
ηk

∥∥∥2

︸ ︷︷ ︸
term-1

(4.4.1)

Since x∗ηk ∈ X, we have x∗
(ik)

ηk
∈ Xik . Now from the non-expansive property of projection

operator, term-1 becomes,∥∥∥x(ik)
k+1 − x

∗(ik)
ηk

∥∥∥2

≤
∥∥∥x(ik)

k − γk
(
∇̃ikf (xk) + ηk∇̃ikg (xk)

)
− x∗(ik)ηk

∥∥∥2

.

From the two preceding relations, we have,

D
(
xk+1, x

∗
ηk

)
=

d∑
i=1, i 6=ik

p−1
i

∥∥∥x(i)
k − x

∗(i)
ηk

∥∥∥2

+ p−1
ik

∥∥∥x(ik)
k − x∗(ik)ηk

∥∥∥2

− 2 p−1
ik
γk

(
x

(ik)
k − x∗(ik)ηk

)T (
∇̃ikg (xk) + ηk∇̃ikf (xk)

)
+ p−1

ik
γ2
k

∥∥∥∇̃ikg (xk) + ηk∇̃ikf (xk)
∥∥∥2

︸ ︷︷ ︸
term-2

.

(4.4.2)

From Assumptions 4.3.1 (d) and Remark 4.3.4,

term-2 = γ2
k

∥∥∥∇̃ikg(xk) + ηk∇̃ikf(xk)
∥∥∥2

≤ 2γ2
kC

2
g,ik

+ 2γ2
kη

2
kC

2
f,ik
.

Thus from (4.4.2), and Definition 4.3.1, we obtain,

D
(
xk+1, x

∗
ηk

)
≤D

(
xk, x

∗
ηk

)
+ p−1

ik
2γ2

k

(
C2
g,ik

+ η2
kC

2
f,ik

)
− 2p−1

ik
γk

(
x

(ik)
k − x∗(ik)ηk

)T (
∇̃ikg (xk) + ηk∇̃ikf (xk)

)
.

Now taking conditional expectation on both sides, and taking into account D
(
xk, x

∗
ηk

)
is Fk

measurable,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ D

(
xk, x

∗
ηk

)
+ 2γ2

k E
[
p−1
ik
C2
g,ik
|Fk
]︸ ︷︷ ︸

term-3

+2γ2
kη

2
k E
[
p−1
ik
C2
f,ik
|Fk
]︸ ︷︷ ︸

term-4

−

2γk E

[
p−1
ik

(
x

(ik)
k − x∗(ik)ηk

)T(
∇̃ikg (xk) + ηk∇̃ikf (xk)

)
|Fk
]

︸ ︷︷ ︸
term-5

.

term-3 = C2
g , term-4 = C2

f , term-5=
∑d

i=1 pi

(
p−1
i

(
x

(i)
k − x∗

(i)

ηk

)T (
∇̃ig (xk) + ηk∇̃if (xk)

))
=
(
xk − x∗ηk

)T (∇̃g (xk) + ηk∇̃f (xk)
)
.
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Substituting the values of term-3, term-4 and term-5, we obtain,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]

=D
(
xk, x

∗
ηk

)
+ 2γ2

kC
2
g + 2γ2

kη
2
kC

2
f

− 2 γk
(
xk − x∗ηk

)T (∇̃g (xk) + ηk∇̃f (xk)
)
. (4.4.3)

Now from Remark 4.3.2, for x1 = xk and x2 = x∗ηk , we have,(
∇̃g (xk) + ηk∇̃f (xk)

)T (
xk − x∗ηk

)
−
(
∇̃g
(
x∗ηk
)

+ ηk∇̃f
(
x∗ηk
))T (

xk − x∗ηk
)

≥ ηkµ
∥∥xk − x∗ηk∥∥2

. (4.4.4)

From the optimality conditions on (Pη), we have,(
∇̃g
(
x∗ηk
)

+ ηk∇̃f
(
x∗ηk
))T (

xk − x∗ηk
)
≥ 0.

Thus, (
∇̃g (xk) + ηk∇̃f (xk)

)T (
xk − x∗ηk

)
≥ ηkµ

∥∥xk − x∗ηk∥∥2

Now, from (4.4.3) and the preceding inequality, we can write,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ D

(
xk, x

∗
ηk

)
− 2γkηkµ

∥∥xk − x∗ηk∥∥2︸ ︷︷ ︸
term-6

+2γ2
kC

2
g + 2γ2

kη
2
kC

2
f .

From Corollary 4.3.1, bounding term-6, we have,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ (1− 2γkηkµpmin)D

(
xk, x

∗
ηk

)
+ 2γ2

kC
2
g + 2γ2

kη
2
kC

2
f . (4.4.5)

Now consider
∥∥xk − x∗ηk∥∥2

. It can be written as,

∥∥xk − x∗ηk∥∥2
=
∥∥∥xk − x∗ηk−1

∥∥∥2

+
∥∥∥x∗ηk−1

− x∗ηk
∥∥∥2

+ 2(xk − x∗ηk−1
)T (x∗ηk−1

− x∗ηk)︸ ︷︷ ︸
term-7

. (4.4.6)

For c ∈ Rn, term-7 ≤
(
c
∥∥∥xk − x∗ηk−1

∥∥∥)2

+


∥∥∥x∗ηk−1

− x∗ηk
∥∥∥

c

2

.

Substituting above in equation (4.4.6), with c =
√
pminµγkηk,∥∥xk − x∗ηk∥∥2 ≤ (1 + pminµγkηk)

∥∥∥xk − x∗ηk−1

∥∥∥2

+

(
1 +

1

pminµγkηk

)∥∥∥x∗ηk−1
− x∗ηk

∥∥∥2

.

From Lemma 4.3.3, and Corollary 4.3.1, we obtain,

pminD
(
xk, x

∗
ηk

)
≤ (1 + pminµγkηk) pmaxD

(
xk, x

∗
ηk−1

)
+

(
1 +

1

pminµγkηk

)
C2
g

µ2

(
ηk−1

ηk
− 1

)2

.
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Dividing both sides of previous inequality by pmin, and substituting this in (4.4.5), we have,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ 12γ2

kC
2
g + 2γ2

kη
2
kC

2
f

pmax
pmin

(1− 2γkηkµpmin) (1 + pminµγkηk)︸ ︷︷ ︸
term-9

D
(
xk, x

∗
ηk−1

)
− 2γkηkµpmin

C2
f

µ2 pmin

(
1 +

1

pminµγkηk

)(
ηk−1

ηk
− 1

)2

+
C2
f

µ2 pmin

(
1 +

1

pminµγkηk

)(
ηk−1

ηk
− 1

)2

.

We have, term-9 ≤ 1− µγkηkpmin, now we can write,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤2γ2

kC
2
g +

pmax
pmin

(1− µγkηkpmin)D
(
xk, x

∗
ηk−1

)
+ 2γ2

kη
2
kC

2
f

+
(1− 2γkηkµpmin)C2

f

µ2 pmin

(
1 +

1

pminµγkηk

)(
ηk−1

ηk
− 1

)2

︸ ︷︷ ︸
term-10

.

We have γ0η0 <
d

pminµ
, Bounding term-10, we have,

E
[
D
(
xk+1, x

∗
ηk

)
|Fk
]
≤ (1− µγkηkpmin)D

(
xk, x

∗
ηk−1

)
+

C2
f

pminµ2

(
2

pminµγkηk

)(
ηk−1

ηk
− 1

)2

+2γ2
kC

2
g + 2γ2

kη
2
kC

2
f .

Bounding non-increasing sequence, ηk we get the result.

Remark 4.4.1 Throughout the analysis, we assume that blocks are randomly selected using
a uniform distribution.

Assumption 4.4.1 Let the following hold:

(a) {γk} and {ηk} are positive sequences for k ≥ 0 converging to zero such that γ0η0 <
d
µ

;

(b)
∑∞

k=0γkηk =∞; (c)
∑∞

k=0

(
1

γkηk

)(
ηk−1

ηk
− 1
)2

<∞;

(d)
∑∞

k=0 γ
2
k <∞; (e) limk→∞

(
1

γ2kη
2
k

)(
ηk−1

ηk
− 1
)2

= 0;

(f) limk→∞
γk
ηk

= 0.

Next, we show the a.s. convergence of the sequence {xk}.

Theorem 4.4.1 (a.s. convergence of {xk}) Consider (1.1.5) and (Pη). Let Assumption
4.4.1 hold. Consider the sequence {xk} is obtained by Algorithm 1, and the sequence {x∗ηk}
suppose obtained by solving (Pη). Then, D

(
xk, x

∗
ηk−1

)
goes to zero a.s. and

lim
k→∞

E
[
D
(
xk, x

∗
ηk−1

)]
= 0.
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Proof. We apply Lemma 4.3.1 to the result of Lemma 4.4.1. vk , D
(
xk, x

∗
ηk−1

)
, αk ,

µγkηk
d

,

βk ,
(

2d2

µγkηk

)
C2
f

µ2

(
ηk−1

ηk
− 1
)2

+ 2γ2
k(C

2
g + η2

0C
2
f ). Now, in order to claim the convergence of

vk, we show that all conditions of Lemma 4.3.1 hold. Note that pi = 1/d. From Assump-
tion 4.4.1 (a), definition of {γk}, {ηk}, and from γ0η0 <

d
µ
, the first condition of Lemma

4.3.1 is satisfied. Now consider sequence βk. From Assumption 4.4.1 (a), sequences {γk},
{ηk} and the constant µ are positive, so the second condition of Lemma 4.3.1 is satisfied.
Now in

∑∞
k=0 αk, i.e.

∑∞
k=0

µγkηk
d

. From Assumption 4.4.1(b), the third condition of Lemma
4.3.1 holds. Now from the definition of βk and from Assumption 4.4.1(c) and (d), the fourth

condition of Lemma 4.3.1 holds. Finally consider limk→∞

(
βk
αk

)
= 0. Using the definition of

βk and Assumption 4.4.1(e, f), condition 5 of Lemma 4.3.1 holds. Thus we get the required
result.

Next in Lemma 4.4.2 we give the choice of sequences γk and ηk that satisfy Assumption
4.4.1.

Lemma 4.4.2 Let Assumption 4.3.2 hold. Then sequences {γk} and {ηk} given by γk =
γ0(k + 1)−a and ηk = η0(k + 1)−b where a, and b satisfy, a > 0, b > 0, a + b < 1, b <
a, a > 0.5, where γ0 > 0 and η0 > 0. Then {γk} and {ηk} satisfy Assumption 4.4.1.

Proof. Similar to the proof of Lemma 5 in [96]. Omitted because of the space requirements.

Next, we show the a.s. convergence of the sequence {x̄k}.

Theorem 4.4.2 (a.s. convergence of {x̄k}) Consider problem (1.1.5). Let γk and ηk
be the sequences defined by Lemma 4.4.2 where γ0 > 0, η0 > 0, and ar < 1. Then {x̄k}
converges to the unique solution of (1.1.5), x∗f a.s.

Proof. From λt,k = γrt /
∑k

j=0 γ
r
j ,

∥∥ x̄k − x∗f∥∥ =

∥∥∥∥∥
k∑
t=0

λt,kxt −
k∑
t=0

λt,kx
∗
f

∥∥∥∥∥ =

∥∥∥∥∥
k∑
t=0

λt,k
(
xt − x∗f

)∥∥∥∥∥ .
Using the triangle inequality,

∥∥ x̄k − x∗f∥∥ ≤ k∑
t=0

λt,k
∥∥xt − x∗f∥∥ .

From definition of λt,k, ∥∥ x̄k − x∗f∥∥ ≤ ∑k
t=0 γ

r
t

∥∥xt − x∗f∥∥∑k
j=0 γ

r
j

.

Comparing with Lemma 4.3.2,

αk , γrk, uk ,
∥∥xk − x∗f∥∥ , vk+1 ,

k∑
t=0

γrt
∥∥xt − x∗f∥∥ .
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Consider
∑∞

k=0 αt, i.e.
∑∞

k=0(1 + k)−at. Now, we have at < 1, so
∑∞

k=0(1 + k)−at =∞. From
Theorem 4.4.1,

∥∥xk − x∗f∥∥ → 0 a.s. Therefore, Using Lemma 4.3.2, we get the required
result.

Now we derive the rate of convergence for Algorithm 5.

Lemma 4.4.3 (Feasibility error bound for Algorithm 1) Consider problem (1.1.5)
and {x̄k}, the sequence generated by Algorithm 1. Let Assumption 4.3.1 hold, r(< 1) be an
arbitrary scalar, and γk be a non-increasing sequence. Let ηk be a non-increasing sequence
and X to be bounded, i.e. ‖x‖ ≤ M for all x ∈ X for some M > 0. Then for any z ∈ X,
the following holds,

E[f (x̄N)]− f(z) ≤

(
N−1∑
i=0

γri

)−1(
2Mg

N−1∑
k=0

γrkηk+

2p−1
maxM

2
(
γr−1

0 + γr−1
N−1

)
+

(
N−1∑
k=0

γr+1
k

)(
C2
f + C2

gη
2
0

))
,

where Mf (>0) is a scalar such that f(x)≤Mf for all x ∈ X.

Proof. Consider equation (4.3.1) in step 6 of Algorithm 5. Note that using induction, it can
be shown that x̄k =

∑k
i=0 λt,kxt, where λt,k , γrt /

∑k
j=0 γ

r
j .

Next, consider {xk} be the sequence generated from Algorithm 1 and z ∈ X. Then from
Definition 4.3.1, we have,

D (xk+1, z) =
d∑

i=1,i 6=ik

p−1
i

∥∥∥x(i)
k − z

(i)
∥∥∥2

+ p−1
ik

∥∥∥x(ik)
k − z(ik)

∥∥∥2

︸ ︷︷ ︸
term-11

.

Consider term-11. From Algorithm 5, substituting x
(ik)
k+1 and using the non-expansiveness

property of the projection operator,∥∥∥x(ik)
k+1 − z

(ik)
∥∥∥2

≤
∥∥∥x(ik)

k − z(ik)
∥∥∥2

+γ2
k

∥∥∥∇̃ikg(xk) + ηk∇̃ikf(xk)
∥∥∥2

− 2γk

(
x

(ik)
k − z(ik)

)T (
∇̃ikg(xk) + ηk∇̃ikf(xk)

)
.

Substituting the bound on term-1, we obtain,

D (xk+1, z) = D (xk, z) + p−1
ik
γ2
k

∥∥∥∇̃ikg(xk) + ηk∇̃ikf(xk)
∥∥∥2

︸ ︷︷ ︸
term-12

− p−1
ik

2γk

(
x

(ik)
k − z(ik)

)T (
∇̃ikg(xk) + ηk∇̃ikf(xk)

)
,

here we used Definition 4.3.1. From Remark 4.3.4, bounding term-12,∥∥∥∇̃ikg(xk) + ηk∇̃ikf(xk)
∥∥∥2

≤ 2C2
g,ik

+ 2η2
kC

2
f,ik
.
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Substituting the bound of term-12, we get,

D (xk+1, z) ≤ D (xk, z) + 2p−1
ik
γ2
kC

2
g,ik

+ 2p−1
ik
η2
kγ

2
kC

2
f,ik

− 2p−1
ik
γk

(
x

(ik)
k − z(ik)

)T (
∇̃ikg(xk) + ηk∇̃ikf(xk)

)
.

By taking conditional expectation on the both sides of equation above, and taking into
account D (xk, z) is Fk measurable, we have:

E[D (xk+1, z) |Fk] ≤D (xk, z) + 2γ2
k E
[
p−1
ik
C2
g,ik
|Fk
]︸ ︷︷ ︸

term-13

+2η2
kγ

2
k E
[
p−1
ik
C2
f,ik
|Fk
]︸ ︷︷ ︸

term-14

− 2γk E

[
p−1
ik

(
x

(ik)
k − z(ik)

)T (
∇̃ikg(xk) + ηk∇̃ikf(xk)

)
|Fk
]

︸ ︷︷ ︸
term-15

. (4.4.7)

Using definition of expectation, term-13 = C2
g , term-14 = C2

f ,

term-15 = (xk − z)T
(
∇̃g (xk) + ηk∇̃f (xk)

)
. From (4.4.7),

E[D (xk+1, z) |Fk] ≤ D (xk, z) + 2γ2
kC

2
g + 2η2

kγ
2
kC

2
f + 2γk (z − xk)T

(
∇̃g (xk) + ηk∇̃f (xk)

)
︸ ︷︷ ︸

term-16

.

(4.4.8)

Using the definition of subgradient at point xk,

term-16 = (z − xk)T ∇̃g (xk) + ηk (z − xk)T ∇̃f (xk)

≤ g(z)− g (xk) + ηkf(z)− ηkf (xk) .

Bounding term-16, using conditional and total expectation,

E[D (xk+1, z)] ≤ E[D (xk, z)] + 2γ2
kC

2
g + 2η2

kγ
2
kC

2
f

+ 2γk (g(z) + ηkf(z)− E[g (xk) + ηkf (xk)]) . (4.4.9)

Multiplying the both sides of equation (4.4.9) by γr−1
k , and adding, subtracting γr−1

k−1E[D (xk, z)]
on the left-hand side,

γr−1
k E[D (xk+1, z)]−

(
γr−1
k − γr−1

k−1

)
E[D (xk, z)]︸ ︷︷ ︸

term-17

−γr−1
k−1E[D (xk, z)] ≤

2γr+1
k C2

g + 2γr+1
k η2

kC
2
f + 2γrk (g(z) + ηkf(z)− E[g (xk) + ηkf (xk)]) .

(4.4.10)

Since r < 1 and γk is a non-increasing, γr−1
k−1−γ

r−1
k is a non-negative sequence. From Lemma

4.3.1, D (xk, z) ≤ pmax‖xk − z‖2 ≤ 2pmax (‖xk‖2 + ‖z‖2). From the boundedness of set X,
E[D (xk, k)] ≤ 4pmaxM

2. Substituting bound on term-17 in (4.4.10) and summing up over
k = 1, . . . , N − 1,

−γr−1
0 E[D (x1, z)]− 4γr−1

N−1pmaxM
2 ≤2C2

g

N−1∑
k=1

γr+1
k + 2C2

f

N−1∑
k=1

γr+1
k η2

k + 2
N−1∑
k=1

γrk (g(z) + ηkf(z))

− 2
N−1∑
k=1

γrkE[g (xk) + ηkf (xk)] . (4.4.11)
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putting k = 0 in (4.4.9),

E[D (x1, z)] ≤ E[D (x0, z)]︸ ︷︷ ︸
term-18

+2γ2
0C

2
g + 2η2

0γ
2
0C

2
f + 2γ0 (g(z) + η0f(z)− E[g (x0) + η0f (x0)]) .

Now, term-18 ≤ 4pmaxM
2 + 2γ2

0C
2
g + 2η2

0γ
2
0C

2
f + 2γ0 (g(z) + η0f(z)− E[g (x0) + η0f (x0)]) .

Multiplying the both sides of equation with γr−1
0 , we get,

γr−1
0 E[D (x1, z)]− 4γr−1

0 pmaxM
2 ≤2γr+1

0 C2
g + 2η2

0γ
r+1
0

C2
f + 2γr0 (g(z) + η0f(z)− E[g (x0) + η0f (x0)]) . (4.4.12)

Adding (4.4.11) and (4.4.12) together, and combining the terms,

−4pmaxM
2
(
γr−1

0 + γr−1
N−1

)
≤2C2

g

(
N−1∑
k=0

γr+1
k

)
+ 2C2

f

(
N−1∑
k=0

γr+1
k η2

k

)

+ 2

(
N−1∑
k=0

γrk (g(z) + ηkf(z))

)
− 2

(
N−1∑
k=0

γrkE[g (xk) + ηkf (xk)]

)
.

Dividing the both sides by
∑N−1

i=0 γri , and denoting
γrk∑N−1
i=0 γri

= λk,N−1, we get,

N−1∑
k=0

λk,N−1E[g (xk) + ηkf (xk)]︸ ︷︷ ︸
term-19

−
N−1∑
k=0

λk,N−1 (g(z) + ηkf(z)) ≤

(
N−1∑
i=0

γri

)−1(
2pmaxM

2
(
γr−1

0 + γr−1
N−1

)
+ C2

g

(
N−1∑
k=0

γr+1
k

)
+ C2

f

(
N−1∑
k=0

γr+1
k η2

k

))
.

By updating term-19 and rearranging the original terms,

E

[
N−1∑
k=0

λk,N−1g (xk)

]
︸ ︷︷ ︸

term-20

−
N−1∑
k=0

λk,N−1g(z)︸ ︷︷ ︸
term-21

≤
N−1∑
k=0

λk,N−1ηkf(z)− E

[
N−1∑
k=0

λk,N−1ηkf (xk)

]

+

(
N−1∑
i=0

γri

)−1(
2pmaxM

2
(
γr−1

0 + γr−1
N−1

)
+ C2

g

(
N−1∑
k=0

γr+1
k

)
+ C2

f

(
N−1∑
k=0

γr+1
k η2

k

))
.

Using the convexity of g and the definition of λk,N−1, we have term-20 ≤
∑N−1

k=0 λk,N−1f (xk),
and term-21 = g(z).

E[g (x̄N)]− g(z) ≤
N−1∑
k=0

λk,N−1ηkf(z)− E

[
N−1∑
k=0

λk,N−1ηkf (xk)

]
︸ ︷︷ ︸

term-22

+

(
N−1∑
i=0

γri

)−1(
2pmaxM

2
(
γr−1

0 + γr−1
N−1

)
+ C2

g

(
N−1∑
k=0

γr+1
k

)
+ C2

f

(
N−1∑
k=0

γr+1
k η2

k

))
.
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Using definition of Mf , we obtain,

term-22 = E

[
N−1∑
k=0

λk,N−1ηkf(z)−
N−1∑
k=0

λk,N−1ηkf (xk)

]
≤ E

[
N−1∑
k=0

λk,N−1ηk|f(z)− f (xk) |

]

≤ 2Mf

N−1∑
k=0

λk,N−1ηk.

Bounding term-22 and using the definition of λk,N−1,

E[g (x̄N)]− g(z) ≤(
N−1∑
i=0

γri

)−1(
2Mf

N−1∑
k=0

γrkηk + C2
g

N−1∑
k=0

γr+1
k + 2pmaxM

2
(
γr−1

0 + γr−1
N−1

)
+ C2

f

N−1∑
k=0

γr+1
k η2

k

)
Here, since ηk is a non-increasing sequence, bounding it by η0, we get the required result.

Next, we state Lemma 4.4.4 (see Lemma 9, pg. 418 of [96]) and use it in Theorem 4.4.3 to
derive the rate of convergence.

Lemma 4.4.4 For a scalar α 6= −1 and integers l, N, where 0 ≤ l ≤ N − 1, we have

Nα+1 − (l + 1)α+1

α + 1
≤

N−1∑
k=l

(k + 1)α ≤ (l + 1)α +
(N + 1)α+1 − (l + 1)α+1

α + 1
.

In Theorem 4.4.3, we show the rate of convergence for the sequence generated from Algorithm
5.

Theorem 4.4.3 Consider problem (1.1.5) and the sequence generated from Algorithm 1
{x̄N}. Let Assumptions 4.3.1, and 4.3.2 with a uniform distribution. Let the sequence
{γk} and {ηk} are given by the following, γk = γ0/(k + 1)0.5+0.1δ and ηk = η0/(k + 1)0.5−δ,

such that γ0 , γ
√
d, for some γ > 0, η0 > 0, γη0 <

√
d
µ
, 0 < δ < 0.5, and r < 1. Then,

(i) Sequence {x̄N} converges to x∗f almost surely. (ii) E[f (x̄N)] → f ∗ with the rate

O
(√

d/N0.5−δ
)

.

Proof. (i) Consider the sequences given for γk and ηk. By denoting a = 0.5 + 0.1δ and b =
0.5 − δ, we have, γk = γ0/(k + 1)a and ηk = η0/(k + 1)b. Also we know that 0 < δ <
0.5 and r < 1. Therefore, we have: a, b > 0, b < a, 0.5 < a < 0.55, 0 < b < 0.5, a + b <
1 and ar < 1. So, γk and ηk satisfy all the conditions of Lemma 4.4.2.
(ii) Substituting γk, ηk, and z := x∗f in Lemma 4.4.3, we obtain,

E[g (x̄N)]− g∗ ≤

(
γr0

N−1∑
i=0

1

(k + 1)ar

)−1 (
2p−1

maxM
2γr−1

0

(
Na(1−r) + 1

)

+γr0

2Mfη0

N−1∑
k=0

1

(k + 1)ar+b
+
(
C2
g + C2

fη
2
0

)
γ0

N−1∑
k=0

1

(k + 1)ar+a︸ ︷︷ ︸
term-23


 .
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modifying term-23 in equation above, and expanding terms,

E[g (x̄N)]− g∗ ≤ 2p−1
maxM

2γ−1
0


(
N−1∑
i=0

1

(k + 1)ar

)−1

Na(1−r)

︸ ︷︷ ︸
term-24

+

(
N−1∑
i=0

1

(k + 1)ar

)−1

︸ ︷︷ ︸
term-25


+
(
2Mfη0 + γ0

(
C2
g + C2

fη
2
0

))
.

The above equation can also be written as

E[g (x̄N)]− g∗ ≤ 2dM2γ−1d−0.5 (term-24 + term-25) + term-26
(

2Mfη0 + γ
√
d
(
C2
g + C2

fη
2
0

))
.

From Lemma 4.4.4, we have,

term-25 ≤ 1− ar
N−ar+1 − 1

= O
(
N−(1−ar)) , term-24 ≤ (1− ar)Na(1−r)

N−ar+1 − 1
= O

(
N−(1−a)

)
,

term-26 ≤
(

1− ar
N−ar+1 − 1

)(
1 +

(N + 1)1−(ar+b) − 1

1− (ar + b)

)
= O

(
N−(1−ar))+O

(
N−b

)
.

Now, substituting bounds of terms-24, 25, and 26, we have,

E[g (x̄N)]− g∗ ≤ O
(√

dmax
{
N−(1−ar), N−(1−a), N−b

})
= O

(√
dN−min{1−ar, 1−a, b}

)
.

From definitions of a, r, and δ, we obtain the result.

4.5 Numerical Results

In the literature, one of the ways to address the ill-posedness in image deblurring is em-
ploying the regularization technique. The ill-posed problem (1.1.3) is converted into the
regularized problem (Pη) by, for example, substituting functions g(x) := ‖Ax − b‖2

2, and
f(x) := ‖x‖2

2 + ‖x‖1.
As the value of regularization parameter η changes, a different optimization problem

(Pη) is solved. The basic idea is, η ∈ (0,+∞) governs the way by which solutions of linear
inverse problem (1.1.3) are approximated by (Pη). This is a two-loop scheme, as explained
earlier in the introduction. It is computationally inefficient to find a suitable regularization
parameter η. In this section, we address this challenge in an image deblurring using problem
formulation (1.1.4) (specific case of problem (1.1.5)), by avoiding the conventional two-loop
regularization technique. The values of regularization parameter ηk and stepsize parameter
γk are updated iteratively, explained below in the inference.

We are provided with the blurred noisy image in Figure 1(a), which is further converted
into the column vector b. Our objective is to get the original image, Figure 1 (b) using
image deblurring. Here we compare two ways of deblurring: standard regularization, and
using Algorithm 5.
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(a) η=0 (b) η=0.001 (c) η=0.01 (d) η=0.1 (e) η=1

(f) k = 102 (g) k = 103 (h) k = 104 (i) k = 105 (j) k = 106

Figure 6: First set of images (a)-(e) are obtained using the sequential regularization at
different values of η, running for 105 iterations. Second set of images (f)-(j) are obtained
using Algorithm 5 by stopping at different iterations k.

Inference. Figure 6(a)–(e) show the deblurred images obtained by conventional regular-
ization at different η for 105 iterations. Figure 6(f)–(j) show the deblurred images using
Algorithm 5 scheme with stopping at different iteration. Our Algorithm 5 is computation-
ally efficient, because unlike the case of two-loop regularization, in Algorithm 5 we implement
the scheme once. A question then is: what iteration k we should stop the scheme at? Stop-
ping at a suitable iteration k is desired because that governs the deblurred image quality.
In particular, this single-loop scheme seems to be promising because one can generate im-
ages after every fixed number of iterations and stop the implementation once the generated
deblurred image is good enough. Note that, image deblurring is used for a toy example
here, to demonstrate the performance of Algorithm 5. This application can be extended for
deblurring of images with a higher resolution. In this work, our intention is to demonstrate
the performance of Algorithm 5 on the well-known example of cameraman.

4.6 Concluding Remarks

We address ill-posed optimization problem with a high-dimensional solution space and non-
differentiable objective function. A randomized block-coordinate iterative regularized sub-
gradient Algorithm 5 is developed to address problem (1.1.5). We establish the convergence
of the sequence generated from Algorithm 5 to the unique solution of (1.1.5) in an almost

sure sense. Furthermore, we derive a rate of convergence O
( √

d
k0.5−δ

)
, with respect to the

inner level objective of the bilevel problem (1.1.5). Our ground assumptions in the conver-
gence proof and rate analysis are mild, such that f and g can be nondifferentiable functions.
Demonstration of Algorithm 5 on an image deblurring example shows that the proposed
single-loop scheme computationally performs well compared to the conventional two-loop
regularization schemes.
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CHAPTER V

LARGE-SCALE DISTRIBUTED NONLINEARLY CONSTRAINED
OPTIMIZATION

In this chapter, motivated by applications arising from sensor networks and machine learn-
ing, we consider the problem of minimizing a finite sum of nondifferentiable convex functions
where each component function is associated with an agent and a hard-to-project constraint
set. We consider a special case of Problem (P2). Section 5.1 provides the problem formula-
tion. Among well-known avenues to address finite sum problems is the class of incremental
gradient (IG) methods where a single component function is selected at each iteration in a
cyclic or randomized manner. When the problem is constrained, the existing IG schemes (in-
cluding projected IG, proximal IAG, and SAGA) require a projection step onto the feasible
set at each iteration. Consequently, the performance of these schemes is afflicted with costly
projections when the problem includes: (1) nonlinear constraints, or (2) a large number of
linear constraints. Our focus in this chapter lies in addressing both of these challenges. Sec-
tion 5.2 provides the available methods to address problem (1.2.3) and the research gap. We
develop an algorithm called averaged iteratively regularized incremental gradient (aIR-IG)
that does not involve any hard-to-project computation. Section 5.3 includes the algorithm
outline. Under mild assumptions, we derive non-asymptotic rates of convergence for both
suboptimality and infeasibility metrics. Section 5.4 includes the convergence and rate analy-
sis. Numerically, we show that the proposed scheme outperforms the standard projected IG
methods on distributed soft-margin support vector machine problems in Section 5.5. Section
5.6 includes the concluding remarks.

5.1 Problem Formulation

We consider a finite sum minimization subject to nonlinear inequality and linear equality
functional constraints as follows.

minimize
x∈Rn

f(x) ,
m∑
i=1

fi(x) (1.2.3)

subject to hi(x) ≤ 0 for all i ∈ {1, . . . ,m},
Aix = bi for all i ∈ {1, . . . ,m},
x(j) ≥ 0 for all j ∈ J,
x ∈ X,

The content of this chapter has been published in the proceedings of 2021 American Control Conference
[51].
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where the component functions fi : Rn → R and hi : Rn → R are nonsmooth convex,
Ai ∈ Rdi×n, and bi ∈ Rdi , for all i ∈ {1, . . . ,m}. Also, X ⊆ Rn is an easy-to-project convex
set and J ⊆ {1, . . . , n}. The information about fi, hi, Ai, and bi is locally known by agent i,
while the sets X and J are globally known. Parameters n, m, and p ,

∑m
i=1 di are possibly

large. Note that this is a special case of problem (P2).

5.2 Existing Methods and Research Gap

Table 3: Comparison and memory requirements of incremental gradient schemes for address-
ing constrained finite sum problems.

Ref. Scheme Problem class Formulation Convergence rate Memory

[62] Projected IG C0
0 min

x∈X

∑m
i=1 fi(x) O

(
1√
k

)
O(n)

[17,34] IAG C1,1
µ,L min

x∈Rn
∑m
i=1 fi(x) linear O(mn)

[29] SAGA C1,1
0,L , C1,1

µ,L min
x∈X

∑m
i=1 fi(x) O

(
1
k

)
, linear O(mn)

[87] Proximal IAG C1,1
µ,L min

x∈X

∑m
i=1 fi(x) linear O(mn)

[35] IG C2,1
0,L, C

2,1
µ,L

min
x∈Rn

∑m
i=1 fi(x) O

(
1√
k

)
, O

(
1
k

)
O(n)

This
work

aIR-IG C0
0

min
x∈X

∑m
i=1 fi(x)

hi(x) ≤ 0 ∀i ∈ [m]
Aix = bi ∀i ∈ [m]
x(j) ≥ 0 ∀j ∈ J

suboptimality:
O
(
k−0.5+b

)
infeasibility:
O
(
k−b
)

for 0 < b < 0.5

O(n)

Problem (1.2.3) arises in a breadth of applications including expected loss minimization
in statistical learning [74] where fi is associated with a data block, as well as distributed
optimization in wireless sensor networks where fi represents the local performance measure
of the ith agent [70]. One of the popular methods in addressing finite sum problems, in
particular, in the unconstrained regime, is the class of incremental gradient (IG) methods
where utilizing the additive structure of the problem, the algorithm cycles through the data
blocks and updates the local estimates of the optimal solution in a sequential manner [14].
While the first variants of IG schemes find their roots in addressing neural networks as early
as in the ’80s [15], the complexity analysis of these schemes has been a trending research
topic in the fields of control and machine learning in the past two decades. In addressing
constrained problems with easy-to-project constraint sets, the projected incremental gradient
(P-IG) method and its subgradient variant were developed [63]. In the smooth case, it is
described as follows: given an initial point x0,1 ∈ X, where X ⊆ Rn denotes the constraint
set, for each k ≥ 1, consider the following update rule:

xk,i+1 := PX (xk,i − γk∇fi (xk,i)) for all i = 1, . . . ,m,

xk+1,1 := xk,m+1 for all k ≥ 0,

where P denotes the Euclidean projection operator and is defined as PX(z) , argminx∈X‖x−
z‖2 and γk > 0 is the stepsize parameter. Recently, under the assumption of strong convexity
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and twice continuous differentiability of the objective function, the standard IG method was
proved to converge with the rate O(1/k) in the unconstrained case [35]. This is an improve-
ment to the previously known rate of O(1/

√
k) for the merely convex case. Accelerated

variants of IG schemes with provable convergence speeds were also developed, including the
incremental aggregated gradient method (IAG) [17, 34], SAG [74], and SAGA [29]. While
addressing the merely convex case, SAGA using averaging achieves a sublinear convergence
rate, assuming strong convexity and smoothness, this is improved for non-averaging variants
of SAGA and IAG to a linear rate.

Existing gap. Despite the faster rates of convergence in comparison with the standard
IG method, the aforementioned methods require an excessive memory of O (mn) which limits
their applications in the large-scale settings. Another existing challenge in the implemen-
tation of these schemes lies in addressing the hard-to-project constraints. Contending with
the presence of constraints, projected (and more generally proximal) variants of the afore-
mentioned IG schemes have been developed. However, the performance of these schemes is
afflicted with costly projections when the problem includes: (1) nonlinear constraints, or (2)
a large number of linear constraints. In the area of distributed optimization over networks,
addressing constraints has been done to a limited extent through employing duality theory,
projection, or penalty methods (see [6,21,36,65,79]). We also note that a celebrated variant
of the dual based schemes is the alternating direction method of multipliers (ADMM) (e.g.,
see [7, 53, 60, 83, 84]). Despite the recent advancements in this area, most ADMM meth-
ods cannot address inequality constraints with a separable structure as in (1.2.3). Also,
ADMM schemes often work under the premise that the communication graph is undirected.
Indeed, despite the wide-spread application of the theory of duality and Lagrangian relax-
ation in addressing constrained problems in centralized regimes, there have been a limited
work in the area of distributed optimization that can cope with hard-to-project constraints
(see [6, 13, 36] and the references therein). Nevertheless, the problem formulation (1.2.3)
is not addressed in the aforementioned articles. Recently, primal-dual algorithms are pro-
posed for finite sum convex optimization problems with conic constraints [6, 37]. A recent
work [42] introduced primal-dual incremental gradient method for nonsmooth convex op-
timization problems. Moreover, iterative regularization (IR) has been employed as a new
constraint-relaxation strategy in regimes where addressing the constraints are challenging
(e.g., see [3, 52, 96, 98]). Our work in this chapter has been motivated by the recent success
of the IR approach. To this end, our goal lies in employing the IR approach to develop
an IG algorithm that can address formulation (1.2.3) without requiring any hard-to-project
computation.

5.3 Algorithm Outline

In this section, we first provide the main assumptions on problem (1.2.3) and present the
outline of the algorithm. Then, we present a few preliminary results that will be used in the
analysis.

Assumption 5.3.1 (Properties of problem (1.2.3)) Let the following hold:
(a) Component function fi : Rn → R is merely convex and subdifferentiable with bounded
subgradients for all i ∈ [m].
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(b) Function hi : Rn → R is convex and subdifferentiable with bounded subgradients for all
i ∈ [m].
(c) The set X is compact and convex.
(d) The feasible set of problem (1.2.3) is nonempty.

An underlying idea in development of Algorithm 6 is to define a regularized error metric.

Definition 5.3.1 Consider the following term for measuring infeasibility for an agent i

φi(x) ,
1

2
‖Aix− bi‖2 + h+

i (x) +
∑
j∈J

max
{
−x(j), 0

}
m

,

where h+
i (x) , max{0, hi(x)} for i ∈ [m] and all x ∈ Rn. Further, we define φ(x) =∑m

i=1 φi(x).

Then, for each agent i, we consider a regularized metric defined as φi(x) + ηkfi(x) at
iteration k. This metric captures both infeasibility and objective component function of the
agent. Next, we derive a subgradient to this metric.

Let ∂h+
i (x) denote the subdifferential set of the function h+

i at x. Consider the vector
∇̃h+

i (x) defined as ∇̃h+
i (x) , h+

i (x)∇̃hi(x) where ∇̃hi(x) denotes a subgradient of function
hi at x. Then, from the definition of subgradient mapping and the definition of h+

i (x),
we have that ∇̃h+

i (x) ∈ ∂h+
i (x). Next, consider the function 1

m

∑
j∈J max

{
0,−x(j)

}
. A

subgradient to this function is the vector 1−(x)
m

where 1−(x) is defined a column vector ∈ Rn

and the value of any component i ∈ {1, . . . , n} is −1 when x(i) < 0 and i ∈ J , otherwise that
component is 0. Let xk,i in Rn denote the iterate of agent i at iteration k. From the above
discussion, we can conclude that the subgradient of the regularized error metric for agent i,
is given as follows

ATi (Aixk,i − bi) + ∇̃h+
i (xk,i) +

1− (xk,i)

m
+ ηk∇̃fi (xk,i) .

We are now ready to present the outline of aIR-IG scheme presented by Algorithm 6. At
each iteration, agents update their iterates in a cyclic manner by employing the aforemen-
tioned subgradient. Each agent uses its local information including subgradients of functions
fi, hi, as well as matrix Ai and vector bi. Here γk and ηk are the stepsize and regularization
parameters, respectively. These parameters are updated at each iteration. This, indeed, is
important because the convergence and rate analysis mainly depend on the choice of γk and
ηk. The key research question lies in finding suitable update rules for the two sequences so
that we can achieve convergence and rate results. For the rate analysis, we employ averaging
which is characterized by stepsize γk and a scalar 0 ≤ r < 1.

In the following, we claim the boundedness of the subgradients ∇̃φi(x) and ∇̃fi(x) which
will be used in the rate analysis in the next section.

Remark 5.3.1 Under Assumption 5.3.1, from compactness of the set X, the term
ATi (Aix− bi) is bounded. Also, from the boundedness of subgradients of function hi and
continuity of the function hi that is implied from convexity of hi, we can claim that the
subgradient ∇̃h+

i (x) , h+
i (x)∇̃hi(x) is bounded on the set X. Consequently, we have that
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Algorithm 6 Averaged Iteratively Regularized Incremental Gradient (aIR-IG)

1: Input: x0 ∈ Rn, x̄0 := x0, S0 := γr0, and 0 ≤ r < 1.
2: for k = 0, 1, . . . , N − 1 do
3: Let xk,1 := xk and select γk > 0, ηk > 0
4: for i = 1, . . . ,m do
5:

xk,i+1 := PX
(
xk,i − γk

(
ATi (Aixk,i − bi) + ∇̃h+

i (xk,i) +
1− (xk,i)

m
+ ηk∇̃fi (xk,i)

))
6: end for
7: Set xk+1 , xk,m+1.
8: Update the weighted average iterate as

x̄k+1 :=
Skx̄k + γrk+1xk+1

Sk+1

, where Sk+1 := Sk + γrk+1.

9: end for
10: return: x̄N .

∇̃φi(x) , ATi (Aix− bi) + ∇̃h+
i (x) + 1−(x)

m
is a bounded subgradient of φi for all x ∈ X. This

implies that there exists a scalar C > 0 such that for all x ∈ X, we have

m∑
i=1

∇̃φi(x) ≤ C and ∇̃φi(x) ≤ C

m
for all i ∈ [m].

Remark 5.3.2 From Assumption 5.3.1, taking into account the subdifferentiability and
boundedness of subgradient of function fi, there exists a scalar Cf > 0 such that for all x ∈
X,

m∑
i=1

∥∥∥∇̃fi (x)
∥∥∥ ≤ Cf and

∥∥∥∇̃fi (x)
∥∥∥ ≤ Cf

m
for all i ∈ [m].

Remark 5.3.3 Taking into account Assumption 5.3.1, from Theorem 3.61 in [9], functions
fi and φi are Lipschitz continuous over set X. Therefore for x, y ∈ X, and i ∈ [m], |fi(x)−
fi(y)| ≤ Cf

m
‖x− y‖ and |φi(x)− φi(y)| ≤ C

m
‖x− y‖.

Next, we show that the sequence x̄k, employed in Algorithm 6, is a well-defined weighted
average.

Remark 5.3.4 From Algorithm 6, the average of the iterate can be written as x̄k+1 =∑k
t=0 λt,kxt, where λt,k ,

γrt∑k
j=0 γ

r
j

for t ∈ {0, . . . , k} denote the weights. This can be shown

using induction on k ≥ 0. For k = 0, the relation holds directly due to the initialization
x̄0 := x0. To show the relation for k + 1, assuming that it holds for k, using the step 7 in
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Algorithm 6, and that Sk :=
∑k

j=0 γ
r
j , we have

x̄k+1 =
Skx̄k + γrk+1xk+1

Sk+1

=

∑k
t=0 γ

r
t xt + γrk+1xk+1

Sk+1

=

∑k+1
t=0 γ

r
t xt∑k+1

t=0 γ
r
t

=
k+1∑
t=0

λt,kxt.

In this work, the average of the mth agent’s iterate is considered in the analysis.
The next result will be employed in the rate analysis.

Lemma 5.3.1 (Lemma 2.14 in [52]) For any scalar α ∈ [0, 1) and integer N such that

N ≥ 2
1

1−α − 1, we have

(N + 1)1−α

2(1− α)
≤

N∑
k=0

(k + 1)−α ≤ (N + 1)1−α

1− α
.

5.4 Convergence Analysis

We begin with obtaining an error bound that will be employed later in the construction of
bounds on the objective value and infeasibility metrics for Algorithm 6.

Lemma 5.4.1 Let the sequence {xk} be generated by Algorithm 6 and {γk} and {ηk} be
nonincreasing positive sequences. Let Assumption 5.3.1 hold, 0 ≤ r < 1, and scalars C,Cf >
0 be defined as in Remarks 5.3.1 and 5.3.2, respectively. Then, for any y ∈ X and k ≥ 0,
we have

2γrkηk (f(xk)− f(y)) + 2γrk (φ (xk)− φ (y)) ≤ γr−1
k ‖xk − y‖2 − γr−1

k ‖xk+1 − y‖2

+

(
1 +

1

m

)
γr+1
k (C + ηkCf )

2 . (5.4.1)

Proof. Consider the update rule in step 4 in Algorithm 6. For iteration k ≥ 0, agent
i ∈ {1, . . . ,m}, and y ∈ X, we have

‖xk,i+1 − y‖2 :=
∥∥PX (xk,i − γk (ATi (Aixk,i − bi)

+∇̃h+
i (xk,i) +

1− (xk,i)

m
+ ηk∇̃fi (xk,i)

))
− PX(y)

∥∥∥∥2

.

Employing the non-expansiveness of the projection operator, and recalling Definition 5.3.1
for φi(x), we have

‖xk,i+1 − y‖2 ≤
∥∥∥xk,i − γk (∇̃φi (xk,i) + ηk∇̃fi (xk,i)

)
− y
∥∥∥2

= ‖xk,i − y‖2 + γ2
k

∥∥∥∇̃φi (xk,i) + ηk∇̃fi (xk,i)
∥∥∥2

︸ ︷︷ ︸
term 1

− 2γk

(
∇̃φi (xk,i) + ηk∇̃fi (xk,i)

)T
(xk,i − y) .
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Consider term 1. Employing the triangle inequality, taking into account the definitions of
scalars C, and Cf , we obtain

‖xk,i+1 − y‖2 ≤ ‖xk,i − y‖2 + γ2
k

(
C + ηkCf

m

)2

−2γk

(
∇̃φi (xk,i) + ηk∇̃fi (xk,i)

)T
(xk,i − y)︸ ︷︷ ︸

term 2

.

Bounding term 2 by invoking the definition of subgradient and the convexity of φi(x) and
fi(x), we obtain

‖xk,i+1 − y‖2 ≤‖xk,i − y‖2 + γ2
k

(
C + ηkCf

m

)2

+ 2γkηk (fi(y)− fi(xk,i)) + 2γk (φi(y)− φi (xk,i)) .

Taking summation over all the agents i ∈ {1, . . . ,m},

‖xk+1 − y‖2 ≤‖xk − y‖2 + 2γkηk

m∑
i=1

(fi(y)− fi(xk,i))

+ γ2
k

m∑
i=1

(
C + ηkCf

m

)2

+ 2γk

m∑
i=1

(φi(y)− φi (xk,i)) .

Adding and subtracting 2γk
∑m

i=1 φi (xk)+2γkηk
∑m

i=1 fi (xk), and taking into account Defi-
nition 5.3.1, we have

‖xk+1 − y‖2 ≤‖xk − y‖2 +
γ2
k (C + ηkCf )

2

m
+ 2γkηk (f(y)− f(xk)) + 2γk (φ(y)− φ (xk))

+ 2γk

m∑
i=1

(φi (xk)− φi (xk,i) + ηk (fi (xk)− fi (xk,i))) ,

≤‖xk − y‖2 +
γ2
k (C + ηkCf )

2

m
+ 2γkηk (f(y)− f(xk)) + 2γk (φ(y)− φ (xk))

+ 2γk

m∑
i=1

|φi (xk)− φi (xk,i)|︸ ︷︷ ︸
term 3

+ηk |fi (xk)− fi (xk,i)|︸ ︷︷ ︸
term 4

 .

From Remark 5.3.3, bounding terms 3 and 4, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 +
γ2
k (C + ηkCf )

2

m
+ 2γkηk (f(y)− f(xk)) + 2γk (φ(y)− φ (xk))

+
2γk (C + ηkCf )

m

m∑
i=2

‖xk − xk,i‖︸ ︷︷ ︸
term 5

. (5.4.2)

Note that from Algorithm 6, for i = 1, we have ‖xk − xk,1‖ = 0. Consider term 5 in relation
(5.4.2). Applying induction on i, we bound term 5 as ‖xk − xk,i‖ ≤ (i)γk (C + ηkCf ) /m for

77



any i = 2, . . . ,m. For i = 2, from Algorithm 6, we have

‖xk − xk,2‖ =
∥∥∥PX (xk,1)− PX

(
xk,1 − γk

(
∇̃φ1(xk,1) + ηk∇̃f1 (xk,1)

))∥∥∥
≤ γk

∥∥∥∇̃φ1(xk,1) + ηk∇̃f1 (xk,1)
∥∥∥ ≤ γk (C + ηkCf ) /m.

Now, suppose the hypothesis statement holds for some i ≥ 2. Then, we can write

‖xk − xk,i+1‖ =
∥∥∥PX (xk)− PX

(
xk,i − γk

(
∇̃φi(xk,i) + ηk∇̃fi (xk,i)

))∥∥∥
≤‖xk − xk,i‖+ γk

∥∥∥∇̃φi(xk,i) + ηk∇̃fi (xk,i)
∥∥∥

≤‖xk − xk,i‖+
γk (C + ηkCf )

m
≤ (i+ 1)γk (C + ηkCf )

m
.

Therefore, the hypothesis statement holds for any i ≥ 2. Substituting the bound for term 5
in equation (5.4.2), we have

‖xk+1 − y‖2 ≤‖xk − y‖2 +
γ2
k (C + ηkCf )

2

m
+ 2γkηk (f(y)− f(xk)) + 2γk (φ(y)− φ (xk))

+
2γk (C + ηkCf )

m

m∑
i=2

(i)γk (C + ηkCf )

m

= ‖xk − y‖2 +

(
1 +

1

m

)
γ2
k (C + ηkCf )

2 + 2γkηk (f(y)− f(xk))

+ 2γk (φ(y)− φ (xk)) .

Multiplying both sides by the positive term γr−1
k , we obtain the desired result.

Next we construct the error bounds for Algorithm 6 in terms of the sequences {γk} and {ηk}.

Proposition 5.4.1 (Error bounds for Algorithm 6) Consider problem (1.2.3). Let x̄N
be generated by Algorithm 6 after N iterations and {γk} and {ηk} be nonincreasing and
strictly positive sequences. Further, let Assumption 5.3.1 hold, scalars Cf , C > 0, and param-
eter 0 ≤ r < 1. Let scalars M,Mf > 0 be defined such that we have: ‖x‖ ≤M and |f(x)| ≤
Mf for all x ∈ X. Then for any optimal solution x∗ to (1.2.3), we have the following:

(a) f(x̄N)− f(x∗) ≤

(
N∑
k=0

γrk

)−1(
2M2γr−1

N

ηN
+

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γr+1
k

ηk

)
.

(b) φ (x̄N) ≤

(
N∑
k=0

γrk

)−1(
2M2γr−1

N + 2Mf

N∑
k=0

γrkηk +

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γr+1
k

)
.

Proof. Consider relation (5.4.1) from Lemma 5.4.1, for any y ∈ X. Substituting y by x∗ and
taking into account the feasibility of the vector x∗ to problem (1.2.3), we obtain

2γrkηk (f(xk)− f(x∗)) + 2γrkφ (xk)≤γr−1
k

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2)

+

(
1 +

1

m

)
γr+1
k (C + ηkCf )

2 .
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Taking into account the nonnegativity of 2γrkφ (xk) and dividing both sides by 2ηk, we have

γrk (f(xk)− f(x∗)) ≤ γr−1
k

2ηk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2)+

(
1 +

1

m

)
γr+1
k (C + ηkCf )

2

2ηk
.

(5.4.3)

Adding and subtracting
γr−1
k−1

2ηk−1
‖xk − x∗‖2 in the above,

γrk (f(xk)− f(x∗)) ≤
γr−1
k−1

2ηk−1

‖xk − x∗‖2 − γr−1
k

2ηk
‖xk+1 − x∗‖2 +

(
γr−1
k

2ηk
−

γr−1
k−1

2ηk−1

)
︸ ︷︷ ︸

term 6

‖xk − x∗‖2

+

(
1 +

1

m

)
γr+1
k (C + ηkCf )

2

2ηk︸ ︷︷ ︸
term 7

. (5.4.4)

Recalling the definition for scalar M , we have:

‖xk − x∗‖2 ≤ 2‖xk‖2 + 2‖x∗‖2 ≤ 4M2. (5.4.5)

Taking into account r < 1 and the nonincreasing property of the sequences {γk} and {ηk},
we have term 6 ≥ 0. Bounding term 7 in equation (5.4.4), we have

γrk (f(xk)− f(x∗)) ≤
γr−1
k−1

2ηk−1

‖xk − x∗‖2 − γr−1
k

2ηk
‖xk+1 − x∗‖2 +

(
γr−1
k

2ηk
−

γr−1
k−1

2ηk−1

)
4M2

+

(
1 +

1

m

)
(C + η0Cf )

2 γr+1
k

2ηk
.

Next, taking summations over k = 1, . . . , N , we obtain

N∑
k=1

γrk (f(xk)− f(x∗)) ≤γ
r−1
0

2η0

‖x1 − x∗‖2 − γr−1
N

2ηN
‖xN+1 − x∗‖2 +

(
γr−1
N

2ηN
− γr−1

0

2η0

)
4M2

+

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=1

γr+1
k

ηk
. (5.4.6)

Rewriting equation (5.4.3) for k = 0, we have

γr0 (f(x0)− f(x∗)) ≤γ
r−1
0

2η0

(
‖x0 − x∗‖2 − ‖x1 − x∗‖2)+

(
1 +

1

m

)
γr+1

0 (C2 + η0Cf )
2

2η0

.

Adding the preceding relation with (5.4.6), we obtain

N∑
k=0

γrk (f(xk)− f(x∗)) ≤2M2

(
γr−1
N

ηN
− γr−1

0

η0

)
− γr−1

N

2ηN
‖xN+1 − x∗‖2 +

γr−1
0 ‖x0 − x∗‖2

2η0

+

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γr+1
k

ηk
.
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Further from (5.4.5), and neglecting the nonpositive term,

N∑
k=0

γrk (f(xk)− f(x∗)) ≤ 2M2γr−1
N /ηN +

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γr+1
k

ηk
.

Next, dividing both sides by
∑N

k=0 γ
r
k,(

N∑
k=0

γrk

)−1 N∑
k=0

γrk (f(xk)− f(x∗)) ≤

(
N∑
k=0

γrk

)−1

(
2M2γr−1

N /ηN +

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γr+1
k

ηk

)
.

Taking into account the convexity of f and recalling Remark 5.3.4, we obtain the result.
(b) Consider equation (5.4.1). Writing it for y := x∗ ∈ X,

2γrkφ (xk) ≤2γrkηk (f (x∗)− f(xk)) + γr−1
k

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2)

+

(
1 +

1

m

)
γr+1
k (C + ηkCf )

2 .

Recalling the definition of Mf , we have, |f(x∗) − f(xk)| ≤ 2Mf . Bounding the preceding
inequality,

2γrkφ(xk) ≤ γr−1
k

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2)+ 4γrkηkMf +

(
1 +

1

m

)
γr+1
k (C + ηkCf )

2 .

(5.4.7)

Adding and subtracting γr−1
k−1‖xk − x∗‖2 in the above,

2γrkφ(xk) ≤γr−1
k−1 ‖xk − x

∗‖2 − γr−1
k ‖xk+1 − x∗‖2 + 4γrkηkMf +

(
γr−1
k − γr−1

k−1

)
‖xk − x∗‖2︸ ︷︷ ︸

term 8

+

(
1 +

1

m

)
γr+1
k (C + ηkCf )

2︸ ︷︷ ︸
term 9

.

Using the nonincreasing property of {γk} and {ηk}, recalling 0 ≤ r < 1, we have γr−1
k −

γr−1
k−1 > 0, and

(
1 + 1

m

)
γr+1
k > 0. Further, from the boundedness of set X, we have term

8 <
(
γr−1
k − γr−1

k−1

)
4M2, and term 9 <

(
1 + 1

m

)
γr+1
k (C + η0Cf )

2. Next, taking summations
over k = 1, . . . , N, and dropping the nonpositive terms, we obtain

2
N∑
k=1

γrkφ(xk) ≤γr−1
0 ‖x1 − x∗‖2 + 4M2

(
γr−1
N − γr−1

0

)
+

(
1 +

1

m

)
(C + η0Cf )

2
N∑
k=1

γr+1
k + 4Mf

N∑
k=1

γrkηk. (5.4.8)
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Writing equation (5.4.7) for k = 0, we have

2γr0φ(x0) ≤γr−1
0

(
‖x0 − x∗‖2 − ‖x1 − x∗‖2)+ 4γr0η0Mf +

(
1 +

1

m

)
γr+1

0 (C + η0Cf )
2 .

Adding this into equation (5.4.8), we have

2
N∑
k=0

γrkφ(xk) ≤γr−1
0 ‖x0 − x∗‖2 + 4M2

(
γr−1
N − γr−1

0

)
+

(
1 +

1

m

)
(C + η0Cf )

2
N∑
k=0

γr+1
k + 4Mf

N∑
k=0

γrkηk.

Bounding ‖x0 − x∗‖2 from equation (5.4.5), dividing both sides by
∑N

k=0 γ
r
k, taking into

account the convexity of φ(xk), and from Remark 5.3.4, we obtain the required result.

Next, we present the suboptimality and infeasibility convergence rate statements for the
proposed algorithm.

Theorem 5.4.1 (Suboptimality and infeasibility rate results) Consider Algorithm 6.
Let Assumption 5.3.1 hold. Consider scalars M,Mf > 0 such that ‖x‖ ≤ M and |f(x)| ≤
Mf for all x ∈ X. Let x̄N be generated by Algorithm 6 after N iterations. Let {γk} and
{ηk} be the stepsize and regularization parameter sequences generated using γk = γ0√

1+k
, ηk =

η0
(1+k)b

, where γ0, η0 > 0, and 0 < b < 0.5. Then, for any optimal solution x∗ to problem

(1.2.3), we have:

(a) f (x̄N)− f(x∗) ≤ 2− r
γr0(N + 1)0.5−b

(
2M2

η0γ
1−r
0

+
(m+ 1) γ1+r

0 (C + η0Cf )
2

2mη0(0.5− 0.5r + b)

)
. (5.4.9)

(b) φ (x̄N) ≤ (2− r)
(N + 1)b

(
2M2

γ0

+
2Mfη0

(1− 0.5r − b)
+

(m+ 1) (C + η0Cf )
2 γ0

2m(0.5− 0.5r)

)
. (5.4.10)

Proof. Taking Proposition 5.4.1 (a) and (b) into account, let us define the following terms

ΛN,1 ,
N∑
k=0

γrk, ΛN,2 ,
2M2γr−1

N

ηN
, ΛN,3 ,

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

η−1
k γr+1

k ,

ΛN,4 , 2M2γr−1
N , ΛN,5 , 2Mf

N∑
k=0

ηkγ
r
k, ΛN,6 ,

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γr+1
k .

From Proposition 5.4.1 (a) and (b), we have

f (x̄N)− f(x∗) ≤ (ΛN,2 + ΛN,3) /ΛN,1, φ (x̄N) ≤ (ΛN,4 + ΛN,5 + ΛN,6) /ΛN,1. (5.4.11)
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Next, applying Lemma 5.3.1 and substituting {γk} and {ηk} by their update rules, we obtain

ΛN,1 =
N∑
k=0

γr0
(k + 1)0.5r

≥ γr0(N + 1)1−0.5r

2(1− 0.5r)
. ΛN,2 =

2M2(N + 1)0.5(1−r)+b

η0γ
1−r
0

.

ΛN,3 =

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γ1+r
0

η0(k + 1)0.5(1+r)−b

ΛN,3 ≤
(m+ 1) γ1+r

0 (C + η0Cf )
2 (N + 1)1−0.5(1+r)+b

2mη0(1− 0.5(1 + r) + b)
.

ΛN,4 =
2M2(N + 1)0.5(1−r)

γ1−r
0

. ΛN,5 =
N∑
k=0

2Mfη0γ
r
0

(k + 1)0.5r+b
≤ 2Mfη0γ

r
0(N + 1)1−0.5r−b

1− 0.5r − b
.

ΛN,6 =

(
1 +

1

m

)
(C + η0Cf )

2

2

N∑
k=0

γr+1
0

(k + 1)0.5(1+r)

≤ (m+ 1) (C + η0Cf )
2 γr+1

0 (N + 1)1−0.5(1+r)

2m(1− 0.5(1 + r))
.

For these inequalities to hold, we need to ensure that conditions of Lemma 5.3.1 are met.
Accordingly, we must have 0 ≤ 0.5r < 1, 0 ≤ 0.5(1 + r)− b < 1, 0 ≤ 0.5r + b < 1, and 0 ≤
0.5(1+r) < 1. These relations hold because 0 ≤ r < 1 and 0 < b < 0.5. Another set of condi-
tions when applying Lemma 5.3.1 includesN ≥ max

{
21/(1−0.5r), 21/(1−0.5(1+r)+b), 21/(1−0.5r−b),

21/(1−0.5(1+r))
}
− 1. Note that this condition is satisfied as a consequence of N ≥ 2

2
1−r − 1,

b > 0, and 0 ≤ r < 1. We conclude that all the necessary conditions for applying Lemma
5.3.1 and obtaining the aforementioned bounds for the terms ΛN,i are satisfied. To show that
the inequalities (5.4.9) and (5.4.10), it suffices to substitute the preceding bounds of ΛN,i, in
the inequalities (5.4.11).

f (x̄N)− f(x∗) ≤ 2− r
γr0(N + 1)1−0.5r

(
2M2(N + 1)0.5−0.5r+b

η0γ
1−r
0

+
(m+ 1) γ1+r

0 (C + η0Cf )
2 (N + 1)0.5−0.5r+b

2mη0(1− 0.5(1 + r) + b)

)
.

Inequality (5.4.9) is obtained by rearranging the terms in the preceding relation. Next,
consider the following

φ (x̄N) ≤ 2− r
γr0(N + 1)1−0.5r

(
2Mfη0γ

r
0(N + 1)1−0.5r−b

1− 0.5r − b
+

2M2(N + 1)0.5−0.5r

γ1−r
0

+
(m+ 1) (C + η0Cf )

2 γr+1
0 (N + 1)0.5−0.5r

2m(1− 0.5(1 + r))

)
,

≤(2− r)

(
2M2

γ0(N + 1)0.5
+

2Mfη0

(1− 0.5r − b)(N + 1)b
+

(m+ 1) (C + η0Cf )
2 γ0

2m(0.5− 0.5r)(N + 1)0.5

)
.

Taking into account 0 < b < 0.5, equation (5.4.10) is obtained by rearranging the terms in
the preceding inequality.
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Remark 5.4.1 The convergence rates derived in Theorem 5.4.1 can be improved under
stronger assumptions such as smoothness and strong convexity of the functions fi. Indeed,
this is a future direction of our study. We note that a preliminary version of this chapter
where a better rate has been derived under such assumptions is [52]. We have omitted such
discussions due to the space limitation.

5.5 Numerical Results

Consider a distributed soft-margin support vector machine (SVM) problem described as
follows. Let a dataset be given as D , {(uj, vj) | uj ∈ Rn, vj ∈ {−1,+1}, for j ∈ S} where
uj and vj denote the attributes and the binary label of the jth data point, respectively, and S
denotes the index set. Let the data be distributed among m agents by defining Di such that
∪mi=1Di = D. Let Si denote the index set corresponding to agent i such that

∑m
i=1 |Si| = |S|.

Then given λ > 0, the distributed SVM problem is given as

minimize
w,b,z

∑m

i=1

(
1

2m
‖w‖2 +

1

λ

∑
j∈Si

zj

)
subject to vj(w

Tuj + b) ≥ 1− zj, for j ∈ Si and i ∈ [m],

zj ≥ 0, for j ∈ Si and i ∈ [m].

(5.5.1)

To solve problem (5.5.1) using Algorithm 4, we apply Lemma 1.2.1 by casting (5.5.1) as
model (1.1.2). We also implement some of the well-known existing IG schemes, namely pro-
jected IG, proximal IAG, and SAGA. Unlike Algorithm 4, these schemes require a projection
step onto the constraint set. To compute the projections we use the Gurobi-Python solver.

|S|\n 50 100
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Figure 7: Comparison of Algorithm 4 with standard IG methods in solving an SVM model

Set-up. We consider 20 agents and assume that λ := 10. We let γk := 1√
k+1

and ηk :=
1

(k+1)0.25
in Algorithm 4. We use identical initial stepsizes in all the methods. We provide the

comparisons with respect to the runtime and report the performance of each scheme over 200
seconds. We use a synthetic dataset with different values for n and |S|. The suboptimality is
characterized in terms of the global objective and the infeasibility is measured by quantifying
the violation of constraints of problem (5.5.1) aligned with ideas in Lemma 1.2.1.
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Insights. In Figure 7, we observe that with an increase in the dimension of the solution
space, i.e., n, or the size of the training dataset, i.e., |S|, the projection evaluations in the
standard IG schemes take longer and consequently, the performance of the IG methods is
deteriorated in large-scale settings. However, utilizing the reformulation in Lemma 1.2.1, the
proposed method does not require any projection operations for addressing problem (5.5.1).
As such, the performance of Algorithm 4 does not get affected severely with the increase in
n or |S|. Note that in Figure 7, the reason that the IG schemes do not show any updates
for |S| = 200 and |S| = 500 beyond a time threshold is because of the interruption in their
last update when the method reaches the 200 seconds time limit.

5.6 Concluding remarks

We consider the problem of minimizing the finite sum with separable (agent-wise) nonlin-
ear inequality and linear equality and inequality constraints. Our work is motivated by the
computational challenges in the projected incremental gradient schemes under the presence
of hard-to-project constraints. We develop an averaged iteratively regularized incremental
gradient scheme where we employ a novel regularization-based relaxation technique. The
proposed algorithm is designed in a way that it does not require a hard-to-project com-
putation. We establish the rates of convergence for the objective function value and the
infeasibility of the generated iterates. We compare the proposed scheme with the state-
of-the-art incremental gradient schemes including projected IG, proximal IAG, and SAGA.
We observe that the proposed scheme outperforms the projected schemes as the number of
samples or the dimension of the solution space increases.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusion

In this dissertation, we consider a unifying class of optimization problems with variational in-
equality (VI) constraints. Traditionally, constrained optimization models include functional
constraints in the form of inequalities and equations. VI constraints allow for capturing a
wide range of optimization problems that cannot be formulated by the existing standard con-
strained models, especially when the constraint set is complicated by equilibrium constraints,
complementarity constraints, or an inner-level large-scale optimization problem. The main
motivation arises from the notion of efficiency of equilibria in multi-agent networks, e.g.
communication networks and power systems.

In the first part of this dissertation, we consider a class of optimization problems with
Cartesian variational inequality (CVI) constraints where the objective function is convex
and the CVI is associated with monotone mapping and a convex Cartesian product set. In
the literature, the iteration complexity of the existing solution methods for optimization
problems with the CVI constraints is unknown. To address this shortcoming, we develop a
first-order method called averaged randomized block iteratively regularized gradient (aRB-
IRG) scheme. The main contributions include: (i) In the case where the associated set of
the CVI is bounded and the objective function is nondifferentiable and convex, we derive
new non-asymptotic suboptimality and infeasibility convergence rate statements in an er-
godic sense. We also obtain deterministic variants of the convergence rates when we suppress
the randomized block selection in aRB-IRG scheme. Importantly, this is the first work to
provide these rate guarantees for this class of problems. (ii) In the case where the CVI
set is unbounded and the objective function is smooth and strongly convex, utilizing the
properties of the Tikhonov trajectory, we establish the global convergence of aRB-IRG in
an almost sure and a mean sense. Further, we provide numerical experiments for computing
the best Nash equilibrium in a networked Cournot competition model. In image deblurring
applications where the VI constraints represent the first-order optimality conditions of a
convex optimization problem, we devise a randomized block iteratively regularized subgra-
dient scheme (RB-IRG). Under a uniform probability distribution in selecting the blocks
and a careful choice of the stepsize and regularization parameter sequences, we establish an
almost sure convergence of the generated sequence of the algorithm. Furthermore, we derive
a non-asymptotic convergence rate in terms of the expected objective value of the inner level
problem.

In the second part of this dissertation, we consider a class of constrained multi-agent
optimization problems where the goal is to cooperatively minimize the sum of agent-specific
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objective functions. Here, we consider a distributed framework where the objective function
and the mappings of the VI are locally known by the agents. We develop an iteratively
regularized incremental gradient (pair-IG) method where the agents communicate over a
cycle graph at each iteration. We derive new non-asymptotic agent-wise convergence rates
for the suboptimality, and infeasibility of the VI constraint. To analyze the convergence rate
in the solution space, assuming the objective function is strongly convex and smooth, we
derive non-asymptotic agent-wise rates on an error metric that relates the generated iterate
with the Tikhonov trajectory. We provide preliminary numerical experiments for computing
the best equilibrium in a transportation network problem. We also apply the proposed
scheme to address a special case of this distributed formulation, where the VI constraint
characterizes a feasible set. We compare the performance of the proposed scheme with that
of the existing IG methods in addressing on distributed soft-margin support vector machine
problem.

6.2 Future Directions

For addressing optimization problems with variational inequality constraints, in this disserta-
tion, we have designed algorithms considering cyclic and star shaped communication among
the agents. One of the ideas for extending the results in this dissertation could be to debate
upto what extent the assumptions on the network topology and the type of communications
among the agents per iteration could be relaxed. Further, can we consider stochastic regimes
where agents would only have access to unbiased estimators of the gradient of their objective
functions? Motivated by big data applications, can we account for the high-dimensionality
of the solution space where the computation of the local gradient mappings might become
expensive? To address these research questions, one avenue lies in employing the random-
ized block variant of distributed stochastic gradient tracking schemes in both synchronous
and asynchronous settings. Specifically, consider function fi : Rn → R and the following
distributed optimization problem

minimize
∑m

i=1
fi(x)

s.t. x ∈ Rn,
(6.2.1)

where agents would be allowed to have an asynchronous communication over an undirected
graph denoted by G ≡ (N , E). Note that N is a set of nodes and E ⊆ N ×N is the set of
ordered pairs of vertices.

While block-coordinate schemes have been studied for distributed optimization problem
(6.2.1) before, the convergence rate analysis is not yet done for asynchronous communication
settings in the literature. An intriguing question is, can we develop a randomized block
asynchronous scheme to address problem (6.2.1) and obtain the convergence rate statements?
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[56] J. Koshal, A. Nedić, and U. V. Shanbhag, Multiuser optimization: Distributed algorithms and error
analysis, SIAM Journal on Optimization 21 (2011), no. 3, 1046–1081.

[57] , Regularized iterative stochastic approximation methods for stochastic variational inequality prob-
lems, IEEE Transactions on Automatic Control 58 (2013), no. 3, 594–609.

[58] J. Lei, U. V. Shanbhag, J. S. Pang, and S. Sen, On synchronous, asynchronous, and randomized best-
response schemes for stochastic Nash games, Mathematics of Operations Research 45 (2020), no. 1,
157–190.

[59] C. E. Lemke and J. T. Howson Jr., Equilibrium points of bimatrix games, Journal of the Society for
Industrial and Applied Mathematics 12 (1964), no. 2, 413–423.

[60] A. Makhdoumi and A. Ozdaglar, Convergence rate of distributed ADMM over networks, IEEE Trans-
actions on Automatic Control 62 (2017), no. 10, 5082 –5095.

89



[61] P. Marcotte and D. Zhu, Weak sharp solutions of variational inequalities, SIAM Journal on Optimization
9 (1998), no. 1, 179–189.
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[65] A. Nedić and T. Tatarenko, Convergence rate of a penalty method for strongly convex problems with
linear constraints, 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 372–377.

[66] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM Jour-
nal on Optimization 22 (2012), no. 2, 341–362.

[67] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory, Cambridge Uni-
versity Press, New York, NY, USA, 2007.

[68] M. J. Osborne and A. Rubinstein, A course in game theory, MIT Press, Cambridge, Massachusetts,
1994.

[69] B. T. Polyak, Introduction to optimization, Optimization Software, Inc., New York, 1987.

[70] M. Rabbat and R. D. Nowak, Distributed optimization in sensor networks, The International Conference
on Information Processing in Sensor Networks (2004), 20–27.
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APPENDICES

A.1 Proof of Lemma 1.1.1

Proof. Let us define the function φ : Rn → R as φ(x) , 1
2
‖Ax−b‖2+1

2

∑J
j=1 (max{0, hj(x)})2.

We first note that φ is a differentiable function such that ∇φ(x) = F (x) where F is given
by Lemma 1.1.1 (e.g., see page 380 in [14]). Next, we also note that φ is convex. To see
this, note that from the convexity of hj(x), the function h+

j (x) , max{0, hj(x)} is convex.

Then, the function
(
h+
j (x)

)2
can be viewed as a composition of s(u) , u2 for u ∈ R and

the convex function h+
j . Since h+

j is nonnegative on its domain and s(u) is nondecreasing

on [0,+∞), we have that
(
h+
j (x)

)2
is a convex function. As such, φ is a convex function as

well. Consequently, from the first-order optimality conditions for convex programs, we have
SOL(X,F ) = argminx∈X φ(x). To show the desired equivalence between problems Problem
(P1) and Problem 1.1.2, it suffices to show that X = argminx∈X φ(x) where X denotes the
feasible set of problem Problem 1.1.2. To show this statement, first we let x̄ ∈ X . Then,
from the definition of φ(x), we have φ(x̄) = 0. This implies that x̄ ∈ argminx∈X φ(x). Thus,
we have X ⊆ argminx∈X φ(x). Second, let x̃ ∈ argminx∈X φ(x). The feasibility assumption of
the set X implies that there exists an x0 ∈ X such that Ax0 = b and hj(x0) ≤ 0 for all j. This
implies that φ(x0) = 0. From the nonnegativity of φ and that x̃ ∈ argminx∈X φ(x), we must
have φ(x̃) = 0 and x̃ ∈ X. Therefore, we obtain Ax̃ = b, hj(x̃) ≤ 0 for all j, and x̃ ∈ X. Thus,
we have argminx∈X φ(x) ⊆ X . Hence, we conclude that X = argminx∈X φ(x) = SOL(X,F )
and the proof is completed.

A.2 Proof of Lemma 1.2.1

Proof. For each i ∈ [m], let function Θi : Rn → R as

Θi(x) ,
1

2
‖Aix− bi‖2 +

1

2

ni∑
j=1

(max{0, gi,j(x)})2 .

Note that 1
2
‖Aix − bi‖2 is a continuously differentiable and convex function for all i.

Also, for all i and j, the function 1
2

(max{0, gi,j(x)})2 is continuously differentiable with
the gradient map of max{0, gi,j(x)}∇gi,j(x) (see page 380 in [14]). Thus, we have that
∇Θi(x) = Fi(x) where Fi(x) is given in the statement of Lemma 1.2.1. Next, we show that
Fi is a monotone mapping. From the convexity of gi,j(x), the function max{0, gi,j(x)} is con-
vex. Now, note that the function 1

2
(max{0, gi,j(x)})2 can be viewed as the composition of

the nondecreasing function h(y) , 1
2
y2 for y ∈ R+ and the convex function max{0, gi,j(x)}.

Thus, 1
2

(max{0, gi,j(x)})2 is convex. This implies that Θi is a convex function and conse-
quently, its gradient mapping that is Fi(x), is monotone. Recalling the first-order optimal-
ity conditions for the convex optimization problems and taking into account the definition
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of SOL(X,
∑m

i=1 Fi), we have that SOL(X,
∑m

i=1 Fi) = argminx∈X
∑m

i=1 Θi(x). Let Z de-
note the feasible set of problem (1.1.2). To complete the proof, it suffices to show that
Z = argminx∈X

∑m
i=1 Θi(x). First, consider an arbitrary x̄ ∈ Z. Then, from the definition

of Θi(x) we must have Θi(x̄) = 0 for all i, implying that
∑m

i=1 Θi(x̄) = 0. Since the feasible
set of problem (1.1.2) is nonempty and that

∑m
i=1 Θi(x) ≥ 0 for all x ∈ X , we conclude

that x̄ ∈ argminx∈X
∑m

i=1 Θi(x). Thus, we showed that Z ⊆ argminx∈X
∑m

i=1 Θi(x). Now,
consider an arbitrary x̃ ∈ argminx∈X

∑m
i=1 Θi(x). Thus, x̃ ∈ X. Also, the assumption that

the feasible set of problem (1.1.2) is nonempty implies that there exits x0 ∈ X such that
Aix0 = bi, gi,j(x0) ≤ 0 for all i ∈ [m] and j ∈ [ni]. Thus, we have

∑m
i=1 Θi(x0) = 0. From the

nonnegativity of the function
∑m

i=1 Θi(x) and that x̃ ∈ argminx∈X
∑m

i=1 Θi(x), we must have∑m
i=1 Θi(x̃) = 0. Therefore, we obtain Aix̃ = bi, gi,j(x̃) ≤ 0 for all i ∈ [m] and j ∈ [ni]. Thus,

we have shown that argminx∈X
∑m

i=1 Θi(x) ⊆ Z. Hence, we have Z = SOL(X,
∑m

i=1 Fi) and
the proof is completed.

A.3 Proof of Lemma 2.3.1

Proof. We use induction to show x̄N =
∑N

k=0 λk,Nxk for any N ≥ 0. For N = 0, the relation
holds due to the initialization x̄0 := x0 in Algorithm 2 and that λ0,0 = 1. Next, let the relation

hold for some N ≥ 0. From the hypothesis, equation (2.3.2), and that SN =
∑N

k=0 γ
r
k for all

N ≥ 0, we can write

x̄N+1 =
SN x̄N + γrN+1xN+1

SN+1

=

∑N+1
k=0 γ

r
kxk∑N+1

k=0 γ
r
k

=
N+1∑
k=0

λk,N+1xk,

implying that the induction hypothesis holds for N + 1. Thus, we conclude that the desired
averaging formula holds for all N ≥ 0. To complete the proof, note that since

∑N
k=0 λk,N = 1,

under the convexity of the set X, we have x̄N ∈ X.

A.4 Proof of Lemma 2.3.2

Proof. (a) From Definition 2.3.5, we can write

E[∆k | Fk] = F (xk)−
d∑
i=1

pip
−1
i UiFi(xk) = F (xk)−

d∑
i=1

UiFi(xk) = 0.

The relation E[δk | Fk] = 0 can be shown in a similar fashion.
(b) We can write

E
[
‖∆k‖2 | Fk

]
=

d∑
i=1

pi
∥∥F (xk)− p−1

i UiFi(xk)
∥∥2

=
d∑
i=1

pi
(
‖F (xk)‖2 + p−2

i ‖UiFi(xk)‖2 − 2p−1
i F (xk)

TUiFi(xk)
)

= ‖F (xk)‖2 +
d∑
i=1

p−1
i ‖UiFi(xk)‖2 − 2

d∑
i=1

‖Fi(xk)‖2 ≤
(
p−1
min − 1

)
C2
F .

The relation E[‖δk‖2 | Fk] ≤
(
p−1
min − 1

)
C2
f can be shown using a similar approach.
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A.5 Proof of Lemma 2.3.3

Proof. Given 0 ≤ α < 1, let us define the function φ : R++ → R as φ(x) , x−α for all x > 0.
Since α > 0, the function φ is nonincreasing. We can write

N∑
k=0

1

(k + 1)α
= 1 +

N+1∑
k=2

1

kα
≤ 1 +

∫ N+1

1

dx

xα
= 1 +

(N + 1)1−α − 1

1− α
≤ (N + 1)1−α

1− α
,

implying the desired upper bound. To show that the lower bound holds, we can write

N∑
k=0

1

(k + 1)α
=

N+1∑
k=1

1

kα
≥
∫ N+2

1

dx

xα
≥
∫ N+1

1

dx

xα
≥ (N + 1)1−α − 0.5(N + 1)1−α

1− α
,

where the last inequality is obtained using the assumption that N ≥ 2
1

1−α − 1. Therefore,
the desired lower bound holds as well. This completes the proof.

A.6 Proof of Corollary 2.4.1

Proof. Let us rewrite Problem (P1) as the equivalent problem

minimize f(x)

subject to x ∈ SOL(Y, F ),
(A.1)

where Y ,
∏d′

i=1 Yi and d′ , 1 and Y1 , X. Note that this setting immediately implies
that Y = X. Now, let us consider Algorithm 2 for solving Problem (A.1) where we as-
sume that x0 ∈ X is an arbitrary fixed vector. Since d′ = 1, Assumption 4.3.2 holds with
Prob (ik = 1) = 1 for all k ≥ 0. This setting implies that Algorithm 2 reduces to a de-
terministic scheme where the step 5 in Algorithm 2 is equivalent to the following update
rule

xk+1 := PX
(
xk − γk

(
F (xk) + ηk∇̃f (xk)

))
, (A.2)

where we used Y = Y1 = X. Next, we note that from the properties of the Euclidean pro-
jection mapping, for any z ∈ X where X ,

∏d
i=1Xi, we have that PX(z) =

∏d
i=1PXi

(
z(i)
)
.

In view of this property, the equation (A.2) compactly represents the d updates given by
equation (2.4.21). Therefore, Algorithm 3 is equivalent to Algorithm 2 and thus, all the
results in Theorem 2.4.1 will hold with pmin = 1. Note that in both equation (2.4.18) and
equation (2.4.19), the expectation is eliminated. This completes the proof.

A.7 Proof of Lemma 2.5.1

Proof. (a) From the definition of x∗ and x∗ηk (cf. Definition 2.5.1), we have

F (x∗)T (x− x∗) ≥ 0 for all x ∈ X, (A.3)(
F
(
x∗ηk
)

+ ηk∇f
(
x∗ηk
))T (

y − x∗ηk
)
≥ 0 for all y ∈ X. (A.4)
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For x := x∗ηk and y := x∗, adding the resulting two relations together, we obtain

ηk∇f
(
x∗ηk
)T (

x∗ − x∗ηk
)
≥
(
F (x∗)− F

(
x∗ηk
))T (

x∗ − x∗ηk
)
.

From the monotonicity of the mapping F and the preceding relation, we obtain that

∇f
(
x∗ηk
)T (

x∗ − x∗ηk
)
≥ 0. Also, from the strong convexity of f , we have

f(x∗) ≥ f
(
x∗ηk
)

+∇f
(
x∗ηk
)T (

x∗ − x∗ηk
)

+
µf
2

∥∥x∗ − x∗ηk∥∥2
.

From the preceding relations, we obtain

f(x∗) ≥ f
(
x∗ηk
)

+
µf
2

∥∥x∗ − x∗ηk∥∥2
for all k ≥ 0. (A.5)

Thus, f(x∗) ≥ f
(
x∗ηk
)

for all k ≥ 0. Recall that from Remark 2.5.1, under Assumption

2.5.1, x∗ ∈ X and x∗ηk ∈ X both exist and are unique. Therefore, f
(
x∗ηk
)

is bounded above
for all k ≥ 0. From this statement and invoking the coercive property of f (implied by
the strong convexity of f), we can conclude that {x∗ηk} is a bounded sequence. Therefore,
it must have at least one limit point. Let {x∗ηk}k∈K be an arbitrary subsequence such that
limk→∞, k∈K x

∗
ηk

= x̂, where limk→∞, k∈K denotes the subsequential limit when k ∈ K and k
goes to infinity. We show that x̂ ∈ SOL(X,F ). Taking the limit from both sides of equation
(A.4) with respect to the aforementioned subsequence and using the continuity of F and ∇f ,
we obtain that for all y ∈ X, (F (x̂) + limk→∞, k∈K ηk∇f (x̂))T (y − x̂) ≥ 0. Note that the
mapping ∇f (x̂) is bounded. This is because x̂ ∈ X (due to the closedness of X) and that
∇f is continuous on the set X. Therefore, from the preceding inequality and limk→∞ ηk = 0,
we obtain F (x̂)T (y − x̂) ≥ 0 for all y ∈ X, implying that x̂ ∈ SOL(X,F ) and so, x̂ is a
feasible solution to Problem (P1). Next, we show that x̂ is the optimal solution to Problem

(P1). From equation (A.5), continuity of f , and neglecting the term
µf
2

∥∥x∗ − x∗ηk∥∥2
, we

obtain f (x∗) ≥ f
(
limk→∞, k∈K x

∗
ηk

)
= f(x̂). Hence, from the uniqueness of x∗, all the limit

points of {x∗ηk} fall in the singleton {x∗} and the proof is completed.
(b) If x∗ηk = x∗ηk−1

, the desired relation holds. Suppose for k ≥ 1, we have x∗ηk 6= x∗ηk−1
. From

x∗ηk−1
∈ SOL (X,F + ηk−1∇f) and x∗ηk ∈ SOL (X,F + ηk∇f), we have(

F
(
x∗ηk−1

)
+ ηk−1∇f

(
x∗ηk−1

))T (
x− x∗ηk−1

)
≥ 0 for all x ∈ X,(

F
(
x∗ηk
)

+ ηk∇f
(
x∗ηk
))T (

y − x∗ηk
)
≥ 0 for all y ∈ X.

Adding the resulting two relations together, for x := x∗ηk and y := x∗ηk−1
we have(

−F
(
x∗ηk
)
− ηk∇f

(
x∗ηk
)

+ F (x∗ηk−1
) + ηk−1∇f

(
x∗ηk−1

))T (
x∗ηk − x

∗
ηk−1

)
≥ 0.

The monotonicity of F implies that
(
F
(
x∗ηk
)
− F

(
x∗ηk−1

))T (
x∗ηk − x

∗
ηk−1

)
≥ 0. Adding this

relation to the preceding inequality, we have(
ηk∇f

(
x∗ηk
)
− ηk−1∇f

(
x∗ηk−1

))T (
x∗ηk−1

− x∗ηk
)
≥ 0.
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Adding and subtracting the term ηk∇f
(
x∗ηk−1

)T (
x∗ηk−1

− x∗ηk
)

, we obtain

(ηk − ηk−1)∇f
(
x∗ηk−1

)T (
x∗ηk−1

− x∗ηk
)
≥

ηk

(
∇f

(
x∗ηk−1

)
−∇f

(
x∗ηk
))T (

x∗ηk−1
− x∗ηk

)
. (A.6)

From the strong convexity of function f , we have(
∇f

(
x∗ηk−1

)
−∇f

(
x∗ηk
))T (

x∗ηk−1
− x∗ηk

)
≥ µf

∥∥∥x∗ηk − x∗ηk−1

∥∥∥2

. (A.7)

From equation (A.6) and equation (A.7), and using the Cauchy-Schwarz inequality, we obtain

|ηk − ηk−1|
∥∥∥∇f (x∗ηk−1

)∥∥∥∥∥∥x∗ηk−1
− x∗ηk

∥∥∥ ≥ ηkµf

∥∥∥x∗ηk − x∗ηk−1

∥∥∥2

,

Since x∗ηk 6= x∗ηk−1
, dividing the both sides by ηk

∥∥∥x∗ηk − x∗ηk−1

∥∥∥, we obtain∣∣∣∣1− ηk−1

ηk

∣∣∣∣ ∥∥∥∇f (x∗ηk−1

)∥∥∥ ≥ µf

∥∥∥x∗ηk − x∗ηk−1

∥∥∥ . (A.8)

From part (a), the trajectory {x∗ηk} is bounded. Also, for any k ≥ 0, x∗ηk ∈ X by the
definition. Since X is closed, there exists a compact set S⊂X such that {x∗ηk} ⊂ S. This

statement and the continuity of∇f imply that there exists C̄f > 0 such that
∥∥∥∇f (x∗ηk−1

)∥∥∥ ≤
C̄f for all k ≥ 1. Thus, from equation (A.8), we obtain the desired inequality.

A.8 Proof of Lemma 3.3.3

Proof. Using β ∈ [0, 1) and Γ ≥ 1 we can write

K∑
k=0

1

(k + Γ)β
≤
∫ K

−1

dx

(x+ Γ)β
=

(K + Γ)β − (Γ− 1)β

1− β
≤ (K + Γ)1−β

1− β
.

We can also write

K∑
k=0

1

(k + Γ)β
≥
∫ K+1

0

dx

(x+ Γ)β
=

(K + 1 + Γ)1−β − Γ1−β

1− β

≥ (K + Γ)1−β − 0.5(K + Γ)1−β

1− β
,

where the last inequality is implied from K ≥
(

2
1

1−β − 1
)

Γ. From the preceding relations

we observe that the desired relation holds.
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A.9 Proof of Lemma 3.5.3

Proof. (i) This result holds directly from Definition 3.5.2 and that γ0 = γ
Γa

and η0 = η
Γb

.
(ii) For any k ≥ 1 we have

1− ηk2
ηk1

= 1− η(k2 + Γ)−b

η(k1 + Γ)−b
= 1−

(
k1 + Γ

k2 + Γ

)b
≤ 1−

√
k1 + Γ

k2 + Γ
,

where the last inequality is due to b < 0.5 and that k1 ≤ k2. We obtain

1− ηk2
ηk1
≤

1− k1+Γ
k2+Γ

1 +
√

k1+Γ
k2+Γ

≤ k2 − k1

k2 + Γ
.

(iii) Let us use (ii) for k1 := k − 1 and k2 := k. For all k ≥ 1 we have

1

γ3
kηk

(
1− ηk

ηk−1

)2

≤ (k + Γ)3a(k + Γ)b

γ3η(k + Γ)2
=

1

γ3η(k + Γ)2−3a−b

≤ 1

γ3ηΓ2−3a−b ,

where the last relation is implied by 3a+ b < 2, Γ > 0, and that k ≥ 1.
(iv) For all k ≥ 1 we can write

1

γkηkµmin

(
ηkγk−1

γkηk−1

− 1

)
=

(k + Γ)a+b

γηµmin

((
1 +

1

k + Γ− 1

)a−b
− 1

)

≤ (k + Γ)a+b

γηµmin(k + Γ− 1)
,

where the last relation is implied by a− b < 1, k ≥ 1, and Γ ≥ 1. We obtain

1

γkηkµmin

(
ηkγk−1

γkηk−1

− 1

)
≤ 1

γηµmin(k + Γ)1−a−b

(
1 +

1

Γ

)
≤ 2

γηµminΓ1−a−b ≤ 0.5,

where the last two relations are implied by Γ ≥ 1 and Γ1−a−b ≥ 4
γηµmin

, respectively. This

implies the relation in part (iv).
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