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CHAPTER I

GENERAL INTRODUCTION

Wheat (Triticum aestivum L.) is grown in almost all regions of the world with a
total of 220 million planted hectares making it the most widely grown crop worldwide
(Braun, Atlin, & Payne, 2010). This diversity is sustained by different wheat genotypes
tailored to fit a specific growing environment through continuous breeding and selection
procedures. These genotypes, however, differ in growth patterns and productivity
both across and between environments since the environments are a dynamic entity
characterized with space, time, or both.

Understanding the physiological mechanisms behind wheat growth and yield
dynamics will allow the breeding programs to refine their goals and strategies. Breeding
strategies are mainly associated with modification of certain plant traits, which in
turn are a function of the physiological mechanisms. The goal of this project was
to explain underlying mechanisms behind wheat growth and yield production while
simultaneously introducing new statistical methodologies for data analysis with an
intent to better understand the system.

This study was conducted in the United States in the state of Oklahoma, which
has variable climatic conditions resulting in diverse environments. Temperature and
precipitation are important meteorological factors contributing to yield variability
in this region because most of the wheat is rainfed. Precipitation patterns vary
from year to year and location to location in Oklahoma. For instance, in 2020, the
cumulative annual precipitation across Oklahoma ranged from 258 mm in Boise city,

OK (Northwest region of the state) to 1977 mm in Mt. Herman, OK (Northeast



region of the state) and in the past 20 years, the average annual rainfall throughout
the state has ranged from 3976 mm in 2012 to 8603 mm in 2015. It has been reported
that wheat yields are water limited if growing season rainfall is less than 250 mm
(Patrignani, Lollato, Ochsner, Godsey, & Edwards, 2014). Wheat is the predominant
crop in Oklahoma with more than 1.7 million hectares planted every year (USDA,
2019); 97.1% of which is occupied by hard red winter wheat (HRWW) (Vitale, Adam,
& Vitale, 2020).

Wheat yields have been stagnant in Oklahoma since 1980 (Patrignani et al., 2014),
but the inter-annual yield variability has increased (Vitale et al., 2020). Munaro et al.
(2020) show that for Colorado, Kansas, and Oklahoma the environmental difference
across years and locations accounted for 46% of wheat yield variability. Munaro et al.
(2020) also found that the minimal effect of genotype on yield variability is a result of
the good adaptation of the performance trial genotypes to the region. Furthermore,
wheat yields are reported not to be limited by genetic potential because achievable

yields have been reported up to 6.59 Mg ha™!

, whereas average state yield is only
about 2 Mg ha™! (Patrignani et al., 2014).

This dissertation explored the yield and growth dynamics of wheat in Oklahoma
under different environmental conditions with three studies, one of which addressed
the yield variability across genotypes and environments and the two that explored the
growth patterns in a single geotype (Iba) across different environments. In addition,
this dissertation also utilized an unconventional approach to analyze the datasets to
capture the non-linearity and randomness in the system.

Different methodological approaches have been used to analyze the multi-environment
trial data in order to investigate G x E interaction. The most frequently used sta-
tistical modeling approaches are different types of regression analyses (Mohammadi

& Amri, 2008; Williams, O’Brien, Eagles, Solah, & Jayasena, 2008; Yan & Hunt,

2001). Some common approaches are linear mixed model (Munaro et al., 2020), partial



least squares regression (M. Reynolds, Trethowan, Crossa, Vargas, & Sayre, 2002),
principal component analysis (Yan & Hunt, 2001), analysis of variance (Williams
et al., 2008), and non-parametric methods (Mohammadi, Abdulahi, Haghparast, &
Armion, 2007). Most of these analyses are traditionally performed within a frequentist
framework, whereas few research have used Bayesian framework to study G x E
interaction (Montesinos-Lépez et al., 2019; Cuevas et al., 2017; Cotes, Crossa, Sanches,
& Cornelius, 2006). In addition to these, dynamic crop models such as DSSAT (Jones
et al., 2003b) and APSIM (Keating et al., 2003) are frequently used to simulate crop
growth and to understand G x E interaction in crops (Anar et al., 2019; Attia et al.,
2016; Scott C Chapman, 2008; S. Chapman, Cooper, Hammer, & Butler, 2000). In
between the ends of this spectrum from purely statistical to complex dynamic models,
we have proposed a simple dynamic model within a statistical framework in this
dissertation.

We introduced an ordinary differential equations (ODE) modeling approach in
conjunction with the Bayesian framework in the second study. The system of ODE
models is commonly utilized in many crop models such as DSSAT and APSIM.
Ordinary differential equations (ODEs) are a system of equations that characterize
the changes of a response variable (e.g. yield, biomass, etc.) with respect to time
(Hoops et al., 2016). However, the ODE models are often deterministic i.e. the output
is determined based on initial conditions and the parameter values, while any random
components that may be present in a system are left unaddressed. On the contrary,
the statistical models such as linear regression are statistically robust but lack other
important features of ODE models. Thus, in this project, we combined the two types
of models in order to leverage the strengths of both and introduce stochasticity into
ODE modeling.

Furthermore, a Bayesian hierarchical framework was used for data analysis.

Bayesian analysis is gaining popularity in recent days due to its ability to quan-



tify uncertainties around the parameter values rather than obtaining a single value
estimate for a parameter (Alderman & Stanfill, 2017). This is especially true in
cases of dynamic models where selecting a reliable parameter value is of paramount
importance since the estimated parameter acts as a connection between observations
and simulations. A measure of uncertainty or a distribution around these values help
researchers to realize the confidence in their results. In addition, Bayesian frame-
work also allows us to utilize prior information on a system in the forms of prior
distribution. For highly researched areas, informative priors can be used, whereas
for novel research areas, a vague prior can be constructed. A vague prior refers to a
distribution which is wide enough to encompass all possible values of a parameter
while avoiding theoretically impossible ranges. Lastly, advanced computational tools
have made sampling from the posterior distribution, and quantifying and visualizing
the distributions easier.

This dissertation is comprised of three studies. The first study is addressed in
Chapter 2 in which we explored eco-physiological mechanisms behind yield variability
in Oklahoma with a Bayesian hierarchical framework. This chapter provides insight
into G x E interaction in Oklahoma wheat with data on fifteen genotypes and eight
environments. This was a field based study where data were collected from the
Oklahoma State University wheat variety performance trials at three locations and
three years from a total of fifteen genotypes. The objectives of this study were to
explain wheat yield as a function of yield components and to assess their association
with weather conditions.

Chapter 3 addresses the second study which involved two separate analyses on the
same dataset, one using a linear model and one with a dynamic ODE model thereby
comparing and contrasting these two methods. A repeated measures growth dataset
on LAI and biomass on a single wheat genotype across multiple environments was

utilized from a previous study by Lollato and Edwards (2015). The objective of this



chapter was to propose a new methodology to analyze repeated measures data while
simultaneously delivering physiological inferences.

Chapter 4 addresses the third study in which we extend the dynamic ODE model
in Chapter 3 to include a simple water balance model. The objectives of this study
were to understand the impact of water availability throughout the growing season
on wheat growth and yield, to quantify the level of improvement in model prediction
after adding water balance, and to investigate the impact of data availability and
diversity on model performance.

The final chapter summarizes findings from the preceeding chapters and draws some
general conclusions. Hence, the unique contributions of this dissertation project are
to add to the understanding of winter wheat growth and yield dynamics in Oklahoma
by identifying the underlying processes, and to introduce a new analytical framework
for data analysis to potentially facilitate biological interpretations from statistical

analyses.



CHAPTER I1

ECOPHYSIOLOGICAL MODELING OF YIELD AND YIELD
COMPONENTS IN WINTER WHEAT USING HIERARCHICAL
BAYESIAN ANALYSIS

2.1 Abstract

Yield components are widely recognized as drivers of wheat (Triticum aestivum 1.)
yield across environments and genotypes. In this study, we used a hierarchical Bayesian
approach to model wheat grain yield in Oklahoma on an eco-physiological basis using
yield component traits thousand kernel weight (TKW) and non-yield biomass (NYB).
The main objectives of this study were to 1) explain wheat yield as a function of
component traits TKW and NYB, thus examine source-sink balance, and 2) assess
their association with weather conditions during key stages of wheat development.
Fifteen wheat genotypes planted in three locations in Oklahoma (Altus, Chickasha,
and Lahoma) were evaluated across three harvest years (2017 to 2019), whereby
the combination of location and year defined an environment. Results indicate that
the environment explained the greatest proportion of the variability in yield than
genotypes or than genotype-by-environment (G x E) interaction; however, evidence
for G x E was substantial. Yield was expected to increase with increasing TKW and
NYB, which would suggest a source limitation to achieve potential yield. Yet, the
contribution of reproductive stage weather variables to the relationship between yield
and NYB pointed in the direction of sink strength being compromised. In summary,

our approach provides evidence for source-sink co-limitation in grain yield of this



sample of hard red winter wheat genotypes.

2.2 Introduction

Wheat (Triticum aestivum L.) is a staple food crop in many countries that supplies
the most calories and protein to the population worldwide (Pena-Bautista, Hernandez-
Espinosa, Jones, Guzman, & Braun, 2017). However, wheat genotypes, wheat-growing
environments, and wheat yields differ worldwide across regions, years, and growing
seasons. Climate variation was found to explain 32-39% of inter-annual yield variability
in maize, rice, wheat, and soybean globally (Ray, Gerber, MacDonald, & West, 2015).
Yield variability exists not only between different regions in the world but also within
the specific regions across locales and growing seasons. Understanding the mechanisms
behind yield variability within a wheat-growing region would allow breeding programs
to develop wheat genotypes tailored to reduce the gap between the maximum attainable
yield and observed yield.

This study was conducted in the United States in the state of Oklahoma. The
wide range of environments across the state makes it an ideal region to study yield
variability as a result of variable weather conditions. A wide range of environmental
conditions are present in Oklahoma driven mostly by a temperature gradient from
south to north and a precipitation gradient from east to west, along with yearly
fluctuations in temperature and precipitation patterns (Tian & Quiring, 2019). As a
result, wheat yields are variable across the state (Calhoun et al., 2019; USDA, 2019).
For instance, in 2019, wheat yield ranged from 1.8 ton/ha in Southwest Oklahoma to
4.2 ton/ha in East Central Oklahoma (USDA, 2019).

Environmental effects (E), different genotypes (G), and genotype-by-environment
(G x E) interactions play an important role in explaining yield variability (Mohammadi
et al., 2010; Roozeboom, Schapaugh, Tuinstra, Vanderlip, & Milliken, 2008). Specifi-

cally, G x E effects on wheat yield are ultimately driven by different physiological



mechanisms. For instance, the crop environment at the early reproductive stages of
plant growth impacts wheat yield primarily through changes in grain number (Ugarte,
Calderini, & Slafer, 2007; R.A. Fischer, 1985) whereas the environmental conditions
during anthesis and the grain filling stage can affect wheat yield mainly via changes
in grain size (Serrago & Miralles, 2014; Wardlaw & Moncur, 1995). These traits are
simultaneously driven by the combined effects of genetics and environmental impact,
thus leading to G x E interaction.

Multi-environment trials are a well-established component of crop breeding pro-
grams to study G x E interactions. These trials are important to characterize the
performance of wheat genotypes over a wide range of environments. In this study,
we utilize data from wheat variety performance trials, a multi-environment trial,
conducted yearly by Oklahoma State University (OSU). Most multi-environment trials
focus mainly on yield (Sukumaran, Crossa, Jarquin, & Reynolds, 2017; Mohammadi
et al., 2010; Roozeboom et al., 2008; Kaya, Akcura, Ayranci, & Taner, 2006) as this is
one of the more important outcomes of a variety, for which producers base their choice.
Yet, yield data provides limited insight into the mechanisms for differential responses
of genetic varieties to changing environments. Grain yield is a function of multiple
component traits including kernel weight and size, kernels per spike, spikes per tillers,
and the number of tillers amongst others, each at different levels of trait plasticity
(Gustavo A Slafer, Savin, & Sadras, 2014). Stable components of yield such as grain
size are placed at the lowest level of trait plasticity denoting that they are mostly
governed by genetic factors. In turn, components such as the number of tillers show
high plasticity as they are highly influenced by the environment (Victor O Sadras &
Slafer, 2012). We postulate that further partitioning of yield into its component traits
could help explain the observed variability in yield and thus increase the quality of
predictions.

Wheat yield can be effectively partitioned into two main yield component traits,



namely grain number and average grain weight; these are modulated by a source-sink
balance (RA Fischer, 2008; Ugarte et al., 2007). In most conditions, wheat is a sink
limited crop (Borras, Slafer, & Otegui, 2004). Sink limitations are due to stress during
early reproductive stages, which leads to the setting of fewer grains than what can be
filled later during grain filling. In contrast, post-anthesis abiotic and biotic stresses
can reduce grain size or weight; this is an example of a source limited condition. The
balance between source and sink is crucial to realizing yield potential.

Ultimately, our goal is to explain wheat yield variability on an eco-physiological
basis. The main objectives of this study were to 1) explain wheat yield as a function of
component traits thousand kernel weight (TKW) and non-yield biomass (NYB), thus
examine source-sink balance, and 2) assess their association with weather conditions
during key stages of wheat development. We leverage a hierarchical Bayesian modeling
framework to naturally reflect the hierarchical features of the biological question.
Thus, as a secondary objective, we introduce Bayesian estimation for eco-physiological

modeling.

2.3 Materials and Methods

The samples for this study were collected from the wheat variety performance trials
conducted by OSU on a yearly basis. The OSU wheat variety testing program features
replicated trials at more than 20 different test sites and nonreplicated trials at more

than 40 demonstration sites, representing major wheat-growing areas in the state.

2.3.1 Wheat genotypes included in this study

For this study, we selected wheat genotypes based on acreage planted in Oklahoma
(Table 2.1). Some of the genotypes included in this study changed across years as
newer varieties replaced older ones. The genotypes selected for this study showed a

range of plant heights, maturity, yield potential, disease resistance, test weight, kernel



Table 2.1: Wheat genotypes included in this study by season.

Genotypes 2016-17 2017-18 2018-19
Bentley X X
Billings X

Doublestop CL-+ X X X
Duster X X X
Endurance X

Gallagher X X X
Iba X X X
LCS Chrome X X
Lonerider X X
Ruby Lee X X X
Smith’s Gold X
SY Achieve CL2 X X
SY Flint X X X
SY Llano X

WB4458 X X
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size, drought tolerance, Hessian fly resistance, and dual-purpose suitability, but all
were intended to represent the diversity of wheat grown in Oklahoma (Marburger,
Hunger, Carver, & Royer, 2018; OSU Small Grains Extension, 2020). For example,
the wheat genotypes Doublestop CL+, Endurance, and Iba were chosen for their
late maturity, whereas Gallagher, Lonerider, SY Achieve CL2, and SY Llano are
chosen for their early maturity; meanwhile, Billings, SY Flint, and WB4458 were
chosen for their medium-early maturity. Likewise, Billings has a high grain-only yield
potential but is not suitable for dual-purpose systems (Hunger et al., 2014) whereas
Smith’s Gold has excellent yield potential and is suitable for both grain-only and
dual-purpose production systems. Bentley has yield stability under drought conditions
but lower test weight, and Doublestop CL+ has yield stability across a wide range of
environments along with high test weight (OSU Small Grains Extension, 2020). The
genotypes also differ in disease resistance; Billings, Duster, Gallagher, Iba, and LCS
Chrome exhibit good stripe and leaf rust (caused by Puccinia striiformis and Puccinia
triticina) resistance, whereas Bentley, Doublestop CL+, Endurance, Smith’s Gold, and
SY Flint are moderately resistant. Meanwhile, Ruby Lee is moderately susceptible
to stripe rust only. Furthermore, Duster has above-average tillering capacity with
intermediate straw strength whereas LCS Chrome has both high tillering ability and

good straw strength (Marburger, Hunger, et al., 2018).

2.3.2 Sites and management description

For this study, a total of three sites were selected for sample collection from the set of
locations within the OSU wheat variety performance trials, namely Altus, Chickasha
and, Lahoma. The selected sites represent diversity in latitude, longitude, elevation,
climatic conditions, and soil types across the state (Table 2.2). The seasonal rainfall
and temperature estimates for the months of October through June were calculated

from the preceding fifteen years of data (2003-4 to 2018-19) obtained from nearby
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Table 2.2: Description of experimental sites included in the study. Average seasonal
cumulative rainfall (Rainfall) and average seasonal temperature (Temperature) from
October through June calculated from the preceding fifteen years of data (2003/4 to

2018/19) obtained from nearby Oklahoma Mesonet stations.

Site Latitude Longitude Elevation Rainfall Temperature Soil type
(m) (mm)  (°C)
Altus 34.63 N 99.33 W 426 388 12 + 7.94 Hollister silty
clay loam
Chickasha 35.00 N 97.94 W 339 534 111 +£79 Dale silt loam
Lahoma 36.39 N 98.09 W 380 437 9.87 £ 8.16  Pond creek silt
loam

stations of the Oklahoma Mesonet (McPherson et al., 2007; Brock et al., 1995). All
trials were conducted as a randomized complete block design (RCBD) with four
replicates using a conventional tillage system. Trials at each site followed standard
management practices for the area, with a 67 kg ha=! seeding rate and 56 kg ha~' of
18-46-0 (N — P,O5 — K50) applied in-furrow at the time of planting, using a Hege
500 small-plot cone seeder (Wintersteiger). Each plot consisted of eight rows spaced

15 cm apart.

2.3.3 Experimental design and data collection

Data were collected at the three sites over the course of three growing seasons (2016-17,
2017-18, and 2018-19), excluding Altus in 2016-17. Thus, we used the combination of
site and year to define eight environments. A total of ten genotypes were sampled in
the first year, twelve in the second year, and eleven in the third year from each site.

Thus, not all genotypes were observed in all environments.
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From each plot in each of the four field replicates, a meter row of the selected
genotypes (0.5m on two ‘second from outer’ rows) was hand-harvested at physiological
maturity with a sickle at ground level to produce one sample per plot. Samples were
dried for 72 hours at 60 °C. An ALMACO Plant and Head Thresher (Allan Machine
Company, Ames, [A) was used to thresh the samples, and dry biomass and grain
weights were recorded for each plot. Yield (g m™2) was calculated from sample grain
weight. Non-yield biomass (NYB; g) was calculated by subtracting the sample grain
weight (g) from total sample biomass (g).

Average kernel weight (mg) was obtained for each sample using the Single Ker-
nel Characterization System 4100 (SKCS, Perten Instruments North America Inc.,
Springfield, IL) following standard operating procedures as outlined in the instruction
manual (Instruments, 1995). From a sample of approximately 20 g per field plot, the
SKCS 4100 provided a mean, standard deviation, and distribution for single kernel
weight (mg) of 300 machine-singulated sound kernels(Osborne & Anderssen, 2003;
Martin, Rousser, & Brabec, 1993). Thousand kernel weight (TKW; g) was calculated
from the mean obtained for SKCS kernel weight.

Data on weather variables, daily values of minimum and maximum temperatures
(°C), precipitation (mm), and solar radiation (MJm™?), were obtained from the
Oklahoma Mesonet for each location and year (McPherson et al., 2007; Brock et al.,
1995). The air temperature was calculated as the average of minimum and maximum
temperatures. Cumulative precipitation, average solar radiation, and average air
temperature were calculated to summarize the weather variables over two growth
periods per season to represent the reproductive stage (from six weeks prior to the
heading date until two weeks after it) and grain filling stage two weeks after the
heading date until two weeks prior to the harvest date for each trial. Heading dates
and harvest dates were obtained from the variety performance trial reports (Calhoun

et al., 2019; Marburger, Calhoun, Carver, et al., 2018; Marburger et al., 2017).
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2.3.4 Model specification and data analysis

Although the individual field trials followed a RCBD design, the combination of
multiple trials for data analysis reflected a split-plot like structure where the field trials
served as main plots. Each field trial correspond to a unique site-year combination
or environment as described above. A basic statistical model was specified to reflect
the structure of the whole dataset. Specifically, random effects included in the
linear predictor were environment, block nested within an environment (the blocking
structure for genotypes), genotype, and Gx E. The residual represented the remaining
noise at the individual plot level. Three alternative models were specified according
to the objective of explaining yield as a function of its component traits, namely:
Alternative 1) Model including Genotype x Environment effects (Model GE):

Model GE:

Yijk = Bo + Envy + Genoj + [Geno x Envl;i, + Block[Env] + €5 (2.3.1)

where,

Yijr. = Observed yield (g m~2) from the plot corresponding to the " block (i = 1,
.., 4) in the k™ environment (k = 1, ..., 8) planted with the 