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Abstract: In this dissertation, we discussed the underlying mechanisms behind
growth and yield patterns in Oklahoma wheat and simultaneously introduced a unique
approach to data analysis in crop science. First, the relationships between wheat yield,
yield components, and weather variables were explored to understand source-sink
balance. The analysis was performed using a Bayesian hierarchical model. Bayesian
analysis quantifies uncertainties around the parameter values which helps to realize
confidence in the results. Environmental factors were found to explain more yield
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source and sink in Oklahoma. Second, wheat growth patterns in Oklahoma were
investigated using a repeated measures dataset on leaf area index and biomass using
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CHAPTER I

GENERAL INTRODUCTION

Wheat (Triticum aestivum L.) is grown in almost all regions of the world with a

total of 220 million planted hectares making it the most widely grown crop worldwide

(Braun, Atlin, & Payne, 2010). This diversity is sustained by different wheat genotypes

tailored to fit a specific growing environment through continuous breeding and selection

procedures. These genotypes, however, differ in growth patterns and productivity

both across and between environments since the environments are a dynamic entity

characterized with space, time, or both.

Understanding the physiological mechanisms behind wheat growth and yield

dynamics will allow the breeding programs to refine their goals and strategies. Breeding

strategies are mainly associated with modification of certain plant traits, which in

turn are a function of the physiological mechanisms. The goal of this project was

to explain underlying mechanisms behind wheat growth and yield production while

simultaneously introducing new statistical methodologies for data analysis with an

intent to better understand the system.

This study was conducted in the United States in the state of Oklahoma, which

has variable climatic conditions resulting in diverse environments. Temperature and

precipitation are important meteorological factors contributing to yield variability

in this region because most of the wheat is rainfed. Precipitation patterns vary

from year to year and location to location in Oklahoma. For instance, in 2020, the

cumulative annual precipitation across Oklahoma ranged from 258 mm in Boise city,

OK (Northwest region of the state) to 1977 mm in Mt. Herman, OK (Northeast
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region of the state) and in the past 20 years, the average annual rainfall throughout

the state has ranged from 3976 mm in 2012 to 8603 mm in 2015. It has been reported

that wheat yields are water limited if growing season rainfall is less than 250 mm

(Patrignani, Lollato, Ochsner, Godsey, & Edwards, 2014). Wheat is the predominant

crop in Oklahoma with more than 1.7 million hectares planted every year (USDA,

2019); 97.1% of which is occupied by hard red winter wheat (HRWW) (Vitale, Adam,

& Vitale, 2020).

Wheat yields have been stagnant in Oklahoma since 1980 (Patrignani et al., 2014),

but the inter-annual yield variability has increased (Vitale et al., 2020). Munaro et al.

(2020) show that for Colorado, Kansas, and Oklahoma the environmental difference

across years and locations accounted for 46% of wheat yield variability. Munaro et al.

(2020) also found that the minimal effect of genotype on yield variability is a result of

the good adaptation of the performance trial genotypes to the region. Furthermore,

wheat yields are reported not to be limited by genetic potential because achievable

yields have been reported up to 6.59 Mg ha−1, whereas average state yield is only

about 2 Mg ha−1 (Patrignani et al., 2014).

This dissertation explored the yield and growth dynamics of wheat in Oklahoma

under different environmental conditions with three studies, one of which addressed

the yield variability across genotypes and environments and the two that explored the

growth patterns in a single geotype (Iba) across different environments. In addition,

this dissertation also utilized an unconventional approach to analyze the datasets to

capture the non-linearity and randomness in the system.

Different methodological approaches have been used to analyze the multi-environment

trial data in order to investigate G × E interaction. The most frequently used sta-

tistical modeling approaches are different types of regression analyses (Mohammadi

& Amri, 2008; Williams, O’Brien, Eagles, Solah, & Jayasena, 2008; Yan & Hunt,

2001). Some common approaches are linear mixed model (Munaro et al., 2020), partial
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least squares regression (M. Reynolds, Trethowan, Crossa, Vargas, & Sayre, 2002),

principal component analysis (Yan & Hunt, 2001), analysis of variance (Williams

et al., 2008), and non-parametric methods (Mohammadi, Abdulahi, Haghparast, &

Armion, 2007). Most of these analyses are traditionally performed within a frequentist

framework, whereas few research have used Bayesian framework to study G × E

interaction (Montesinos-López et al., 2019; Cuevas et al., 2017; Cotes, Crossa, Sanches,

& Cornelius, 2006). In addition to these, dynamic crop models such as DSSAT (Jones

et al., 2003b) and APSIM (Keating et al., 2003) are frequently used to simulate crop

growth and to understand G × E interaction in crops (Anar et al., 2019; Attia et al.,

2016; Scott C Chapman, 2008; S. Chapman, Cooper, Hammer, & Butler, 2000). In

between the ends of this spectrum from purely statistical to complex dynamic models,

we have proposed a simple dynamic model within a statistical framework in this

dissertation.

We introduced an ordinary differential equations (ODE) modeling approach in

conjunction with the Bayesian framework in the second study. The system of ODE

models is commonly utilized in many crop models such as DSSAT and APSIM.

Ordinary differential equations (ODEs) are a system of equations that characterize

the changes of a response variable (e.g. yield, biomass, etc.) with respect to time

(Hoops et al., 2016). However, the ODE models are often deterministic i.e. the output

is determined based on initial conditions and the parameter values, while any random

components that may be present in a system are left unaddressed. On the contrary,

the statistical models such as linear regression are statistically robust but lack other

important features of ODE models. Thus, in this project, we combined the two types

of models in order to leverage the strengths of both and introduce stochasticity into

ODE modeling.

Furthermore, a Bayesian hierarchical framework was used for data analysis.

Bayesian analysis is gaining popularity in recent days due to its ability to quan-

3



tify uncertainties around the parameter values rather than obtaining a single value

estimate for a parameter (Alderman & Stanfill, 2017). This is especially true in

cases of dynamic models where selecting a reliable parameter value is of paramount

importance since the estimated parameter acts as a connection between observations

and simulations. A measure of uncertainty or a distribution around these values help

researchers to realize the confidence in their results. In addition, Bayesian frame-

work also allows us to utilize prior information on a system in the forms of prior

distribution. For highly researched areas, informative priors can be used, whereas

for novel research areas, a vague prior can be constructed. A vague prior refers to a

distribution which is wide enough to encompass all possible values of a parameter

while avoiding theoretically impossible ranges. Lastly, advanced computational tools

have made sampling from the posterior distribution, and quantifying and visualizing

the distributions easier.

This dissertation is comprised of three studies. The first study is addressed in

Chapter 2 in which we explored eco-physiological mechanisms behind yield variability

in Oklahoma with a Bayesian hierarchical framework. This chapter provides insight

into G × E interaction in Oklahoma wheat with data on fifteen genotypes and eight

environments. This was a field based study where data were collected from the

Oklahoma State University wheat variety performance trials at three locations and

three years from a total of fifteen genotypes. The objectives of this study were to

explain wheat yield as a function of yield components and to assess their association

with weather conditions.

Chapter 3 addresses the second study which involved two separate analyses on the

same dataset, one using a linear model and one with a dynamic ODE model thereby

comparing and contrasting these two methods. A repeated measures growth dataset

on LAI and biomass on a single wheat genotype across multiple environments was

utilized from a previous study by Lollato and Edwards (2015). The objective of this

4



chapter was to propose a new methodology to analyze repeated measures data while

simultaneously delivering physiological inferences.

Chapter 4 addresses the third study in which we extend the dynamic ODE model

in Chapter 3 to include a simple water balance model. The objectives of this study

were to understand the impact of water availability throughout the growing season

on wheat growth and yield, to quantify the level of improvement in model prediction

after adding water balance, and to investigate the impact of data availability and

diversity on model performance.

The final chapter summarizes findings from the preceeding chapters and draws some

general conclusions. Hence, the unique contributions of this dissertation project are

to add to the understanding of winter wheat growth and yield dynamics in Oklahoma

by identifying the underlying processes, and to introduce a new analytical framework

for data analysis to potentially facilitate biological interpretations from statistical

analyses.
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CHAPTER II

ECOPHYSIOLOGICAL MODELING OF YIELD AND YIELD

COMPONENTS IN WINTER WHEAT USING HIERARCHICAL

BAYESIAN ANALYSIS

2.1 Abstract

Yield components are widely recognized as drivers of wheat (Triticum aestivum L.)

yield across environments and genotypes. In this study, we used a hierarchical Bayesian

approach to model wheat grain yield in Oklahoma on an eco-physiological basis using

yield component traits thousand kernel weight (TKW) and non-yield biomass (NYB).

The main objectives of this study were to 1) explain wheat yield as a function of

component traits TKW and NYB, thus examine source-sink balance, and 2) assess

their association with weather conditions during key stages of wheat development.

Fifteen wheat genotypes planted in three locations in Oklahoma (Altus, Chickasha,

and Lahoma) were evaluated across three harvest years (2017 to 2019), whereby

the combination of location and year defined an environment. Results indicate that

the environment explained the greatest proportion of the variability in yield than

genotypes or than genotype-by-environment (G × E) interaction; however, evidence

for G × E was substantial. Yield was expected to increase with increasing TKW and

NYB, which would suggest a source limitation to achieve potential yield. Yet, the

contribution of reproductive stage weather variables to the relationship between yield

and NYB pointed in the direction of sink strength being compromised. In summary,

our approach provides evidence for source-sink co-limitation in grain yield of this
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sample of hard red winter wheat genotypes.

2.2 Introduction

Wheat (Triticum aestivum L.) is a staple food crop in many countries that supplies

the most calories and protein to the population worldwide (Peña-Bautista, Hernandez-

Espinosa, Jones, Guzmán, & Braun, 2017). However, wheat genotypes, wheat-growing

environments, and wheat yields differ worldwide across regions, years, and growing

seasons. Climate variation was found to explain 32-39% of inter-annual yield variability

in maize, rice, wheat, and soybean globally (Ray, Gerber, MacDonald, & West, 2015).

Yield variability exists not only between different regions in the world but also within

the specific regions across locales and growing seasons. Understanding the mechanisms

behind yield variability within a wheat-growing region would allow breeding programs

to develop wheat genotypes tailored to reduce the gap between the maximum attainable

yield and observed yield.

This study was conducted in the United States in the state of Oklahoma. The

wide range of environments across the state makes it an ideal region to study yield

variability as a result of variable weather conditions. A wide range of environmental

conditions are present in Oklahoma driven mostly by a temperature gradient from

south to north and a precipitation gradient from east to west, along with yearly

fluctuations in temperature and precipitation patterns (Tian & Quiring, 2019). As a

result, wheat yields are variable across the state (Calhoun et al., 2019; USDA, 2019).

For instance, in 2019, wheat yield ranged from 1.8 ton/ha in Southwest Oklahoma to

4.2 ton/ha in East Central Oklahoma (USDA, 2019).

Environmental effects (E), different genotypes (G), and genotype-by-environment

(G × E) interactions play an important role in explaining yield variability (Mohammadi

et al., 2010; Roozeboom, Schapaugh, Tuinstra, Vanderlip, & Milliken, 2008). Specifi-

cally, G × E effects on wheat yield are ultimately driven by different physiological
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mechanisms. For instance, the crop environment at the early reproductive stages of

plant growth impacts wheat yield primarily through changes in grain number (Ugarte,

Calderini, & Slafer, 2007; R.A. Fischer, 1985) whereas the environmental conditions

during anthesis and the grain filling stage can affect wheat yield mainly via changes

in grain size (Serrago & Miralles, 2014; Wardlaw & Moncur, 1995). These traits are

simultaneously driven by the combined effects of genetics and environmental impact,

thus leading to G × E interaction.

Multi-environment trials are a well-established component of crop breeding pro-

grams to study G × E interactions. These trials are important to characterize the

performance of wheat genotypes over a wide range of environments. In this study,

we utilize data from wheat variety performance trials, a multi-environment trial,

conducted yearly by Oklahoma State University (OSU). Most multi-environment trials

focus mainly on yield (Sukumaran, Crossa, Jarquin, & Reynolds, 2017; Mohammadi

et al., 2010; Roozeboom et al., 2008; Kaya, Akcura, Ayranci, & Taner, 2006) as this is

one of the more important outcomes of a variety, for which producers base their choice.

Yet, yield data provides limited insight into the mechanisms for differential responses

of genetic varieties to changing environments. Grain yield is a function of multiple

component traits including kernel weight and size, kernels per spike, spikes per tillers,

and the number of tillers amongst others, each at different levels of trait plasticity

(Gustavo A Slafer, Savin, & Sadras, 2014). Stable components of yield such as grain

size are placed at the lowest level of trait plasticity denoting that they are mostly

governed by genetic factors. In turn, components such as the number of tillers show

high plasticity as they are highly influenced by the environment (Victor O Sadras &

Slafer, 2012). We postulate that further partitioning of yield into its component traits

could help explain the observed variability in yield and thus increase the quality of

predictions.

Wheat yield can be effectively partitioned into two main yield component traits,
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namely grain number and average grain weight; these are modulated by a source-sink

balance (RA Fischer, 2008; Ugarte et al., 2007). In most conditions, wheat is a sink

limited crop (Borrás, Slafer, & Otegui, 2004). Sink limitations are due to stress during

early reproductive stages, which leads to the setting of fewer grains than what can be

filled later during grain filling. In contrast, post-anthesis abiotic and biotic stresses

can reduce grain size or weight; this is an example of a source limited condition. The

balance between source and sink is crucial to realizing yield potential.

Ultimately, our goal is to explain wheat yield variability on an eco-physiological

basis. The main objectives of this study were to 1) explain wheat yield as a function of

component traits thousand kernel weight (TKW) and non-yield biomass (NYB), thus

examine source-sink balance, and 2) assess their association with weather conditions

during key stages of wheat development. We leverage a hierarchical Bayesian modeling

framework to naturally reflect the hierarchical features of the biological question.

Thus, as a secondary objective, we introduce Bayesian estimation for eco-physiological

modeling.

2.3 Materials and Methods

The samples for this study were collected from the wheat variety performance trials

conducted by OSU on a yearly basis. The OSU wheat variety testing program features

replicated trials at more than 20 different test sites and nonreplicated trials at more

than 40 demonstration sites, representing major wheat-growing areas in the state.

2.3.1 Wheat genotypes included in this study

For this study, we selected wheat genotypes based on acreage planted in Oklahoma

(Table 2.1). Some of the genotypes included in this study changed across years as

newer varieties replaced older ones. The genotypes selected for this study showed a

range of plant heights, maturity, yield potential, disease resistance, test weight, kernel
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Table 2.1: Wheat genotypes included in this study by season.

Genotypes 2016-17 2017-18 2018-19

Bentley X X

Billings X

Doublestop CL+ X X X

Duster X X X

Endurance X

Gallagher X X X

Iba X X X

LCS Chrome X X

Lonerider X X

Ruby Lee X X X

Smith’s Gold X X

SY Achieve CL2 X X

SY Flint X X X

SY Llano X

WB4458 X X
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size, drought tolerance, Hessian fly resistance, and dual-purpose suitability, but all

were intended to represent the diversity of wheat grown in Oklahoma (Marburger,

Hunger, Carver, & Royer, 2018; OSU Small Grains Extension, 2020). For example,

the wheat genotypes Doublestop CL+, Endurance, and Iba were chosen for their

late maturity, whereas Gallagher, Lonerider, SY Achieve CL2, and SY Llano are

chosen for their early maturity; meanwhile, Billings, SY Flint, and WB4458 were

chosen for their medium-early maturity. Likewise, Billings has a high grain-only yield

potential but is not suitable for dual-purpose systems (Hunger et al., 2014) whereas

Smith’s Gold has excellent yield potential and is suitable for both grain-only and

dual-purpose production systems. Bentley has yield stability under drought conditions

but lower test weight, and Doublestop CL+ has yield stability across a wide range of

environments along with high test weight (OSU Small Grains Extension, 2020). The

genotypes also differ in disease resistance; Billings, Duster, Gallagher, Iba, and LCS

Chrome exhibit good stripe and leaf rust (caused by Puccinia striiformis and Puccinia

triticina) resistance, whereas Bentley, Doublestop CL+, Endurance, Smith’s Gold, and

SY Flint are moderately resistant. Meanwhile, Ruby Lee is moderately susceptible

to stripe rust only. Furthermore, Duster has above-average tillering capacity with

intermediate straw strength whereas LCS Chrome has both high tillering ability and

good straw strength (Marburger, Hunger, et al., 2018).

2.3.2 Sites and management description

For this study, a total of three sites were selected for sample collection from the set of

locations within the OSU wheat variety performance trials, namely Altus, Chickasha

and, Lahoma. The selected sites represent diversity in latitude, longitude, elevation,

climatic conditions, and soil types across the state (Table 2.2). The seasonal rainfall

and temperature estimates for the months of October through June were calculated

from the preceding fifteen years of data (2003-4 to 2018-19) obtained from nearby
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Table 2.2: Description of experimental sites included in the study. Average seasonal

cumulative rainfall (Rainfall) and average seasonal temperature (Temperature) from

October through June calculated from the preceding fifteen years of data (2003/4 to

2018/19) obtained from nearby Oklahoma Mesonet stations.

Site Latitude Longitude Elevation

(m)

Rainfall

(mm)

Temperature

(◦C)

Soil type

Altus 34.63 N 99.33 W 426 388 12 ± 7.94 Hollister silty

clay loam

Chickasha 35.05 N 97.94 W 339 534 11.1 ± 7.9 Dale silt loam

Lahoma 36.39 N 98.09 W 380 437 9.87 ± 8.16 Pond creek silt

loam

stations of the Oklahoma Mesonet (McPherson et al., 2007; Brock et al., 1995). All

trials were conducted as a randomized complete block design (RCBD) with four

replicates using a conventional tillage system. Trials at each site followed standard

management practices for the area, with a 67 kg ha−1 seeding rate and 56 kg ha−1 of

18-46-0 (N − P2O5 −K2O) applied in-furrow at the time of planting, using a Hege

500 small-plot cone seeder (Wintersteiger). Each plot consisted of eight rows spaced

15 cm apart.

2.3.3 Experimental design and data collection

Data were collected at the three sites over the course of three growing seasons (2016-17,

2017-18, and 2018-19), excluding Altus in 2016-17. Thus, we used the combination of

site and year to define eight environments. A total of ten genotypes were sampled in

the first year, twelve in the second year, and eleven in the third year from each site.

Thus, not all genotypes were observed in all environments.
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From each plot in each of the four field replicates, a meter row of the selected

genotypes (0.5m on two ‘second from outer’ rows) was hand-harvested at physiological

maturity with a sickle at ground level to produce one sample per plot. Samples were

dried for 72 hours at 60 ◦C. An ALMACO Plant and Head Thresher (Allan Machine

Company, Ames, IA) was used to thresh the samples, and dry biomass and grain

weights were recorded for each plot. Yield (g m−2) was calculated from sample grain

weight. Non-yield biomass (NYB; g) was calculated by subtracting the sample grain

weight (g) from total sample biomass (g).

Average kernel weight (mg) was obtained for each sample using the Single Ker-

nel Characterization System 4100 (SKCS, Perten Instruments North America Inc.,

Springfield, IL) following standard operating procedures as outlined in the instruction

manual (Instruments, 1995). From a sample of approximately 20 g per field plot, the

SKCS 4100 provided a mean, standard deviation, and distribution for single kernel

weight (mg) of 300 machine-singulated sound kernels(Osborne & Anderssen, 2003;

Martin, Rousser, & Brabec, 1993). Thousand kernel weight (TKW; g) was calculated

from the mean obtained for SKCS kernel weight.

Data on weather variables, daily values of minimum and maximum temperatures

(◦C), precipitation (mm), and solar radiation (MJm−2), were obtained from the

Oklahoma Mesonet for each location and year (McPherson et al., 2007; Brock et al.,

1995). The air temperature was calculated as the average of minimum and maximum

temperatures. Cumulative precipitation, average solar radiation, and average air

temperature were calculated to summarize the weather variables over two growth

periods per season to represent the reproductive stage (from six weeks prior to the

heading date until two weeks after it) and grain filling stage two weeks after the

heading date until two weeks prior to the harvest date for each trial. Heading dates

and harvest dates were obtained from the variety performance trial reports (Calhoun

et al., 2019; Marburger, Calhoun, Carver, et al., 2018; Marburger et al., 2017).
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2.3.4 Model specification and data analysis

Although the individual field trials followed a RCBD design, the combination of

multiple trials for data analysis reflected a split-plot like structure where the field trials

served as main plots. Each field trial correspond to a unique site-year combination

or environment as described above. A basic statistical model was specified to reflect

the structure of the whole dataset. Specifically, random effects included in the

linear predictor were environment, block nested within an environment (the blocking

structure for genotypes), genotype, and G× E. The residual represented the remaining

noise at the individual plot level. Three alternative models were specified according

to the objective of explaining yield as a function of its component traits, namely:

Alternative 1) Model including Genotype × Environment effects (Model GE):

Model GE:

Yijk = β0 + Envk +Genoj + [Geno ∗ Env]jk +Block[Env]i[k] + eijk (2.3.1)

where,

Yijk = Observed yield (g m−2) from the plot corresponding to the ith block (i = 1,

. . . , 4) in the kth environment (k = 1, . . . , 8) planted with the jth genotype (j = 1,

. . . , 15).

β0 = Overall intercept, interpretable as expected yield for a “typical” genotype

in a “typical” environment, whereby typical is defined as the population expectation

for genotypic effects, environmental effects and their combination i.e. E(Genoj) =

E(Envk) = E(Geno ∗ Env)jk = 0.

Genoj = Differential effect of the jth genotype, assumed Genoj ∼ NIID(0, σ2
geno)

Envk = Differential effect of the kth environment, assumed Envk ∼ NIID(0, σ2
env)

[Geno ∗Env]jk = Differential effect of the jth genotype planted in the kth environ-

ment, assumed [Geno ∗ Env]jk ∼ NIID(0, σ2
ge).
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Block[Env]i[k] = Differential effect of the ith block nested within the kth environ-

ment and assumed Block[Env]i[k] ∼ NIID(0, σ2
b ).

eijk = Residual unique to the observation collected on ijkth plot and assumed

eijk ∼ NIID(0, σ2
r)

Alternative 2) Model including effects of Genotype × Environment and yield

components (Model GE-YC):

Model GE-YC:

Yijk = β0+Envk+Genoj+β1∗nybijk+β2∗tkwijk+[Geno∗Env]jk+Block[Env]i[k]+eijk

(2.3.2)

where,

Yijk, β0, Envk, Genoj, [Geno ∗ Env]jk, Block[Env]i[k], and eijk are as previously

defined for model GE.

nybijk = Observed NYB corresponding to the plot in the ith block of the kth

environment planted with the jth genotype, and expressed as the deviation from its

mean.

tkwijk = Observed TKW corresponding to the plot in the ith block of the kth

environment planted with the jth genotype, and expressed as the deviation from its

mean.

β1 = Slope coefficient, indicating the rate of change of yield per unit increase in

NYB, for a typical genotype and environment as previously defined.

β2 = Slope coefficient, indicating the rate of change of yield per unit increase in

TKW for a typical genotype and environment as previously defined.

Alternative 3) Model including Genotype × Environment and a hierarchical

specification of yield components (Model GE-YC-hierarchy):

Model GE-YC-hierarchy:
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Yijk =β0 + Envk +Genoj + βnyb,k ∗ nybijk + βtkw,k ∗ tkwijk+

[Geno ∗ Env]jk +Block[Env]i[k] + eijk (2.3.3)

with a hierarchical specification of yield components such that:

βnyb,k = β10 + β11 ∗ temp1k + β12 ∗ srad1k + β13 ∗ rain1k (2.3.4)

βtkw,k = β20 + β21 ∗ temp2k + β22 ∗ srad2k + β23 ∗ rain2k (2.3.5)

where,

Yijk, β0, Envk, Genoj, [Geno ∗ Env]jk, Block[Env]i[k], and eijk are as previously

defined for model GE; and nybijk and tkwijk are as previously defined for model

GE-YC.

temp1k, srad1k, rain1k = Temperature, solar radiation, and precipitation, respec-

tively, for the kth environment during the reproductive growth stage, expressed as the

deviations from their respective means.

temp2k, srad2k, rain2k = Temperature, solar radiation, and precipitation, re-

spectively, for the kth environment, during the grain filling stage, expressed as the

deviations from their respective means.

β10 = Intercept for the hierarchical specification of NYB, indicating the expected

rate of change of yield per unit increase in NYB for a typical genotype at average

temperature, precipitation, and solar radiation for the reproductive growth stage.

β11, β12, β13 = Expected change in the slope of NYB on yield per unit increase of

temperature, solar radiation, and precipitation, respectively, during the reproductive

growth stage.

β20 = Intercept for the hierarchical specification of TKW, indicating the expected

rate of change of yield per unit increase in TKW for a typical genotype at average
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temperature, precipitation, and solar radiation during the grain filling stage.

β21, β22, β23 = Expected change in the slope of TKW on yield per unit increase of

temperature, solar radiation, and precipitation, respectively, during the grain filling

stage.

For data analysis, the statistical models were fitted using a hierarchical Bayesian

framework.

2.3.5 Prior specification

Specification of priors for all hyperparameters was performed using the prior predictive

checks approach proposed by (Schad, Betancourt, & Vasishth, 2019). Briefly, hyperpa-

rameters were included in the prior predictive model in a stepwise fashion of increasing

model complexity, following model hierarchy from alternative models 1 to 3. At each

step, prior predictive checks were performed to ensure that predictions from the priors

were within a biologically plausible, though vague, boundary. The boundary was set

based on the average wheat yields throughout the world and was allowed to vary up

to around 1800 g m−2, which could be considered weakly informative given that it is

in excess of maximum observed wheat yields globally. A prior predictive check was

conducted by sampling from the defined priors and simulating model predictions for

the variable of interest based on those samples. If the predictions are biophysically

plausible, the priors passed the check, but if the priors produce nonsensible predictions,

priors were revised to produce predictions aligned with our beliefs and prior knowledge

about the system under study. Prior specifications for vague predictions were intended

to put the weight of posterior inference on the data. Prior specifications for parameters

in modeling alternatives 1-3 are presented next in the form of N(µ, σ2), such that:

β0 ∼ N(300, 802)

β1 ∼ N(0, 12)

β2 ∼ N(0, 152)
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β10 ∼ N(0, 0.52)

β20 ∼ N(0, 152)

β11 ∼ N(0, 12)

β12 ∼ N(0, 12)

β13 ∼ N(0, 0.12)

β21 ∼ N(0, 12)

β22 ∼ N(0, 0.52)

β23 ∼ N(0, 12)√
σ2

env ∼ N(0, 1502) truncated at zero.√
σ2

geno ∼ N(0, 802) truncated at zero.√
σ2

ge ∼ N(0, 102) truncated at zero.√
σ2

b ∼ N(0, 502) truncated at zero.√
σ2

r ∼ N(0, 2502) truncated at zero.

2.3.6 Software implementation

Statistical models were fitted using a hierarchical Bayesian framework based on

Hamiltonian Monte Carlo as implemented by the software Stan (Stan Development

Team, 2018) through the R statistical software environment (R Core Team, 2020; Stan

Development Team, 2019). For each model, four Markov chain Monte Carlo (MCMC)

chains with 10,000 iterations and 50% burn-in were run, resulting in a total of 20,000

saved iterations for posterior inference. Traceplots and R-hat values were used to

monitor chain convergence (Gelman et al., 2013). Auto-correlations and effective

sample size (ESS) for key lower-level parameters were computed. Specifically, the

MCMC chains were tuned to ensure that ESS for the hyperparameters σgeno, σenv,

σge, and σb was greater than 3,000 in all models.

Figures were generated using the ggplot2 package in R (Wickham, 2016). The

highest posterior density intervals (HDIs) were computed using the HDInterval package
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(Meredith & Kruschke, 2018). Figures and tables were generated or rendered using the

R packages knitr (Xie, 2020) and kableExtra (Zhu, 2019). The R package tidyverse

was used for data cleaning and organization (Wickham et al., 2019; Wickham, Hadley,

2017).

The computing for this project was performed on the TIGER research cloud at

the Oklahoma State University High Performance Computing Center using a KVM

virtual machine backed by a hypervisor node with dual Intel “Skylake” 6130 CPUs

and 768 GB RAM.

2.3.7 Bayesian approach to data analysis

In Bayesian data analyses, estimation of parameters of interest and subsequent infer-

ence, as well as predictions, come in the form of posterior densities that are obtained

numerically from the MCMC. In contrast, the reader may recall that deterministic

methods produce parameter-specific point estimates only. The availability of posterior

densities is highly desirable as it provides considerably more information about the

parameters of interest (or functions thereof), thus enabling not only point estimation

but also assessments of uncertainty. Specifically, from a posterior density, one may

select amongst a number of possible location descriptors for the most appropriate

point estimate, say mean, median, or mode, depending on the symmetry (or lack

thereof) of the posterior density for the parameter of interest. Even more compelling

is the fact that posterior densities also enable an assessment of uncertainty around the

selected point estimator (Gelman et al., 2013). In a statistical sense, uncertainty is an

indicator of precision of the estimate based on the amount of information available

in the data, and thus, an indicator of how likely we are to reproduce those estimates

under similar conditions. For example, posterior intervals such as Highest Density

Interval (HDI), or alternatively, Posterior Probability Interval (PPI) indicate the range

of values within which one can expect to find the parameter of interest with 95%
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probability (Gelman et al., 2013). These intervals may be considered analogous to

the concept of confidence intervals in frequentist statistics, though their Bayesian

interpretation is straightforward, thus more intuitive and directly aligned with research

objectives. That is, we are 95% confident that the parameter takes values contained

within the boundaries of the interval. Specifically, a 95% PPI is the interval in the

distribution that contains the middle 95% of the posterior samples and thus has

equal tails (Gelman et al., 2013). In turn, the HDI of a posterior distribution is the

shortest possible interval which captures 95% of the posterior samples with the highest

probability densities (Grieve, 1991). It is worth noting that this statistical definition

of uncertainty on individual parameters or individual predictions is different from

variability across model-derived point predictions.

In this article, we report posterior summaries for each parameter of interest (and

functions thereof) using posterior medians and 95% HDI.

2.3.8 Model comparison

Model 3:GE-YC-hierarchy was our model of preference, because its hierarchical

nature offers insights into relevant physiological mechanisms. The model comparison

was performed to determine if the added complexity in Model3:GE-YC-hierarchy

compromised the predictive ability of the model. Alternative models were compared

using statistical metrics for goodness-of fit and predictive ability. Specifically, Bayesian

R-squared, and root mean square error (RMSE) were calculated to assess goodness-of-

fit, and expected log predictive density (elpd) was calculated in a q-fold cross-validation

with Q=10 for each alternative model. Approximately 315 data points were used as

training vs 35 holdout data points for each fold of cross-validation.

First, a Bayesian R-squared statistic was calculated for each MCMC iteration (s)

as described in Gelman, Goodrich, Gabry, and Vehtari (2019), such that:
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Bayesian R2
s = var(ŷ)s

var(ŷ)s + σ2 s
r

(2.3.6)

where, var(ŷ) = Variance between predicted values at iteration s, whereby s =

1, 2, . . . , S is the length of post-burnin MCMC , σ2 s
r = Posterior sample of residual

variance (σ2
r) for each MCMC iteration s.

Then, RMSE was also calculated for each MCMC iteration (s) as:

RMSEs =

√√√√ 1
N

N∑
n=1

(yn − ŷn
s)2 (2.3.7)

where, N = Total number of data points, yn = nth observation, and ŷn = Predicted

value for the nth observation sampled in MCMC iteration s.

Finally, elpd was calculated following equations 20 and 21 in Aki Vehtari, Gelman,

and Gabry (2017) such that:

elpd =
Q∑

q=1

Mq∑
m=1

log( 1
S

S∑
s=1

p(ym|θ−q,s)) (2.3.8)

where,

Q = The number of folds, Mq = number of observations within the qth fold, S =

Number of saved post burn-in MCMC iterations, ym = data point m within the qth

fold, and θ−q,s = parameters corresponding to the qth holdout subset and iteration s,

and p(ym|θ−q,s) = probability of ym given θ−q,s.

Models with smaller values of RMSE, and with larger values of Bayesian R-squared,

and elpd were considered preferable.

2.4 Results

2.4.1 Model comparison

Table 2.3 shows selected criteria used for model comparison, specifically, Bayesian

R-squared and RMSE to assess goodness-of-fit, and elpd to assess the predictive ability
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of each alternative model considered. Smaller Bayesian R-squared and larger RMSE

both indicate impaired fit of Model 1:GE relative to Models 2:GE-YC and Model 3:

GE-YC-hierarchy, thus clearly suggesting a preference for the latter two. Meanwhile,

Model 3:GE-YC-hierarchy showed the the largest value of Bayesian R-square and the

smallest RMSE. Yet, numerical differences in both fit criteria were minor relative to

Model 2:GE-YC, thus indicating little evidence for preference of either model over the

other in terms of relative fit to data.

In terms of predictive ability, Model 3:GE-YC-hierarchy performed best, as sup-

ported by the smallest elpd value, followed closely by Model 2:GE-YC and lastly by

Model1:GE. Model 3:GE-YC-hierarchy and Model 2:GE-YC showed a minor difference

in predictive ability, as indicated by an elpd difference close to zero and of smaller

magnitude than the standard error of such difference, indicating inadequate evidence

in favor of any one model in terms of predictive ability. For further inference, we

made the decision to proceed with Model 3:GE-YC-hierarchy based on a combination

of 1) best or comparable fit relative to other model alternatives considered in this

study, and 2) its hierarchical nature, which enables insight into specific physiological

mechanisms contributing to yield differences without compromising predictive ability.

Figure 2.1 illustrates the posterior density of the Bayesian R-squared for Model

3:GE-YC-hierarchy selected for further inference. Notably, the 95% HDI for Bayesian

R-squared for this model had a lower bound of 0.88 and an upper bound of 0.91,

indicating a 95% probability that Model 3 captures somewhere between 88 to 91% of

the variability observed in the data.

2.4.2 Genotypic, Environmental, and G × E effects on wheat yield

Table 2.4 shows posterior inference of variance components for genotypic (σ2
geno),

environmental (σ2
env) and G × E effects (σ2

ge), as well as residual-level (σ2
r), for the

alternative models considered in this study. As expected, the addition of NYB and
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Table 2.3: Model comparison based on Bayesian R-squared, root mean square error

(RMSE; expressed as posterior median [HDI]), and difference in expected log predictive

density (elpd_diff ± s.e.; expressed relative to Model 3: GE-YC-hierarchy as Model x

- Model 3)

Bayesian R-squared RMSE

Models Median HDI Median HDI elpd_diff ± s.e.

1) GE 0.759 (0.718,

0.799)

103.48 (98.29,

109.05)

-142.6 ± 28.0

2) GE-YC 0.896 (0.877,

0.914)

67.86 (64.42,

71.88)

-3.6 ± 28.3

3) GE-YC-

hierarchy

0.899 (0.880,

0.917)

66.77 (63.06,

70.71)

0

Figure 2.1: Posterior distribution of R-squared and 95 % HDI as indicated by the

vertical lines in the density plot.
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TKW as explanatory variable to Model 2:GE-YC and Model 3:GE-YC-hierarchy

caused a substantial decrease of approximately one order of magnitude in the residual

variance (σ2
r) and the environmental variance (σ2

env) compared to Model 1:GE. Based

on the posterior medians for Model 3:GE-YC-hierarchy, environmental variance (σ2
env)

showed the greatest magnitude with six times the amount of variance attributed to

genotypic effects (σ2
geno) or G × E interaction (σ2

ge) (Table 2.4). When comparing the

point estimates (medians) for genotype-specific and G × E effects, their magnitudes

appear similar, however, upon further analysis, it was found that there is a 61.6%

probability that the genotype-specific effects were higher than the G × E effects.

Figure 2.2 illustrates the posterior median of environment-specific yield predictions

for each of the wheat genotypes present in all environments in this study. All predictions

were obtained using results from Model 3:GE-YC-hierarchy. Specifically, panel (a)

depicts predictions based on effects of G, E, and G × E at average values of NYB and

TKW, whereas panel (b) depicts predictions based on effects of G, E, and G × E at

values of NYB and TKW specific to that environment. Both panels depict presence of

G × E interaction on wheat yield, as indicated by the change in rank of the genotypes

across environments. The difference in G × E patterns depicted by the two panels

may be explained by the fact that the contributions of NYB and TKW represent a

portion of the G × E interaction that is attributable to the eco-physiological processes

for which they are proxies. Whereas, the term G × E stated explicitly in Model 3 may

be interpreted as the remaining unattributable portion of the environment-specific

genotype effect on wheat yield.

2.4.3 Association between yield component traits and wheat yield

Table 2.5 shows posterior summaries for location parameters (β) of Model 3:GE-YC-

hierarchy across hierarchical levels. As a benchmark reference, we articulate posterior

inference for β0 indicates that yield for a “typical” genotype member of the population
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Table 2.4: Posterior summary (posterior median and 95% highest posterior density

interval (HDI)) on variance components (genotype (geno), environment (env), genotype

by environment interaction (ge), and residuals (r) for alternative models

σ2
geno σ2

env σ2
ge σ2

r

Models Median HDI Median HDI Median HDI Median HDI

1) GE 1102.54 (0.01,

3158.75)

39574.91 (11592.48,

93647.42)

1087.51 (0.0006,

2746.35)

10760.34 (8937.15,

12875)

2)

GE-YC

1181.33 (170.21,

3098.04)

4686.17 (428.28,

17098.25)

1218.47 (337.99,

2031.73)

4637.45 (3849.4,

5566.9)

3)

GE-YC-

hierarchy

1280 (184.33,

3192.07)

7918.37 (1123.51,

27753.57)

1068.13 (282.38,

1974.75)

4490 (3686.04,

5370.17)

Figure 2.2: Predicted wheat yield for selected genotypes across environments based

on Model 3, considering (a) genotype (G), environment (E), and G × E effects at

average NYB and TKW, and (b) G, E, G × E effects, as well as non-yield biomass

(NYB), and thousand kernel weight (TKW) at the corresponding environments.
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in a “typical” environment (i.e. E(Genoj) = E(Envk) = E(Geno ∗ Env)jk)) = 0) at

average values of NYB and TKW can be expected to be approximately 490 g m−2,

ranging from 404 to 557 g m−2, with 95% probability.

Furthermore, posterior inference on β10 and β20 indicates that one may expect the

behavior of wheat yield to change as a function of the sink-source balance represented

here by NYB and TKW (Table 2.5). Specifically, posterior inference on β10 indicates

an expected increase in yield per unit increase in NYB of approximately 0.43 g m−2,

and ranging from 0.38 to 0.47 g m−2 with 95% probability with typical weather

conditions during the reproductive growth stage. The values for NYB in this dataset

ranged from 325 to 2326 g m−2. Taking this range into account, one can expect the

yield to change by 140 to 1000 g m−2 as a result of change in NYB. Likewise, posterior

inference on β20 supports an expected increase in yield per unit increase in TKW of

approximately 13 g m−2, ranging from 9 to 16 g m−2, with 95% probability at typical

weather conditions during the grain-filling stage. Taking into account the range for

TKW in this dataset (14 to 39 g), the yield can be expected to change by 182 to 507

g m−2 as a result of change in TKW.

2.4.4 Contribution of weather variables to the relationships between yield

and yield component traits

Table 2.5 presents posterior summaries on parameters β11, β12, β13, which characterize

the contribution of temperature, solar radiation, and precipitation, respectively, to

wheat yield through NYB during the reproductive stage, allowing us to look into

source-sink balance in the population. Specifically, at the reproductive stage, solar

radiation showed a positive effect on βnyb, that is the expected rate of change of

wheat yield as a function of NYB, as indicated by the positive sign of both boundaries

of 95% HDI of β12. Specifically, for every one unit (MJm−2d−1) increase in solar

radiation, one might expect an increase of 0.05 g m−2/g m−2 in the coefficient βnyb
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Table 2.5: Posterior median and highest density interval (HDI) for the intercept and

the regression coefficients in the Model GE-YC-hierarchy

Parameter Description Median HDI

β0 Yield at typical conditions 490 (404, 557)

β10 Expected change in yield per unit increase in NYB under

average weather conditions during reproductive stage

0.43 (0.38, 0.47)

β20 Expected change in yield per unit increase in TKW under

average weather conditions during grain filling stage

13 (9, 16)

β11 Change in β10 per unit increase in reproductive stage

temperature

0.01 (-0.029, 0.054)

β12 Change in β10 per unit increase in reproductive stage solar

radiation

0.05 (0.006, 0.098)

β13 Change in β10 per unit increase in reproductive stage

precipitation

0.01 (-0.001, 0.020)

β21 Change in β20 per unit increase in grain filling stage

temperature

-0.14 (-1.425, 1.123)

β22 Change in β20 per unit increase in grain filling stage solar

radiation

-0.002 (-0.961, 0.960)

β23 Change in β20 per unit increase in grain filling stage

precipitation

0.32 (-0.140, 0.789)
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that quantifies the association between wheat yield and NYB, with a 95% probability

that this increase ranges between 0.006 and 0.098. Taking into account the range in

solar radiation values for this dataset, the change in βnyb can be expected to range

from -0.13 to 0.09, on average, as a result of the effects of solar radiation. These values

were obtained by multiplying the range for solar radiation values in the data with the

median for β13. Furthermore, posterior inference on β13 indicates a 96% probability

for a positive contribution of precipitation to the expected rate of change of wheat

yield as a function of NYB (i.e. βnyb) during the reproductive stage. The contribution

of every unit of increased precipitation (cm) to βnyb has a posterior median at 0.01

with a posterior standard deviation of 0.005. In context of this dataset, this effect on

βnyb can be expected to range from -0.12 to 0.09. In turn, evidence for a contribution

of temperature (β11) to the association between yield and NYB (i.e. βnyb) was weaker,

as the HDI for β11 shows substantial overlap with the null value zero and the posterior

probability of a non-zero positive effect is approximately 70%.

Furthermore, the joint posterior densities for β12 and β13 indicate a strong corre-

lation between the contributions of precipitation and that of solar radiation to βnyb,

that is, the rate of change of yield as a function of NYB during the reproductive stage

(Figure 2.3, panel 3). Specifically, this correlation was estimated at 0.83, suggesting

the possibility of multicollinearity between these weather contributors. In contrast,

the estimated posterior correlations between the contributions of temperature (β11)

and any of the remaining weather variables (β12 and β13) to βnyb was small, at –0.06

and –0.01 respectively (Figure 2.3, panels 1 and 2 respectively).

Table 2.5 also shows posterior inference on parameters β21, β22, β23, which char-

acterize the TKW-mediated contribution of temperature, solar radiation, and pre-

cipitation, respectively, to wheat yield during the grain filling stage thus providing

further insight into source-sink balance. Specifically, posterior inference on β23 further

indicates a 91% probability for a non-zero positive contribution of precipitation to the
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Figure 2.3: Pairwise joint posterior densities for parameters β11, β12, β13 characterizing

the contribution of weather variables to the relationship between yield and NYB during

the reproductive stage.

expected rate of change of wheat yield as a function of TKW (i.e. βtkw) during the

grain filling stage. The contribution of every unit of increased precipitation to βtkw

had a posterior median at 0.32 with a posterior standard deviation of 0.24. For this

dataset, this effect on βtkw can be expected to range from -2.36 to 4.73. By contrast,

posterior inference for the remaining coefficients β21 and β22 showed 95% HDIs that

overlapped with zero, thus suggesting little, if any contributions of temperature and

solar radiation to wheat yield through TKW, given the range of temperature in this

dataset. In addition, posterior correlations between β21, β22, β23 during the grain

filling stage were small in magnitude (below 0.25) (Figure 2.4) suggesting negligible

dependence between weather contributions to source mechanisms for wheat yield.

2.5 Discussion

In this study, we implemented a hierarchical Bayesian approach to model wheat

yield in Oklahoma on an eco-physiological basis, that is, as a function of two yield

component traits related to sink-source relations, namely non-yield biomass (NYB)

and thousand kernel weight (TKW). We further leveraged hierarchical models to
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Figure 2.4: Pairwise joint posterior densities for parameters β21, β22, β23 characterizing

the contribution of weather variables to the relationship between yield and TKW

during the grain filling stage.

assess the contribution of weather variables to the relationships between yield and

yield component traits at different growth stages.

2.5.1 Model comparison

Based on a combination of model fit criteria and hierarchical structure of the biological

question of interest, we proceeded with inference using Model 3:GE-YC-hierarchy. In

particular, Bayesian R-square indicated that the selected model was well suited to fit

the data, as its posterior density was centered at 0.89 with a lower HDI bound of 0.85.

In addition, the estimated RMSE for this model was 67 g m−2, which is within range

of other reports in the literature ranging from as low as 10 g m−2 up to 150 g m−2

(Huang et al., 2016; Z. Li et al., 2015; Kogan et al., 2013; Nain, Dadhwal, & Singh,

2004).

2.5.2 Genotypic, Environmental, and G × E interaction effects on yield

In this section, we interpret the changes in variance components for environment (σ2
env),

genotype (σ2
geno) and G × E (σ2

ge) interaction across alternative models, GE, GE-YC,

and GE-YC-hierarchy. Recall that Model 1:GE did not account for yield component
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traits NYB and TKW. As a result, a large portion of the total variability likely fell to

the environment. The posterior estimates for environmental variance decreased by an

order of magnitude when yield component traits were added in Model 2:GE-YC and

Model 3:GE-YC-hierarchy, indicating that a large proportion of the variance originally

explained by the environment and left-over noise in Model 1:GE was explained by the

yield component traits in Models 2:GE-YC and 3:GE-YC-hierarchy. The inclusion of

yield components NYB and TKW in models 2:GE-YC and 3:GE-YC-hierarchy were

intended to help explain yield variation in terms of eco-physiological mechanisms. In

turn, the similarity in magnitudes of variance estimates for genotypic and G × E

components across all three models suggest that NYB and TKW do not explain the

variance associated with genotype and G × E interaction effects.

For Model 3:GE-YC-hierarchy, based on the point estimates (medians) of the

posterior distributions for the variance components for genotypic, environmental, and

G × E interaction effects (σ2
geno, σ

2
env, and σ2

ge, respectively), σ2
env was found to be

the largest by at least 6-fold (Table 2.4). In addition to this point estimate, the

HDI for σ2
env also indicates much larger lower and upper bounds compared to the

HDIs for σ2
geno and σ2

ge (Table 2.4). This suggests that the environment (i.e. site-year)

accounted for a considerable part of the total variability in wheat yield. In turn,

posterior medians for σ2
geno and σ2

ge were on a comparable order of magnitude indicating

that genotypic effects as well as G × E interaction effects explain yield variability

comparably. However, upon subsequent analysis, it was revealed that the probability

of effect of genotype-specific effects on wheat yield is higher than the effect of G ×

E interaction. Although small, the G × E effects were manifested as re-ranking of

genotypes across environments. For instance, SYFlint was ranked in the lowest half

for yield in Altus_2018, but ranked highly the following year, particularly in the

Altus_2019 environment (Figure 2.2).

In terms of overall growing conditions of the environments, the growing season of
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2016-17, i.e. harvest year 2017, reportedly showed optimal growing conditions (Mar-

burger et al., 2017). However, during that season, the Chickasha site suffered a severe

and early infection of leaf rust (Marburger et al., 2017); this is probably the reason

behind Chickasha_2017 being the lowest yielding environment. On the other hand,

the growing conditions during the season of 2017-18 in Oklahoma were characterized

by overall cooler temperatures at early growth stages and record cold temperatures

in April with a spring-freeze, thus resulting in slow growth and development of the

crop (Marburger, Calhoun, Carver, et al., 2018). Weather conditions in Oklahoma

were further compounded with hotter temperatures and lack of rainfall during the

grain filling stage, including record hot temperatures in May (Marburger, Calhoun,

Carver, et al., 2018). Finally, the 2018-2019 growing season had mostly favorable

growing conditions for both growth and development and grain filling stages, with

some exceptions of wet conditions and waterlogged soil at the time of harvest in some

locations (Calhoun et al., 2019).

2.5.3 Association between wheat yield and yield component traits

One of the objectives of this study was to model wheat yield as a function of yield

component traits to be able to identify physiological mechanisms contributing to

source-sink balance. Specifically, we used non-yield biomass (NYB) as a source

indicator because it is an independent measure of the source which doesn’t contain the

variable we are trying to predict (yield). Hence, it can be argued that NYB represents

the source more clearly and uniquely than total crop biomass. Specifically, the ratio

of yield to NYB can be expressed in terms of Harvest Index (HI) as Y ield/NY B =

HI/(1 − HI). For clarity and detail, recall that HI = Y ield/Biomass and also,

NY B = Biomass − Y ield. One may then express NY B/Y ield = (Biomass −

Y ield)/Y ield, such that NY B/yield = 1/(HI − 1), leading to re-expressing βnyb as

Y ield/NY B = HI/(1−HI). This identity enabled us to draw connections between
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our study and the published literature. So defined, HI is commonly used to assess

source-sink balance in wheat (Matthew P. Reynolds et al., 2017; H. Zhang, Turner, &

Poole, 2010).

The slope parameter connecting wheat yield and NYB, βnyb, is equal to β10 at

average weather conditions in Model 3:GE-YC-hierarchy. The HDI for β10 was (0.38,

0.47 g m−2/g m−2). The positive value of βnyb indicates that source is one of the

drivers for yield in these environments. Other studies have reported theoretical

maximums for HI in wheat to be 0.62, 0.64, and 0.66 (Foulkes et al., 2011; Shearman,

Sylvester-Bradley, Scott, & Foulkes, 2005; Austin et al., 1980). However, the HI for

maximum attainable yields in the Southern Great Plains has been estimated at not

more than 0.41 (Lollato & Edwards, 2015). In addition, a survey on five different

classes of wheat across the United States reported the HI of hard red winter wheat

(the most commonly grown wheat in Oklahoma) to be 0.33, the lowest among all

wheat classes (Dai et al., 2016). An HI far lower than the attainable HI suggests that

yield increase could be achieved through better utilization of available source through

improved dry matter partitioning.

Further, our results indicate a positive slope coefficient between wheat yield

and TKW (i.e. βtkw in Model3:GE-YC-hierarchy), suggesting that the genotypes in

this population did not consistently achieve their genetic potential for TKW across

environments. This finding could be interpreted as an insufficient source to match the

sink strength, thus a source-sink imbalance in the population within many of the target

environments. TKW is generally a stable trait with high heritability. Moreover, we had

expected that some portion of the genotypic variance would be explained by the yield

component TKW, as this trait is generally considered to vary more between genotypes

than between environments (Victor O Sadras, 2007). This expectation is based on the

understanding that wheat is generally considered to be a sink-limited crop under many

conditions (Alonso et al., 2018; Serrago, Alzueta, Savin, & Slafer, 2013; H. Zhang
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et al., 2010; Gustavo A Slafer & Savin, 1994). When the yield is sink-limited, genetic

potential TKW is consistently achieved, the yield is limited by grain number, and the

relationship between yield and TKW is at or near zero (Gustavo A Slafer et al., 2014;

M. Reynolds, Pellegrineschi, & Skovmand, 2005). However, when source-limitation is

at play, differences in TKW across environments would be greater than differences

between genotypes, resulting in a non-zero slope for the relationship between yield and

TKW. Thus, our findings of a positive slope for TKW, and a positive slope between

yield and NYB (i.e., an increase in yield with an increase in the source) both point

towards source limitation for yield.

2.5.4 Contribution of weather variables in the relationships between yield

and yield component traits

We incorporated the weather variables as hierarchical regressors that qualify the

nature of the relationship between yield and each of NYB and TKW, thus extending

Model 2:GE-YC to Model 3:GE-YC-hierarchy. If the inclusion of hierarchical levels

to account for weather variables made any contribution to explaining noise in the

data, this contribution seemed to be mild at best, as the posterior density for the

residual variance was only slightly decreased in magnitude from Model 2:GE-YC

to Model 3:GE-YC-hierarchy (Table 2.4). This is not necessarily surprising as the

explanatory role of weather was not at the first hierarchical level of the model; rather,

weather variables were fitted at a second level of the model hierarchy, thus intended

for a decomposition of the slopes connecting wheat yield to TKW and NYB. The

hierarchical structure of the model allowed us to evaluate the contributions of weather

conditions to the rate of change of wheat yield as a function of yield component

traits. For the reproductive stage, the effects of solar radiation (β12) and precipitation

(β13) on the slope of yield vs. NYB (βnyb) were positive. It is noted that these two

effects were also tightly correlated with each other a posteriori. This is consistent with
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the previously reported relationship between radiation use efficiency and water use

efficiency (Caviglia & Sadras, 2001; V. Sadras, Whitfield, & Connor, 1991). Specifically,

a positive correlation of substantial magnitude was reported between cumulative water

consumed and photosynthetically active radiation intercepted in durum wheat (Rezig,

M’hamed, & Naceur, 2015).

Conditions of both higher solar radiation and adequate rainfall are considered

favorable for plant growth. Higher solar radiation corresponds to increased photo-

synthesis and higher assimilate supply, and higher rainfall ensures no drought stress.

Therefore, the observed positive effects of solar radiation and precipitation during

the reproductive stage (β12 and β13) on the rate of change of yield per NYB (βnyb)

indicate that the amount of yield produced per unit NYB is higher under favorable

conditions. These findings can be interpreted as the source (NYB) being utilized more

efficiently for yield formation as a result of better sink strength, given that this is

a period when florets are developing and thus, grain number is determined (Ugarte

et al., 2007; Savin & Slafer, 1991; R.A. Fischer, 1985).

For the grain filling stage, only precipitation was found to contribute to the rate

of yield change per TKW (β20), although the evidence was weaker (i.e. posterior

probability P(β23 > 0|y) = 70%). The positive slope between yield and TKW

indicating potential source limitation during grain filling and the weak evidence of

weather variables contributing to that points towards other factors that might affect

source strength during grain filling such as disease or residual soil moisture. In turn,

the evidence of the precipitation effect, although weak, is consistent with a report

that the effect of precipitation during the grain filling stage on wheat yield was mainly

mediated by TKW (He et al., 2013).
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2.6 Conclusion

A major portion of the total variability in wheat yield was explained by the envi-

ronmental component. The inclusion of yield component traits, namely NYB and

TKW, as explanatory variables in the model helped explained a substantial amount of

environmental variance but did not seem to help explain genotypic or G × E variance.

A positive relationship was observed between both yield component traits and wheat

yield supporting the idea that yield is driven by source mechanisms. However, the

fact that the slope of yield as a function of NYB was responsive to weather conditions

during the reproductive stage indicates that sink mechanisms may also be at play.

These results suggest the presence of source-sink co-limitation in wheat yield.
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CHAPTER III

A HIERARCHICAL BAYESIAN APPROACH TO DYNAMIC ODE

MODELS FOR REPEATED MEASURES DATA ON WHEAT

GROWTH

3.1 Abstract

Experimental data collected on growth and development of plants over a growing

season are typically analyzed using a linear mixed model, analogous to a hierarchical

linear model in a Bayesian setting. Alternative modeling approaches for repeated

measures data involve ecophysiological dynamic models based on a system of ordinary

differential equations (ODE). Yet, current implementations of ODE models are mostly

deterministic in nature, which negates recognition of uncertainty in the data generation

process and thus impairs inference and prediction. In this study, our objectives were

to 1) to implement dynamic ODE models using a stochastic Bayesian framework to

accommodate uncertainty into the modeling exercise, and 2) to compare performance

to traditional linear mixed models for repeated measures. Using a hierarchical Bayesian

implementation, we fit both an ODE model and a linear mixed model to data on leaf

area index (LAI) and biomass from a winter wheat dataset. In the context of this

application, neither modeling approach seemed to outperform the other in terms of

goodness of fit or prediction accuracy as indicated by similar values for root mean

squared error (RMSE), Willmott’s agreement index (d), and Nash-Sutcliffe efficiency

(NSE). The prediction statistics for the ODE model and hierarchical linear model,

respectively, were: RMSEp of 1.38 and 1.21, dp of 0.91 and 0.93, and NSEp of 0.69
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and 0.76 for LAI and RMSEp of 274.27 and 253.50, dp of 0.95 and 0.95, and NSEp of

0.82 and 0.84 for biomass. However, the parameterization of the dynamic ODE model

enabled biologically meaningful interpretations relevant to the research question that

were not apparent from the linear modeling approach.

3.2 Introduction

In crop production, data are often collected throughout a growing season in order to

study the dynamic interplay between plant genetic varieties, management practices,

and environmental conditions over time on the growth and development of crops. Crop

modeling approaches often use ecophysiological dynamic models based on a system

of ordinary differential equations (ODE) that express the growth and development

of a cropping system as derivatives with respect to time (Paine et al., 2012). For

instance, crop models such as DSSAT (Jones et al., 2003b) and APSIM (Keating

et al., 2003) are widely used by crop scientists to describe how the biological system

as a whole changes over time based on an ODE core. When integrated numerically,

dynamic ODE systems can naturally capture the non-linear evolution of crop growth

and development over a season. In addition, in ODE models, dynamic relationships

between response variables are embedded in the model, thus allowing for seamless

integration of multiple responses in the system.

However, implementation of ODE models is often based on numerical optimizations

and thus they are mostly deterministic in nature; that is, a set of inputs and parameter

values always gives the same output. As a consequence, ODE models fitted through

numerical optimizations are not capable of recognizing the inherent uncertainty of

working with sampled data nor of accommodating any non-systematic sources of

variability in the data, thus impairing inference and prediction. Stochastic models

that incorporate random components are likely to handle uncertainties in a system,

and thus may be better suited for studying crop systems. In this study, we implement
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ODE models in a Bayesian framework that explicitly accommodates the stochastic

components needed to accommodate sources of uncertainty in the data.

Alternatively, repeated measures data from designed experiments are often analyzed

using linear mixed models that naturally accommodate uncertainty through random

effects. In addition, linear mixed models can incorporate tailored covariance structures

to recognize repeated observations collected over time on a given plant or plot (Piepho,

Büchse, & Richter, 2004). However, linear constraints inherent to this approach often

require that many parameters be specified to enable the modeling flexibility needed

to accommodate dynamic processes.

In addition, it is often the case with linear mixed models that different response

variables from the same experiment are analyzed separately (i.e. single-response

models). This approach limits understanding of the inherent interrelationships between

outcomes (Chitakasempornkul et al., 2019), thus impairing cohesive insight into the

cropping system as a whole. Multivariate extensions to mixed models can be used to

infer correlations between multiple response variables, but cannot assess any directional

relationships among them (Valente & de Magalhães Rosa, 2013).

From a data collection standpoint, designed experiments with repeated measures

often require that measurements be taken at predefined timepoints and that such

timepoints are shared across the conditions that the scientist wants to compare. By

contrast, in large experimental crop settings, the logistical scale of data collection

forces a more fluid schedule that is often mismatched with pre-defined timepoints.

ODE models allow units to be followed over time, without the limitation of data

collection at pre-specified intervals. Furthermore, ODE model parameters are specified

in ways biologically meaningful to the dynamic processes of interest, thus enabling a

more straightforward interpretation.

In this study, our objectives were 1) to implement dynamic ODE models using

a stochastic Bayesian framework to accommodate uncertainty into the modeling
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exercise, and 2) to compare performance to traditional linear mixed models (analogous

to hierarchical linear models in the Bayesian setting) for repeated measures. We use a

winter wheat dataset consisting of measurements on leaf area index (LAI) and biomass

collected repeatedly over growing seasons.

3.3 Methodology

3.3.1 Experimental design and data description

Data was obtained from a previous study by Lollato and Edwards (2015) conducted

over a period of two years (2012-13 and 2013-14) in three locations in Oklahoma,

namely Chickasha, Stillwater, and Perkins. For the purpose of this study, each unique

combination of location and year was defined as a block; this is analogous to the

concept of contemporary groups. Within each block, each treatment was assigned to

four plots. Within the blocks pertaining to Stillwater and Perkins, two treatments,

namely irrigated and rainfed, were assigned to four plots each. Only the rainfed

treatment was implemented in blocks pertaining to Chickasha. All plots were planted

with the wheat variety Iba. In all cases, field preparation consisted of conventional

tillage and non-limiting nitrogen fertilization. The fields were intensively managed

for weeds, insects, and diseases throughout the experiment. Irrigation on irrigated

treatments was based on soil water depletion in the effective rooting zone. Further

details on the experimental protocol can be found in Lollato and Edwards (2015).

Data on LAI (m2 m−2) and biomass (g m−2) were collected from each plot at

multiple time points at intervals of 2-3 weeks throughout the growing season lasting

approximately eight months. For data collection, one-meter length of row of above-

ground biomass was destructively sampled from a plot at each time point. Green

leaves were scanned with an optical leaf area meter to record leaf area and samples

were oven-dried to obtain biomass. In each plot, observations on LAI and biomass
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were collected repeatedly at timepoints recorded as days after planting (DAP). A new

variable called categorical DAP (i.e. DAPc) was defined to categorize DAP into time

intervals, as needed for modeling purposes (see later). Specifically, DAPc consisted of

rounding the observed DAP to the nearest ten day mark, thus categorizing DAPs into

ten-days intervals. The choice of 10-day intervals for DAPc was made in anticipation

of the leave-one-group-out cross-validation approach later in the analysis, to ensure at

least two observations per interval for each treatment.

Weather variables were collected for inclusion in the dynamic ODE model. Specif-

ically, daily average temperature (◦C) and daily solar radiation (MJm−2d−1) were

obtained for each block (i.e. location-year combination) from the Oklahoma Mesonet

(McPherson et al., 2007; Brock et al., 1995). Missing values in the weather data were

filled in using linear interpolation across days.

3.3.2 The dynamic model

The ODE component of the dynamic model consists of three state variables, namely

Thermal Time (TT ), Leaf Area Index (LAI), and biomass (BM), whereby TT denotes

the thermal time age of the crop (expressed in ◦C days), LAI is the area of leaves per

unit ground area (adimensional), and BM denotes dry biomass of crop per square

meter of ground area (expressed in g m−2). At time zero, LAI and BM were initialized

at nominal non-zero values of 0.01 and 0.1, respectively, whereas TT was initialized

at zero. For weather variables, daily averages of temperature and solar radiation

throughout the growing season were used.

Although many crop models make use of piecewise functions to capture biophysical

processes, piecewise functions are not continuously differentiable due to breaks created

by conditioning statements. In this project, we use a type of Markov Chain Monte

Carlo (MCMC) algorithm called Hamiltonian Monte Carlo (HMC) which requires

continuously differentiable functions. More details on HMC are provided in section
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3.3.5. In this study, the nominal forms of the functions used to capture biophysical

processes were made continuously differentiable using sigmoidal switch functions

(Kudryashov, 2015; Jordan, 1995). In the following descriptions of the ODE model

equations, nominal piecewise forms for each state variable were given first, followed by

the exact sigmoidal switch used for implementation with HMC.

The change in thermal time was calculated as a function of base temperature

and daily average temperature. This method is commonly used to calculate thermal

time also known as growing degree days (White, Kimball, Wall, and Ottman (2012);

McMaster and Wilhelm (1997); Baker, Pinter Jr, Reginato, and Kanemasu (1986)).

dTTt

dt
≈


Tavgt − Tbase, Tavgt > Tbase

0, otherwise

(3.3.1)

dTTt

dt
= (Tavgt − Tbase)

1
1 + e−100(T avgt

T base
−1) (3.3.2)

where,
dT Tt

dt
= Rate of change of thermal time at time t.

Tavgt = Observed daily average air temperature time t, ◦C.

Tbase = Unknown parameter representing base temperature below which plant

growth ceases, ◦C.

The change in LAI was calculated as a function of change in thermal time, leaf

expansion rate, canopy light extinction coefficient, and rate of senescence. The growth

stage end of leaf expansion was used as a threshold for leaf growth to switch to

senescence.

dLAIt

dt
≈


dT Tt

dt
· α · LAIt · e−K LAIt , TTt ≤ TTL

−LAIt · senrate · dT Tt

dt
, TTt > TTL

(3.3.3)
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dLAIt

dt
=dTTt

dt
· α · LAIt · e−K LAIt ·

(
1− 1

1 + e−100 ( T Tt
T T L

−1)

)
−

LAIt · senrate ·
dTTt

dt
·
(

1
1 + e−100 ( T Tt

T T L
−1)

)
(3.3.4)

where,
dLAIt

dt
= Rate of change of LAI at time t.

α = Unknown parameter representing relative rate of LAI increase when TTt ≤

TTL.

K = Unknown parameter representing light extinction coefficient, adimensional.

LAIt = Observed LAI at time t.

TTt = Observed thermal time at time t.

TTL = Unknown parameter representing thermal time threshold at the end of the

vegetative phase of growth, ◦C d.

senrate = Unknown parameter representing the rate of senescence per unit thermal

time.

Biomass was calculated as a function of radiation use efficiency (RUE), solar

radiation, and light interception. Light interception was calculated according to the

relationship defined in Monsi and Saeki (2005).

dBMt

dt
≈


RUE · SRADt

(
1− e−K LAIt

)
, TTt ≤ TTM

0, TTt > TTM

(3.3.5)

dBMt

dt
= RUE · SRADt ·

(
1− e−K LAIt

)
· dTTt

dt
·
(

1− 1
1 + e−100 ( T Tt

T T M
−1)

)
(3.3.6)

where,
dBMt

dt
= Rate of change of biomass at time t.

RUE =Unknown parameter representing radiation use efficiency, g MJ−1 ◦C−1 d−1.

SRADt = Observed solar radiation at time t.
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TTM = Unknown parameter representing thermal time threshold at crop maturity,
◦C d.

At each timestep, the value of the state variables were updated for each kth block

using Euler integration according to:

Sk t+1 = Sk t + dSk t

dt
∆t (3.3.7)

where, Sk t = [TTk t, LAIk t, BMk t] are the observed state variables for block

k at time t, Sk t+1 = [TTk t, LAIk t, BMk t] at time t + 1, and ∆t is the fixed time

step of one day. Alternative methods for integration including up to fourth order

Runge-Kutta were evaluated. However, the differences in ODE model outputs were

negligible compared to the magnitude of the variables. Therefore, Euler integration

was selected to minimize computational costs.

For each ith state variable in S, the output of the ODE model is represented by

βode
0ikt = Si kt = f(Fk,θ,S0) where, f is the Euler integration of the ODEs from initial

time point to time t, Fk is a matrix of forcings or input variables [Tavg and SRAD]

for the kth block, θ is a vector of unknown ODE model parameters, namely θ =

[Tbase, α, K, TTL, senrate, RUE, and TTM ] as described above, and S0 is a vector

of the initial values of state variables.

Thereby,

βode
02kt = f(F,θ,S0) = SLAI kt (3.3.8)

βode
03kt = f(F,θ,S0) = SBM kt (3.3.9)

where,

SLAI kt = State variable for biomass at time t for block k as defined by equations

3.3.7 and 3.3.3.
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SBM kt = State variable for biomass at time t for block k as defined by equations

3.3.7 and 3.3.5.

Next, for response variables LAI and BM, we specify

Yijklt = βode
0ikt + βode

0ikt ∗ Trtil + Plot(Block ∗ Trt)ij(kl) + εijklt (3.3.10)

where,

Yijklt = Observed value of the ith response variable (i = 2 for LAI, i = 3 for

Biomass) corresponding to jth plot (j = 1, 2, 3, 4) on kth block (k = 1, . . . , 6) assigned

to lth treatment (l = 1, 2) at time t.

βode
0ikt = Predicted value of the ith response variable for block k and time t, as

obtained as output from the ODE model, i.e. numerical solution to integrals in ODE

model equations that is specific to the kth block at time t, and accommodates a

block-specific non-linear process for the ith response over time.

Trtil = Differential effect of lth treatment on the ith response variable.

Plot(Block∗Trt)ij(kl) = Differential random effect of jth plot nested within a block

and treatment combination on the ith response variable, assumed NIID(0, σ2
P lot i).

εijklt = leftover residual random noise for the ith variable specific to the jklth plot

at time t, assumed NIID(0, σ2
e i).

3.3.3 The hierarchical linear (mixed) model

The hierarchical linear (mixed) model was specified as follows:

Yijklm =βlm
0i +Blockik + Trtil + (Block ∗ Trt)i(kl) + Plot(Block ∗ Trt)ij(kl)+

Timeim + (Trt ∗ Time)i(lm) + εijklm (3.3.11)

where,

i = 2 (LAI), 3 (Biomass) j = 1, . . . , 4 k = 1, . . . , 6 l = 1, 2 m = 1 , . . . , 13
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Yijklm = Observed value of the ith response variable from jth plot of block k and

Treatment l at time interval m.

βlm
0i = Intercept for the ith response variable.

Blockik = Differential effect of kth block on the ith response variable, assumed

NIID(0, σ2
Block i).

Trtil = Differential fixed effect of the lth treatment on the ith response variable.

(Block ∗ Trt)i(kl) = Differential effect of lth treatment on the kth block for the ith

response variable, assumed NIID(0, σ2
Block∗T rti[kl]

).

Plot(Block ∗ Trt)ij(kl) = Differential effect of jth plot nested within a block and

treatment combination on the ith response variable, assumed NIID(0, σ2
P lot i).

Timeim = Differential fixed effect of mth time interval (i.e. as defined by DAPc)

on the ith response variable.

(Trt ∗ Time)i(lm) = Differential effect of lth treatment at time interval m for the

ith response variable.

εijklm = Left-over residual noise unique to the observation from jklmth plot for

the ith response variable and assumed NIID(0, σ2
e i).

3.3.4 Bayesian specifications

Both dynamic and mixed models were implemented within a Bayesian hierarchical

framework. The concept of Bayesian modeling is based on Bayes rule, such that

P (φ|y) ∝ P (y|φ)P (φ), where P (φ|y) is the target posterior distribution of the

unknown parameters φ, and can be expressed as proportional to the product of the

data likelihood P (y|φ) (also referred to as sampling distribution of the data) and the

prior distribution of the unknown parameters φ, namely P (φ) (Gelman et al., 2013).

Prior distributions on each unknown parameter reflect prior knowledge or belief about

the system and can usually be informed, at least partially, from the existing literature.

For systems that have been extensively studied, priors can be set to convey very
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precise information. Meanwhile, diffuse priors can be used to convey vague knowledge

of a system that is not yet well studied; doing so facilitates the observed data to

dominate posterior inference.

Prior specifications for all unknown parameters corresponding to the dynamic

ODE and the hierarchical linear (mixed) models are presented below.

3.3.4.1 Dynamic ODE model:

Table 3.1 shows the prior distributions specified for ODE parameters and the reference

source used to inform these priors. For each ODE parameter, priors were specified

to follow a normal distribution truncated at zero as a lower bound, except for Tbase

which was specified as normal and unbounded, and for TTM for which the lower

bound was set to TTL.

The prior for senrate was specified using a heuristic approach by testing different

values of senrate such that the time it takes for a canopy to reach full senescence from

maximum leaf area is on average 35 days assuming a maximum LAI of five and 30 ◦C

days. The prior specification for senrate as a normal distribution truncated at 0 with

a µ of 0.005 and σ of 0.001 allowed 99% of the prior density for this parameter within

the range of 0.002 to 0.008, which would correspond to a duration for full canopy

senescence of 60 to 20 days, respectively.

The prior for RUE was specified in g MJ−1C−1 for model implementation with a

mean of 0.07 and
√
σ2 of 0.0125; this is equivalent to values of 1.4 and 0.25 for the

respective hyperparameters expressed in g MJ−1 at 20 ◦C (as specified in Table 3.1).

For RUE, prior information and results from the posterior density are presented in

g MJ−1 for the ease of reference.
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Table 3.1: Specification of prior hyperparameters for the ODE model parameters.

Parameter Description µ σ2 References

Tbase Base temperature 0 22 Porter and Gawith, 1999

α Relative rate of LAI

increase before the

end of leaf expansion

0.016 0.0072 Rodriguez, Keltjens, and

Goudriaan, 1998

K Light extinction

coefficient

0.6 0.12 Pradhan et al., 2018;

Bechini, Bocchi, Maggiore,

and Confalonieri, 2006;

Muurinen and

Peltonen-Sainio, 2006;

O’Connell, O’leary,

Whitfield, and Connor,

2004; Calderini, Dreccer,

and Slafer, 1997

TTL Thermal time

threshold at the end

of leaf expansion

950 1002 McMaster et al., 2019;

Bechini et al., 2006

senrate Rate of senescence 0.005 0.0012

RUE Radiation Use

Efficiency

1.4 0.252 Bechini et al., 2006;

Muurinen and

Peltonen-Sainio, 2006;

O’Connell et al., 2004;

Calderini et al., 1997
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Table 3.1: Specification of prior hyperparameters for the ODE model parameters.

(continued)

Parameter Description µ σ2 References

TTM Thermal time

threshold at crop

maturity

1950 1502 McMaster et al., 2019;

Bechini et al., 2006

To assess the influence of the prior specifications listed above on posterior inference,

we conducted a sensitivity analysis allowing for more diffuse priors. In particular, for

each of the ODE parameters listed in Table 3.1, we increased the square root of prior

variance
√
σ2 by ten-fold and evaluated changes in the posterior densities of interest.

For the remaining parameters in equation 3.3.10, prior information was specified

following the prior predictive checking procedure described by Schad et al. (2019).

Specifically, hyperparameters were specified such that predictions from prior distri-

butions were biologically plausible with vague boundaries within the scale of each

response variable, as follows:

Trtil ∼ N(0, 0.52) for i = LAI.

Trtil ∼ N(0, 0.252) for i = B.√
σ2

P lot i ∼ N(0, 0.32) truncated at zero for i=LAI.√
σ2

P lot i ∼ N(0, 452) truncated at zero for i = B.√
σ2

e i ∼ N(0, 12) truncated at zero for i = LAI.√
σ2

e i ∼ N(0, 1002) truncated at zero for i = B.

3.3.4.2 Hierarchical linear model:

Table 3.2 shows prior specifications for parameters of the hierarchical linear model

fitted to LAI (i = 2) and biomass (i = 3). Specifically, vague subjective priors were
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Table 3.2: Priors for the hierarchical linear model parameters, where i = 1 is LAI and

i = 2 is Biomass.

Parameter Distribution (µ, σ2) for i = 1 (µ, σ2) for i = 2

β0i Normal (4, 12) (500, 1002)

Trtil Normal (0, 12) (0, 3002)

Timeim Normal (0, 12) (0, 3002)

(Trt ∗ Time)i[lm] Normal (0, 0.52) (0, 1502)√
σ2

Block i Truncated normal (0, 12) (0, 3002)√
σ2

Block∗T rt i Truncated normal (0, 0.252) (0, 1002)√
σ2

P lot i Truncated normal (0, 0.252) (0, 1002)√
σ2

e i Truncated normal (0, 1.52) (0, 2002)

specified for parameters βlm
0i , Trtil, Timeim, and (Trt ∗ Time)i(lm) following the prior

predictive checks approach described in Schad et al. (2019) to ensure that selected

priors are consistent with domain expertise. In this case, priors were purposely

specified to be diffuse, though avoiding practically-impossible ranges. For example,

the prior on the intercept βlm
0i was specified as Normal(800, 1002) for biomass; this

implies biomass for the dryland treatment and at end of season to be on average 800

g m−2 with a three-standard-deviation range from 500 to 1100 g m−2.

Prior predictive models used for prior specification were formulated in three steps.

For each response variable, we started with a model that included only intercept

(i.e. βlm
0i ), then added parameters with subjective priors (i.e. Trtil, Timeim, and

(Trt ∗Time)i[lm]) in a second step, and finally added parameters with structural priors

(i.e. Blockik, (Block∗Trt)i[kl], and Plot[Block∗Trt]i[kl]) and corresponding hyperprior

specifications, as required for the corresponding variance components (i.e.
√
σ2

Block i,√
σ2

Block∗T rt i, and
√
σ2

P lot i, respectively).
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3.3.5 The Dynamic Hamiltonian Monte Carlo (HMC) sampling algo-

rithm

The HMC is a recently developed type of MCMC algorithm (Betancourt, 2017;

Betancourt & Girolami, 2015) and as such, we used it in this study to obtain numerical

samples from the posterior distribution of all unknown model parameters. The HMC

performs strategic sampling of the typical set of the joint posterior density by using

its gradient to efficiently guide exploration of the parameter space (Betancourt, 2017);

this has been shown to enhance MCMC performance, particularly for high dimensional

models (Betancourt & Girolami, 2015). By contrast, traditional MCMC samplers,

such as Gibbs sampling and random-walk Metropolis Hastings can be inefficient in

high dimensional spaces and spaces with complex interactions (Betancourt, 2017).

The HMC sampler is built on an analogy to Hamiltonian systems within which

one may envision a center of mass described by the probability density function of

interest (i.e. joint posterior density), around which the sampler orbits in the parameter

space. While the sampler orbits, it also proposes jumps between orbits around the

center (Betancourt, 2017). Generally, HMC samplers require specifications of two

hyperparameters, namely the step size and the number of steps, that control the jumps

of the sampler to explore the parameter space (Hoffman & Gelman, 2014). In this

study, we employed a dynamic HMC sampler, as implemented in Stan v. 2.25.0 (Stan

Development Team, 2018), whereby these hyperparameters are automatically tuned.

3.3.6 Model implementation

All models were implemented in Stan with CmdStan, which is the command-line

interface to the Stan statistical modeling language. For each model, four MCMC

chains, each of 5,000 burn-in iterations and additional 5,000 saved iterations were run,

resulting in a total of 20,000 saved posterior samples for each model. MCMC samples

were post-processed in the R statistical software environment (R Core Team, 2020).
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Convergence was monitored using trace plots and R-hat statistical tests (Gelman et

al., 2013), whereby R-hat values were smaller than 1.01 for all parameters corresponding

to the ODE and hierarchical linear model. Also, auto-correlation plots and effective

sample size (ESS) for key lower-level parameters were monitored. Specifically, ESS for

the variance component parameters from the hierarchical linear model (i.e.
√
σ2

Block i,√
σ2

Block∗T rti[kl]
,
√
σ2

P lot i, and
√
σ2

e i) were greater than 7000 for both biomass and

LAI. Similarly, ESS for variance components in the dynamic model (i.e.
√
σ2

P lot i and√
σ2

e i) and for the ODE model parameters (Tbase, α,K, TTL, senrate, RUE, TTM)

were greater than 5000. No divergences were encountered in the HMC. Figures

were generated using the ggplot2 and gridExtra packages in R (Wickham, 2016;

Auguie, 2017). Posterior summaries were produced using posterior medians and

95% highest posterior density intervals (HDIs), as implemented by the HDInterval

package (Meredith & Kruschke, 2018). Tables were rendered using the pander package

(Daróczi & Tsegelskyi, 2018). The R package tidyverse was used for data cleaning

and organization (Wickham et al., 2019; Wickham, Hadley, 2017).

3.3.7 Model comparison

3.3.7.1 Goodness of fit

For the dynamic ODE model and the hierarchical linear model, we assessed goodness

of fit to the complete dataset based on the posterior density of selected criteria, namely

Root Mean Square Error (RMSE), Willmott agreement index (d; Willmott, 1981), and

Nash-Sutcliffe Efficiency (NSE; Nash & Sutcliffe, 1970). For each MCMC iteration (s

= 1,2. . .S), these criteria are computed as follows:

i) Root Mean Square Error (RMSE):

RMSEs =

√√√√ 1
N

N∑
n=1

(yn − ŷs
n)2 (3.3.12)
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where, N = Total number of data points, yn is the nth observation (n=1,2,. . . N),

and ŷs
n is the predicted value for the nth observation obtained from equations (10) or

(11) evaluated at parameter values obtained from the sth MCMC iteration. Models

with smaller values of RMSE are preferable.

ii) Willmott agreement index (d):

ds = 1−

N∑
n=1

(yn − ŷs
n)2

N∑
n=1

(|ŷs
n − ȳ|+ |yn − ȳ|)2

(3.3.13)

where, N , yn, and ŷs
n are as described above, and ȳ is the average of the observed

data points. This statistic ranges between 0 to 1 with values closer to 1 indicating

better model fit.

iii) Nash-Sutcliffe Efficiency (NSE):

NSEs = 1−

N∑
n=1

(yn − ŷs
n)2

N∑
n=1

(yn − ȳ)2
(3.3.14)

where, N , yn, ŷs
n, and ȳ are as described above. The values of NSE can range from

−∞ to 1 and values closer to 1 indicate a better-fitting model.

3.3.7.2 Predictive ability

Leave-one-group out cross-validation was performed for all models following the

methodology in Aki Vehtari et al. (2017), where each block-treatment combination was

considered a cross-validation group, thus enabling a ten-fold cross-validation strategy.

For each fold, a group was held out and the remaining nine groups were used as a

training set to fit the model and make predictions on the held-out group. This process

was repeated until each group was held out once. Predictive ability was assessed using
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the expected log predictive density (elpd), computed as follows (Aki Vehtari et al.,

2017):

elpd =
Q∑

q=1

Mq∑
m=1

log( 1
S

S∑
s=1

p(ym q|φ−q,s)) (3.3.15)

where,

q = 1,2,. . . ,10 identifies the fold, ym q = 1, 2, . . . ,Mq identifies themth observation

within the qth fold, s = 1,2,. . . ,S identifies the MCMC iteration, φ−q,s identifies all

unknown parameters obtained from the sth MCMC iteration fitting the training set

corresponding to the qth holdout fold, and p(.) represents the data likelihood function.

Larger values of elpd are considered preferable. The difference in elpd between

the two models, and corresponding standard error, were computed using the compare

function within the loo package in R (Vehtari et al., 2020). Two sets of data likelihoods

were extracted separately for LAI and biomass from the dynamic model to compute

elpd in order to enable comparisons with the corresponding hierarchical linear models.

The statistical metrics described in section 3.3.7.1 for assessment of goodness of

model fit to data, namely RMSE, d, and NSE, were recomputed under the 10-fold

cross-validation to assess the predictive ability of the models.

3.3.7.3 Number of effective parameters

The number of effective parameters for both hierarchical linear and dynamic ODE

models were estimated using equation 12 in Aki Vehtari et al. (2017) as follows:

pi =
N∑

n=1
varpost(log p(yn|φ)) (3.3.16)

where,

pi = estimated effective number of parameters for i = 2 (LAI) and i = 3 (biomass).

varpost log p(yn|φ) = Posterior variance of the log predictive density (i.e. log

likelihood) for each data point yn.
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The total number of effective parameters for the dynamic ODE model was calculated

as the sum of p values using separate log likelihoods for LAI and biomass. For the

hierarchical linear model, p values were obtained for a model fitted to LAI (p2) and

also for a model fitted to biomass (p3). These p values were then added together to

enable comparison of model complexity with that of the ODE model.

3.4 Results

3.4.1 Dynamic ODE model

Table 3.3 shows posterior summaries for parameters of the dynamic ODE model. To

assess sensitivity of posterior inference to prior specification, Figure 3.1 shows scaled

smoothed densities for posterior distributions of the ODE model parameters side by

side with the priors specified in Table 3.1. The departure of posterior distributions

from the vague prior specifications used in this study, both in terms of mode and

narrower breadth, illustrates Bayesian learning from data. For all ODE parameters,

the posterior distribution showed a narrower spread around the mode compared to

the corresponding prior, indicating that the data was informative for estimating the

ODE parameters. The largest overlap between prior and posterior distributions was

observed for Tbase and, to a lesser extent TTM .

To further assess sensitivity to prior specification on ODE parameters, we consid-

ered posterior inference under prior specifications for increased vagueness (i.e. increase

10-fold in the square root of the prior variance of each parameter). Figure 3.2 shows

posterior densities for ODE model parameters using priors specified in Table 3.1 and

also priors of increased vagueness. For parameters α, K, RUE, senrate, TTL, poste-

rior inference was robust to prior specification, as only subtle shifts in the posteriors

were noticeable when using different priors. Indeed, the data were particularly infor-

mative for these parameters and tended to overwhelm prior information, regardless
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of its specification (Figure 3.2). In turn, posterior inference on parameters Tbase

and TTM was found to be more sensitive to prior specification, as an increasingly

vague prior specification yielded proportionately vague posteriors (Figure 3.2).This

indicates that the data contained limited information to estimate these parameters.

Therefore, a formal evidence-based justification for their prior specification (Table 3.1)

was particularly important for these parameters.

Among ODE model parameters, correlations between posterior distributions were

found to be of substantial magnitude between K and RUE (r = -0.73), Tbase and

TTL (r = -0.69), α and K (r = 0.59), α and RUE (r = -0.57), and Tbase and α (r̂

= 0.56) (Figure 3.3).

The differential effect of the irrigation treatment Trtil on growth across the growing

season and blocks had a posterior median of 0.67 with a 95% HDI of (0.53, 0.83) for

LAI and a posterior median of 0.37 with an 95% HDI of (0.28, 0.46) for biomass.

These treatment effects were interpreted as time-invariant multipliers in the ODE

model fitted to state variables, whereby a LAI increase of somewhere between 53% and

83%, and a biomass increase of somewhere between 28% and 46% can be expected as

a result of irrigation relative to rainfed conditions, with 95% probability. For instance,

one might expect an average biomass of approximately 1370 g m−2 (ranging from

1280 to 1460 with 95% probability) under irrigated conditions for a field that might

otherwise have yielded approximately 1000 g m−2 of biomass under rainfed conditions,

everything else held constant.

3.4.2 Hierarchical linear model:

The posterior densities of the differential effects of the irrigation treatment at the time

intervals represented by DAP_c, as expressed by the sum of the parameters for main

effect of treatment (i.e. Trtil) and treatment by time interaction (i.e. (Trt∗Time)i[lm]),

are illustrated in Figure 3.4 and Figure 3.5 for LAI and biomass, respectively. Posterior
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Table 3.3: Highest Density Interval (HDI) and posterior median for the ODE model

parameters.

Parameter Description HDI Median

Tbase Base temperature (-4.5, 2) -1

α Relative rate of LAI

increase before the end of

leaf expansion

(0.0066, 0.0076) 0.007

K Light extinction coefficient (0.33, 0.45) 0.39

TTL Thermal time threshold at

the end of leaf expansion

(1320, 1429) 1378

senrate Rate of senescence (0.0012, 0.0019) 0.0015

RUE Radiation Use Efficiency (1.7, 2) 1.81

TTM Thermal time threshold at

crop maturity

(2041, 2340) 2163
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Figure 3.1: Scaled prior and posterior distributions of dynamic ODE model parameters,

namely base temperature (Tbase), rate of leaf expansion during lag phase (α), light

extinction coefficient (K), thermal time to the end of leaf expansion (TTL), rate of

senescence (senrate), radiation use efficiency (RUE), and thermal time to maturity

(TTM). Each distribution was scaled to a maximum density of 1 at its mode to

facilitate visual comparisons
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Figure 3.2: Scaled posterior distributions for ODE model parameters using actual prior

specifications (as in Table 3.1) and priors of increased vagueness (i.e. square root of

prior variance increased by tenfold). Parameters consist of base temperature (Tbase),

rate of leaf expansion during lag phase (α), light extinction coefficient (K), thermal

time to the end of leaf expansion (TTL), rate of senescence (senrate), radiation use

efficiency (RUE), and thermal time to maturity (TTM). Each distribution was scaled

to a maximum density of 1 at its mode to facilitate visual comparisons
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Figure 3.3: Posterior densities of ODE model parameters (main diagonal), pairwise

scatterplots of posterior samples (lower triangle) and corresponding estimated Pearson

correlation coefficients (upper triangle). ODE parameters presented here consist of

base temperature (Tbase), rate of leaf expansion during lag phase (α), light extinction

coefficient (K), thermal time to the end of leaf expansion (TTL), rate of senescence

(senrate), radiation use efficiency (RUE), and thermal time to maturity (TTM)
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Figure 3.4: Posterior density of the differential irrigation effect relative to rainfed

condition on LAI at selected time intervals throughout the growing season, as indicated

by the linear combination of treatment and treatment-by-time interval combinations

from the hierarchical linear (mixed) model

densities are presented as boxplots, whereby a box contains middle 50% of posterior

density, delimited by 25th and 75th percentiles. Results show that as a result of

applying irrigation, both LAI and biomass can be expected to increase and the effect

would be more prominent towards the end of the growing season.

3.4.3 Model comparison

3.4.3.1 Goodness of fit

Figure 3.6 and Figure 3.7 show the posterior density of fit statistics Root Mean

Squared Error (RMSE), Willmott’s index of agreement (d), and Nash-Sutcliffe Model

Efficiency (NSE) to assess goodness of fit of each model fitted to LAI and biomass,

respectively, using the whole dataset.

The posterior medians of the goodness of fit statistics from the ODE model and
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Figure 3.5: Posterior density of the differential irrigation effect relative to rainfed

condition on biomass at selected time intervals throughout the growing season, as

indicated by the linear combination of treatment and treatment-by-time interval

combinations from the hierarchical linear (mixed) model

hierarchical linear model fitted to LAI were 1.16 and 1.04 for RMSE , 0.93 and 0.95

for d, and 0.78 and 0.82 for NSE. Likewise, the posterior medians from the ODE

model and hierarchical linear model fitted to biomass were 210.73 and 187.11 for

RMSE , 0.97 and 0.98 for d, and 0.89 and 0.91 for NSE.

Posterior inference for goodness of fit shows consistently lower RMSE, and higher

d and NSE values for the linear mixed model relative to the ODE model with little

overlap between the respective densities; this in turn supports better fit of the linear

mixed model compared to the ODE model. It should be noted that the posterior

densities are very high precision, therefore despite little overlap, the posterior modes of

the goodness of fit statistics for either model are very close to each other in magnitude.

However, the apparent improvement in the goodness of fit of mixed models relative to

ODE models may be considered marginal from a practical standpoint given the small

difference in magnitude of these statistics between the competing models.
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Figure 3.6: Scaled posterior densities of root mean squared error (RMSE), Wilmott

agreement index (d), and Nash-Sutcliffe efficiency (NSE)used to assess goodness of fit

based on the whole dataset and predictive ability based on a ten-fold cross-validation

for the dynamic ODE model and the hierarchical linear model fitted to LAI
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Figure 3.7: Scaled posterior densities of [write out statistics] used to assess goodness of

fit (GoF) based on the whole dataset and predictive ability (Pred) based on a ten-fold

cross-validation for the dynamic ODE model (ODE) and the hierarchical linear model

(lm) fitted to biomass
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3.4.3.2 Predictive ability

We used the 10-fold cross-validation-based difference in elpd between the dynamic ODE

model and the hierarchical linear model to compare predictive ability between models.

For LAI, the average elpd difference across cross-validation folds was estimated at 35.3

in favor of the hierarchical linear model model with an estimated standard error of

40.9. For biomass, the average elpd difference between models across cross-validation

folds was 18.8 in favor of the hierarchical linear model with a standard error of 28.3.

Notably, for both responses, the standard errors were larger in magnitude than the

actual estimate of the elpd difference, thus suggesting that neither model was a clear

winner for predictive ability on either response.

Figure 3.6 and Figure 3.7 show the posterior density of the statistics Root Mean

Squared Error (RMSE), Willmott’s index of agreement (d), and Nash-Sutcliffe Model

Efficiency (NSE) computed under 10-fold leave-one-group-out cross-validation for each

of the models fitted to LAI and biomass, respectively.

For LAI, the ODE model and hierarchical linear model yielded posterior medians for

RMSEp of 1.38 and 1.21, dp of 0.91 and 0.93, and NSEp of 0.69 and 0.76, respectively.

Similarly, for biomass, the ODE model and hierarchical linear model yielded posterior

medians for RMSEp of 274.27 and 253.50, dp of 0.95 and 0.95, and NSEp of 0.82 and

0.84, respectively.

For biomass, the posterior densities of statistics for predictive ability were narrower,

and thus more precise, under the ODE model compared to the hierarchical linear

model. In fact, the broad range of posterior inference for predictive ability on biomass

under the hierarchical linear (mixed) model indicates inconsistent predictive behavior

of this model.

Furthermore, Figure 3.8 and Figure 3.9 show cross-validation- based predicted

values of LAI and biomass, respectively, for each block-treatment combination over

the growing season based on the dynamic ODE model and the hierarchical linear
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Figure 3.8: Observed LAI and corresponding predicted values for block-treatment

combinations over the growing season, as obtained from fitting the dynamic ODE

model and the hierarchical linear (mixed) model

model. The fitted lines follow a similar trend to that of observed data points, which

indicates that the predictions from both models were acceptable.

3.4.3.3 Number of effective parameters

For the dynamic ODE model, the total number of effective parameters was estimated

at 54. For the hierarchical linear model, the number of effective parameters was

estimated at 26 for LAI and 32 for biomass, adding to a total of 58. As expected,

the ODE model showed more parsimony, though the difference in total number of

effective parameters between the models did not seem to be critical.

3.5 Discussion

In this study, we implemented a dynamic ODE model using a hierarchical Bayesian

framework to analyze repeated measures data on LAI and biomass of wheat. The
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Figure 3.9: Observed biomass and corresponding predicted values for block-treatment

combinations over the growing season, as obtained from fitting the dynamic ODE

model and the hierarchical linear (mixed) model

Bayesian modeling framework enabled incorporation of uncertainty into estimation

of ODE parameters and subsequent prediction. We also compared performance of

the proposed ODE model with a traditional approach to data analysis for designed

experiments, namely that of hierarchical linear mixed modeling. Admittedly, more

sophisticated methods within linear mixed models are available, such as bivariate

models or splines. However, the choice of a simple hierarchical linear modeling

approach was intended to reflect commonly used methodology for the analysis of crop

data from designed experiments.

For the ODE model, parameters Tbase, α,K, TTL, senrate, RUE, TTM carry

direct biological meaning regarding the mechanism of wheat growth. For example, the

alpha parameter can be considered a proxy for the trait of early vigor, whereas the

parameter senrate would relate to the stay green trait. An advantage of utilizing the

dynamic ODE model is that one can infer directly on the behavior of such biologically

relevant parameters and provide a mechanistic interpretation of the process of interest.
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In this study, posterior inference on α yielded a posterior median of 0.007 and 95%

HDI of [0.0066, 0.0076]. Thus, we may quantify the rate of leaf expansion before the

end of leaf expansion, to be approximately 0.7% of existing leaf area per degree day,

with a 95% probability that this rate of change is between [0.66% and 0.77%] . To the

best of our knowledge, there are no direct measurements of α reported for wheat to

date.

Furthermore, in this study, we expressed the rate of senescence senrate relative

to current leaf area and mediated by thermal time in the model. The 95% HDI of

senrate was (0.0012, 0.0019) indicating that the decline in LAI per degree above the

base temperature ranged from 0.12% to 0.19% with 95% probability, with a median

of 0.15% starting after end of leaf elongation.

For the light extinction coefficient parameter K, the posterior median was 0.39

with 95% HDI of [0.33, 0.45]. Other studies have reported values ranging from 0.3

up to 0.8 for the light extinction coefficient (O’Connell et al., 2004; Calderini et al.,

1997; Pradhan et al., 2018). Our study indicated a 99.9% posterior probability that

K is indeed within this range though on the lower side of the values reported in the

literature. Lower values of the light extinction coefficient indicate that more LAI is

required to achieve a given level of light interception, and this can be expected to

ultimately impact growth.

For RUE, the posterior median was 1.81 g MJ−1 with an HDI of [1.7, 2].

Commonly, RUE values are reported per unit photosynthetically active radiation

(RUEP AR), which would roughly equal double RUE as calculated per unit total radi-

ation, under the assumption that 50% of total solar radiation is PAR. Studies have

reported RUEP AR values from around 1.5 to 3 g MJ−1 (Kiniry et al., 1989; O’Connell

et al., 2004). The parameter RUE as estimated is RUE per unit total radiation,

whereby the HDI would correspond to RUEP AR of 3.4 to 4. Hence, the RUE value

calculated by our model was higher than the literature reported values.
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The medians for thermal time to end of leaf expansion (TTL) and thermal time

to maturity (TTM) were estimated to be 1378 and 2163 with HDI of [1320,1429]

and [2041, 2340] respectively, which are higher than the reported values in the

literature. Specifically, estimates for TTL and TTM were reported to be 550 and

1352, respectively, by Bechini et al. (2006) whereby a fixed value of -1 ◦C was used for

base temperature. Meanwhile, McMaster et al. (2019) reported estimates of 945 and

1970 for thetaTTL and thetaTTM, respectively, using a base temperature of 0 ◦C. For

the base temperature (Tbase), the posterior median was estimated to be -1 ◦C with

an HDI of [-4.5, 2] by our model. The base temperature for wheat is usually assumed

to be 0 ◦C, but evidence suggests that Tbase may be variable across genotypes and

even across developmental stages (Porter & Gawith, 1999; Salazar-Gutierrez, Johnson,

Chaves-Cordoba, & Hoogenboom, 2013; G. Slafer & Savin, 1991). In this study,

the average minimum temperatures during early season across years and locations

were well above -1 ◦C resulting in a continuous accumulation of thermal time leading

to higher estimates for TTL and TTM values. The high values of TTL and TTM

obtained in this study likely compensated for the fact that the vernalization process

was not included in the model. If vernalization had been explicitly modeled, one would

expect that the estimation of TTL and TTM would yield lower values because the

vernalization process would be expected to reduce the development rate.

Specification of priors for parameters of the dynamic ODE models was informed

with the help of literature, though priors were vague enough to allow for possible

extreme values of the parameters. For most parameters, the posterior distribution

was not only narrower in terms of spread, but also the posterior modes were heavily

shifted as compared to the prior distribution. This indicates that the data contained

information for estimation of most ODE parameters. Sensitivity analysis further

indicated that posterior inference was heavily dominated by the prior for at most

two parameters, namely Tbase and TTM . The substantial amount of information
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available for these parameters, especially Tbase, facilitate evidence-based justification

of these priors (Porter & Gawith, 1999; Salazar-Gutierrez et al., 2013; G. Slafer &

Savin, 1991).

Posterior correlations between parameters indicate how much information the data

contains to allow disambiguation in the estimation of parameters. Usually, extreme

posterior correlations among parameters are a reason for concern in instances where

sampling efficiency of the MCMC is impaired. There were no such problems detected

in this study.

The posterior correlation between Tbase and TTL was negative and of large

magnitude (i.e. r̂ = -0.69), thus suggesting that higher base temperatures are associated

with less cumulative thermal time to reach the end of leaf expansion, and vice-versa.

It also suggests that when one parameter varies, it constrains the estimated values

of the other. A common practice in crop modeling research is to fix the value of the

parameter for base temperature and estimate the value of the parameter for thermal

time to leaf expansion (McMaster et al., 2019; Bechini et al., 2006). This practice

implicitly places a constraint on the estimate for the thermal time parameter. By

contrast in this study, both Tbase and TTL were simultaneously estimated allowing

for fuller characterization of the uncertainty in both parameters meanwhile accounting

for the mutual correlation.

The correlation observed between Tbase and α (r̂ = 0.56) may be explained by

the mathematical relationship expressed in the model in equation 3.3.4. Since higher

Tbase corresponds to lower thermal time accumulation per day, the leaf growth rate

(i.e. α) would be expected to increase to achieve the same amount of leaf area for

lower thermal time. Furthermore, the posterior correlation between α and K (r̂ =

0.59) may be explained as a consequence of these parameters mutually offsetting each

other in equation 3.3.4. In turn, this suggests that these two parameters related to

leaf area cannot be fully distinguished from the data available for this study given
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the mathematical relationship imposed by the model. Taken together, posterior

inference on the parameters α, K, RUE, and senrate helped us understand the

canopy evolution over time. Specifically, low values of K were compensated with

high values of RUE and low values of senrate to sustain growth until the end of

the season (Fig. Figure 3.3). Similarly, posterior inference on parameters TTL and

TTM provided estimates of thermal time. The high values of parameters related

to thermal time and RUE and low value of the parameter related to senescence,

namely senrate, indicate that the growing season was predicted to be longer than

previous literature might suggest (McMaster et al., 2019; Bechini et al., 2006). This

was also observed in the predicted LAI values over the growing season, where at the

end of the growing season, predicted LAI was still substantially greater than zero.

Inclusion of yield data in the estimation process might partially address this issue,

given that yield is primarily determined based on growth at the end of the growing

season and would therefore provide specific information about growth during this part

of the season. Overall, the dynamic ODE model provided valuable information on

biological parameters to understand the physiological mechanisms underlying crop

phenotypes. This approach may also be useful to compare different wheat genotypes

in their physiological responses.

From both models, we inferred that both LAI and biomass increased due to

irrigation relative to the dryland control, and that the magnitude of this increase

was time specific and was magnified over the growing season, which conforms to the

literature (Thapa et al., 2019; Pradhan et al., 2018). The ODE model captured this

increasing effect of treatment over time in the multiplicative nature of the Trt term,

whereas the hierarchical linear model did so by explicitly specifying a treatment-by-time

interaction term.

Goodness of fit comparisons showed that the hierarchical linear model had better

fit to the data than the dynamic ODE model, although for any practical purposes the
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magnitude of the difference in fit between models was small for both LAI and biomass.

From a prediction standpoint, posterior modes for the leave-one-group-out cross-

validation statistics seemed to indicate preference of the hierarchical linear model

over the ODE model. However, when considering the full posterior density of the

statistics for predictive ability, the ODE model showed consistently greater predictive

performance, thus rendering it preferable to the hierarchical linear model.

3.5.1 Model comparison

The results showed that the hierarchical linear model has a better goodness of fit

than the dynamic ODE model, for both LAI and biomass, although the difference is

small. The RMSE values for both hierarchical linear model and the dynamic model

for LAI (1.05 and 1.16) are higher than the RMSE values (<1) reported in literature

for LAI (Kanning, Kühling, Trautz, & Jarmer, 2018; Huang et al., 2015; Jin et al.,

2015). However, these studies only reported LAI measurements from a single time

point. The higher value of RMSE in our study could be the result of data on LAI

from different time-points across the growing season which has a greater variability

than data from a single time point. Likewise, the RMSE values for biomass for the

hierarchical linear model and the dynamic model (192 and 210 g m−2) are consistent

with the RMSE values reported in the literature with different modeling techniques

(Yue et al., 2017; Jin et al., 2016; Eitel, Magney, Vierling, Brown, & Huggins, 2014).

The results of leave-one-group-out cross-validation revealed that there is not enough

evidence to claim a better model for prediction among the hierarchical linear model

and dynamic model.

Furthermore, in regards to model complexity, the two models were found similar

as indicated by the number of effective parameters.
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3.6 Conclusion

In conclusion, the goodness of fit was acceptable for both models whereas the predictive

ability was more consistent with the ODE model. The uncertainties in parameters were

captured through the use of a Bayesian framework. The increasing effect of treatment

over the growing season was captured by both models but through multiplicative

terms in the ODE model and additive terms in the hierarchical model. The ODE

model parameters were biologically meaningful and connected more readily to the

overall goal of cohesive understanding of mechanisms underlying the system. The

dynamic model also encompassed simultaneous fitting of both variables, LAI and

biomass, as a part of the system, whereas the hierarchical linear modeling setting

was limited to separate analyses for LAI and biomass. Dynamic ODE models fitted

under a Bayesian framework, as presented in this article may be considered a valid

alternative for statistical analyses of crop growth data when underlying physiological

mechanisms are of interest.
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CHAPTER IV

ANALYSIS OF WINTER WHEAT GROWTH IN OKLAHOMA USING

A WATER BALANCE COMPONENT WITHIN AN ODE CROP

GROWTH MODEL

4.1 Abstract

Crop models are widely used to simulate crop production. However, crop growth

models are often complex, require diverse data on different aspects of crop growth,

and thus face parameter non-identifiability issues. In this study, we propose a simple

dynamic ordinary differential equation (ODE) model of soil water balance and crop

growth for understanding wheat growth and yield patterns in Oklahoma. The water

balance model we propose is a single layer lumped model which simulates soil water

content and crop water stress at a daily time step throughout the growing season. We

utilize a repeated measures dataset of observed winter wheat leaf area index (LAI)

and biomass and end of season yield across multiple years, locations, and treatments

to estimate parameters for the crop growth model. The objectives of this study were

to: i) quantify improvements in predicted crop growth patterns by inclusion of a

dynamic water balance, ii) understand how water availability affects winter wheat

growth throughout the season, and iii) investigate how data quantity and diversity

impact model performance. The crop growth model performed satisfactorily to predict

LAI and yield as indicated by three statistics Root mean squared error (RMSE),

Willmott’s agreement index (d), and Nash-Sutcliffe efficiency (NSE). The prediction

statistics for models with and without water balance, respectively, were: RMSE of
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1.51 and 1.69, d of 0.89 and 0.85, and NSE of 0.62 and 0.52 for LAI, RMSE of 134.25

and 237.81, d of 0.88 and 0.32, and NSE of 0.25 and -1.36 for yield, and RMSE of

531.44 and 353.92, d of 0.88 and 0.93, and NSE of 0.43 and 0.75 for biomass. Water

balance simulations improved yield predictions under water-limited conditions and

improved overall model performance as indicated by lower root mean squared error

and higher Willmott agreement index and Nash-Sutcliffe efficiency but need further

improvement for accurate soil moisture simulations.

4.2 Introduction

The highly variable growing environment is the main driving factor for wheat yield

differences across Oklahoma and the southern Great Plains (SGP) (Munaro et al.,

2020; Lollato, Edwards, & Ochsner, 2017). A large portion of these environmental

differences is due to variability in rainfall and soil water status. Most of the wheat

grown in this area is rainfed and precipitation varies tremendously, both temporally

and spatially. For example, in the past 20 years, the annual precipitation has ranged

from 167 mm in northwest Oklahoma in 2011 to 1550 mm in southeast Oklahoma in

2015. Water limitation is one of the major problems for wheat grown in Oklahoma

and the SGP (Maulana, Anderson, Butler, & Ma, 2019; Tahara, Carver, Johnson, &

Smith, 1990). In this study, we utilize a water balance model in conjunction with an

ODE crop growth model to account for plant available soil water in wheat cropping

systems in Oklahoma. The goal of this study is to implement a simple dynamic growth

model for wheat yield characterization while accounting for one of the major factors

influencing yield, namely soil water.

Dynamic crop models are commonly used to simulate growth and yield of crops

to understand the interactions between crops and environments (Brown, Huth, &

Holzworth, 2018; Attia et al., 2016; Z. Li et al., 2015; Asseng, Zhu, Basso, Wilson,

& Cammarano, 2014; Asseng, Van Keulen, & Stol, 2000). Successful usage of these
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models requires accurate parameter estimation, calibration, and validation. Many

existing crop models are complex, which complicates their usage because of parameter

non-identifiability in many cases. In this study, we propose a simple crop model with

few parameters along with a simple water balance model as an alternative way of

accounting for water stress. If water is a dominant factor influencing crop growth,

development, and yield, a crop model including a water balance factor should have a

better prediction than one that does not account for water stress.

We propose a single layer lumped model which quantifies the effect of soil water

deficits on plant growth, but is relatively simple in terms of model formulation and

implementation. Other simple models such as AquaCrop (Steduto, Hsiao, Raes, &

Fereres, 2009) and Simple Simulation Model (SSM) (Soltani, Maddah, & Sinclair, 2013)

are fundamentally similar to our model in the derivation of available water content

from the difference between a drained upper limit (field capacity) and a lower limit

(permanent wilting point), but differ in including multiple soil layers and accounting

for vertical soil water transfers between soil layers which makes these models more

complex compared to our proposed model. Likewise, other complex crop models such

as DSSAT-CERES (Jones et al., 2003a) and APSIM (Keating et al., 2003) also make

use of a layered soil model which requires soil data for each layer. The complexity of

these models increases the parameter identifiability issues.

Eventually, the long-term goal of this research is to utilize this type of model

across multiple genotypes and years to explain genotype by environment interaction

with extensive datasets such as wheat variety trials data. This study lays out a

robust groundwork to achieve that. The specific objectives of this study were to:

i) quantify the improvements in predicted crop growth patterns by inclusion of a

dynamic water balance, ii) understand how water availability affects winter wheat

growth throughout the season, and iii) investigate how data quantity and diversity

impact model performance.
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Table 4.1: Locations, years, and treatments included in the study

Location Latitude Longitude Soil type Harvest year Treatment

Chickasha 35.05 N 97.94 W Haplustoll 2013, 2014 Rainfed

Lahoma 36.39 N 98.09 W Argiustoll 2013 Rainfed

Stillwater 36.12 N 97.06 W Paleustoll 2013, 2014 Rainfed/Irrigated

Perkins 35.97 N 97.03 W Argiustoll 2013, 2014 Rainfed/Irrigated

4.3 Methodology

4.3.1 Data description

Plant, soil, and irrigation data were obtained from a previous study by Lollato and Ed-

wards (2015) in Oklahoma. The study was conducted in eleven different environments

across multiple years, locations, and treatments (Table 4.1). An environment was thus

defined as a location-harvest year-treatment combination. In each environment, 1000

m2 area was sown and four plots were established within the area. Wheat variety Iba

was planted in all plots.

4.3.1.1 Plant data

Leaf area index (LAI) and biomass data were collected throughout the growing season

at an interval of 2-3 weeks, and end of season yield data were obtained from each

plot in each environment. For LAI and biomass data collection, one meter of row

(approximately 0.25 m2) of above ground biomass was destructively sampled each

sample date. An optical leaf area meter (Model LI-3100; LI-COR, Lincoln, NE) was

used to obtain leaf area for LAI and samples were oven-dried at 60 ◦C to obtain dry

biomass. Grain yield was obtained by harvesting three areas of approximately 20 m2

per plot. Yield observations from these three areas were averaged to determine yield

per plot.
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4.3.1.2 Weather data

Average daily temperature, precipitation, solar radiation, wind speed at 2m, relative

humidity, and atmospheric pressure were obtained from Oklahoma Mesonet stations

near each location (McPherson et al., 2007; Brock et al., 1995). Missing data for all

weather variables were filled by inverse distance weighting data from the nearest three

Oklahoma Mesonet stations. Irrigation data were obtained from Lollato and Edwards

(2015).

4.3.1.3 Soil data

Soil texture, available water holding capacity (AWHC), and plant available soil water

(PAW) data were obtained from the previous study by Lollato and Edwards (2015).

The PAW was monitored using a neutron probe (Model 503 DR; CPN, Concord, CA).

The PAW data during the growing season were used for validation of the water balance

model. The first observation of PAW (near the planting date) was used to initialize

the water balance model.

4.3.2 The ODE crop growth model

4.3.2.1 Vernalization adjusted thermal time

The development of the crop is expressed the function of temperature over time as

well as the vernalization status of the crop.

dTTt

dt
= fT T · fvrn (4.3.1)

where,
dT Tt

dt
is the rate of change of thermal time at time t.

fT T t is the thermal time factor, calculated as shown below.
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fvrn t is factor corresponding to the vernalization requirement, calculated as shown

below.

The thermal time factor represents the biochemical pathways that are purely

controlled by temperature.

fT T t =
(

1
1 + e−5(T avgt

10 −1) · 20
)

(4.3.2)

where,

Tavgt is the input variable representing observed daily average air temperature at

time t for environment k.

The vernalization factor affects the crop development rate such that development

is slower before the crop meets the vernalization requirement.

vrnt = 1
1 + e−100( 2 T Tt

T T L
−1) +(

1− 1
1 + e−100( 2 T Tt

T T L
−1)

)(
1

1 + e(−2 log(99)
vrn )(V RNt− vrn

2 )

)
(4.3.3)

where,

TTt is observed thermal time at time t for environment k.

TTL is the parameter representing cumulative thermal time until the end of

vegetative phase of growth, ◦C d.

vrn is the parameter representing vernalization requirement, vernalization days.

V RNt is the state variable for vernalization at time t, calculated below.

dV RNt

dt
= 1− 1

1 + e−5(T avgt
8 −1) (4.3.4)

where,

Tavgt is as defined above.
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4.3.2.2 Leaf Area Index

The change in LAI was calculated as the difference betwen leaf growth and senescence.

The growth stage end of leaf expansion was used as a threshold for leaf growth to

switch to senescence. The water stress factor was introduced to slow growth in presence

of water stress.

dLAIt

dt
=
(
LAIt ·

dTTt

dt
· α · fws · e−K LAIt · (1− fgf )

)
−(

LAIt · senrate ·
dTTt

dt
· fgf

)
(4.3.5)

where,
dLAIt

dt
is the rate of change of LAI at time t.

LAIt is leaf area index at time t.

α is the parameter representing relative rate of LAI increase when thermal time is

less than TTL.

fws is the factor for water stress, calculated as shown below.

K is the parameter representing canopy light extinction coefficient.

fgf is the factor to indicate a switch to grain filling, calculated as shown below.

senrate is the parameter representing the rate of senescence per unit thermal time.
dT Tt

dt
is as described above.

The switch to grain filling was assumed to happen 200 degree days of thermal time

after end of leaf expansion.

fgf = 1
1 + e− log(99)

200 (T Tt−(T T L+200))
(4.3.6)

where,

TTt and TTL are defined above.

The water stress factor was calculated such that crop starts experiencing water

stress when PAW is 35% of AWHC.
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fws = 1
1 + e− log(99)

0.175 ( P AWt
AW HC

−0.175) (4.3.7)

where,

PAWt is available water content at time t.

AWHC is the input variable representing available water holding capacity.

4.3.2.3 Biomass

Biomass was calculated primarily as a function of RUE, solar radiation (SRAD), and

light interception. Water stress factor and thermal time constraints were also taken

into account.

dBM

dt
= RUE · SRADt · fws ·

dTTt

dt
· (1− e−K LAIt) (4.3.8)

where,
dBM

dt
is the rate of change of biomass at time t.

fws, dT T
dt

K, and LAIt are defined above.

RUE is the parameter representing radiation use efficiency.

SRADt is observed solar radiation at time t.

4.3.2.4 Yield

Yield was calculated as the amount of biomass accumulated after the beginning of

grain filling.

dY LDt

dt
= dBMt

dt
· fgf (4.3.9)

where,
dY LDt

dt
is the rate of change of yield at time t.

dBMt

dt
and fgf are defined above.
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4.3.2.5 Plant vailable water content

Plant available water content (PAW) was calculated as a function of rainfall, irrigation,

available water holding capacity (AWHC), and crop evapotranspiration (ETc).

dPAWt

dt
= raint + irrigationt

1 + e− log(99)
0.25 ( P AWt

AW HC
−0.75) − ETc t · fsw (4.3.10)

where,
dP AWt

dt
is the rate of change of plant available soil water content.

raint is the input variable representing observed rainfall.

irrigationt is the input variable representing irrigation.

PAWt, AWHC, and fsw are as defined above.

ETc t is the crop evapotranspiration at time t, calculated as shown below.

ETc t = ET0 t ·Kc t (4.3.11)

where,

ET0 t is reference evapotranspiration at time t, mm day−1.

Kc t is the crop coefficient at time t, calculated as shown below.

Kc t =Kc ini +
(
1− e−K LAIt

)(
Kc mid −Kc ini + Kc ini −Kc end

e−100( T Tt
T T L·200 −1) + 1

)
−

Kc ini −Kc end

e−100( T Tt
T T L·200 −1) + 1

(4.3.12)

The calculations of ET0 and Kc ini, Kc mid, and Kc end are shown in the supple-

mentary materials, and follow the procedures in Allen, Pereira, Raes, and Smith

(1998).

At each timestep, the value of the state variables were updated for each kth block

using Euler integration according to:
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Sk t+1 = Sk t + dSk t

dt
∆t (4.3.13)

where, Sk t = [V RNk t, TTk t, LAIk t, BMk t, Y LDk t, PAWk t] are the observed

state variables for block k at time t, Sk t+1 = [V RNk t, TTk t, LAIk t, BMk t, Y LDk t,

PAWk t] at time t+ 1, and ∆t is the fixed time step of one day.

The output of the ODE model is then represented by:

β0ikt = f(Ik,φ,S0)

where,f represents the numerical integration of the ODE system from time 0 to

time t, Ik is a matrix of input variables, φ is a vector of the ODE model parameters

as described above, and S0 is the vector of state variables at time 0.

4.3.3 Integration of the ODE model into a Bayesian hierarchical frame-

work

The ODE model was integrated into a Bayesian hierarchical framework as follows:

Yijkt = β0ikt + Plot[Env]j[k] + ε (4.3.14)

where,

Yijkt is observed value of the ith response variable (i = 1 for LAI, i = 2 for biomass,

and i = 3 for yield), corresponding to jth plot in the kth environment at time t. To

recall, an environment is defined as a location-year-treatment combination.

β0ikt is predicted value of the ith response variable from the ODE model for

environment k and time t.

Plot[Env]j[k] is differential effect of jth plot within an environment on the ith

response variable, assumed Plot[Env]j[k] ∼ NIID(0, σ2
P lot i).

ε is residual error, assumed ε ∼ NIID(σ2
e i).
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4.3.4 Model implementation

Two separate versions of the model were implemented, one with water balance and

another without water balance to assess if the addition of water balance component

contributed to better predictions by the model. The model with water balance

included equations 4.3.10 and 4.3.11, whereas these equations were excluded in the

model without water balance, and fws was fixed at 1 indicating no water stress.

The models were implemented within a Bayesian framework which allowed us

to introduce stochasticity into the models and to utilize prior information available

on the model parameters. In addition, with the Bayesian framework, the parameter

estimations and model predictions are produced in the form of a posterior distribution

rather than point estimates, which simultaneously provides an uncertainty estimate.

Samples were drawn from the posterior distribution of interest using a dynamic

Hamiltonian Monte Carlo (HMC) sampler as implemented within Stan version 2.25.0

(Stan Development Team, 2018). Dynamic HMC sampler is an Markov Chain Monte

Carlo (MCMC) algorithm that is quick and efficient in sampling the parameter space

(Betancourt, 2017). Four MCMC chains were run with 10,000 iterations including

50% burn-in, resulting in a total of 20,000 saved iterations. Two common convergence

diagnostics, traceplots and R-hat values, were used to monitor chain convergence.

The effective sample size (ESS) for the ODE model parameters and the hierarchical

model hyperparameters were greater than 1,400. The computing was performed

on the TIGER research cloud at the Oklahoma State University High Performance

Computing Center using a KVM virtual machine backed by a hypervisor node with

dual Intel “Skylake” 6130 CPUs and 768 GB RAM. The models were implemented in

Stan with the command-line interface to the Stan modeling language, Cmdstan.

For cleaning and organizing the data, R package tidyverse was used (Wickham

et al., 2019; Wickham, Hadley, 2017). The posterior samples were processed with the

R statistical software environment (R Core Team, 2020). The figures were created
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using the ggplot2 (Wickham, 2016) and gridExtra (Auguie, 2017) packages in R . The

highest density intervals (HDIs) of the posterior distributions of the parameters were

computed using the HDInterval package (Meredith & Kruschke, 2018). Figures and

Tables were generated using the R packages knitr (Xie, 2020) and kableExtra (Zhu,

2019).

4.3.5 Prior specification

The prior distributions for the ODE model parameters except for senrate were

estimated based on literature and were specified as truncated normals in the form of

TN(µ, σ2). All priors had a lower bound of zero and no upper bound.

α ∼ TN(0.016, 0.0072) (Rodriguez et al., 1998)

K ∼ TN(0.6, 0.12) (Bechini et al., 2006; Muurinen & Peltonen-Sainio, 2006;

O’Connell et al., 2004; Calderini et al., 1997)

TTL ∼ TN(950, 1002) (McMaster et al., 2019; Bechini et al., 2006)

RUE ∼ TN(1.4, 0.252) (Bechini et al., 2006; Muurinen & Peltonen-Sainio, 2006;

O’Connell et al., 2004; Calderini et al., 1997)

vrn ∼ TN(42, 72) (G. Li et al., 2013; Crofts, 1989)

The prior for senrate was determined using a heuristic procedure. It was assumed

that with a peak leaf area index at flowering of 5 and 30 ◦C daily average temperature,

it would take approximately 35 days to reach full senescence. Values of senrate were

tested heuristically to determine a range of values that resulted in plausible senescence

durations. With a rate of senescence of 0.005, it took approximately 35 days to reach

a leaf area index near zero from five, a senrate of 0.002 took approximately 60 days,

and a senrate of 0.008 took approximately 20 days. Thus, the prior µ was specified

as 0.005 with a sigma of 0.001, thereby providing support in the prior for a range of

durations between 20 and 60 days within three standard deviations of prior µ.

Thereby, senrate ∼ TN(0.005, 0.0012)
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The priors for the hyperparameters pertaining to the hierarchical component of

the model were specified following the prior predictive procedure described in Schad

et al. (2019). The prior information for σ2
P lot was specified in a multiplicative form.

The prior σ of 0.1 indicates a 10% variability across plots, thereby allowing a 30%

variability within three standard deviations. Hence, the priors are:√
σ2

P lot LAI ∼ TN(0, 0.12).√
σ2

P lot biomass ∼ TN(0, 0.12).√
σ2

P lot yield ∼ TN(0, 0.12).√
σ2

e LAI ∼ TN(0, 12).√
σ2

e biomass ∼ TN(0, 1002).√
σ2

e yield ∼ TN(0, 302).

4.3.6 Model predictive performance

A cross-validated dataset was generated with leave-one-group out cross-validation

where each environment was considered a group, hence there were a total of eleven

groups. For each iteration of the cross-validation, one group was held out and

parameters were estimated based on the remaining ten groups. The parameter

estimates were then used to predict for the data from the withheld group. The

predictions were used to calculate three statistical metrics: Root Mean Square Error

(RMSE), Willmott agreement index (d; Willmott, 1981), and Nash-Sutcliffe Efficiency

(NSE; Nash & Sutcliffe, 1970). This process was repeated for all groups one at a time

and for both versions of the model i.e. with and without the water balance component.

In addition, a validation check was performed using the same metrics between

observed data and model estimated values for PAW. This process is termed a full

validation in contrast to the cross-validation procedure described above given that no

soil water data was used to estimate any model parameters.

The statistical metrics were calculated as follows:
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i) Root Mean Square Error (RMSE):

RMSEs =

√√√√ 1
N

N∑
n=1

(yn − ŷs
n)2 (4.3.15)

where, N = Total number of data points, yn is the nth observation (n=1,2,. . . N),

and ŷs
n is the predicted value for the nth observation obtained from the sth MCMC

iteration. Models with smaller values of RMSE are preferable.

ii) Willmott agreement index (d):

ds = 1−

N∑
n=1

(yn − ŷs
n)2

N∑
n=1

(|ŷs
n − ȳ|+ |yn − ȳ|)2

(4.3.16)

where, N , yn, and ŷs
n are as described above, and ȳ is the average of the observed

data points. This statistic ranges between 0 to 1 with values closer to 1 indicating

good model fit.

iii) Nash-Sutcliffe Efficiency (NSE):

NSEs = 1−

N∑
n=1

(yn − ŷs
n)2

N∑
n=1

(yn − ȳ)2
(4.3.17)

where, N , yn, ŷs
n, and ȳ are as described above. The values of NSE can range from

−∞ to 1 and values closer to 1 indicate a better-fitting model.

4.3.7 Parameter estimation with end of season data

Estimation of model parameters was also performed using only the end of season

data for yield and biomass, heading date, and LAI value of zero to investigate the

utility of the model when only end of season data are available. The model, however,

encountered sampling problems due to parameter non-identifiability and was simplified
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to reduce the number of parameters by fixing the parameter values of TTL and RUE

at 950 and 1.4 (i.e. the prior µ value for the original parameter estimation). This

step was performed to assess the impact of data quantity and diversity on model

performance.

4.4 Results

4.4.1 ODE model parameters

Table 4.2 shows the posterior HDI and median for the ODE model parameters. The

model yielded biologically plausible values for most parameters, except RUE, for

which the estimated value was higher than the range of biologically plausible values.

The HDI for α ranged from 0.0087 to 0.0094 with a median of 0.009, which indicates

that the expected LAI increase per day is 0.9% of existing LAI. Likewise, the canopy

light extinction coefficient (K) was estimated to be 0.36 on average as indicated by

the posterior median. The model estimated that it takes around 800 degree days to

reach end of leaf expansion as indicated by the median for TTL, and the average

vernalization requirement as indicated by the posterior median for vrn was 35 days.

The parameter senrate had a median of 0.0065, which indicates that it takes 30 days

for the canopy to reach from maximum leaf area to near zero leaf area index at a daily

average temperature of 30 ◦C.

Figure 4.1 shows the smoothed densities for posterior samples of the ODE model

parameters for the models with and without water balance along with the densities

of samples from the prior distributions. A heavy shift and/or narrowing down of

the density curve from prior to posterior indicates that the data were informative in

estimating the parameters. The parameters α, K, TTL, and vrn shifted lower than

specified priors, whereas RUE and senrate shifted higher for both models. Likewise,

the densities of posterior distributions were considerably narrowed compared to that
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Table 4.2: Posterior HDI and median for the ODE model parameters

Parameter Description HDI Median

α Relative rate of LAI increase

before the end of leaf expansion

(0.0087, 0.0094) 0.009

K Light interception coefficient (0.32, 0.39) 0.36

TTL Thermal time to the end of leaf

expansion

(747, 855) 798

senrate Rate of senescence (0.0059, 0.0071) 0.0065

RUE Radiation use efficiency (2.4, 2.9) 2.7

vrn Vernalization requirement (22, 51) 35

of prior distributions for all parameters except vrn. The biggest differences in the

posterior densities of the two models were observed in RUE and vrn. The parameter

RUE was estimated to be higher for the model including water balance, whereas the

vernalization requirement (vrn) was estimated to be higher with the model excluding

water balance. The posterior distribution of the parameter vrn was also closer to the

prior for the model without water balance.

Varying degrees of correlations were observed between the posterior samples of the

ODE model parameters as shown in Figure 4.2, which indicate the degree of parameter

non-identifiability in the model. Specifically, correlations were observed between TTL

and vrn (r = -0.85), RUE and senrate (r = 0.77), and α and K (r = 0.46).

4.4.2 Model predicted LAI, biomass, and yield

In this section, we present model predictions for the response variables LAI, biomass,

and yield. Leaf area index (LAI) and biomass were predicted over the growing season

whereas yield was predicted at the end of the season. Figure 4.4 and Figure 4.5 show
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Figure 4.1: Density of prior and posterior distributions for the ODE model parameters

for models with and without water balance, namely, relative rate of LAI increase

before the end of leaf expansion (α), light extinction coefficient (K), Thermal time to

end of leaf expansion (TTL), rate of senescence (senrate), Radiation use efficiency

(RUE), and vernalization requirement (vrn).
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Figure 4.2: Joint posterior summary of the ODE model parameters, namely, relative

rate of LAI increase before the end of leaf expansion (α), light extinction coefficient

(K), Thermal time to end of leaf expansion (TTL), rate of senescence (senrate),

Radiation use efficiency (RUE), and vernalization requirement (vrn).
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the cross-validation predicted LAI and biomass values over the growing season from

both models with and without water balance along with the observed data points for

all eleven environments.

The model predictive performance was overall satisfactory. Specifically, adding

the water balance component to the model better predicted yield as indicated by

differences in the prediction statistics between the models with and without water

balance component. Figure 4.3 shows the density plots of the prediction statistics

where the model with water balance component has higher values for Nash-Sutcliffe

efficiency (NSE) and Willmott agreement index (d) and lower values for RMSE for LAI

and yield, indicating better prediction with the model with water balance. However,

the results were opposite for biomass. The prediction statistics for models with and

without water balance, respectively, were: RMSE of 1.51 and 1.69, d of 0.89 and 0.85,

and NSE of 0.62 and 0.52 for LAI, RMSE of 134.25 and 237.81, d of 0.88 and 0.32,

and NSE of 0.25 and -1.36 for yield, and RMSE of 531.44 and 353.92, d of 0.88 and

0.93, and NSE of 0.43 and 0.75 for biomass.

The LAI predictions using the model with water balance are closer to the observed

datapoints for most environments, and the difference between the two models is more

prominent in rainfed conditions at all locations in 2013-14 growing season. At these

environments, the LAI values predicted using the model with water balance were less

than those predicted using the model without the water balance component.

Likewise, in the case of biomass prediction, the difference between the two mod-

els is more pronounced in rainfed conditions at all locations in 2013-14 growing

season depicting a similar pattern to LAI. At these environments, especially Stillwa-

ter_2014_Dryland, the model with water balance severely underestimated biomass.

This indicates that the water stress calculated by the model is more severe than the

actual conditions. Compared to LAI, the difference between the models seems to be

more prominent in biomass prediction. Furthermore, Table 4.3 shows averages for
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Figure 4.3: Predictive performance of models including and excluding the water

balance component for leaf area index (LAI), biomass, and yield assessed with three

statistical metrics: root mean squared error (RMSE), Willmott agreement index (d),

and Nash-Sutcliffe efficiency (NSE).
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Table 4.3: Observed means and cross-validation predicted medians for yield with

models including and excluding water balance for all environments i.e. location-harvest

year-treatment combinations

Model predicted yield (gm−2)

Environment Observed yield

(gm−2)

Model with

water balance

Model without

water balance

Chickasha_2013_Dryland 683 736 553

Chickasha_2014_Dryland 333 158 626

Lahoma_2013_Dryland 528 432 572

Perkins_2013_Dryland 553 590 528

Perkins_2013_Irrigated 643 661 504

Perkins_2014_Dryland 300 140 615

Perkins_2014_Irrigated 706 651 579

Stillwater_2013_Dryland 572 631 505

Stillwater_2013_Irrigated 552 662 500

Stillwater_2014_Dryland 333 58 609

Stillwater_2014_Irrigated 742 669 579

cross-validation predicted and observed yield for each environment. Like biomass, the

difference between the two models is greatest in the 2013-14 season.

These patterns could be further explained with the help of water stress factor

calculated by the model over time (Figure 4.6). Figure 4.6 shows that the water stress

factors for the growing season 2013-14 is lower (i.e. more water stress) compared to

the season of 2012-13.
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Figure 4.4: Cross-validation predictions of leaf area index (LAI) with models including

and excluding the water balance component over the growing season at each time

point along with the observed datapoints for dryland and irrigated winter wheat for

all environments i.e. location-harvest year-treatment combinations
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Figure 4.5: Cross-validation predictions of biomass with models including and excluding

the water balance component over the growing season at each time point along with

the observed datapoints for dryland and irrigated winter wheat for all environments

i.e. location-harvest year-treatment combinations
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Figure 4.6: Water stress factor over the growing season estimated by the model

including the water balance component for dryland and irrigated winter wheat in

Oklahoma for all environments i.e. location-harvest year-treatment combinations
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Figure 4.7: Soil water content (mm) estimated by the model including the water

balance component over the growing season along with observed soil moisture data

obtained using neutron probe for dryland and irrigated winter wheat in Oklahoma for

all environments i.e. location-harvest year-treatment combinations

4.4.3 Soil water content

There was an overall bias in estimation where the estimated soil water content was

less than the observed soil water content for most environments (Figure 4.7). The

median values for statistics RMSE, d, and NSE for soil water content were 66 (mm),

0.4, and -1.6 respectively. A negative NSE value indicates that the observed data

mean is a better estimate than the model predictions.

For futher investigation, the crop evapotranspiration values were calculated with

the model at posterior median values of ODE model parameters. It was observed that

the difference between potential cumulative crop ET and simulated actual crop ET
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Figure 4.8: Potential and simulated actual crop evapotranspiration over the season,

estimated at the posterior medians of the ODE model parameters for all environments

i.e. location-harvest year-treatment combinations

(i.e. after factoring in the water stress) was higher in the dryland environments of

2013-14 compared to all environments in 2012-13 (Figure 4.8). Highest cumulative

crop ET values were observed in irrigated treatments in both seasons (range of 478 to

509) followed by dryland treaments of 2012-13 (range of 390 to 464) and lowest ET

values were associated with dryland treatments in 2013-14 (range of 269 to 327). This

pattern is similar to the LAI and biomass results.

4.4.4 Parameters from the hierarchical component of the model

Table 4.4 shows the posterior HDI and median for the hierarchical component hy-

perparameters in the model. The variance parameters for residuals for the three

response variables (LAI, biomass, and yield) shifted higher than the specified priors.

99



Table 4.4: Posterior HDI and median for the hyperparameters in the model

Parameter HDI Median√
σ2

e LAI (1, 1.15) 1.080√
σ2

e biomass (147, 169) 159.000√
σ2

e yield (93, 132) 110.000√
σ2

P lot LAI (0.16, 0.27) 0.210√
σ2

P lot biomass (0.34, 0.53) 0.430
√
σ2

P lot yield (0.000002,0.08) 0.027

As mentioned previously, the plot effects were defined as a fraction of the ODE-model-

simulated value for each variable. Thus, the median value of 0.21 for
√
σ2

P lot LAI

indicates that the variability between plots within an environment was 21% of the

LAI simulated at any given time point. The plot square root of variance is higher for

biomass with a median of 0.43 and small for yield with a median of 0.027.

4.4.5 Parameter estimation with end of season data

The model did not efficiently sample from the posterior distribution. The number

of effective samples ranged from 97 to 131 for the ODE model parameters and from

30 to 221 for the hyperparameters of the hierarchical component of the model. The

chains didn’t converge as indicated by the largest R-hat of 1.12 among all parameters.

Hence, the results from this model are not further interpreted due to a very small

number of samples and lack of convergence.

4.5 Discussion

In this study, we utilized an ODE crop growth model coupled with a simple water

balance model to estimate certain wheat growth parameters in winter wheat. We
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also compared the out of sample model predictions on three response variables (LAI,

biomass, and yield) to assess model performance. In addition, we performed a

validation analysis to examine how close the water balance estimates compared to the

observed soil water content.

4.5.1 ODE model parameters

The posterior median for the light extinction coefficient parameter (K) was estimated

to be 0.36, which is possible, but lower than most literature reported values that were

used to formulate the priors. A study by Pradhan et al. (2018) in India obtained

light extinction coefficient values between 0.47 to 0.65 under irrigated conditions, and

also reported that the irrigation didn’t have a significant effect on light extinction

coefficient. Low light extinction coefficient indicates that it requires more leaf area to

intercept the same amount of light compared to canopies with high light extinction

coefficient.

Posterior estimates for the parameter representing RUE were compared for the

model with water balance to the model without water balance. Both models resulted

in RUE estimates that were higher than expected based on other studies, most of

which were used for prior specification. The RUE values are commonly reported as

RUEP AR i.e. the RUE per unit photosynthetically active radiation, which would be

approximately double the RUE value per unit total solar radiation. The study by

Pradhan et al. (2018) reported RUEP AR values between 1.97 to 2.73 (i.e. roughly

0.98 to 1.36 gMJ−1), which is much lower compared to what was estimated by our

model. Another study by Shearman et al. (2005) also reported a pre-anthesis RUEP AR

value of 2.47. Thus, the parameter for RUE was substantially overestimated by our

model. In comparison between the two models, RUE was higher when estimated

with the model with water balance, indicating that water stress might contribute

to this change in posterior distribution of RUE from one model to the other. This
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could be due to rapid decline in leaf area at the end of the growing season causing

lower LAI and consequently lower light interception. The decline in leaf area was

even more rapid in case of the model including water stress, for which higher values of

RUE during estimation compensated. The higher values for RUE allowed biomass

accumulation and yield formation even in the presence of reduced light interception

and water stress during the grain-filling period. A possible improvement in the model

to address this issue could be to accomodate the carbohydrate remobilization process,

which would contribute to yield formation even under reduced photosynthetic capacity.

Carbohydrate remobilization can play an important role in grain-filling especially

under water-limited conditions (Yang, Zhang, Huang, Zhu, & Wang, 2000; Davidson

& Chevalier, 1992).

The correlations between the ODE model parameters indicate a non-identifiability

problem in the model to some extent. The correlation between these parameters

can be interpreted in terms of model specification to understand how they offset

each other. The positive correlation between senrate and RUE indicates that lower

light interception due to higher senescence rate can be compensated by higher RUE

to sustain the growth rate. Likewise, the interplay between TTL and vrn indicate

that there is not enough information in the data to adequately distinguish these two

parameters. The dataset used in this study doesn’t adequately represent diverse

conditions in terms of planting time and temperatures which would be helpful in

identifying variable vernalization requirements. A dataset from environments with

variable planting time and more contrasting environmental conditions could potentially

provide information to disambiguate these parameters. The correlation between α and

K is a result of their offsetting influence on leaf area through equation 4.3.5, i.e. for a

given unit increase in α, the effect of that change can be offset by a corresponding

adjustment to the value of K. Thus, given the limitations of the data used for

estimation, these two parameters cannot be fully distinguished.
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4.5.2 Model predicted LAI, biomass, and yield

Results showed that water stress calculated by the model was likely overestimated as

indicated by lower values of model predicted LAI than observed LAI in most environ-

ments. Likewise, the biomass in dryland environments in 2013-14 was predicted to be

more severely affected by water stress compared to LAI. This is because the biomass

is being affected by water stress twice, first through reduced light interception because

of low LAI, and second due to the direct effect of water stress on biomass as shown

in equation 4.3.8. Furthermore, the greatest differences in predicted yield between

the models with and without water balance were observed in dryland environments

in 2013-14. The difference in total water supplied between dryland and irrigated

treatments at the same location in 2012-13 was smaller than in 2013-14 (results not

shown). Thus, the difference between the models with and without water stress was

more pronounced in environments where water stress was higher as indicated by the

water stress factor.

Higher water stress calculated by the model in the growing season of 2013-14 could

also have been indirectly influenced by temperature. The simulated early season LAI

(especially between 50 to 100 DAP) in 2013-14 season and also Lahoma_2013_Dryland

was greater than the observed LAI. Subsequent analysis showed that the average

minimum temperature during that time period was close to 4 ◦C in Stillwater and

Perkins in 2012-13 and and close to 0 ◦C in 2013-14 and in Lahoma in 2013. The

base temperature in our model was set to 0 ◦C, which means the leaves continued

to grow at all times in both seasons (albeit at a reduced rate). However, since the

early season temperatures in 2012-13 were higher i.e., around 4 ◦C, the continuous

leaf growth was expected. But in 2013-14, the leaf growth rate in the field was slower

than the model simulation as shown by the LAI data during that time frame, which is

possibly related to the lower temperatures. As a result, more leaf area than observed

was simulated in 2013-14 leading to higher transpiration and exhaustion of soil water
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content resulting in higher water stress and lower yield and biomass at the end of the

season. This also points to the possibility that the base temperature for wheat used in

this study may be greater than 0 ◦C. McMaster and Smika (1988) found that calendar

days outperformed thermal time from emergence through jointing and G. Slafer and

Savin (1991) found a base temp of 4 ◦C to 9.5 ◦C depending on growth stage.

To understand the low predictions of biomass values in dryland environments of

2013-14, we explored the two possibilities as mentioned above, first, reduced light

interception through low LAI, and second through direct effect of water stress. To

explore the first case, we supplied observed LAI values interpolated over the season to

the model and examined resulting biomass. This did not show an increase in biomass,

suggesting that lower biomass values could have been more related to the water stress.

To explore the second case, we examined the cumulative crop ET values and crop

coefficient (Kc) values. In general, the crop ET values were within plausible ranges

(273 to 426 mm) across environments, yet lower when compared to the literature, where

crop ET was mostly determined for irrigated environments (Howell et al., 2007; Howell,

Steiner, Schneider, & Evett, 1995). A review by S. Zhang, Sadras, Chen, and Zhang

(2013) reported that the crop ET for dryland wheat in China under conventional tillage

ranged from 123 to 589 mm. The crop coefficient values, specifically for Kc ini were

high for the 2013-14 growing season. We ran the model with lower values for Kc ini,

which resulted in lower ET values earlier in the season and higher biomass. Hence,

the exploratory analyses of the results suggested that it was not leaf area, but the

crop ET coefficient relationships that needs to be re-evaluated in future improvements

of the model.

The fact that biomass and yield were more severely impacted by water stress than

LAI also brings to attention that the link between variables could be advantageous or

disadvantageous depending on model specification. The inclusion of water balance

clearly improved model performance for LAI and yield. However, the fact that biomass
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was not predicted as well by the model that contained water balance illustrates the

challenges of working with a model structured to be biologically realistic. Due to the

relationships between variables imposed by the structure of the ODE system, a bias

due to model mis-specification for one variable (e.g. soil water) is more likely to result

in a bias in other variables as well. If using a standard analytical approach based

on linear modeling of soil water, LAI, biomass, and yield separately, a bias in one

variable would not affect the other variables. Thus, care should be taken to ensure

that the model is properly specified for all variables in the model.

4.5.3 Soil water content

The overall bias where estimated soil water is lower than observed results in the water

stress factor calculated based on simulated soil water to be more severe than water

stress was in reality.

One of the reasons for this could be the crop evapotranspiration (ETc) values

calculated as reference evapotranspiration (ET0) multiplied by crop coefficient values

(Kc) for initial, mid, and end growth phases. Upon assessment of ET0 and Kc

values, it was observed that the average ET0 values didn’t substantially vary between

environments (range 2.69 to 3.01), however, the crop coefficient values, especially the

crop coefficient for early growth stage (Kc ini) ranged from 0.24 to 0.96 across different

environments with higher values associated with the growing season of 2013-14. These

values are higher than the literature reported values where Kc values for wheat were

determined for Texas environments (Howell et al., 2006; Ko, Piccinni, Marek, & Howell,

2009). Furthermore, the exploratory analysis of the results with lower Kc ini values

also resulted in a slower decline of soil water early in the season.

Thus, for further improvement of the model, the representation of crop coefficients

should be improved. Using the dual crop coefficient approach, which separates ET into

evaporation and transpiration as two separate components, might be an alternative
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to more accurately estimate crop evapotranspiration. Another possible approach

to address this issue could be to utilize a layered soil water model with two layers,

which would still be simpler than the multi-layer models, where the evaporation is

specified to only occur from the top layer. Estimation of parameters relating to crop

evapotranspiration rather than calculating and supplying it to the model could be

another alternative. Future work should emphasize improvements in this aspect of

the model.

4.5.4 Parameters from the hierarchical component of the model

The unexplained variance was higher than expected as indicated by higher posterior

medians compared to prior means for the hyperparameters. The estimate for the pa-

rameter representing plot variance in biomass (
√
σ2

P lot biomass) was very high. However,

the estimate for (
√
σ2

P lot yield) was much smaller, which was estimated to be only 2.7%

compared to 43% for biomass. This is most likely because the area from which yield

was obtained was much larger (20 m2) compared to the area biomass was sampled

from (0.25 m2). Data measured from a smaller sample area would be influenced by

within-plot variability in addition to between-plot variability, whereas data measured

from a larger area would be less influenced by the within-plot variability.

4.5.5 Model predictive performance

The addition of a water balance component to the model had the most positive effect

on yield as indicated by the statistical metrics. This suggests that the water balance

was important in later growth stages to model the terminal drought stress. The model

with water balance was also better in predicting LAI; however, the addition of water

balance seemed to have a negative effect on predictions for biomass. As described

above, this is most likely a result of compound effect of water stress on biomass through

LAI and the direct effect of water stress, which caused the estimates to be significantly
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lower than what would be expected. This phenomenon was also reflected in the

statistical metrics which showed that the model predicted biomass values are far from

observed values. Figure 4.5 depicts that the end of season biomass was substantially

higher than observed in Chickasha_2013_Dryland whereas Stillwater_2014_Dryland

was much lower. Environments with extreme predictions like these contributed to the

deviance of predictions from the observed means, therefore resulting in poor model

performance as shown by low NSE and d values, and higher RMSE.

4.5.6 Parameter estimation with the end of season data

The results indicate that the model calibration approach needs to be refined in order

to be used with only the end of season data. Estimating fewer parameters could

be an option to reduce parameter non-identifiability. For instance, specific leaf area

could be used to establish a bi-directional relationship between LAI and biomass,

which would allow us to estimate LAI and biomass without estimating α. In addition,

more stringent priors could be specified for well-studied parameters such as RUE

to facilitate better sampling. Other sampling methods that can handle parameter

correlations better also can be utilized as alternatives. The end of season data by itself

also could be inadequate in estimating the parameters. Augmenting the end of season

data with other information on growth stages (terminal spikelet, booting, heading,

anthesis, maturity) and end of season PAW can also be valuable to get the phenology

right. Such a modeling approach, if successful, would be highly useful to analyze big

datasets such as variety trial data. These data usually do not have information on

different variables througout the growing season, rather mostly contain end of season

data with information on important developmental stages.

107



4.6 Conclusion

The water balance model was found to be improve the accuracy of simulated wheat

LAI and yield, especially under water limited conditions. The ODE model parameters

suggested that the model performed satisfactorily, however, many potential approaches

for further improvements of the model were identified. The long-term goal is to develop

a model which can synthesize information contained in extensive variety trial datasets

for better understanding of the system and parameters, while also being able to analyze

end of season data to make meaningful inferences. Thus, this project laid a foundation

to incorporate a basic crop model with a water balance model to understand winter

wheat growth and production.

4.7 Supplementary materials

4.7.1 Reference evapotranspiration (ET0) and single crop coefficient (Kc)

calculations

4.7.1.1 Calculations for crop coefficient (Kc):

Crop coefficient (Kc) was calculated for three development stages: initial, mid-season,

and late-season. Length of crop development stages was determined based on Table

11 of Allen et al. (1998). However, the initial period was specified to be from planting

date to 90 days after planting to accomodate typical growth rates in Oklahoma. The

mid-season period was from 70 days prior to harvest to 30 days prior to harvest, and

late-season was from 30 days prior to harvest until the harvest date. The Kc values

were calculated for each development stages with the following formulae:

i)

Kc ini =


T EW −(T EW −REW ) exp[

−(tw−t1)Eso(1+ REW
T EW −REW

)
T EW

]
tw ETo

, tw ≥ t1

Eso

ETo
= 1.15, tw ≤ t1

(4.7.1)
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where,

TEW = Total evaporable water, calculated below.

REW = Readily evaporable water, calculated below.

ETo = Mean reference evapotranspiration [mm day−1] during the initial growing

period.

Eso = Potential rate of evaporation [mm day−1], calculated as: 1.15 ∗ ETo

tw = Mean interval between wetting events [days], calculated as: tw = Lini

nw+0.5 ,

where, Lini = length of initial growing period [days] = 30 taken from Table 12 of Allen

et al. (1998), and nw = Number of wetting events greater than 0.2 ∗ ETo during the

initial period.

t1 = Time when stage 1 drying is completed [days], calculated as: t1 = REW/Eso

The values of corrected TEW and REW i.e. TEWcor and REWcor were used in

the equation in place of TEW and REW to calculate Kc ini. TEWcor and REWcor

were calculated following figures 29 and 30 in Allen et al. (1998), whereby,

For all soil textures having light infiltration depths (< 10 mm):

TEWcor = 10mm REWcor = min(max(2.5, 6/(ETo)0.5), 7)

For coarse soil textures having large infiltration depths (≥ 40 mm):

TEWcor = min(15, 7(ETo)0.5) REWcor = min(6, TEWcor − 0.01)

For medium and fine soil textures having large infiltration depths (≥ 40 mm):

TEWcor = min(28, 13(ETo)0.5) REWcor = min(9, TEWcor − 0.01)

For infiltration depths between 10 mm and 40 mm:

Kc ini = Kc ini for light infiltration depths + I−10
40−10 [Kc ini for large infiltration

depths - Kc ini for light infiltration depths]

Soil texture was determined using the values for clay percentage and silt percentage

from Lollato and Edwards (2015). Sand percentage was calculated as 100-SLCL-SLSI

and soils with greater than 70% sand and less than 15% clay were considered coarse,

whereas the rest were considered medium and fine.
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ii)

Kc mid = 1.15 + [0.04(u2 − 2)− 0.004(RHmin − 45)](h3 )0.3 (4.7.2)

where,

1.15 is the value for Kc mid taken from Table 12 of Allen et al. (1998).

u2 = Mean value for daily wind speed at 2 m height during the mid-season growth

stage [ms−1], for 1 m s−1 ≤ u2 ≤ 6 m s−1

RHmin = Mean value for daily minimum relative humidity during the mid-season

growth stage [%], for 20% ≤ RHmin ≤ 80%

h = mean plant height during the mid-season stage [m], for 0.1 m < h < 10 m

iii)

Kc end = 0.25 (4.7.3)

where, 0.25 is the tabulated value for Kc end for winter wheat. An adjustment with

the following equation is only necessary if the tabulated Kc end values exceed 0.45.

The values didn’t exceed 0.45 for any of the environments.

The Kc curve was then constructed as shown in Equation 4.3.12.

4.7.1.2 Calculations for reference evapotranspiration (ET0) [mm day−1]:

ET0 =
0.408 ∆(Rn−G) + γ 900

T +273 u2 (es − ea)
∆ + γ (1 + 0.34 u2) (4.7.4)

where,

Rn = net radiation at the crop surface [MJm−2day−1]

G = Soil heat flux density [MJm−2day−1]

T = Mean daily air temperature at 2m height [◦C]

u2 = Wind speed at 2m height [ms−1]

es = Saturation vapor pressure [kPa]

ea = Actual vapor pressure [kPa]
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es − ea = Saturation vapor pressure deficit [kPa]

∆ = Slope vapor pressure curve [kPa ◦C−1]

γ = Psychrometric constant [kPa ◦C−1]

4.7.1.3 Net solar radiation (Rn) [MJm−2day−1]:

Rn = Rns −Rnl (4.7.5)

where,

Rns = Net shortwave radiation [MJm−2day−1]

Rnl = Net longwave radiation [MJm−2day−1]

4.7.1.4 Net shortwave radiation (Rns) [MJm−2day−1]:

Rns = (1− α)Rs (4.7.6)

where,

α = Albedo, which is 0.23 for the hypothetical grass reference crop [dimensionless]

Rs = Incoming solar radiation [MJm−2day−1]

4.7.1.5 Net longwave radiation (Rnl) [MJm−2day−1]:

Rnl = σ[
T 4

max,K + T 4
min,K

2 ](0.34− 0.14
√
ea)(1.35 Rs

Rso

− 0.35) (4.7.7)

where,

σ = Stefan-Boltzmann constant [4.90310−9 MJ K−4m−2day−1]

Tmax,K = Maximum absolute temperature for the day [K = ◦C + 273.16]

Tmin,K = Minimum absolute temperature for the day [K = ◦C + 273.16]

ea = Actual vapor pressure [kPa]

Rs = Incoming solar radiation [MJm−2day−1]

Rso = Clear-sky radiation [MJm−2day−1]
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4.7.1.6 Clear-sky radiation (Rso) [MJm−2day−1]:

Rso = (0.75 + 2 · 10−5 z)Ra (4.7.8)

where,

z = Elevation above sea level [m]

Ra = Extraterrestrial radiation [MJm−2day−1]

4.7.1.7 Extraterrestrial radiation (Ra) [MJm−2day−1]:

Ra = 24(60)
π

Gsc dr [ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ωs)] (4.7.9)

where,

Gsc = solar constant [0.0820 MJm−2min−1]

dr = Inverse relative distance Earth-Sun

ωs = sunset hour angle

φ = latitude in radians

δ = solar declination

4.7.1.8 Inverse relative distance Earth-Sun (dr):

dr = 1 + 0.033 cos( 2π
365J) (4.7.10)

where,

J = day of year

4.7.1.9 Solar declination (δ):

δ = 0.409 sin( 2π
365J − 1.39) (4.7.11)

where,

J = day of year
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4.7.1.10 Sunset hour angle (ωs):

ωs = arccos[−tan(φ)tan(δ)] (4.7.12)

where,

φ = latitude in radian.

δ = solar declination

4.7.1.11 Saturation vapor pressure at temperature T (eo(T )) [kPa]:

eo(T ) = 0.6108 exp[ 17.27T
T + 237.3] (4.7.13)

where,

T = Air temperature [◦C]

4.7.1.12 Mean saturation vapor pressure (es) [kPa]:

es =e
o(Tmax) + eo(Tmin)

2

=
0.6108 exp[ 17.27 Tmax

Tmax+237.3 ] + 0.6108 exp[ 17.27 Tmin

Tmin+237.3 ]
2 (4.7.14)

where,

Tmax = Maximum temperature [◦C]

Tmin = Minimum temperature [◦C]

4.7.1.13 Actual vapor pressure (ea) [kPa]:

ea = eo(Tdew) = 0.6108 exp[ 17.27 Tdew

Tdew + 237.3] (4.7.15)

where,

Tdew = Dewpoint temperature [◦C]
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4.7.1.14 Slope of saturation vapor pressure curve at air temperature T

(∆) [kPa◦C]:

∆ =
4098[0.6108 exp( 17.27T

T +237.3)]
(T + 237.3)2 (4.7.16)

where,

T = Air temperature [◦C]
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CHAPTER V

GENERAL CONCLUSIONS

This dissertation project investigated winter wheat growth and development in Ok-

lahoma while introducing novel approaches to analyze data on crop growth. Winter

wheat is the predominant crop in Oklahoma grown mostly under rainfed conditions.

Thus, water availability is one of the important factors in understanding wheat growth

dynamics. The broad areas this dissertation addressed were: i) Understanding wheat

yield as a function of yield components and weather conditions, ii) Introducing a new

methodology (a dynamic ordinary differential equations; ODE model) to analyze data

collected over the season on wheat growth, and iii) Utilizing the dynamic ODE model

in conjunction with a simple water balance model to understand how water availability

affects crop growth and yield dynamics.

In Chapter 2, we explored wheat yield as a function of yield components to

examine source-sink balance and assessed their association with weather conditions.

The data were analyzed with a Bayesian hierarchical model to naturally reflect the

hierarchical features of the system. The results showed that environment explained

a large proportion of yield variability in Oklahoma. This study also found that the

wheat yield in Oklahoma is co-limited by both source and sink.

In Chapter 3, we introduced a dynamic ODE model to analyze leaf area index (LAI)

and biomass over the growing season. This model was implemented within a Bayesian

framework to introduce stochasiticity to the deterministic ODE modeling approach.

We also compared this new approach to data analysis with the conventional approach to

analyzing these types of data. Results showed that the data were valuable in estimating
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the ODE model parameters which enabled biologically meaningful interpretations

that were not apparent from the linear modeling approach. The comparison showed

that both approaches had mixed results indicating that neither approach conclusively

outperformed the other in terms of model prediction. However, the ODE modeling

approach enabled biologically meaningful interpretations of parameters that were not

apparent from the linear modeling approach.

In Chapter 4, we added a water balance component to the dynamic ODE model to

analyze the same dataset with additional data on yield. This study quantified the level

of improvement in the model by including water balance while assessing the effects

of water availability on crop growth throughout the season. We also explored the

impact of data quantity and diversity on model predictions which showed that further

research is required in this area to successfully model end of season data. Results

indicated that the inclusion of a water balance component was important in making

accurate inferences, especially on yield. The water balance model, although valuable

for model performance, did not quite perform as expected, and needs to be improved

for future analyses.

Thus, we presented an eco-physiological explanation for G × E interaction observed

in Oklahoma wheat using a linear modeling approach. Upon recognizing that the

environment is the dominant factor for yield variability, we explored the growth patterns

on a single genotype, Iba, at different environments using a non-linear model to better

represent the system. Finally, we augmented the non-linear model to encompass one

of the important features of the Oklahoma wheat cropping system: water availability

and delivered inferences on wheat growth and yield patterns. Further research calls

for a better water balance model, inclusion of multiple genotypes, and a robust data-

model combination to analyze end of season data. In summary, this dissertation

project added to the understanding of wheat growth and yield dynamics in Oklahoma

and introduced a novel modeling approach to facilitate biological interpretations of
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statistical parameters.
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